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Since the establishment of the Local Vibrational Mode Theory and the Unified Reaction

Valley Approach (URVA), these two research pillars have been pushed forward in the CATCO

group and played an important role in (i) characterizing the chemical bonds in molecules

and (ii) molecular chemical reactions. This dissertation elaborates my contributions to the

Local Vibrational Mode Theory and the Unified Reaction Valley Approach (URVA).

We have applied the Local Vibrational Mode Theory to hydrogen bonding in liquid

water and proposed an explanation for the Mpemba e↵ect. We explored and discovered

new directions of applying local vibrational modes majorly in characterizing substituent

e↵ect. We have extended the local vibrational mode idea, developing intrinsically comparable

normal vibrational modes.

My major contribution to the Unified Reaction Valley Approach has been the coding of

a standalone URVA analysis program, which is easy to use and maintain and independent

of the software used to create the input data . This program will be published in the future

as an open-source tool helping chemists to understand chemical reactions in all details.
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Chapter 1

RESEARCH OVERVIEW

I started my Ph.D. program when I came to the United States and joined the Computa-

tional and Theoretical Chemistry Group (CATCO) at Southern Methodist University as a

graduate student in August 2014.

Before all of this happened, I was very interested in applying computational chemistry

to biomacromolecules including proteins. This was a result of my background in biology and

related research experience as an undergraduate student. One of the motivations for me to

choose Dr. Dieter Cremer1 and Dr. Elfi Kraka as my Ph.D. advisors is their work on the

Automatic Protein Structure Analysis (APSA). [31]

However, Dr. Cremer wanted me to work on other research topics which turned out

to be a very good suggestion. I have been really enjoying my work in the CATCO group,

which has been far beyond my expectations and has opened the path to my future career in

academia.

As the foundation of applying for my degree as a Doctor of Philosophy, I have worked

on the following two major directions:

• The Local Vibrational Mode Theory

• Unified Reaction Valley Approach (URVA)

From August 2014 to the time when I started writing this dissertation (9th March, 2018),

I have five research articles published as the first author in high-ranking journals. Besides,

I have finished one major computer program with 6,000 statements.

1In memoriam, 1944 - 2017
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Chapter 2

LOCAL VIBRATIONAL MODE THEORY

2.1. History

Vibrational spectroscopy has turned out to be one of the most useful tools for experi-

mental chemists in structural determination and the characterization of electronic structure

as well as its change under certain perturbations.

The atoms in any molecule are not static, instead they are vibrating constantly in com-

pliance with the Heisenberg’s uncertainty principle. An early contribution to the field of

molecular vibration is from Gerhard Herzberg, who wrote the famous book Infrared and

Raman Spectra of Polyatomic Molecules in 1945 as a continuation of Spectra of Diatomic

Molecules, being part of his book series on Molecular Spectra and Molecular Structure.

A generally applicable theory describing molecular vibrations was not proposed until E.

Bright Wilson, Jr., J. C. Decius and Paul C. Cross wrote the fundamental book Molecular

Vibrations: The Theory of Infrared and Raman Vibrational Spectra in 1955. This book

describes the underlying mathematics involved in molecular vibrations, leading to the so-

called Wilson equation of vibrational spectroscopy.

From the application of vibrational spectroscopy to an increasing number of molecules,

chemists found out that there exists a strong correlation between a specific range of vibra-

tional frequencies and certain functional groups. In this way, the characteristic absorption

peaks from vibrational spectra help chemists to characterize the structure of unknown chem-

ical compounds.

The close connection between the vibrations and molecular fragment inspired chemists

to find ways to characterize a specific geometric unit, e.g. a bond between two atoms, or a

bond angle in three atoms, etc. with vibrational frequencies. However, it was not until 1998
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when Zoran Konkoli, J. Andreas Larsson and Dieter Cremer gave a thorough insight into

this problem and proposed the theory of adiabatic internal modes, providing a physically

based description of local vibration of fragments in a molecule [15,16,19,20]. The synonyms

of adiabatic internal modes include local (vibrational) modes, adiabatic local (vibrational)

modes, Konkoli-Cremer or Konkoli-Zou-Cremer modes.

The local vibrational modes are derived from mass-decoupled Euler-Lagrange equations.

We quote the original definition [15] by Konkoli and Cremer in the following.

An internal mode is localized in a molecular fragment by describing the rest of the

molecule as a collection of massless points that just define molecular geometry.

Alternatively, one can consider the new fragment motions as motions that are

obtained after relaxing all parts of the vibrating molecule but the fragment under

consideration.

This is an ingenious idea because it connects vibrational spectroscopy with the molecular

fragment in question based on a physically solid model. However, this model would not be

useful without the development of computational chemistry. Fortunately, analytical second-

order energy derivatives with regard to Cartesian coordinates leading to vibrational modes

and frequencies for the Hartree-Fock theory have been available since the 1980s, followed in

the next decades for post-SCF and DFT methods.

The local vibrational modes were initially applied to study chemical bonds and the rela-

tionship between bond length and bond strength [2, 21, 23].

In 2012, a major breakthrough in the theoretical perspective was made by Wenli Zou [43],

who was a post-doctoral researcher working with Dieter Cremer at SMU. Zou and Cremer

proved that

The local vibrational modes are the true counterparts of the delocalized normal

vibrational modes.

This means there exists a one-to-one relationship between a non-redundant set of 3N�K

local vibrational modes and 3N � K normal vibrational modes. The proof was given based

3



on the compliance constants of Decius [3]. Meanwhile, Zou and Cremer have proved that the

reciprocal of the compliance constant for a specific internal coordinate is identical to its local

vibrational force constant. Besides, this work has provided the physical basis for compliance

constant which was criticized for its loose connection to vibrational spectroscopy.

The local vibrational modes have been extensively applied to characterize the intrinsic

bond strength of a broad range of chemical bonds, covering both covalent bonds [9, 11, 13,

22, 32, 42] and non-covalent interactions including hydrogen bond [4, 10, 12, 37, 38], halogen

bond [29], pnicogen bond [33] and atom-⇡ interactions [40, 45].

Later in 2014, Zou and Cremer derived the equations for calculating infrared intensities

of local vibrational modes [41].

In one of my research projects I employed the local vibrational modes as similarity descrip-

tors in several chemical problems related to substituent e↵ects [35, 36]. In 2017, I proposed

the intrinsic fragmental vibrations as a key intermediate between normal vibrational modes

and local vibrational modes.

2.2. Summary of My Contributions

My work on the local vibrational modes consists of three sections.

1. Characterizing the intrinsic bond strength of hydrogen bonding in water;

2. Quantifying chemical similarity based on local vibrational modes;

3. Development of the Generalized Subsystem Vibrational Analysis (GSVA).

The three topics will be elaborated in the following sections. One promising direction for

future applications is discussed.

2.3. H-Bonding in Water

This work was my first research project after I joined CATCO. The original objective

of this work was to quantify the intrinsic bond strength of hydrogen bonds between water

4



molecules in water cluster models in parallel to other investigations on non-covalent interac-

tions within the CATCO group.

This project was a collaborative work with Nanjing University in China, where Dr. Wei

Li and his co-workers had developed an in-house approach called Generalized Energy-Based

Fragmentation (GEBF) [24], designed to handle ab initio calculations for large systems.

While most ab initio methods can handle small to medium systems with up to 200 atoms,

the GEBF approach can easily deal with systems being composed of thousands of atoms

with equivalent accuracy. One advantage of the GEBF approach over other fragmentation

methods including Fragment Molecular Orbital (FMO) [14] and E↵ective Fragment Potential

(EFP) [8] is that GEBF has already analytical energy derivatives with regard to Cartesian

coordinates up to the second order, so that the normal vibrational mode analysis as well as

local mode analysis is possible.

In the very beginning, Dr. Li did simulated annealing for several di↵erent water clusters

of (H2O)50 using the TIP5P force field [26]. This gave us the starting geometries of water

clusters for ab initio calculations which are more accurate but time-consuming. That is the

reason why we choose to calculate a cluster having 50 water molecules instead of 500 with

ab initio methods. Then Dr. Li used their GEBF approach in combination with Density

Functional Theory (DFT) to calculate these (H2O)50 water clusters, leading to four clusters

optimized to their local minima in energy.

One might argue that it is not su�cient to investigate just four water clusters, however,

this led to a total of 350 hydrogen bonds in these clusters.

In order to analyze these hydrogen bonds in a systematic manner, we proposed a clas-

sification rule based on topology. As each hydrogen bond in water is formed by the donor

water together with the acceptor water, the targeted H-bond is directly influenced by the

way how the donor and acceptor interact with surrounding water molecules via additional

H-bonds. We developed a four-digit code to categorize di↵erent situations, as AB-CD. A

denotes the H-bonds the donor water accepts, B is the number of extra H-bonds the donor

water donates. C and D are the numbers of extra H-bonds the acceptor water accepts and

5



donates respectively. For example, in the water dimer structure, its H-bond code is 00-00.

A to an antibonding OH orbital of D thus leading to an increase
of the electron density in the range of the H-bond. The
magnitude of ΔE(del) was determined by second order
perturbation theory81 where both lp(O) → σ*(OH)-contribu-
tions to ΔE(del) for a given O···OH-interaction were included
(see Section 3).
The intrinsic strength of the H-bond was determined by

using the local H-bond stretching force constant.59,89 The local
vibrational modes of Konkoli and Cremer56 are based on the
solution of the Wilson equation of vibrational spectroscopy90

�= �F D G Dq 1 (1)

in the form91

� �� � �+ � = + �� � �G G R R( ) ( )q q
d od d od (2)

In these two equations, Fq is the calculated force constant
matrix expressed in internal coordinates qn, D collects the
corresponding vibrational eigenvectors dμ as column vectors (μ

= 1, ···, Nvib with Nvib = 3N − L, N: number of atoms; L:
number of translations and rotations), G is the Wilson matrix
for the kinetic energy,90 and Λ is a diagonal matrix containing
the vibrational eigenvalues λμ = 4π2c2ωμ

2. In the expression for
the eigenvalues, ωμ represents the vibrational frequency of
mode dμ.
Matrix Γ in eq 2 is the inverse force constant matrix, which is

usually called compliance matrix.92 Matrix R̃ corresponds to D̃
in the local mass-weighted formulation (indicated by the
tilde)91

� = �R F Dq (3)

and the partitioning is into diagonal (d) and off-diagonal (od)
parts. The parameter λ controls kinematic (mass) coupling, i.e.
for λ = 0 the local description is obtained and for λ = 1 the
Wilson equation reformulated in terms of compliance matrix
and R modes.
Solution of the Wilson equation requires the diagonalization

of matrix Fq to give the matrix K. In this way, the electronic

Figure 1. Coding of the 16 H-bond types discussed for the 50-mers by the notation DcD(ia,jd) − AcA(ka,ld). The integers ia, jd, ka, and ld give the
peripheral (external) H-bonds directly embedding the targeted H-bond, i.e. the acceptor (a) and donor (d) H-bonds of D and A, which are ≤2 for
the D or A water molecule. The superscripts cD and cA are the coordination numbers of O(D) and O(A), respectively, which vary between 3 and 4
and must be distinguished from the number of H-bonds m(D) and m(A). In black bold print the average m(AD) of m(D) and m(A) is given. For the
strongest H-bond D4(20) − A3(02) (in short: 20-02) red arrows indicate the direction of charge polarization, which supports the covalent character
of this H-bond. For other H-bonds, the optimal 20-02 arrangement is perturbed as indicated for the D4(21) − A4(11) (in short: 21-11) H-bond by
dashed red arrows. For each type of H-bond, the deviation is given in blue as in the case of the 21-12 H-bond: |21-11 - 20-02 | = 01-11. The
distortion descriptor (see text) is given as a negative blue number in the upper right of each drawing where an encircled number defines the position
of the H-bond in a strength order from 1 (strongest H-bond) to 16 (weakest H-bond) according to the average BSO values of Figure 3. The 10-01
bond value has been added as reference (BSO: n = 0.399; see text). On the left, the distortion relationship between rows of the matrix of H-bond
types is given in brown color.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00735
J. Chem. Theory Comput. 2017, 13, 55−76

57

10—01 10—02 10—11 10—12

11—01 11—02 11—11 11—12

20—0220—01 20—11 20—12

21—1221—1121—0221—01

Donor 
water 

variation

Acceptor water 
variation

Figure 2.1. Schematic presentation of di↵erent ways of H-bonding in water.

After carrying out the local vibrational mode analysis, we found that di↵erent types of

H-bonds have di↵erent bond strengths. The rule we can generalize from the results is that

an H-bond with large A and D with small B and C is often stronger. In the (H2O)50 cluster

models, the strongest type is in 20-02 caused by a push-pull e↵ect. Such a cooperative e↵ect

in hydrogen bonding was actually discovered in experiments before [34], however, theoretical

investigations in this connection were missing. The reason for this might be due to the lack of

proper theoretical tools for other chemists to quantify the strength of H-bonds in a reliable

way. We name this cooperative influence as “push-pull” e↵ect, which was later found in

other H-bonds involved with hydrogen fluoride and ammonia in a follow-up investigation.

Then we tried to correlate our results of the H-bond strength calculated based on local

vibrational modes to the properties of water. I found on a website1 created by Martin Chaplin

from London South Band University that water is a liquid which has many peculiarities

1http://www1.lsbu.ac.uk/water/
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related to its density, specific heat capacity, cooling and so forth. After reading the list

of these special water properties, Dr. Cremer proposed an idea of explaining the Mpemba

e↵ect, which says warm water freezes faster than cold water.

Dr. Cremer proposed that warm water may have fewer weak 21-12 H-bonds but more

strong H-bonds, cold water has more weak H-bonds which requires extra time to be broken

in freezing. However, this was a speculation, because it is almost impossible to simulate

the freezing process of water with di↵erent starting temperatures with su�cient accuracy,

due to hardware limitations and the current lack of methods for accurately simulating non-

equilibrium processes. When we submitted our first manuscript, we kept this part as a

speculation with no proof. Afterwards, we got the comments from the reviewers who are

experts in studying H-bonding of water. One reviewer raised several pages of questions,

one of which is how to confirm our speculation related to the Mpemba e↵ect. Although we

could not simulate the cooling and freezing of water, we could still gain important insights

by modeling the initial state of liquid water at di↵erent temperatures. So we did molecular

dynamics simulations of water in several di↵erent temperatures. The results indeed proved

that warm water has fewer weak H-bonds, but relatively more strong H-bonds. So that the

formation of ice crystals becomes easier. A schematic summary of our explanation is shown

in Figure 2.2.

After the publication of our work in J. Chem. Theory Comput., it attracted considerable

attention in the media. What I learned from this project is that it is always challenging

to propose a new theory as a newcomer to a field where experts might raise overwhelming

questions. On the other hand, such a challenge is worth facing because experts can give us

deeper insights into our work which can be improved on this basis.

The water H-bonding paper and the push-pull e↵ect paper can be found in Appendices

A and B.
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reasonable to say that, within the model used, the covalent
contributions influence the intrinsic strength of the various H-
bond types. A rational has been given to explain the linear
relationships; however, additional investigations are needed to
verify the trends of ΔE(del) on a quantitative basis. An
alternative measure is provided by the energy density at the H-
bond critical points, which suggests that covalent and
electrostatic interactions both play a role. With increasing
nonlinearity of the H-bonding unit the electrostatic character
increases.
5) Pentacoordination of an O atom does not necessarily lead

to a weakening of the targeted H-bond. For example,
converting a 21-12 H-bond into a 31-12 H-bond increases
the polarization of the donor bond and thereby the cooperative
effects so that the BSO value of the targeted H-bond raises by
almost 21.6%. However, when the targeted H-bond gets a third
competitor for the O1 electron lone pairs as for the 11-22 or
21-22 H-bonds, a significant weakening of the H-bond results.
6) In the MD simulations, almost all of the 107 additional H-

bond types for cO = 5 were found (together <4%) of which a
subset of 0.1% was due to H-bond bifurcation.
7) For dominantly covalent H-bonds, there is an inverse

relationship between the strength of the H-bond and that of the
donor bond (Figure 8), which is of more qualitative nature.

When using O−H and H···O distances, a more quantitative
relationship results (Figure 9). The analysis reveals that there is
a covalent and an electrostatic H-bonding mechanism active.
8) The Badger rule for the H-bonds and O−H donor bonds

investigated is only semiquantitatively fulfilled where the 21-12
H-bonds are the major cause for data point scattering.
Scattering is smaller for the relationship for the O−H donor
bonds because the covalent character of H-bonding prevails in
this case.
9) Based on the quantum chemical analysis of the 50-mers

and the MD simulations leading to the investigation of 1.6
million H-bonds, the distribution of the most important H-
bonds could be determined for different T and ordered
according to their strength. This was possible because the
majority of H-bonds identified belongs to the group analyzed
for the 50-mers. The analysis of the MD simulation results
leads us to propose a molecular explanation for the Mpemba
effect. In warm water, the weaker H-bonds with predominantly
electrostatic contributions are broken, and smaller water
clusters with 20-02 or related strong H-bonding arrangements
exist that accelerate the nucleation process that leads to the
hexagonal lattice of solid ice. Therefore, warm water freezes
faster than cold water in which the transformation from
randomly arranged water clusters costs time and energy.

Figure 14. Explanation of the Mbempa effect: In warm water (upper left corner), weak, electrostatic H-bonds are already broken so that only those
cluster units with strong covalent H-bonding exist, which more easily arrange (lower left corner) as is needed for the formation of the hexagonal ice
lattice (lower right corner). In cold water (upper right corner), many electrostatic H-bonds (red wiggles) still exist, which have first to be broken to
form the ice lattice, which costs time and energy.
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Figure 2.2. Explanation of the Mpemba e↵ect in cold and warm water.
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2.4. Local Vibrational Modes as Similarity Descriptors

In the past three years, several research projects in CATCO focused on the character-

ization of chemical bonding with local vibrational modes. The important essence of these

work is quantifying the intrinsic bond strength with local mode force constants between two

atoms for this bond.

Dr. Cremer proposed the idea that vibrational spectroscopy should be able to provide a

metric for measuring the similarity of chemical compounds. The first project in this direction

I worked on was to extend the “mass reaction” path proposed by one of Dr. Cremer’s former

students An-An Wu [39]. In a mass reaction, the vibrational frequencies are calculated when

the atomic masses within a molecule are gradually changed from one isotope to another, so

that the vibrational modes in these two molecules can be accurately correlated. Then we

wondered whether it is possible to correlate the vibrations of two di↵erent but structurally

similar molecules, e.g. methane (CH4) and ethane (C2H6) and based on this correlation to

work out the similarity between these two molecules.

When I started to solve this problem, I already had some experience in solving the

Wilson equation of vibrational spectroscopy by writing a program. This knowledge was

acquired from a Gaussian white paper [28] and discussions with Wenli Zou. The most

straightforward approach to solve this problem is to check into three quantities required by

the Wilson equation, including the geometry, atomic masses and Hessian matrix. A Hessian

matrix collects the second order energy derivatives of a molecule with regard to Cartesian

coordinates. An-An Wu’s mass reaction is in fact a special case where changes are only in

the atomic masses via linear interpolation. However, if we want to connect two di↵erent

molecules, the only solution is to find a linear interpolation for all three quantities. In this

spirit, we have to develop an theoretical process called mutation path which is similar to

the alchemical free energy perturbation [46] in molecular dynamics simulations. Namely a

molecule has to grow into another one. This mutation path involves the changes in Hessian,

geometry and atomic masses at the same time. All of these changes are in the form of linear

interpolation, controlled by a global parameter � ranging from 0 to 1. In this way, �=0 and

9



�=1 connects the starting molecule and the end molecule on both sides. For the points in

between, the mutation complex has no physical meaning because we can never observe such

a transforming molecule in real world. However, the mutation path is the best solution we

can take if we want to correlate the vibrations of two di↵erent molecules.

Interestingly, the mutation path worked well. However, it could not work without the

help of the Diabatic Mode Ordering (DMO) approach [17], which resolves all allowed- and

avoided-crossings of vibrational modes along the path. This is non-trivial because we need

to keep track of every vibrational mode at any point on the path, otherwise when two

vibrations come close to each other in frequency values, we will lose track of these modes.

Besides, the limitations of the mutation path should also be addressed. Before we do a

mutation path calculation, we need to align the common substructure of two structurally

related molecules in Cartesian coordinates. For example, we have to align the two methyl

groups (CH3) from the methane and ethane molecules first to make sure that the we only

need minimal mutation. The mutation path results are very interesting for two molecules

with high symmetry.

C H

H

H
H

C C

H

H
H H

H
H

A B

Figure 2.3. Structure of reactant and product in the mutation path of methane ! ethane.

With the mutation path, we made for the first time the correlation of vibrations in two

di↵erent molecules possible .

Then we started to develop a new measure of similarity based on vibrations. The first

idea for this task was to calculate the local vibrational frequencies of internal coordinates

within the common substructure of di↵erent molecules. By checking the amplitude of the

deviation in frequencies, we would be able to identify the hot-spot where the electronic
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structure of both molecules shows the largest di↵erence.

It occurred to me that local modes could be used to predict the reactive sites of a

molecule, models derived from wave-function analysis [6, 25] have been trying so far with

more or less success. I tried to see if the local modes can be applied to the regio-selectivity

problem of mono-substituted benzene molecules. My first test set had only 30 molecules, and

I selected the local vibrational frequencies of bond stretching, angle bending and out-of-plane

pyramidalization on the phenyl ring part as the input feature vector. Then I tried to employ

the hierarchical clustering analysis to separate the meta-directing and ortho/para-directing

groups. At the same time, I tried to cluster the functional groups which should be clustered

together according to our common knowledge. The whole trial-and-error procedure was

carried out in a program called Statistical Package for the Social Sciences (SPSS). Although

this package was originally designed for social sciences, it is fairly easy to handle and test

with mouse clicks. The attempts in this direction were quite successful.

This work led to two papers. One is focused on the mutation path and the other is

tailored for the benzene molecules. The second paper was well accepted by the reviewers,

however, the first one was required to have a major revision. The reason why we got stuck by

the reviewers is because that paper was organized into two parts. The first one introduced

the mutation path in order to correlate the vibrational modes of two di↵erent molecules, the

second one jumped immediately to use the local vibrational frequencies to characterize the

hot-spots among di↵erent molecules. The problem lies in the transition of logics between

two sections.

Afterwards, e↵orts were made in two directions. First, a smooth transition would be

necessary to add. Second, it would be better if we put more examples for the local modes

part, because the mutation path part has three examples while the local mode part has only

one.

With regard to the transition problem, we figured out a new perspective that can help

to connect two sections. That is moving from correlation of normal vibrations to the corre-

lation of local vibrations. Chemists employing vibrational spectroscopy in order to obtain
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chemical insights were always correlating the normal vibrations, however, the normal modes

are delocalized in nature and only high-frequency vibrations of bonds with significant spec-

tral intensities were really used. This leads to the insu�cient utilization of vibrational

spectroscopy and di�culties in using vibrational data in a quantitative way for obtaining

chemical insights.

In order to add more examples for correlation of local modes, I looked into an organic

chemistry textbook and tried to find examples related to the substituent e↵ect. Interest-

ing is that many topics are related to the substituent e↵ect besides the regioselectivity in

electrophilic aromatic substitution reactions. Molecular acidity quantified by pK
a

values

and regioselectivity in many other reactions are all determined by the substituent e↵ect.

However, we need to be careful that the steric e↵ect is also a large part of the substituent

e↵ect. The systems we want to choose for investigation should have minimal steric e↵ect

but dominating electronic e↵ect. We ended up with two chemical problems including the

acidity of para-substituted benzoic acids and the regioselectivity in Diels-Alder reactions for

2-substituted diene. The reason why we choose para-substituted benzoic acids instead of

ortho-substituted benzoic acids is because we want to maximize the distance between the

substituent and the carboxyl group so that no direct interaction between them is guaran-

teed. In this case, the phenyl ring acts as a mediator between two parts. For the Diels-Alder

reaction example, the reason why we did not choose to study the 1-substituted diene is be-

cause the substituent connected to the first carbon atom will have a direct interaction with

it, which complicates further analysis. The results of these two examples turned out to be

good. We discovered that for the pK
a

value of a p-substituted benzoic acid, it can be ex-

pressed as a quadratic function of two selected local mode frequencies. For the Diels-Alder

reaction example, the substituents can be correctly classified into Electron Withdrawing

Groups (EWG) and Electron Donating Groups (EDG). Besides, the experimental data can

be explained accordingly.

As a summary for this section, we have discovered that the local vibrational modes can

be used for a new field which is the (indirect) substituent electronic e↵ect.
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The benzene paper and the mutation path paper can be found in Appendices C and D.

2.5. Generalized Subsystem Vibrational Analysis

Normal vibrational modes are always delocalized over the whole molecular system, al-

though the local vibrational modes can characterize the vibration in terms of a specific

geometry unit, the normal vibrational modes for a molecular fragment or sub-system is still

missing.

For this question, there is also a practical need, namely to calculate the vibrations of the

QM region in a QM/MM system. And my first idea was to use 3N �K local force constants

of the QM region in order to recover corresponding Hessian matrix for this QM part.

QM MM

ONIOM(QM:MM)

Figure 2.4. Schematic representation of a QM/MM system.

In order to test the feasibility of this approach, we started to test small molecules. There

are two ways to convert the local force constants into a Hessian matrix. The first solution is

to construct a harmonic approximation of total energy using the quadratic function E

qn =

0.5 ⇥ k

a ⇥ �q

2
n

. After adding up all contributions from 3N � K internal coordinates, one
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then calculates the second-order derivations of the total energy
P

E

qn to obtain the Hessian

matrix. The second approach is to perform a matrix multiplication with Wilson B matrix

and its transpose as the following:

H = bT

k

ab (2.1)

Then we tried to compare the normal mode frequencies calculated from this recovered Hessian

and the original Hessian. For the water molecule, the deviation was small. However, for the

ethyne molecule, the deviation was large. So this means the idea of recovering the Hessian

matrix from 3N � K local force constants might not generally work.

While we were stuck at this point, I tried to look into the simplified equation of the local

force constant k

a

n

.

1

k

a

n

= b(fx)+bT (2.2)

As we can see in the above equation that the vector b in the dimension of 1 ⇥ 3N is the

Wilson B matrix for a specific internal coordinate. What would happen if we replace b

with B which is the Wilson B matrix for many internal coordinates in the dimension of

(3N � K) ⇥ 3N ?

We can do the substitution, however, we need to note that (fx)+ is the Moore-Penrose

inverse of the Hessian matrix fx in the dimension of 3N ⇥3N . The Moore-Penrose inverse is

defined as a generalized inverse which satisfies the Penrose conditions. The physical nature

of B(fx)+BT is similar to the inverse of Hessian, however, the size of this matrix product is

changed into (3N �K)⇥ (3N �K). I tried to get the inverse of this result as (B(fx)+BT )�1.

When I tried to change the dimension of this inverse, something interesting resulted.

fx = BT (B(fx)+BT )�1B (2.3)

This equation holds as long as the set of internal coordinates characterized by matrix B is

a non-redundant set that can determine the geometry.
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Then I tried to set matrix B into matrix B0 that corresponds to a set of internal coordi-

nates describing the geometry of a sub-system, e.g. one water monomer in a dimer structure.

Matrix B0 has the dimension of (3n � k) ⇥ 3N . This means B0 has fewer rows than matrix

B. The result of (B0(fx)+B0T )�1 has the dimension of (3n� k)⇥ (3n� k), however, we need

to transform it back to 3n⇥ 3n. So we introduce a new Wilson B matrix B0
sub

, which is the

first 3n columns of B0. Thus B0
sub

has the dimension of (3n � k) ⇥ 3n. Then a new Hessian

matrix results as fx

sub

.

fx

sub

= B0T
sub

(B0(fx)+B0T )�1B0
sub

(2.4)

We named this new Hessian fx

sub

the e↵ective Hessian matrix for the sub-system in ques-

tion. One special property of this matrix is that if we do the local mode analysis based on

this matrix, we get exactly the same result as we do local mode analysis based on the full

Hessian matrix.

This property is non-trivial and it means that we have derived a unique Hessian matrix

for the sub-system as a true counterpart for the full Hessian for the complete system. On this

basis, we would have a chance to get the normal vibrations of the sub-system based on fx

sub

.

Another interesting fact of fx

sub

is that it has exactly k eigenvalues as zero, where k is the total

number of translations and rotations for the sub-system. We named the resulting normal

vibrations for the sub-system as intrinsic fragmental vibrations. These intrinsic fragmental

vibrations have the advantage of being comparable among di↵erent molecular systems. For

example, the intrinsic fragmental vibrations of a water monomer in a dimer structure is

comparable with another water monomer in a trimer structure.

We named the procedure to obtain the intrinsic fragmental vibrations of a sub-system or

fragment as Generalized Subsystem Vibrational Analysis (GSVA).

If we go back to the original motivation in order to get the vibrations of the QM region,

as long as we can obtain the e↵ective Hessian matrix for the QM region, this problem can

be also solved by GSVA.

This work is an important link between the normal vibrational modes and the local
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vibrational modes. While normal vibrational modes are always delocalized over the whole

molecule, the local modes characterize the vibrations initiated by single internal coordinates.

Can we have something in between which is the normal modes localized to a certain fragment

or subsystem? Now we have GSVA and its intrinsic fragmental vibrations as the unique

answer.

The manuscript on this part can be found in Appendix E.

2.6. Future direction - Probes for Vibrational Stark E↵ect

The concept of the Vibrational Stark E↵ect (VSE) was firstly raised by Arun Chattopad-

hyay and Steven G. Boxer in 1995 [1]. This experimental phenomenon consists of two parts.

First, certain normal vibrations are special and they are localized to certain chemical bonds,

e.g. C=O double bond and C⌘N triple bond. Molecules containing these bonds are called

the probes. Second, the frequencies of above vibrations are linearly correlated to the strength

of an electric field which is aligned to those bonds. In this way, a direct mapping from the

electric field strength to the vibrational frequency can be measured. Boxer and his co-workers

made one step forward, they tried to think of di↵erent non-covalent interactions in terms of

electric field [5].

While the second aspect of VSE is easy to understand, there has been no theoretical

verification for the localized nature of the vibrations related to the stretching of C=O and

C⌘N bonds. Therefore, one has to verify the localized nature of these normal vibrations

first and then find an explanation. On this basis, the rational design of other VSE probes

could become possible.

The method to verify the localized nature of a specific normal vibration is to decompose

this normal vibrational mode into a non-redundant set of local vibrational modes including

one local mode describing the C=O or C⌘N stretching [16]. If this normal mode is made up

of 100% local vibrational mode of the targeted bond stretching, one can be sure that this

normal vibrational mode is genuinely localized to this bond. Such a decomposition analysis

can be carried out for di↵erent probe molecules with various non-covalent interactions.
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Before delving into this problem, some guideline can be given. The explanation of the

localized nature of these probe bonds can be pushed into two directions. Firstly, we need to

check whether the atomic mass is playing a role. As we can see in the periodic table that

Carbon, Nitrogen and Oxygen are three consecutive atoms with close atomic masses as 12.0,

14.0 and 16.0 AMU. We can intentionally set the atomic masses into di↵erent values in order

to reveal the corresponding influence. Secondly, it would be necessary to check the role of

the electronic structure of these atoms. It would be interesting to check probe candidates

where the C, N and O atoms are replaced with Si, P and S atoms. In order to eliminate the

atomic mass e↵ect, we can set their atomic masses as those of their analogues in period 2.

In this way, we would be able to understand the origin of the localized vibrations for these

probe bonds.
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Chapter 3

UNIFIED REACTION VALLEY APPROACH

3.1. History

The chemical reaction is a topic with utmost importance in chemistry. Chemical reactions

are playing an omnipresent role in our daily life. On one hand, almost all man-made products

we use are made from chemical reactions. On the other hand, our human body is a machine

where complex enzymatic reactions are constantly happening.

To understand chemical reactions can be regarded as the cornerstone to the world of

chemistry. Within the Born-Oppenheimer approximation, a chemical reaction can be mod-

eled with the help of a potential energy surface (PES). As is shown in Figure 3.1, the reactant

and product located at two separated local minima are connected via a lowest energy path

passing the transition state point.

Figure 3.1. Schematic presentation of a potential energy surface. This figure is from Dr. H.

Bernhard Schlegel’s group website at http://chem.wayne.edu/schlegel/PES.htm.

The first calculation of a potential energy surface based on semi-empirical methods was

conducted by Henry Eyring and Michael Polanyi in 1931 for the H + H2 reaction system.
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However, no clear definition of a reaction path was given at that time. This situation was

not changed until Kenichi Fukui proposed the Intrinsic Reaction Coordinate (IRC) path in

1981 [7].

In 1980, William H. Miller, Nicholas C. Handy and John E. Adams proposed the concept

of Reaction Path Hamiltonian (RPH) in order to study the dynamical properties of a reaction

path [27]. However, their work was before the IRC path and only focused on the H + H2

model system. In 1988, Michael Page and James W. McIver, Jr. proposed the reaction path

Hamiltonian for the IRC path and derived the formula for the reaction path curvature and

related coupling terms [30]. The reaction path curvature can be regarded as one of the most

properties of a path, as a peak in the curvature plot is often associated with a chemical

event, e.g. bond forming/breaking.

Based upon the above work, Zoran Konkoli, Elfi Kraka and Dieter Cremer proposed the

Unified Reaction Valley Approach (URVA) in 1997 [18]. One of the highlights of URVA is

the adiabatic mode coupling coe�cient which is decomposition of reaction path curvature

into adiabatic local modes (see Figure 3.2).

In 2016, Zou and Cremer proposed a new way to decompose the reaction path direction

and curvature in terms of internal coordinates [44], due to the limitation of adiabatic mode

coupling on an unstable reaction path. This new extension enables URVA to analyze chemical

reactions in large systems including organometallic compounds and enzymes.

3.2. Summary of My Contributions

My work on the Unified Reaction Valley Approach consists of three aspects.

1. Programming of a standalone pURVA program in Python;

2. Adding URVA-related modules to the Gaussian 16 code;

3. Correction of the reaction path curvature in the transition state (TS) region.

This dissertation will elaborate these projects in the following sections.
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Figure 3.2. Decomposition of the reaction path curvature (s) (thick solid line) in

terms of adiabatic mode-curvature coupling amplitudes A

k,s

(s) (dashed lines). This

figure is from CATCO group website at https://sites.smu.edu/dedman/catco/research/

rxn-mechanism-dynamics.html.
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3.3. Standalone pURVA Program

The initial implementation of the URVA method was done by Zoran Konkoli, one of Dr.

