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The Evolution of GPLv3 and Contributor Agreements in Open Source Software  
By George Finney 

 

 

 

Abstract 

 

Innovation in the computer software industry over the past 15 years increased at a 

frantic pace thanks in part to the Open Source Software movement.  This community of 

software developers uses legal methodologies to enforce rights and induce others to 

follow their lead and with openness has come more innovation.  The Free Software 

Foundation’s General Public License (GPL) in particular embodies this spirit and uses a 

kind of recursive philanthropy or an Open Source-only sandbox, which requires other 

developers to create their software under licenses with compatible philosophies. 

How the propagation of these licenses effects innovation in the software industry 

is the subject of this paper.  This inquiry will examine methods used in other industries 

that embody similar propagation devices from which subsequent Open Source licenses 

could benefit, proposing that Open Source must balance the risk Open Source companies 

face with the basic donative intent of the community to continue to offer a cohesive 

doctrine other developers will continue to follow.
1
 

In light of the most recent version of the GPL, this paper examines the drafting 

and revision process the community undertook and will examine what compromises 

resulted.  This process, while a groundbreaking step for the community, necessarily 

creates new issues to be resolved and may be more reactionary to current events than 

necessary to support the community’s goals of greater innovation. 
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I. Introduction 

 

Imagine an orchestra composed of volunteers from all over the world, each with 

their own instrument.  Imagine further that each volunteer writes and plays his own part 

in the symphony, separated by hundreds of miles.  Finally, imagine this orchestra 

compared favorably to the best orchestras in the world.  While this may be hard to 

imagine in a practical sense, this is exactly what Open Source Software developers have 

done over the course of the last 20 years.  Many scholars have proffered theories as to 

why and how this process could work on such a large scale.  This study is distinguishable 

because it seeks to understand how the course of Open Source will change in the years to 

come.  Through a process of software donation, which can be equated to a kind of 

recursive philanthropy, a large number of computer programs have been developed 

across multiple categories of computer software.  It appears, however, that the recursive 

aspects of the donative process have never been fully challenged as being consistent with 

the goal of innovation or the stated philosophy underlying Open Source development.  

This paper will ask: “do the ends justify the means”? 

There seems to be some tension in the Open Source world between the ideals 

expressed and the practice of enforcing licensing agreements.
2
  This tension arises in the 

                                                 
2
 The most concise source for the ideals of the Open Source community comes from the 

Free Software Foundation (FSF) and the GNU Project, which define the four core 

freedoms that must be in place for the FSF to consider the software “free.”  Those 

freedoms are: 

1. The freedom to run the program, for any purpose. 

2. The freedom to study how the program works, and adapt it to your needs. 

3. The freedom to redistribute copies so you can help your neighbor. 

4. The freedom to improve the program, and release your improvements to the 

public, so that the whole community benefits. 

Free Software Foundation, Free Software Definition (2007), 

http://www.gnu.org/philosophy/free-sw.html.  The original version appeared in the initial 
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Open Source community through its definition of propagation.  Propagation in this 

context is when the use of the Open Source software requires the same or similar Open 

Source license be applied to the code that is newly developed based on the earlier work.  

Propagation can arise through derivative works in the context of copyright law where one 

developer adds to a piece of software.  Propagation arises in patent law through the 

notion of improvements, when a developer adds a new feature to an existing patented 

program.  Because not all Open Source licenses are the same in this regard, the issue of 

propagation becomes complex.  The contribute-back provisions found in some Open 

Source licenses, requiring code developed under a particular license be contributed back 

to the community, present a similar issue.  These licenses allow an individual to use the 

Open Source code however they desire, so long as any new work created based on the 

Open Source code is given back to the Open Source project for further use by the 

community. 

Since Open Source builds on both copyright law and patent law, the more 

fundamental issue of whether Open Source conflicts with either of these doctrines must 

be considered.  It is possible that Open Source creates a competing model to that of the 

established modes of intellectual property, using their own functions against them.  This 

paper will take a different position, contending both intellectual property and Open 

Source should coexist as complementary methods of regulating property.  In traditional 

intellectual property, organization comes in the form of government regulation; Open 

Source, however, creates a self-regulated commons.  This commons is not without 

                                                                                                                                                 

bulletin of the GNU created by the FSF containing only the first two freedoms.  Richard 

Stallman, What is the Free Software Foundation, Feb. 1986, 

http://www.gnu.org/bulletins/bull1.txt.   
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controversy due to the community’s own developing notions of how the commons should 

be regulated. 

Commentators pay close attention to how proprietary code has infiltrated the 

Open Source area.  This issue came to a heated point in 2004 when The SCO Group filed 

suit against Novell, claiming that infringing code existed in the Linux kernel.
3
  After 

three years of legal discovery, the court determined that only 326 lines of code in the 

Linux kernel were potentially infringing.
4
  In the meantime, the contribution processes 

for many Open Source projects tightened in order to discover proprietary code more 

easily.
5
  With the recent court decisions regarding the SCO lawsuit and the company’s 

subsequent bankruptcy, this issue has fallen largely into the background.
6
 

While one problem has diminished, several other issues have come to the 

foreground.  A large concern since the inception of the GPL is the issue of software 

patents and their consequences for Open Source software.
7
  Several Open Source 

software licenses such as the Mozilla Public License and the Apache Software license 

have addressed this problem with explicit patent clauses. In addition, the third version of 

                                                 
3
 Darl McBride, Open Letter on Copyrights, Dec. 4, 2003, http://www.sco.com/copyright.   

4
 Charles Babcock, IBM Argues SCO's Case Comes Down To 326 Lines Of Code, March 

19,2007,  

http://www.informationweek.com/story/showArticle.jhtml?articleID=198001720.   
5
 The Free Software Foundation requires copyright assignments on all of its projects as a 

way of insuring that all recordkeeping and copyright registration requirements.  Eben 

Moglen, Why the FSF gets copyright assignments from contributors, June 20, 2007, 

http://www.gnu.org/licenses/why-assign.html.  
6
 Robert McMillan, SCO Declares Bankruptcy, Sept. 19, 2007, 

http://www.networkworld.com/news/2007/091907-sco-nasdaq.html.   
7
 Version 2 of the GPL, created in 1991, in its preamble states that “any free program is 

threatened constantly by software patents”.  GPL Version 2, June, 1991, 

http://www.fsf.org/licensing/licenses/info/GPLv2.html.   
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the GPL attempts to address the issue of software patents as well.
8
  While software 

patents present a significant issue for Open Source developers, a more basic problem still 

exists.  The debate over what constitutes a derivative work and how a license propagates 

itself is more widespread than many other topics currently being discussed by the Open 

Source community.  In addition, many software companies are concerned about the 

effects Open Source software may have on proprietary code because of the ambiguity of 

many Open Source licenses. 

The development of the propagation issue within the several versions of most 

widely used Open Source license, the GNU Public License, is the focus of this paper.  

