
Southern Methodist University Southern Methodist University

SMU Scholar SMU Scholar

Mathematics Research Mathematics

2-2012

Multilevel Schur Complement Preconditioner for Multi-Physics Multilevel Schur Complement Preconditioner for Multi-Physics

Simulations Simulations

Hilari Tiedeman
Southern Methodist University, htiedeman@mail.smu.edu

Daniel Reynolds
Southern Methodist University, reynolds@smu.edu

Follow this and additional works at: https://scholar.smu.edu/hum_sci_mathematics_research

 Part of the Numerical Analysis and Computation Commons

Recommended Citation Recommended Citation
Tiedeman, Hilari and Reynolds, Daniel, "Multilevel Schur Complement Preconditioner for Multi-Physics
Simulations" (2012). Mathematics Research. 3.
https://scholar.smu.edu/hum_sci_mathematics_research/3

This document is brought to you for free and open access by the Mathematics at SMU Scholar. It has been
accepted for inclusion in Mathematics Research by an authorized administrator of SMU Scholar. For more
information, please visit http://digitalrepository.smu.edu.

https://scholar.smu.edu/
https://scholar.smu.edu/hum_sci_mathematics_research
https://scholar.smu.edu/hum_sci_mathematics
https://scholar.smu.edu/hum_sci_mathematics_research?utm_source=scholar.smu.edu%2Fhum_sci_mathematics_research%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=scholar.smu.edu%2Fhum_sci_mathematics_research%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/hum_sci_mathematics_research/3?utm_source=scholar.smu.edu%2Fhum_sci_mathematics_research%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

References!

[1] X. Tu and J. Li, A Balancing Domain Decomposition Method by Constraints for Advection-Diffusion
Problems, Comm. In Appl. Math. And Comp. Sci. 3 (2008), 25-60.	

[2] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic Press, 2001.	

	

•  Unknowns are broken up into two sets, and .
•  contains interior nodes inside each subdomain.
•  contains the subdomain interfaces.
•  We then rewrite the system as:	

	

•  We use a Schur complement to solve this problem:	

	

 where is the Schur complement.	

•  is directly solved using SuperLU. 	

•  The focus of this work is with the interface solve: . 	

OPTIMAL PRECONDITIONERS FOR ADVECTION-DIFFUSION
PROBLEMS

Hilari Celeste Tiedeman

May 14, 2010

Au = f

PAu = Pf

I

A

AII

AΓΓ

AIΓ

AΓI

AIIbI = fI

SuΓ = gΓ

1

BDDC Method

We now introduce the balancing domain decomposition method with constraints (BDDC).

This method is studied in [12]. The unknowns are first broken up into two sets, I and Γ.

I contains the interior nodes on each subdomain and Γ contains the subdomain interfaces

(edges between subdomains not including the physical problem boundary). We now can

create four different matrices: AII , AΓΓ, AIΓ and AΓI . AII is a block diagonal matrix where

each block represents one subdomain’s interior nodes, AΓΓ corresponds to the subdomain

interface variables, and AIΓ and AΓI hold the relationships between the interior and inter-

face variables. Our system, Ax = b can be written as follows:

�
AII AIΓ

AΓI AΓΓ

� �
uI

uΓ

�
=

�
fI

fΓ

�
.

We can then reduce this system to a Schur complement problem for the subdomain inter-

face variables:

�
I 0

−AΓIA
−1
II I

� �
AII AIΓ

AΓI AΓΓ

� �
uI

uΓ

�
=

�
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

AII AIΓ

0 AΓΓ −AΓIA
−1
II AIΓ

� �
uI

uΓ

�
=

�
fI

fΓ −AΓIA
−1
II fI

�
.

