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Geothermal energy piles are categorized as closed systems. Energy piles are a relatively

new technology which couples the structural role of traditional pile foundations to that of

heat exchangers to fulfill the required energy demand of buildings and infrastructures. These

foundations are equipped with pipes embedded in the concrete forming the pile. While con-

nected to a heat pump, the fluid circulating inside these pipes provides the exchange of heat

with the ground for heating and cooling purposes. As the undisturbed temperature at the

shallower depths of the ground stays comparatively constant the whole year, being warmer

than the surrounding temperature in winter and cooler in summer, the capacities of ground

thermal storage are beneficial for withstanding the process of cooling and heating. In this

study, heat exchange between the pile foundations and rock is investigated. The behavior of

such foundation as energy piles, which are governed by their response to thermo-mechanical

loads, is presently not fully understood. The influence of different pipe configurations embed-

ded in the pile is examined while the pile is embedded in two different rock types (limestone

and sandstone). It has been observed that pipe configurations strongly affect the behavior

of the energy piles. An increase in the axial distributions of vertical thermal stresses has

been recorded when the pile equipped with double U-pipes is compared with that of the

single U-pipe configuration. The maximum value of the axial distributions of the thermal

vertical displacements was observed when the pile foundation equipped with double U-pipes

was buried in the limestone.
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Chapter 1

INTRODUCTION

1.1. Objectives and Motivation

The constant demand for clean energy to serve for sustainable development made geother-

mal energy the perfect source to be used for getting clean and renewable energy. However,

Geothermal energy is environmentally friendly because extraction of its energy does not

cause carbon dioxide which can pollute the environment in comparison to fossil fuel energy

extractions in terms of processing and operations. Geothermal energy systems do not require

transport or storage of polluting or hazardous substances. It does not contribute any issues

on a human scale. Moreover, this energy can be available 24 hours a day and it does not

depend on climatic conditions. Economically, geothermal energy is one of the most cost-

effective forms of renewable energy. It contributes for achieving the Independence of energy

for electric power production. Geothermal energy can help to ensure energy independence

and eliminate the use of fossil fuels for electric power production which already happened

in volcanic islands such as Dominica. Recently, the Caribbean islands are almost entirely

dependent on fossil-based energy.

Nowadays, there are many purposes of using geothermal energy systems which are heating

and cooling buildings and residential houses, air conditioning, electric generations, hot water

production for bathing and kitchens, agricultural purposes, and industrial uses. There are a

lot of benefits of using geothermal systems: i) covering electricity needs of the desired area,

ii) reduce and stabilize the electricity cost, iii) in the long run, geothermal energy systems

could help to avoid production of tons of CO2 into the atmosphere annually, iv) it can help to

generate additional revenue for the national budget in proportion to the amount of electricity

exported to cities and villages, v) guarantee at least part of the economic development of

1



new cities, especially in the big cities which are created and designed be a tourist spots in

the region. Geothermal energy projects will contribute to creating several hundred direct

and indirect jobs during the construction phases and operation of the power stations, vi)

reduce the cost of the kWh and significantly will limit the need to import hydrocarbons, vii)

geothermal energy will help to provide local taxes for the national budget, ix) geothermal

energy could keep individual houses and the local companies self- dependent on the air

conditioning and electricity, x) it will carry a new dynamic to the local economy.

1.2. Geothermal Energy Systems

The global energy crisis leads to the need to use renewable energy, such as geothermal

energy. Geothermal energy is a form of thermal energy which generated in the core of the

earth about 600 km under the ground. Temperature hotter than the surface of the sun

is constantly generated inside the earth because of radiogenic decay of naturally occurring

isotopes and because of that it is a renewable energy. The temperature inside the earth

which is at the core of the earth can reach up to 5000◦C. However, it decreases gradually as

moving from the core of the earth towered the surface to reach around 10◦C. This gradient of

temperature drives a continuous flux of thermal energy which is from the core of the earth to

the surface, in the format of a wide range of energy sources. The source range for geothermal

energy are from the shallow, intermediate, and deeper depths. The shallower depths start

from the order of the ten’s meters to the few hundred meters, and the intermediate depths

start from the edge of shallower depths to the order of kilometers to the deeper depths with

extremely high temperatures of molten rocks 2.1. Geothermal energy systems consist mainly

of two types which are shallow geothermal energy and deep geothermal energy. This study

will focus on shallow geothermal energy, and will be referred to herein as geothermal energy

systems [3].

Nowadays, the crisis of fossil fuel made geothermal energy systems so important. There

are a lot of advantages of using geothermal energy over conventional fossil fuel resources.

Geothermal energy systems are suitable methods to reduce carbon dioxide emissions. It is a

2



renewable heat source and economic source. Basically, there are two limitations which are

availability and cost. For example, deep geothermal energy required abundant geothermal

resources; generally, areas with recent tectonic activity. There is a high risk of failure on

establishing deep geothermal systems because the cost is quite high compared with shallow

geothermal energy. For instance, a little difference in the temperature of the extracted water

from the reservoir can cost a huge loss of investment. However, geothermal energy normally

can be generated by drilling deep holes into the earth. There are two types of extractions

which are open and closed systems [3]. The Schematic of the systems can be seen in Figure

1.1.

1.2.1. Open Systems

The terminology of open systems is that the energy is created by pumping the water

through the reservoir, where it will be circulating through hot fractured rock. After that

it will be collected on the other side in order to bring it back to the surface as shown in

Figure 1.2. An open system mainly depends on ground water wells in order to extract or

inject water to/from water bearing layers in the underground (aquifers). Technically, an

open system requires two wells: one can be used to extract the water from underground and

the other one to inject it to the same aquifer [3]. In fact, an open system provides a powerful

heat source with low cost. In contrast, it requires maintenance and a suitable aquifer that

satisfies the requirements listed below:

1. Adequate permeability is needed to allow production of the required amount of ground

water with small drawdown.

2. The chemistry of groundwater should be good which contain low iron to avoid issues

with corrosion, scaling, and clogging.

Open systems can be suitable to use for big installations. The most powerful ground

source heat pump system is located in Louisville, Kentucky, USA which uses groundwater

wells to supply ca. 10 MW of heat and cold to a hotel and offices [73].

3



Figure 1.1. Schematic of Geothermal Energy Systems [9].
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Figure 1.2. Schematic of an Open System [20].

1.2.2. Closed Systems

A closed system is about a single pipe where the water is bumped in one direction

(Entrance path) and going to the other direction (exiting path) of the same pipe as shown

in Figure 1.3. The implementation of closed systems can be done in many ways which

are in horizontal and vertical directions see Figure 1.4, but it depends on several factors

[3]. The most important factors are the geothermal energy sources and enough area to

accommodate the system. The closed system can be divided into several types such as

heat pips, direct evaporation bore-hole heat exchangers, bore-hole heat exchangers (BHEs),

horizontal collectors, geothermal energy baskets, and thermal piles. Each type has its own

configuration, the required space, and installed depths of these systems. The terminology

of a closed system is a network of pipes, which are buried underground which function

as heat exchangers. The popular materials are used for the pipes are mostly high-density

polyethylene (HDPE), steel, and copper [20].
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Figure 1.3. Schematic of a closed system [20].

1.3. Shallow Geothermal Energy

Shallow geothermal energy systems provide a great source of thermal energy that can be

used for heating and cooling of buildings and companies because it is a renewable source of

energy. Heat transfer due to temperature gradient between the bottom of the earth and the

air is occur continuously. At approximately 10 m under the ground, the seasonal temperature

variation is decreased to a constant temperature of around 12◦C. Going from the surface of

the earth towards the bottom of the earth, the temperature is known to increase with an

average gradient of 3◦C per 100 m depth. The first 100 m is suitable for storage and supply

of thermal energy, even though there is a relative low temperature because the thermal

interaction between the earth and the air. Two utilized energy systems are ground source

heat pumps and underground thermal energy storage [58].
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Figure 1.4. Schematic of Vertical and Horizontal Closed Systems [72].

1.3.1. Ground-Source Heat Pumps

Ground source heat pump (GSHP) is also known as a geothermal heat pump and down-

hole heat exchanger (DHE). All are geothermal systems which are mentioned above as open

and closed systems and can be seen in Sections 1.2.1 and 1.2.2, respectively. However, the

open system is also known as a doublet which function to extract heat from groundwater

and carry it to the surface of the earth by using at least two separate wells. Practically, one

of the wells will be used for extracting the groundwater, and the second is for re-injecting

the groundwater. This system is around eight times more efficient than closed systems.

The idea of a closed system is to extract the heat from the earth by installing pipes

containing a fluid (which it can be water) embedded in the soil mass or rock. The fluid will

be circulating inside the heat exchanger pipe until reaching a heat pump at the surface inside

a proper place such as a building. The heat pump will collect and transport the heat from

the fluid to the heating system. The great thing about the closed systems is that it does not
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require an aquifer and one bore-hole is enough for the extraction of thermal energy. Closed

system can be installed ether vertically or horizontally.

The vertical system is more popular than the horizontal systems and widely used espe-

cially in places where the area is limited. The system is known as bore-hole heat exchanger

(BHE) or down-hole heat exchangers. However, the configuration of pipes varies which in-

cludes U pipe, UU pipes, or W pipe, and are fixed by several materials such as concrete, soil,

rock, or grout. The material that is used for the pipes is mainly plastic, i.e. polyethylene or

polypropylene.

As mentioned earlier the heat pump is located inside buildings. The function of the heat

pump is to extract required amounts of heat from the fluid and pumps it back to the BHE.

Sometime, the fluid used such as water is mixed with 20–25 % anti-freezing coolant such as

Mono Ethylene Glycol to stop the fluid from freezing and sometimes it will get in contact

with the surrounding materials (soil,rock) via the U-tube material and the grout. The grout

is usually Bentonite-Cement mix.