This discussion examines the latest iteration of the GPL, GPLv3, specifically regarding 

how it addresses the issue of propagation.  Finally, this examination contemplates 

software patents in light of how propagation functions differently in the context of patent 

rights versus the context of copyright.  In order to continue to offer a cohesive doctrine 

that others will follow, Open Source must grow to balance the basic donative intent of the 

community with the risk that Open Source companies face. 

The Open Source definition, as promulgated by the Open Source Initiative, is 

silent on propagation and contribute-back provisions.
9
  This silence leaves room for a 

broad spectrum of licensing provisions one must be aware of, particularly because a 

programmer who ‘reuses’ code or reverse engineers an algorithm from an Open Source 

project may not fully examine the specific provisions of a license before implementing 

that code in a proprietary project.  Further, at least three types of rights effect software:  

                                                 
8
 Free Software Foundation, Opinion on Covenant not to Assert Patent Claims, Aug. 3, 

2006, http://gplv3.fsf.org/covenant-not-to-assert-dd2.html.   
9
 Open Source Initiative, The Open Source Definition, July 24, 2006, 

http://www.opensource.org/docs/definition.php.   
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copyright, patent, and contractual Rights.  Each type of right will have a different impact 

on propagation. 

Part II of this paper examines the foundations of ownership in Open Source 

projects.    The fundamental question is:  who owns the right to an Open Source project?  

Several projects have taken a variety of approaches to answering this question, including 

centralizing ownership of contributions using Contributor Agreements as an addendum to 

the general Open Source License chosen by the project.  In addition, this paper will 

examine the issue of the work-for-hire doctrine in light of ownership.  The Free Software 

Foundation (FSF) has instituted a policy of requiring developers to disclaim any work-

for-hire ownership claims the developer’s employer might have. 

Part III of the paper examines the several revisions of the GPL, up to the current 

iteration, GPLv3.  This examination starts with the ‘viral’ nature of the initial GPL 

licenses and how the Open Source community has reacted and adapted the licenses 

accordingly.  The examination proceeds to the drafting process of the GPLv3 and to the 

multiple issues that arise out of the developing notions of how propagation issues should 

be treated. 

Part IV of this paper considers the effects software patents have on Open Source 

propagation.  While many large corporations have ‘donated’ patents to the Open Source 

movement, the present analysis discusses how these patents will address the concerns the 

Open Source community has over software patents and whether they provide any benefits 

to the Open Source Movement.  Examining the GPLv3’s patent compromise and the 

ultimate decision to go with a patent covenant not to assert patent claims will be 

contrasted with the FSF’s initial position requiring patent assignment.  An interesting 
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result of the propagation development of the latest version of the GPL has developed:  the 

FSF now claims that, because of the propagation provisions in GPLv3, the 

Microsoft/Novell partnership initially created to provide limited patent protection to 

Novell SUSE customers will spread to all Linux users once Novell begins shipping 

GPLv3 code.
10

  While the FSF has made some strong statements regarding Novell and 

GPLv3, the newest version of the GPL contains a grandfather clause that exempts this 

particular agreement.  The GPLv3 only addresses the consequences to Novell 

peripherally, assuming that the effects of the patent coverage of GPLv3 section 11 will 

“necessarily be visited upon Novell.”
11

 

The paper concludes by observing that there are still significant steps remaining in 

the evolution of Open Source.  The current environment of Open Source licenses is more 

reactive, in contrast with the aspirational beginnings of the movement.  Reactiveness in 

this area is dangerous, with particular concern that certain interest groups within the 

community may fracture.  The analysis concludes that Open Source must return to its 

beginnings, and consequently move away from this reactiveness, by balancing the basic 

donative intent of the community with the risk Open Source companies face. 

 

II.  Identifying Ownership Issues in Open Source  

                                                 
10

 See generally, http://www.cbronline.com/article_news.asp?guid=486516F4-A7CF-

4C09-922A-1CB470AC073C,  

http://www.informationweek.com/showArticle.jhtml?articleID=201000334,  

http://www.google.com/search?q=microsoft+novell+open+source+coupons+and+gplv3&

ie=utf-8&oe=utf-8&aq=t&rls=org.mozilla:en-US:official&client=firefox-a. 
11

 GPL Version 3, Third Discussion Draft Rationale, 27, March 28, 2007, 

http://gplv3.fsf.org/gpl3-dd3-rationale.pdf.   
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The first issue that arises when analyzing propagation in an Open Source project 

is determining the breadth of the array of owners for a given project.  As software 

projects evolve, multiple developers contribute to the broader endeavor.  The rights for a 

project are defined first by copyright law and then by contract.  Depending on the Open 

Source license the developers release the software under, the analysis of ownership may 

be clear.  For example, the Apache Software License and the Mozilla Public License both 

provide an explicit chain of title so the rights for a specific project are better defined.
12

  

The GPL itself only peripherally addresses the chain of title issue.  GPLv3 purports to 

address this issue with automatic licensing, rather than providing for explicit chain of title 

provisions.
13

  Since the majority of Open Source projects fall under the GPL, this is a 

significant source of uncertainty.
14

  To resolve this problem, some Open Source projects 

have created Contributor Agreements to better define how to control contributions to that 

specific project.  Purely in terms of the goals of the Open Source initiative, whether these 

Contributor Agreements live up to either the Open Source Definition or the Free 

Software Definition is unclear.  A Contributor Agreement that is too restrictive or too 

permissive might violate the terms of these definitions. As a result, it is possible that, 

although the project uses the GPL, the project will not be a truly Open Source project. 

Contributor Agreements are highly controversial in the Open Source community.  

At least one key developer for the Open Office project has complained about the 

requirement that the developers of the project license their code directly to Sun so that the 

                                                 
12

 LAWRENCE ROSEN, OPEN SOURCE LICENSES, SOFTWARE FREEDOM AND INTELLECTUAL 

PROPERTY LAW, Prentice Hall (July 2004). 
13

 GPLv3 Second Discussion Draft Rationale, 23, note 18, July 27, 2006, 

http://gplv3.fsf.org/gpl3-dd1to2-markup-rationale.pdf.   
14

 See generally Freshmeat.net, http://freshmeat.net/stats/#license.  As of September 29
th

, 

2007, the GPL accounts for approximately 64% of all Open Source projects. 
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company can release a proprietary version of its product.
15

  Many of the most successful 

Open Source projects require similar Contributor Agreements, including Apache, Fedora, 

and MySQL.  With the exception of Apache, these projects all have the ability to make a 

profit at the center of their Contributor Agreement requirement.  While making a profit is 

not necessarily at odds with the philosophy of Open Source, the more closely tied the 

contribution of code is to profit-making, the more controversial these agreements 

become.  Nonetheless, a Contributor Agreement plays a key role in putting contributions 

to an Open Source project on firmer ground.  The authors of the GPL believe their license 

is strictly based on copyright licensing and insist it not be treated as a contract.
16

  The 

issue with the GPL, then, is that developers need to know whether individual contributors 

hold the copyright for a project, or if the individual contributor implicitly is donating 

their code to the project because of their contribution. 