Letting S = AΓΓ −AΓIA
−1
II AIΓ be the Schur complement, we now have:

�
AII AIΓ

0 S

� �
uI

uΓ

�
=

�
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

AII 0
0 S

� �
I A−1

II AIΓ

0 I

� �
uI

uΓ

�
=

�
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

I A−1
II AIΓ

0 I

� �
uI

uΓ

�
=

�
A−1

II 0
0 S−1

� �
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

uI

uΓ

�
=

�
I −A−1

II AIΓ

0 I

� �
A−1

II 0
0 S−1

� �
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

uI

uΓ

�
=

�
A−1

II (fI −AIΓS−1(fΓ −AΓIA
−1
II fI))

S−1(fΓ −AΓIA
−1
II fI)

�
.

8

OPTIMAL PRECONDITIONERS FOR ADVECTION-DIFFUSION
PROBLEMS

Hilari Celeste Tiedeman

May 14, 2010

Au = f

PAu = Pf

I

A

AII

AΓΓ

AIΓ

AΓI

AIIbI = fI

SuΓ = gΓ

1

BDDC Method

We now introduce the balancing domain decomposition method with constraints (BDDC).

This method is studied in [12]. The unknowns are first broken up into two sets, I and Γ.

I contains the interior nodes on each subdomain and Γ contains the subdomain interfaces

(edges between subdomains not including the physical problem boundary). We now can

create four different matrices: AII , AΓΓ, AIΓ and AΓI . AII is a block diagonal matrix where

each block represents one subdomain’s interior nodes, AΓΓ corresponds to the subdomain

interface variables, and AIΓ and AΓI hold the relationships between the interior and inter-

face variables. Our system, Ax = b can be written as follows:

�
AII AIΓ

AΓI AΓΓ

� �
uI

uΓ

�
=

�
fI

fΓ

�
.

We can then reduce this system to a Schur complement problem for the subdomain inter-

face variables:

�
I 0

−AΓIA
−1
II I

� �
AII AIΓ

AΓI AΓΓ

� �
uI

uΓ

�
=

�
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

AII AIΓ

0 AΓΓ −AΓIA
−1
II AIΓ

� �
uI

uΓ

�
=

�
fI

fΓ −AΓIA
−1
II fI

�
.

Letting S = AΓΓ −AΓIA
−1
II AIΓ be the Schur complement, we now have:

�
AII AIΓ

0 S

� �
uI

uΓ

�
=

�
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

AII 0
0 S

� �
I A−1

II AIΓ

0 I

� �
uI

uΓ

�
=

�
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

I A−1
II AIΓ

0 I

� �
uI

uΓ

�
=

�
A−1

II 0
0 S−1

� �
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

uI

uΓ

�
=

�
I −A−1

II AIΓ

0 I

� �
A−1

II 0
0 S−1

� �
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

uI

uΓ

�
=

�
A−1

II (fI −AIΓS−1(fΓ −AΓIA
−1
II fI))

S−1(fΓ −AΓIA
−1
II fI)

�
.

8

OPTIMAL PRECONDITIONERS FOR ADVECTION-DIFFUSION
PROBLEMS

Hilari Celeste Tiedeman

May 14, 2010

Au = f

PAu = Pf

I

A

AII

AΓΓ

AIΓ

AΓI

AIIbI = fI

SuΓ = gΓ

1

BDDC Method

We now introduce the balancing domain decomposition method with constraints (BDDC).

This method is studied in [12]. The unknowns are first broken up into two sets, I and Γ.

I contains the interior nodes on each subdomain and Γ contains the subdomain interfaces

(edges between subdomains not including the physical problem boundary). We now can

create four different matrices: AII , AΓΓ, AIΓ and AΓI . AII is a block diagonal matrix where

each block represents one subdomain’s interior nodes, AΓΓ corresponds to the subdomain

interface variables, and AIΓ and AΓI hold the relationships between the interior and inter-

face variables. Our system, Ax = b can be written as follows:

�
AII AIΓ

AΓI AΓΓ

� �
uI

uΓ

�
=

�
fI

fΓ

�
.

We can then reduce this system to a Schur complement problem for the subdomain inter-

face variables:

�
I 0

−AΓIA
−1
II I

� �
AII AIΓ

AΓI AΓΓ

� �
uI

uΓ

�
=

�
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

AII AIΓ

0 AΓΓ −AΓIA
−1
II AIΓ

� �
uI

uΓ

�
=

�
fI

fΓ −AΓIA
−1
II fI

�
.