Cremer’s students. Konkoli programmed URVA as an add-on module into the link L7161 of

the Gaussian 98 package. The advantage of doing so was that the reaction path calculated

by Gaussian could be directly analyzed and many useful libraries within Gaussian could be

fully utilized. This led to the problem that whenever the Gaussian program was updated,

the URVA module needed to be migrated to the new version. In addition, the URVA analysis

was not possible within the framework of other quantum chemistry packages.

Therefore, a standalone URVA analysis program was desired. I started to write such a

program by reading through the original codes by Konkoli and re-writing it in the Fortran

90 language. After I finished the program that basically worked, I was not quite satisfied

about the organization of the code and decided to write a Python version. Benefiting from

various advantages of Python, the new code is more concise, robust and easy to maintain.

We named the new code pURVA, where the prefix p- stands for Python.

We need to note that the new URVA code is not just a duplicate of the original code by

Konkoli, it has the following improvements:

• The Diabatic Mode Ordering (DMO) procedure is reformulated based on Wenli’s DMO

module in the local mode program. The current implementation of DMO is indepen-

dent of the internal coordinates specified by user and has more flexibility;

• It supports all possible internal coordinates including curvilinear coordinates or sym-

metry coordinates for analysis;

• It includes the functionality of correcting the curvature near the transition state region;

• It supports both the old and new (for large systems) browsing files as input data;

• All URVA results are saved as separate pre-formatted text files;

• Functions written in Python code are re-usable by other programs or for other purposes.

1L716: A subroutine in Gaussian Processing information for optimizations and frequencies, see http:
//gaussian.com/capabilities/?tabid=3.
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The user manual of pURVA program can be found in Appendix F. The complete source

code of pURVA program can be found in Appendix K.

3.4. URVA-Related Module in Gaussian 16

The URVA analysis code is not incorporated into the Gaussian source codes, however, the

functionality of generating the input data file for URVA analysis was already implemented

into Gaussian by Elfi Kraka and Hrant Hratchian. This input data file is called browsing

file.

The function of generating IRC browsing file can be activated by using IOp option2 -

IOp(1/45). The IRC browsing file contains Cartesian coordinates, atomic mass, gradients

and Hessian for each point along the IRC reaction path, which are needed for the URVA

analysis.

In the cases of large reaction systems, the storage of the Hessian is no longer necessary

because the latest URVA analysis [44] is based directly on decomposition of reaction path

direction and curvature. As long as the browsing file contains the reaction path direction

and curvature, the large reaction systems can be analyzed by URVA. In this spirit, a di↵erent

form of browsing file has been proposed, which is called the new browsing file.

In a new browsing file, the gradient and Hessian are no longer stored, instead the reaction

path direction and curvature are calculated on the fly and saved into the browsing file.

While I was working on the Hessian of ONIOM model in IRC calculations, I migrated

the code related to new browsing file from G09 to G16. At the same time, I made this

part of code conform to the PGI fortran 77 standard as it was written in the Intel fortran

standard before. The reason why I did this adjustment is because the whole Gaussian

package is written according to the PGI fortran 77 standard and inserting code of Intel

fortran standard requires the compilation of the whole package with Intel compiler. In our

own experiences, the Gaussian program compiled with Intel compiler may lead to error in

some cases. It is safer to use the recommended coding standard and the compiler as PGI.

2See http://gaussian.com/overlay1/.
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A flowchart that explains how the modification is carried out has been given in Appendix

G. Appendix H gives the complete record of code modification on Gaussian 16.

3.5. Reaction Path Curvature Correction near Transition State

The IRC reaction path always starts from the transition state point where the potential

energy surface at that point has one direction which is the local maximum but for all other

directions, it has local minima. In this way, the IRC path moves downhill in the direction of

the local maxima leading to two channels, the reactant channel ends at the reactant(s) and

the product channel ending at the product(s).

After the information is collected along the IRC path in the browsing file, the URVA

analysis is carried out. The reaction path is a curve in the 3N -dimensional space with

direction and curvature. However, there is a problem concerning the calculation of reaction

path curvature. In the original papers related to URVA and URVA codes [18], we used the

following formula to calculate the reaction path curvature along the reaction path.

⌫(1) = [F⌫ � (⌫†F⌫)⌫]/c (3.1)

where ⌫ is the direction of the reaction path, F is the Hessian matrix and c is the norm

of the mass-weighted gradient. Formula 3.1 works fine, except for the region around the

TS point, where the gradient is zero or close to zero, namely c ⇡ 0. If we still use formula

3.1 to calculate reaction path curvature, the result is undefined because the denominator is

close to zero. In previous work on URVA, this problem was corrected by applying smoothing

procedures to the curvature plot.

Page and McIver provided a specific formula to calculate the reaction path curvature at

the transition state point [30]. The formula writes in the following.

⌫(1) = (2⌫†F⌫I � F)�1(F(1)⌫ � ⌫†F(1)⌫⌫) (3.2)

where I is a unit matrix and F(1) is the third derivatives along the path tangent. It can be
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calculated by finite di↵erence procedure as

F(1) =
dF

ds

⇡[F(s0 + �s) � F(s0 � �s)]/(2�s) (3.3)

where s is the reaction path parameter.

However, this formula is only valid at the TS point. If we go either direction o↵ this

point, error and deviations will be introduced in.

In order to fully utilize the formula of curvature for the TS point and extend it to the

region close to the TS point, we designed a new algorithm to solve this problem.

We use Formula 3.2 to calculate the correct curvature at the TS point.

Then we use the same formula but multiplied with a scaling factor C in the form of an

exponential function.

C = e

a·s (3.4)

where s is the reaction path parameter and a is a parameter to be determined.

The reason why we choose the natural exponential function is because it provides scaling

down (x < 0, 0 < y < 1) and scaling up (x > 0, y > 1) as shown in Figure 3.3.

Figure 3.3. The natural exponential function y = e

x.
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With the scaling, the curvature multiplied with C should connect to the uncorrected

curvature value calculated by Formula 3.1. However, the connection should be as smooth

as possible. This is realized by optimizing the parameter a in Formula 3.4 to make sure the

second derivative of the connection point is smaller than a threshold.

If this threshold cannot be achieved, we need to move one point in the direction from the

TS point, until the scaled corrected curvature curve is smoothly merged into the curvature

calculated by Formula 3.1.

When the scaled curvature curve is successfully merged into the uncorrected curvature

calculated by Formula 3.1. The last step is to remove the curvature for the TS point and two

points next to it, as there exists an implicit problem that the IRC path following algorithm

is unable to accurately trace the first point o↵ the TS point. So we use a cubic spline fitting

to get interpolated curvature values for these three points.

The result of above algorithm applied to a gold-catalyzed reaction is shown in Figure 3.4.

Now this algorithm for calculating correct curvature near the TS point has been fully

automatized and proved to be robust. It has been incorporated into the pURVA program.

The complete source code on this work has been given in Appendices I and J.
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for providing test examples.
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Chapter 4

CONCLUSIONS AND OUTLOOK

From years of working with the two major theoretical pillars in the CATCO group includ-

ing the Local Vibrational Mode Theory and the Unified Reaction Valley Approach (URVA), I

have deeper understanding on the molecular vibration, potential energy surface and reaction

path.

On one hand, URVA can be a really useful tool to characterize a chemical reaction path,

and it reveals every detail of bond breaking/formation along the path. However, just by

presenting the URVA result is insu�cient for chemists to gain deeper understanding. One

direction that can push URVA to a higher level could be systematic studies for a series of

similar chemical reactions and try to find correlations between the reaction path curvature

and physical properties, e.g. activation energy. We expect that more attempts can be done

on this part to present the practical applications of URVA, which will be the foundation for

the publication of the standalone pURVA program.

For the Local Vibrational Mode Theory, it has been extensively applied to describe

chemical bonding. One potential issue in this connection lies in the comparison of chemical

bonds with di↵erent bonding atoms, e.g. O-H vs. S-H. One should be always very careful

when comparing the local force constants in above situation even though the scaled Bond

Strength Order (BSO) is empolyed to make two di↵erent bond types “comparable”.

We have successfully extend the application scope of Local Vibrational Mode Theory into

the problem of chemical similarity or substituent (electronic) e↵ect, however, more chemical

problems are expected to be found where the Local Vibrational Mode Thoery can play a

role.

It is challenging to find out other chemical problems besides chemical bonding and sim-

ilarity for applying Local Vibrational Mode Theory, but it is worth trying in all possible
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directions.

Concerning the underlying theories of Local Vibrational Mode Theory, we have done

almost everything we can do with regard to molecular vibrations. One possible direction

could be to extend the Local Vibrational Mode Theory into periodic systems, where one

needs to have solid knowledge about the phonon spectroscopy.
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ABSTRACT: The properties of liquid water are intimately related to
the H-bond network among the individual water molecules. Utilizing
vibrational spectroscopy and modeling water with DFT-optimized
water clusters (6-mers and 50-mers), 16 out of a possible 36 different
types of H-bonds are identified and ordered according to their intrinsic
strength. The strongest H-bonds are obtained as a result of a concerted
push−pull effect of four peripheral water molecules, which polarize the
electron density in a way that supports charge transfer and partial
covalent character of the targeted H-bond. For water molecules with
tetra- and pentacoordinated O atoms, H-bonding is often associated
with a geometrically unfavorable positioning of the acceptor lone pair
and donor σ*(OH) orbitals so that electrostatic rather than covalent
interactions increasingly dominate H-bonding. There is a striking linear
dependence between the intrinsic strength of H-bonding as measured by the local H-bond stretching force constant and the
delocalization energy associated with charge transfer. Molecular dynamics simulations for 1000-mers reveal that with increasing
temperature weak, preferentially electrostatic H-bonds are broken, whereas the number of strong H-bonds increases. An
explanation for the question why warm water freezes faster than cold water is given on a molecular basis.

■ INTRODUCTION
The understanding of hydrogen bonding (H-bonding) is
essential for unravelling many biological and environmental
phenomena.1−6 H-bonding dominates the noncovalent inter-
actions between the molecules in liquid water, and in this way
H-bonding is ultimately responsible for the unique properties
of water. Essential for the understanding of the complex
structure and dynamics of liquid water7 is the study of H-
bonding with the help of quantum chemical methods. If an
atomistic approach is used, liquid water can be modeled by
using clusters of water molecules. The smallest of such clusters,
the water dimer, is only used for reference purposes, and its
properties in connection with H-bonding are fairly well-
known.8−20 Also, larger clusters with three to six water
molecules have been reliably described and have helped to
extend the understanding of H-bonding between water
molecules.21−36 Less frequent are high-accuracy investigations
of larger water clusters.37 Most of these investigations have
been carried out at the Hartree−Fock (HF), Density
Functional Theory (DFT), or perturbation theory level. For
example, the investigation of 20-mers (clusters with 20 water
molecules),38−41 25-mers,42 30-mers up to 40-mers,43−49 or
even 60-mers has to be reported.50

Noteworthy in this connection is that the vibrational spectra
of 20-mers have been investigated in detail by Xantheas and co-

workers using second order perturbation theory.38 DFT
benchmark calculations utilizing B3LYP, X3LYP, and M06-
type of XC-functionals for predicting binding energies of water
clusters up to 20 molecules have been carried out by Bryantsev
and co-workers.39 Parthasarathi and co-workers found that
linear chains of up to 20 water molecules lead to dipole
moments as high as 41 D thus emphasizing the cooperative
effect of H-bonding in larger clusters.40 An interesting study on
the polarizability of water clusters and the charge flow through
H-bonds in the presence of internal and external electric fields
was carried out by Yang and co-workers.41 The electron density
at the critical points of the H-bonds of a water cluster was
analyzed by Neela and co-workers who predicted an increase of
the density with the cluster size.51 Iwata pointed out the
importance of charge transfer and dispersion energies in
(H2O)20 and (H2O)25, which he found to depend on the O···O
distance.42 Lenz and co-workers43 calculated the vibrational
spectra of water clusters containing up to 30 water molecules.
They found a correlation between the red-shift of the O−H
donor stretching frequency and the type of H-bond based on
the coordination numbers of the O atoms being involved. The
importance of the collective electrostatic effects on H-bonding
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as caused by the nonimmediate environment in liquid water
models was emphasized by Bako and co-workers.44 Qian and
co-workers did systematic studies on water clusters of different
size ranging from the dimer to 34-mers using HF/6-31G(d).47

An attempt was made by Huang and co-workers to predict the
far-infrared spectra of water clusters up to 38 molecules with
DFT and to relate them to observed THz spectra.48 Specific
forms of water clusters were investigated by various authors
(spiro-cyclic,45 fullerene-shaped50). Frogato and co-workers
performed ab initio Born−Oppenheimer molecular dynamics
(MD) simulations for 69-mer clusters containing an excess
electron.52 Clusters with up to 280 water molecules were
investigated by Loboda and co-workers who determined
averaged H-bond energies.53 Turi used mixed quantum-classical
MD simulations for a cluster consisting 1,000 water molecules
either in neutral state or with an excess electron.54 A quantum
simulation of water was carried out by Wang and co-workers.55

In these investigations, the intrinsic strength of the H-bond
in water clusters or liquid water could not be determined.
Instead one attempted to obtain indirect evidence by analyzing
binding energies, H-bond distances, vibrational frequencies,
electron densities at the H-bond critical point, and other
molecular properties, which can only provide a qualitative
measure of the H-bond strength as they relate to all
intermolecular forces and interaction energies.
In this work, we present the harmonic vibrational frequencies

of water clusters containing 50 molecules (50-mers) that can be
considered as suitable models for distinguishing between
different H-bond types. For the first time, we will provide a
detailed account on H-bonding in water clusters, which can be
considered as suitable models for liquid water. In connection
with this general goal, we pursue the following objectives: (i)
We will investigate how many of the 36 possible standard H-
bond types (excluding pentacoordination of oxygen and H-
bond bifurcation) are needed to analyze H-bonding in the 50-
mers. (ii) We will characterize the various H-bonds according
to the intrinsic strength of their interactions, which we will
characterize with the properties of the H-bond stretching
vibrations using the theory of Konkoli and Cremer for
analyzing local vibrational modes.56−59 For this purpose, we
will derive a H-bond strength order (BSO) value, which will
provide a quantitative measure to compare different H-bonds in
the water clusters investigated. (iii) H-bonding results from the
noncovalent interactions of a H-bond donor (D) and a H-bond
acceptor (A). Accordingly, we will investigate to which extent
the properties of D and those of A are varied by H-bonding.
Are there relationships between H-bond stretching force
constants, covalent and electrostatic bond character, electron
and energy density properties at the H-bond critical points, or
the H-bond lengths? (iv) Is there a relationship between the
strength of the OH donor bond and that of the H-bond, which
can be used to characterize the latter via properties of the
former?5,6 (v) Finally, we will make an attempt to relate the
structure of a water-cluster to the macroscopic properties of
liquid water by utilizing MD simulations of 1000-mers. In this
connection, we will investigate the question why warmer water
freezes more quickly than colder water.60−66

The results of this investigation will be presented in the
following order. In Section 2, we will describe the computa-
tional methods used in this work. In Section 3, the different H-
bonds of the 50-mers will be analyzed, and a suitable way of
describing them will be worked out. The results of this analysis
will be applied in Section 4 to provide a molecular explanation

to the phenomenon that warm water freezes faster than cold
water. The chemical relevance and the conclusions of the
current investigation will be summarized in the last section.

■ COMPUTATIONAL METHODS
Equilibrium geometries and normal vibrational modes were
calculated using the ωB97X-D density functional,67,68 which
was chosen because it provides a reliable description of
noncovalent interactions in cases where dispersion and other
long-range van der Waals interactions play an important
role.69−72 Pople’s triple-ζ basis 6-311G(d,p) was augmented by
diffuse functions for H and O atoms. The 6-311++G(d,p) basis
set73−75 thus obtained contained 1800 basis functions for the
50-mers. The calculations of the normal mode vectors and
frequencies were carried out with the GEBF (generalized
energy-based fragmentation) method76,77 at the ωB97X-D/6-
311++G(d,p) level. The analytical gradient of the GEBF
method77 was used for the geometry optimization, whereas for
the GEBF Hessian an approximate expression was employed.78

The usefulness of GEBF-ωB97X-D in the case of the water
clusters was first tested by carrying out calculations for 20-mers
and comparing results obtained with CCSD(T)79 in the form
of GEBF-CCSD(T). GEBF-ωB97X-D turned out to be both
reliable and cost efficient.
In the GEBF-ωB97X-D calculations, each water molecule

was selected as a fragment, and the distance threshold was set
to 4.0 Å, i.e. at least one atom is within this limit. The
maximum number of fragments in each subsystem was limited
to seven. Natural population analysis (NPA)80,81 charges were
employed as background charges, and two-fragment subsystems
with a distance threshold of 8.0 Å were considered for
corrections. The DFT calculations were carried out using a
pruned (75,302) fine grid82,83 and tight convergence criteria in
the geometry optimizations to guarantee a reliable calculation
of vibrational frequencies. The initial geometries of the 50-mers
were taken from MD calculations using a TIP4P force field.84

The optimized geometries are given in the Supporting
Information (SI). The relative energies of the complexes used
in this investigation are 0.0 kcal/mol (cluster A; absolute
energy: −3822.655729 hartree), −0.62 (B), 10.30 (C), and
4.40 kcal/mol (D). The lowest vibrational frequencies obtained
in this way are 23.7, 26.3 (cluster A); 25.2, 29.6 (B); 18.0, 21.3
(C); 17.9, 23.4 cm−1 (D). Another water complex leading to an
imaginary frequency was excluded from the investigation.
Electron density and energy density distributions were

calculated using ωB97X-D rather than GEBF-ωB97X-D. The
charge transfer analysis was carried out on the basis of
calculated NPA charges.80,81 A topological analysis of the
electron density distribution ρ(r) was performed.85 The nature
of the H-bond was determined by the energy density H(r)
calculated at the H-bond critical point rb and the application of
the Cremer−Kraka criteria for covalent bonding: (i) A zero-flux
surface and bond critical point rb have to exist between the
atoms in question (necessary condition). (ii) The local energy
density at H(rb) must be negative and thereby stabilizing
(sufficient condition for covalent bonding). A positive H(rb)
indicates a dominance of electrostatic interactions.86−88 Hence,
the Cremer−Kraka criteria can reveal whether H-bonding is
covalent, electrostatic, or a mixture of both (values close to
zero).
The covalent character of the H-bond was estimated by

calculating the delocalization energy ΔE(del), which is
associated with the charge transfer from a lone pair orbital of
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A to an antibonding OH orbital of D thus leading to an increase
of the electron density in the range of the H-bond. The
magnitude of ΔE(del) was determined by second order
perturbation theory81 where both lp(O) → σ*(OH)-contribu-
tions to ΔE(del) for a given O···OH-interaction were included
(see Section 3).
The intrinsic strength of the H-bond was determined by

using the local H-bond stretching force constant.59,89 The local
vibrational modes of Konkoli and Cremer56 are based on the
solution of the Wilson equation of vibrational spectroscopy90

�= �F D G Dq 1 (1)

in the form91

� �� � �+ � = + �� � �G G R R( ) ( )q q
d od d od (2)

In these two equations, Fq is the calculated force constant
matrix expressed in internal coordinates qn, D collects the
corresponding vibrational eigenvectors dμ as column vectors (μ

= 1, ···, Nvib with Nvib = 3N − L, N: number of atoms; L:
number of translations and rotations), G is the Wilson matrix
for the kinetic energy,90 and Λ is a diagonal matrix containing
the vibrational eigenvalues λμ = 4π2c2ωμ

2. In the expression for
the eigenvalues, ωμ represents the vibrational frequency of
mode dμ.
Matrix Γ in eq 2 is the inverse force constant matrix, which is

usually called compliance matrix.92 Matrix R̃ corresponds to D̃
in the local mass-weighted formulation (indicated by the
tilde)91

� = �R F Dq (3)

and the partitioning is into diagonal (d) and off-diagonal (od)
parts. The parameter λ controls kinematic (mass) coupling, i.e.
for λ = 0 the local description is obtained and for λ = 1 the
Wilson equation reformulated in terms of compliance matrix
and R modes.
Solution of the Wilson equation requires the diagonalization

of matrix Fq to give the matrix K. In this way, the electronic

Figure 1. Coding of the 16 H-bond types discussed for the 50-mers by the notation DcD(ia,jd) − AcA(ka,ld). The integers ia, jd, ka, and ld give the
peripheral (external) H-bonds directly embedding the targeted H-bond, i.e. the acceptor (a) and donor (d) H-bonds of D and A, which are ≤2 for
the D or A water molecule. The superscripts cD and cA are the coordination numbers of O(D) and O(A), respectively, which vary between 3 and 4
and must be distinguished from the number of H-bonds m(D) and m(A). In black bold print the average m(AD) of m(D) and m(A) is given. For the
strongest H-bond D4(20) − A3(02) (in short: 20-02) red arrows indicate the direction of charge polarization, which supports the covalent character
of this H-bond. For other H-bonds, the optimal 20-02 arrangement is perturbed as indicated for the D4(21) − A4(11) (in short: 21-11) H-bond by
dashed red arrows. For each type of H-bond, the deviation is given in blue as in the case of the 21-12 H-bond: |21-11 - 20-02 | = 01-11. The
distortion descriptor (see text) is given as a negative blue number in the upper right of each drawing where an encircled number defines the position
of the H-bond in a strength order from 1 (strongest H-bond) to 16 (weakest H-bond) according to the average BSO values of Figure 3. The 10-01
bond value has been added as reference (BSO: n = 0.399; see text). On the left, the distortion relationship between rows of the matrix of H-bond
types is given in brown color.
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coupling between the local modes is eliminated. Solving the
mass-decoupled Wilson equation leads to the mass-decoupled
local modes an,

91 which can be written as56,58,93

=
� †

� †a
K d

d K dn
n

n n

1

1
(4)

where dn is now a row vector of matrix D. The local mode force
constant kn

a is given by eq 5

= †k a Kan
a

n n (5)

and the local mode frequency ωn
a can be obtained from

�
�

= G k
c

( )
4n

a nn n
a

2
2 2 (6)

where element Gnn of matrix G defines the local mode mass.56

Before continuing it is useful to point out that the term local
vibrational modes is sometimes used in a different context:
Henry and co-workers94−96 use the term in connection with the
(an)harmonic oscillator models to quantum mechanically
calculate the overtones of XH stretching modes. The higher
overtone modes (n = 5 or 6) for isolated XH groups are largely
decoupled which justifies using the term local modes. Their
frequencies correlate linearly with the Konkoli−Cremer local
mode frequencies thus verifying their local mode character;97

however, they are only accessible for a few types of XH
stretching modes, whereas the Konkoli−Cremer modes are
generally defined and will be exclusively used in the following.
The relative bond strength order (BSO) n of an OH bond is

obtained by utilizing the extended Badger rule,97−99 according
to which the BSO is related to the local stretching force
constant ka by a power relationship, which is fully determined
by two reference values and the requirement that for a zero-
force constant the BSO value becomes zero. Accordingly, the
relationship n(OH) = a(ka)

b can be derived from two suitable
reference bonds. In this work, the constants a and b were
determined for FH bonds using the frequencies of F−H (n = 1)
and the D∞h-symmetrical [F···H···F]− anion (n = 0.5) as
suitable references. Since the Badger and extended Badger rules
predict for related XH bonds the same power relationship, the
equation n(FH) = a(ka)

b with a = 0.5402 and b = 0.2966 was
also used for the OH bonds after shifting the single bond
reference (corresponding to a n(OH) = 0.9653) by 0.0347 so
that the OH bonds of H2O obtain the BSO value n = 1.00.
In the MD simulations, 1000 water molecules in a PBC

(periodic boundary condition) box were simulated by classical
MD using the TIP5P100 force field in the NPT ensemble at 1.0
bar and 283, 308, 363, and 378 K where the simulations at 308
and 378 K were used as control calculations and therefore will
not be discussed here in detail. The cutoff of nonbonded
interactions was set to be 8 Å, and the Coulombic interactions
were treated with the Ewald summation.101 The temperature
was scaled by Langevin dynamics with the collision frequency γ
being 1.0.102 The Berendsen bath coupling method103 was
selected as a thermostat algorithm to control the pressure. The
equations of the motion were integrated by the velocity Verlet
algorithm104 with OH bond constrains.105,106 The time step
was set to 1 fs (femtosecond), and the trajectories were
collected for every 100 fs. The simulation time was 2 ns
(nanoseconds) where the first ns was used for reaching the
equilibrium. The trajectories of the second ns were used for the
analysis. From the snapshots of the second ns, 1000 (H2O)1000

periodic clusters were taken out using equal time intervals of 1
ps (picosecond).
For the analyses, a H-bond was considered to be given if the

H···O distance is between 1.5 and 2.2 Å, and the O−H···O
angle is larger than 100.0°. PBC were also employed for
determining H-bonds. In the analysis of the (H2O)50 clusters,
the 2.2 Å limit turned out to be a reasonable cutoff value. There
are 6 × 6 = 36 standard H-bond types (excluding bifurcated H-
bonds and pentacoordination at the O atom, i.e. the maximum
number of H-bonds per water molecule is limited to 4). If
pentacoordination is included another 36 types of H-bonds are
possible, whereas bifurcation adds another 71 H-bond types
(maximum number of H-bonds ≤5) thus leading to a total of
11 × 13 = 143 different H-bond types. For the bifurcated H-
bonds, the H atom of the O−H donor bond is within 2.4 Å
with regard to two neighboring O atoms.107 In the equilibrium
structures of the 50-mers, only a fraction of the maximally
possible standard H-bonds can occur. These are shown in
Figure 1 where the H-bond of the cyclic water hexamer,
(H2O)6, is used as a suitable reference (see the SI for the
equilibrium geometry). The average number of H-bonds per
water molecule was obtained by the formula mav = 2 × N(H
bonds)/N(water molecules) (N: number). In addition, we use
the quantities m(D) and m(A), which give the total number of
H-bonds of the D- and the A-water for a given type of H-bond
(Figure 1). Accordingly, the average m(AD) is equal to [m(D)
+ m(A)]/2. Similarly, the number of peripheral H-bonds can be
given by mp(D), mp(A), etc. Parameters m and mp are
associated with the dimer D−A and do not consider peripheral
H2O molecules (mav varies only slightly from 1.5 to 1.75 for the
cases considered and therefore is less useful for the character-
ization of the types of H-bonds shown in Figure 1).
Beside calculating the charge transfer between the interacting

monomers using NPA values, we also calculated the difference
density distribution Δρ(r) = ρ(Complex,r) − ρ(Monomer1,r) −
ρ(Monomer2,r), which was determined and plotted for the
complex-enveloping surface of an electron density distribution
of 0.001 e/Bohr3. For the situation of six water molecules as in
20-02 (see below), the geometry was taken from one of the 20-
02 H-bonds of cluster A. The polarization effect caused by the
four peripheral H2O was determined by subtracting from the
hexamer density that of the trimers on the D and A side as well
as that of the central D−A dimer and then adding the density of
the D and A water monomer (short notation: 6-2 × 3-2 + 1 +
1) all calculated in the geometry of the hexamer. In this way,
the density contributions of the trimers and the difference
density of the central dimer were eliminated so that the push−
pull effect of the peripheral water molecules on the central
dimer unit becomes visible.
For the statistical analysis, we used box-and-whisker

diagrams,108 which present the distribution of data by a box
and two whiskers. Minimum and maximum values are indicated
by two horizontal lines. The first and third quartile of data, Q1
and Q3, define the bottom and top of the box where Q2 gives
the position of the median. The interquartile range QR = Q3 −
Q1 gives the vertical length of the box. The length of the
whiskers is defined by Q1 − 1.5 QR (lower whisker) and Q3 +
1.5 QR (upper whisker). Any data point, which is lower than
Q1 − q × QR and higher than Q3 + q × QR, is considered a
mild outlier for q = 1.5 (black dots) and an extreme outlier for
q = 3.0 (open dots).108 We have applied this analysis when at
least more than 7 data points were available.
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All vibrational mode and electron density calculations were
carried out with the program package COLOGNE2016,109

whereas for the DFT and the GEBF calculations local versions
of the program package Gaussian09110 were used. All MD
simulations were performed with the AmberTools15 pack-
age.111 Difference densities were plotted with the program
Multiwfn.112

■ THE H-BONDING NETWORK IN WATER CLUSTERS
The H-bond between a D- and an A-molecule can be
characterized by the notation DcD(ia,jd)−AcA(ka,ld) where
integers ia, jd, ka, and ld give the peripheral (external) H-
bonds directly embedding the targeted H-bond, i.e. the
acceptor (a) and donor (d) H-bonds of D and A, which for
the D or A water molecule are normally equal to or smaller
than 2. The superscripts cD and cA are the coordination
numbers of O(D) and O(A), respectively, which vary between
3 and 4 in the case of the 50-mers. Hence, D4(20) − A3(02) (or
in short (20-02)) denotes the H-bond with a D water molecule
functioning as an acceptor for 2 external (=peripheral) H-bonds
(its O atom coordinates with 4 H via normal or H-bonding; cD
= 4) and an A water molecule that itself is functioning as a
double donor for 2 other external H-bonds (cA = 3). This
situation is sketched in the third row, second column of Figure
1. In the equilibrium geometry of the 50-mers, each D-molecule
and each A-molecule are found to undergo one of the four
possible interactions: 1) 10; 2) 11; 3) 20; 4) 21, which leads to
a total of 16 = 42 different H-bond interactions such as 10-01,
10-02, 10-11, 10-12, ··· 21-12, where we have used as a
reference the relatively strong 10-01 H-bond of cyclic (H2O)6.
The largest number of peripheral H-bonds is realized for the H-
bond D4(21) − A4(12), which has for both the D and A
molecule 2 + 2 = 4 H-bonds and by this (ia + jd) + (ka + ld) = 3
+ 3 = 6 peripheral H-bonds influencing the targeted D−A H-
bond. Figure 1 contains additional information, which will be
discussed below. In passing, we note that in liquid water,
contrary to the equilibrium situation of a 50-mer, other relative
weak H-bonds or no H-bonds at D and/or A are observed so

that for each water molecule 6 rather than 4 different H-bond
arrangements become possible leading to a total of 62 = 36 H-
bond types (see Figure S1 in the SI). The complete set of H-
bond types will be discussed in Section 4. Finally, it has to be
mentioned that similar notations on how to characterize
different types of H-bonding in water clusters have been used in
the literature (see Figure S1 of the SI for a relationship between
these and the current notation).42,113−115

The numbering of atoms for the almost spherical structures
of the four 50-mers is given in Figures S2−S5 of the SI. It is
obvious that the water molecules located at the outside of the
sphere have a smaller number of H-bonds than those water
molecules positioned closer to the center of the 50-mer. In the
four 50-mers A, B, C, and D, a total of 350 H-bonds
(87,88,88,87) are found, which account for 15 of the 16 types
of H-bonds shown in Figure 1. The 10-01 H-bond is
topologically only possible in isolated cyclic water clusters as
in (H2O)6 that we have used as a reference. In addition to the
H-bond types of Figure 1, there are 20 H-bonds which were not
found for the 50-mers but will be discussed in connection with
the MD simulations. In Table S1 of the SI, all H-bonds
identified for clusters A, B, C, and D are characterized by the
R(H···O) distance, the local stretching force constant ka(H···
O), the associated local stretching frequency ωa(H···O), the
BSO value n(H···O), and the O−H···O angle α.
As one can see from the H-bond data (Table S1 in the SI,

Figure 2), different types of H-bonding differ significantly in
their number, where however their distribution is similar in the
four water clusters. The distribution of the various types of H-
bonding is nearly the same in the four 50-mers, which might be
a result of their spherical form. The average number of H-
bonds per water molecule, mav, is close to 3.5 in all cases (Table
S1 in the SI).
The most common H-bond is that of the 21-12 type

(number of peripheral H-bonds: mp(D) = 3; mp(A) = 3; in
short (3,3)), which accounts for 34.0% of all H-bonds followed
by 11-12 ((2, 3); 14.3%), 21-11 ((3,2), 12.3%), and 11-11 H-
bond ((2,2), 8.3%). The H-bond 11-02 is the least common

Figure 2. Distribution of different H-bonds in the four 50-mers A (blue), B (orange), C (red), and D (green). The H-bonds are classified according
to Figure 1 and ordered according to their frequency of appearance, which can be approximately described by an exponential dependence of the
number N of H-bonds (P: position number). See text.
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type among the water molecules ((2,2) peripheral H-bonds)
and accounts for just 1.4%. Other H-bonds such as 10-02
(0.3%), 10-11 (0.3%), 10-12 (2.6%), 11-01 (0.3%), 11-02
(1.4%), 11-22 (0.9%), 20-01 (0.3%), 20-11 (0.7%), 21-01
(2.6%), and 31-11 (1.0%) can only be found in one of the 50-
mers. In summary, there is an exponential decay of the
statistical occurrence of specific H-bonds with the number and
position of peripheral H-bonds (see below), which holds if one
considers all four 50-mers together (Figure 2).
Figure 3 provides an insight into which extent different H-

bonds can be distinguished. The intrinsic strength of the H-
bonds in the 50-mers as reflected by the BSO values varies by

50% from 0.225 to 0.425 (for comparison: 10-01 as in cyclic
(H2O)6: n = 0.399). For each type of H-bond, the average BSO
value is given by the crossing point of the curve n(ka) (top of
Figure 3) and a vertical line, which defines the range of BSO
values n for this particular type of H-bond by its length. In
some cases, a definition of the range of n-values becomes
meaningless because of the small number of H-bonds found for
a particular type. Then, a dashed line of an arbitrary length of
0.04 BSO units is used. The representation at the top of Figure
3 is complemented by a statistical analysis of the different types
of H-bonds among the 350 observed, which is given in the form

Figure 3. Top: The bond strength order (BSO) n of the H-bond given as a function of the local H-bond stretching force constant ka(H···O). H-
bonds are color-coded according to the notation of Figure 1. The average BSO value of each H-bond type is given by a vertical line where the length
of the line indicates the range of BSO values found. Dashed vertical lines indicate those types of H-bonds for which only a few examples are
observed. Bottom: The box-and-whisker diagram gives the statistical distribution of the BSO values for different types of H-bonds. For the definition
of outliers (dots and circles), see Section 2.
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of a box-and-whisker diagram (bottom of Figure 3; for an
explanation, see Section 2).
The most stable H-bonds correspond to the 20-02 type

(median: 0.411; average: 0.409; there is a linear relationship
between median and average n values; R2 = 0.96; see the SI).
They are followed by the 20-01 H-bonds (0.402), 10-02
(0.395), and 20-12 H-bonds (0.385; blue dots in Figure 3). The
green dots of the 21-12 H-bonds, which one could expect as the
strongest H-bonds (6 peripheral H-bonds) are quite frequent
but belong to the weaker H-bonds because of their large
variation from 0.269 to 0.421 with many of these bonds being
in the low strength range as a result of geometrical constraints.
If the H-bonds are ordered according to the sequence given in
Figure 1, a decline of the intrinsic H-bond strength from 10-02
to 11-12, an incline to 20-01 and 20-02, and another decline to
21-11 is found.
A H-bond turns out to be the strongest, which has just two

external H-bonds on the D and two on the A side but which
seems to guarantee both strong electrostatic and/or covalent
interactions. This is is illustrated in Figure 1 for the 20-02 H-
bond: Four peripheral water molecules polarize the electron
density from A to D as is revealed by the difference density
distribution Δρ(r) calculated for the 20-02 hexamer in Figure 4.