Finally, the heat pump effectiveness can be described as a number called the coefficient

of performance (COP) [74], which is the ratio of the heat transferred into the system to the

work required to transfer that heat described as

COP =
heat transferred

work done by pump
=

Q

W
(1.1)

For example, if the work needed to raise 1 kWh of heat is 0.25 kWh, the result of the

coefficient of performance is 4, which means that the heat transferred to the building is four

times greater than the work done by the motor of the heat pump. Moreover, the typical

number of the coefficient of performance is usually ranging from 3.5 to 4, which is at the

starting of the heating season, where the good values of the coefficient of performance are 5

or 6 for both heating or cooling systems [74]. The extraction can cause a drop in the ground

temperature which will lead to a decrease in the coefficient of performance.
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1.3.2. Underground Thermal Energy Storage

The shallower depth of the earth is suitable for storing energy, and getting more attention

as colds and hot water stored in the ground can be used for cooling and heating of buildings

the entire year. There are two systems as we mentioned in Sections 1.2.1 and 1.2.2; open

which is known as aquifer thermal storage and closed, which is known as duct thermal storage

or bore-hole storage [22].

1.3.2.1. Aquifer Thermal Energy Storage

Aquifer Thermal Energy Storage (ATES) is an open system which depends on the heat

carried by the groundwater. The system is usually installed in porous aquifers with medium

to high permeability and transmissivity. As mentioned in Section 1.2.1 the system requires a

minimum of two wells, one for the warm water and the other for cold water. In summer, the

cold water is used for cooling, and the resulting hot water is stored in the warm reservoir.

In winter the process is flipped. The disadvantage of this system is that, it is good only

in places with permeable aquifers. However, this system is environmentally safe. The used

water cannot be contaminated because it does not mix with other fluids. Furthermore, the

extracted water is the same as the re-injected water, which means that there is no loss of

the groundwater [3].

1.3.2.2. Duct Thermal Energy Storage

Duct Thermal Energy Storage (DTES) is described as a closed system. This system can

be implemented in varying configurations as mentioned in Section 1.2.2. Typically, bore-

hole depths from 20-50 m are drilled where plastic pipes are installed as heat exchangers

and carry the fluid. The thermal energy will be extracted from the fluid while circulating

inside the pipes. The characterization of this system is that the pipe network and fittings

are less exposed to scaling and clogging as compared to the ATES. However, the efficiency

of this system depends on many factors such as geology, temperature gradient of the earth,

groundwater conditions, and the thermal properties of the ground (soil, rock) [3].
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1.4. Geothermal Energy Piles

The geothermal energy pile is a closed system configuration. Energy pile is a new tech-

nology which couples the structural role of traditional pile foundations to that of heat ex-

changers to fulfill the required energy of buildings and infrastructures. These foundations

are equipped with pipes embedded in the concrete which are full of fluid circulating inside to

exchange heat with the ground for heating and cooling purposes, especially when they are

connected to heat pumps. In these studies, heat can be exchanged between the foundation

and the rock, as the undisturbed temperature at the shallower depths of the ground stays

comparatively constant the whole year. Being warmer than the surrounding temperature in

the winter and cooler in the summer, in both media, the capacities of thermal storage are

beneficial for enduring the process. The energy piles will be connected to the geothermal

heat pump and can carry the stored heat and their energy input into buildings during the

heating season and vice versa. During the cooling season, the heat can be extracted from

the conditioned spaces and inject it (again, in addition to their energy input) to the rock.

The using of energy pile foundations have been increasing world-wide because of the savings

in the installation costs related to their hybrid character and to the drilling processes [19].

1.5. Thesis Outline

This work will investigate the geothermal energy pile, which involves a closed system

buried in rock and soil materials. A literature review in Chapter 2 will present the history of

the geothermal energy, shallow geothermal energy, and geothermal energy piles. The finite

element modeling of the examined problem is first presented in Chapter 3 and their results

will be outlined in Chapter 4. In Chapter 5, the thermo-mechanical behavior of the energy

piles and the related energy and geotechnical performances are discussed with reference to

the simulated design solutions.
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Figure 1.5. Schematic of Energy Piles in a Building [9].
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Chapter 2

LITERATURE REVIEW

The geothermal energy techniques are mainly used to extract heat from the earth. It

is known that heat is a form of energy [20]. Geothermal energy can be found from two

different sources which are solar radiation and terrestrial heat flows [42]. The two sources

can be exploited to various extents which depend on the geothermal installation depth. The

surface of the earth and the atmosphere are heated by solar radiation. This energy will be

transferred into the ground by the movement of the seepage water. The balance of the heat

is essentially governed by a heat source known as solar energy zone.

2.1. Brief Description of Geothermal Energy

The existence of volcanoes, hot springs, and other thermal phenomena led people to think

that the bottom of the earth is hot, but the first representation of a hot earth was not until

a period between the sixteenth and seventeenth century, when people dug up few hundreds

of meters underground for the first mines. The conclusion drawn from our ancestors is that

the temperature of the earth increased with depth.

The thermometer was probably the first device for the measurements of heat in a mine

near Belfort, France in 1740 [14]. Modern scientific technics and methods were being used

for the thermal regime of the earth. However, those things did not start until the twentieth

century which the role played by radiogenic heat had been discovered that led humankind

better understanding such phenomena as heat balance and the Earth’s thermal history. The

heat continually generated by the decay of the long-lived radioactive isotopes of uranium

(U238, U235), thorium (Th232) and potassium (K40), which are present in the Earth, must be

taken into account in all modern thermal models of the Earth [15,54].
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The continental mainland has an average terrestrial heat flux of about 0.07 Wm−2 pro-

vided from the gravitational energy and radioactive deterioration together. The energy is

transported from the crustal and sub-crustal regions to shallow depths which near the sur-

face of the Earth. The main mechanisms behind this transfer of heat are conduction and

convection [15]. The way geothermal energy installations work can be crucially affected by

condition and convection. The effect of the energy transport controlled by phonon radia-

tion at deep depths within the earth is negligible because at this depth transport becomes

effective only at temperatures higher than about 700 ◦C.

As going from the surface toward the core of the earth, temperature increases with the

depth. This rise is described by the geothermal gradient, which on average is about 2.5-3 ◦C

per 100 m.

The equation below describes the relationship between temperature gradient θ (k . m−1),

the thermal conductivity λ (W . m−1 . k−1) and the heat flux qsp (W . m−2)

qsp = −λ ·
(
∂T

∂x
+
∂T

∂y
+
∂T

∂z

)
(2.1)

Where:

qsp = specific heat flux (W . m−2),

λ = thermal conductivity (W . m−1 . k−1),

T = absolute temperature (K),

x, y, z = spatial coordinates (m)

The difference of the temperature magnitude is essentially important for the thermal

conduction. The heat transfer path length is considered through the body of rock and the

parameters of the rock. Thermal conduction can be classified as steady or unsteady. The

steady case (conductive), where the thermal conductivity λ is the only critical rock parameter

when quantifying the heat transfer. Fundamental here is Fourier’s law, whose differential,

general form for homogeneous solid bodies in its first derivative is as follows in Equation

2.1 [20].

13



The primordial energy of planetary accretion are the other potential sources of heat which

could be added to the radiogenic heat. In those of modules, they were not realistic theories

until 1980s. However, it was demonstrated that our planet is slowly cooling down, and that

there was no equilibrium between the radiogenic heat generated in the Earth’s interior and

the heat dissipated into space from the Earth [20].

An example of this phenomena can be explained in the study of Stacey and Loper [75].

The total flow comes from the Earth is estimated to be 42 × 1012 W (conduction, convection

and radiation) which 8 × 1012 W provided from the crust. It represents only 2% of the Earth

total volume which it is rich in radioactive isotopes. However, the mantle represents 82% of

the heat which is 32.3 × 1012 W and the heat that comes from the core is 1.7 × 1012 W, that

represents only 16% of the total volume but it does not have radioactive isotopes. Figure

2.1 shows the schematic of the inner structure of the Earth [75]. According to Dickson [20],

the rate of the cooling of the mantle the Earth is estimated to be 10.3 × 1012 W, since the

radiogenic heat of it is estimated to be at 22 × 1012 W [51].

In the greater number of recent estimated data, the heat flow from the Earth is about 6%

higher than the number that is used by Stacey and Loper (1988). However, the operation

of cooling is still slow. The mantle temperature has reduced no more than 300 to 350 ◦C in

3 billion years, but still at its base is about 4000 ◦C. The total heat content of the Earth

which is above a supposed average surface temperature of 15 ◦C seems to be of the order of

12.6 × 1024 MJ, and that of the crust is of the order of 5.4 × 1021 MJ [5].

Recently, the utilization of the geothermal energy is world widely imported and offer new

perspectives in this sector. However, in the first of the nineteenth century, the energy content

was already being exploited in geothermal fluids. In that period of time, a chemical industry

was established in Italy in a place called Larderello to extract boric acid from the hot waters

naturally or by drilled shallow bore-holes. Evaporating the hot fluids in iron boilers by using

the wood as fuel was the way how to provide boric acid at that time. In 1827, the creator

of that industry established an innovative system for using in the evaporation processes by

using the heat of the boric fluids rather than burning wood from the forests. The utilization
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Figure 2.1. Schematic of the Earth’s core, mantle and crust Source Source: Dickson and

Fanelli et. al [20].
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of natural steam to exploit its mechanical energy started during this time. Furthermore, in

the period between 1850 and 1875 at Larderello, the factory held the monopoly for boric

acid production in Europe. The low-pressure steam existed to be used to heat industrial

and residential buildings and greenhouses in the Tuscany area between 1910 and 1940. Also,

in 1928, Iceland (which is the pioneer in the exploitation of the geothermal energy) started

utilizing its geothermal fluids specially hot waters for domestic heating [20]. The first use

for the geothermal steam occurred in 1904 in Larderello, Italy to generate electricity. After

by 1942, the capacity of the combined geothermo-electric energy had reached 127,650 kWe.

