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generation in the weld bead. In order to better understand the 
vaporized elements from the oxide layer, pores generated inside 
weld have been verified by EDS to reveal their chemical 
composition. Comparative chemical composition is made at a 
point very close to the pore edge and a point inside the weld 
metal matrix. In Figures 6a and 6b, EDS analyses results of the 
pore edge and weld metal matrix are presented, respectively. 
Results show that oxygen element concentration at the pore 
edge is increased in comparison with the weld metal chemical 
composition. This implies that the amount of oxygen inside the 
pore is higher than the weld metal matrix. As shown earlier in 
Figure 3, there is a high amount of oxygen on the coating layer 
of AR samples. However, melting of magnesium oxide might 
not be the pore source since its melting point is much higher 
than the magnesium melting point. Two possible reasons are 

discussed in what follows. First, the density of magnesium 
oxide is more than twice that of magnesium. This may be the 
cause of oxide inclusion in weld metal [8, 30]. Second, 
magnesium oxide absorbs moisture from air [8, 30-33], and 
since magnesium oxide is not stable, it reacts with water 
molecules to form magnesium hydroxide (Mg(OH)2) [8, 34]. 
Magnesium hydroxide has a low decomposition temperature of 
around 300 �C and it is at this point that molecular water is 
released [35]. The released water molecules result in hydrogen 
pores inside the weld metal in AR samples. In PA samples, 
preheating is performed to decompose magnesium hydroxide to 
water molecules. Water molecules are then vaporized prior to 
laser welding. Therefore, fewer pores are generated in the weld 
bead. 

 
Figure 4 Cross-sectional view of welds for different pretreatments at welding speed of 30 mm/s

 
Figure 5 Schematic view of pore formation at interface [39] 
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Element Wt% At% Wt% At% 
Sample Inside matrix Pore edge 

C 04.27 08.28 08.86 14.50 
O 02.35 03.42 31.04 38.15 

Mg 89.74 85.86 57.97 46.18 
Al 02.27 01.95 01.23 00.90 
Zn 01.37 00.49 00.90 00.27 

Matrix Correction ZAF Correction ZAF 
Figure 6 EDS analysis of a) pore edge b) weld metal matrix 

In order to investigate the temperature between two 
overlapped sheets, thermocouple is applied at the interface of 
two sheet metals. Thermocouple is set at the bottom surface of 
the overlapped sheets concentric with the scanning line of the 
plasma torch.  

 
Figure 7 Temperature history of the point at the interface of 

two lapped magnesium alloy sheets 

The temperature history is shown in Figure 7. The results 
show that the temperature at the interface of overlapped metal 
sheets reach 300�C. Therefore, magnesium hydroxide reaches 
its decomposition temperature at the interface. This proves that 
the plasma arc process can effectively remove the source of 
pore generation at the interface of two metal sheets.  

In order to check whether the plasma arc is effective in 
mitigating the formation of pores, samples are preheated in a 
furnace prior to welding. In Figure 8, cross-sections of different 
samples, which are exposed to preheating in the furnace, are 
shown. In Figures 8a, 8d and 8g, results of weld samples 
without preheating are shown. The pores are obviously inside 
the weld bead (the reason for this was discussed earlier). In 
Figures 8b, 8e and 8h, cross-sectional results of preheated 
samples of temperatures up to 150�C are shown. Although it 
seems pores are mitigated, they continue to exist in the weld 
bead. This shows that preheating up to 150�C does not 
effectively mitigate the pore generation at the interface of weld 
joints. In Figures 8c, 8f and 8i, the cross-sections of preheated 

300�C isothermal line  

(a)

(b)
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samples in a temperature of 300�C are shown. The results show 
that by reaching 300�C, pores are removed from the interface 
of overlapped weld joints. This shows that by reaching this 
temperature, magnesium hydroxide is decomposed and pores 

are removed as expected. This also implies that the effect of a 
plasma arc mitigates pore generation at the interface of two 
metal sheets as the result of preheating. 

 
Figure 8 Cross-section of preheated samples with different temperature at furnace with welding speed of 30 mm/s 

Mechanical properties of weld joints 
Because the cross-sectional view does not reveal all the 

information about the weld joint, the mechanical property of 

welds is tested. For each specimen, five samples were cut in 
order to study the tensile shear strength of the weld. The 
corresponding tensile test results are presented in Figure 9. 

 
Figure 9 Tensile properties of weld joints with different pretreatments
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The average tensile strength of PA samples is higher than 
AR and MR samples. Results show that by increasing power to 
900 W, tensile strength is increased and, when full penetrated 
depth is achieved, the tensile strength is decreased. As shown in 
Figure 4, the increase in laser power mitigates pore formation, 
resulting in higher tensile strength. However, when full 
penetration is achieved, a molten metal drips out at the bottom 
sheet and pores are formed in the weld metal, resulting in lower 
tensile strength. The variation of tensile strength for AR 
samples is larger than in the case of PA and MR samples, which 
is related to the instability during the welding of AR samples. 
However, at P=1000 W, there is variation not only in AR 
samples, but MR samples as well. The cause of this variation 
may be attributed to the manual removal of the oxide layer on 
the surface, which causes different conditions for laser energy 
absorption. Also, the joining in MR samples that is initiated at 
this power and penetration to lower sheets is unstable. When 
the power is increased to 1100 W, the tensile strength in MR 
samples is higher than in the case of AR and PA samples. This 
is caused by the difference in the cross-sectional view of the 
weld bead show in Figures 4h, 4i and 4j. Based on the 
performed analyses it could be concluded that the best quality 
of weld is achieved for plasma arc treated surface under 900 W 
power of laser. 

CONCLUSIONS
In this study, laser welding of the AZ31B magnesium alloy 

was performed through different welding procedures. The 
major conclusions of this study are as follows: 
1. In overlap joint configuration, pores were mainly formed at 

the interface of two sheets as a result of presence of an 
oxide layer on the surface of AZ31B at once when the oxide 
layer is removed from the surface, sound weld quality can 
be achieved.  

2. By applying a plasma arc torch as a preheating source in 
front of a laser welding head, sound weld quality was 
achieved and pores at the interface were mitigated.  

3. By preheating samples inside a furnace up to 300�C, pores 
were eliminated at the interface during laser welding which 
implies that the main contribution of the plasma arc as a 
preheating source is in the elimination of the hydrogen 
along the joint line. 
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