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Advection-diffusion PDEs are prevalent in models of many physical
applications in science and engineering. Within different parameter regimes
(diffusion- vs. advection-dominated), there exist optimally scalable solvers for
these PDEs, however no single solver yet applies well within all regimes of
physical interest. Our goal 1s to find one method that 1s scalable in both
regimes, through using a hybrid approach combining restrictive additive
\Sehwarz (domain decomposition) and geometric multigrid. /

Ou=V - (Pu)+uV-(DVu) + f

 After discretizing in both time and space, we obtain a linear algebraic system
denoted by Au = f to move from one time step to the next.

\

\°We use a Krylov subspace method (GMRES) to solve this system.
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* Preconditioning can accelerate convergence of GMRES and enable scalability
for increasing n (size of the domain).

e The right preconditioned system is APP 'y = f.
e Letting Pu=x weget AP 'z = f.

e Ideally, we want P~ = A™", but we cannot find A~
\which leads to the use of preconditioners.

* Multigrid [2] 1s optimally scalable for diffusion dominated problems.

for large systems,

y
Y

* Multigrid approximates a fine grid solution using a coarser grid, recursively.

* For problems with smooth solutions, multigrid methods prove effective.

* Domain decomposition methods are optimal for advection dominated problems.
* These approximate the solution by solving problems one subdomain at a time.

* We use a Schur complement domain decomposition preconditioner on the whole
goblem, with a multigrid solve for the interface only problem. /
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» Unknowns are broken up into two sets, / and .

where S = AFF
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o | 'contains the subdomain interfaces.

* We then rewrite the system Au = f as:

« Arrbr = fr is directly solved using SuperLU.

» [ contains interior nodes inside each subdomain.

Arr A ur | _ | Ji1
Arr Arr | | ur | | JT
* We use a Schur complement to solve this problem:
_ _ | Al Hfr—AmrSTH(fr - J?F]Al_flf[)) _
I “fr — ArrAg; fr) _

— Ar IAI_} A 1s the Schur complement.

 The focus of this work is with the interface solve: Sur = gr.

 We perform the interface solve Sur = gr using GMRES preconditioned
with a multigrid method.

1terations.

e At each level,

Finest Level: n

a set residual tolerance 1s met.

n/2

Coarsest Level: n/64

* This preconditioner performs V-Cycles up and down the grid hierarchy,
repeating until

we smooth the residual using a fixed number of FGMRES

 The coarsest level 1s solved to a set tolerance with FGMRES.

e Smoothing

\ Restriction

/ Prolongation

Coarse Solve

* We anticipate that the combination of a domain decomposition method with a
multigrid method will allow our solver to scale well in both the advection- and
diffusion-dominated regimes.

average # of vcycles per # of outer FGMRES iteration

diff dom

— diff lean |[]
diff adv
adv lean |]
adv dom

* Right: The number of V-Cycles per
outer FGMRES stays constant as the
number of processors 1ncreases.

* Bottom Left: The total time in the
preconditoner slightly increases as the
number of processors increase.

vcycles/outer FGMRES iters

* Bottom Right: Once the coarse solver
time 1S removed, the total solution time 1s
constant with an increase in processors.
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I d|ff dom 1
— diff lean |]
diff adv ||

preconditioner time — coarsest time per # of outer FGMRES iteration

d|ff dom ]
— diff lean |]
diff adv ||

adv lean | |
adv dom

adv lean | |
adv dom
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preconditioner time/outer FGMRES iters
o

(preconditioner time — coarse time)/# of outer FGMRES iters

101o1 10° 10° 10* 10101 10° 10°
diff dom: Re = 5.0e-5 total # of procs

diff lean: Re = 5.0e-3

diff adv: Re=1

adv lean: Re =1.99¢2

adv dom: Re =1.99¢4

total # of procs
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* While the approach promises scalability, adjustments must be made to
the coarse level solve for optimal parallel scalability.
* One could coarsen the interface further making it a much smaller
problem to solve.
* Alternatively, one could compute and store the coarsest interface

matrix and solve the resulting system with a direct method.
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