Later many countries followed the example set by Italy. In 1919, the first geothermal wells

in Japan were drilled at Beppu, and shortly after Geysers, California, US in 1921. A small

geothermal power plant began its operations in New Zealand in 1958, and in 1959 in Mexico.

Expansion of this type of energy source began in 1960 in the United States, and so many

more countries in the years to follow [20].

After WWq, so many countries started importing geothermal energy systems which were

considered to be economically competitive when comparing with other forms of energy such

as fossil fuel. According to the Huttrer study that was conducted in 2001, geothermal electric

capacity increased from 6,833 MWe in 1995 to 7,974 MWe in 2000 [39]. In addition, the

same study showed reports on the overall installed capacity in 2004 (8,806.45 M4We). By

considering the Huttrer study, the geothermal energy power installed in developing countries

in 1995 (38%) and 2000 (47%) of the world total, see Table 2.1 which presents the countries

that utilize geothermal energy to generate electricity. Another study was conducted by

Dickson in 1988 showed that the utilization in some developing countries of geothermal

energy have exhibited an interesting trend over the years. In the time between 1975 and

1979 the electric capacity of geothermal energy installed in those countries raised from 75 to

462 MWe; by the end of 1984, this result had accomplished 1495 MWe. However, the rate

of increasing is available during these two periods which are 500% and 223%, respectively.

It was a remarkable growth of almost 150% in the period from 1984 to 2000 [21].
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In addition, in some areas, geothermal power plays an important role in the energy

balance specially in the developing counties as can be seen in Table 2.1, which demonstrates

the geothermal power percentage according to the total power of electricity that performed

in some of these countries, relative to 1998.

Table 2.3 shows the installed energy and capacity used worldwide for the year 2000

which are 190,699 TJ/yr and 15,145 MWt, respectively. Table 2.3 reports the direct use

of the fifty-eight countries compared to the twenty-eight in 1995 and the twenty-four in

1985. However, heat pumps are the most popular nonelectric used worldwide in term of the

installed capacity which about 34.8%, followed by bathing 26.20%, space heating 21.62%,

greenhouses 8.22%, aquaculture 3.93%, and industrial processes 3.13% [55].

2.2. Brief History about Energy Pile

The utilization of geothermal energy becomes worldwide popular. The energy perfor-

mance of buildings highly encourages consolidation of applications of energy from renewable

sources which recently was adopted European Parliament (2010/31/EU) [66]. The growth of

the renewable energy sources and its applications are significantly improved. One example

of renewable energy is geothermal energy which can be used with the ground source heat

pumps (GSHP) coupled with the ground heat exchangers (GHEs) buried underground. It

has been published all over the world on geothermal energy applications [56] which mani-

fested the ground source heat pump (GSHP) that was raised 2.15 times during 2005 to 2010.

The compound annual rate is about 16.6% with an evidence of ground heat pump (GSHP)

applications in 78 countries around the world.

The first construction of pile foundations as ground heat exchangers (GHE) were per-

formed around 30 years ago in Austria [12] and known as energy piles. Currently, the

utilization of energy piles is continuously growing, an example is in Austria where there are

more than 100,000 of units installed [13]. Energy piles are cost effective which integrate two

different important properties in one solution, the structural load-bearing and ground heat

exchangers (GHE) i.e. thermal. In the meantime, the complexity of energy piles thermal
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behavior makes it an important research topic.

The general scheme of the energy piles can be defined by the foundation plane which

thermal interference between the closely located adjacent piles appear. The temperature

of the soil and rock that surrounding energy piles increases with respect of the ground

pile and circulating fluid thermal capacitance during the heat rejection process and will

decrease during the heat extraction process. Generally, the balance of the operation of the

energy pile is significant. Unbalanced operations, where the extracted heat is more than the

injected, in some cases may result a significant decrease in long term energy performance.

Thus, maintaining stable operation of energy piles is significant particularly in a long term.

However, taking in consideration the seasonal-thermal storage may become feasible. In

between the energy piles ground surface boundary and the building floor structure manifest

additional thermal interference [26]. The performance of the energy piles can be significantly

enhanced in cold climate areas, where the heat loss of building floor might heat up the ground

over years and generated natural thermal storage effect. There are many factors with different

variables that play significant roles such as thermal properties of the ground, grout, pipes,

temperature boundary conditions, the pile’s length, fluid, the distance between the piles,

design, and optimal sizing of energy piles and/or ground source heat pump (GSHP). The

factors that are listed above make the system with energy piles requires complex dynamic

numerical modeling.

The objective of this section is to report and show various applications of energy piles and

their potential as a renewable energy solution. Also, many different fundamental schemes

of heat pump plants with energy piles will be presented and many different energy pile

configuration types and their performance which are already studied. The following sections

of this chapter will present and discuss available underground sizing and design techniques.

As known, the operation principle of energy piles is similar to bore-holes [26] with known

differences in boundary conditions. However, this study covers available scientific literature

and design guideline materials related to energy piles topic, this literature be classified into

four major categories which is presented in Tables 2.4 and 2.5.
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2.2.1. Schematic of Plants with Energy Pile

Various schemes were conducted of geothermal plants. However, the most common one in

energy pile applications can be shown in Figure 2.2 where the climate of indoor unit is totally

ensured with heating. The methodology of this scheme can be explained in two different

situations which are the secondary side demands either heat or cool. In the first case, the

operation of a heat pump will heat up the heat carrier in the buffer tank. The operation

to accommodate the desired temperature, whenever the tank’s temperature drops below the

arranged point value and the heat pump as well, built-in electrical heating coil or some other

top-up heating begins its operation to heat up the tank volume to the desirable temperature

value. In the second case, as shown in Figure 2.2 the circulating fluid in the energy piles loop

is directly pointed to the “free cooling” heat exchanger. The heat exchanger, when combined

secondary side, cools circulating fluid. However, from the Figure 2.2 there are three valves

where they function as a reverse flow to the heat pump loop. Thus, the consequence of this

processes is a reverse heat pump operation. According to this process, it can be said that the

volume of the buffer tank can be alternately heated or cooled in such plant. If “free cooling”

is incapable to accommodate most of the cooling demand, cooling circuit is appreciated in

buildings. Nevertheless, it can be comprehended that such a plant might not be able to cool

and heat the building simultaneously [27]. There is an example where this scheme is used in

a two-stores residential building in Hokkaido, Japan [35].

The second scheme is shown in Figure 2.3 which is suitable for both cooling and heating

conditions. Comparing this scheme with the previous one, we can see that the plant scheme

considers an additional individual cooling machine and the design contains a cold buffer

tank. Terminal E of the Zürich airport uses this type of scheme, which was constructed in

2003 and performs 306 of concrete energy piles as a ground heat exchanger (GHE) in plant

design equipped with 5 U-pipes. This system is designed for accommodating both heating

and cooling in the terminal [64]. According to the review is conducted by J. Fadejev et.

al [27], the total capacity of the heat pump is 630 kW , which covers 85% of the heating

demand. However, energy piles ”free cooling“ covers the cooling demand of the terminal.
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Figure 2.2. Hybrid heat pump plant with energy piles and “free cooling” option. Source: J.

Fadejev et. al [27].
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This project was done with the help of PILESIM software, which utilizes finite difference

method-based duct ground heat storage model (DST) [36]. The geometry of the piles is 900

- 1500 mm, 26.8 m, outer diameter and length of the piles, respectively. The production of

the heat pump that is used is about 2210 MWh, which covered ca 73% of demand heat and

the rest is covered with top-up district heating [64]. However, 620 MWh of cooling demand

is completely covered by ”free cooling” which was designed to satisfy its needs, which is

about ca 53% cooling need annually.

As it was illustrated in earlier paragraphs, unbalance in both operation of extraction

and re-injection might affect in the long-term performance of the geothermal energy piles

operation. However, an ideal solution can be seen in Figure 2.4, where thermal storage can

lead to stabilizing long-term operation of ground heat exchangers. This solution is highly

recommended for structures that are located in cold places with low average annual outdoor

temperature. In this kind of plant, there are many different resources of thermal storage such

as solar storage (for example, solar collector), air source (for example, dry cooler or/and air

handling unit exhaust air heat exchanger). There are examples using the terminology of

Figure 2.4, but they were applied in ground source heat pump (GSHP) which was conducted

by Reda [67]. A numerical study has been done on thermal solar application but not on

energy piles.

There is another scheme where both seasonal warm and cold air source storages are

presented. This plate solution can be shown in Figure 2.5. The operation of this plant

during the summer and winter vary. For the operation in summer (cooling), the heat will be

injected to the cold energy pile field, while the heat will be injected by the dry cooler into the

warm energy pile field, and for the operation in winter (heating), the heat will be extracted

by the heat pump from the warm energy pile field and the heat will be extracted by the

dry cooler from the field of cold energy pile. An example of this scheme was conducted by

Allaerts et. al, in Belgium [4] but not for energy piles.
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Figure 2.3. Hybrid heat pump plant with energy piles and “free cooling” option. Source: J.