This is defined in the way that the extra-effect of the four
peripheral H2O molecules on the targeted 20-02 H-bond
becomes visible. The two peripheral H2O at the A side polarize
with their lp electrons the O−H bonds of A thus leading to an
increase in the density close to O1(A) and in the 20-02 H-bond
region (push-ef fect, Figure 4). The two peripheral H2O on the

D-side support this effect by pulling density from the O2(D) lp
orbitals toward their OH bonds thus helping to increase the
polarization of the OH bond of the D molecule (pull-ef fect,
Figure 4). Hence, the polarization of the electron density
distribution is in the direction of the red arrows shown for the
20-02 H-bond in Figures 1 and 4.
At this point, it is appropriate to differentiate between

physically based observables and the model quantities used in
this work. Local mode frequencies and their associated force
constants can be in principle measured.91 This is also true for
the electron density, whereas NPA charges are model quantities
connected with a special orbital model.81 Chemists explain H-
bonding in terms of covalent, exchange, electrostatic, inductive,
and dispersion interactions (see, e.g., Wang and co-workers116).
Recently, Politzer and co-workers117−119 pointed out that
according to the Hellmann−Feynman theorem120 noncovalent
interactions are purely Coulombic in nature, and, accordingly,
H-bonding might be described in this way. Although this is a
valid view, often quantities such as NPA charges, charge
transfer values, or charge delocalization energies provide a more
detailed, model-based description of H-bonding. In this work,
we will use the latter to describe covalent interactions.
Difference densities can, as a result of their construction,
reflect polarization effects although contributions from the
changes in exchange repulsion, dispersion, etc. can also play a
role. Apart from this, we will use an energy density based model
that distinguishes just between covalent and electrostatic
forces.86,87,121

Covalent versus Electrostatic H-Bonds. The covalent
contribution of the H-bond can be considered as being
dominated by a charge transfer from the lp(O1) orbital(s) to
the σ*(O2−H) orbital of the D water (see bottom of Figure 5).
The overlap between these orbitals will be maximal provided
they are suitably oriented in line with an O2HO1 angle α close
to 180° and an approach distance between (O2)H and O1 that
is smaller than the sum of the van der Waals radii (1.2 + 1.52
Å122). Covalent contributions caused by charge transfer lead to
H-bond stabilization as is reflected by the increase of the
delocalization energy ΔE(del) with the BSO value (Figure 5,
top), a more negative energy density at the H-bond critical
point rb, and an accumulation of the electron density at this
point.86,87,121

In the 50-mers investigated, the delocalization energies
ΔE(del) vary from 8 to 32 kcal/mol, whereas the corresponding
force constants vary from 0.29 to 0.41 mdyn/Å. It is striking
that the ΔE(del) values fall into two groups (with the exception
of that of type 10-11), which nicely correlate with the average
BSO values (R2 = 1.00 and 0.97; Figure 5): The stronger H-
bonds are presented by the upper line, which seems to combine
those H-bond types with ia(D) + ld(A) > jd(D) + ka(A) due to
ia = ld = 2 and jd + ka ≤ 1. Those H-bond types, which do not
fulfill these criteria, are represented by the dashed lower line in
Figure 5 (top).
It seems that the strength of the various H-bond types is

strongly influenced by the delocalization energy ΔE(del) where
of course this is only valid for the 350 H-bonds of the four 50-
mers in their equilibrium geometries and the NPA approach
used. One of the referees mentioned that for certain geometries
two lp(O) of the same O can contribute to ΔE(del) of one H-
bond. The analysis applied in this work revealed that for 79 out
of 350 H-bonds a second lp(O) → σ*(OH) contribution larger
than 3.0 kcal/mol (about one tenth of the first delocalization
energy) was encountered, i.e. in 22.5% of all H-bonds, whereas

Figure 4. Diagrams show the difference density distribution Δρ(r)
calculated for the 0.001 e/Bohr3 density surface of the hexamer
defining the 20-02 type of H-bonding (see Section 2, for details). Blue
contour lines indicate a depletion, red an increase of the electron
density distribution because of polarization. Top: side view. Bottom:
bird view.
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for 90% of all H-bonds the second lp contribution is between
0.05 and 3 kcal/mol. The perturbation theory analysis based on
the NPA model also revealed that ΔE(del) contributions
involving other than lp-orbitals are smaller than 0.1 kcal/mol,
and therefore it is reasonable to use ΔE(del) for the description
of the covalent contributions to the H-bond.
An increase of the average number of H-bonds, m(AD), from

2 to 4 (Figure 1) does not necessarily weaken the H-bond but
leads to a larger variation in the n-values because of stronger
OH···O bending, the geometric limitations in the overlap
between the lp(O1) and the σ*(O2H) orbitals, a less than
optimal charge transfer, and lower covalent contributions to H-
bonding, which might be only partly compensated by
electrostatic contributions (see 21-12 in Figures 3, top, and 6,
top).
In Figure 6 (top), the geometrical conditions for H-bonding

are compared. The box-and-whisker diagram gives the
nonlinearity of the H-bond unit O2H···O1 as measured by
the angle α. The analysis reveals that the stronger H-bonds (20-
02, 10-02, etc.) are more linear in agreement with the
requirements for maximal overlap and charge transfer. The
21-12 H-bonds have the largest variation in α (almost 40°,
Figure 6). Noteworthy is that the median values are in the
range from 164 to 173° irrespective of the H-bond considered.

Since the nonlinearity of the H-bond arrangement is closely
related to the covalent or electrostatic character of the H-bond,
we show at the bottom of Figure 6 the statistical analysis of the
energy density at the H-bond critical point, which should be
negative for a dominant covalent bond according to the
Cremer−Kraka criteria.86−88 This is qualitatively confirmed by
the diagram, which gives an ”inverted” distribution of box-and-
whisker units as compared to the diagrams in Figure 3.
Accordingly, the 20-02 H-bond has the most negative energy
density values, whereas the 21-12 H-bonds have at the same
time the most positive energy density values and the largest
variation of values.

Variation in the Strength of a H-Bond. The explanation
why the 20-02 H-bond is the strongest one has been based on
Figures 1 and 4 (polarization of the density as indicated by the
red arrows). Any deviation from this optimal arrangement leads
to a weakening of the H-bond. Using the average BSO values of
Figure 3, the following ordering according to decreasing H-
bond strength results: 20-02 > 10-01 > 20-01 > 10-02 > 20-12
> 20-11 > 21-02 > 10-11 ≈ 21-01 > 10-12 > 11-02 > 11-01 >
21-11 > 21-12 > 11-12 > 11-11 (For the cases, with a maximum
of five H-bonds per water molecule: 31-12 > 31-11 > 21-22 >
11-22, see Figure 3). This ordering can qualitatively be
reproduced if one considers that any competition of the

Figure 5. Top: The average delocalization energy ΔE(del) = ΔE(lp(O)→ σ*(OH)) is plotted as a function of the average BSO n of the H-bond. For
two different classes of H-bonds two correlation lines are obtained (not included: the 10-11 H-bond type). Bottom: The covalent contribution to the
H-bond implies a delocalization of the lone pair (lp) electrons of atom O1 (green lobe of the orbital on the right) into the σ*(OH) antibonding
orbital of the OH donor (green lobe of the orbital on the left). The energy stabilization caused by the charge transfer was determined by second
order perturbation theory and is the basis for the delocalization energies of the upper diagram.
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targeted H-bond with the second donor H-bond (as in 21-02,
Figure 1) or with another external H-bond for the lp-density of
the O(A) atom is a first order perturbation, whereas a change in
the other peripheral H-bonds either on the D or A side can be
considered as a second order perturbation (where perturbations
on the D-side seem to have a somewhat larger effect than those
on the A-side). Weighting first and second order perturbations
qualitatively by −2 and −1 and using the short notation for the
perturbation in the form |(ia, jd, ka, ld) − (20-02)| = (pi, pj, pk, pl)
(p: perturbation), the negative blue numbers in Figure 1 are
obtained (at the upper right of each H-bond arrangement).
The qualitative comparison of a 21-11 H-bond with the 20-

02 reference leads to a perturbation 01-11, which implies a

weakening of −5 (two first order and one second order
perturbation: −2 × 2−1 × 1 = −5) and thereby characterizes
one of the weakest H-bonds (#14; in Figure 1. The ranking of
each H-bond in terms of its average BSO is given by an
encircled number: 1 gives the strongest and 16 the weakest H-
bond; see also Figure 3). In this way, the ordering of most of
the 16 H-bond types is correctly predicted (exceptions are 20-
11 and 10-11; the 10-01 value is added in position 3 using the
BSO of the cyclic hexamer (H2O)6). For example, the 10-02 H-
bond has a perturbation value of 10-00, i.e. only one of the
outer H-bonds is missing thus yielding a second order
weakening of the targeted D−A H-bond of −1 and position
3 in the list of strong H-bonds.

Figure 6. Top: The nonlinearity of the H-bond arrangement as measured by the angle α = O2H···O1 is analyzed in the form of a box-and-whisker
diagram. For details of the box-and-whisker diagrams, see Section 2. Bottom: The box-and-whisker diagram gives the statistical distribution of the
energy densities (given in Hartree/Bohr3) at the H-bond critical point for different types of H-bonds. Median values given at the top of the upper
whisker are multiplied by 105.
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Utilizing the perturbation indices given for each type of H-
bond, a distortion relationship between the rows of Figure 1
can be obtained (purple numbers on the left of Figure 1).
According to these values (row 1: −1; row 2: −3; row 3:0; row
4: −2), H-bonds 20-rs (r = 0, 1; s = 1, 2) are the most stable
ones, followed by those of row 1, whereas the least stable ones
are found in row 2. This ordering is directly related to the
possible perturbations of the 20-02 arrangement, which reduce
its push−pull effect and thereby its covalent character.
The ordering of H-bonds by perturbation indices reveals that

the polarization of the electron density of D and A as caused by
the peripheral H2O molecules (Figure 4) is an important
electronic effect for the intrinsic strength of the H-bond.

Polarization causes the energy of the σ*(O2H) orbital being
lowered and that of the lp(O1) being raised thus effectively
decreasing the energy gap between these orbitals and increasing
the delocalization energy ΔE(del). In addition, electrostatic
interactions can be maximized by the polarization effect. The
analyses summarized in Figures 3 (BSO-values), 5 (delocaliza-
tion energies ΔE(del)), and 6 (top: angles α; bottom: energy
densities H(rb)) suggest that the covalent contributions to H-
bonding are important for equilibrium geometries. This of
course can be a consequence of (i) the finite size of the water
clusters, (ii) the NPA model being used, and (iii) the exclusion
of entropy effects in the current analysis.

Figure 7. Top: The bond strength order (BSO) n of the O−H donor bond given as a function of the local O−H stretching force constant. Since
each of these O−H-bonds is associated with a specific H-bond the former are identified and color-coded according to the associated H-bond (Figure
3). Bottom: A box-and-whisker diagram gives the statistical distribution of the BSO values of the various types of OH donor bonds leading to H-
bonding in the four 50-mers investigated. For details of the box-and-whisker diagrams, see Section 2.
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Donor−Acceptor Relationships. There are numerous
investigations, which use vibrational spectroscopy to describe
H-bonding123−136 and relate the strength of the O−H donor
bond to the strength of the H-bond.134,136,137 These
investigations are mostly based on infrared spectroscopy as
the weakening of the O−H donor bond in the case of H-
bonding can be easily recorded by a red-shift of the OH
stretching frequency. In a previous investigation, Freindorf and
co-workers59 have shown that the expected relationship
between the O−H donor bond and the H-bond is not fulfilled.
However, this investigation included many different H-bond

donors. The current investigation is limited to D,A interactions
between water molecules, and therefore a relationship between
the O−H donor bond and the H-bond becomes more likely.
As shown in Figure 7 (top), the BSO values of the O−H

donor bonds present in the four 50-mers vary from 0.88 to 1.00
(water molecule without any H-bonding) and beyond this to
1.03 if also those OH bonds are included that are on the
outside of the water cluster and therefore not involved in any
H-bonding (denoted HO−H in Figure 7). Although the range
of BSO values is only one-third of that of the H-bonds, the
same number of bonding situations as found for the H-bonds

Figure 8. Testing the relationship between D and A: Comparison of the local stretching force constants ka(H···O) and ka(O−H). The solid line is
given by ka(O−H) = 7.938−1.211 × ka(H···O) − 9.917 × (ka(H···O))2 with R2 = 0.72 and σ = 0.30 mdyn/Å. For the H-bond notation, see Figure 1.

Figure 9. Testing the relationship between D and A: Comparison of the distance R(H···O) and R(O−H). The solid line is given by R(O−H) =
0.952−0.018 × log[R(H···O) − 1.552] with R2 = 0.93 and σ = 0.018 Å. For the H-bond notation, see Figure 1.
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can be distinguished. Each is indicated in Figure 7 by a vertical
solid or dashed line, which gives the average BSO value of a
given O−H donor bond type that, for reasons of simplicity, is
characterized by the H-bond it is engaged in.
There is a qualitative relationship between O−H donor

bonds and H-bonds insofar as the weakest O−H donor bonds
(see 20-02 in Figure 7) are associated with the strongest H-
bonds and vice versa. This is in line with the covalent character
of the strong H-bonds, which implies charge transfer from
O2(lp) into the σ*-orbital of the donor bond. Noteworthy is

that the variation in the data points for the 20-02 donor bond is
smaller than that for the corresponding H-bond, which again is
a result of the fact that the first is primarily influenced by charge
transfer and thereby a covalent weakening effect, whereas the
latter is in addition influenced by electrostatic effects (for the
calculated energy densities of the OH donor bonds, see the SI).
Figure 7 also reveals that the various O−H donor bond types
are much closer together with largely overlapping value ranges
so that a differentiation on the basis of their average (Figure 7,

Figure 10. Testing the Badger relationship: Comparison of the local H-bond stretching force constant ka(H···O) and the corresponding distance
R(H···O). For the relationship ka = 0.648 R(O···H)2 + 3.181 R(O···H) + 3.878, R2 = 0.91 and σ = 0.023 mdyn/Å are calculated. For the H-bond
notation, see Figure 1.

Figure 11. Testing the Badger relationship: Comparison of the local O−H stretching force constant ka(O−H) and the corresponding distance R(O−
H). For the relationship ka(O−H) = −84.095 R(O−H) + 89.155, R2 = 0.98 and σ = 0.087 mdyn/Å result. For color code and notation, see Figures 1
and 7.
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Table 1. Comparison of the Total Numbers and Percentages of All Types of Hydrogen Bonds for 1000 (H2O)1000 Clusters
Determined along the MD Trajectories and Calculated with the TIP5P Force Field for an NPT Ensemble at 283 and 363 Ka

H-bond type N(283) % N(363) % Δ Δ1 Δ2
20-02 22015 1.4 25003 2.0 2988 13.6 0.6
20-01 12337 0.8 32003 2.6 19666 159.4 1.8
10-01 7585 0.5 46884 3.8 39299 518.1 3.3
10-02 13163 0.8 36261 2.9 23098 175.5 2.1
20-12 91754 5.6 37873 3.0 −53881 −58.7 −2.6
group (1) 146854 9.1 178024 14.3 31170 21.2
20-11 37676 2.3 39254 3.2 1578 4.2 0.9
21-02 106723 6.6 46078 3.7 −60645 −56.8 −2.9
10-11 24033 1.5 61427 4.9 37394 155.6 3.4
21-01 57788 3.6 59326 4.8 1538 2.7 1.2
10-12 57310 3.5 58129 4.7 819 1.4 1.2
11-02 46680 2.9 54498 4.4 7818 16.7 1.5
group (2) 330210 20.4 318712 25.7 −11498 −3.5
11-01 26433 1.6 71123 5.7 44690 169.1 4.1
21-12 471376 29.0 72019 5.8 −399357 −84.7 −23.2
21-11 184060 11.3 75541 6.1 −108519 −59.0 −5.2
11-12 210040 12.9 90199 7.2 −119841 −57.1 −5.7
11-11 85691 5.3 96990 7.8 11299 13.2 2.5
group (3) 977600 60.1 405872 32.6 −571728 −58.5
groups (1+2+3) 1454664 89.6 902608 72.6 −552056 −38.0
00-00 138 <0.05 3852 0.3 3714 2691.3 0.3
00-01 839 0.1 11926 1.0 11087 1321.5 0.9
00-02 1399 0.1 9271 0.7 7872 562.7 0.6
00-10 309 <0.05 4499 0.4 4190 1356.0 0.4
00-11 2696 0.2 16510 1.3 13814 512.4 1.1
00-12 6310 0.4 15468 1.2 9158 145.1 0.8
01-00 351 <0.05 5078 0.4 4727 1346.7 0.4
01-01 2311 0.1 15569 1.2 13258 573.7 1.1
01-02 3912 0.2 12064 1.0 8152 208.4 0.8
01-10 869 0.1 5874 0.5 5005 575.9 0.4
01-11 7554 0.5 22058 1.8 14504 192.0 1.3
01-12 17432 1.1 20618 1.7 3186 18.3 0.6
10-00 1197 0.1 14940 1.2 13743 1148.1 1.1
10-10 2630 0.2 16292 1.3 13662 519.5 1.1
11-00 3804 0.2 22891 1.8 19087 501.8 1.6
11-10 9641 0.6 25610 2.1 15969 165.6 1.5
20-00 1824 0.1 10046 0.8 8222 450.8 0.7
20-10 4060 0.2 10295 0.8 6235 153.6 0.6
21-00 8576 0.5 18875 1.5 10299 120.1 1.0
21-10 19580 1.2 19768 1.6 188 1.0 0.4
group (4) 95432 5.9 281504 22.6 186072 195.0
22-00 32 <0.05 146 <0.05 114 356.3 <0.05
31-00 305 <0.05 846 0.1 541 177.4 0.1
22-01 205 <0.05 367 <0.05 162 79.0 <0.05
31-01 1960 0.1 2697 0.2 737 37.6 0.1
31-10 465 <0.05 754 0.1 289 62.2 0.1
22-10 93 <0.05 191 <0.05 98 105.4 <0.05
22-02 242 <0.05 286 <0.05 44 18.2 <0.05
31-02 3697 0.2 2217 0.2 −1480 −40.0 <0.05
22-11 628 <0.05 659 0.1 31 4.9 0.1
31-11 4541 0.3 2826 0.2 −1715 −37.8 −0.1
22-12 1212 0.1 533 <0.05 −679 −56.0 −0.1
31-12 11712 0.7 2849 0.2 −8863 −75.7 −0.5
group (5) 25092 1.4 14371 1.1 −10721 −42.7
00-22 382 <0.05 1169 0.1 787 206.0 0.1
00-13 11 <0.05 82 <0.05 71 645.5 <0.05
01-22 1230 0.1 1624 0.1 394 32.0 <0.05
10-22 2915 0.2 3699 0.3 784 26.9 0.1
01-13 32 <0.05 94 <0.05 62 193.8 <0.05
10-13 130 <0.05 323 <0.05 193 148.5 <0.05
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top) or median values (bottom) is difficult. Just 3 O−H donor
bonds can be clearly distinguished (20-02, 20-01, HO-H).
In Figures 8 and 9, local stretching force constants ka and

distances R of the two interacting bonds are correlated. There is
a quadratic relationship in the case of the force constants which
is poorly fulfilled (R2 = 0.72) thus revealing that the intrinsic
strength of the O−H donor bond cannot provide a reliable
measure for the intrinsic strength of the H-bond. Scattering of
the data points is caused (among others) by those H-bonds
involving 4-fold coordinated O atoms (e.g., green and purple
dots both encircled in black).
For the corresponding distances, the scattering of data points

is reduced (R2 = 0.93, Figure 9), which might provide a basis to
predict H-bond distances from known O−H bond lengths. The
changes in the H-bond distance are 14 times larger than those
in the O−H donor bond length. The corresponding force
constants change as 1:7, which means that the R values are
more sensitive than the corresponding ka values in the case of
the H-bonds, whereas the R-variation in the donor bonds is
much smaller than that of the local force constants. This leads
to the fact that the scattering is smaller (due to the smaller
R(O−H) variation) and a quantitative distance relationship can
be found. The latter can be related to a change in the H-bond
mechanism. For strong H-bonds, there is a linear relationship
with a dominant covalent interaction between donor and
acceptor bonds. For weak H-bonds, the electrostatic bonding
mechanism becomes more important thus leading to a second
linear R-relationship.
We conclude that the electrostatic contributions, especially in

the case of the weak H-bonds, make it difficult (even in the case
where covalent contributions are significant) to predict the
properties of the H-bonds once those of the donor bonds are
known. The fact that the O−H donor bond is primarily
influenced by covalent effects and that the corresponding H-
bonds are sensitive to both covalent and electrostatic effects is
the reason why the corresponding force constants (or
alternatively the BSO values) poorly correlate with each

other. Previous claims to this extent were based on a small
number of data points so that reliable conclusions could not be
made.

Badger’s Rule. The Badger rule implies that there is a
power relationship between bond length and stretching force
constant.97 The rule was originally based on observations made
for diatomic molecules97,98 and was later generalized to
covalent bonding in polyatomic molecules.99 One might expect
that the Badger rule is largely fulfilled for the OH donor bonds
and less for the H-bonds themselves. Figures 10 and 11 show
the two different situations.
There is a linear relationship between distance R and

stretching force constant ka in both cases, however associated
with some scattering of data points in the case of the H-bonds
(R2= 0.91). Figure 10 reveals that the scattering is caused
predominantly by the 21-12 H-bonds (green dots in black
circles) and the H-bonds involving pentacoordinated O
(triangles), but even for the strongly covalent 20-02 H-bonds
(brown dots in black circles), a linear relationship between R
and ka cannot be obtained. Obviously, the generalized Badger
rule is for H-bonding of limited value.
The situation is better in the cases of the covalent O−H

donor bonds (Figure 11). Deviations from a linear relationship
(R2 = 0.98) are found again for the O−H bonds involved in 21-
12 H-bonding (in short: 21-12 O−H bonds). In general, those
bonds, which involve tetra- or pentacoordinated O atoms, lead
to scattering.

■ WHY DOES WARM WATER FREEZE FASTER THAN
COLD WATER?

The fact that warm water freezes faster than cold water is
known in the literature as the Mpemba effect according to its
first discovery by Mpemba.138 This macroscopic phenomenon
has been investigated many times and explained in many
different ways referring, e.g., to the temperature gradient in the
liquid, impurities in the water, dissolved oxygen and carbon
dioxide, evaporation from the freezing liquid, difference in heat

Table 1. continued

H-bond type N(283) % N(363) % Δ Δ1 Δ2
11-13 441 <0.05 442 <0.05 1 0.2 <0.05
20-13 212 <0.05 211 <0.05 −1 −0.5 <0.05
20-22 3035 0.2 2008 0.2 −1027 −33.8 <0.05
12-22 163 <0.05 167 <0.05 4 2.5 <0.05
21-13 953 0.1 393 <0.05 −560 −58.8 −0.1
30-22 34 <0.05 48 <0.05 14 41.2 <0.05
group (6) 9538 0.6 10260 0.7 722 7.6
22-22 224 <0.05 111 <0.05 −113 −50.4 <0.05
22-21 80 <0.05 70 <0.05 −10 −12.5 <0.05
31-22 286 <0.05 129 <0.05 −157 −54.9 <0.05
31-21 75 <0.05 93 <0.05 18 24.0 <0.05
group (7) 665 0.0 403 0.0 −262 −39.4
groups (5+6+7) 35295 2.0 25034 1.8 −10261 −29.1
group (8) 41475b 2.5 36534c 2.9 −4941 −11.9
total 1626866 100.0 1245680 100.0 −381186 −30.6

aIn the first column the type of H-bonding is given in the short form introduced in the text. The table is partitioned into 5 groups: 1) 16 types of H-
bonds discussed in connection with the 50-mers; 2) group 2 extends from 16 to the 36 standard types of H-bonds in general possible; 3) situations
where the donor water (group 4), the acceptor water (group 5), or both (group 6) are involved in 5 H-bonds. N(T) denotes the number of H-bonds
at a given temperature T, Δ denotes the difference N(363) − N(283), Δ1 = 100[N(363) − N(283)]/N(283) is the percentage change of a given
type of H-bond upon raising T to 363 K, Δ2 = η(363) − η(283) is the difference between the percentage values η = 100N(ij−kl)/N of a specific H-
bond type at a certain T. bThese groups include H-bond types with less than 0.05%, e.g., 00-03, 00-20, 00-21, 01-03, 01-20, 01-21, 01-23, 01-31, 01-
32, 02-00, etc. (see Table S6, SI). cThese groups include H-bond types with less than 0.05%. e.g. 00-03, 00-13, 00-14, 00-20, 00-21, 00-22, 00-23, 00-
31, 00-32, 01-03, etc. (see Table S6, SI).
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loss, supercooling (lowering of liquid water below the freezing
point), thermal convection currents, etc.60−66 Most of these
explanations had to be revoked, which had to do to some extent
with the practical difficulties of having exact, reproducible
conditions for the experiment (size, shape, and material of the
freezer cabinet, circulation of air above the cooling liquid,
properties of the cooling system; balancing of the volume,
conditions of supercooling, etc.).60−66

Attempts have been made to explain the Mpemba effect with
the help of MD simulations and by relating microscopic details
to complex macroscopic phenomena such as the thermal
convection or supercooling.139 Analyzing the results of the MD
simulations of liquid water as modeled by a cluster of 1000
water molecules at 283 and 363 K (with control calculations at
308 and 378 K) over a time of 2 ns and utilizing the insight
gained into H-bonding we will offer here a molecular
explanation of the Mpemba effect directly being based on the
interplay of strong (mostly more covalent) and weak (mostly
more electrostatic) contributions as they emerge from the four
model clusters and the MD simulations (Tables 1, 2, Tables
S9−S12 in the SI, Figures 12, 13).
A total of 1.627 (283 K), 1.496 (308 K), 1.246 (363 K), and

1.182 million H-bonds (378 K) has been investigated where the
analysis at 283 and 363 K is presented here. Increasing the
temperature T from 283 to 363 K leads to a decrease of the
average number of H-bonds per water molecule, mav, from
3.254 to 2.491. This decrease can be analyzed utilizing the
various types of H-bonds found for the 50-mers where one has
to consider that in liquid water there are more possibilities for
H-bonding than in the equilibrium geometries of the 50-mers.
The 36 possible H-bonds (see Figure S1 of the SI) are all found
in the MD simulations of liquid water using (H2O)1000 clusters
as suitable models for the analysis (see Table 1, Figure 12, and
the SI). In the bar diagram of Figure 12 (top), the 16 types of
H-bonds of Figure 1 are ordered according to the intrinsic
strength calculated for the 50-mers, whereas the 20 remaining
ones (bottom, group 4 in Table 1) are ordered according to
Figure S1 in the SI. The latter include 11 types for which D or/
and A water do not have any other H-bond than the targeted
one, which means that these are throughout relatively weak H-
bonds. Their numbers should increase when H-bonds are
broken, for example as a result of a T increase. This is
confirmed by the significant increase of the group 4 H-bonds at
363 K by 186072 (Table 1 and red bars in the lower part of

Figure 12). In total, about 381000 H-bonds are lost for the
increase in T.
Table 1 gives details on the distribution of H-bonds at the

two different T values (for other T, see the SI). Almost 90%
(1454664 H-bonds) of all H-bonds analyzed at 283 K belong to
the 16-types discussed in connection with the 50-mers. If one
uses the partitioning in strong, normal, and weak H-bonds
discussed in Section 3, then 9.1% of all H-bonds (group 1 in
Table 1: 20-02, 20-01, 10-01, 10-02, 20-12) can be considered
as being strong and 60.1% as being weak (group 3 in Table 1:
11-01, 21-12, 21-11, 11-12, 11-11) whereas the rest of 20.4% is
of normal strength (group 2 in Table 1).
5.9% (95432) of all H-bonds belong to the group of the 20

H-bond types with either terminal water (dangling H-bonds) or
a change in the position of the peripheral H-bonds that disturbs
the flow of charge from the A water to the D water (group 4 in
Table 1). The latter is supported by ia0−0ld combinations such
as in 20-02 or 10-01 but hindered in 0jd − 0ld or ia0 − ka0 H-
bond types as in 01-01, 10-10, etc. (see Figure S1).

Bifurcated H-Bonds and Unusual Coordination Num-
bers. If a H-bond is associated with two or more acceptor
atoms O2, one speaks of bifurcated H-bonds.107 We note that
in the literature this term is used sometimes also for O atoms
that have a coordination number higher than 4 (penta- or
hexacoordinated O). We will not follow this more general use of
the term but distinguish here clearly between bi- (tri)furcated
H-bonds and H-bonds involving penta (hexa)-coordinated O
atoms. For the former, we did not find any examples in the 50-
mers. Using the distance criterion described in Section 2, some
of the OH donor bonds had to be assigned to acceptor O
atoms that were already hosting two H-bonds. This increased
the coordination number to 5. Four different types of H-
bonding involving pentacoordinated water molecules were
observed, which according to their intrinsic strength can be
ordered as follows: 31-12 (7) > 31-11 (3) > 21-22 (12) > 11-22
(3) (their numbers are given in parentheses; Figure 3).
Increase of the coordination number of the D atom O2 by

increased acceptance of peripheral H-bonds leads to a
strengthening of the targeted H-bond as the polarization of
the charge distribution at O2 is increased (see 31-12 and 31-11
in the upper curve of Figure 5). This causes a stronger covalent
contribution to the H-bond under investigation. However, if
the targeted H-bond has to compete with two other H-bonds as
in 21-22 or 11-22 for the lp(O1) electrons, a relatively weak H-

Table 2. Comparison of the Numbers and Percentages of Bifurcated Hydrogen Bonds Found for 1000 (H2O)1000 Clusters at 283
and 363 Ka

H-bond type with bifurcation N(283) % N(363) % Δ Δ1 Δ2
22-00 32 <0.05 146 <0.05 114 356.3 <0.05
22-01 205 <0.05 367 <0.05 162 79.0 <0.05
22-10 93 <0.05 191 <0.05 98 105.4 <0.05
22-02 242 <0.05 286 <0.05 44 18.2 <0.05
22-11 628 <0.05 659 0.1 31 4.9 0.1
22-12 1212 0.1 533 <0.05 −679 −56.0 −0.1
group (4) 2412 0.1 2182 0.1 −230 −9.5
12-22 163 <0.05 167 <0.05 4 2.5 <0.05
group (5) 163 <0.05 167 <0.05 4 2.5
22-22 224 <0.05 111 <0.05 −113 −50.4 <0.05
22-21 80 <0.05 70 <0.05 −10 −12.5 <0.05
group (6) 304 <0.05 181 <0.05 −123 −40.5
total (4+5+6) 2879 0.1 2530 0.1 −349 −12.1

aFor explanations, see Table 1. Bifurcated H-bonds can only be found for groups 4, 5, and 6 in Table 1.
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bond with a large variation in its BSO value due to electrostatic
contributions results (Figure 5).
In the liquid water model used, all 36 + 71 = 107 different

types of H-bonds with water containing pentacoordinated O
(groups 5, 6, and 7 in Table 1; for a full account see Tables S7
and S8 of the SI) are found. Two different topologies can lead
to pentacoordination: Either an O atom of the water molecule
accepts 3 rather than 2 H-bonds (see above) or one of the
donor H-bonds is bifurcated, i.e. it is equally H-bonded to two
different O(A) atoms (Tables 2 and S8 of the SI). In the case of
group 5, just 1.4% of the H-bonds (25092) is bifurcated, for

group 6 just 9538 (0.6%), and for group 7 not more than 665
(Tables 2, S8, and Figure 13). Most of the 71 possible
bifurcated H-bond types are found in the water model used
(Table S8 of the SI) although their number (2969, Table S8) is
relatively small.
The decrease in the average number of H-bonds with

increasing T results from the fact that for higher T weak H-
bonds such as 21-12 are cleaved (Figure 12, top right), which
leads to the generation of fragments with terminal water
(dangling H-bonds; Figure 12, bottom). Noteworthy is the fact
that at 283 K only 2274 (0.22%) are not H-bonded (free),

Figure 12. Percentages of the 36 types of different H-bonds in liquid water as modeled by 1000 (H2O)1000 clusters for the two different temperatures
283 (blue bars) and 363 K (red bars). The numbers at the blue bars give the actual H-bond count for a given type. Top: The 16 types of H-bonds
discussed in connection with the 50-mers ordered according to strength. Bottom: The remaining 20 types of H-bonds not found for the 50-mers
have all percentages ≤2%. See Figure S1 and Tables S9−S12 of the SI.
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whereas this number increases by a factor of 10 to 23494
(2.35%) at 363 K. Hence, the T increases substantially the
number of water molecules with dangling H-bonds. The H-
bonds being cleaved are, as found in this work, those with
predominantly electrostatic nature. There is a significant
increase in the percentages of the strong H-bond types (20-
02, 20-01, 10-01, 10-02). This means that at higher T more
water clusters with strong H-bonds remain (percentage-wise),
whereas those with dangling H-bond increase, Figure 14),
which can optimally recombine to form relatively strong
covalent H-bonds as the geometrical prerequisites for covalent
H-bonding are better fulfilled in smaller clusters.
The hexagonal lattice of ice is easily formed by these

fragments because the fragments can easily adjust to the
tetragonal environment of each O atom in solid ice (Figure 14).
In cold water, the average number of H-bonds, mav is higher.
Both covalent and electrostatic H-bonds can be expected. The
geometrical arrangement of the H-bonds is not optimal in those
cases where both electrostatic and covalent bonding is possible
(Figure 14). The electrostatic bonds have to be cleaved first
and to rearrange before the water clusters can form the
hexagonal ice lattice (Figure 14). This costs time and energy
and is the reason why cold water freezes more slowly than
warm water.
At this point, a caveat is necessary. The time scale of the

nucleation process leading to the solid structure of ice is much
larger than the time scale of H-bond cleavage or formation.
However, cluster fragments with strong H-bonds are ideal for
the nucleation process and thereby will accelerate freezing of
water, whereas the larger mav at lower T caused by a dense H-
bond net with weak and strong H-bonds will slow down the
nucleation process because weak, nonoptimal H-bonds have to
be cleaved first. To prove this point MD simulations up to μs
will be needed in the future.