Letting S = AΓΓ −AΓIA
−1
II AIΓ be the Schur complement, we now have:

�
AII AIΓ

0 S

� �
uI

uΓ

�
=

�
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

AII 0
0 S

� �
I A−1

II AIΓ

0 I

� �
uI

uΓ

�
=

�
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

I A−1
II AIΓ

0 I

� �
uI

uΓ

�
=

�
A−1

II 0
0 S−1

� �
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

uI

uΓ

�
=

�
I −A−1

II AIΓ

0 I

� �
A−1

II 0
0 S−1

� �
I 0

−AΓIA
−1
II I

� �
fI

fΓ

�

⇒
�

uI

uΓ

�
=

�
A−1

II (fI −AIΓS−1(fΓ −AΓIA
−1
II fI))

S−1(fΓ −AΓIA
−1
II fI)

�
.

8

OPTIMAL PRECONDITIONERS FOR ADVECTION-DIFFUSION
PROBLEMS

Hilari Celeste Tiedeman

May 14, 2010

Au = f

PAu = Pf

I

A

AII

AΓΓ

AIΓ

AΓI

AIIbI = fI

SuΓ = gΓ

1

OPTIMAL PRECONDITIONERS FOR ADVECTION-DIFFUSION
PROBLEMS

Hilari Celeste Tiedeman

May 14, 2010

Au = f

PAu = Pf

I

A

AII

AΓΓ

AIΓ

AΓI

AIIbI = fI

SuΓ = gΓ

1

OPTIMAL PRECONDITIONERS FOR ADVECTION-DIFFUSION
PROBLEMS

Hilari Celeste Tiedeman

May 14, 2010

Au = f

PAu = Pf

I

A

AII

AΓΓ

AIΓ

AΓI

AIIbI = fI

SuΓ = gΓ

1

Schur Complement [1]!

OPTIMAL PRECONDITIONERS FOR ADVECTION-DIFFUSION
PROBLEMS

Hilari Celeste Tiedeman

May 14, 2010

Au = f

PAu = Pf

I

A

AII

AΓΓ

AIΓ

AΓI

AIIbI = fI

SuΓ = gΓ

1

Interface Solve!

•  Multigrid [2] is optimally scalable for diffusion dominated problems.	

• Multigrid approximates a fine grid solution using a coarser grid, recursively.	

•  For problems with smooth solutions, multigrid methods prove effective.	

•  Domain decomposition methods are optimal for advection dominated problems.	

•  These approximate the solution by solving problems one subdomain at a time.	

•  We use a Schur complement domain decomposition preconditioner on the whole
problem, with a multigrid solve for the interface only problem.	

	

	

Motivation!

Conclusions!

Multilevel Schur Complement Preconditioner !
for Multi-Physics Simulations !

Advection-diffusion PDEs are prevalent in models of many physical
applications in science and engineering. Within different parameter regimes
(diffusion- vs. advection-dominated), there exist optimally scalable solvers for
these PDEs, however no single solver yet applies well within all regimes of
physical interest. Our goal is to find one method that is scalable in both
regimes, through using a hybrid approach combining restrictive additive
Schwarz (domain decomposition) and geometric multigrid.

Abstract!

Hilari Tiedeman and Daniel Reynolds!
Department of Mathematics, Southern Methodist University!

•  After discretizing in both time and space, we obtain a linear algebraic system
denoted by to move from one time step to the next.
•  We use a Krylov subspace method (GMRES) to solve this system.

OPTIMAL PRECONDITIONERS FOR ADVECTION-DIFFUSION
PROBLEMS

Hilari Celeste Tiedeman

May 14, 2010

Au = f

PAu = Pf

I

A

AII

AΓΓ

AIΓ

AΓI

AIIbI = fI

SuΓ = gΓ

1

Advection/Diffusion Equation!