Fadejev et. al [27].
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Figure 2.4. Heat pump plant with energy piles and solar/air source/AHU exhaust air HX

thermal storage. Source: J. Fadejev et. al [27].
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Figure 2.5. Heat pump plant with separated energy pile field for cooling and heating with

air source thermal storage. Source: J. Fadejev et. al [27].
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2.2.2. Configurations of Energy Piles

The configurations of energy piles depend on the the installation of heat exchange loops

and the material of the piles as well. However, there are three common materials are utilized

for piles such as prestressed high-strength concrete (PHC), cast in-situ concrete pile, and steel

pile. The heat exchangers can be in many shapes such as single U-tube, double U-tubes,

W-tube, and coils with known pitch and as indirect double pipes. There are also many

shapes popular in research papers, but not in practice e.g. helix/spiral type exchanger. In

contrast, U-loops with large diameters are more popular in practice. Some of the energy pile

configuration can be seen in Figure 2.6. The soil thermal properties can be found on site by

conducting the thermal response test (TRT) which helps get thermal conductivity, diffusivity

of the soil, and the pile thermal resistance [85]. Thermal response test is also important

in the estimation of the performance such as /m capacity of different pile configurations.

Furthermore, the test should be able to capture the short-term behavior of energy piles or

at least carried out for a period to conquer the effect of thermal capacity of the energy pile.

2.2.3. Modeling of Energy Piles

Energy Piles Modeling is a new field of research compared to bore-hole modeling, but

it can be said that, the operation of bore-holes is a bit similar to that of the energy piles.

Also, huge variations can be seen in their operational conditions as heat exchangers. In

general, comparing these two types of systems, the energy piles are shorter than bore-holes,

i.e., bore-holes lengths are usually from 50 m extending up to 300 m. Because of the lack

of the need to carry building load, bore-holes diameter is smaller compared to energy piles.

Moreover, they are designed as a line source because their diameter is small compared to its

length. As known, the length of energy piles is small and radially thicker due to their load

bearing function compared to bore-holes. The structure of bore-holes are grout, pipe legs,

and fluid, thermal capacitances are neglected [27].

The thermal behavior of piles on short-term application can be affected significantly by

the thermal capacitance of the grout materials of the energy piles. However, the ground
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Figure 2.6. Energy pile configurations. Source: J. Fadejev et. al [27].

surface boundary of the energy piles could be modeled as adiabatic, and that will help to

avoid accounting the effect of climate change over the year.

Energy piles can be modeled numerically by using various software. However, there are

many advantages of numerical simulation such as quantifying the difference between 2D,

3D and quasi 3D models, more details about the modeling for those can be seen in these

papers [8, 30, 86]. Detailed modeling might lead to a high computation time and modeling

complexity, which cannot be applied for daily engineering applications.

2.2.4. Sizing and Designing of Energy Piles

There are no guidelines of the size and design of energy piles yet. However, design recom-

mendations and installation guidelines are assigned to recommended standards or detailed

numerical studies. Some standards contain simplified graphics, tables, data, and manuals to

utilize more complex analytical sizing procedures. There are so many limitations in using

standards which are suitable for small scale systems. The main purpose is to accommodate
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heating with a design load of up to 45 kW . There are a lot of countries where these standard

methods are used such as the Austria [71], Germany [79], Swiss [69], and UK [76] standards.

There are so many examples of the standards limitations such as the actual sizing that can

be performed only in the ranged length of 40-100 m for an individual bore-hole, German

VDI 4640 [79]. Another example is UK standard MCS MIS 3005 demanded that the spacing

between the adjacent bore-holes should to be at least 6 m [27].
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Table 2.1. Installed geothermal generating capacities world-wide from 1995 to 2000 (from

Huttrer, 2001), and in 2004.

Country 1995 2000 1995–2000 % 2004

(MWe) (MWe) (increase in MWe)

Australia 0.17 0.17 0 0 0.17

Austria — — — — 1.25

China 28.78 29.17 0.39 1.35 32

Costa Rica 55 142.5 87.5 159 162.5

El Salvador 105 161 56 53.3 162

Ethiopia 0 8.52 8.52 - 7

France(Guadeloupe) 4.2 4.2 0 0 15

Guatemala 0 33.4 33.4 – 29

Iceland 50 170 120 240 202

Indonesia 309.75 589.5 279.75 90.3 807

Italy 631.7 785 153.3 24.3 790.5

Japan 413.705 546.9 133.195 32.2 537

Kenya 45 45 0 0 127

Mexico 753 755 2 0.3 953

New Zealand 286 437 151 52.8 453

Nicaragua 70 70 0 0 77.5

Papua New Guinea — — — — 6

Philippines 1227 1909 682 55.8 1931

Portugal(Azores) 5 16 11 220 16

Russia 11 23 12 109 81.6

Thailand 0.3 0.3 0 0 0.3

Turkey 20.4 20.4 0 0 20.4

USA 2816.7 2228 588 n/a 2395

Total 683 7974 1141 16.7 8806.45
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Table 2.2. Electric capacity from geothermal energy out of total electric capacity for some

developing countries in 1998 (MWe).

Country Total electric Geothermal electric % of the total

installed power installed power power installed

Philippines 11601 1861 16.0

Nicaragua 614 70 11.4

El Salvador 996 105 10.5

Costa Rica 1474 115 7.8

Kenya 889 45 5.1

Indonesia 22867 589.5 2.6

Mexico 45615 755 1.7
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Table 2.3. Non-electric uses of geothermal energy in the world (2000): installed thermal

power (in MWt) and energy use (in TJ/yr)

Country Power Energy Country Power Energy

(MWt) (TJ/yr) (MWt) (TJ/yr)

Algeria 100 1586 Japan 1167.0 2693

Argentina 25.7 449 Jordan 153.3 1540

Armenia 1 15 Kenya 1.3 10

Australia 34.4 351 Korea 35.8 753

Austria 255.3 1609 Lithuania 21 599

Belgium 3.9 107 Macedonia 81.2 510

Bulgaria 107.2 1637 Mexico 164.2 3919

Canada 377.6 1023 Nepal 1.1 22

Caribbean Islands 0.1 1 Netherlands 10.8 57

Chile 0.4 7 New Zealand 307.9 7081

China 2282 37908 Norway 6.0 32

Colombia 13.3 266 Peru 2.4 49

Croatia 113.9 555 Philippines 1 25

Czech Republic 12.5 128 Poland 68.5 275

Denmark 7.4 75 Portugal 5.5 35

Egypt 1.0 15 Romania 152.4 2871

Finland 80.5 484 Russia 308.2 6144

France 326.0 4895 Serbia 80.0 2375

Georgia 250.0 6307 Slovak Republic 132.3 2118

Germany 397.0 1568 Slovenia 42.0 705

Greece 57.1 385 Sweden 377.0 4128

Guatemala 4.2 117 Switzerland 547.3 2386

Honduras 0.7 17 Thailand 0.7 15

Hungary 472.7 4086 Tunisia 23.1 201

Iceland 1469 20170 Turkey 820 15756

India 80.0 2517 United Kingdom 2.9 21

Indonesia 2.3 43 USA* 3 766.0 20302

Italy 325.8 3774 Yemen 1.0 15

TOTAL 15145 190699

During 2001 these figures increased to 4,200 MWt and 21,700 TJ/yr (Lund and Boyd,
2001). Source: Lund and Freeston, 2001 [55].
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Table 2.4. List of studies conducted on topics related to energy piles design in chronological

order [27]

Nr. Reference Fundamental Energy pile Modelling Sizing &

schemes configurations design

1 S.P. Kavanaugh and K. Rafferty [43]

2 H. Brandl [11,13]

3 B. Sanner [72]

4 D. Pahud, M. Hubbuch [64]

5 Y. Hamada et al. [35]

6 J. Gao et al. [28]

7 H. Yand et al [82]

8 T. Man et al. [57]

9 P. Hu et al. [38]

10 A. M. Jalaluddin et al. [60]

11 GSHPA [6]

12 M. Li, A. C.L. Lai [49]

13 IGSHPA [40]

14 A. Zarrella et al. [83]

15 W. Zhang et al. [86]

16 C. K. Lee and H.N. Lam [46]

17 O. Ghasemi-Fare and P. Basu [31]

18 S. Park et al. [65]

19 K. Allaerts et al. [4]

20 E. Hassani Nezhad Gashti et al. [30]
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Table 2.5. List of studies conducted on topics related to energy piles design in chronological

order [27]

Nr. Reference Fundamental Energy pile Modelling Sizing &

schemes configurations design

21 F. Dupray et al. [23]

22 F. Loveridge and W. Powrie [53]

23 T.V. Bandos et al. [8]

24 J. Fadejev and J. Kurnitski [25,26]

25 F. Loveridge and W. Powrie [52]

26 W. Zhang et al. [86]

27 M. Li, A. C.K. Lai [50]

28 E. Sailer et al. [71]

29 D. Wang et al. [80]

30 A. Girard et al. [32]

31 A. Hesaraki et al. [37]

32 M. Aydin, A. Sisman [7]
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Chapter 3

NUMERICAL SETUP AND METHODOLOGY

3.1. Introduction

The term energy piles refers coupling the structural pile foundations to heat exchangers

roles where such foundations function to support the superstructure. Installed pipes where

heat is carried by circulating fluid into them, takes advantage of the large thermal storage

capabilities of the underground for cooling and heating purposes. It has been effectively

used in individual buildings and infrastructure where these energy piles are connected to

heat pumps is located in the structure above the ground. The function of heat pumps is to

conveying the stored heat and energy input to the structure during heating season and the

heat can be extracted from the conditioned spaces and injected into the soil, beside their

energy input during the cooling season. However, utilization of the energy pile foundations

skyrocketed recently due to their savings in the installation costs regarding their drilling

process and hybrid character [10].

Identifying the performance of energy piles is different and depends on many factors

such as pipe configurations, geometric design of the foundations, material properties of the

foundation itself, surrounding media (i.e. soil/rock or a combination of both), and site layout.

Moreover, the difference of restraint conditions and applied thermal loads have a huge effect

on the geotechnical behavior of energy piles where these primary parts are connected and

coupled through the energy piles over mechanical and thermal responses of these foundations.