■ CONCLUSIONS
The modeling of liquid water with 50-mers and 1000-mers
using both quantum chemistry and MD simulation has led to a
set of interesting results.
1) For the 50-mers investigated, a subset of 16 H-bond types

(out of 36 possible H-bond types for a coordination number cO
≤ 4, excluding H-bond bifurcation) is sufficient to characterize
the H-bond network of a 50-mer in its equilibrium geometry.
For cO ≤ 5 (including pentacoordinated O with and without
bifurcation), 36 + 71 = 107 additional H-bond types can be
distinguished, which were found (with a few exceptions) among
the 1.6 million H-bonds analyzed in the course of the MD
simulations of this work. For the 50-mers, only a few H-bonds
with cO = 5 (25 out of 350) were identified, which involved
pentacoordinated O atoms.
2) Utilizing the local stretching force constant and difference

electron density distributions Δρ(r), we could determine the
strongest type of H-bond to be the cooperative push−pull bond
20-02, which has an average BSO value of 0.41 and is,
compared to the total range of BSO values from 0.22-0.42, at
the upper limit of what seems to be possible in a water cluster.
The push−pull effect of the peripheral water molecules has
been verified by showing a suitably defined Δρ(r) calculated for
the van der Waals surface of a 20-02 hexamer.
3) Any perturbation of the 20-02 H-bond by competition

with other H-bonds (first order perturbations) or changing the
pushing (pulling) H-bonds (second order perturbations) causes
a weakening of the H-bond, which can be qualitatively analyzed.
A rational explanation of the ordering of the H-bond types
found in the 50-mers according to strength has been given in
this work.
4) For the 50-mers, two linear relationships between the

average intrinsic strength n and the average delocalization
energy ΔE(del) (caused by charge transfer from lp(O1) to
σ*(O2H) ; Figures 3 and 5) could be derived. Since the charge
transfer relates to the covalent character of a H-bond, it is

Figure 13. Percentages of bifurcated H-bonds in liquid water as modeled by 1000 (H2O)1000 clusters for the two different temperatures 283 (blue
bars) and 363 K (red bars). The numbers at the blue bars give the actual H-bond count for a given type. First third up to dashed vertical line: D
molecules with 5 H-bonds (m(D) = 5); second third: A molecules with m(A) = 5; last third: both D and A have m = 5. See Table 2.
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reasonable to say that, within the model used, the covalent
contributions influence the intrinsic strength of the various H-
bond types. A rational has been given to explain the linear
relationships; however, additional investigations are needed to
verify the trends of ΔE(del) on a quantitative basis. An
alternative measure is provided by the energy density at the H-
bond critical points, which suggests that covalent and
electrostatic interactions both play a role. With increasing
nonlinearity of the H-bonding unit the electrostatic character
increases.
5) Pentacoordination of an O atom does not necessarily lead

to a weakening of the targeted H-bond. For example,
converting a 21-12 H-bond into a 31-12 H-bond increases
the polarization of the donor bond and thereby the cooperative
effects so that the BSO value of the targeted H-bond raises by
almost 21.6%. However, when the targeted H-bond gets a third
competitor for the O1 electron lone pairs as for the 11-22 or
21-22 H-bonds, a significant weakening of the H-bond results.
6) In the MD simulations, almost all of the 107 additional H-

bond types for cO = 5 were found (together <4%) of which a
subset of 0.1% was due to H-bond bifurcation.
7) For dominantly covalent H-bonds, there is an inverse

relationship between the strength of the H-bond and that of the
donor bond (Figure 8), which is of more qualitative nature.

When using O−H and H···O distances, a more quantitative
relationship results (Figure 9). The analysis reveals that there is
a covalent and an electrostatic H-bonding mechanism active.
8) The Badger rule for the H-bonds and O−H donor bonds

investigated is only semiquantitatively fulfilled where the 21-12
H-bonds are the major cause for data point scattering.
Scattering is smaller for the relationship for the O−H donor
bonds because the covalent character of H-bonding prevails in
this case.
9) Based on the quantum chemical analysis of the 50-mers

and the MD simulations leading to the investigation of 1.6
million H-bonds, the distribution of the most important H-
bonds could be determined for different T and ordered
according to their strength. This was possible because the
majority of H-bonds identified belongs to the group analyzed
for the 50-mers. The analysis of the MD simulation results
leads us to propose a molecular explanation for the Mpemba
effect. In warm water, the weaker H-bonds with predominantly
electrostatic contributions are broken, and smaller water
clusters with 20-02 or related strong H-bonding arrangements
exist that accelerate the nucleation process that leads to the
hexagonal lattice of solid ice. Therefore, warm water freezes
faster than cold water in which the transformation from
randomly arranged water clusters costs time and energy.

Figure 14. Explanation of the Mbempa effect: In warm water (upper left corner), weak, electrostatic H-bonds are already broken so that only those
cluster units with strong covalent H-bonding exist, which more easily arrange (lower left corner) as is needed for the formation of the hexagonal ice
lattice (lower right corner). In cold water (upper right corner), many electrostatic H-bonds (red wiggles) still exist, which have first to be broken to
form the ice lattice, which costs time and energy.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00735
J. Chem. Theory Comput. 2017, 13, 55−76

7251



Future studies prolonging the MD simulations to the μs
range will help to verify the proposed molecular explanation of
the Mpemba effect. Apart from this, the possibility of full-
dimensional quantum simulations at a given T and a given
pressure has to be considered.55 There is also a necessity to
provide further evidence for the push−pull effect of peripheral
water molecules strengthening the targeted H-bond. Work is in
progress to do this for the most frequent H-bond types.
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a b s t r a c t

Theoretical studies of hydrogen-bonding based on cluster models tend to overlook the peripheral mono-
mers which are influential. By revisiting thirteen hydrogen-bonded complexes of H2O, HF and NH3, the
‘‘push-pull” effect is identified as a general mechanism that strengthens a hydrogen bond. Enhanced
LpðXÞ! r#ðX0 $ HÞ charge transfer is proved to be the core of the ‘‘push-pull” effect. The charge transfer
can convert an electrostatic hydrogen bond into a covalent hydrogen bond.

! 2017 Elsevier B.V. All rights reserved.

1. Introduction

Hydrogen bonding (H-bonding) is one of the most important
intermolecular forces found in condensed phases, especially in
the case of liquid water. It decides on various macroscopic proper-
ties including density, boiling point and melting point. In the
recent years, various quantum chemical studies attempted to look
into the H-bonding by simulating real systems with the help of
cluster models consisting of 2–20 monomers [1–11]. Various com-
putational methods have been used for the analysis of H-bonds
including binding energy calculation [1,6–8,10], energy decompo-
sition analyses [12] or the quantum theory of atoms in molecules
and the natural bond orbital (NBO) analysis [13]. However, a dee-
per analysis of how peripheral monomers around a dimer influence
the targeted H-bond is often missing.

Experimental studies on the OH stretching frequency shift in
small water clusters, supported by DFT calculations, have sug-
gested that the formation and strength of a particular H-bond is
influenced by cooperative effects from peripheral H-bonds
[14,15]. However, a caveat is appropriate. Experimentally or theo-
retically derived normal vibrational modes and force constants are
delocalized because of electronic and mass-coupling [16]. There-
fore, are not suited as direct measure of bond strength [17]. We
present in this work a reliable descriptor of the intrinsic H-bond
strength based on local vibrational modes, first introduced by Kon-
koli and Cremer [16,18]. These local modes have been proved to be
the local equivalent of the delocalized normal vibrational modes
via an adiabatic connection scheme (ACS), in which a one-to-one
relationship has been proved between 3N $ L normal modes and

a non-redundant set of 3N $ L local modes (N: number of atoms;
L: number of translations and rotations) [18]. The local stretching
force constant ka is the appropriate tool to describe the intrinsic
bond strength of any chemical bonding situation [19,17], including
non-covalent bonding [20,21] like hydrogen bonds [22,23]. Since ka

is directly related to the electronic structure of a molecule, it
absorbs any neighboring influences on the bond in question, such
as cooperative effects [23].

In this work, we have studied thirteen clusters made up of
monomers of H2O, HF and NH3 molecules. A new and generally
applicable mechanism which we name as push-pull effect is identi-
fied to strengthen H-bonds. This push-pull effect can have a strong
impact on the H-bonding mechanism in several cases. The objec-
tives of this work are to answer the following questions. (i) What
is push-pull effect in H-bonding? (ii) How can the push-pull effect
strengthen a H-bond? (iii) How is the push-pull effect related to
the charge transfer from the H-bond acceptor to the H-bond
donor? (iv) To what extent can the push-pull effect change the nat-
ure of a H-bond with regard to its covalent or electrostatic
character?

The computational methods used in this work are described in
the second section. The third section presents the results and dis-
cussion, while conclusions are made in the final section.

2. Computational methods

Optimized geometries of all clusters investigated in this work
(see Fig. 1) and their vibrational frequencies as well as normal
modes were calculated using the xB97X-D density functional. This
functional was chosen because it describes non-covalent interac-
tions in a reliable way taking care of dispersion and other van
der Waals interactions [24–27]. Pople’s triple zeta basis set 6-311
++G(d,p) with diffuse functions for O, F, N and H atoms was used.

http://dx.doi.org/10.1016/j.cplett.2017.07.065
0009-2614/! 2017 Elsevier B.V. All rights reserved.
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This basis set provides an accurate description for these molecular
clusters [28–30]. The DFT calculations were conducted using a
pruned (99,590) UltraFine integration grid [31,32] and the geome-
try optimization was imposed with a tight convergence criterion to
guarantee the accurate calculation of the Hessian matrix which
was used for adiabatic local mode analysis.

The geometries of two additional small water clusters (hexamer
and tetramer) shown in Fig. 2 were constructed based on the
geometry of water dimer[1] in a1, constrained by Cs symmetry.

The electron density was calculated at the xB97X-D/6-311G+
+(d,p) level of theory. The charge transfer was analyzed based on
calculated NPA charges [33,34].

The intrinsic bond strength of the H-bond was determined by
the local H-bond stretching force constant ka [22,17] derived from
the corresponding local vibrational mode [16].

The covalent character of the H-bonds was estimated via the
calculation of the delocalization energy DEdel, which can be under-
stood as the stabilization energy due to the charge transfer from
one or more (if present) lone pair orbital(s) of the X atom of the
hydrogen bond acceptor to a r# antibonding X0-H orbital of the
hydrogen bond donor through the overlap between the two orbi-

tals. The amplitude of DEdel was characterized for a given X. . .X0-
H interaction by a second order perturbation theory analysis of
the Fock matrix in the NBO basis [34].

The nature of the H-bond was further characterized by the local
energy density Hb at the (3,-1) bond critical point rb(BCP) [35,36].
The Cremer-Kraka criteria were applied to quantitatively identify
the covalent bonding character: (i) A BCP and zero-flux surface
must exist between the two atoms, for which chemical bonding
is expected (necessary condition). (ii) The local energy density Hb

must be less than zero in the case of covalent bonding (sufficient
condition). Positive values of Hb indicates that the bond in question
is dominated by electrostatic interactions [37]. This descriptor has
been extensively used in the studies of chemical bonds to deter-
mine whether a bond is covalent or non-covalent [38,39], including
pnicogen bonds, [21] halogen bonds, [20] and hydrogen bonds
[1,22,23].

Apart from characterizing the charge transfer within the
H-bond dimer using the NBO analysis, we also calculated the
difference density distribution DqðA . . .B; rÞ ¼ qðAB; rÞ $ ðqðA; rÞþ
qðB; rÞÞ[40], to describe the formation of the complex AB where a
hydrogen bond is found between monomers A and B with regard

Fig. 1. Schematic presentation of the geometries of cluster a1–c2. Red, cyan, blue and white spheres stand for oxygen, fluorine, nitrogen and hydrogen atoms respectively.
Yellow dashed lines indicate the hydrogen bonds described in Table 1. Blue dashed lines in a5–a9 are used to represent the peripheral hydrogen bonds responsible for push-
pull mechanism. The components, labels and symmetry of each cluster is also given. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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to the change of the electron density distribution. The push-pull
effect caused by peripheral molecules can be made visible with
the help of the above formula. Besides taking only one monomer
as the H-bond donor(D) and one as acceptor(A) for the hydrogen
bond in question, we defined a generalized H-bond donor (D⁄)
and acceptor (A⁄) which include D and A respectively but can have
more than one monomer. Within the complex of D⁄ or A⁄, the
monomers are connected via peripheral hydrogen bonds, which
need to be distinguished from the targeted H-bond in the center.
In this way, the influence of these peripheral monomers on
the central DA dimer complex in H-bonding can be assessed
from Dqðpush$ pullÞ ¼ DqðD# . . .A#; rÞ $ DqðD . . .A; rÞ = qðD#A#; rÞ$
qðD#; rÞ $ qðA#; rÞ $ qðDA; rÞ + qðD; rÞ þ qðA; rÞ [23]. As an example,
the molecular cluster a4 in Fig. 4 has its polarization effect on the
bottom hydrogen bond arising from the four peripheral waters
visualized accordingly.

All vibrational modes as well as the local mode analysis were
carried out with the program package COLOGNE2017 [41],
whereas for the DFT calculations, the program package Guassian09
[42] was used. Difference densities and NBO orbitals were plotted
with the Multiwfn program [43].

3. Results and discussion

Fig. 1 summarizes the 13 molecular clusters investigated in this
work labeled with a1–a9, [44] b1–b2 and c1–c2. In each cluster,
we have one target H-bond in question with regard to the push-
pull effect shown in yellow dashed lines. For clusters with high
symmetry, we have several symmetry equivalent target H-bonds
[3–5,2]. Properties of the target H-bond are summarized in Table 1
including the notation of H-bond type, bond length R, local

Fig. 2. Electron difference density distribution Dq shown as the '0.0002 e/Bohr3 isosurface. Blue surface indicates electron depletion, red is increased electron density region.
Top: 20–02 type H-bond in the center with a push-pull effect. Bottom: 01–10 type H-bond in the bottom with an antipush-antipull effect. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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stretching force constant ka, the delocalization energy DEdel and
local energy density Hb. Fig. 2 illustrates the push-pull effect using
the electron density difference (EDD) of the H-bond in water. The
opposite effect, coined as antipush-antipull effect is also shown.
In Fig. 3, the NBOs responsible for the dominating
lpðXÞ! r#ðX 0 $ HÞ charge transfer leading to stabilization are
shown for the H-bond donor and also acceptor within H-bond
dimer for a1, b1 and c1. In Fig. 4, the push-pull effect for a specific
H-bond is visualized via electron density difference maps for the
hexamer rings of H2O, HF and NH3(clusters a4, b2 and c2
respectively).

3.1. Different types of H-bonds

We showed in previous work [23] how the properties of a H-
bond donor and acceptor are affected by the surrounding mole-
cules. We used a 4-digit notation (iajd $ kald) in order to distinguish
between different kinds of H-bonding. In this work, we will use the
same notation.

We use 00–00 to denote the H-bond in a dimer structure. If the
donor water accepts 1 H-bond from other water molecules, we add
1 to ia and if the donor water donates 1 extra H-bond to a periph-
eral water which needs to be distinguished from the acceptor
water of 00–00 H-bond, we add 1 to jd. This rule also applies to
the acceptor water as the (iajd) part is for the donor while acceptor
water is determined by the (kald) part.

We have found in our previous studies on the water clusters
that for some specific types of H-bond, the intrinsic H-bond
strength based on local stretching force constant ka is remarkably
higher or lower than for some other types [23]. Similar observa-
tions were also made in this work (see Table 1).

3.2. Definition of the push-pull effect

In order to define the push-pull effect in H-bonding, three major
ingredients are needed, including (i) the way how the H-bond
donor and acceptor molecules interact with peripheral molecules
via peripheral H-bonding, (ii) the electron density difference Dq
(push-pull) showing the influence of peripheral molecules on the
central H-bond contained within a dimer structure and (iii) the
intrinsic H-bond strength characterized by ka. This definition of
the ‘‘push-pull” effect must not be confused with the originally
use of the term ‘‘push-pull” effect proposed by Kleinpeter [45]
for the description of covalent p bonding.

If a specific H-bond of a molecular complex AB connected via H-
bonding is to be studied, it is insufficient if just to focus on the A
and B monomer. It is necessary to include those molecules that
directly interact with the donor and acceptor as these peripheral
molecules may lead to a significant change in the electronic struc-
ture of the H-bond in question via polarization.

For the (H2O)6 cluster shown on top of Fig. 2, the H-bond in the
central dimer can be classified as 20–02 type, namely the H-bond
donor water on the left hand side accepts 2 external H-bonds while
the H-bond acceptor on the right hand side donates 2 external

Table 1
Properties of the target H-bond of clusters a1–a9, b1–b2 and c1–c2.a

Cluster # Complex Type R ka DEdel Hb

a1 (H2O)2 00–00 1.9158 0.199 9.67 +0.002299
a2 (H2O)3 01–00 1.9659 0.168 8.15 +0.002352
a3 (H2O)3 00–10 1.9666 0.165 8.11 +0.002312

a9-II (H2O)6 10–01 1.7969 0.265 16.86 +0.000383
a4 (H2O)6 10–01 1.7261 0.359 22.51 $0.001673

a9-III (H2O)6 10–01 1.7156 0.344 24.29 $0.002485
a8-I (H2O)6 10–02 1.8080 0.251 18.05 $0.000213
a9-IV (H2O)6 10–02 1.7161 0.344 25.13 $0.002759
a8-III (H2O)6 20–01 1.7544 0.297 20.52 $0.001022
a9-I (H2O)6 20–01 1.6997 0.328 25.98 $0.003107
a7-II (H2O)6 20–02 1.7530 0.311 22.17 $0.001500
a8-II (H2O)6 20–02 1.6831 0.328 30.71 $0.005091
a7-I (H2O)6 20–02 1.6692 0.366 32.17 $0.005725
a5 (H2O)9 20–02 1.6106 0.395 38.67 $0.008851
a6 (H2O)10 20–02 1.6103 0.399 38.57 $0.008770
b1 (HF)2 00–00 1.8277 0.182 8.38 +0.002529
b2 (HF)6 10–01 1.5524 0.420 30.93 $0.004162
c1 (NH3)2 00–00 2.2080 0.117 6.40 +0.001782
c2 (NH3)6 10–01 2.0847 0.178 11.83 +0.001361

a Hydrogen bond length R in Å, local stretching force constant ka in mdyn/Å, delocalization energy DEdel = DElpðXÞ!r#ðX0$HÞ in kcal/mol (X = X0 = O, F or N), local energy density
Hb in Hartree/Bohr3.

Fig. 3. Charge transfer in the formation of a hydrogen bond implies electron
delocalization of lone pair electrons in Lp(X) orbital (red and blue lobes on the right
as H-bond acceptor) into the unoccupied r#(X0-H) antibonding orbital (brown and
green lobes on the left as H-bond donor). For H2O and HF, only one of the lone pair
orbitals is shown here as the dominating one with regard to DEdel . (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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H-bonds to other water molecules. The electron density difference
distribution is calculated by subtracting from the density of the
whole hexamer that of the trimer on the donor and acceptor side
as well as that of the dimer in the center then adding that of the
donor and acceptor water of 20–02 H-bond (short notation: 6–
2 ( 3–2 + 1 + 1). This EDD map shows how the 4 peripheral water
molecules polarize the H-bond in the central water dimer. On the
acceptor side, these two peripheral water molecules which accept
H-bonds have their lone pairs pointing to this acceptor water.
These lone pairs increase the electron density distribution in the
central H-bond region by polarization(labeled as ① in red color).
We name this polarization as ‘‘push”. On the donor side of 20–02
H-bond, two additional water molecules donating extra H-bonds
further polarize the electron density. For this 20–02 H-bond, the
donor OH covalent bond has a decreased density around the H
atom(② in blue color), then it has an increased density towards
the donor O atom (③ in red color). These two peripheral waters
withdraw electron density from the central H-bond region, so we
say they can ‘‘pull” electron density. When we combine the polar-
ization effect both on the acceptor side and on the donor side, the
comprehensive effect is summarized as ‘‘push-pull” effect.

We note that between the donor oxygen and the acceptor oxy-
gen within this 20–02 H-bond, there is a region in which electron
density is decreased (④ in blue color), which we will discuss
below.

For the assurance of the validity of the definition of the push-
pull effect, we checked other water clusters, for example the tetra-
mer shown on the bottom of Fig. 2. Here we reverted all polariza-
tion effect on the central targeted H-bond in 20–02 simply by
changing it into the 01–10 H-bonding situation where the donor
water accepts no H-bonds but needs to donate 1 extra H-bond
and the acceptor water accepts 1 extra H-bond while donating
no H-bonds. As a result, the acceptor water has to direct its second
lone pair to the water fromwhich it accepts another H-bond, so the
central H-bond region has a decreased electron density (① in blue
color). Such a polarization can be coined as the opposite to ‘‘push”
as ‘‘anti-push” effect. On the other hand, the water to which the
donor water’s extra H-bond points has its lone pair electrons ori-
ented to one of the OH bonds of the donor water. This leads to
the density increase in region ② and decrease in region ③. Such
a distribution pattern is opposite to its counterpart in 20–02, thus
we call this ‘‘anti-pull” effect.

3.3. Intrinsic H-bond strength, change transfer and covalency

Table 1 provides a summary of 15 different H-bonds found in 9
clusters of H2O, in addition to 4 H-bonds in clusters of HF and NH3.

Taking the 00–00 H-bond in the dimer a1 as the reference, we
find that the 01–00 and 00–10 H-bonds in a2 and a3 resulting from
an anti-pull and anti-push effect respectively, are characterized by

Fig. 4. Electron density difference maps of Dqðpush$ pullÞ for hexamer rings. The target H-bond is identified by the red box. Upper: a4; Lower left: b2; Lower right: c2. Red
mesh surfaces depict a density increase while blue mesh surfaces for density decrease. Isovalue for surfaces is '0.001 e/Bohr3. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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longer bond lengths, decreased intrinsic bond strengths, smaller
delocalization energies and more positive Hb values. In contrast,
the other H-bonds of the type X0-0Y (X,Y > 0) for which the
push-pull effect plays a dominant role have shorter and stronger
bonds. The charge transfer is more pronounced and they are of
covalent character, as reflected by negative Hb values. There is
one exception, the relatively weak 10–01 H-bond in a9-II has a
small positive Hb value, see Table 1.

While all of the H-bonds supported by peripheral push- and
pull H-bonds are stronger than the 00–00 H-bond without any
push–pull effect, the H-bonds of type 10–02, 20–01 or 20–02
are not necessarily stronger than the 10–01 H-bonds, even
though they seem to be strengthened by a larger number of the
push-pull molecules. The reason for this observation is that the
magnitude of the push and pull effect varies from one H-bond
to another. A closer examination of the results reveals that stron-
ger pushing and pulling H-bonds can render a significant increase
in H-bond strength, while weaker pushing and pulling H-bonds
offer limited increase of intrinsic bond strength. The strongest
H-bonds with local stretching force constant ka values up to
0.39 mdyn/Å are found for the 20–02 type. This implies that there
exists an upper bound with regard to the intrinsic bond strength
for each push-pull type, given that the number of H-bonds stud-
ied is large enough to cover as many H-bonding possibilities as
possible.

The NBO analysis carried out by Reed et al. [46] suggests that
charge transfer plays an important role in the formation of H-
bonds. In our work, the results of the NBO analysis show that the
most stabilizing factor within a H-bond dimer complex is the inter-
action between the lone pair orbital(s) of the H-bond acceptor
LpðXÞ and the r# anti-bonding orbital of the X 0 $ H covalent bond
with the H-bond donor pointing to the acceptor atom X. Fig. 3
shows the shape of the NBOs of LpðXÞ and r#ðX0 $ HÞ from which
the dominating stabilization in H-bonding is established. These
NBO plots are consistent for the dimer of H2O, HF and NH3. Fur-
thermore, if one takes a closer look at the space between atoms
X and X 0, in total 4 lobes can be identified. The four different
regions, labeled 1–4 in Fig. 2 directly match the four lobes shown
in Fig. 3 from left to right as green-③, brown-②, red-① and then
green-④.

It is interesting to note that for H-bonds in water, the variation
in the delocalization energy DEdel characterizing the charge transfer
from LpðXÞ to r#ðX 0 $ HÞ is consistent with the change of local
stretching force constant ka; the more charge transfer a H-bond
has, the stronger is this H-bond, see Table 1. However, there are
two expections, complexes a9-II and a8-I. They possess the weak-
est H-bonds, (ka values of 0.265 and 0.251 mdyn/Å respectively)
compared to the other push-pull H-bonds, (ka values in the range
of 0.297–0.399 mdyn/Å). The Hb values of these two H-bonds are
less negative than for the other push-pull H-bonds. The 10–01 H-
bond in a9-II is a borderline case with a small positive Hb value.
Therefore, according to the Cremer-Kraka criteria [37,38], this H-
bond is dominated by classical electrostatic interactions.

The electrostatic interaction in H-bonding has been a controver-
sial topic since the first recognition of the H-bond phenomenon
[47]. For example, Weinhold and co-workers proposed that the
driving force of the formation of a H-bond is charge transfer, while
classical electrostatic forces as well as dispersion forces are of
minor importance [48]. They even discussed the ‘‘anti-
electrostatic hydrogen bond” [49], in which classical electrostatic
forces are destabilizing and only charge transfer plays the leading
role.

We clearly identify the H-bonds in a1–a3 as dominated by elec-
trostatic interactions rather than by charge transfer. (i) They are
characterized by positive Hb values, indicating the increased

weight of electrostatic interactions over covalent character (see
Table 1); (ii) The charge transfer is diminished (characterized by
decreased DEdel values) via the anti-push or anti-pull effect. For
the 10–01 H-bond in a9-II, although the charge transfer is
increased compared to the H-bond in water dimer, the covalent
contribution from charge transfer is still not as important as the
electrostatic forces. So that the local energy density remains posi-
tive, but its value is less positive than that for the 00–00 H-bond.
When the delocalization energy is increased to 18.05 kcal/mol for
the H-bond in a8-I, the local energy density immediately turns
negative, indicating the dominance of charge transfer over classical
electrostatic forces. The other push-pull H-bonds of water investi-
gated in this work are of covalent nature as indicated by negative
Hb values and dominated by charge transfer, as reflected by the
data in Table 1. It is interesting to note that the local energy density
Hb increases with increasing delocalization energy DEdel, and no
exceptions are identified. This correlation (see Fig. 1 in Supporting
Information) suggests that both, the local energy density Hb and
the delocalization energy DEdel are reliable descriptors of charge
transfer/covalency; where the local energy density in addition
allows to distinguish between covalent and the electrostatic
interaction.

Apart from the H-bonds in water, we have also studied the H-
bonds in the HF and NH3 clusters with regard to the push-pull
effect. The dimer structures a1, b1 and c1 can be directly com-
pared as well as the ring hexamer structures a4, b2 and c2
respectively for H2O, HF and NH3. The result shows that the H-
bonding in the case of HF is most sensitive to the push-pull effect
as it has the largest increase in bond strength and charge transfer.
Furthermore, it adapts more covalent character when it is chan-
ged from 00–00 type to 10–01 type, in the same way as this hap-
pens for H2O. In contrast the H-bonding in the case of NH3 is least
responsive to the push-pull effect, as it has the least increase in
the local stretching force constant and the delocalization energy.
It remains dominated by the classical electrostatic forces regard-
less of pushing and pulling H-bond neighbors. This is illustrated
by the electron density difference plots for the hexamer rings of
a4, b2 and c2 shown in Fig. 4. The HF hexamer ring b2 has the
largest electron density accumulation region, while such a region
cannot be found in the case of NH3 hexamer ring c2. These obser-
vations can be explained by the fact that the HF molecule has up
to 3 lone pairs while H2O and NH3 has only 2 and 1 lone pairs
respectively, so that HF molecule shows the most response to
the push-pull effect in H-bonding.

4. Conclusions

In this work, we have for the first time defined the concept of
the push-pull effect in H-bonds and examined this effect for 13
molecular complexes. This investigation has led to a series of inter-
esting results.

(1) The characteristic EDD map of Dqðpush$ pullÞ shows that
the push-pull effect is a real and observable change in the
electronic structure in H-bonding. The push-pull is a general
effect and exists in H-bonded clusters constituted by mono-
mers of the same type.

(2) The intrinsic H-bond strength is directly related to the push-
pull effect. The larger is the push-pull effect, the larger is the
H-bond strengthening. A H-bond can be weakened if it is
under the influence of the anti-pull or the anti-push effect.
The mixing of push-pull effect and the antipush-antipull
effect may lead to an interesting competition and a variety
of H-bond possibilities. This will be part of a future
investigation.
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(3) The strong correlation between the NBO diagrams (LpðXÞ
and r#ðX 0 $ HÞ) and the Dqðpush$ pullÞ EDD maps with
regard to the central H-bond region indicates the origin of
push-pull effect is the enhanced charge transfer which is
responsible for the H-bonding stabilization. Furthermore,
the more charge transfer a H-bond has, ideally the stronger
this H-bond can be.

(4) Among the clusters studied in this work, the HF clusters are
more responsive to the push-pull effect than H2O and NH3

clusters. H-bonds in NH3 clusters are not influenced signifi-
cantly with regard to their intrinsic bond strength and bond-
ing nature. Similar observations are to be expected for the
clusters of H2S, HCl and PH3. Work is in progress to demon-
strate this.

(5) The push-pull effect can increase the covalent character of a
H-bond via enhanced charge transfer. Increased covalency
can change the nature of a H-bond depending on whether
the covalent character can override the electrostatic charac-
ter. If so, the H-bond will be more like a covalent bond
although H-bonds are generally weaker than normal cova-
lent bonds.

(6) The H-bonds in the dimer structure of H2O, HF and NH3 are
dominated by electrostatic force. However, one can find H-
bonds which are dominated by covalent character in the
clusters of H2O or HF.

(7) Contrary to Stones’ claim that ‘‘it is a serious error to use
NBO method in analyzing intermolecular interactions”
[50], apparently the NBO analysis remains still a powerful
tool for H-bonding studies in two ways: (i) the NBO dia-
grams shown in Fig. 3 is closely related to the EDD maps
characterizing Dqðpush$ pullÞ; (ii) the variation in the quan-
titative measurement of the amplitude in charge transfer
DElpðXÞ!r#ðX0$HÞ is consistent with the change of ka and Hb.
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ABSTRACT: A novel approach is presented to assess
chemical similarity based the local vibrational mode analysis
developed by Konkoli and Cremer. The local mode frequency
shifts are introduced as similarity descriptors that are sensitive
to any electronic structure change. In this work, 59 different
monosubstituted benzenes are compared. For a subset of 43
compounds, for which experimental data was available, the
ortho-/para- and meta-directing effect in electrophilic aromatic
substitution reactions could be correctly reproduced, proving
the robustness of the new similarity index. For the remaining
16 compounds, the directing effect was predicted. The new
approach is broadly applicable to all compounds for which
either experimental or calculated vibrational frequency
information is available.

■ INTRODUCTION
Chemical similarity is an important concept widely used in the
fields of medicinal chemistry1 and toxicology.2 The origin of
this term or its synonym as molecular similarity was greatly
influenced by the similarity property principle (SPP), which
states that “similar compounds can have similar properties”,3

although this does not hold in many scenarios.4−6 Maggiora
and his co-workers suggested differentiating between chemical
similarity and molecular similarity,1 where the former stresses
the physicochemical characteristics of a chemical compound
while the latter emphasizes the structural and topological
properties.7−9 In this work, we will adopt this nomenclature
and focus on the chemical similarity, which still has a number of
open questions to be answered.
Chemists tend to put atoms or molecules with similar

physicochemical characteristics in the same category in order to
generalize empirical rules for practical use. A famous example is
the periodic table of elements. The physicochemical properties
used to characterize chemical similarity are often macroscopic
quantities that are measurable, including the pKa, solubility,
boiling point, octanol−water partition coefficient (log P) and
so forth. Many of these quantities are very important in
quantitative structure−activity relations (QSARs). Since the
1960s, the rapid development of quantum chemical methods
based on quantum mechanics (QM) has made it possible to
calculate the electronic structure and associated properties of
molecules, even for large systems with chemical accuracy.10

Many attempts2,11 have been made to develop descriptors or
models for the characterization of the molecular similarity
based on the results of quantum chemical calculations, referring

to the fact that the wave function and electron density12 contain
all of the information related to energy about a molecule in
question. Quantum chemical descriptors can be divided into
two major categories, which describe either the overall
molecule including HOMO and LUMO energies, dipole
moments, total energy, heat of formation, and ionization
potential or the fragments/substituents of a molecule like the
net atomic charge.11 Apart from these, Carbo and co-workers
developed a similarity index based on the superposition of the
densities of two different molecules.13 Hodgkin proposed a
similar approach to measure similarity based on the electro-
static potential.14 However, all of the above methods failed to
give a detailed and mechanistic description of similarity based
on the electronic structure, and they are not connected to
chemical intuition from which a better understanding can be
obtained.
After Bader and his co-workers developed the atoms in

molecules (AIM) theory,15,16 Popelier proposed a new method
called quantum topological molecular similarity (QTMS),
which has been quite successful in characterizing similarity
based on chemical insight.17,18 Within the framework of
QTMS, Popelier constructed the bond critical point (BCP)
space, in which any BCP denoted as rb can have 3−8
descriptors derived from the density information at that point,
including the electron density ρb, the Laplacian of density ∇2ρb,
the ellipticity of the density ϵb, three connected Hessian
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eigenvalues of the density λ1b, λ2b, and λ3b, and the kinetic
energy densities Kb and Gb. The application of this approach
has been summarized in several articles.19−22 However, QTMS
has some limitations that might hinder its general usefulness.
(i) The number of descriptors depends on the number of
chemical bonds or noncovalent interactions that have BCPs.
Considering the chemical bonds exclusively may fail in
capturing all information on the electronic structure. (ii) The
descriptors are heterogeneous with regard to the physical
meaning and have different units. A horizontal comparison
between the descriptors does not make sense. (iii) QTMS
requires specialized procedures in the feature selection step,
which may involve the principal component analysis (PCA), in
order to find the most important descriptors.
In this work, we present a new approach to measure chemical

similarity based on the theory of local vibrational modes, which
was originally proposed by Konkoli and Cremer.23 The local
vibrational modes can be explained with the leading parameter
principle. The motions of a local mode vector are obtained after
relaxing all parts of the vibrating molecule except an internal
coordinate parameter (leading parameter), which is first
displaced infinitesimally, e.g., bond stretching, angle bending,
dihedral torsion, out-of-plane torsion, and so forth. With a well-
established physical basis, this approach is free from the
disadvantages of the QTMS method and is able to access the
information on the electronic structure by examining different
types of internal parameters besides chemical bonds. Therefore,
this can be regarded as an extension of our previous
studies24−33 focused on chemical bonding. We apply in this
work our new similarity measure to a test set of 60
monosubstituted benzene molecules. The paper is structured
in the following way: After summarizing the computational
methods used, in the results and discussion part, the basic
theory of the local vibrational modes and the use of local mode
frequencies as similarity descriptors of benzene derivatives are
described. Then, we discuss the directing effects of the
substituents on benzene in electrophilic aromatic substitution
reactions. Conclusions are given in the last part.