Chapter 2

Code Framework

2.1. Inexact Newton and GMRES

Instead of implementing our ideas on the full MHD problem, we have chosen

to work with a simpler problem that can display some of the same difficulties: inter-

acting advection and diffusion, with some regions advection-dominated and others

diffusion-dominated. The problem is:

∂tu = ∇ · (βu) + µ∇ · (D∇u) + f

In order to convert this equation into numerical form, we would have to discretize in

both time and space. After doing this, we would then obtain a nonlinear algebraic

system f(�u) = 0 to move from one time step to the next.

To solve f(�u) = 0, we will be using the inexact Newton method and GMRES.

The inexact Newton method will break down the problem to solve:

||J(�uk)�sk + f(�uk)|| < δ.

Here, J(�uk) is the Jacobian of the function, �sk is the solution vector, and δ = γ||f ||.

Kelley gives an in-depth discussion on how to choose the parameter, γ, in [?]. If it is

too small, then we might be oversolving the problem; if γ is too large, we might not

be solving the problem to the precision we need. Once we have picked an acceptable

γ, we can then solve the above equation using an iterative Krylov method.

The Krylov method will solve the above system produced by the inexact Newton

3

•  Preconditioning can accelerate convergence of GMRES and enable scalability
for increasing n (size of the domain).
•  The right preconditioned system is .
•  Letting we get .
•  Ideally, we want , but we cannot find for large systems,
which leads to the use of preconditioners.

Finding Optimal Preconditioners
for Advection/Diffusion Problems
Hilari C. Tiedeman & Daniel R. Reynolds
Southern Methodist University

Department of Mathematics
Southern Methodist University
Dallas, Texas, USA
email: htiedeman@smu.edu D A LL A S, T E X A S

SO
U

TH
ER

N M
ETH O D IST UNIVERSITY

Abstract
A key component of many applications in modern simulation-based sci-

ence and engineering is the solution of very large systems of linear equations,
often arising from the discretization of systems of partial differential equa-
tions (PDE). As these linear systems increase in size, the solution algorithm of
choice transitions from direct methods (like Gaussian Elimination) to iterative
methods. The convergence of these iterative solvers may then be accelerated by
the use of so-called preconditioners, that transform the difficult problem to one
that is more manageable. Historically, much of the focus on preconditioners
for large linear systems has focused on simplified problems, such as those aris-
ing from a single elliptic or parabolic equation, with the result that there now
exist very powerful and scalable algorithms for their associated linear systems.
In this work, we focus on extending these powerful methods to less idealized
problems. Specifically, we focus on the development of scalable precondition-
ing approaches that will work well on both advection- and diffusion-dominated
advection/diffusion equations.

1 Viscous Burger’s Equation
We are currently solving:

∂tu + u∂xu = ν∂xxu, Ω = [0, 1]

u(x, t0) = exp(−(x− 1/2)2 ∗ 25))

periodic boundary conditions

with the goal of solving:

∂tu + β∇u−∇u2 = f , Ω = [0, 1]2

u(x0) = u0(x)

2 Numerical Viscous Burger’s Equation
Discretize the Equation in Space:

ui

�
ui+1 − ui−1

2(∆x)

�
= ν

�
ui+1 − 2ui + ui−1

(∆x)2

�

Theta Method in Time (Θ = 0.5):

�f (�u) = un+1
i − un

i − Θ∆t

�
ν

un+1
i+1−2un+1

i +un+1
i−1

(∆x)2 − un+1
i

un+1
i+1−un+1

i−1

2(∆x)

�
−

−(1− Θ)∆t
�
ν

un
i+1−2un

i +un
i−1

(∆x)2 − un
i

un
i+1−un

i−1

2(∆x)

�
= 0

3 Solving: �f (�u) = 0

• Inexact Newton Method: �uk+1 = �uk + �sk, where

||A(�uk)�sk + �f (�uk)|| < δ = 10−3��f (�uk)�

• stop Newton iterations when ��f (�u)� < � = 10−5

• GMRES Step:

min
s∈Kl(A,�f))

�A(�uk)�sk + �f (�uk)�

• A is the Jacobian defined by: Aij = ∂fi
∂uj

• Kl(A, f) is the lth Krylov subspace:

Kl(A, �f) =
�
�f,A�f,A2 �f, ..., Al �f

�

4 Numerical Graphs
Diffusion Dominated: ν = 1

0 50 100 150 200 250 300 350 400 450 500
!0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t = 0.0

t = 0.013

t = 0.029

 t = 0.102

Student Version of MATLAB

Figure 1. Graphs of the diffusion dominated problem at various times.