Several studies were conducted in this field over the years where the thermal behavior

of vertical ground coupled with heat exchangers, those studies were focused on many things

such as the pipe configurations, the surrounding medias, and so on. Analytical [16, 84] and

numerical [24, 59] models of different complexities were conducted in this field. Presently,
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the thermal behavior analysis of energy piles has been performed in many researches world-

wide [1, 2, 28]. However, modeling three dimensional asymmetric and time dependent char-

acterization where the interaction between the pile and the surrounding soil, the fluid in the

pipes, and the pipes themselves are often considered of this foundation in simplified ways

which focus only on specific case studies and not coupled with the mechanics of the problem.

Finally, the mechanical behavior difference of both the media surrounding the energy piles

(i.e. soil and rock) and the foundation itself undergoing thermal loads has recently been

performed in several numerical studies [62, 63, 68, 70, 77]. Moreover, the latest studies sim-

plified the numerical modeling of the energy pile of complex thermal behavior by imposing

the thermal power to the whole modeled foundations [29,61]. These studies were conducted

on homogeneous solids, without the inner pipes and the circulating fluid. From an energy

engineering prospect, there were approximations for the physics governing the real problem,

especially when considering models where the ground heat exchangers are connected to other

building-plant subsystems within a global thermodynamic and energetic analysis [17]. Nev-

ertheless, from a geotechnical and structural engineering prospect, this technique is on the

side of safety, in particular, short-term because the whole foundation experiences the high-

est temperature variation, therefore, the maximum induced mechanical effects. The above

simplifications could be not accurate in terms of performance predictions and non-optimal

design choices.

Energy piles should be anatomized as capacity systems able of responding to any chang-

ing or phase shift in a difference of the boundary conditions. To be more specific, huge

investigations should be performed on the thermal behavior of the foundation when consid-

ering the entire system (pipes pile-soil) as the heat exchange problem that is governed by the

differences of the temperature between these components. Thus, the behavior of the coupled

transient mechanical as aspects of the foundation should be anatomized as it governs the

bearing response for the superstructure. However, in this study which focuses on the thermal

and mechanical behavior of energy piles, a series of 3-D numerical sensitivity analyses com-

prising the considered aspects for a single full-scale energy pile is simulated and the results
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are presented. This study was performed with reference to the foundation of the Kingdom

tower located in Jeddah, Saudi Arabia. However, the pile foundation is simulated as energy

piles and investigates the roles of pipe configurations and buried in different rock materials.

This study was performed to focus on the influence between the thermal and mechanical

behaviors of energy piles under transient conditions considering different technical solutions

applicable to such foundations buried in rock materials.

In this study, the foundation is tested during its heating operation mode surrounded by

rock which by considering the following design solutions:

1. The thermal response of the foundation in the short-term.

2. The time constants for approaching the steady state conditions of the heat exchange.

3. The heat transferred between the fluid in the pipes and the surrounding system are

presented.

4. Geotechnical aspects related to the stress distribution in the pile.

5. The displacements fields characterizing the foundation depth are also considered.

3.2. Modeling of Energy Piles using 3-D Finite Element Method

3.2.1. The Simulated Site

The dimensions of the energy pile and the characteristics of the surrounding rock deposit

considered in this study are those of an actual site located at Kingdom tower in Jeddah, KSA.

The site includes a group of 270 piles installed below a heavily reinforced raft. The project of

Kingdom tower’s foundation were designed as traditional foundation piles not energy piles.

This study considers only two types of the 270 piles with respect to a configuration denoted

by a null head restraint and a null mechanical applied load on the top of the foundation [48].

The energy pile is characterized by a height HEP= 105 and 45 m and a diameter DEP= 1.5 m
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(see Table 3.2). The pipes in the shallower 4 m are thermally insulated to limit the influence

of the external climatic conditions on the heat exchange process. The characteristics of the

rock deposit surrounding the piles are limestone and sandstone and the combination of both,

as shown in Figure 3.1. The dimension of the geometric models and energy piles are listed

in Table 3.2.

Figure 3.1. Typical rock stratigraphy surrounding the simulated energy foundation.
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3.2.2. Simulated Geometry

In the presented study, there were 12 models, where six models were installed with

single U-pipe and the remaining six models with double U-pipes. There were two different

pile lengths considered herein as mentioned above in Section 3.2.1. Their dimensions and

material properties again can be seen in Table 3.2 and Table 3.1, respectively. Cut sections

which describe the details of the designed energy pile foundation and the installed pipe

configurations for the two models can be seen in Figure 3.2 where the pile length is 105 m

and Figure 3.3 for the pile with length equal to 45m. In both models, the first part of the

model is the limestone type of rock and the second part is the sandstone.

3.2.3. Mathematical Formulation and Constitutive Models

To develop a quantitative illustration of the energy pile response which is considered to

be buried in rock deposit under the mechanical and thermal loads, the next assumptions

were performed:

• The rock layers were considered in these studies to be isotropic, fully saturated by

water, and assumed to be purely conductive domains with equivalent thermo-physical

properties given by the fluid and the solid phases.

• All the liquid and the solid phases were incompressible under isothermal conditions.

• The deformations and displacements of the solid skeleton were capable to be exhaus-

tively illustrated through a linear kinematics approach which in quasi-static conditions

i.e., negligible inertial effects.

• Drained conditions were satisfied during the analyzed loading processes.

• The behavior of all the rock and energy pile as linear thermo-elastic materials.
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Figure 3.2. The 105 m pile and pipe configuration surrounded by rock.
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Figure 3.3. The 45 m pile and pipe configuration surrounded by rock.
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Thus, under these assumptions, a coupled thermo-mechanical mathematical formulation was

utilized in the following analyses.

The equilibrium equation [10] can be written as

5 ·σij + ρgi = 0 (3.1)

where:

5 = denotes the divergence operator,

σij = denotes the stress tensor,

ρ = represents the bulk density of the porous material, which includes the density of water

ρw and the density of the solid particles ρs, through the porosity (n); and (gi) is the gravity

vector.

The stress tensor can be expressed in incremental form as

dσij = Cijkl(dεkl + βkldT ) (3.2)

where:

Cijkl = is the stiffness tensor that contains the material parameters, i.e., the Young’s mod-

ulus, E, and Poisson’s ratio, υ;

εkl = is the total strain tensor;

βkl = is a tensor that contains the linear thermal expansion coefficient of the material, α

T = is the temperature.

It was mentioned in the previous section that the concrete filling of the EP and the

ground were assumed to be purely conductive media. With these assumptions, the energy

conservation equation can be written as

40



ρc
∂T

∂t
−5 · (λ5 T ) = 0 (3.3)

where:

c = is the specific heat which includes water and solid components, cw and cs,

t = is time,

λ = is the thermal conductivity which includes water and solid components, (λw and λs),

5 = represents the gradient operator.

In Equation 3.3, the first part is representing the transient component of the internal

energy stored in the medium while the second part is representing the heat transferred

by conduction (i.e., through Fourier’s law). In the considered engineering application, the

thermal properties of the fluid components were considered to be temperature dependent,

whereas those of the solid components were considered to be temperature independent.

The energy conservation equation for the incompressible fluid flowing in the EP pipes

can be shown as

ρfcfAp
∂Tbulk,f
∂t

+ ρfcfApuf , i · 5(Tbulk,f ) = 5 · [Apλf 5 (Tbulk,f )] + q·p (3.4)

where:

ρf = density of the fluid,

cf = specific heat of the fluid,

Ap = pipe cross sectional area,

Tbulk, f= bulk temperature,

uf , i = longitudinal velocity vector,

λf = thermal conductivity of the operative fluid are the density,

q·p = represents the heat flux per unit length exchanged through the pipe wall which is
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given by

q·p = UPp(Text − Tbulk,f ) (3.5)

where:

U = an effective value of the pipe heat transfer coefficient,

Pp = 2πrint, the wetted perimeter of the cross section,

Text = the temperature at the outer side of the pipe.

The overall heat transfer coefficient which includes the internal film resistance and the

wall resistance, can be obtained as follows:

U = 1
1

1
hint

+ rint

λp
ln
(
rext
rint

) (3.6)

where:

hint = Nuλf/dh , The convective heat transfer coefficient inside the pipe,

λp = the thermal conductivity of the pipe,

rext and rint = the external and internal radii,

dh = 4Ap/Pp the hydraulic diameter,

Nu = Nusselt number.

For a given geometry, Nu is a function of the Reynolds, Re, and Prandtl, Pr, numbers,

with

Nuturb =
(fD/8)(Re− 1000)Pr

1 + 12.7
√

(fD/8)(pr2/3 − 1)
(3.7)

fD =

[
−1.8log10

(
6.9

Re

)]−1

(3.8)

where:
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RE =
ρvh

µ
and Pr =

µfcf
λf

Equation 3.8 is the Gnielinski formula [33] for which turbulent flows. However, the

friction factor, fD, is assessed through the Haaland equation [34]. The equation is valid for

very low relative roughness values which were used in this study.

3.2.4. 3-D Finite Element Model Features

In the presented studies, all the analyses were conducted utilizing the software COMSOL

Multiphysics [18], which is a finite element simulation environment software. Also, it uses a

high performance computing technique. In the this research, there were twelve models per-

formed and studied by considering sensitivity analyses with respect to two different base-case

models of a single energy pile equipped with a single U, and a double U type configuration of

the pipes. The applied meshes of all models were user controlled. However, linear geometry

shape in 3576 mesh elements were utilized to avoid inverted curved elements. Moreover, the

number of degrees of freedom solved was 4,630,952 plus 61,065 internal degrees of freedom.