Two possible ownership models exist for an Open Source project:  either the 

individual contributor owns the source code or an organization owns it.  If each 

contributor retains his copyright to the source code, this plays an important role in how 

propagation will develop for the project.  The individual copyright method creates a 

much more complex determination of how a particular piece of code can be taken and 

reused in a different project.  For example, must the project contact the individual author 

                                                 
15

 See History of Calc Solver, http://kohei.us/2007/10/02/history-of-calc-solver/ (Oct. 2, 

2007).  This view was criticized by another member of the Open Source community, 

Charles H. Schultz, who explaining that this procedure has been accepted by a larger 

number of developers than it has been rejected by, and avoids “kernel Babylon” where 

hundreds of contributors make it impossible to change the license for a given project.  

See Charles Schulz, Thank you Michael, but no, thank you, Oct. 9, 2007, 

http://www.groklaw.net/article.php?story=20071008124053220#note1.   
16

 Eben Moglen, Free Software Matters: Enforcing the GPL, Aug. 12, 2001, 

http://emoglen.law.columbia.edu/publications/lu-12.html.  
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to determine if their code can be dual licensed or, perhaps, commercially licensed?   How 

would a lawsuit to enforce the author’s rights function in a project with over a 1,000 

contributors across multiple continents?  Which nation’s copyright law would apply? A 

license that uses clear chain-of-title provisions makes this determination more 

manageable. 

Centralization of copyright ownership simplifies this issue, but centralization is a 

very controversial aspect of some Open Source Projects.  Some critics believe 

centralization contradicts the Open Source Principles altogether.  They argue the best 

way to protect the public domain is to have a centralized body that can assert its rights 

against infringers.  One important aspect in protecting an Open Source project is ensuring 

unknown interests do not burden contributions.  “Works for hire”
17

 for example, where 

an individual may contribute to a project, but the individual’s employer is the actual 

owner of the contribution.  Because of an employment agreement or because the 

developer may have written the actual code at their job, their contributions might fall into 

the definition of a work-for-hire.
18

   In order to fall under the definition of a work-for-hire 

project, the work must fit into one of the nine categories protected under the Copyright 

Act
19

.  A written agreement must specifically categorize, in advance, what constitutes a 

work-for-hire.
20

  Some Open Source developers view the potential conflict of work-for-

                                                 
17

 17 U.S.C. sec 101. 
18

 In order to be considered a work for hire, the work needs to either be made in the scope 

of employment or fall under one of the nine categories listed in the Copyright Act.   
19

 If software falls under the work for hire doctrine, it would need to fall under the 

collective work or compilations category. 
20

 The GPL itself does not appear to contain an explicit provision that works be made 

under the work for hire doctrine.  An Open Source project may accomplish this with a 

Contributor Agreement, however the legal complications that arise may create problems 

for the Open Source project.  For example, a developer may contribute software for 
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hire contracts as a risk and choose to protect themselves from receiving tainted code by 

requiring a Contributor Agreement.
21

 

Alternatively, if Open Source falls under a decentralized model, contribute-back 

functions can be positive for individual contributors because they also secure partial 

copyright ownership of the whole project by an individual or an organization.  A large 

organization with many developers contributing to a project actually may have less risk 

when contemplating joining an Open Source project because they could retain a large 

percentage of ownership in the project very quickly. 

While Open Source licenses and projects provide both centralized and 

decentralized ownership of particular projects, there is another way to view ownership 

within the Open Source field: openness itself.  While it seems ironic, some Open Source 

licenses provide greater freedoms than others.  Completely liberal licenses like the BSD 

and MIT allow for a complete dedication to the public domain.
22

  These licenses provide 

that anyone can use a piece of software for any purpose whatsoever.  The GPL, in 

contrast, creates a GPL-only sandbox within the playground of the public domain.  

“Castles” that are built in the GPL sandbox must stay there.   Developers can take some 

the tools they might use to build these “castles” in and out of the sandbox.  These 

                                                                                                                                                 

which he has a patent.  While the particular license for the project may or may not have a 

patent provision (non-GPLv3 for example), the owner of the patent would still need to 

record the assignment with the USPTO. 
21

 One Open Source project, Jive, expressed the work for hire concern publicly.  Online 

interview with attorney Dan Ravicher by Slashdot community (June 5, 2001) 

http://interviews.slashdot.org/article.pl?sid=01/06/05/122240.  Jive uses a dual licensing 

model and now requires a Contributor Agreement. 
22

 BSD and MIT refer to the open source licenses created by the University of Berkeley 

or the “Berkeley Software Distribution” and Massachusetts Institute of Technology.  

Wikipedia article on BSD license, http://en.wikipedia.org/wiki/BSD_license (last visited 

Dec.13, 2007).  Wikipedia article on MIT License, 

http://en.wikipedia.org/wiki/MIT_License 
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restrictions provide a model from which we can better understand the ownership rights in 

Open Source projects. 

Figure A 

23
 

Figure A illustrates the restrictiveness of several Open Source licenses.  The Open Source 

Definition (OSD) represents the least restrictive and most free tier.  The lower tiers 

represent the increasing restrictiveness and decreasing freedom of each Open Source 

license. 

Importantly, not all Open Source licenses compatible with one version of the GPL 

are compatible with the other.  For example, the Apache 2.0 license is compatible with 

                                                 
23

 Legal scholars differ on whether certain licenses are compatible with the GPL.  This 

chart uses the list of compatible licenses provided by the FSF and the GNU 

organizations.  For a complete list of GPL compatible licenses, see Free Software 

Foundation Compatible Licenses, 

http://www.gnu.org/philosophy/license-list.html (last visited Dec. 15, 2007). 
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the GPLv3 but not with GPLv2.
24

 Taken in this light, the GPLv3 is not a subset of the 

GPLv2; instead, GPLv3 only intersects GPLv2 narrowly where some of the more basic 

provisions are shared.  Additionally, while one license may be compatible with another 

license, the reverse may not be true.
25

 

Copyright ownership in an Open Source project can carry significant 

implications.  First, ownership gives rise to a cause of action in the event of a breach of 

license.  More importantly, with regard to propagation, ownership provides the ability to 

change licenses.  Consequently, ownership makes dual licensing
26

 possible, which can be 

very lucrative for an Open Source company.
27

   

What an Open Source license does not cover is also important to ownership of the 

underlying copyrights in an Open Source project and how or if the project is 

commercialized. Open Source reserves some of the grants that go along with copyright, 

like public display.  Notably, Open Source does not cover some essential aspects of the 

code.  Copyright protection does not extend to the ideas, algorithms, processes, or 

systems that underlie the concepts.  Copyright protection does not extend to non-

derivative works or compilations.  Additionally, Open Source offers no warranties or 

guarantees concerning the software. 