■ COMPUTATIONAL METHODS
Geometry optimization and normal mode analysis for all
benzene derivatives involved in this work were carried out using
the ωB97X-D density functional34 with Dunning’s aug-cc-
pVTZ basis set35 in the Gaussian09 package.36 The local mode

analysis was done with the program package CO-
LOGNE2017.37 The diagrams of hierachical clustering analysis
were generated with the software package SPSS 23.38

■ RESULTS AND DISCUSSION
In the following part, the outcome of our study will be
discussed.

Similarity of the Monosubstituted Benzenes. Before
describing the similarity of the benzene derivatives, it is
necessary to give a brief introduction into the theory of the
local vibrational modes.23,39 For any internal coordinate qn
specified within a molecule, its local mode vector an is given by

=
� †

� †a
K d

d K dn
n

n n

1

1
(1)

where K is the force constant matrix transformed into normal
coordinates Q, K = L†fxL. dn is a row vector of the D matrix,
which collects the normal modes in terms of internal
coordinates, D = BL. The matrix L contains all normal mode
vectors in Cartesian coordinates obtained by solving the Wilson
equation of vibrational spectroscopy, while the Wilson B matrix
is used to connect Cartesian coordinates to internal
coordinates.40

The local mode force constant kn
a can be obtained by

= †k a Kan
a

n n (2)

With the help of the G-matrix,23 the reduced mass of local
vibrational mode an can be defined. Thus, the local vibrational
frequency ωn

a is determined by

�
�

=
c

k G( ) 1
4n

a
n
a

nn
2

2 2 (3)

Normal and local vibrational modes are second-order
response properties;41 therefore, they are very sensitive to
any change of the electronic structure. That is the reason why
chemists have been intensively using vibrational spectroscopy
for structural characterization.
In order to study the electronic structure of different

monosubstituted benzene molecules, we treat the substituent as
a perturbation of the phenyl ring to which it is linked and use
benzene as the reference.
By doing so, any perturbation of the targeted system can be

characterized by the red or blue shift of absorption peaks in

Figure 1. (a) Schematic representation of a monosubstituted benzene molecule. (b) σxz plane in a C2v monosubstituted benzene. (c) Movement of
atoms in the C−H bond stretching mode, C−C−C angle bending mode, and pyramidalization mode.
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Table 1. Comparison of Calculated Vibrational Frequencies of Selected Local Modes in 60 Monosubstituted Benzene
Derivatives

no. substituenta Δωm
Rb Δωo

Rb Δωp
Rb Δωm

αb Δωo
αb Δωp

αb Δωm
τ b Δωo

τb Δωp
τb exp.c

01 H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
02 Br 5.37 18.54 8.76 −2.84 −11.60 4.50 1.44 −10.76 −3.23 op
03 C(CH3)3 −4.09 13.27 2.06 1.20 5.36 4.51 3.79 −3.22 −3.09 op
04 CH(CH3)2 0.84 −12.79 6.32 −11.57 −6.06 −10.28 −10.03 −26.91 −17.64 op
05 CHC(CH3)2 −1.70 −6.70 2.66 −1.04 −0.31 −0.88 3.81 −7.34 −5.47 op
06 [CH]3=CH2 −2.75 −7.84 4.88 −0.68 5.63 0.07 1.53 −8.13 −6.14 op
07 CHCH2 0.11 −7.84 4.02 −1.26 −1.14 −0.02 −2.97 −32.06 −13.24 op
08 CHCHNO2 7.69 −1.11 7.62 −0.43 4.65 0.87 −16.45 −120.34 −39.48 op
09(a) CH2Br 3.81 −11.01 4.53 −0.81 2.30 1.59 2.35 −7.58 2.86 op
09(b) CH2Br* 3.01 16.87 4.77 0.28 −0.94 3.68 7.23 2.99 0.04 op
10(a) CH2Cl 3.73 −10.71 4.11 −0.66 2.72 1.82 2.28 −5.47 3.93 op
10(b) CH2Cl* 2.51 18.67 4.79 0.32 −1.20 3.67 7.06 2.72 −0.63 op
11(a) CH2F 3.13 −11.47 2.55 −1.13 2.36 1.34 −0.75 −1.02 6.70 op
11(b) CH2F* 1.16 18.39 4.54 1.20 −1.93 2.32 6.89 2.89 −1.78 op
12 [CH2]2CH3 −2.59 −21.94 2.38 −1.18 2.27 1.08 4.48 −9.07 −4.88 op
13 CH2CH3 −1.82 −21.68 2.34 −0.14 2.87 1.47 5.16 −9.49 −5.25 op
14 CH3 −1.81 −18.19 1.97 0.14 3.24 1.51 4.73 −9.43 −6.30 op
15 Cl 5.82 20.34 9.33 −3.16 −9.89 4.85 1.53 −16.98 −6.44 op
16 F 6.49 19.12 9.79 −8.36 −10.33 7.60 5.12 −36.46 −15.93 op
17 N(CH3)2 −6.51 23.08 9.24 −3.24 −2.43 3.40 8.02 −65.71 −44.65 op
18 NH2 −3.25 −19.04 9.59 −4.47 −2.65 1.67 7.01 −58.97 −40.78 op
19 NHCH3 −4.81 −6.10 9.13 −4.12 −2.30 2.14 8.33 −62.88 −43.41 op
20 NHCOCH3 4.16 2.72 9.14 −8.40 −3.37 −5.26 7.52 −24.11 −10.27 op
21 O− −70.32 −42.98 −26.49 −19.79 −22.39 −10.20 −5.72 −135.10 −158.79 op
22 OCH2CH3 −1.78 15.76 9.71 −6.02 −6.00 4.51 8.09 −48.85 −28.25 op
23 OCH3 −0.88 16.40 9.41 −5.51 −4.95 4.82 6.66 −50.32 −28.34 op
24 OCOCH3 6.01 12.68 7.58 −11.02 −11.70 3.67 3.80 −21.55 −5.75 op
25 OH 1.10 −7.09 10.42 −7.23 −6.54 4.26 7.32 −53.47 −30.61 op
26 phenyl 0.41 −4.84 2.84 0.33 0.70 0.18 4.60 −3.71 −1.11 op
27 SH 2.96 −4.27 7.91 −2.09 −6.38 1.72 −4.81 −29.53 −15.91 op
28 CCl3 8.23 21.83 7.03 −0.48 0.27 5.75 0.79 3.03 11.07 m
29 CF3 9.26 15.47 5.64 0.38 0.91 3.83 −1.58 −6.69 11.49 m
30 CHO 7.19 −2.17 2.52 −1.11 −0.75 1.94 −0.37 10.96 16.09 m
31 CN 11.48 18.05 7.89 −0.50 0.03 −0.68 2.27 5.03 13.71 m
32 CO2CH3 6.03 22.02 1.69 1.17 2.74 3.58 −0.12 18.68 15.30 m
33 CO2H 7.29 21.50 2.43 0.85 2.27 3.11 −0.87 18.84 16.45 m
34 COCH2CH3 4.60 12.49 1.85 −0.41 1.87 3.23 0.72 13.70 15.10 m
35 COCH3 4.99 11.61 2.07 −0.23 2.07 3.36 0.34 13.19 15.28 m
36 COCl 10.39 25.65 5.46 −1.39 −0.89 3.26 −2.33 17.21 21.44 m
37 CONH2 4.88 4.81 3.20 0.58 −0.78 2.62 1.82 10.06 11.18 m
38 N(CH3)3

+ 22.17 25.37 23.93 −7.56 −6.12 7.15 17.16 −8.70 26.31 m
39 NH3

+ 27.28 −9.24 24.11 −15.78 −17.13 4.63 15.03 −18.12 24.53 m
40 NO2 14.08 39.17 7.86 −2.81 −6.62 7.87 −2.15 12.27 16.06 m
41 P(CH3)3

+ 20.98 −2.56 18.62 −5.14 −6.74 −1.17 14.29 6.85 35.64 m
42 S(CH3)2

+ 24.03 7.16 20.51 −8.31 −13.64 1.27 13.49 4.87 37.62 m
43 SO2CH3 10.04 14.57 6.15 −1.13 −8.93 4.55 1.71 14.69 18.60 m
44 SO3H 12.17 20.60 7.02 −1.36 −9.03 4.58 −0.16 11.87 17.68 m
45 AlH2 −2.78 −32.87 −2.81 −0.05 −2.78 −5.51 −0.96 21.03 14.36 n/a
46 BeH −4.21 −40.41 −2.68 −1.50 −1.99 −7.00 −2.04 11.42 9.89 n/a
47 BH2 1.64 −10.98 −3.13 −0.38 2.77 −4.45 −7.85 21.77 22.73 n/a
48 CH2

− −70.75 −59.47 −19.42 −10.67 −21.27 −17.21 −9.97 −146.26 −228.04 n/a
49 CH2

+ 32.46 13.40 8.74 −19.54 −14.35 −18.99 −26.33 10.86 80.95 n/a
50 [CH2]3NH3

+ 9.87 −25.52 13.85 −2.79 1.76 1.08 13.32 −6.79 12.72 n/a
51 [CH2]2COO

− −19.48 −21.37 −13.11 0.33 2.14 0.45 −3.62 −15.46 −27.14 n/a
52 [CH2]2NH3

+ 14.53 −24.16 16.68 −4.07 −0.16 0.71 15.13 −5.07 18.48 n/a
53 CH2COO

− −26.55 −25.08 −21.17 −0.67 −1.91 −0.25 −15.00 −22.09 −33.80 n/a
54 CH2NH3

+ 19.89 −24.55 19.09 −6.32 −1.83 −0.70 16.56 1.08 29.15 n/a
55 COO− −34.43 −4.10 −29.40 0.77 −2.10 2.11 −16.07 10.10 −23.52 n/a
56 cyclopropyl −2.51 −12.39 1.99 −0.37 2.18 1.53 2.87 −6.42 −2.07 n/a
57 Li −28.28 −97.47 −14.08 −3.95 −6.31 −9.03 −4.19 2.06 −10.89 n/a
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vibrational spectroscopy. For example, this procedure has been
frequently applied to measure the temperature influence on
liquid water.42 We borrow this idea of frequency shift for the
purpose of analyzing the influence of the substituents on the
electronic structure of the phenyl ring. However, in our studies,
we are not using the normal vibrational frequencies,40 which
can be directly measured by the infrared or Raman
spectrometer, because normal modes suffer from mass coupling
and they are delocalized over the molecular system in
question.23,39 We focus on the shift/change of the local mode
frequencies, which are free from mass coupling and thus can be
used to describe the local vibrations of the phenyl ring. Besides,
the frequencies of such vibrations can be directly compared
among different benzene derivatives in order to characterize
their different electronic structure.
Figure 1a shows the general structure of monosubstituted

benzene molecules. Each molecule can have a different number
of atoms and different symmetry depending on the substituent
covalently linked to the C6 atom. The analysis of the influence
of the substituent on the phenyl ring (C6H5) can be assessed by
investigating the local vibrational modes involving the phenyl
ring atoms. We can construct a redundant set of parameters
including 11 bonds, 16 bond angles, and at least 7 dihedral
angles. In addition, the Cremer−Pople ring coordinates offer
the corresponding local modes for the puckering43 and
deformation44 modes of the six-membered ring. This
comprehensive set of parameters provide a complete and
detailed characterization of the electronic structure of the
phenyl ring. By taking advantage of symmetry, we can
considerably reduce this set without losing a detailed
description of the electronic structure. Benzene has D6h
symmetry, and when one of its hydrogen atoms is changed
with another atom or functional group, a monosubstituted
benzene results and the symmetry will be reduced to C2v or
even lower depending on the substituent. Chemists have
classified the five C−H locations besides the substituent into
three major categories, denoted as ortho, meta, and para (see
Figure 1a). This is due to the fact that most monosubstituted
benzene molecules have C2v symmetry, where two meta- or
ortho-positions are identical, e.g., in fluorobenzene. A
monosubstituted benzene with a symmetry lower than C2v no
longer has the σxz mirror plane (see Figure 1b); therefore, the
two meta-positions and ortho-positions will be different, as for
example in the case of benzoic acid.
The obvious strategy to choose local mode parameters is

based on the three different positions with regard to the
substituent, e.g., ortho, meta, and para. For each of these three
different sites, one can propose that the C−H bond stretching
should be considered (see the left diagram of Figure 1c)
because this is a parameter involving both the carbon and
hydrogen atoms at a specific site. For the six-membered ring,

the best choice is to select the C−C−C angle bending mode,
where the middle carbon atom of the angle is located at the
ortho-, meta-, or para-position (see the middle diagram of
Figure 1c). These two parameters describe the vibration of
atoms within the plane of the phenyl ring. One has to also
include a parameter describing the out-of-ring-plane vibration,
e.g., the pyramidalization mode45 (see the right diagram of
Figure 1c). The direction of this mode is perpendicular to the
plane of the phenyl ring. In this way, a comprehensive
description of the electronic structure is covered by considering
both the σ-bonding electrons and π electrons. This leads to a
total of nine parameters for the local mode analysis, namely, a
set of bond stretching, angle bending, and pyramidalization
modes for the ortho-, meta-, and para-sites. For monosub-
stituted benzene molecules with symmetry lower than C2v, the
local mode frequencies can have different values at two ortho-
and meta-sites. In this case, we take the averaged value for
further analysis.
In this work, a broad range of 60 monosubstituted benzene

derivatives was studied. The selection of these molecules was
mainly based on experimental data, and some commonly used
substituents were also added into the data set.46−49 For each
molecule, the local vibrational frequencies of the nine selected
parameters were calculated as ωm

R , ωo
R, ωp

R, ωm
α , ωo

α, ωp
α, ωm

τ , ωo
τ,

and ωp
τ. The superscripts R, α, and τ stand for bond stretching,

angle bending, and pyramidalization parameters, respectively.
The subscripts m, o, and p specify the meta-, ortho-, and para-
positions in a monosubstituted benzene.
In order to reveal the influence of the substituent on the

phenyl ring, we calculated the local mode frequency shift by
subtracting the local mode frequency of a specific parameter in
the benzene molecule from its counterpart in a monosub-
stituted benzene target molecule. This leads to the local mode
frequency difference Δωn

a.

� � �� = �(target) (benzene)n
a

n
a

n
a

(4)

If benzene is taken as the target molecule, Δωn
a = 0. In Table 1,

the local mode frequency differences of the 9 selected
parameters are listed for the 60 benzene derivatives. For each
local mode frequency difference, its value can be either positive
(blue shift) or negative (red shift). For all monosubstituted
benzene derivatives in Table 1, both blue and red shifts were
observed. A blue or red shift of vibrational frequencies of both
normal modes and local modes is caused by a change of
electronic structure, and therefore, the magnitude of frequency
shifting indicates the extent to which the electronic structure is
perturbed. If all nine frequency shifts have relatively large
values, it implies that the influence of the substituent on the
phenyl ring is significant. Such a situation is found for O− and
CH2

− substituents.

Table 1. continued

no. substituenta Δωm
Rb Δωo

Rb Δωp
Rb Δωm

αb Δωo
αb Δωp

αb Δωm
τ b Δωo

τb Δωp
τb exp.c

58 Na −32.49 −100.44 −16.00 −3.82 −11.82 −8.71 −6.43 −1.72 −15.97 n/a
59 PH2 1.60 −8.28 2.19 0.36 −1.11 0.02 −2.95 5.41 4.35 n/a
60 PO4

2− −65.88 17.81 −45.82 −11.12 −19.62 −5.81 −14.99 −83.31 −133.55 n/a
aThe column “substituent” denotes the structure linked to the phenyl ring in a monosubstituted benzene molecule. bLocal mode frequency
differences Δω are calculated by ω(target) − ω(benzene). Superscripts R, α, and τ stand for C−H bond stretching, C−C−C angle bending, and
pyramidalization modes, respectively. Subscripts m, o, and p denote the meta-, ortho-, and para-locations with regard to the substituent, respectively.
The unit is cm−1. cColumn “exp.” denotes the directing effect in electrophilic aromatic substitution reactions caused by the substituent, which have
been experimentally confirmed. “op” means that the products are dominated by ortho- and para-products, while “m” means that the products are
dominated by meta-product. “n/a” means that there are no experimental data available.
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However, just checking frequency shift values cannot lead to
a useful basis for a similarity measure for two major reasons: (i)
Even within one benzene derivative, the variation of the shift
values may not be consistent. A benzene derivative may have
small shift values for some parameters but relatively large shift
values for another parameter. (ii) While the frequency shift
values in Table 1 have a physical meaning, the attempt to use a
quantity (e.g., total sum of squares) in order to get an overall
description of the change in electronic structure would lose this
physical foundation.
As a solution to circumvent the above deficiencies, we

propose an approach that is connected to the two well-
established concepts of QSARs50 and molecular descriptors.51

We can construct a vector Ω
� � � � � � � � �� = � � � � � � � � �� � � � � �( , , , , , , , , )m

R
o
R

p
R

m o p m o p

(5)

collecting the local mode frequency shifts of all nine selected
parameters. In this way, each monosubstituted benzene
derivative has its own vector Ω characterizing its substituent
effect. As for a substituent besides a hydrogen atom, vector Ω
can never be a zero vector 0. Therefore, for two vectors ΩA and
ΩB of any two different monosubstituted benzenes A and B, the
similarity and its corresponding distance52 can be defined using
the cosine function

�= = � � �
� � � �

=

= =
similarity cos( ) i Ai Bi

i Ai i Bi

1
9

1
9 2

1
9 2

(6)

= �distance 1 similarity (7)

where ΩAi and ΩBi are elements of vectors ΩA and ΩB,
respectively.
Before calculating the cosine similarity, it is necessary to

balance the 9 different types of frequency shifts by standard-
izing 59 shift values (benzene is excluded) into the region from
−1 to 1.

� � �
� �

� � = � � �
� � � �2 min

max min
1

(8)

This makes all nine frequency shifts of the vector Ω
comparable.
After the similarity has been determined between any pair of

monosubstituted benzene molecules, a similarity matrix with
dimensions of 59 × 59 can be constructed. With this
information, the hierarchical cluster analysis (HCA)53 is carried
out and the relationship between any two monosubstituted
benzene molecules can be visualized, as shown in Figure 2. The
dendrograms as results of the HCA in this work (including
Figures 2 and 3) have been rescaled with regard to the distance
between any two monosubstituted benzenes, and the largest
distance value between the two farthest groups was set to 5. It
has to be noted that in the HCA similarity is reflected by
distance; similar compounds are close together in the
dendrogram, while a larger distance between two compounds
reflects that their electronic structure is different.
Forty-three of the 59 monosubstituted benzene derivatives

have been classified to be either meta-directing or ortho-/para-
directing according to experimental studies48,49 with regard to
the regioselectivity in the electrophilic aromatic substitution
reaction (see Table 1). Therefore, we have labeled in this work
all ortho-/para-directing groups with red color and meta-
directing groups with blue color. The substituents whose

directing effect has not been experimentally reported yet are
labeled in black color.
From the clustering result shown in Figure 2, which is based

on the pairwise similarity using nine selected local mode
parameters, a series of interesting observations can be made.
(1) The substituents in red or blue color tend to cluster

together, leading to six small clusters alternating from the top to
the bottom. This indicates that the local mode frequency shifts
can be used to distinguish between meta-directing and ortho-/
para-directing groups.
(2) In the upper part of the dendrogram, two acyl groups

(−COR) are clustered as nearest neighbors. The carboxyl
group (−COOH) clusters together with the ester group

Figure 2. Diagram of hierarchical clustering of 59 monosubstituted
benzenes based on 9 local mode frequency shifts.
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(−COOR). These four substituents are clustered together as
two groups. The small distance between them shows that these
four functional groups have a similar influence on the phenyl
ring in the electronic structure. This is reasonable because they
share the carbonyl group as a common substructure covalently
linked to the phenyl ring. In this section, a few other functional
groups (colored in blue) containing the carbonyl group can be
found, including the amide (−CONH2), carbonochloridoyl
(−COCl), and aldehyde (−CHO) groups. However, these
groups are further apart from each other.
(3) Another small cluster of the dendrogram is composed of

the −[CH2]nNH3
+ functional groups (n = 1−3). The distances

between them are very small, which implies that their influence

on the electronic structure of the phenyl ring is almost the
same, even though with increasing n the NH3

+ group gets
further away from the phenyl ring. However, the −NH3

+

substituent itself does not belong to this small cluster. This
implies that the substituent effect of the −NH3

+ functional
group has a different mechanism from that of the −[CH2]nNH3

+

substituents. While the electron hole in the −NH3
+ has a direct

interaction with the electrons of the phenyl ring, the positive
charge in the −[CH2]nNH3

+ substituents is “diluted” by the
CH2 groups in between.
(4) In the red upper part of the diagram of Figure 2, there

are two small clusters in which the members are very close to
each other. The first cluster contains two halogenated methyl

Figure 3. Diagrams of hierarchical clustering of 59 monosubstituted benzenes based on 6 local mode frequency shifts. (a) With CH2F as the outlier.
(b) Without any outliers.
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groups including −CH2Cl and −CH2Br. These two sub-
stituents have a similar effect on the phenyl ring because Cl and
Br are in the same group of the periodic table. However, it is
noteworthy that this cluster does not contain −CH2F even
though the F atom is also a halogen atom. The second cluster
contains four alkyl groups, namely, the methyl, ethyl, propyl,
and cyclopropyl groups. These four functional groups have
almost the same influence on benzene, and it is in line with the
common understanding of chemists.
(5) In the middle of the diagram, there is a cluster with four

substituents colored in blue, including −NH3
+, −S(CH3)2

+,
−P(CH3)3

+, and −N(CH3)3
+. These substituents are cationic,

and they can impose a similar substituent effect. However,
another cationic substituent −CH2

+ is not included here,
indicating a different mechanism for the substituent effect.
(6) Three halide substituents −F, −Cl, and −Br are

contained in a cluster. The chlorine and bromine are close
together while the fluorine atom stands out again as in (4). This
can be attributed to the large electronegativity of this element.
Interestingly, the acetate ester group (−OCOCH3) has a
relatively small distance to the fluorine atom, implying a similar
substituent effect for the phenyl group, which was never
reported before.
(7) The mesyl group (−SO2CH3) and sulfo group (−SO3H)

are clustered with the smallest distance. This means that the
substituent effect is hardly changed when the −OH group is
exchanged with a −CH3 group and the substituent effect is
determined by the −SO2 part.
(8) In the red lower part of the dendrogram, there is a small

cluster containing the hydroxyl and two ether groups. This
indicates that the oxygen atom directly linked to the phenyl
ring plays a more important role than the hydrogen atom or the
alkyl group connected to it with regard to substituent effects.
(9) We find three amine groups (−NH2, −NHCH3, and

−N(CH3)2) that are contained in a cluster with the tertiary
amine group having a relatively larger distance toward the
primary and secondary amine groups. Furthermore, we find a
big cluster with members ranging from −NH2 down to −SH.
They have one thing in common: the atoms linked to the
phenyl ring can have their p−π electrons interact with the π
electrons of the phenyl ring.
(10) The most interesting section of the dendrogram is that

of the anionic substituents located in the lower part. All anionic
substituents studied in this work cluster together exclusively.
That means that substituents with a diffuse anion show a more
consistent mechanism in changing the electronic structure of
benzene compared to the cationic substituents.
(11) If one zooms out of this dendrogram, one can identify

the two largest clusters (I and II). Cluster II contains two
subclusters. All of the members within one of the subclusters
are anionic substituents, which have been discussed in (10).
The members of the other subcluster are atoms or hydrides of
elements with weak electronegativity. According to the
electronegativity scale proposed by Pauling,54,55 Li(0.98),
Na(0.93), Be(1.57), Al(1.61), P(2.19), and B(2.04) have
smaller electronegativities than H(2.20), which is the reference
substituent in benzene. If the anionic substituents can be
categorized as those with weak electronegativity, we can state
that the largest cluster in the upper dendrogram (cluster I from
−COCH3 down to −SH) contains groups with a larger
electronegativity than H. In this regard, the concept of
electronegativity has now been extended from atoms to
polyatomic functional groups.

In summary, the local vibrational modes of the mono-
substituted benzenes unambiguously reflect similarities in their
electronic structure. Furthermore, the similarity of the
substituted benzenes and their substituent effects can be
presented in a straightforward approach, in which different
chemical species are correlated to one another.

Directing Effects of the Substituents in Electrophilic
Aromatic Substitution Reactions. Since the seminal
discovery by Brown and Gibson in 1892,56 it has been well
recognized that the substituent of a monosubstituted benzene
can affect the regioselectivity of the electrophilic aromatic
substitution replacing a second H atom in the benzene.48,49

Such a substituent effect works in the way that the second
substitution reaction will be promoted at either the meta-
position or the ortho-/para-position. Organic chemistry
textbooks frequently provide a list of meta-directing groups
and a list of ortho-/para-directing groups.46,47 This is an
example where chemists have managed to generalize empirical
rules; however, a physical basis is still missing. This can be
provided by the use of the local mode frequency shifts.
The nine selected local mode frequency shifts of the

monosubstituted benzene molecules form the basis to
distinguish between meta-directing and ortho-/para-directing
groups. By focusing on six out of the nine local mode frequency
shifts, it is feasible to separate the meta-directing and the
ortho-/para-directing substituents.
The refinement of these six parameters involves a feature

selection process.57 As there exists some redundancy between
the C−H stretching mode and the C−C−C angle bending
mode at a specific site with regard to electronic structure
change, one has to remove either one in order to obtain a
robust model. Testing 23 = 8 different combinations, we found
only one set of parameters that performs best and leads to the
desired clustering result.
In this set, the local bond stretching vibration in ortho- and

para-positions as well as the angle bending mode at the meta-
position was eliminated, leading to a new vector Ω of
dimension 6, containing the remaining six local mode frequency
shifts, as shown in eq 9. This vector is expected to encompass
the information linked to the directing effect of a substituent.

� � � � � �� = � � � � � �� � � � �( , , , , , )m
R

o p m o p (9)

The discrimination of the meta- and ortho-/para-directing
substituents is a typical two-class classification problem, which
can be solved by a classification procedure with supervised
learning.58 However, it can also be solved via the HCA, which
can be regarded as an unsupervised classification method.
Other than the similarity problem discussed in the above
section, here each case has to be treated independently as the
directing effect of a substituent is determined by its own
physical chemical properties.
Instead of adopting the standardization by variable as done in

the above section, we standardize the data by case, so that each
vector Ω is standardized into the region of [0,1] leading to the
new vector Ω̂

�� = � � �
� � �

min
max mini

i
(10)

in which i runs from 1 to 6. This standardization is necessary
because it makes the Ω̂ for each monosubstituted benzene
more comparable.
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The squared Euclidean distance is calculated for Ω̂A and Ω̂B
for any two monosubstituted benzenes A and B.

�= �� � ��
=

distance ( )
i

Ai Bi
1

6
2

(11)

The resulting dendrogram is shown in Figure 3a. It is important
to note that this dendrogram is calculated in order to identify
two major classes of substituents with regard to their directing
effect, while the dendrogram in Figure 2 emphasizes the
relationship between any two substituents. Besides the clusters
with minimal distances between their members, here the major
task is to determine if the clustering procedure can lead to two
major clusters in which the two desired classes (meta- and
ortho-/para-directing groups) perfectly reside.
Any classification problem in which two or more targeted

categories should be distinguished can be solved in various
ways with different explicit or implicit (black box) models.59

However, the following aspects need to be considered.

(i) Are these targeted categories well-defined and specific?
(ii) What determines the targeted categories? Is this

classification problem solvable?
(iii) Are all features/descriptors related to the targeted

categories?
(iv) Are there any features/descriptors missing that are

related to the targeted categories?
For the classification problem of this work, the two targeted

categories of meta-directing and ortho-/para-directing groups
are well-defined from the regioselectivity of the electrophilic
aromatic substitution reactions, which share the same reaction
mechanism for these different positions with regard to the
substituent. In this way, the reactivity is entirely determined by
the electronic structure of the monosubstituted benzene where
the phenyl ring part plays the essential role participating in the
reaction. Therefore, the classification problem can be solved
when we are able to identify and characterize the differences in
the electronic structure of the monosubstituted benzenes that
decide on the meta-directing or ortho-/para-directing reactivity.
As can be visualized in Figure 3a, all of the ortho-/para-

directing substituents are clustered in the largest cluster A
(except −CH2F), while all meta-directing substituents are
clustered in the second largest cluster B, reflecting the validity
of our model.
The −CH2F outlier can be a result of the following: (i) The

classification model is not robust enough to cover all possible
cases, which would reflect a model deficiency; (ii) the benzyl
fluoride is a special case.

Benzyl fluoride is an outlier, while its higher homologues
benzyl chloride and benzyl bromide are correctly classified as
the ortho-/para-directing groups, although these three halo-
benzenes share a similar geometry, shown in Figure 4a.
However, there are subtle differences to be considered in the
electronic structure. The fluorine atom has the largest
electronegativity compared with chlorine and bromine. The
distance of F−C12 is 1.394 Å, while the distances for Cl−C12
and Br−C12 are 1.812 and 1.967 Å, respectively. The distances
of F−C5, F−C4, and F−C3 are smaller than their counterparts
for chlorine and bromine. These two factors are essential as
they indicate a direct and significant interaction between the
fluorine atom and the π electrons of the carbon atoms located
at the ortho-, meta-, and para-positions. Such a through-space
interaction is substantially diminished in the cases of the benzyl
chloride and the benzyl bromide due to the larger halogen−
carbon distances.
We are predicting the regioselective reactivity, which is the

result of a dynamic process using the static geometry of the
monosubstituted benzene molecule. Therefore, the incoming
electrophile and a catalyst (if present) are left out in the
prediction. This does not make a difference for the other
substituted benzenes, which have been correctly classified.
However, in the case of benzyl fluoride, the incoming reaction
partner(s) can reduce the through-space interaction between
the halide atom and the π electrons at the ortho-, meta-, and
para-positions. One might argue that the trifluorotoluene and
toluene molecules could suffer from the same problem.
However, in the −CF3 substituent of the trifluorotoluene,
one F atom lies within the plane of the phenyl ring, while the
other two are positioned on both sides of the phenyl plane
symmetrically. In this way, the through-space interaction
between the two fluorine atoms and the π electrons of the
carbons cancel and only the through-bond interactions remain.
For the −CH3 group in the toluene molecule, the H atoms
have contracted electron density and there is no possibility for
through-space interaction.
In order to show the influence of the through-space

interaction for the CH2F group, we have rotated the F atom
into the ring plane (see Figure 4b). Geometry optimization led
to a first-order saddle point only 0.25 kcal/mol higher in energy
than the energy minimum conformation shown in Figure 4a. In
the saddle point conformation, through-space interaction is
eliminated. To be consistent, the same was applied for the
benzyl chloride and bromide molecules. The (averaged) local
mode frequency shift values of the six parameters were
calculated for these geometries, (they can be found as no.

Figure 4. Ball-and-stick representation of a benzyl halide molecule. Green, white, and cyan spheres stand for C, H, and X (= F, Cl, and Br) atoms,
respectively. (a) Local minimum geometry. (b) First-order saddle point geometry (X atom in the phenyl ring plane) in two perspectives.
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09(b), 10(b), and 11(b) in Table 1; the superscript * after the
name of the substituents denotes the rotated geometries.)
The HCA after replacing the benzyl fluoride, chloride, and

bromide molecule with rotated forms is shown in Figure 3b.
The three substituents have now been correctly classified as
ortho-/para-directing groups, and they cluster together with
small distances between each other. This proves that our
classification model is robust and reliable, correctly classifying
the 43 substituents for which experimental data is available with
regard to the directing effect.
On this basis, we made predictions for the 16 remaining

substituents. The sulfhydryl (−SH), tert-butyl (−C(CH3)3),
and butadienyl (−CHCH−CHCH2) groups along with
the lithium atom and sodium atom are predicted to direct a
second substituent into an ortho-/para-position. Anionic
substituents including −CH2

−, −PO4
2−, −COO−, −CH2COO

−,
and −CH2CH2COO

− are also predicted to belong to this class.
Substituents like −BeH, −BH2, −AlH2, and −PH2 are expected
to be meta-directing. The cationic substituents including
−CH2

+, −CH2NH3
+, −CH2CH2NH3

+, and −CH2CH2CH2NH3
+

are classified as meta-directing groups according to the
prediction result.
In addition, when the classification result with regard to the

directing effect in Figure 3b is compared with the similarity
measurement in Figure 2, we find that some small clusters of
Figure 2 are kept in Figure 3b while clusters with larger
distances between their members are broken in the
classification result. The major reason responsible for this
difference is that we have used nine different local mode
frequency shifts for characterizing the similarity, but only six of
them were taken in the classification problem. Although the
three extra local mode frequency shifts as the descriptors can
help to give a higher resolution in the characterization of the
electronic structure, the information that they are carrying
about the electronic structure is not related to the directing
effect of the substituents.
Recently, Liu has attempted to distinguish meta-directing

groups from ortho-/para-directing groups using three Hirshfeld
charge values of the carbon atoms in question.60 However, his
model seems to have deficiencies because up to nine −NR3

+

groups do not fit in. These outliers cast doubt on (i) whether
atomic charges are appropriate descriptors to describe the
electronic structure with regard to the directing effect
quantitatively and (ii) the choice of his test set. Fu et al.
carried out a set of systematic studies on the classification of 14
monosubstituted benzenes using 14 different theoretical
models.61 The major difference between their classification/
prediction and ours lies in that they have also tried to predict
the relative portion of ortho-, meta-, and para-products, which
is an interesting but challenging task. In their work, the 14
different methods used for characterization fall into two major
categories including methods based on local electronic softness
and those reflecting electrostatic effects. As the number of
monosubstituted benzene molecules was quite limited in that
work, a direct comparison with our model is not feasible.
However, it should be possible to characterize the dominance
of the ortho- or para-product with local mode frequency shifts
as they reflect directly the electronic structure of the benzene
derivative. Work is in progress to demonstrate this. Noteworthy
is that Bader and Chang did seminal work on QTAIM analysis
of electrophilic aromatic substitution for nine monosubstituted
benzenes.62

In summary, the methods used in Liu’s and Fu’s work are
related to the properties derived from the electron density,
atomic charge, molecular and atomic orbital, and related orbital
energy. These concepts can be understood in a way that they
are used as descriptors for characterizing the local feature of the
electronic structure.63,64 Being derived directly or indirectly
from the molecular wave function Ψ, however, these methods
fall short in the following two aspects: (i) The number of
descriptors is too limited. For example, Liu considers only three
atomic charge values for the ortho-, meta-, and para-carbons. In
comparison, our local mode description uses six descriptors
characterizing the electronic structure in different directions,
leading to more detailed information. (ii) Models like atomic
charges are based on assumptions or are even based on other
models, although they might be useful for interpretative
purpose. Wave function and orbitals are always delocalized
functions in the space, and any attempt to assign them to a
specific atom has no physical basis.
The local mode frequency starts from the eigenvalue of the

Schrödinger equation, which is the energy E. Vibrational modes
derived from the Hessian matrix are second-order response
properties and therefore can be used as sensitive measures of
any change in the electronic structure.