The listed information in the above lines is for one model simulation which is an energy pile

equipped with double U-pipes buried in limestone rock. However, the rest of the simulated

models are in same range of mesh elements. In all the simulations, the maximum element size

was 1.23 m and the minimum element size was 0.05 m. The maximum element growth rate

was 1.34 and the curvature factor was 0.3. The resolution of the narrow regions is 1. Figure

3.4 describes the features of a typical model utilized in the study which is mainly focusing on

the mesh used to characterize the pile that was equipped with different pipe configurations.

In all conducted cases, the pipes were simulated with a linear entity in which the fluid was

supposed to flow. Also, the distance of the pipes in all the designed models was 12.6 cm

from the boundary of the foundation. However, the circulated fluid which flows inside of the

pipes and their associated convective heat transfer was simulated by an equivalent solid [45]

which possessed the same heat capacity per unit volume, i.e. specific heat multiplied by

bulk density and thermal conductivity as the actual circulation fluid. The duration of the
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considered studies were in rang of 17 - 50 minutes and were computed with high performance

computing techniques.

3.2.5. Boundary and Initial Conditions

In term of boundary conditions, the restrictions were performed to both the horizontal

and vertical displacements on the base of the mesh (pinned boundary see Figure 3.4) and a

roller boundary was applied to the horizontal displacements on the sides. The initial stress

state is caused by gravity in the rock and the pile was considered to be geostatic. Moreover,

in terms of the thermal boundary conditions, the thermal boundary conditions allowed for

the heat to flow through the vertical sides of the mesh and through the bottom of the mesh.

The temperature of the rack was set to be 13.2 oC. The initial temperatures in the pipes,

energy pile and rock were set at T0= 13.2 oC, as an assumption of the average measured

temperature at a site during winter [10]. Inside the installed pipes (high-density polyethylene

tubes) where the fluid was circulating, the considered fluid in the base-case models was water.

The inner diameter of the pipe was φ = 32 mm in all the simulated cases in this research

and the nominal velocity of the fluid inside the pipes was uf= 0.2 m/s. The temperature of

the inflow fluid was set at Tin = 5 oC, again in all the implemented cases, also referred to the

operation of the energy foundation in winter. At the shallower 4 m of the installed pipes, a

thermal conductivity was imposed as λp = 0 W/(m.K) to simulate the thermal insulation of

the ducts near the ground surface. One shape of the simulated models, which contains the

finite element mesh and the boundary conditions that were utilized in the simulations, can

be shown in Figure 3.4.

3.2.6. Material Properties

The considered properties of the utilized rock deposit in these studies were defined based

on previously published research papers (more details about the used material properties can

be found in those researches papers [10, 47, 48, 78, 81]). For example, the rock thermal con-

ductivity λr, the heat capacity cr, density of rock ρr, porosity n, Poisson ratio ν, and elastic
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modulus of the rocks E of both considered rock types. These values are also summarized in

Table 3.1.

Figure 3.4. Finite element mesh and boundary conditions used in the simulations. EP: refers

to energy pile.

3.3. Validation Results

3.3.1. 3-D Finite Element Modeling of an Energy Pile Embedded in Soil

This study was conducted by Niccolo Batini et. al in 2015 which was applied on various

soil types for an experimental site located at the Swiss Federal Institute of Technology in

Lausanne (EPFL), under the recently built Swiss Tech Convention Center [10]. However,

the experimental site of the considered study includes a group of four energy piles. They

were performed below a corner of a heavily reinforced raft which was used to support a water

retention tank. The foundation of that water tank has eleven other conventional piles that
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are not equipped as heat exchangers besides the four energy piles. Their study considered

only one energy pile of the four energy piles with respect to a configuration denoted by a

null head restraint and a null mechanical applied load on the top of the foundation. The

energy pile is describes having a height HEP = 28 m and a diameter, DEP = 0.90 m. The

shallower 4 m of the installed pipes were assumed to be thermally insulated which limit the

effect of the climate change over the years. Figure 3.5 can define the soil types which were

surrounding the energy pile and the dimension of their simulated model which are similar

to those reported by Laloui et. al [44]. In their study, it has been assumed that the ground

water table at the test site is at the top of the deposit. The top soil profile consists of alluvial

soil for a depth of 7.7 m. Below this layer, a sandy gravelly moraine layer is located at the

depth between 7.7 and 15.7 m. Followed by a stiffer thin layer of bottom moraine located at

a depth between 15.7 and 19.2 m. Ultimately, a molasse layer is available below the bottom

moraine layer [10].

3.3.2. The Features of the 3-D Finite Element Model

This study was conducted by the help of the software COMSOL Multiphysics [18]. This

software is a finite element simulation environment and the model was designed by using

the software SOLID-WORKS. Also, it used high performance computing techniques. The

analysis was developed with respect to the model of a single energy pile foundation with a

single U-shaped type configuration of the pipes. The mesh was set to be physical-controlled

(Extra-fine) mesh consists of 248330 domain elements, 28337 boundary elements, and 2358

edge elements. Moreover, it used a linear geometry shape in 1120 mesh elements to avoid

inverted curved elements. However, the number of degree of freedom solved was 1,646,082

plus 80631 internal degrees of freedom. The simulated pipe was developed with linear entity

in which the fluid was supposed to flow and the there was a distance of 12.6 m where the

center of the pipe was placed from the boundary of the foundation. The circulated fluid

inside the simulated pipe and the associated convective heat transfer was simulated by an

equivalent solid [45], which possessed the same heat capacity per unit volume such as specific
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Figure 3.5. Typical soil stratigraphy surrounding the Swiss Tech Convention Centre energy

foundation. EP: refers to energy pile. Source: Batini et. al [10].
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heat multiplied by bulk density and thermal conductivity as the actual circulation fluid [10].

The duration time of these studies were in range of 14 - 17 minutes by using high performance

computing techniques.

3.3.3. Boundary and Initial Conditions

On the base of the mesh, restrictions were performed in both the vertical and horizontal

displacements and to the horizontal sides which can be seen in Figure 3.6. However, in term

of the thermal boundary conditions, the heat flows either through the vertical sides of the

mesh or through the bottom of the mesh. The temperature of the soil was set to be Tsoil=

13.2 oC . The initial temperatures in the pipes, energy pile and rock were set at T0= 13.2

oC, which is the average measured temperature at the considered site during winter [10]. It

has been considered that the initial stress state caused by the gravity in the pile and the

soil to be geostatic [10]. In the considered pipes (i.e. high-density polyethylene tubes) the

circulated fluid was assumed to be water and its nominal velocity was uf= 0.2 m/s. In the

studied case, the assumed diameter of the pipes was set to be φ = 32 mm and the its

temperature was Tin = 5 oC, more information can be seen in Figure 3.6. The first 4 m

of the pipe were thermally insulated to simulate the thermal insulation of the ducts near

the ground surface. All the above listed values for the boundary and initial conditions were

assumed to be the same as the study were conducted by Batini et. al [10] in 2015.

3.3.4. Material Properties of the Model

The material properties of the soil deposit, energy pile and pipes properties can be seen

in Table 3.3.
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Figure 3.6. Finite element mesh and boundary conditions used in the simulations. EP: refers

to energy pile. Source: Batini et. al [10].
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Table 3.3. Material properties of the soil deposit, energy pile, and pipes. Source: Batini et.

al [10]

E

[MPa]

ν

[−]

n

[−]

ρs

[kg/m3]

cs

[J/(kgK)]

λs

[W/(mK)]

α

[1/K]

Soil layer

A1 190 0.22 0.1 2769 880 1.8 0.33 × 10−5

A2 190 0.22 0.1 2769 880 1.8 0.33 × 10−5

B 84 0.4 0.35 2735 890 1.8 0.33× 10−4

C 90 0.4 0.3 2740 890 1.8 0.33× 10−4

D 3000 0.2 0.1 2167 923 1.11 0.33× 10−6

Energy pile pipes

Concrete 1926 14.8 129.180 1911.86 99.40

HDPE - - - - - 0.42 -

3.3.5. The Result of the Model due to the Influence of a Single U-Shaped Configuration of

the Pipes

The results of the thermal mechanical behavior of energy pile equipped with a single

U-shaped pipe were investigated. However, Figure 3.7 describes the axial distribution of

the temperature with the energy pile equipped with single U-shaped pipe configuration. It

can be clearly noticed that in the first 4 meters of pile foundation there is no remarkable

temperature characterization in that region. The pile at that region was thermally insulated.

After 15 days of the operation, at the center of the pile where the pipe was equipped, the pile

underwent an average cooling of ∆T=T -T0= -3.6 oC. From Figure 3.7, it be observed that a

little more cooling occurs at the last part of the pile where the molasse layer is located which

due to its lower thermal conductivity which exhibited and induced a lower heat exchange

with the foundation. Also, it has been noticed that the distribution of the temperature at

the axial depth of the foundation did not significant vary in the simulation operation from

7 and 15 days, which means that the thermal conditions inside the pile were almost close to

the steady state condition after a week of operation.
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Figure 3.7. Comparison between (a) obtained and (b) published results for the axial tem-

perature distributions for the single U-shaped pipe configuration.
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Figure 3.8 describes the axial distributions of stress induced by the above-described tem-

perature variations (which is in Figure 3.7). The maximum vertical stress was σv,th = 900

kPa, which was recorded along the axial depth of the energy pile foundation, exactly where

the molasse layer is located. It can be noticed that these findings are consistent with the

above-mentioned data because the pipe configuration that led to the maximum negative

temperature variations inside the pile is due to the lower thermal conductivity of that region

of the pile which induced the maximum thermal stress in the energy pile foundation.

Figure 3.8. Comparison between (a) obtained and (b) published results for the axial distri-

butions of the thermal vertical stresses for the single U-shaped pipe configuration.
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The axial distribution of the vertical displacements for the energy pile are shown in Figure

3.9, which is consistent with the distributions of the observed temperature and stress. The

maximum displacement of the energy pile with the equipped single U-shaped pipe was dzth

= 0.28 mm. The thermal displacement was zero at the bottom of the pile which represents

the null point which was the same in the studies were conducted by Batini et. al [10] and

Gashti et. al [29].