                                                 
24

 Free Software Foundation, FSF Releases “Last Call” Draft of GPLv3, May 31, 2007, 

http://www.fsf.org/news/gpl3dd4-released. 
25

 A developer may combine software licensed under the BSD license, for example, with 

software licensed under the GPL, however the reverse is not true.  A developer may not 

combine code licensed under the GPL with software licensed under the BSD. 
26

 Dual licensing refers to the practice of offering software under both a commercial 

license and an open source license.  The commercial license will usually offer additional 

warranties and support. 
27

 MySQL is the biggest example of this, attracting many of the world’s best-known 

venture capital firms for funding.  MySQL, 

http://www.mysql.com/company/investors.html (last visited Dec. 15, 2007). 
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Copyright protection does extend beyond the literal code of a program, but the 

determination of the degree of protection requires a fact-specific analysis.  Copyright 

would protect a literal translation from one programming language to another, provided 

there are not any creative means employed in the translation.
28

  On the other hand, if 

creative means were involved, this creative translation would be a derivative work and 

consequently would be required to comply with the licensing provisions.  Copyright 

protection provides greater coverage for protection of the code, including the structure 

and architecture of the program. 

The fundamental irony with propagation in Open Source software is this:  because 

the public is free to look at the underlying code, software engineers have the ability to 

borrow ideas from Open Source software.
29

  For example, one can learn an algorithm for 

a particular method of searching for text on a hard drive contained in an Open Source 

project based on the GPL.  As stated above, copyright law does not protect the algorithm 

itself.  If a developer simply removes the algorithm and rewrites it to fit into the 

architecture and structure of another operating system, for example, then the developer 

circumvents the GPL and no attribution would be required.  This act of copying the 

algorithm creates a liability for developers attempting to learn from the code or 

companies attempting to accelerate the development curve for a project.  When a 

developer copies more than just the algorithm, the danger of infringing copyright 

protections lurks.  This danger is particularly important in the Open Source context where 

                                                 
28

 The definitions section of the third version of the GPL states that a “modified” work 

includes versions which have been translated.  See GPLv3 Second Discussion Draft 

Rationale, note 8, page 4. 
29

 See Freedom 1 of the Free Software Definition promulgated by the Free Software 

Foundation. The definition provides that the public should have “the freedom to study 

how the program works, and adapt it to your needs.”  
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a commercial vendor runs the risk of having to apply an Open Source license to its 

proprietary code. 

That one can circumvent propagation of an Open Source license begs the question 

whether propagation is an effective means of expanding the universe of software 

available under Open Source licensing.  Some believe Open Source exists because of the 

need for development of software and the ease with which Open Source methods reduce 

transaction costs.
30

  The history of Open Source software development over the last two 

decades suggests propagation has been an extremely successful method of expanding the 

software universe.  Plausibly, the software universe that created under this model is a 

finite one.  Once the universe reaches its limit, the number of new Open Source projects 

will dwindle.  Similarly plausible is the potential that only a finite number of developers 

are willing to contribute under an Open Source license.  Once the number of developers 

that are willing to contribute allocate themselves between the increasingly high numbers 

of Open Source projects, the development of new Open Source projects may diminish 

significantly. 

 

III. The Evolution of Propagation in the GPL 

As stated above, propagation has been a central theme in the development of the 

GPL.  This is especially true in relation to the GPL’s creation of the idea of a “sandbox” 

specifically intended to compel developers to use the GPL to build off other GPL code.  

GPLv2 did not use the term propagation itself; instead, the provisions in section 2 of 

GPLv2 are informally known as “viral.”  The GPLv3 updates this concept and explicitly 

                                                 
30

 Foremost among these is Yochai Benkler, who outlines his theories in Coase’s Penguin 

and the Wealth of Networks. 
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defines propagation as doing “anything with it that, without permission, would make you 

directly or secondarily liable for infringement under applicable copyright law, except 

executing it on a computer or modifying a private copy.”
31

  With this definition, GPLv3 

complicates its own interpretation.  Through its attempts at internalizing language, its 

reactiveness to the Novell/Microsoft agreement, and its broader attempts to address 

software patents, the GPLv3 introduces a degree of uncertainty. 

The GPL stands at the center of the debate in the Open Source community as to 

whether Open Source is anti-intellectual property or if it is just another complementary 

method that serves the same purpose of creating innovation and creativity.  If Open 

Source is a competing method of organizing property or an alternative to intellectual 

property laws, then the GPLv3 becomes problematic.  First, as demonstrated above, the 

GPLv3 is more restrictive than previous versions and many other alternative licenses.  

Being more restrictive reduces the GPL’s ability to offer a full alternative to the private 

ownership rights of intellectual property law.  While the new version of the GPL 

increases the repercussions of violating the license, its increased restrictiveness 

undoubtedly will lead to a decrease in its use.  In addition, under the competing method 

theory, the Contributor Agreements software developers are required to sign are outright 

hypocrisy.  Substituting a government regulated intellectual property regime that grants a 

monopoly for another requiring developers to donate their property, which effectively 

grants a monopoly to some third party, all in the name of freedom, is inconsistent at best. 

The alternative is that Open Source is a method of regulating property, 

complementary to intellectual property law.  Open Source, in this case, creates a parallel 

                                                 
31

 GPLv3 section 0, June 29, 2007, http://www.gnu.org/licenses/gpl-3.0.html.  
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structure alongside existing intellectual property laws.  In this case, the GPLv3 seems to 

attempt to create a sharper definition of Open Source.  While creating consequences for 

Tivoization
32

, anti-cross licensing agreements
33

, and discouraging software patents, the 

GPLv3 may be better read as simply attempting to define more clearly the parallels while 

understanding inconsistencies between the two regimes. 

The GPLv3 creates an intersection between that which is proprietary and that 

which is public, between the contractual and the statutory.  As pictured in figure B below, 

the GPLv3 combines both proprietary and public components, taking elements of 

copyright and using contract or licensing to build a schema upon which it expands 

software development: 

 

 

 

 

 

 

Figure B 

                                                 
32

 Tivoization refers to the process of building a platform around open source software, 

while preventing consumers from being able to modify the underlying software.  