Advection Dominated: ν = 0.001

0 50 100 150 200 250 300 350 400 450 500
!0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t = 0.0

t = 0.158

t = 0.288

 t = 0.416

Student Version of MATLAB

Figure 2. Graphs of the advection dominated problem at various times.

5 Preconditioning
• Preconditioning can accelerate convergence of GMRES and enable

scalability for increasing n (size of the domain).
• GMRES solves a linear system A�x = �b.

• The preconditioned system is PA�x = P�b.
• Ideally, we would want:

PA = I

⇒ P = A−1

• However, we would not be able to find A−1 for large systems.
• As a result, we will be comparing well-known preconditioners as

well as our own techniques to solve the Viscous Burger’s Equation.
• One type of preconditioner is the Jacobi:

Pii(u) =

�
1− Θ∆t

�
−2ν

(∆x)2
− ui+1 − ui−1

2∆x

��−1

6 Domain Decomposition
• Domain Decomposition is another form of preconditioning:

P = A−1 = (A0 + A1 + A2 + A3)
−1 (Ideal)

Ps = A−1
s = A−1

0 + A−1
1 + A−1

2 + A−1
3 (Schwarz)

• Schwarz Methods on Two Domains (Processors) [1]:
Additive Schwarz Method:

�x(m) = �x(m−1) + (RT
1 A−1

1 R1 + RT
2 A−1

2 R2)(�b− A�x(m−1))

Restricted Additive Schwarz Method:

�x(m) = �x(m−1) + (R̃T
1 A−1

1 R1 + R̃T
2 A−1

2 R2)(�b− A�x(m−1))

• Ri takes the global residual to the local processor residual and RT
i

takes the local solution back to the global solution.
• R̃T

i takes the local solution back to the global solution without in-
cluding the overlap.

10
2

10
3

10
1

10
2

10
3

No Preconditioner

Jacobi

AS(0)

AS(2)

AS(10)

RAS(2)

RAS(10)

Student Version of MATLAB

0 500 1000 1500 2000 2500 3000 3500
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

No Preconditioner

Jacobi

AS(0)

AS(2)

AS(10)

RAS(2)

RAS(10)

Student Version of MATLAB

Figure 3. Number of nodes vs. number of iterations for convergence using different
preconditioners: The left graph is ν = 1 and the right is ν = 0.001.

7 Two-Level Additive Schwarz Method
General Two Level Additive Schwarz:

x =



RT
0 A−1

0 R0 +
p�

i=1

RT
i A−1

i Ri



�b

Our Version:
�x∗ = RT

0 A−1
0 R0

�b

�x = �x∗ +




p�

i=1

R̃T
i A−1

i Ri



 (�b− A�x∗)

• R0 projects the fine grid residual onto the coarse grid, and RT
0

projects the coarse solution back to a fine solution.

• In the one-level Schwarz algorithms, our restriction matrices were
modified identity matrices.

• For the two-level methods, theoretical results require that R0 and
RT

0 use the same matrix, though experimental evidence suggests that
these need not match (especially for non-symmetric problems).

• Use of modified identity matrices (like the restriction matrix R0) re-
sults in a fine grid “solution” that is mostly zero with a few spots
of non-zero solution values, which causes the residual to increase
dramatically.