Figure 3.9. Comparison between (a) obtained and (b) published results for the axial distri-

butions of the thermal vertical displacements for the single U-shaped pipe configuration.
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Table 3.1. Material properties of the rock deposit, energy pile, and pipes.

Material E ν n ρs cs λs α

Properties [MPa] [-] [-] [kg/m3] [J/(kg K)] [W/(m K)] [1/K]

Rock type

Limestone 500 0.35 1836 890 3.44 2.4e-5

Sandstone 1000 0.3 2039 1400 3 3e-5

Energy pile and pipes

Concrete 28000 0.25 0.1 2500 837 1.628 1e-5

HDPE 0.42

Table 3.2. Geometric Design and Pile Dimension.

Model Geometry Length [m] Width[m] Height [m] Diameter Ø [m]

Limestone (A) 20 20 54

Limestone (B) 20 20 114

Sandstone and Limestone (A) 20 20 54

Sandstone and Limestone (B) 20 20 114

Sandstone (A 20 20 54

Sandstone (B)) 20 20 114

Pile (A) 45 1.5

Pile (B) 105 1.5
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Chapter 4

RESULTS AND DISCUSSIONS

4.1. Thermo-Mechanical Sensitivity of the Energy Piles to the Different Tech-

nical Solutions

In this section, sensitive results will be presented. The findings of the considered utiliza-

tion techniques of different numerical sensitivity analyses were performed on various pipe

configurations inside of the single energy pile that were conducted through 3-D transient

finite element simulations, occurred over 15 days in winter. This period was proven to be

adequate to reach the steady-state within the energy pile (EP) domain. Thus, the enthalpy

changes of the fluid from the fluid entrance gate (inlet) to the exiting section (outlet) of the

pipes corresponded to the thermal power exchanged at the energy pile outer surface which

is the one in contact with the rock. However, in such situations, the effect of the heat ca-

pacity was negligible, and the behavior of the energy pile was typically like a heat exchanger

which was described by an equivalent thermal resistance between the ducts and the rock. It

has been utilized as the classical effectiveness method for heat exchangers [41] to compare

and assess the process of heat transfer among the different energy pile (EP) configurations.

However, the heat exchanger effectiveness εhe can be defined as

εhe =
Tout − Tin
Tr−p − Tin

(4.1)

where, εhe represents the heat exchanger effectiveness, Tr−p is the average temperature

at the rock-pile interface. However, it was considered compressive stresses and strains to be

positive as were the downward displacements (settlements).
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4.1.1. Influence of the Pipe Configurations and Rock Materials

An investigation was conducted on the thermal-mechanical behavior of the energy pile

which were equipped with a single U-pipe and double U-pipe shapes. In both considered

pipe configurations, the rock materials are limestone, sandstone, and combination of 50/50

limestone and sandstone.

The presented findings will discuss the three considered rock materials. There were two

different pile dimensions which are domain (A) and domain (B). The results of domain (A)

will be presented and discussed first and then for domain (B). More information about their

dimensions and shapes can be seen in Table 3.2 and Figure 3.1.

4.1.1.1. Distributions of the Temperature for Each Type of Pipe Configuration and Rock

Materials for Domain (A)

Figure 4.1 shows the axial distributions of the temperature for each type of configuration.

As can be noticed, no remarkable temperature variation characterized the shallower 4 m of

the foundation because the pipes in this region were thermally insulated. After 15 days, the

center of the foundation equipped with a single U, and double U-shaped pipe configurations

underwent an average cooling of ∆T=T -T0=-2, -3.7 oC, respectively. It has been observed

that the double U-shaped geometry of pipes experience the highest temperature variation

because it involved the highest quantity of cold water in the heat exchange process.

A more pronounced cooling was observed on part of the pile in the model that consists of

limestone and sandstone together. Even though the limestone has a slightly higher thermal

conductivity than sandstone (3.44 compared to 3 W/m · K), the lower heat capacity of

limestone resulted in lower heat transfer to the pile from the surrounding rock material.

Therefore, the pile experienced less heating from the limestone and more cooling from the

nearby cold pipes. This fact caused a reduction in the heat exchange with the foundation,

which is also observed when comparing the temperatures of the piles surrounded by limestone

to those surrounded by sandstone.
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The distribution of the temperature along the axial depth of the foundation did not

remarkably change in most of the simulated cases between 7 and 15 days, which means that

the system approaches steady state thermal conditions after the first week of operation.

4.1.1.2. Distributions of the Stress for Each Type of Pipe Configuration and Rock Materials

for Domain (A)

Figure 4.2 describes the axial distributions of stress which are induced by the above

described temperature variations (Figure 4.1). The maximum values of the stresses are σv,th

= -1000, 1900 kPa, observed along the axial depths of the foundation for the single U,

double U-shaped pipe configurations, respectively. The initial stress distribution due to the

load of the foundation body is subtracted. This thermal stress occurred in the combination

of the limestone and sandstone types of rocks where the single U, double U-shaped pipe

configurations were installed. However, the maximum values of the limestone-embedded

system are σv,th = 785, 1475 kPa, noticed along the axial depths of the foundation for the

single U, double U-shaped pipe configurations, respectively. Moreover, for the sandstone,

the maximum value of the thermal stresses were σv,th = 817, 1618 kPa at the axial depths of

the foundation for the single U, double U-shaped pipe configurations, respectively. However,

the thermal stress results were consistent with the previously observed data because the

configurations of the pipes pointed to the greatest negative temperature variations inside the

pile (the configurations for which the greatest stresses were observed from the foundation

thermal contractions). The magnitude of the stress which were induced by the temperature

variation in the energy pile equipped with the single U-shaped pipe configuration was close

to the one characterizing the results obtained by Batini et. al [10] and Gashti et. al [29] for

which a single energy pile that was studied in winter conditions with the same type of pipe

configurations.
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Figure 4.1. Axial temperature distributions for the U pipe (Top) and the doube-U pipe (Bot-

tom) configurations embedded in limestone (Left), sandstone (Center), and a combination

of both (Right) rock materials for domain (A).
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Figure 4.2. Axial distributions of the thermal vertical stresses for the U pipe (Top) and the

doube-U pipe (Bottom) configurations embedded in limestone (Left), sandstone (Center),

and a combination of both (Right) rock materials for domain (A).
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4.1.1.3. Distributions of the Displacement for Each Type of Pipe Configuration and Rock

Materials for Domain (A)

The axial distribution of the vertical displacement is presented in Figure 4.3. For all

considered configurations, the displacements were consistent with the distributions of the

temperature and stress profile. In most of the simulated cases, the results were close to the

one was obtained by Batini et. al [10] for the pile foundation equipped with a single U-pipe

and double U-pipe configurations. However, in term of displacement, the maximum effect

of the cold flow within the tubes is observed for the pile foundation equipped with double

U-pipe configuration. In contrast, the minimum effect is observed for the pile foundation

equipped with a single U-pipe configuration. The maximum pile settlements dzth = 0.49,

0.9 mm are noticed when the pile foundation equipped with a single U-pipe and double U-

pipe configurations, respectively, buried in limestone type of rock. Moreover, the maximum

displacement of the pipe foundation buried in sandstone are dzth = 0.31 and 0.6 mm for the

same pipe configurations, respectively, and for the maximum displacement of the combination

of both limestone and sandstone are dzth = 0.33 and 0.63 mm observed when the energy

pile foundation is equipped with the single U, double U, respectively. It has been observed

that the null point, which describes the plane where zero thermally induced displacement

happens in the foundation, in all the simulated cases is in the bottom of the energy pile,

which are very similar to the results obtained by Batini et. al [10] and Gashti et. al [29].

4.1.1.4. Distributions of the Temperature for Each Type of Pipe Configuration and Rock

Materials for Domain (B)

The energy pile studied in Domain (B) has an extended length of 105 m. The axial

temperature distributions for the different pipe configurations are shown in Figure 4.4. The

first 4 m of the pipes are thermally insulated, similar to the conditions applied for domain

(A), which resulted in no remarkable temperature variation for the shallowest 4 m of the

foundation. Also, the center of the pile foundation equipped with single U and double U-

shaped pipe configurations, after 15 days, underwent an average cooling of ∆T=T -T0=-1.9,
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Figure 4.3. Axial distributions of the thermal vertical displacements for the U pipe (Top)

and the doube-U pipe (Bottom) configurations embedded in limestone (Left), sandstone

(Center), and a combination of both (Right) rock materials for domain (A).
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-3.5 oC, respectively. Again, the greatest variation of temperature was reached with the

double U-shaped geometry of pipes because it involved the highest quantity of cold water in

the heat exchange process, for similar reasons to those mentioned earlier for domain (A).

It has been observed that limestone experienced more cooling of the first part of the pile,

which is caused by a higher cooling from the pipes, and less heating from the foundation.

Even with the higher thermal conductivity of the limestone layer, the low heat capacity of

the surrounding material caused its temperature to drop and the transferred heat to the pile

to be less than that observed in the case of sandstone.

Furthermore, it has been illustrated that in domain (B), the rate of temperature change

in the axial energy pile depth was reduced for all the considered cases between day 7 and 15

of operation. This shows that after day 7, the thermal conditions inside the pile are already

close to steady state, which show similar behavior to the studied models in domain (A) and

to the result obtained by Batini et. al [10] were observed.