Developers coined this term based on the popular Tivo digital video recorders.  Tivo and 

the cable providers that use the software are reluctant to allow consumers to modify their 

boxes because of the support issues it would create if consumers inadvertently created 

problems with their equipment. 
33

 The foremost among these cross licensing arrangements is the Novell/Microsoft 

agreement, which provides that neither company will pursue legal action against the 

other’s customers based on software that infringes the intellectual property rights of the 

other company. 
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The GPLv3, like the GPLv2 is based heavily on copyright law.  To a large degree, every 

version of the GPL has been a seemingly contractual device; however, the FSF has been 

staunchly opposed to the GPL’s classification as a contract rather than a license.
34

  The 

GPLv3 also incorporates some language dedicated to patent law.  The GPLv3 falls short 

of actually incorporating patent law into the licensing language and, instead, creates a 

covenant not to file suit.
35

  While not incorporating patent law, these provisions dealing 

with the patent issue raise further concerns that this version of the GPL is actually a 

                                                 
34

 Professor Rosen argues that this is largely for legal reasons.  If a court determined the 

GPL was a contract rather than a license, the validity of the GPL would be placed in 

doubt through issues of consideration.  Rosen, page 57-66. 
35

 Free Software Foundation, Covenant Not To Assert Patent Claims, Aug. 3, 2006, 

http://gplv3.fsf.org/covenant-not-to-assert-dd2.html.   
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contract instead of a license and will complicate the legal issues concerning the GPLv3 in 

the future. 

In version 2 of the GPL, propagation applies to derivative works.  Take the 

example of a developer who creates a driver module that interacts with the Linux kernel, 

who distributes the code under the GPL.  The driver is not part of the kernel itself, but it 

interacts with it.  Under GPLv2, the module is not a derivative work and, therefore, the 

developer does not need to distribute the code under the GPL.  This analysis becomes 

complex when considering other types of combinations of works.  For example, is the 

result the same if the developer compiles the programs together?  Is the result the same if 

the developer links two programs together? 

Opponents of Open Source criticized the first version of the GPL, in particular, 

because of its viral nature.  GPLv1 required the licensing of all programs associated with 

covered code.  The language of GPLv1 requires a developer to distribute any work that 

“contains the program or any part thereof” under the GPL as well.
36

  The second version 

of the GPL revises the requirement to be slightly more restrictive: 

 

You must cause any work that you distribute or publish, that in whole or 

in part contains or is derived from the program or any part thereof, to be 

licensed as a whole at no charge to all third parties under the terms of this 

License.
37

 

 

You may not impose any further restrictions on the recipients’ exercise of 

the rights granted herein.
38

 

 

 

                                                 
36

 Free Software Foundation, GPLv1 § 2, Feb. 1989, http://www.gnu.org/licenses/old-

licenses/gpl-1.0.txt.   
37

 GPLv2 § 2[b] 
38

 Id. at § 6 
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The second version of the GPL adds the statement that the developer of the work must 

license it under the GPL if it is derived from or contains GPL licensed code.  The second 

version only slightly modifies the first version, which placed restrictions on the use of the 

work only when the program “contain[ed]” GPL licensed code.  GPLv2 responded to the 

criticism of the “viral” nature of the first version of the GPL by including language that 

more clearly defined what would trigger the GPL propagation provisions.  The trigger 

was to mirror the language of copyright law using the term “derivative.” 

In GPLv3, the restrictions on derivatives are less straightforward.  The GPLv3 

revises the language previously contained in section 2.b of GPLv2 and attempts to 

address the confusion surrounding propagation by defining what an aggregate work is: 

A compilation of a covered work with other separate and independent 

works, which are not by their nature extensions of the covered work, and 

which are not combined with it such as to form a larger program, in or on 

a volume of a storage or distribution medium, is called an “aggregate” if 

the compilation and its resulting copyright are not used to limit the access 

or legal rights of the compilation's users beyond what the individual works 

permit. Inclusion of a covered work in an aggregate does not cause this 

License to apply to the other parts of the aggregate.
39

 

 

Here, the GPLv3 is attempting to mirror more closely the definition of compilation for 

the purposes of copyright law, in which a compilation is a work formed by the collection 

and assembly of preexisting materials or data.
40

  It light of other attempts at 

internationalization of the language of the GPLv3, compilations may have posed a 

problem, requiring a separate definition within the GPLv3 itself.  Confusingly, GPLv3 

does not define the term “combine” which makes interpreting this provision difficult.  

Does “combination” mean causing the two programs to (a) run together on the same 

                                                 
39

 GPLv3 § 5. 
40

 17 U.S.C. § 101. 
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computer at the same time, (b) compiled together, or (c) linked?  Essentially, this 

confusion is the same issue as the problems discussed above with interpretation of the 

GPLv2 and the scope of propagation under that license. 

The third version of GPL also introduces an explicit definition of the term 

“propagation.” 

To "propagate" a work means to do anything with it that, without 

permission, would make you directly or secondarily liable for 

infringement under applicable Copyright law, except executing it on a 

computer or modifying a private copy.  Propagation includes copying, 

distribution (with or without modification), making available to the public, 

and in some countries other activities as well. 
41

 

 

In addition, section 5 of GPLv3 completely revises the language concerning propagation 

of the license previously contained in section 2.
42

  The term “derivative” is conspicuously 

absent.
43

 In its place, GPLv3 attempts to create its own definition of a compilation at the 

end of section 5.  Opponents of Open Source criticized previous versions of the GPL 

because the language that was sometimes inconsistent with the language of copyright 

law.  The GPL may have been using the term “derivative” with a different meaning from 

that which the copyright laws intended.  The GPLv3 does not address this concern.  One 

possibility is that the drafters of the GPLv3 are attempting to broaden the language of the 

license so that it is more consistent with both copyright law and patent law.
 44

  The danger 

is that now the terms are too general and overly broad.  If a developer challenged the 

license, an individual contributor might not have ownership of the rights GPLv3 

                                                 
41

 GPLv3 § 0. 
42

 Id. at § 5 
43

 Free Software Foundation, Opinion on Denationalization of Terminology, Aug. 3, 

2006, http://gplv3.fsf.org/denationalization-dd2.html.  
44

 I use the term “drafters” here not to single out any individual group, since the GPL 

revision process was very much a community effort. 
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contemplates him assigning.  Under these circumstances, the GPLv3 demonstrates it is 

more consonant with Open Source as a complementary method rather than a competing 

method of regulation.  As a complementary method of regulation, the GPLv3 regulates a 

larger sphere of rights, or, at the very least, unifies multiple statutory schemes for dealing 

with intellectual property rights. 

The GPLv3 abandoned the “derivative” language after the second draft.  The 

drafters completely removed the following section: 

To the extent that identifiable sections of the modified work, added by 

you, are not derived from the Program, and can be reasonably considered 

independent and separate works in themselves, then this License, and its 

terms, do not apply to those sections when you convey them as separate 

works, not specifically for use in combination with the Program.
45

 

 

The comments to the changes between the second discussion draft and the third 

discussion draft indicate this paragraph was deleted because it was unnecessary, and no 

specific explanation was given for why the term “derivative” was completely removed.
46

  

One explanation for this deletion is the attempt to “internationalize” the GPL, so that its 

language is more neutral.  Internationalization, however, may not be the only cause for 

making the deletion.  The underlying philosophy of creating a complementary regulatory 

framework may be at work here, also. 