• To rememdy this, our RT
0 linearly interpolates the coarse grid solu-

tion back to the fine grid solution.
ν coarse n fine n overlap n processors iterations
1 200 400 10 8 8
1 400 800 10 8 9
1 800 1600 10 8 10
1 1600 3200 10 8 15
1 3200 6400 10 8 14

Figure 4. Tests of increasing coarse and fine grids with fixed overlap and fixed
number of processors: near constant iteration count with increasing problem size.

ν coarse n fine n overlap n processors iterations
1 200 400 10 8 8
1 200 800 20 8 10
1 200 1600 40 8 13
1 200 3200 80 8 24
1 200 6400 160 8 23

Figure 5. Tests of increasing fine grids and overlap with fixed number of processors
and fixed coarse grid: increasing iteration count with increasing problem size.

ν coarse n fine n overlap n processors iterations
1 200 400 10 8 8
1 400 800 10 16 13
1 800 1600 10 32 23
1 1600 3200 10 64 28
1 3200 6400 10 128 86

Figure 6. Tests of increasing coarse and fine grids and fixed overlap with variable
number of processors (demonstrates a weak scaling problem): increasing iteration
count with increasing problem size.

8 Future Research
• Extend the approach to 2D target application [3].

• Investigate alternate domain decomposition preconditioners [4].

• Extend new work to the nonlinear magnetohydrodynamics (MHD)
problem [2].

9 References

References
[1] E. Efstathiou & M.J. Gander, BIT Num. Math. 43 (2003), 945-959.

[2] D. Reynolds, R. Samtaney & C. Woodward, JCP, 219 (2006), 144-162.

[3] B. Smith, P. Bjorstad, & W. Gropp, Cambridge University Press, 1996.

[4] X. Tu & J. Li, Comm. Appl. Math. Comp. Sci., 3 (2008), 25-60.

Preconditioning!

Chapter 2

Code Framework

APP−1u = f

Pu = x

u = P−1x

AP−1
= f

2.1. Inexact Newton and GMRES

Instead of implementing our ideas on the full MHD problem, we have chosen

to work with a simpler problem that can display some of the same difficulties: inter-

acting advection and diffusion, with some regions advection-dominated and others

diffusion-dominated. The problem is:

∂tu = ∇ · (βu) + µ∇ · (D∇u) + f

In order to convert this equation into numerical form, we would have to discretize in

both time and space. After doing this, we would then obtain a nonlinear algebraic

system f(�u) = 0 to move from one time step to the next.

To solve f(�u) = 0, we will be using the inexact Newton method and GMRES.

The inexact Newton method will break down the problem to solve:

||J(�uk)�sk + f(�uk)|| < δ.

3

Chapter 2

Code Framework

APP−1u = f

Pu = x

u = P−1x

AP−1
= f

2.1. Inexact Newton and GMRES

Instead of implementing our ideas on the full MHD problem, we have chosen

to work with a simpler problem that can display some of the same difficulties: inter-

acting advection and diffusion, with some regions advection-dominated and others

diffusion-dominated. The problem is:

∂tu = ∇ · (βu) + µ∇ · (D∇u) + f

In order to convert this equation into numerical form, we would have to discretize in

both time and space. After doing this, we would then obtain a nonlinear algebraic

system f(�u) = 0 to move from one time step to the next.

To solve f(�u) = 0, we will be using the inexact Newton method and GMRES.

The inexact Newton method will break down the problem to solve:

||J(�uk)�sk + f(�uk)|| < δ.

3

Chapter 2

Code Framework

APP−1u = f

Pu = x

u = P−1x

AP−1x = f

2.1. Inexact Newton and GMRES

Instead of implementing our ideas on the full MHD problem, we have chosen

to work with a simpler problem that can display some of the same difficulties: inter-

acting advection and diffusion, with some regions advection-dominated and others

diffusion-dominated. The problem is:

∂tu = ∇ · (βu) + µ∇ · (D∇u) + f

In order to convert this equation into numerical form, we would have to discretize in

both time and space. After doing this, we would then obtain a nonlinear algebraic

system f(�u) = 0 to move from one time step to the next.

To solve f(�u) = 0, we will be using the inexact Newton method and GMRES.