■ CONCLUSIONS
The assessment of the similarity of monosubstituted benzene
molecules using the local vibrational modes has led to a series
of interesting results as well as a platform for future work.
(1) The local mode frequency shifts introduced in this work

have the capability to characterize the similarity of different
types of benzene derivatives. At the same time, pairwise
dissimilarity can also be defined using a cosine function. With
the help of the HCA, the relationship between different
monosubstituted benzenes can be visualized and interpreted.
(2) As it has been stated by many chemists that the benzene

molecule probes inductive and resonance effects resulting from
substituents,47,49,60,61,65 it is helpful to design model systems in
order to study these two effects in a systematic way and to
develop a quantitative index similar to the Hammett substituent
constant66 based on the electronic structure.
(3) The concept of the blue and red shift of the local mode

frequency value can be compared to the up- and downfield of
the NMR spectroscopy. Both of these shifts can be used in
order to characterize the change in the electronic structure.
However, the local mode frequency shift is not limited to atoms
of 1H, 13C, 15N, 19F, and 31P; it can be applied to any element in
a molecule and offer more abundant information.
(4) The similarity result obtained in this work can be used as

guidance with regard to the choice of functional groups in
synthesis and molecular design.
(5) For the first time, we have correctly classified 43

monosubstituted benzene molecules with regard to their
directing effect of the substituents in electrophilic aromatic
substitution reactions based on local vibrational frequencies.
We have also predicted the directing effects of the substituent
in 16 additional monosubstituted benzenes for which no
experimental data is known.
(6) The procedure employed to study the regioselectivity

problem in this work can be applied to other reactions,
including the Diels−Alder reactions67−69 and transition metal-
catalyzed reactions where the ligand plays an important
role.70−77 This will be part of future studies aiming at the
development of a generally applicable tool for rational catalyst
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design. Recent work of Sigman and his co-workers has shown
that efforts in this direction can be promising.78−80

(7) The local mode frequency shift provides new insight into
characterizing the electronic structure of a molecule. This
framework is quite unique and different from those well-
accepted models based on atomic charges and orbitals in that
they can be calculated or derived from the normal vibrational
frequencies.
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Correlating the Vibrational Spectra of Structurally Related
Molecules: A Spectroscopic Measure of Similarity
Yunwen Tao,[a] Wenli Zou,[b] Dieter Cremer,[a]* and Elfi Kraka [a]

Using catastrophe theory and the concept of a mutation path,

an algorithm is developed that leads to the direct correlation

of the normal vibrational modes of two structurally related

molecules. The mutation path is defined by weighted incre-

mental changes in mass and geometry of the molecules in

question, which are successively applied to mutate a molecule

into a structurally related molecule and thus continuously con-

verting their normal vibrational spectra from one into the

other. Correlation diagrams are generated that accurately

relate the normal vibrational modes to each other by utilizing

mode-mode overlap criteria and resolving allowed and

avoided crossings of vibrational eigenstates. The limitations of

normal mode correlation, however, foster the correlation of

local vibrational modes, which offer a novel vibrational mea-

sure of similarity. It will be shown how this will open new ave-

nues for chemical studies. VC 2017 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.25109

Introduction

The similarity between two structurally related molecules can be

accessed via their vibrational spectra. Any difference in the elec-

tronic structure is sensitively registered by the vibrational modes.

The vibrational spectrum of a molecule depends on five quanti-

ties: (i) Number of atoms N which determines the number of

vibrations Nvib53N2L (L: number of translations and rotations);

(ii) Point group symmetry X of the molecule; (iii) Masses mi of

the atoms (collected in the mass matrix M); (iv) the geometry R

of the molecule; and (v) the electronic structure in a molecule

characterized by its Hessian matrix K. The change of any of these

five quantities results in a change in the vibrational spectrum,

where this change can encompass a change of Nvib, the position

of the vibrational frequencies xl, the corresponding intensities

Il, and the form of the normal vibrational modes ll. Comparison

of the vibrational spectra even of structurally closely related mol-

ecules is often hampered because the mode-mode coupling

leads to a serious complication that troubles the correlation of

vibrational spectra. However, if one would be able to eliminate

the mode-mode coupling, a number of interesting problems in

the correlation of vibrational spectra can be solved.

If one can analyze the changes in the vibrational spectrum,

where a change in N, X, R; M, or K is expected simultaneously,

valuable information from vibrational spectra can be

extracted.[1–5] This major objective can be split into several

smaller problems of correlating two vibrational spectra by

changing part of the above five quantities which influence the

normal vibrational modes and fixing the rest:

1. Changes in X and M, while keeping N, R and K

unchanged: correlation of the vibrational spectra of iso-

topomers, for example, H2O ! HOD;

2. Changes in K and R, while keeping N, X and M fixed: cor-

relation of the vibrational spectra along a reaction path,

for example, HCN ! HNC;

3. Changes in (X,) K and R, while keeping N, M fixed: corre-

lation of the vibrations of conformational isomers, for

example, gauche conformation ! anti conformation of

butane molecule;

4. Changes in (N,) (X,) R; M and K: correlation of the vibra-

tional spectra of structurally related compounds, for

example, methane ! ethane.

In our previous work,[6] problem 1 has been solved by defin-

ing a mass reaction coordinate that connects a pair of iso-

topomers in terms of vibrational frequencies. We have also

performed extensive work related to problem 2 which involves

the studies of reaction mechanism with the reaction path

Hamiltonian[7,8] combined with our unified reaction valley

approach.[9–11] According to the McIver-Stanton rules,[12] the

reaction complex can only change its symmetry at a stationary

point (local minimum or first-order saddle point), otherwise

the symmetry is kept along the reaction path. In this connec-

tion, 3N2L21 generalized normal modes of the reactant com-

plex and the product complex are correctly correlated with

regard to the reaction coordinate s. Problem 3 is closely linked

to problem 2 because the conformational change of a mole-

cule from one local minimum to another local minimum on

the ground state potential energy surface (PES) requires an

[a] Y. Tao, D. Cremer, E. Kraka
Department of Chemistry, Southern Methodist University, 3215 Daniel
Avenue, Dallas, Texas 75275-0314
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energy barrier. In this regard, a conformational change can be

classified as a reaction without bond breaking/formation.

From the number of quantities that can vary, problem 4 is

considered to be the most complicated and general situation.

Theoretically speaking, problem 4 covers problems 1–3, while

problems 2–3 can be solved in a specialized approach. How-

ever, a generalized algorithm for the automated correlation of

vibrational spectra of any pair of structurally related com-

pounds needs to solve all of the four problems.

To do so, we define a mutation path, which allows the correla-

tion of the normal vibrational spectra of two molecules, even

when they differ in the number of atoms N. In the second sec-

tion, we will describe the theory of the mutation path and pre-

sent test examples. In the third section, we adopt the idea of the

one-to-one correlation of normal modes via a mutation path and

extend this procedure to local vibrational modes to decipher fur-

ther electronic structure details and characterize the similarity of

the two molecules. Computational details will be given in the

fourth section while the conclusions are made in the last section.

Correlation of Normal Vibrational Modes
Based on a Mutation Path

Definition and use of mutation path

If an atom of a molecule is replaced by another atom or a

polyatomic substituent, a change in the point group symmetry

of the molecule can take place. Changes in Nvib, the atomic

masses, the geometry and the potential energy have also to

be considered so that significant changes of the vibrational

spectrum are the rule rather than the exception. For the corre-

lation of the corresponding spectra, these changes are applied

to the starting spectrum stepwise. Given the information of

the parent molecule A and the target molecule B, we can

define a new type of reaction as “mutation” which describes

the transition process from A to B, even if A and B differ in N

(NA ! NB is required), R, X, M, and K. However, A and B should

be structurally related. To design an appropriate mutation

reaction path, the following aspects have to be considered:

1. How is the reaction coordinate of a mutation path

defined?

2. How is the geometry R changed from the reactant mole-

cule A to the product molecule B with regard to the

reaction coordinate?

3. How does the symmetry X change along with the chang-

ing geometry R?

4. How does the mass M change, especially when an atom

is replaced by a polyatomic substituent?

5. How is the electronic structure changed without doing

ab initio calculation in each step along the mutation

path? Can we get a realistic description of the electronic

structure between two different molecules? If not, how

to simulate it in a reasonable approach?

6. How to resolve the problem of allowed crossing and

avoided crossing between modes when they have

degenerate frequency values in the mutation path?

Unlike the chemical reaction path that can be theoretically

characterized by the intrinsic reaction coordinate,[13] where we

use the mass-weighted collective atomic displacements as the

reaction coordinate s, here we use a scalar k ranging from 0

to 1 connecting the reactant A and the product molecule B at

two ends. With the increase of k, each quantity including the

mass, geometry, and electronic structure is required to simulta-

neously change in a linear form.

The change of the geometry R is the most complicated part

of the mutation path. As all quantities change along the muta-

tion path, we need to distinguish two situations: (i) NA5NB,

the number of atoms does not change. (ii) NA < NB, the target

molecule “grows” from the parent molecule.

In the first situation, for example, A5 H2O, B5 H2S, we do

not expect major differences in geometry between these two

molecules, as the connectivity stays the same. At any point k
along the reaction path, the geometry can be easily given as a

linear combination from that of A and B:

Rk5RA1kðRB2RAÞ (1)

In the second situation of NA < NB, we need to compare RA

and RB and find the common substructure a0 and b0 within A

and B. Then, atom(s) within A need to be found that is(are)

not within a0, denoted as a0i . a0i is considered as the root of

geometry growth toward B, here i is the label of root. The

number of roots can be more than one, depending on the dif-

ference between RA and RB. Parts within B but not in b0 are

taken as b0i ; b0i is the direct consequence from growth starting

from root a0i . So at any point k along the reaction path, the

geometry is:

Rk5Ra0 1kðRb0 2Ra0Þ1
X

i

ðRa0i
1kðRb0i

2Ra0i
ÞÞ (2)

with A5fa0; a01; a02; . . .g; B5fb0;b01;b02; . . .g. To show how this

works, we take A5 Methane, B5 Ethane. See Figure 1, in this

mutation process, we have methane as the reactant molecule A,

ethane as the product molecule B. The common substructure a0

ðb0Þ in both molecules is the methyl group on the left side (col-

ored in black). The root of growth a01 in the reactant molecule is

the hydrogen atom on the right side of methane (colored in pur-

ple). The part b01 in ethane grown from the root a01 is the methyl

group on the right side (colored in red). So in this mutation

path, three parallel mutation events are taking place: (i) The

lengthening of CAH bond of A into CAC bond of B, (ii) The

growth of CAH bond in b01 starting from 0 Å, and (iii) The relaxa-

tion and adjustment of the substructure a0 to b0.

One has to bear in mind that not any two arbitrary mole-

cules can be correlated in such a way in geometry. For exam-

ple, it would be rather difficult to let the methane molecule

grow into a steroid molecule in one step. This reemphasizes a

precondition of the mutation process in the second situation

with different numbers of atoms that a common substructure

should exist in both the reactant and the product.

Immediate change of geometry R from the reactant mole-

cule will lead to the change of the symmetry X provided the
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reactant molecule has a symmetry higher than C1. In this case,

the symmetry will decrease right away when the mutation

path starts. In the mutation shown in Figure 1, the symmetry

of the reactant will decrease immediately from Td to C3v start-

ing at the first step along the reaction path. Along the whole

mutation path, the C3v symmetry will be kept, until the prod-

uct molecule ethane is reached, which has D3d symmetry.

With regard to the change of mass M, we need also to dis-

tinguish between two situations like for the change of geome-

try R: (i) NA5NB, (ii) NA < NB. In the first situation, there exists

a one-to-one relationship of atoms between reactant molecule

and product molecule, for example, H2O and H2S. The mass of

any point along the reaction path k is given by

Mk5MA1kðMB2MAÞ (3)

In the second situation, the common substructure, a0 and b0

will keep its mass unchanged along the mutation path. We

need to additionally differentiate the atom within b0i which will

replace a0i , we call it bi
0
m, while the other part within b0i is bi

0
n

which comes to existence from massless vacuum. At the same

time, b0i5fbi
0
m;bi

0
ng. Then, the mass of k can be expressed as:

Mk5Ma0 1
X

i

ðMa0i
1kðMbi

0
m
2Ma0i

Þ1kMbi
0
n
Þ (4)

To illustrate this with the methane to ethane example in

Figure 1, the methyl group colored in black keeps its mass

unchanged. The mass of hydrogen atom in purple gradually

changes into the mass of a carbon atom, while the mass of

hydrogen atoms in red color increases from zero to the atomic

mass of hydrogen.

One major problem that might hinder us from following

this mutation path is how can we describe the electronic

structure of the mutation complex at each point on the path.

This implies to answer the following questions: (i) How can we

describe a system with unreasonable bond length which is

close to zero? (ii) How can we describe a system having a frac-

tional number of electrons? In molecular mechanics (MM),

there exists a solution provided by Zwanzig in the free energy

perturbation calculations[14] by adjusting the force field param-

eters stepwise in the course of the molecular dynamics simula-

tions. Unfortunately, we have no such ab initio methods that

can work in this situation. However, we can use a mathemati-

cal trick by taking a linear combination of the Hessian matrices

of the reactant and product molecules to define an intermedi-

ate Hessian matrix for any point along the mutation path.

Kk5KA1kðKB2KAÞ (5)

The dimension of KA differs from that of KB if NA 6¼ NB. To get

rid of this inconsistency, we pad KA with zeros to the same

dimension as KB. Those atoms which are not present in the

reactant molecule do not influence the electronic structure of

the reactant molecule at the early stage of the mutation path

as k is small. Thus, in the beginning, the vibrational spectrum

is dominated by the reactant molecule with little influence

from the atoms which are not present in A. So in this way, the

change of electronic structure is described in a reasonable

way.

Another problem that needs to be addressed is that there

might be a discrepancy between the reactant molecule and

the mutation complex at the first step of the mutation path as

the number of atoms and symmetry both change at that

point. However, this problem can be solved via a catastrophe

point, where the introduced perturbation from the mass and

electronic effect is so small that a smooth transition from reac-

tant molecule to the mutation path can be established. From

Table 1 for the mutation path of methane ! ethane, we see

that even though 9 new vibrations come to exist due to three

new atoms introduced in, vibrations from the methane as the

reactant retain themselves quite well in the beginning of the

mutation process.

The Wilson equation of vibrational spectroscopy[15] has to

be solved at each point using the intermediate Hessian Kk

along the mutation path to guarantee a continuous descrip-

tion connecting two structurally related molecules.

At a given point, ka of the mutation path, which is defined

by the mutation path coordinate k, corresponding normal

modes llðkaÞ and their associated normal mode vibrational fre-

quencies xlðkaÞ are obtained via solving

KðkaÞllðkaÞ5x2
lðkaÞllðkaÞ (6)

which gives Nvib53NB2L (L: number of translations and rota-

tions) eigenvectors with the length of 3NB spanning the Nvib-

dimensional space. For any two consecutive points, ka and kb

separated by the mutation path coordinate increments

dk5
120

f
5

1

f
(7)

(f is a scaling factor ranging from 1000 to 10,000. The value of

f determines the mutation path stepsize dk.) Equation (6) is

solved:

Kaal5ðxa
lÞ

2al (8)

Kbbl5ðxb
lÞ

2bl (9)

In these two equations, al and bl are the mass-weighted nor-

mal mode vectors calculated at ka and kb, respectively.

In the case of degenerate frequency values at a specific

point on the path, namely xl5xm, we need to obtain a cor-

rect ordering of normal modes at this point, especially when

the whole mutation complex has a symmetry higher than C1.

Figure 1. Structure of reactant and product molecule in the mutation path
of methane ! ethane. [Color figure can be viewed at wileyonlinelibrary.
com]
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In this situation, we use the diabatic mode ordering (DMO)

procedure[16] which was proposed by Konkoli et al. With DMO,

we can resolve allowed- and avoided-crossings which might

appear in the frequency values along the mutation path. To

correlate the vibrational modes at ka and kb, the overlap

between normal mode vectors is maximized via rotation. We

collect the mode vectors al and bl into matrices A and B:

A5ða1; a2; . . . ; al; . . . ; aNvib
Þ (10)

B5ðb1;b2; . . . ;bl; . . . ;bNvibÞ (11)

the overlap matrix between A and B is given by the scalar

product

SBA5B
†

A (12)

Matrix T used for rotation is defined

T5ðS†

BASBAÞ21=2S
†

BA (13)

which fulfills the following condition

TrðB†

B0Þ5max (14)

with

B % B05AT (15)

and

TT05I (16)

Matrix B0 is an image of matrix B rotated by T in the space of VA.

There is no transformation T that can lead to B05B because al

and bl span different spaces of VA and VB, respectively.

To relate Ni normal mode vectors bl in the space of VB with

subspace VA
i of dimension Ni (i 5 1: non-degenerate vibrational

mode; 2, 3, . . .: degenerate vibrational modes), an amplitude is

defined

Ai
k5

1

Ni

XNi

li51

T 2
li;k (17)

Ni normal mode vectors bl having the largest amplitude Ai
k

are assigned to subspace VA. This procedure of finding the

image vectors of bl as b0l in the space of VB, is the only solu-

tion to connect vectors in the space of VA and VB.

Then, vectors al in the subspace VA
i are rotated by

ali5
XNi

mi51

amiR
i
mi;mi (18)

rotation matrix Ri is associated with the subspace VA
i

Ri5½ðSi
BAÞ

†

Si
BA'

21=2ðSi
BAÞ

†

(19)

in which Si
BA is the overlap matrix for the subspace VA

i

ðSi
BAÞli;mi5b

†

liami li; mi51; . . . ;Ni (20)

Thus, degenerate normal modes spanning the subspace V A
i

can be guaranteed to give a correct ordering.

To test the ordering results, one can calculate the final over-

lap matrix SBA which is expected to be close to diagonal iden-

tity matrix.

ðSBAÞlm5b0
†

liami (21)

Then the smallest value in SBA is checked. If it is smaller than

the threshold Smin 5 0.95, the assignment and ordering is con-

sidered to be weak. In this situation, the mutation path is

repeated with smaller step size dk.

In the following, we will discuss the validation of the pro-

posed mutation path procedure in a series of examples with

increasing complexity with regard to the five quantities that

determine the vibrations.

Example 1: CHBrClF enantiomers

The first example is the mutation path for (S)-bromo-chloro-

fluoromethane ! (R)-bromo-chloro-fluoromethane. The reac-

tant and the product have the same number of atoms,

NA5NB. Both have C1 symmetry.

Being a pair of enantiomers, the reactant and the product

molecules are identical in their electronic structure except that

they are the mirror image to each other. So the same normal

vibrational frequency values are expected for k 5 0 and k 5 1.

Experimentalists who do vibrational spectroscopy might argue

that it is not possible to differentiate between such enantiom-

ers. However, we show that the vibrational spectra of a pair of

enantiomers can be correlated with a mutation path.

In the specific geometry of the CHBrClF molecule, there can

be up to Cð4; 2Þ56 possible pathways of mutation by switch-

ing any two atoms besides the central carbon atom. In this

work, we choose to mutate the Cl and H atoms while keeping

the other atoms intact.

As one can see from correlation of the vibrational frequen-

cies (Fig. 2), the whole mutation path is symmetric with regard

to k50:5. Even though the entire path has the symmetry of

C1, Cs symmetry is identified at the middle point. All

Table 1. Vibrational frequencies of methane and the mutation complex
at the catastrophe point close to methane (unit: cm21).

No. Methane Methane 1 dk No. Methane Methane 1 dk

1 – 313.21 10 – 2107.41
2 – 1253.57 11 – 2107.41
3 – 1253.57 12 3047.26 3046.18
4 1356.01 1356.03 13 3163.20 3160.19
5 1356.01 1357.22 14 3163.20 3163.17
6 1356.01 1357.22 15 3163.20 3163.17
7 1578.51 1578.35 16 – 4197.70
8 1578.51 1578.35 17 – 4197.70
9 – 1867.76 18 – 4246.55

[a] dk is taken as 1/4000 of the whole mutation path, and this is the
first point on the path next to methane as the reactant molecule.
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vibrational modes along the path have the a symmetry. This

leads to multiple avoided-crossings between vibrational modes

at k50:01; 0:02; 0:06; 0:16; 0:5 in the first half of this path. We

need to note that at k50:5, vibration 1 and 2 are not degen-

erate. Vibration 9 has the most striking change along the path.

By checking the normal mode character of this vibration, we

find that the nature of this mode is of CAH bond stretching

character and it is decoupled from the rest of the molecule. The

drastic change can be explained in the following way. At k 5 0,

the CAH stretching in vibration 9 is decoupled from other local

modes due to the tiny mass of the H atom compared with the

halogen atoms. When the mutation proceeds from the reactant,

the H atom slowly gains the properties of the Cl atom, including

its atomic mass. As a result, vibration 9 will have other local

modes mixed in causing the loss of the decoupling effect. At the

same time, the Cl atom reduces its atomic mass. To the middle

point, the original H and Cl atoms are the same in the way that

they become a virtual atom as X, X5ðH1ClÞ=2. When the muta-

tion continues, the X atom coming from Cl changes into the H

atom, thus the decoupled CAH vibration is brought back while

the other X atom turns into Cl.

Example 2: Benzene (C6H6) fi fluorobenzene (C6H5F)

The second example is the mutation path of benzene(C6H6) !
fluorobenzene(C6H5F), in which we still have NA5NB, but A

has a higher symmetry than B. The symmetry of each normal

mode along the mutation path can be resolved by the DMO

method.

It is illustrated in Figure 3 that the benzene molecule with

D6h symmetry can be linked to the fluorobenzene molecule in

its C2v symmetry via a mutation path. As both the reactant

and product have 12 atoms, there are in total 30 normal vibra-

tional modes. Thus, a one-to-one relationship between these

two sets of normal modes can be established. In the top dia-

gram of Figure 3, the symbols of irreducible representation are

labeled for the five vibrations with highest frequency values.

These five vibrations retain themselves quite well along the

mutation path, and no crossings are observed. For the

vibration with b2u symmetry in the reactant and a1 symmetry

along the path, it has the largest decrease in the frequency

value. Examination of this normal mode shows that the mode

character changes from the anti-symmetric CAH bond stretch-

ing mode within the benzene molecule into deformation

mode of the C6 ring within the fluorobenzene molecule. In the

lower frequency region (200–1700 cm–1) shown in the bottom

diagram of Figure 3, many allowed crossings between normal

modes in different symmetries can be observed. One interest-

ing observation is that some normal mode can cross up to

eight other modes along the mutation path. Such a sophisti-

cated crossing behavior can never be expected if one inspects

the vibrational frequency values measured by the infrared or

Raman spectrometer. Furthermore, all two-fold degenerate

vibrations (marked with a small circle) on the reactant side

lose their degeneracy by splitting into two vibrations with dif-

ferent symmetries along the mutation path.

Example 3: Methane (CH4) fi ethane (C2H6)

The one-to-one relationship between the normal modes of

two molecules will only be partially preserved if the molecule

B has more atoms than the molecule A, namely NA < NB. In

the mutation path of methane (CH4) ! ethane (C2H6), one of

the hydrogen atoms within methane grows into a methyl

group (-CH3) via mutation (see also Fig. 1). As ethane has

8 atoms while methane has only 5 atoms, 3 3 3 5 9 additional

vibrations are brought in since the beginning of the mutation

path. In the frequency correlation diagram in Figure 4, the fre-

quencies of these nine vibrational modes are plotted with

dashed lines, which need to be distinguished from the other

nine solid lines. Those solid lines show the change of fre-

quency values of the vibrations originated from the methane

molecule as the reactant.

To find out these nine normal modes that belong to the

parent molecule, the scalar product of the normal mode vec-

tors between the reactant molecule and the mutation complex

at the catastrophe point along the mutation path is calculated

to get the overlap measurement.

l
†

A;ll1st
k;m5slm (22)

in which l51; 2; . . . ; 3NA2L; m51; 2; . . . ; 3NB2L (L: total num-

ber of translations and rotations). Furthermore, lA;l is a vector

of normal mode l in the reactant A, while l1st
k;m is the vector of

normal mode m at the catastrophe point of the mutation path.

Zeros are used to pad in lA;l to make it have the same length

for l1st
k;m. If the overlap value slm is greater than 0.95, then nor-

mal mode l can be smoothly correlated with normal mode m
(see Table 1).

On the left side of Figure 4, in total nine vibrational modes

from the parent molecules are labeled from 1 to 9 with sym-

metry and numbering. Although three-fold degenerate vibra-

tions have the same frequency values, they are still numbered

for differentiation. On the right side which stands for the prod-

uct molecule, all 18 vibrations are labeled as for the reactant

side according to the ordering of frequency value. However,

Figure 2. Correlation of normal mode frequencies of (S)-bromo-chloro-fluo-
romethane (left) with that of (R)-bromo-chloro-fluoromethane (right) along
the mutation path. [Color figure can be viewed at wileyonlinelibrary.com]
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those vibrations without any counterpart in the reactant side

are labeled in gray color.

Among all normal modes along the path, the a1ð6Þ mode

on the reactant side has the largest change in the vibration

frequency value. This mode describes the symmetric stretching

of 4 CAH bonds in methane. Then it turns into a symmetric

combination of two pyramidalization modes of two methyl

groups in ethane, denoted as a1gð8Þ. Both allowed- and

avoided-crossings are observed in this path. Furthermore, any

three-fold degenerate vibration is split into a non-degenerate

vibration and two-fold degenerate vibrations.

Besides the vibrational frequencies which can be obtained

either from experimental measurement or ab initio calcula-

tions, it could be interesting if we can correlate directly the

vibrational spectra of two molecules, that is, the infrared (IR)

spectrum including both the vibrational frequency and the IR

intensity with mutation path.

The IR intensity of normal mode l at a given point ka on

the mutation path is given by[17–19]

IlðkaÞ5d
†

lðkaÞdlðkaÞ (23)

where dlðkaÞ denotes the dipole derivative vector of the nor-

mal mode l. Matrix dðkaÞ collects dlðkaÞ for all normal modes.

dðkaÞ5CDðkaÞðMRðkaÞÞ21=2 (24)

The atomic polar tensor (APT) matrix at the point ka is

denoted with DðkaÞ. It has the dimension of 333NB and con-

tains the dipole moment derivatives with regard to the dis-

placement in Cartesian coordinates.[17,20]

We need to note that the APT matrix along the mutation

path is constructed in a similar way via linear combination as

the Hessian matrix is constructed [see eq. (5)].

Dk5DA1kðDB2DAÞ (25)

Reduced mass matrix MRðkaÞ is diagonal by collecting mR
lðkaÞ

as its diagonal elements

mR
lðkaÞ5l

†

lðkaÞllðkaÞ (26)

In this work, the normal mode intensity IlðkaÞ is given in the

unit of km/mol. The conversion factor C in eq. (24) is 31.22307.

After calculating the mutation path of methane ! ethane

with IR intensities taken into consideration, four snapshots of

IR spectrum along the path were taken at k50; 0:334; 0:667; 1

(Fig. 5). Although only the IR spectrum diagrams at the point

k 5 0 and k 5 1 can be directly compared with experimental

data, those intermediate spectrum snapshots are still helpful

to visualize how each absorption peak evolves along the

mutation path.

In the IR spectrum shown in Figure 5, absorption peaks orig-

inated from the reactant (methane) molecule are colored in

red, while the others are colored in blue. This color scheme is

kept along the mutation path due to the correct ordering of

normal modes by the DMO approach.[16] In the methane mole-

cule, only two peaks are observed, where either peak is three-

fold degenerate. The other three vibrations including e(4, 5)

and a1ð6Þ are all IR inactive. At the point of k50:334, splitting

is observed for t2ð1; 2; 3Þ and t2ð7; 8; 9Þ. Vibrations coming

from the growing methyl group have started to play a role. At

Figure 4. Correlation of normal mode frequencies of methane (left) with
that of ethane (right) along the mutation path. Irreducible representations
of normal modes are labeled on both sides. Vibrations arising from the
growth are plotted with dashed lines and labeled in gray color. [Color fig-
ure can be viewed at wileyonlinelibrary.com]

Figure 3. Correlation of normal mode frequencies of benzene (left) with
that of fluorobenzene (right) along the mutation path. Irreducible represen-
tations of normal modes are labeled on both sides. Top: Diagram of all
vibrational frequencies. Bottom: Diagram of the low frequency part (200–
1700 cm21). [Color figure can be viewed at wileyonlinelibrary.com]
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k50:667, we can hardly see any IR active vibrations below

2000 cm–1 coming from the methane molecule. One of the

three blue peaks in that region is vanishing. The intensities of

the blue peaks in the high frequency region are increased. At

the end of the mutation path, all red peaks have vanished,

leaving only four blue peaks. This result shows that all of the

IR active peaks in ethane are not originated from the IR active

vibrations in methane, instead they come from the geometry

growth.

Apart from methane and ethane, such a correlation

extended to the IR spectra can be generalized to other mole-

cules and it can provide experimental chemists with a physi-

cally meaningful interpretation of the relationship of vibrations

between two structurally related compounds.

Normal mode correlations and their limitations

In the previous subsections, we have correlated the normal

vibrational spectra of two structurally related molecules using

a mutation path. Each normal vibrational mode l in molecule

A has its counterpart l0 in molecule B. The normal vibrational

frequency values can be denoted as xlðAÞ and xl0ðBÞ, respec-

tively. The frequency shift from l to l0 is unambiguously calcu-

lated by Dxl!l05xl0ðBÞ2xlðAÞ.
Independent of the mutation path, chemists have been

adopting the idea of normal mode correlation utilizing the

concept of normal mode frequency shifts Dxl!l0 explicitly or

implicitly in various research scenarios in which an external

perturbation of the targeted system can be characterized.

Many studies have been reported on the red- and blue-shift of

vibrations involving covalent XAH bond (X 5 O, F, or N)

stretchings when they participate in non-covalent interactions,

that is, hydrogen bonding.[21–28] Such applications using the

frequency shift values of a specific normal mode are based on

the fact that the perturbation of the electronic structure of

the targeted system is revealed via the shift values, thus pro-

viding chemical insights from the vibrational spectra.

In a series of studies related to the “vibrational stark effect,”

Boxer and his coworkers suggested that the C@O bond

stretching mode in the carbonyl group and the CBN bond

stretching mode in nitriles are decoupled from other vibrations

and thus can be correlated among different chemical systems

containing this specific bond.[29–34] Furthermore, they dis-

cussed a linear correlation between the normal mode fre-

quency shift of these probe bonds Dxl!l0 and the strength of

the external electric field exerted on the molecule containing

these bonds. The catalytic power of the ketosteroid isomerase

was explained using their model.[35,36] Recently, a similar

approach has been applied by Mani and coworkers to charac-

terize the localization and delocalization of electrons in

anions.[37,38]

Another example in this regard is the Tolman Electronic

Parameter.[39,40] Tolman used the shift of the A1-symmetrical

CO stretching mode in [Ni(CO)3(L)] (L 5 PR3) complexes as an

indirect measure of the NiAL bond strength assuming that (a)

the A1-symmetrical CO stretching is fully decoupled and (b) it

reflects the strength of the NiAL bonding.

Figure 5. IR intensities of normal vibrational modes along the mutation path from methane to ethane. Four points (k 5 0, 0.334, 0.667, 1) on the mutation
path are shown here. Vibrations from methane are colored in red. Vibrations arising from geometry growth are in blue color. [Color figure can be viewed
at wileyonlinelibrary.com]
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Given these applications of normal mode correlation, the

underlying rationale can be summarized as follows. Any

attempt to obtain chemical insights by correlating specific nor-

mal mode(s) among different systems has to fulfill the follow-

ing two requirements:

( The absorption peak of the targeted vibrational mode

should be distinctive in both the position of the peak

(frequency) and the spectroscopic intensity of the vibra-

tion. The bond stretching modes having large vibrational

frequencies are preferred than angle bending and torsion

modes whose frequencies are smaller and prone to be

obscured. Furthermore, the IR intensities of these stretch-

ing modes range from medium to strong, caused by the

significant change in the dipole moment;

( These normal modes should be decoupled from the rest

of the molecule and free from the problem of mode-

mode coupling. In other words, they are in a way

“localized” to a specific part of a molecule and character-

ize its electronic structure via vibrational frequency val-

ues. Only in this way, the comparison of the vibrational

frequencies for these spectator modes can make sense.

These two requirements, however, hinder the general appli-

cability of normal mode correlation in contrast to the fact that

vibrational spectroscopy is able to characterize the electronic

structure of a molecule in a comprehensive manner. Only a

small fraction of the abundant information obtained from

vibrational spectroscopy is being used by chemists, therefore a

way to rediscover the valuable information from the vibra-

tional spectroscopy is needed.

This is presented in the next section of this work, introduc-

ing the theory of local vibrational modes which provides a

novel approach for utilizing vibrational spectroscopy data in a

general, meaningful way.

A Novel Measure of Molecular Similarity Based
on Local Vibrational Modes

Theory of local vibrational modes and new similarity

measure

In 1998, Konkoli and Cremer did a seminal work on determin-

ing the local vibrational modes directly from normal vibra-

tional modes by solving the mass-decoupled Euler-Lagrange

equations.[41] Zou and Cremer’s recent work has proved that

these local vibrational modes are the only and unique counter-

parts of the normal modes that can be obtained by solving

the Wilson equation of vibrational spectroscopy.[42]

First, the Wilson equation of vibrational spectroscopy is

solved in eq. (27):

Fx L5MLK (27)

where Fx is the Hessian matrix expressed in Cartesian coordi-

nates, M is the mass matrix, L collects all normal mode vectors

ll in columns and K is a diagonal matrix collecting

corresponding eigenvalues kl. Harmonic vibrational frequen-

cies xl are calculated according to kl54p2c2x2
l.