The FSF discusses the complexity of the internationalization process in specific 

detail in the second discussion draft.  The first language change was a replacement of the 

definition of “modification” with language that better denationalizes the terms of the 

                                                 
45

 Free Software Foundation, GPLv3 second draft §5, July 27, 2006, 

http://gplv3.fsf.org/gpl-draft-2006-07-27.html.   
46

 Id. 
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GPL.
47

  The process of internationalizing the language of the GPL clearly is a difficult 

one.  The comments to the GPL are littered with specific references to United States law, 

especially when referring to patents.
48

  Ultimately, the question is whether the more 

general language is good for the GPL.  In other words, would a U.S. court find that the 

new language is specific enough to fit into existing domestic copyright law? 

The changes to the GPL seem to be an attempt to increase the amount of works 

covered by the license.  It appears, internationalization attempts to broaden the meaning 

of what the drafters consider propagation to be within the GPL.  The criticisms of the 

GPLv2 centered around the disparity between the GPL’s use of the term “derivative” and 

the use intended by copyright law.  In reality, this change in language may be an attempt 

to build the GPL sandbox even bigger. 

Another change in the GPL accomplishes this goal: the newfound compatibility 

with other Open Source licenses found in Section 7 of GPLv3 makes the GPL sandbox 

even bigger.  Section 7 contains language intended to make the GPLv3 more compatible 

with other Open Source licenses, most notably the Apache 2.0 license.  Section 7 

specifically covers any additional terms an Open Source project may consider adding and 

allows Open Source projects to reserve rights under trademark law.  Section 7 permits 

developers to vary their disclaimers of warranty or to make different provisions for 

preservation of legal notices.  Missing from section 7’s discussion of additional terms are 

                                                 
47

 GPLv3 Second Discussion Draft Rationale, note 8. 
48

 The GPLv3 Third Discussion Draft Rationale notes for example that in the user 

products definition, the drafters relied on the Magnuson-Moss Warranty Act, a federal 

consumer protection law in the United States.  See Rationale section 1.2, page 10.  In 

Section 3 of the GPLv3, the drafters specifically refer to the DMCA.  See Rationale, 

section 2, page 14.  In reference to Covenants, the drafters used US law as it primary 

reasoning for changing language related to patents.  See Rationale section 3.3.2, page 20. 
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any terms that might be contained in a Contributor Agreement.  Section 7 may also allow 

or ratify some Contributor Agreements, as discussed previously, although developers 

should consider each agreement on an individual basis.  For example, if a Contributor 

Agreement effectively adds terms to a GPLv3 licensed work that are not contemplated in 

section 7, such an agreement, which may have been valid under GPLv2, may not be valid 

under GPLv3.  Since the FSF uses its own Contributor Agreement, it appears Contributor 

Agreements are generally permissible; however, how far a company might be willing to 

take such an agreement is unclear.  A Contributor Agreement might contemplate a 

blanket patent assignment for all patents received both in the past and in the future rather 

than a covenant not to sue, which goes further than the GPLv3 requires.  Such an 

agreement adds an additional term to the GPLv3, seemingly in violation of GPLv3 §7. 

Simply requiring Contributor Agreements to comply with the Open Source 

principles is ambiguous.  One source of confusion in the Open Source initiative is 

whether the Contributor Agreements many Open Source projects are currently using are 

required to comply with the OSD.  Since Contributor Agreements are outside the 

specifics of the Open Source license, which is OSI approved, a project may be able to 

effectively add terms that are inconsistent with Open Source principles.  For example, if a 

project were to require developers sign different Contributor Agreements based on their 

country of origin, country of residence, employment status or primary language, this 

would violate the fifth principle of the Open Source Definition.
49

  Such discrimination 

could be reasonable.  For example, the project may need the Contributor Agreement to 

                                                 
49

 Section 5 of the Open Source Definition contains a non-discrimination clause. 
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comply with the laws of the country where the developer is located.
50

  The Open Source 

Initiative only certifies licenses, it does not track individual projects using a license or 

whether projects add or remove additional terms.  As Michael Tiemann
51

 puts it, "The 

OSD is not a business plan."  The group that creates a particular license must enforce it.  

In the case of the GPL, this enforcement falls to the FSF.  The Apache Software 

Foundation enforces the Apache license.  The FSF has been diligent in pursuing 

individual projects that violate the terms of the GPL outright.  Because of the sheer 

number of GPL projects, enforcing compliance of Contributor Agreements for all 

projects is a huge undertaking.  Requiring the Contributor Agreement provisions within 

the license itself is more reasonable. 

 

IV. Propagation and Software Patents 

Propagation in the software context becomes more complex when the developers 

of the GPL attempt to go outside what has been the foundation of their license since its 

inception:  copyright law.  The reality of technology law is that the drafters of the GPL 

must deal with the issue of software patents, but, in so doing, there are significant issues 

the GPL needs to address.  GPLv3 is the first version of the GPL to explicitly provide 

                                                 
50

 While forking a project can circumvent Contributor Agreements, forking has many 

disadvantages, particularly to an individual developer.  An individual developer would 

not have the ability to maintain the project on his own, and the bulk of the developers 

may remain with the project.  This is true particularly where a discriminatory Contributor 

Agreement allows for different agreements for contributions sponsored by a corporation 

versus directly by an individual developer.  Those developers protected by the corporate 

agreement would have no incentive to move to the forked version.  In addition, as Danese 

Cooper of the Open Source Initiative points out, the fork is potentially vulnerable because 

it needs the support of the original copyright holder in the event the project is challenged. 
51

 Michael Tiemann is currently the Vice President of Open Source Affairs at Red Hat, 

Inc., a vendor of the Linux operating system, and President of the Open Source Initiative. 
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how the license will handle patents.  Since the GPL is so closely based on the rights 

provided by copyright law, previous versions have not fully addressed the additional 

complexity of how software patents will affect the license.  Copyright law provides that 

improvements to a piece of software are derivative works.  The same is not true in the 

realm of patent law.  For the purposes of patent law, non-novel improvements require 

new patents.  Furthermore, the assignments of patent rights require recording with the 

USPTO, while copyright law requires no such recording of assignments. 

An additional incompatibility with Open Source software and software patents 

comes from patent law itself.  While copyright law covers derivative works, 

improvements to a piece of software would require a new patent to cover the new 

software feature.  Since software develops so rapidly, especially in the area of Open 

Source, requiring a new patent for each new feature presents a problem for Open Source.  

Requiring such frequent patents effectively slows the pace of development and creates 

more uncertainty as to the rights surrounding a new feature in an Open Source project.  

Since the discussion in the software community is concerned with the effect that existing 

software patents have on the development of Open Source software and with the potential 

minefield they create, this paper will only examine patents in the context of the issues 

raised by the GPL. 