The inexact Newton method will break down the problem to solve:

||J(�uk)�sk + f(�uk)|| < δ.

3

Chapter 2

Code Framework

P−1 = A−1

2.1. Inexact Newton and GMRES

Instead of implementing our ideas on the full MHD problem, we have chosen

to work with a simpler problem that can display some of the same difficulties: inter-

acting advection and diffusion, with some regions advection-dominated and others

diffusion-dominated. The problem is:

∂tu = ∇ · (βu) + µ∇ · (D∇u) + f

In order to convert this equation into numerical form, we would have to discretize in

both time and space. After doing this, we would then obtain a nonlinear algebraic

system f(�u) = 0 to move from one time step to the next.

To solve f(�u) = 0, we will be using the inexact Newton method and GMRES.

The inexact Newton method will break down the problem to solve:

||J(�uk)�sk + f(�uk)|| < δ.

Here, J(�uk) is the Jacobian of the function, �sk is the solution vector, and δ = γ||f ||.

Kelley gives an in-depth discussion on how to choose the parameter, γ, in [?]. If it is

too small, then we might be oversolving the problem; if γ is too large, we might not

be solving the problem to the precision we need. Once we have picked an acceptable

3

Results!

101 102 103 104
100

average # of vcycles per # of outer FGMRES iteration

total # of procs

vc
yc

le
s/

ou
te

r F
G

M
R

ES
 it

er
s

diff dom
diff lean
diff adv
adv lean
adv dom

101 102 103 104
101

102

103
total preconditioner time per # of outer FGMRES iterations

total # of procs

pr
ec

on
di

tio
ne

r t
im

e/
ou

te
r F

G
M

R
ES

 it
er

s

diff dom
diff lean
diff adv
adv lean
adv dom

101 102 103 104
101

102

103
preconditioner time coarsest time per # of outer FGMRES iteration

total # of procs

(p
re

co
nd

iti
on

er
 ti

m
e

 c
oa

rs
e

tim
e)

/#
 o

f o
ut

er
 F

G
M

R
ES

 it
er

s

diff dom
diff lean
diff adv
adv lean
adv dom

•  Right: The number of V-Cycles per
outer FGMRES stays constant as the
number of processors increases.	

•  Bottom Left: The total time in the
preconditoner slightly increases as the
number of processors increase.	

•  Bottom Right: Once the coarse solver
time is removed, the total solution time is
constant with an increase in processors.	

	

•  While the approach promises scalability, adjustments must be made to
the coarse level solve for optimal parallel scalability.	

• One could coarsen the interface further making it a much smaller

problem to solve.	

• Alternatively, one could compute and store the coarsest interface

matrix and solve the resulting system with a direct method.	

•  We perform the interface solve using GMRES preconditioned
with a multigrid method.	

•  This preconditioner performs V-Cycles up and down the grid hierarchy,
repeating until a set residual tolerance is met.	

•  At each level, we smooth the residual using a fixed number of FGMRES
iterations.	

•  The coarsest level is solved to a set tolerance with FGMRES.	

	

•  We anticipate that the combination of a domain decomposition method with a
multigrid method will allow our solver to scale well in both the advection- and
diffusion-dominated regimes.	

 	

OPTIMAL PRECONDITIONERS FOR ADVECTION-DIFFUSION
PROBLEMS

Hilari Celeste Tiedeman

May 14, 2010

Au = f

PAu = Pf

I

A

AII

AΓΓ

AIΓ

AΓI

AIIbI = fI

SuΓ = gΓ

1

Finest Level: n

n/2

n/4

n/8

n/16

Coarsest Level: n/64

n/32

Smoothing

Restriction

Prolongation

Coarse Solve

diff dom: Re = 5.0e-5
diff lean: Re = 5.0e-3
diff adv: Re = 1
adv lean: Re = 1.99e2
adv dom: Re = 1.99e4

	Multilevel Schur Complement Preconditioner for Multi-Physics Simulations
	Recommended Citation

	tmp.1331071906.pdf.T_I_9