Then, the Hessian matrix can be transformed into normal

coordinates as K:

L
†

Fx L5K (28)

In the framework of the local vibrational mode theory, each

local mode is associated with an internal coordinate parameter

qn, which drives the local mode as the leading parameter. The

local mode vector an is given by

an5
K21d

†

n

dnK21d
†

n

(29)

where dn is a row vector in matrix D, which collects the nor-

mal mode vectors in internal coordinate. The local mode force

constant ka
n of mode n (superscript a means adiabatically

relaxed, i.e., local mode) is thus obtained

ka
n5a

†

nKan (30)

The reciprocal diagonal element Gnn of the G-matrix[41] defines

the reduced mass of local mode an. The local vibrational fre-

quency xa
n can be determined by

ðxa
nÞ

25
1

4p2c2
ka

n Gnn (31)

Since 2012, we have been applying the theory of local vibra-

tional modes to characterize the intrinsic bond strength of var-

ious chemical bonding scenarios covering both covalent

bonds[43–46] and also non-covalent interactions.[47–53] In these

studies, we have focused on the local bond stretching modes

with their local mode properties including the local stretching

force constant and the local stretching frequency.

In this work, we explore the potential of local vibrational

modes of characterizing the electronic structure of structurally

related molecules by correlating their local vibrational modes.

Motivated by the normal mode correlation discussed in the

last section, we find the local modes are better suited for such

a correlation. Given two structurally-related molecules A and B

with their common substructure a0 and b0 and specifying an

internal coordinate parameter qn within a0(b0), the corre-

sponding local vibrational modes can be obtained as a and a0.

As this pair of local vibrational modes characterizes the curv-

ing of the PES of molecules A and B in a specific direction

defined by the same internal coordinate parameter qn as the

leading parameter, the local vibrational mode a in a0 can be

correlated with local vibrational mode a0 in b0. So the local

vibrational mode frequency xa for a and xa0 for a0 can be

directly compared, leading to the local mode frequency shift D
xa!a05xa0ðBÞ2xaðAÞ as the local equivalent to the normal

mode frequency shift Dxl!l0 . The major difference between D
xa!a0 and Dxl!l0 is that Dxa!a0 can characterize the local

properties of the electronic structure while Dxl!l0 cannot,

due its delocalized nature.
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In this way, the local mode frequency shift Dxa!a0 can be

used to describe the difference/similarity of the electronic

structure in structurally-related molecules sharing a common

substructure. A large amplitude of Dxa!a0 represents a large

difference of the local electronic structure and a small ampli-

tude of Dxa!a0 indicates higher similarity. The sign of Dxa!a0

determines red- or blue-shift.

In the following part of this work, we will use three exam-

ples to illustrate the application of the local mode correlation

and the related local mode frequency shift Dxa!a0 as a similar-

ity measure.

Example 1: Aspirin and its derivative SJ103

In this example, we use the aspirin molecule and its derivative

named as “SJ103”[54] to illustrate how the local mode fre-

quency shift characterizes the difference in the electronic

structure of these two molecules in a comprehensive manner.

Figure 6 shows the 2D scheme and ball-and-stick represen-

tation of aspirin (top) and its derivative SJ103 (middle). By

comparing these two structures, a common substructure can

be derived (bottom) so that the X in red color can be either a

H atom or the functional group as ACH2CH@CHAPh. Further-

more, X is excluded from the substructure and local mode

analysis.

For the substructure in question, in total 20 bonds, 25 bond

angles, and 9 dihedral angles constitute a non-redundant set

of 54 parameters (see Table 2). The local vibrational frequency

corresponding to each internal coordinate parameter is calcu-

lated for aspirin and SJ103 as xaðAÞ and xa0ðBÞ. At the same

time, the local mode frequency shift Dxa!a0 is calculated.

If we take a closer look at the absolute values/amplitudes of

Dxa!a0 , several interesting observations should be noted. (1)

The local mode frequency shifts for bonds are relatively

smaller than those for bond angles and dihedrals. (2) Chemical

bonds with jDxa!a0 j less than 2 cm21 include 1-12, 6-8, 7-9,

7-14, 8-15, 8-10, 9-16, 9-10, 10-17, and 13-20. Most of these

bonds are located in the six-membered ring of the substruc-

ture. (3) The CAO bond with largest jDxa!a0 j is 2-11 while the

Figure 6. Structure of aspirin (top), aspirin derivative SJ103 (middle) and
their common substructure (bottom). [Color figure can be viewed at
wileyonlinelibrary.com]

Table 2. Comparison of calculated local vibrational frequencies of the
common substructure in Aspirin and its derivative SJ103.

No. qn i j k l xaðAÞ xa0 ðBÞ Dxa!a0

1 r 1 12 1094.9 1095.1 0.2
2 r 1 5 1149.1 1144.4 24.7
3 r 2 11 1208.0 1218.7 10.7
4 r 3 11 1769.7 1765.7 24.0
5 r 4 12 1813.7 1803.1 210.6
6 r 5 6 1330.5 1320.9 29.6
7 r 5 7 1368.9 1366.1 22.8
8 r 6 8 1346.1 1346.2 0.1
9 r 6 11 1128.1 1115.5 212.6
10 r 7 9 1384.3 1385.4 1.1
11 r 7 14 3217.6 3216.1 21.5
12 r 8 15 3222.9 3222.7 20.2
13 r 8 10 1391.2 1391.8 0.6
14 r 9 16 3207.2 3206.3 20.9
15 r 9 10 1372.5 1372.8 0.3
16 r 10 17 3213.3 3212.5 20.8
17 r 12 13 1117.3 1115.0 22.3
18 r 13 18 3104.4 3115.4 11.0
19 r 13 19 3165.4 3160.3 25.1
20 r 13 20 3101.6 3100.9 20.7
21 a 2 11 3 861.6 898.9 37.3
22 a 2 11 6 709.8 730.8 21.0
23 a 11 6 5 822.9 759.5 263.4
24 a 6 5 1 740.4 608.8 2131.6
25 a 6 5 7 947.5 945.1 22.4
26 a 5 1 12 542.0 525.2 216.8
27 a 1 12 4 882.7 878.5 24.2
28 a 4 12 13 724.5 725.3 0.8
29 a 12 13 20 972.2 1019.0 46.8
30 a 12 13 19 1136.4 1130.9 25.5
31 a 12 13 18 1003.3 1046.8 43.5
32 a 18 13 20 1426.9 1423.1 23.8
33 a 18 13 19 1366.9 1407.0 40.1
34 a 5 7 14 1285.8 1282.2 23.6
35 a 5 7 9 940.2 928.1 212.1
36 a 14 7 9 1289.1 1290.8 1.7
37 a 7 9 16 1306.3 1305.3 21.0
38 a 7 9 10 936.4 934.0 22.4
39 a 16 9 10 1307.4 1305.3 22.1
40 a 9 10 17 1306.3 1306.0 20.3
41 a 9 10 8 943.4 942.5 20.9
42 a 17 10 8 1308.5 1308.9 0.4
43 a 10 8 15 1309.4 1309.4 0.0
44 a 10 8 6 944.7 923.9 220.8
45 a 15 8 6 1313.5 1306.9 26.6
46 s 2 11 6 5 151.4 119.3 232.1
47 s 2 11 6 8 95.3 75.8 219.5
48 s 3 11 6 8 173.3 136.2 237.1
49 s 15 8 6 11 781.5 776.7 24.8
50 s 1 5 6 11 450.3 437.1 213.2
51 s 12 1 5 7 150.3 148.7 21.6
52 s 4 12 1 5 378.6 410.4 31.8
53 s 13 12 1 5 218.2 256.3 38.1
54 s 20 13 12 1 158.8 202.4 43.6

[a] The column “No.” is the label of local mode in the common sub-
structure. [b] Columns named as xaðAÞ and xa0 ðBÞ are the local vibra-
tional frequencies in aspirin and SJ103. Dxa!a05xa0 ðBÞ2xaðAÞ. All
frequency values are in the unit of cm21. [c] i, j, k, and l are the atomic
label that determines the internal coordinate parameters qn including
bond length(r), bond angle(a), and dihedral angle(s).
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CAC bond with largest jDxa!a0 j is 6–11. The variation in X has

a direct influence on 11-2 bond because O2 atom is covalently

linked to X. The p-electron delocalization among atoms O2,

O3, C11, and C6 within the phenyl ring leads to a secondary

effect on the electronic structure of 6-11 bond. (4) Bond

angles whose jDxa!a0 j less than 10 cm21 include 6-5-7, 1-12-4,

4-12-13, 12-13-19, 18-13-20, 5-7-14, 14-7-9, 7-9-16, 7-9-10, 16-9-

10, 9-10-17, 9-10-8, 17-10-8, 10-8-15, and 15-8-6. More than

half of these angles are related to the C6 ring. (5) The largest j
Dxa!a0 j in bond angles is related to 6-5-1 (131.6 cm–1) and

11-6-5 (63.4 cm–1). Angle 11-6-5 has the change in the elec-

tronic structure, which has been explained by p-electron delo-

calization in (3). However, for angle 6-5-1, it is largely

influenced by the repulsion force between O2 and O1. The

variation in X will have an effect on this repulsion interaction,

thus leading to the change in the local vibration of angle 6-5-

1. (6) Significant change in the local mode frequency shift is

also found for angles 12-13-20, 12-13-18, and 18-13-19. These

angles are related to the methyl group in the substructure.

Changing from the aspirin to the SJ103 molecule, the bigger

functional group X has a larger dispersion force on this methyl

group.

Furthermore, this approach of correlating a series of local

vibrational modes for two structurally related molecules can

be extended to study the receptor-ligand binding of protein

or DNA in drug design by correlating the local vibrational

modes of the ligand in two states, namely the bound ligand

and unbound ligand. On binding, the influence from the

receptor in the electronic structure of the ligand will be

directly reflected by the local mode frequency shift values. If a

complete set of local modes of the ligand molecule is avail-

able, it is possible to identify the “hot-spots” in the ligand that

interact with the receptor.

Example 2: Regioselectivity in Diels-Alder reactions arising

from substituents

In this example, we revisit the regioselectivity in Diels-Alder

[4 1 2] cycloaddition reactions for 2-substituted dienes with

unsymmetrical dienophiles. When a 2-substituted diene with

substituent R1 reacts with a substituted ethene with substitu-

ent R2, two different six-membered rings can result, either the

para- or the meta-product, as shown in Figure 7. However, it

has been well-recognized that the para-product is the pre-

ferred product.[55–57]

Already in the 1970s, Houk explained this phenomenon on

the basis of frontier molecular orbital theory.[58,59] Based on

this model, the Diels-Alder reactions are driven by HOMO–

LUMO interactions of the reactants. The reactions are sepa-

rated into two categories, depending on the electron donat-

ing/withdrawing properties of substituents R1 and R2. In the

Normal Electron Demand (NED) scenarios, R1 acts as an Elec-

tron Donating Group (EDG), while R2 is an Electron Withdraw-

ing Group (EWG). Charge transfer is expected from the HOMO

of the diene into the LUMO of the dienophile. In the Inverse

Electron Demand (IED) cases, electronic flow is from the dieno-

phile to the diene reversing the HOMO/LUMO pair involved,

that is, R1 and R2 act as EWG and EDG, respectively. Houk pro-

posed that in NED-type reactions, the largest HOMO coeffi-

cient of the diene is at C1 (location a in Fig. 7), while the

largest LUMO coefficient of the dienophile is at C2 (location c),

and that the matching of these two largest HOMO/LUMO coef-

ficients results in para-product. A similar rule applies to the

IED-type reaction leading also to the dominance of the para-

product.

In this work, we approach the question of regioselectivity

from a different perspective. While previous theoretical studies

predominantly focused on properties derived from the con-

ceptual density functional theory (DFT),[60–62] we choose to

access the electronic structure of the p-orbitals at locations a,

b, and c using the local vibrational modes led by the out-of-

plane pyramidalization of the carbon atom (colored in red in

Fig. 7). We have included 15 2-substituted dienes (see Table 3)

and 10 substituted dienophiles (see Table 4) in our investiga-

tion and corresponding local vibrational mode frequencies for

the pyramidalization mode s are calculated for positions a, b,

and c, denoted as xs
a; xs

b, and xs
c.

To reveal the influence of the substituents R1 and R2, respec-

tively on the diene and dienophile, we correlated the local pyra-

midalization modes in substituted diene/dienophile molecules

with those local modes in un-substituted diene/dienophile

Figure 7. Top: Reaction scheme of Diels-Alder reactions for 2-substituted
diene. Bottom: The out-of-plane pyramidalization mode for locations a, b,
and c. [Color figure can be viewed at wileyonlinelibrary.com]

Table 3. Local mode frequency shift for 2-substituted cis-butadiene with
regard to the reference.

Classification No. R1 Dxs
a Dxs

b

EDG (1) OCH3 2132.5 6.7
(2) OC2H5 2132.2 7.1
(3) OH 2131.3 10.3
(4) NH2 2129.8 9.2
(5) NHCOCH3 253.6 10.2
(6) Cl 236.5 11.1
(7) CH3 227.9 0.7
(8) Ph 224.3 3.1

Reference (9) H 0.0 0.0
EWG (10) COCH3 12.4 4.5

(11) CN 13.0 15.9
(12) CHO 21.1 9.2
(13) CF3 21.5 13.3
(14) COOCH3 26.2 2.9
(15) NO2 31.7 17.0
(16) COCl 40.4 11.5

[a] The unit for local mode frequency shifts Dxs
a and Dxs

b is cm21.
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molecules. We calculated corresponding local mode frequency

shift Dxs by subtracting the local mode frequency of a specific

pyramidalization mode in the un-substituted diene/dienophile

molecule from its counterpart in a substituted diene/dienophile

molecule. This leads to the local mode frequency differences

Dxs
a; Dxs

b, and Dxs
c.

Dxs
a5xs

a ðR1Þ2xs
a ðcis-butadieneÞ (32)

Dxs
b5xs

b ðR1Þ2xs
b ðcis-butadieneÞ (33)

Dxs
c5xs

c ðR2Þ2xs
c ðethyleneÞ (34)

Tables 3 and 4 have collected the above three local mode fre-

quency shifts of various substituents for the diene and dieno-

phile, respectively.

For the local mode frequency shift values for 2-substituted

dienes, the un-substituted cis-butadiene is taken as the refer-

ence with Dxs
a5Dxs

b50. The results show that for eight EDGs

as R1, Dxs
a is negative, while for all seven EWGs, it is positive.

For the local mode frequency shift Dxs
b, only positive values

for both EDGs and EWGs were found. This indicates that the

local mode frequency shift Dxs
a can be used as a descriptor to

distinguish between the two major types of 2-substituted

dienes with its substituent as EDG/EWG while Dxs
b seems to

have little influence in this regard.

Interestingly, the local mode frequency shift Dxs
c for

substituted dienophiles has the same behavior for EDGs and

EWGs with regard to its sign, namely, negative Dxs
c for EDGs

while positive Dxs
c for EWGs.

The above results based on the local mode frequency shift

are consistent with Houk’s approach of checking the largest

molecular orbital (MO) coefficients of the carbon atoms at

locations a and c, also we identified Dxs
a and Dxs

c as the key

descriptors to differentiate EDG and EWG substituents. At first

glance, our approach seems to be different from Houk’s as we

start from vibrations while his approach is based on MOs.

However, both approaches access the electronic structure

information that decides on the substituent effect.

Furthermore, we applied our local mode approach to verify

the experimental findings for combinations of 2-substituted

dienes and dienophiles shown presented in Table 5. Most of

these reactions have the combination of R1 5 EDG and

R2 5 EWG, namely, Dxs
a < 0 and Dxs

c > 0.

We found exceptions for No. 7 and No. 18, where both R1 and

R2 are EDGs or EWGs. If one checks the Dxs
a and Dxs

c values

involved in these two reactions, it is easy to find that CH3 and

Ph in reaction no. 7 have the smallest amplitudes in the EDG cat-

egory for both the 2-substituted diene and dienophile. The same

smallest amplitudes are observed for Cl and CN in the EWG cate-

gory for reaction no. 18. This indicates that these two reactions

might have a different mechanism compared with the remaining

16 reactions. Investigations are in progress to demonstrate this.

Example 3: pKa of p-substituted benzoic acids

We correlated the local CO stretching and O-C-O bending

vibrational modes of a series of p-substituted benzoic acids

with their pKa values reflecting their acidity. The acidity of a

carboxylic acid is determined by the stability of its conjugated

anionic base.

Table 4. Local mode frequency shift for mono-substituted ethylene with
regard to the reference.

Classification No. R2 Dxs
c

EDG (1) NH2 2156.7
(2) OCH3 2138.6
(3) CH3 236.3
(4) Ph 234.8

Reference (5) H 0.0
EWG (6) COCH3 11.2

(7) CN 14.4
(8) CHO 23.4
(9) COOCH3 23.6
(10) NO2 27.1
(11) COOH 29.9

[a] The unit for local mode frequency shift Dxs
c is cm21.

Table 5. Diels-Alder reactions for 2-substituted dienes with unsymmetri-
cal dienophiles reported in experimental studies.

No. R1 R2 Ref.

(1) CH3 COCH3 [63]
(2) CH3 CN [64]
(3) CH3 CHO [64]
(4) CH3 COOCH3 [66]
(5) CH3 NO2 [66]
(6) CH3 COOH [67]
(7)* CH3 Ph [64]
(8) Ph CN [64]
(9) Ph CHO [68]
(10) Ph COOCH3 [65]
(11) OCH3 CN [69]
(12) OCH3 COOCH3 [64]
(13) OCH3 COCH3 [70]
(14) OC2H5 CN [71]
(15) OC2H5 CHO [72]
(16) OC2H5 COOCH3 [65]
(17) Cl COOCH3 [65]
(18)* CN COCH3 [65]

[a] All reactions are dominated by the para product.

Table 6. Comparison of pKa values of p-substituted benzoic acids.

No. Substituent (R) xR xa pKa (exp.) pKa (predicted) error

(1) NH2 1570.7 911.1 4.87 [73] 4.87 0.00
(2) OH 1572.2 910.7 4.58 [74] 4.60 20.02
(3) OCH3 1573.2 910.5 4.47 [75] 4.46 0.01
(4) CH3 1573.9 910.3 4.37 [76] 4.35 0.02
(5) H 1575.0 910.2 4.19 [77] 4.21 20.02
(6) F 1575.7 909.8 4.14 [78] 4.15 20.01
(7) Cl 1578.3 908.3 3.98 [79] 3.97 0.01
(8) Br 1578.9 907.9 3.97 [80] 3.92 0.05
(9) COCH3 1579.8 906.6 3.70 [81] 3.73 20.03
(10) CHO 1581.2 906.7 3.75 [80] 3.78 20.03
(11) CN 1582.2 905.5 3.55 [76] 3.56 20.01
(12) NO2 1582.8 904.9 3.43 [76] 3.41 0.02

[a] The unit for local mode frequencies xR and xa is cm21. pKa(exp.)
denotes pKa values obtained from experiments, pKa (predicted) denotes
predicted pKa values using eq. (35), error 5 pKa(exp.) – pKa (predicted).
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We investigated 12 p-substituted benzoic acid molecules

with their pKa values taken from textbooks, chemical data-

bases and research articles (see Table 6). The general structure

of the p-substituted benzoic acids is given in Figure 8, in

which the carboxylic acid part is shown as a conjugate base

with the substituent R in the para position.

As the substituent R connected to the phenyl ring can be

either electron-donating or electron-withdrawing, the diffuse

anion of the conjugate base can be either destabilized or sta-

bilized accordingly. This (de)stabilization effect is directly

reflected by the change in the electronic structure of the

ACO2
2 , which can be monitored by the local CO stretching

and local OACAO bending modes.

Table 6 collects the calculated local CO stretching frequency

values xR and local O-C-O angle bending frequency values xa for

all 12 benzoic acids. If the two CO bonds (colored in red in Fig. 8)

are not identical, for example, in the case of 4-formylbenzoic acid,

the averaged value is taken as xR. Figure 9 shows the experimen-

tally measured pKa values is a quadratic function of xR and xa as

two independent variables x and y, respectively.

pKa50:004x220:075y220:038xy122:422x1195:487y2106455:712

(35)

with the coefficient of determination R250.997 and root-

mean-square error RMSE 5 0.022. It is noteworthy, that this

relationship can be used to predict the pKa of other p-

substituted benzoic acids with unknown pKa values on the

basis of measured and/or calculated local vibrational modes.

Several other theoretical studies predicting the pKa values of

p-substituted benzoic acids have to be mentioned. Hollings-

worth and coworkers correlated the pKa values with several

different types of atomic/group charge models calculated with

quantum chemical methods.[77] Tao and coworkers constructed

a hydrogen bonded complex including the p-substituted ben-

zoic acid and an ammonia molecule and they attempted to

correlate the pKa values with related bond length, normal OH

stretching frequency and hydrogen bond energy.[76] The corre-

lation found in this work is stronger (R2 5 0.997 and

RMSE 5 0.022) compared with Hollingsworth’s (R2 5 0.978) and

Tao’s (R2 5 0.952) results. However, they investigated both m-

substituted benzoic acids and p-substituted benzoic acids,

while we focused on the p-substituted benzoic acids. Work is

in progress to extend our test-set with m-substituted benzoic

acids and other types of carboxylic acids.

Computational Details

Equilibrium geometries and normal mode analyses for the

CHBrClF enantiomers, benzene(C6H6), fluorobenzene benze-

ne(C6H5F), methane(CH4), and ethane(C2H6) molecules were

calculated using B3LYP density functional[82–85] with Pople’s 6–

31G(d,p) basis set.[86–92] Aspirin and SJ103 were optimized at

the xB97X-D/cc-pVTZ level of theory.[93,94] Dienes and dieno-

philes were calculated with xB97X-D/aug-cc-pVDZ level of the-

ory. p-substituted benzoic acids were calculated with the same

hybrid density functional with cc-pVTZ basis set. DFT calcula-

tions were carried out with UltraFine integration grid in the

Gaussian09 package.[95] All mutation path calculations and

local mode analysis were implemented in the program pack-

age COLOGNE2017.[96]

Figure 8. Schematic representation of a p-substituted benzoic acid mole-
cule in its deprotonated state. R is a substituent. [Color figure can be
viewed at wileyonlinelibrary.com]

Figure 9. Correlation between pKa with local CO stretching frequency xR and local O-C-O angle bending frequency xa on a quadratic surface. [Color figure
can be viewed at wileyonlinelibrary.com]
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Conclusions

In this work, we have presented a new algorithm that enables

correlating the normal vibrational frequencies of any two struc-

turally related molecules. The algorithm is based on the mutation

path coordinate k, which is an extension and generalization of

the mass reaction[6] proposed in our previous work. With a muta-

tion path, two structural analogs can be connected via the linear

changes with regard to the mass M, geometry R, Hessian K, and

symmetry X. Furthermore, we have shown that the IR intensities

can also be correlated along with the vibrational frequencies,

thus leading to the possibility for monitoring how the IR spec-

trum evolves from one molecule to another along the mutation

path. The correlation of Raman activities is planned for our future

work. For some pairs of structurally related molecules, there

might exist more than one mutation path, but any mutation

path can give us a deeper understanding and offer new insights

into the relationship between the molecules, which are generally

thought to exist as discrete and unconnected objects.

While the mutation path is a useful theoretical tool for normal

mode correlation offering deeper physical insights into vibrational

spectroscopy, the normal mode correlation itself has been a chal-

lenging problem due to the delocalized nature of normal vibra-

tions, leading to limited usefulness of this correlation approach.

To solve this problem, we have developed in this work a

new methodology of correlating local vibrational modes,

which are derived from normal vibrational modes but which

are free from kinematic coupling problem. The local modes

are found to be suitable similarity descriptors characterizing

local features of the electronic structure. We have shown three

examples proving that this approach can be applied for the

following purposes in chemical research:

( to compare the electronic structure of two structurally

related molecules;

( to identify sites of ligand-receptor interactions on a small

molecule;

( to quantify the regioselectivity problem caused by differ-

ent substituents in chemical reactions[97];

( to predict physicochemical properties (e.g., pKa) for a

series of molecules with different substituents.
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ABSTRACT: Normal vibrational modes are generally delo-
calized over the molecular system, which makes it difficult to
assign certain vibrations to specific fragments or functional
groups. We introduce a new approach, the Generalized
Subsystem Vibrational Analysis (GSVA), to extract the
intrinsic fragmental vibrations of any fragment/subsystem
from the whole system via the evaluation of the corresponding
effective Hessian matrix. The retention of the curvature
information with regard to the potential energy surface for
the effective Hessian matrix endows our approach with a
concrete physical basis and enables the normal vibrational
modes of different molecular systems to be legitimately
comparable. Furthermore, the intrinsic fragmental vibrations
act as a new link between the Konkoli−Cremer local vibrational modes and the normal vibrational modes.

1. INTRODUCTION
Vibrational spectroscopy is a powerful tool for structure
elucidation. Raman and infrared (IR) spectroscopy can be
used not only for the assignment of characteristic peaks to
identify functional groups but also to characterize the electronic
structure of the targeted chemical system. With the rapid
development of quantum chemical methods based on quantum
mechanics (QM), the simulation of vibrational spectra has been
made feasible and becomes a complementary tool in structural
determination. The vibrational frequencies of any chemical
species can be calculated from the normal mode analysis
(NMA) by solving the Wilson equation of vibrational
spectroscopy.1

However, normal modes extend over the whole molecule,
which complicates the analysis and interpretation of vibrations
for large polyatomic molecules and molecules in solution or
other media being described by a multiscale model, i.e., QM/
MM. For example, in the water dimer, if one wants to compare
the normal vibrational modes of either the H-bond donor water
or the acceptor water with the vibrations of a single water
molecule in gas phase in order to characterize the influence of
hydrogen bonding, one has to consider that the normal mode
vectors in the two systems are of different lengths (18 versus 9).
Obtaining normal modes being projected into a targeted

subsystem or fragment would be the natural way to solve the
above problem and allow the normal modes to be intrinsically
comparable among different molecular systems.

Many efforts have been made in this direction. Head
proposed a strategy to calculate the vibrations for adsorbates on
surfaces by diagonalizing the partial Hessian for atoms of
adsorbates.2 His contribution fostered the work of Li and
Jensen, who developed the partial Hessian vibrational analysis
(PHVA) method,3 where a subblock of the Hessian matrix is
diagonalized and all atoms except the subsystem are assigned an
infinitely large atomic mass. This approach has been applied by
Besley and co-workers to calculate CO stretching and C−H
stretching vibrations in organic molecules.4,5 Ghysels and co-
workers proposed the mobile block Hessian (MBH) approach
as an extension to PHVA in order to calculate “localized”
normal vibrational modes for partially optimized molecular
systems.6−10 The MBH method allows one to calculate the
vibrations of a subsystem which has been fully optimized, while
the remaining parts of the system are treated as rigid bodies
being allowed to translate and rotate. Thus, the computational
costs can be reduced because one does not need to calculate
the full Hessian matrix of the whole system. The MBH method
has been implemented in quantum chemical packages including
ADF and Q-Chem. Woodcock and co-workers developed
another method called vibrational subsystem analysis (VSA),11

partitioning a large system into a subsystem and its environ-
ment. The vibrational modes led by the subsystem are
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calculated, and the environment follows the motions of the
subsystem in an adiabatic way. However, we need to note that
VSA was initially developed to couple the global motion to a
local subsystem in a large molecule, e.g., protein, in order to
estimate the free energy contribution from subsystems. Zheng
and cowork applied VSA to obtain approximate low-frequency
normal modes of proteins for conformational sampling.12 VSA
was also used in another work for mapping the full Hessian
matrix onto a coarse-grained scale for macromolecules.13 A
review article by Ghysels and co-workers compares the PHVA,
MBH, and VSA methods.14 Jacob and Reiher developed a
special approach to localize normal modes contributing to
certain bands with the help of a defined criterion.15 Their
method is tailored to polypeptides and proteins. Recently,
Huix-Rotllant and co-worker provided a procedure to localize
normal modes of fragment(s) by taking the submatrices of the
full Hessian as local Hessian matrices.16 The advantage of this
approach is that besides diagonalizing the local Hessian
matrices, the corresponding eigenvectors are used for the
transformation of the full Hessian. Thus, the information on the
full Hessian can be utilized.
However, if one tries to apply the methods mentioned above

in order to obtain intrinsically comparable normal vibrations of
a subsystem, the following problems must be resolved:

• As shown in Figure 1, all methods involve the direct
partitioning of the full Hessian matrix into the red sub-

block for the targeted subsystem or fragment and another
blue sub-block for the remaining part as its environment.
Once the Hessian matrix is partitioned, the information
describing the interaction between the subsystem and the
environment contained in the green sub-block is
damaged or even eliminated. This casts doubt on the
usefulness of these localized normal modes.

• The so-called “local Hessian matrix” or its counterpart
with different names pertinent to the subsystem is not in
a proper form prepared for characterizing the normal
vibrational modes of the subsystem. If the total number
of translations and rotations for the subsystem is k, then
such a local Hessian matrix is expected to have and only
have k eigenvalues of zero.

• As normal modes are delocalized over the whole system,
any attempt to compare the vibrational frequencies of the
localized subsystem modes with the frequencies of the
normal modes of the whole system either from ab initio
calculations or measured vibrational spectra is not
appropriate. This implies that verifying the results of
the localized normal modes with the help of vibrational
frequencies calculated from the full Hessian is problem-

atic. A more reasonable approach for result validation is
thus desired.

• Some methods were tested against selected examples
containing many C−H, N−H, and CO bonds. The
stretching modes of these bonds are in nature localized
to these fragments, and they can contribute to more
significant infrared intensities than other types of
vibrational motions due to large dipole changes. This
will give the illusion that the localized normal modes
have been accurately determined.

• Some approaches partition the complete system
according to certain rules, e.g., containing the peptide
bond unit in the subsystem. However, a generally
applicable approach is expected to allow arbitrary
partitioning of the whole system into the subsystem
and its environment.

• The purpose of localizing of normal vibrational modes
should be re-evaluated. While theoretical chemists have
developed various kinds of localized properties or models
including localized orbitals,17−21 localized atomic
charges,22−27 and even localized electron densities28,29

in order for simplification, comparison, and analysis, we
expect that localized normal modes should be able to
serve for similar tasks instead of assisting the assignment
of the absorption peaks from vibrational spectra for
different functional groups.

We start from a different ansatz in order to obtain
intrinsically comparable normal vibrations of a subsystem or
fragment. When calculating the normal modes of any chemical
system, three ingredients are required by the Wilson equation:
Cartesian coordinates R, atomic masses M, and the Hessian
matrix in Cartesian coordinates fx. As long as this system is at a
stationary point on the potential energy surface with all three
ingredients available, the Wilson equation can be solved
accordingly. If one is interested in obtaining the normal
vibrational modes for a subsystem/fragment, it is obvious that
the Cartesian coordinates R and atomic masses M of this part
should stay the same. The problem to be solved is then how to
obtain the “effective Hessian matrix” that is reasonable and
physically sound for the subsystem. Only on this basis, the
resulting localized normal vibrational modes of the subsystem
can be then obtained from solving the Wilson equation of
vibrational spectroscopy using the effective Hessian matrix.
In this work, we introduce a new approach called

Generalized Subsystem Vibrational Analysis (GSVA) that is
based on a physically solid “effective Hessian matrix” which
preserves the information on the curvature of the potential
energy surface for the subsystem/fragment as it is in the whole
system with a full Hessian matrix. The normal vibrational
modes calculated by this approach are therefore called “intrinsic
fragmental vibrations”. These vibrations are not constructed
from an arbitrary model, instead they are recovered specifically
for the subsystem from the full Hessian matrix. Noteworthy is
that a distinction should be made between the GSVA method
introduced in this work and the VSA method11 developed by
Woodcock. This paper is structured in the following way: The
theory of the GSVA is derived and described first. After
summarizing the Computational Details section, in the Results
and Discussion section, six different examples for calculating
the intrinsic fragmental vibrations of their subsystems are
discussed. The conclusions, along with some notes of applying
and implementing GSVA, are given in the last section.

Figure 1. Schematic diagram of partitioning of the Hessian matrix.
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2. METHODOLOGY
The normal vibrational modes of a molecular system can be
calculated from the solution of the Wilson equation of
vibrational spectroscopy1 based on the Hessian matrix fx in
Cartesian coordinates collecting the second-order derivatives of
the energy with regard to the displacement of atomic nuclei.
The dimension of fx is 3N × 3N, where N is the number of
atoms in the system.
As the translation and rotation of the system render no

change to the potential energy, matrix fx is singular and has K
zero eigenvalues, K takes the value of 5 for linear molecules or 6
for nonlinear molecules. We are, in general, only interested in
the nonzero eigenvalues λμ (collected in the diagonal matrix Λ)
as well as their eigenvectors cμ (collected in matrix C), as
shown in eq 1. The dimensions of C and Λ are 3N × (3N − K)
and (3N − K) × (3N − K), respectively.