4.1.1.5. Distributions of the Stress for Each Type of Configuration and Rock Materials for

Domain (B)

The axial distributions of the stress for each type of configuration and rock materials

can be seen in Figure 4.5. The maximum observed values of the stresses are σv,th = -1055,

-1976 kPa, developed along the axial depths of the foundation for the single U, double

U-shaped pipe configurations, respectively. However, the distribution of the initial stress

generated by the load of the foundation body is subtracted. The above provided values of

the maximum vertical thermal stresses recorded in the model with the combination of the

limestone and sandstone rock where the single U, double U-shaped pipe configurations were

installed. Moreover, the maximum values of the limestone of σv,th = -880, -1603 kPa, are

noticed along the axial depths of the foundation for the single U, double U-shaped pipe

configurations, respectively. For the sandstone, the greatest values of the thermal stresses

are σv,th = -862, -1681 kPa, which are located at the same axial depths of the foundation

and for the same type of the installed pipe configurations.
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Figure 4.4. Axial temperature distributions for the U pipe (Top) and the doube-U pipe

(Bottom) configurations embedded in limestone (Left), sandstone (Center), and a combina-

tion of both (Right) rock materials for domain (B).
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In the the simulated cases, the thermal stress results are consistent with the previously

observed data 4.1.1.4. The configurations of the pipes that led to the greatest negative tem-

perature variations inside the pile were the configurations for which the greatest stresses were

observed from the foundation thermal contractions. The obtained results of the magnitude

of the stresses which are induced by the temperature variation in the energy pile equipped

with the single U-shaped pipe configuration are close to the one characterizing the results

obtained by Batini et. al [10] and Gashti et. al [29] for which a single energy pile that was

studied in winter conditions with the same type of pipe configurations.

4.1.1.6. Distributions of the Displacement for Each Type of Pipe Configuration and Rock

Materials for Domain (B)

Finally, Figure 4.3 shows the axial distribution of the vertical displacement. It has been

observed that in this case and all the other simulated cases of domain (A), the displacements

were consistent with the distributions of the temperature and stress profile. In all of the

simulated cases, the results are close to the ones obtained by Batini et al [10] for the pile

foundation equipped with a single U-pipe and double U-pipe configurations. The maximum

effect of the cold flow within the tubes is observed for the pile foundation equipped with

double U-pipe configuration. In contrast, the minimum effect is observed for the pile foun-

dation equipped with a single U-pipe configuration. The maximum pile settlements dzth

= 0.9335, 1.713 mm are noticed when the pile foundation equipped with a single U-pipe

and double U-pipe configurations, respectively, buried in limestone type of rock. Moreover,

the maximum displacement of the pipe foundation where the energy pile that is buried in

sandstone are dzth = 0.57 and 1.11 mm for the same pipe configurations, respectively, and

the maximum displacement for which the energy pile is buried sounding by the combination

of both limestone and sandstone were dzth = 0.55 and 1.03 mm observed the energy pile

foundation which equipped with the single U, double U, respectively. Also, it was observed

that the null point which describes the plane where zero thermally induced displacement

happens in the foundation are similar to that results were obtained by Batini et. al [10] and
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Figure 4.5. Axial distributions of the thermal vertical stresses for the U pipe (Top) and the

doube-U pipe (Bottom) configurations embedded in limestone (Left), sandstone (Center),

and a combination of both (Right) rock materials for domain (B).
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Gashti et. al [29].

Figure 4.6. Axial distributions of the thermal vertical displacements for the U pipe (Top)

and the doube-U pipe (Bottom) configurations embedded in limestone (Left), sandstone

(Center), and a combination of both (Right) rock materials for domain (B).

4.1.2. Length Effect Comparison Between Domain A and B

The pile depth is extended for Domain B to observe the effect of the pile length on the

thermal-mechanical response of the geothermal heat exchanger system. From the tempera-

ture axial distributions of the pile, minimal change was observed when the pipe length was
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extended. This is due to the fact that the flow had already reached a fully developed state

thermally for all days of operation and would not affect the pile temperature any further.

On the other hand, the thermal stresses increased when the pile depth is extended, as the

stress build-up was not fully developed for domain A which had the maximum experienced

stress at a depth of 30 meters. Extending the depth increased the stressed even further as

seen from the stress values below a depth of 30 meters.

This increase in stress, and the doubling in the total length, contributed to displacements

in domain B twice as much as those observed for domain. This ratio is explained due to

the fact that the strain is accumulated along the pipe and results in twice the displacement

when the pipe length is doubled.

4.1.3. Ground Thermal Power Extraction

The ground thermal power extraction for the considered pipe configurations, fluid prop-

erties, and the rock types are presented in Figure 4.7. A reduction of the thermal power

extracted from the ground Q/HEP is noticed with in the tests which was consistent with the

temperature decreases happening at the interface of the rock-pile. However, after a week

of the simulation operation, the time evolution of the extracted thermal power is close to

the steady-state. Moreover, the double U-shaped pipe configuration provided the highest

levels of energy extraction, where the lower amounts of energy is extracted from the ground

through the single U-shaped pipe configuration. After 15 days of the simulation operation,

the energy pile equipped with double U-shaped pipe configuration had a almost twice the

heat transfer rate than what was obtained through a single U-shaped pipe configuration.

Finally, when comparing these two types of pipe configurations, the double U-shaped pipe

configuration should be considered the best in all of the simulated cases, because of its higher

energy extraction.
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Figure 4.7. Trend of the thermal power extracted from the ground for the different pipe

configurations.

68



Chapter 5

CONCLUSIONS AND FUTURE RESEARCH

5.1. Conclusion

Geothermal energy piles are a relatively new technology that couples the structural role

of traditional pile foundations with heat exchangers to fulfill the required energy demand

of buildings and infrastructures. These foundations are equipped with closed systems of

pipes embedded in the concrete forming the pile. While connected to a heat pump, the fluid

circulating inside these pipes provides the exchange of heat with the ground for heating and

cooling purposes. At shallower depths of the ground, the temperature remains undisturbed

the whole year and stays comparatively constant, warmer than the surrounding tempera-

ture in winter and cooler in summer, rendering the system thermal capacities beneficial for

cooling and heating purposes. The application and integration of these systems into our

present infrastructure is still in development as the behavior of such energy pile foundations,

governed by their thermo-mechanical response, is still not fully understood.

This research presents a series of 3D finite element simulations that investigate the thermal

and mechanical behavior of energy piles of different proposed design solutions under normal

operating conditions. The heat exchange between the pile foundations and rock is investi-

gated for power extraction capacity, temperature distributions, and the related stresses and

displacements along the pile length. The four-meter pipe segment nearest to the ground

surface is thermally insulated to limit the influence of external weather patterns on the heat

exchange process and the energy pile’s performance. The performance of two different pipe

configurations (i.e. U-shaped and double U-shaped pipes) is studied within energy piles

embedded in three different rock types (limestone, sandstone, and 50/50 combination). The

study is performed in heating mode where cold water is introduced into the piles for heat

69



extraction, and the duration of operation extends over an initial transient thermal response,

and up to a thermally quasi-steady state operation, which is reached after 15 days.

The outcomes from the conducted studies reveal that the different pipe configurations

determine the behavior of the energy piles, leading to the following observations and conclu-

sions:

• An increase in the axial distributions of vertical thermal stresses has been recorded

when the pile equipped with double U-pipes is compared with that of the single U-

pipe configuration, caused by the increase in temperature gradients between the added

U-pipe and the surrounding foundation. Moreover, these stresses were extremely small

and would unlikely cause any structural damage to the pile.

• The maximum value of the axial distributions of the thermal vertical displacements

was observed when the pile foundation equipped with double U-pipes was buried in

the limestone compared to sandstone, caused by the higher temperature gradients and

thermal stresses. These displacements, however, were very small and would unlikely

undermine the overall performance of the piles.

• The double U-shaped pipe configuration resulted in high heat transfer compared with

that of a single U-shaped pipe configuration at the same flow rate, due to the added

circulating cold fluid to extract heat from the energy pile.

• The highest cooling of the concrete with the maximum related stresses and displace-

ment distributions occurred when the energy pile was equipped with the double U-

shaped pipe configuration. This is because the double pipe configurations increased

the temperature gradients in pile thus causing higher stresses.

• The thermal power extraction of the energy piles in rocky surrounding media (limestone

and sandstone) is found to be greater than in soil media, as their conductivity (3-3.44

W/m.K) is higher than that of soil (1.11-1.8 W/m.K) as obtained from Batini et.

al [10].
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• The results demonstrated that sandstone induced a slightly higher heat exchange with

the foundation even though its thermal conductivity is lower than limestone. This is

due to the fact that sandstone has a higher heat capacity, and is denser than limestone.

Thus the sandstone can store more energy and its temperature near the pile would not

drop as much as the limestone would. The energy pile embedded in sandstone as a

result gave 5% higher temperature when compared to limestone.

• After 15 days of operation, the energy pile equipped with double U-shaped pipe had

approximately twice the heat transfer rate (84 W/m) compared to what was obtained

through a single U-shaped pipe configuration (44 W/m).

• The model of energy pile in limestone resulted in higher stresses and displacements.

This is because the energy pile embedded in limestone experience the more cooling

compared to sandstone, which is due to the lower thermal conductivity of the limestone.

• The model results also show that increasing the length of the piles result in a slight in-

crease in the developed thermal stresses, and a larger increase in vertical displacements

proportional to the increase in length.

71



5.2. Future Research

• The study was performed only considering the heating mode for the energy pile. Future

work should consider operation of the system in its cooling mode where warm water

is introduced from the superstructure (building, infrastructure) into the energy pile to

be cooled by the geothermal heat exchange.

• The thermal behavior of multi piles in long-term should be studied to assess the mutual

heating between the piles which may reduce their performance and efficiency. This

study would determine the optimal spacing of the piles and the best array configuration

for their alignments.

• Future work should also consider the effect of increasing the circulating fluid velocity

on the performance of geothermal energy pile. By varying the flow regime, the heat

exchange within the pile could be enhanced.
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