The second version of the GPL contained a reference to patents only in the 

preamble.  The preamble contained a “freedom or death” clause which required that 

either software patents be licensed openly to everyone or not be licensed at all.  This has 

led at least one legal scholar to conclude that the GPLv2’s language is an express patent 
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grant for any software the developer has distributed under the GPL.
52

  While the 

“freedom or death” clause represents an interesting footnote on the that the developers’ 

awareness in 1991 for what the issues concerning software patents would be, most 

scholars agree the preamble to the GPL has no legal effect.  

Software patents have been very controversial in the Open Source software 

community.  Patent law creates a monopoly for the owner, which is antithetical to the 

principles of the Open Source community.  Developers have created several Open Source 

licenses in the last decade that attempt to deal with the issue of software patents, but, at 

its core, patent law may not be reconcilable with the philosophy of Open Source.  Patents 

on average can take 5 years to obtain and require investments reaching hundreds of 

thousands of dollars.  Why any rational party would go to the time and expense of 

securing a patent, only to freely release it to the community as a whole is unclear.  Many 

software companies have contributed their patents to software defense organizations, but 

whether these patents provide any greater protection than what might have been available 

otherwise debatable.
53

 

The GPLv3 addresses the issue of patents in section 11: 

Each contributor grants you a non-exclusive, worldwide, royalty-free 

patent license under the contributor's essential patent claims, to make, use, 

                                                 
52

 Terry J. Illari, Mass Licensing – Part 2: Open Source Software Licensing, 831 PLI/Pat 

279, 295 (2005). 
53

 These patent ‘pledges’ seem to come in the form of assertions that a company will not 

enforce their rights, and may not be patent assignments in the strict sense.  The Linux 

Foundation’s Patent Commons Project for example lists 530 patents, indemnification 

agreements, and other pledges not to sue.  See generally, Patent Commons Project, 

http://www.patent-commons.org/resources/about_commitments.php (last visited Dec. 15, 

2007).  These agreements may not rise to the level of an actual assignment, and may not 

be enforceable at all. 
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sell, offer for sale, import and otherwise run, modify and propagate the 

contents of its contributor version.
54

 

 

This provision is problematic because the GPL may not be able to accomplish what it 

attempts to solve through the means of patent licensing.  The assignment of a patent 

requires that the assigner record the assignment in order to be valid.  The GPL does not 

address what happens if a developer contributes code to a GPLv3 project but fails to 

record the assignment of the patent license.  Patent law provides specific recording 

requirements for the assignment of patents: 

An assignment, grant, or conveyance shall be void as against any 

subsequent purchaser or mortgagee for valuable consideration, without 

notice, unless it is recorded in the Patent and Trademark Office within 

three months from its date or prior to the date of such subsequent purchase 

or mortgage.
55

 

 

The most dramatic change in the language during the GPLv3 revision process 

came between the first and second drafts.  The first draft of GPLv3 contained a specific 

patent license grant, which would have created the issue discussed above.  The final draft 

of the GPLv3 avoids this problem by defining a patent license to be an agreement not to 

enforce patent rights.  This provision generated a good degree of concern on the part of 

the community for two reasons.
56

  First, the impact on the patent holder was 

disproportionate to the act of merely distributing code.
57

  The community feared patent 

holders would have to register every assignment with the patent office, possibly in 

multiple countries.  The FSF rejects this argument on the moral ground that software 

                                                 
54

 GPLv3 § 11. 
55

 35 U.S.C. 261 
56

 See Covenant Not to Assert Patent Claims. 
57

 GPLv3 Third Discussion Draft Rationale, Section 3.3, page 17. 
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patents should not exist at all.
58

  The second issue the community raised with regard to 

the patent license grant is that the due diligence required to review all distributed GPL-

covered software is unreasonable.
59

  To this argument, the FSF concedes that holding 

patent holders accountable to this requirement would mean large patent holding 

companies would likely choose to remove themselves from the GPL distribution 

process.
60

  The drafters of the GPL conceded by changing this patent license grant into a 

covenant not to assert patent claims.  The drafters of the GPL claim they made the change 

as a “partial concession” so that the conditions of section 10 would apply to the assertion 

of patents.  The stated reasons aside, it would have been very difficult for the Open 

Source community to comply with a patent license grant, and it would have severely 

limited the adoption of the GPLv3. 

In contrast to the desire to increase the distribution of GPL-covered software, 

some of the language in the GPLv3 creates an exception whereby a distributor can no 

longer distribute code.  Section 11 of GPLv3 contains language intended to deal with the 

Microsoft-Novell pact. 

A patent license is “discriminatory” if it does not include within the scope 

of its coverage, prohibits the exercise of, or is conditioned on the non-

exercise of one or more of the rights that are specifically granted under 

this License. You may not convey a covered work if you are a party to an 

arrangement with a third party that is in the business of distributing 

software, under which you make payment to the third party based on the 

extent of your activity of conveying the work, and under which the third 

party grants, to any of the parties who would receive the covered work 

from you, a discriminatory patent license (a) in connection with copies of 

the covered work conveyed by you (or copies made from those copies), or 

(b) primarily for and in connection with specific products or compilations 

                                                 
58

 Id. at 18. 
59

 Id. at 17. 
60

 Id, at 18. 
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that contain the covered work, unless you entered into that arrangement, or 

that patent license was granted, prior to 28 March 2007.
61

 

 

The drafters intend this language to prevent discriminatory practices among Open Source 

distributors.  The criticism of this language is that the Microsoft-Novell agreement 

enables the distribution of Linux and other pieces of software into organizations that had 

never considered implementing Linux before, Wal-Mart being the chief example.
62

 

Section 11 also contains language directed specifically at Novell or other 

providers that might consider a similar arrangement.  The agreement, as pointed out in 

the Novell discussion supra, was a non-exclusive agreement between the two parties.  

While the Microsoft-Novell agreement was grandfathered by the clause in Section 11, no 

subsequent agreements will be allowed under GPLv3, which effectively makes this 

agreement an exclusive one for Novell, as the lone Linux distributor to reach such an 

agreement.  If, as the FSF argues, paragraph 6 of section 11 addresses the Novell 

Agreement, then it is unclear why paragraph 7 is necessary. 

Paragraph 6 of Section 11 specifically pertains to the Novell agreement, and this 

reference is one of only eight times that the GPLv3 uses the term “propagate.”  This 

provision requires that if you propagate a GPLv3 covered work, while granting a patent 

license to a few users, you must grant the same patent license to all the recipients of the 

covered work and, in addition, works based on it. 

If, pursuant to or in connection with a single transaction or arrangement, 

you convey, or propagate by procuring conveyance of, a covered work, 

and grant a patent license to some of the parties receiving the covered 

                                                 
61

 GPLv3 § 11 paragraph 7. 
62

 John Palfrey, Executive Director of the Berkman Center at Harvard Law School 

moderated a panel that included members of the original team from both Microsoft and 

Novell.  The audio of the discussion is available at: http://www.peapodcast.com/msc-oss-

sig/index.html#osssig-2007-09-26-18-00-48 (last visited Nov. 16, 2007). 



Page 31 

work authorizing them to use, propagate, modify or convey a specific 

copy of the covered work, then the patent license you grant is 

automatically extended to all recipients of the covered work and works 

based on it.
63

 

 

The first issue with this language, as stated above, is the burden it places on the licensor.  

Registering patent assignments with the USPTO would be impractical; making this 

section is punitive.  One factor that may soften this punishment is that the language may 

imply not that Novell or Microsoft must extend the license to all users of the software, 

but that they cannot discriminate among the individuals to whom they convey the 

software.  A court might be unwilling to extend patent licensing to any party that ever 

downloaded a piece of GPLv3 software.  It is much more likely that a court would grant a 

very narrow remedy.  Furthermore, the language of section 11, paragraph 6 contradicts an 

earlier statement by the FSF in the initial discussion draft, stating it “does not entirely 

share the current enthusiasm of others in the free software community for including 

broad forms of patent retaliation.”
64

  The FSF may argue that the Novell clause of section 

11 is not “broad” patent retaliation, but it is retaliation nonetheless, which makes this 

version of the GPL much more belligerent than previous ones. 

 

V. Conclusion 

The development of Open Source licensing is an ongoing effort.  Despite some 

initial controversy, the GPLv3’s adoption rate is increasing.
65

  This raises the question of 
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 GPLv3 § 11. 
64

 GPLv3 First Discussion Draft Rationale, section 1.2 page 3, Jan. 16, 2006, 

http://gplv3.fsf.org/gpl-rationale-2006-01-16.pdf  (emphasis added). 
65

 See GPLv3 Conversion Project http://gpl3.palamida.com:8080/index.jsp.  As of 

September 28
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, 2007, 734 projects have converted to the GPLv3.  This means GPLv3 has 

taken approximately 1% of the market share of Open Source projects in 4 months.  This 
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what the next version of the GPL will have in store.  Potentially the biggest issue facing 

Open Source Developers is which Open Source license to choose.  While the GPL may 

remain the most widely used license among developers, its market share has slowly 

declined over the past five years.  Developers have followed the GPL model creating 

hundreds of Open Source licenses.  Companies like Sun, Mozilla, Microsoft, and many 

others have crafted their own Open Source licenses, all of which meet different needs and 

concerns.  These licenses all grapple with the issue of whether Open Source is 

fundamentally about creating a competing model of intellectual property or whether they 

are attempting to create a complimentary method of regulation which improves upon 

intellectual property’s ability to foster innovation. 

Ultimately, the biggest criticism of the GPL is that the license is very reactionary.  

The main changes that take place in the third version of the GPL are specific reactions to 

developments in patent law, particularly the spreading adoption of software patents.  

Furthermore, the GPL is reacting to conduct by specific companies.  The commentary to 

the GPL drafting process coins the term “tivoization” in order to define the process of 

obfuscating the code to end users, a step that only few companies have taken.  Further, 

much of the language around software patents has to do with a specific agreement 

between two companies, Novell and Microsoft. 

                                                                                                                                                 

puts the GPLv3 into 10
th

 place in the top 10 Open Source licenses.  See Freshmeat, 

License Breakdown, http://freshmeat.net/stats/#license (last visited Sept 28, 2007). 

In contrast, another survey released on September 25
th

, 2007 by Evans Data shows a 

different perspective.  Surveying 380 Open Source developers, the study indicates that 

66% of developers do not plan to implement the GPLv3 in the next year while another 

43% say that they will never implement the GPLv3.  Evans Data, Open Source 

Developers Staying Away From GPLv3, New Evans Data Survey Shows, Sept. 25, 2007, 

http://biz.yahoo.com/bw/070925/20070925006182.html?.v=1. 
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With the GPL being so specifically tailored to these relatively current issues, the 

question becomes, will a further revision be required when the next hot button issue 

arises?  Doesn’t this activity indicate that GPLv4 is close around the corner, given the 

current pace of the technology industry and the developing nature of technology law?  

The drafters of the GPL compare the process of developing the GPLv3 very favorably to 

a legislative process and claim it is representative of that for which a democracy should 

strive.
66

  While this is a very noble goal, it subjects the GPL to the same criticisms of any 

legislation: that most legislation only happens in response to a perceived threat.  The 

reactiveness of the GPL means once the next method of GPL circumvention not 

considered in the current version is discovered, there must be a modification to address it.  

While the GPL process was a good one, the Open Source community may not have the 

resources to constantly revise licenses. 

Most likely, the next version of the GPL will address the issue of software patents 

very differently.  The initial draft created by the FSF (not by the Open Source community 

as a whole) intended to force patent licensing without regard for the consequence it might 

create for the patent holder.
67

  Because of their highly inflammatory rhetoric, it seems 

likely that they will reinsert the patent licensing issue into the discussion.  Patent law is 

also subject to change and has evolved greatly over the past 20 years. 

The ultimate goal of the GPL and the Open Source movement should not be to 

create a “sandbox.”  As a complementary method of regulation, the method begins to 

limit itself if it becomes exclusive and cannot grow using the entire sphere of property.  
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 Eben Moglen presented a lecture in Edinburgh, Scotland entitled “The Global Software 

Industry in Transformation: After GPLv3” the text of which is available at: 

http://www.archive.org/details/EbenMoglenLectureEdinburghJune2007text.  
67

 GPLv3 Third Discussion Draft Rationale, section 3.3, page 17-18. 



Page 34 

The “sandbox” concept can only to help foster the growth of free software during its 

infancy, similar to how one might protect a young plant with a net.  Free software should 

ultimately be free, even from the control of the Free Software Foundation.  While the 

abolition of software patents might be an important step in that process, the evolution of 

Open Source software is incomplete.  

The ultimate goal of an Open Source License should be consistent with the values 

of the community and the core philosophy of the Free Software Foundation and Open 

Source definitions.  The basic goal should be to foster creativity and innovation.  This 

philosophy is similar to the goal of the copyright and patent systems.  The differentiator 

between the two philosophies is Open Source’s philanthropic element, while statutory 

schemes have focused on creating property rights.  There is a thriving ecosystem around 

Open Source, but that ecosystem also depends on businesses that necessarily must use 

some form of commerce and, consequently, property rights in order to function.  Open 

Source must balance these two competing spirits rather than rejecting a particular 

property scheme as immoral simply because it is commercial.  Similar to the approach 

the GPLv3 takes with the denationalization of terminology, it seems plausible that a 

neutral approach remains possible on an issue like patent law, which may be amended or 

vary from country to country.  To completely dismiss patent law is to abandon a mature 

method of fostering innovation for another that is still immature. 
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