�=f C Cx (1)

As each eigenvector cμ in C is orthonormalized,
= �C C IT

N K3 , eq 1 can be rewritten into

�=C f CT x (2)

and

�= =CC f CC C C fT x T T x (3)

W e d e fi n e a n e w m a t r i x =Q CCT . A s
= = = =Q CC CC CIC CC QT T T T2 , Q is thus a projection

matrix in the dimension of 3N × 3N. An interesting equation
results as follows:

=Qf Q fx x (4)

The 3N − K eigenvectors collected in matrix C span the full
internal vibration space; thus, when projection operator Q
multiplies fx from the left to the right of fx, fx is not changed.
This special property of the Hessian matrix fx can be

extended to any other projection matrix, as long as this
projection matrix can span the full internal vibration space. We
choose to use the internal coordinates to span the same space,
as translations and rotations can be simply excluded.
For a molecule system being composed of N atoms, we can

use 3N − K internal coordinates to specify its geometry. The
internal coordinates are related to the Cartesian coordinates via
the Wilson B matrix1

= �
�B

q
x (5)

where x are the Cartesian coordinates and q are the internal
coordinates. For the above nonredundant set of 3N − K
internal coordinates, the corresponding Wilson B matrix B has
the dimension of (3N − K) × 3N. As matrix B is rectangular, its
Moore−Penrose inverse matrix B+ is calculated by

=+ �B B BB( )T T 1 (6)

so that

=+ �BB I N K3 (7)

where the trace of the identity matrix I3N−K as 3N − K.
We define a matrix A

= +A B B (8)

as A2 = B+BB+B = B+IB = B+B = A; matrix A is also a
projection matrix having the similar properties as matrix Q in
eq 4, leading to the following equations:

=f Af Ax x (9)

= + +f B B f B B( ) ( )x x (10)

According to the properties of pseudoinverse B+, we have

=+ +B B B B( )T (11)

Equation 10 can be rewritten into

= + +f B B f B B( ) ( )x T x (12)

= + +f B B f B B( )x T T x (13)

= + +f B B f B B( )x T T x (14)

then

= + �f B B f B B( ( ) )x T x T 1 (15)

Noteworthy is that eq 15 is a more general form of the
equations for fx above. Furthermore, this equation offers an
opportunity to obtain the effective Hessian matrix for a
fragment or subsystem within the whole system.
Suppose that within the molecular system with N atoms, a

subsystem has n atoms (n < N). The geometry of this
subsystem can be specified by 3n − k internal coordinates (k =
5 or 6 depending on whether its geometry is linear or
nonlinear). The Wilson B matrix for these 3n − k internal
coordinates in the complete system can be calculated as B′ with
the dimension of (3n − k) × 3N. In the subsystem, the
corresponding Wilson B matrix for the same set of internal
coordinates is calculated as Bsub′ with the dimension of (3n − k)
× 3n. In order to simplify the analysis, we rearrange the labels
of n atoms of the subsystem within the whole system, so that
the first n atoms denote the subsystem. It is obvious that matrix
Bsub′ corresponds to the first 3n columns of matrix B′, while the
elements of the rest 3(N − n) columns in B′ are simply zero.
We define an effective Hessian matrix fsub

x for the subsystem
with the help of eq 15

= � � � �+ �f B B f B B( ( ) )sub
x

sub
T x T

sub
1

(16)

where (fx)+ is the Moore−Penrose inverse of fx. Here, fsub
x is a

symmetric matrix in the dimension of 3n × 3n, and more
importantly, it has exactly k zero eigenvalues.
However, we need to note that eqs 9, 10, and 12−14 cannot

be used for this purpose, namely

� � � � �+ +f B B f B B( ) ( )sub
x

sub
T x

sub (17)

because the Wilson B matrix and related pseudoinverse in these
equations can no longer span the full vibration space for the
whole system, only for the subsystem.
The effective Hessian matrix fsub

x for the subsystem can be
directly used for normal mode analysis by solving the Wilson
equation of vibrational spectroscopy given its Cartesian
coordinates and atomic masses as it can be done for the
whole system based on full Hessian matrix fx. Noteworthy is
that in the process of obtaining fsub

x no partitioning/sub-
blocking of the original Hessian matrix fx is introduced. Instead,
the full Hessian matrix fx is projected into the unique internal
vibrational space of the subsystem in eq 16, which strikingly
differentiates our approach from others.2,3,6,15,16
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Furthermore, it is necessary to evaluate the physical basis and
correctness of the effective Hessian matrix derived in this work,
if intrinsically comparable normal vibrations are desired on the
basis of such an effective Hessian matrix. The seemingly most
straightforward approach to validate our model is to compare
the normal mode frequencies of the subsystem based on
effective Hessian matrix fsub

x and those based on the original
Hessian matrix fx for the whole system. However, one needs to
be careful that normal modes are delocalized over the system in
question, and it is not appropriate to compare the normal
modes within the subsystem and those modes beyond it.30 In
this work, we choose to calculate and compare the local
vibrational modes31−35 proposed by Konkoli and Cremer for
fsub
x and fx because these local modes have been proved as the
only and unique local equivalents of normal vibrational modes
in terms of internal coordinates30 which can be directly
compared among different molecular systems, and they have
been used to quantify the intrinsic strength of chemical
bonding36−42 as well as to characterize the local properties of
the electronic structure.43,44 The characterization of local
vibrational modes including related local mode force constants
and local mode frequencies is called local mode analysis. For
each local vibrational mode driven by a specific internal
coordinate as the “leading parameter”, we can calculate the
corresponding local force constant or its synonym as adiabatic
force constant kn

a as well as the local vibrational frequency ωn
a.

These two quantities can be related with the help of the Wilson
G matrix1,45

�
�

=
c

k G( ) 1
4n

a
n
a

nn
2

2 2 (18)

For the purpose of validating the effective Hessian matrix,
calculating the local force constants kn

a is sufficient.
In this work, we take a simplified form30,46 of calculating the

adiabatic force constant kn
a by

= +
k

b f b1 ( )
n
a

x T

(19)

where fx is the Hessian matrix for the whole system in Cartesian
coordinates, and its Moore−Penrose inverse is denoted as (fx)+.
Row vector b is the Wilson B matrix for an internal coordinate
parameter qn (e.g., bond stretching, angle bending, dihedral
torsion, etc.) within the subsystem leading this local mode.
Here, b is in the dimension of 1 × 3N.
Based on the effective Hessian matrix fsub

x of the subsystem,
its adiabatic force constant kn,sub

a of the local mode led by the
same internal coordinate qn is calculated by

= +
k

b f b1 ( )
n
a sub sub

x
sub
T

,sub (20)

where bsub is the first 3n elements of b in eq 19, and (fsub
x )+ is the

Moore−Penrose inverse of fsub
x . Equation 20 can be expanded

by substituting fsub
x using eq 16

= � � � �+ � +
k

b B B f B B b1 ( ( ( ) ) )
n
a sub sub

T x T
sub sub

T

,sub

1

(21)

According to the properties of the pseudoinverse, eq 21 can be
rewritten as

= � � � �+ + � +
k

b B B B f B b1 ( ( ( ) ) )
n
a sub sub sub

T x T
sub
T

,sub

1

(22)

= � � � �+ + +
k

b B B f B B b1 ( ) ( )
n
a sub sub

x T
sub
T

sub
T

,sub (23)

= � � � �+ + +
k

b B B f B B b1 ( ) ( )
n
a sub sub

x T
sub

T
sub
T

,sub (24)

then

= � � � �+ + +
k

b B B f b B B1 ( )( ) ( )
n
a sub sub

x
sub sub

T

,sub (25)

The calculation of the matrix product of bsubBsub′+B′ is visualized
by the Falk diagram shown in Figure 2.

In matrix B′, the block of the first 3n columns is matrix Bsub′ ,
while the elements in the remaining 3(N − n) columns are
zeros. The multiplication of Bsub′+ with B′ leads to a projection
matrix Bsub′+Bsub′ in the first 3n columns of Bsub′+B′ and zeros in the
remaining 3(N − n) columns.
As the Wilson B matrix Bsub′ (or B′) collects the

nonredundant set of 3n − k internal coordinate parameters
describing the geometry of the subsystem, the projection matrix
Bsub′+Bsub′ spans the complete internal coordinate space and also
the internal vibration space of the subsystem. The Wilson B
matrix row vector bsub for any internal coordinate parameter
(no matter whether it is included in the set of the 3n − k
parameters or not) in the subsystem can be expressed as a
linear combination of 3n − k row vectors in Bsub′ . So we get

� � =+b B B bsub sub sub sub (26)

which constitutes the first 3n elements of the row vector
bsubBsub′+B′, and the rest of the 3(N − n) elements are zeros.
Also, we have

� � =+b B B bsub sub (27)

where b is from eq 19. Then, eq 25 can be simplified as

= +
k

b f b1 ( )
n
a

x T

,sub (28)

Also interesting is that

=k kn
a

n
a

,sub (29)

which means the local mode analysis with regard to any internal
coordinate in the subsystem based on the effective Hessian
matrix fsub

x is equivalent to the local mode analysis for the same
internal coordinate based on the full Hessian matrix fx.

Figure 2. Falk diagram of matrix multiplication for bsubBsub′+B′.
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Furthermore, as the adiabatic force constant kn
a characterizes the

curvature of the Born−Oppenheimer potential energy surface
(PES) given in a specific direction defined by the internal
coordinate as the leading parameter,41 the curvature of the PES
driven by any one of the internal coordinates in the subsystem
within the whole system is retained in the effective Hessian
matrix. In other words, the standalone subsystem with effective
Hessian matrix “feels” exactly the same curvature of the PES
with regard to the internal local vibrations as it is within the
whole system based on the full Hessian matrix. In this way, the
underlying physical nature of the vibrations of the subsystem
calculated based on fsub

x is kept invariant, and this gives our
approach the capability and advantage to characterize the
intrinsically comparable normal vibrations of subsystems or
fragments in any molecular system. We call these intrinsically
comparable normal vibrations the intrinsic fragmental vibra-
tions.

3. COMPUTATIONAL DETAILS
In this work, all ab initio calculations including geometry
optimization and Hessian evaluation were performed using the
Gaussian 09 package.47 The dimers, trimers, and monomers of
water and ammonia molecules were calculated at the ωB97X-
D/6-311++G(d,p) level;48−51 The hydrogen disulfide molecule
and the hydrogen disulfide-water cluster were calculated at the
B3LYP/6-31G(d,p) level of theory;52−55 The methane
molecule and methane-C60 complex were calculated using the
Minnesota hybrid functional M06-2X with Pople’s 6-31G(d,p)
basis set.56 Grimme’s empirical D3 dispersion correction was
added to the nuclear repulsion force.57 The formaldehyde
molecule and formaldehyde-nanotube complex were calculated
at the B3LYP/6-31G(d,p) level with Grimme’s empirical D3
dispersion correction with Becke−Johnson (BJ) damping.58

The propane molecule along with a reference methane
molecule were calculated with Hartree−Fock theory59 using
6-31G(d,p) basis set. For the above density functional theory
(DFT) calculations, the UltraFine integration grid was used,
and all systems were optimized to local minima with tight
convergence criteria.
The calculations of the effective Hessian matrices, local mode

analysis, and normal mode analysis were carried out with the
program package COLOGNE2017.60

4. RESULTS AND DISCUSSION
In the following section, we discuss the results of the intrinsic
fragmental vibrations in six different molecular systems. For
each subsystem or fragment having n atoms, we calculated its
3n − k intrinsic fragmental vibrational frequencies based on the
effective Hessian matrix fsub

x in the dimension of 3n × 3n.
Then, we calculated the frequencies of normal vibrational

modes or intrinsic fragmental vibrations of the same subsystem
in the gas phase or other chemical systems, respectively, for all
six examples in order to demonstrate that the intrinsic
fragmental vibrations have the advantage of being directly
compared and analyzed laterally among different systems.
We have also calculated the local mode force constants of the

leading internal coordinate parameters qn within the fragment/
subsystem based on both the full Hessian fx and the effective
Hessian fsub

x in order to verify the physical relevance of these
intrinsic fragmental normal vibrations.
4.1. Water Dimer (H2O)2. The first example is the water

dimer which has a hydrogen bond between two water

molecules, one serving as the H-bond donor and the other as
the H-bond acceptor (Figure 3). One water molecule has three

normal vibrational modes, including the H−O−H angle
bending, symmetric O−H stretching, and asymmetric O−H
stretching with increasing vibrational frequencies (Table 1).

The introduction of another water molecule in a dimer
structure brings in an addition nine vibrational modes. These
nine vibrational modes include the three internal vibrations of
the second water molecule, three relative rotations, and three
relative translations between these two water molecules.
However, these nine new vibrations will mix with each other.
Furthermore, the original three vibrations of the first water
molecule are also mixed in, which potentially hinders the
analysis of normal vibrational modes of either water molecule in
the dimer.
Within the framework of GSVA, the donor/acceptor water is

taken as a subsystem. Its effective Hessian matrix fsub
x can be

extracted by choosing a nonredundant set of three internal
coordinate parameters according to eq 16. In a water molecule,
we can choose two O−H distances and the H−O−H angle as a
complete nonredundant parameter set. Therefore, matrix B′
takes the dimension of 3 × 18, while matrix Bsub′ is in the 3 × 9
dimension. Or we can use two O−H distances and the H−H
distance to construct another parameter set, although the H−H
distance does not imply H−H bonding in a water molecule.
These two sets of parameters give two identical effective
Hessian matrices, which reveals the flexibility and robustness of
the GSVA approach; namely, this approach does not depend on
the choice of the nonredundant internal parameter set. As long
as the chosen set of parameters can unambiguously specify the
geometry of the subsystem, GSVA will work.
Table 1 lists the three normal vibrational frequencies

calculated by solving the Wilson equation1 based on the
effective Hessian matrices for the donor and acceptor waters.
The resulting three normal modes calculated by GSVA are the
unique counterparts of the normal modes of the water molecule
in the gas phase. Correlating the intrinsic fragmental vibrational
modes with those of the water molecule in the gas phase leads
to the normal vibrational frequency ordering shown in Table 1.
The acceptor water shows smaller deviations from the reference

Figure 3. Water dimer structure in Cs symmetry. Red balls represent
oxygen atoms, and gray balls represent hydrogen atoms.

Table 1. Comparison of Normal Mode Frequencies of Water
Monomers

No. Donora (cm−1) Acceptora (cm−1) H2O
b (cm−1)

1 1531 1607 1609
2 3775 3891 3903
3 3976 3997 4012

aColumns “Donor” and “Acceptor” denote the intrinsic fragmental
vibrational frequencies of donor and acceptor water molecules based
on their effective Hessian matrices, respectively. bColumn “H2O”
collects the normal mode frequencies of a water molecule in gas phase
as the reference.
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frequencies compared to the donor water. In the acceptor
water, the first normal mode dominated by the H−O−H angle
bending has the deviation of only 2 cm−1, while the donor
water’s deviation is 78 cm−1. This can be explained by the fact
that the angle bending mode of the acceptor water is not
affected by the formation of a hydrogen bond, while the angle
bending of the donor water is hindered by this hydrogen bond.
The larger deviations for the symmetric and asymmetric O−H
stretching modes for the donor water are also caused by the
hydrogen bonding which weakens the donor O−H covalent
bond.40,42

For the purpose of validating the intrinsic fragmental
vibrational modes and their frequencies, we calculated the
local mode force constants of the O−H bond stretching and
H−O−H angle bending modes in the donor and acceptor
waters based on the effective Hessian matrix and the full
Hessian matrix using eqs 19 and 20. The comparison of the
local mode force constants in Table 2 shows that the values of
kn,sub
a and kn

a for local mode parameters within the subsystem are
the same.

This clearly reveals that the effective Hessian matrices fsub
x

calculated for the donor/acceptor water molecules have
retained the curvature of the PES of the whole system with
regard to any internal coordinate in donor or acceptor water,
respectively. Accordingly, these fragmental vibrational modes
based on fsub

x are thus intrinsic.
4.2. Ammonia Trimer (NH3)3. The ammonia trimer ring

shown in Figure 4 has C3h symmetry. All three ammonia
molecules connected via hydrogen bonds are identical with
regard to geometry as well as electronic structure. In this

example, we want to take one ammonia molecule as the
subsystem and obtain its intrinsic fragmental vibrations.
For each ammonia molecule having four atoms, we need six

internal coordinates to determine its geometry. The set of three
N−H bonds and three H−N−H angles is the easiest option.
But we can also use three N−H bonds and three H−H
distances as a valid set for GSVA. Therefore, matrix B′ has the
dimension of 6 × 36, and matrix Bsub′ has the dimension of 6 ×
12.
Table 3 lists the intrinsic fragmental vibrational frequencies

of ammonia in comparison with the normal mode frequencies

of an ammonia molecule in the gas phase. While the symmetry
of ammonia in the gas phase is reduced from C3v to Cs for the
ammonia in the trimer system shown in Figure 4, normal
modes Nos. 2−3 and Nos. 5−6 lose their 2-fold degeneracy
leading to the splitting in the vibrational frequency values. We
find vibrations Nos. 2 and 4 of ammonia in the trimer have
their frequency differences larger than 100 cm−1 when
compared with the reference ammonia in the gas phase.
Normal mode No. 2 is dominated by the rocking of the H3
atom, and normal mode No. 4 is basically the symmetric
stretching of all three N−H bonds. As bond N1−H3 directly
participates in the hydrogen bonding, the above two vibrational
modes will be affected accordingly. However, the smallest
difference in the vibrational frequency is found for No. 6 as 13
cm−1. This vibration mode is dominated by the asymmetric
stretching of bonds N1−H2 and N1−H4, which are not
directly involved in hydrogen bonding.
The verification of the results from GSVA is carried out in

Table 4.
4.3. Hydrogen Disulfide in a Water Cluster. Besides the

small molecular clusters of water and ammonia, we built a
cluster of hydrogen disulfide surrounded by 22 water molecules
to simulate the solvation of hydrogen disulfide in liquid water
(Figure 5). In this example, we want to calculate the intrinsic
fragmental vibrations of the hydrogen disulfide molecule.

Table 2. Comparison of Local Mode Force Constants Based
on Effective Hessian Matrix fsub

x and Full Hessian Matrix fx

for Water Molecules

No.a qn
b kn,sub

a kn
a

D-1 R(4−5) 8.691 8.691
D-2 R(4−6) 7.984 7.984
D-3 α(5−4−6) 0.596 0.596
A-1 R(1−2) 8.624 8.624
A-2 R(1−3) 8.624 8.624
A-3 α(2−1−3) 0.652 0.652

aIn the “No.” column, “D” denotes donor water, while “A” denotes
acceptor water. bFor internal coordinate qn, parameter “R” stands for
bond stretching. Unit for local mode force constant is mdyn/Å, while
“α” is for angle bending and corresponding unit for local mode force
constant is mdyn×Å/rad2.

Figure 4. Ammonia trimer ring structure with C3h symmetry. Blue
balls represent nitrogen atoms, and gray balls represent hydrogen
atoms.

Table 3. Comparison of Normal Mode Frequencies of
Ammonia Monomers

No. NH3 in trimer (cm−1) NH3 in gas phase (cm−1)

1 1044 1003
2 1544 1672
3 1648 1672
4 3410 3523
5 3588 3658
6 3645 3658

Table 4. Comparison of Local Mode Force Constants Based
on Effective Hessian Matrix fsub

x and Full Hessian Matrix fx

for Ammonia Molecule

No. qn
a kn,sub

a kn
a

1 R(1−3) 6.480 6.480
2 R(1−2) 7.056 7.056
3 R(1−4) 7.056 7.056
4 α(2−1−4) 0.606 0.606
5 α(2−1−3) 0.541 0.541
6 α(3−1−4) 0.541 0.541

aParameter “R” stands for bond stretching, while “α” is for angle
bending. Unit of local mode force constant for bond stretchings and
angles is mdyn/Å and mdyn×Å/rad2, respectively.
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As for a complete nonredundant set of internal coordinate
parameters required by GSVA, we choose two S−H bonds, the
S−S bond, two S−S−H angles, and the H−S−S−H dihedral
angle to obtain the effective Hessian matrix fsub

x for the H2S2
molecule as the subsystem. These six internal coordinates
construct corresponding matrices B′ and Bsub′ in the dimensions
of 6 × 210 and 6 × 12, respectively.
The fragmental vibrations of the H2S2 molecule in the cluster

calculated by GSVA (Table 5) show a shift of at least 30 cm−1

with regard to the reference H2S2 in the gas phase. Vibrations
Nos. 5 and 6 have the largest deviations, and they are
dominated by the S3−H4 and S1−H2 bond stretching,
respectively. As these two S−H bonds donate S−H···OH2
hydrogen bonds to surrounding water molecules, they are
weakened in their bond strength leading to corresponding red
shifts. However, vibration No. 2 has only a shift of 5 cm−1. This
vibration is dominated by the S−S bond stretching, which is
hardly affected by the surrounding water molecules.
The local mode force constants of H2S2 within the cluster

were calculated based on both the effective Hessian fsub
x and the

full Hessian fx as shown in Table 6.
4.4. Methane (CH4) in C60. The methane-intercalated C60

structure was synthesized by Kwei and co-workers in 199761

(Figure 6). While the fullerene molecule has Ih symmetry and

methane has Td symmetry, the complex has T symmetry.
However, the methane encapsulated within the C60 molecule
has still the Td symmetry. It would be of interest to obtain the
intrinsic fragmental vibrations of the methane inside the C60 in
order to characterize this encapsulation effect.
As a complete nonredundant set of internal coordinates for

the methane molecule, four C−H bonds and five H−C−H
angles were chosen, although in total six H−C−H angles are
available. Therefore, corresponding matrices of B′ and Bsub′ have
the dimensions of 9 × 195 and 9 × 15, respectively.
In Table 7, the fragmental vibrational frequencies of methane

within C60 calculated by GSVA are compared with normal
mode frequencies of methane in the gas phase. All 2-fold and 3-
fold degeneracies are kept as a result of the retention of Td
symmetry. The largest deviation is found for vibration No. 6 as
a blue shift of 70 cm−1. This vibration is dominated by the
symmetric stretching of the four C−H bonds, which is largely
affected by the C60 cage.
Table 8 lists the local mode force constants of the methane

molecule in C60 calculated based on both the effective Hessian
fsub
x and the full Hessian fx. The data in Table 8 reveals that
these two sets of local mode force constants are identical.
Besides the nine parameters (Nos. 1−9) we used to obtain fsub

x ,
we have also calculated the local mode force constant of the
sixth angle which was not included in the parameter set, and we
obtained the same value as for the other five angles. This clearly
shows that the local mode analysis can still work for the internal

Figure 5. Structure of the hydrogen disulfide molecule in a water
cluster of (H2O)22. Yellow balls are sulfur atoms, red are oxygens, and
gray are hydrogens. Dashed lines represent noncovalent interactions,
i.e., hydrogen bonds.

Table 5. Comparison of Normal Mode Frequencies of
Hydrogen Disulfide Molecule

No. H2S2 in water cluster (cm−1) H2S2 in gas phase (cm−1)

1 383 434
2 500 495
3 861 894
4 936 895
5 2452 2637
6 2355 2639

Table 6. Comparison of Local Mode Force Constants Based
on Effective Hessian Matrix fsub

x and Full Hessian Matrix fx

for Hydrogen Disulfide Molecule

No. qn
a kn,sub

a kn
a

1 R(1−2) 3.332 3.332
2 R(1−3) 2.172 2.172
3 R(3−4) 3.197 3.197
4 α(2−1−3) 0.809 0.809
5 α(4−3−1) 0.790 0.790
6 τ(2−1−3−4) 0.082 0.082

aParameter “R” stands for bond stretching, “α” is for angle bending,
and “τ” is for dihedral torsion. Unit of local mode force constant for
bond stretchings and angles is mdyn/Å and mdyn×Å/rad2,
respectively.

Figure 6. Structure of methane encapsulated in fullerene (C60). Large
balls represent carbon atoms, and small balls represent hydrogens.
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coordinate parameters that are not included in the matrices of
B′ or Bsub′ used for the extraction of fsub

x , and it is an evidence for
the fact that the effective Hessian matrix fsub

x retains the
complete information in curvature of potential energy surface
with regard to any possible internal coordinate within the
subsystem.
4.5. Formaldehyde (CH2O) in Carbon Nanotube (CNT).

Recently, there has been an increasing number of studies
focused on the design of CNTs as sensors for detecting
formaldehyde.62−64 For this purpose, a formaldehyde molecule
was placed and stabilized within the model of a single-wall
carbon nanotube (SWCNT) (Figure 7). Therefore, we check
the vibrational modes of the formaldehyde molecule in the
nanotube with GSVA.
In order to extract the effective Hessian matrix for the

formaldehyde molecule, we choose a complete nonredundant
set of parameters being composed of the three covalent bonds,
two O−C−H angles, and one out-of-plane pyramidalization
angle. Matrices B′ and Bsub′ used to recover fsub

x have the
dimensions of 6 × 252 and 6 × 12, respectively. The intrinsic
fragmental vibrational frequencies are shown in Table 9.
Comparing the fragmental vibrational frequencies for the
formaldehyde molecule in the CNT with the normal vibrational
frequencies of the reference formaldehyde in the gas phase, it is
interesting that vibrations Nos. 1−3 have small frequency
differences less than 4 cm−1. Vibration No. 1 is dominated by
the out-of-plane pyramidalization of the carbon atom with
regard to the O−H−H plane. Vibration No. 2 is basically the
in-plane rocking of two hydrogen atoms, while vibration No. 3

is dominated by the in-plane scissoring of the H−C−H angle.
Vibration No. 4 corresponds to the CO bond stretching, and
vibration No. 5 is associated with the symmetric C−H bond
stretching mode. The largest deviation is found for vibration
No. 6 which is dominated by the asymmetric stretching of two
C−H bonds. This is a result of the confinement imposed on the
formaldehyde molecule by the nanotube structure.
The validation of the intrinsic fragmental vibrational

frequencies via the local mode analysis (Table 10) shows that
the local mode properties for the subsystem based on the
effective Hessian fsub

x and full Hessian fx are identical.
4.6. CH2 and CH3 Fragments in Propane. So far, we have

applied GSVA to molecular subsystems under the perturbation
of different chemical environments. However, we can also use
GSVA to analyze the vibrations of fragments within a molecule
and even compare the intrinsic fragmental vibrations of the
same fragment in two different molecular systems.
As an example, we analyze the intrinsic fragmental vibrations

in propane (Figure 8). By breaking all three C−C bonds, three
fragments result, including two identical CH3 fragments and
one CH2 fragment in the middle.
First, we applied GSVA to the CH2 fragment. In analogy to

H2O, we chose two C−H bonds and the H−C−H angle as the
internal coordinate set for constructing the effective Hessian
matrix fsub

x . Therefore, the B′ and Bsub′ matrices have the
dimensions of 3 × 33 and 3 × 9, respectively. The resulting
fragmental vibrational modes are similar to the normal modes
of H2O. Vibration No. 1 is the H−C−H angle bending, and
vibration No. 2 is the symmetric stretching of two C−H bonds.

Table 7. Comparison of Normal Mode Frequencies of
Methane Molecule

No. CH4 in C60 (cm
−1) CH4 in gas phase (cm−1)

1 1328 1356
2 1328 1356
3 1328 1356
4 1583 1584
5 1583 1584
6 3150 3080
7 3250 3205
8 3250 3205
9 3250 3205

Table 8. Comparison of Local Mode Force Constants Based
on Effective Hessian Matrix fsub

x and Full Hessian Matrix fx

for Methane Molecule

No.a qn
b kn,sub

a kn
a

1 R(1−2) 5.675 5.675
2 R(1−3) 5.675 5.675
3 R(1−4) 5.675 5.675
4 R(1−5) 5.675 5.675
5 α(2−1−3) 0.647 0.647
6 α(2−1−4) 0.647 0.647
7 α(2−1−5) 0.647 0.647
8 α(3−1−4) 0.647 0.647
9 α(3−1−5) 0.647 0.647
10* α(4−1−5) 0.647 0.647

aParameter labeled with * indicates this internal coordinate is not used
as part of the complete nonredundant set to obtain effective Hessian
matrix fsub

x . bParameter “R” stands for bond stretching, and “α” is for
angle bending. Unit of local mode force constant for bond stretchings
and angles is mdyn/Å and mdyn×Å/rad2 respectively.

Figure 7. Structure of formaldehyde molecule contained in a carbon
nanotube. Total number of atoms is 84.

Table 9. Comparison of Normal Mode Frequencies of
Formaldehyde Molecule

No. CH2O in CNT (cm−1) CH2O in gas phase (cm−1)

1 1201 1201
2 1278 1275
3 1554 1555
4 1823 1847
5 2976 2897
6 3024 2954

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b01171
J. Chem. Theory Comput. 2018, 14, 2558−2569

2565100



Vibration No. 3 is the asymmetric stretching of the same C−H
bonds.
For the CH3 fragment, we chose an analogy to the NH3

molecule including three C−H bonds and three H−C−H
angles as the complete nonredundant set to calculate its
effective Hessian matrix fsub

x . Matrices B′ and Bsub′ in this regard
are in the dimensions of 6 × 33 and 6 × 12, respectively. The
mode characters of these six intrinsic fragmental vibrations are
almost the same as the normal modes of ammonia due to their
similar geometries. However, we need to note that the NH3
molecule has C3v symmetry, while the CH3 fragment in
propane has only Cs symmetry. Thus, vibrations Nos. 2−3 and
Nos. 5−6 are no longer 2-fold degenerate, but they are still very
close in pairs with regard to the frequency values.
Also, we take the intrinsic fragmental vibrations of CH2 and

CH3 fragments in the methane (CH4) molecule as the
reference. In this way, the comparison of two intrinsic
fragmental vibrational frequencies for the same CHn fragment
in propane and methane can be carried out as in Table 11.
The CH3 fragments in methane molecule have 2-fold

degenerate vibration pairs for vibrations Nos. 2−3 and Nos.
5−6 because the high symmetry is retained in both its geometry
and corresponding effective Hessian matrix fsub

x . Noteworthy is
that intrinsic fragmental vibrations associated with C−H
stretching including Nos. 2 and 3 in the CH2 fragment and
Nos. 4−6 in the CH3 fragment have larger frequency values in
the reference methane molecule than in the propane molecule;
this suggests that the C−H bonds in the methane molecule are

stronger than those in either the CH2 or CH3 fragments within
propane.
Furthermore, the verification for the physical nature of the

effective Hessian matrices fsub
x for the CH2 and CH3 fragments

in propane is shown in Table 12.

5. CONCLUSIONS
In this work, we have presented a new method to extract the
intrinsic fragmental vibrations of a subsystem/fragment from an
entire polyatomic molecular system. This method is different
from its predecessors2,3,6−11,14−16 which were designed or/and
can be used for the same purpose in that our method is based
on an effective Hessian matrix from which the curvature of the
overall potential energy surface with regard to any internal
coordinate parameter qn within the subsystem is retained. The
underlying solid physical foundation makes our method unique
and able to characterize fragmental normal mode vibrations
which are intrinsic to the subsystem/fragment in question.
Therefore, our method is named the Generalized Subsystem
Vibrational Analysis (GSVA), emphasizing its general applic-
ability for any subsystem or fragment within a molecular system
and concrete physical basis.
In the examples presented in this work, we compared the

intrinsic fragmental vibrations of a subsystem with the normal
vibrational modes of the isolated subsystem in gas phase to
show the changes in the electronic structure caused by the
presence of the environment. Although a more straightforward
approach is to compare the corresponding properties of the
local vibrational modes of the subsystem, the intrinsic
fragmental vibrations can be regarded as a key intermediate

Table 10. Comparison of Local Mode Force Constants
Based on Effective Hessian Matrix fsub

x and Full Hessian
Matrix fx for Formaldehyde Molecule

No.a qn
b kn,sub

a kn
a

1 R(1−2) 13.306 13.306
2 R(1−3) 4.924 4.924
3 R(1−4) 4.918 4.918
4 α(2−1−3) 1.109 1.109
5 α(2−1−4) 1.110 1.110
6 7(1′-2−3−4) 3.496 3.496
7* α(3−1−4) 0.833 0.833

aParameter labeled with * indicates this internal coordinate is not used
as part of the complete nonredundant set to obtain effective Hessian
matrix fsub

x . bParameter “R” stands for bond stretching, and “α” is for
angle bending. “7” is for out-of-plane pyramidalization, where the
atom followed by a prime symbol moves with regard to the plane
constructed by the other three atoms. Unit of local mode force
constant for bond stretchings and angles is mdyn/Å and mdyn×Å/
rad2, respectively.

Figure 8. Structure of propane molecule in which the CH2 and CH3
fragments are highlighted with green and blue circles, respectively.

Table 11. Normal Mode Frequencies of Fragments in
Propane Molecule and Reference Methane Molecule

No.
CH2 in propane

(cm−1)

CH2 in
methane
(cm−1)

CH3 in propane
(cm−1)

CH3 in
methane
(cm−1)

1 1622 1558 1543 1474
2 3178 3230 1602 1578
3 3209 3280 1605 1578
4 − − 3174 3203
5 − − 3235 3283
6 − − 3242 3283

Table 12. Comparison of Local Mode Force Constants
Based on Effective Hessian Matrix fsub

x and Full Hessian
Matrix fx for Propane Molecule

No.a qn
b kn,sub

a kn
a

A-1 R(1−2) 5.581 5.581
A-2 R(1−3) 5.581 5.581
A-3 α(2−1−3) 0.836 0.836
B-1 R(4−5) 5.649 5.649
B-2 R(4−6) 5.649 5.649
B-3 R(4−7) 5.684 5.684
B-4 α(5−4−6) 0.803 0.803
B-5 α(5−4−7) 0.801 0.801
B-6 α(6−4−7) 0.801 0.801

aIn the “No.” column, “A” denotes the CH2 fragment, while “B”
denotes the CH3 fragment. bParameter “R” stands for bond stretching,
and “α” is for angle bending. Unit of local mode force constant for
bond stretchings and angles is mdyn/Å and mdyn×Å/rad2,
respectively.
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linking the normal vibrational modes and the local vibrational
modes in two aspects: (i) The intrinsic fragmental vibrations
calculated by GSVA are in nature normal vibrational modes. (ii)
These vibrations are based on the effective Hessian matrix
taking the physical basis from Konkoli and Cremer’s local
vibrational modes,31−34 namely, to retain the potential energy
surface curvature of the whole system. In this regard, this work
can be also considered as a theoretical extension to our
previous work on the local vibrational modes.
A caveat is necessary when applying GSVA in theoretical

chemical studies. The equilibrium geometry R0 for the entire
molecular system including the subsystem to be studied is
required by eq 1. The full Hessian matrix fx describing the
entire system is needed as one of the input data along with the
geometry R0 and atomic masses M. If one set of intrinsic
fragmental vibrations is to be compared with another set of
intrinsic fragmental vibrations for the same subsystem/
fragment, we need to make sure that these two different
molecular systems are being described with the same level of
theory.
Concerning the implementation of GSVA into a computa-

tional chemistry package or as a standalone analysis program,
three inputs are required to start with including the full Hessian
matrix fx, geometry in Cartesian coordinates, and atomic
masses. As the calculation of the effective Hessian matrix fsub

x

uses Wilson B matrices B′ and Bsub′ characterizing the complete
nonredundant set of internal coordinates of the subsystem, a
subroutine is expected for calculating Wilson B matrices for
various internal coordinates, including bond length, bond angle,
dihedral torsion angle, and so forth. Besides, the linear
independence between rows of the B matrix should be checked
and guaranteed in order for a complete and nonredundant set
of 3n − k internal coordinates determining the geometry of the
subsystem. Furthermore, a subroutine for solving the Wilson
equation of vibrational spectroscopy is required to obtain
normal vibrational modes.65 By providing the effective Hessian
matrix fsub

x , geometry, and atomic masses of the subsystem for
the above subroutine, the normal mode vectors and frequencies
can be obtained for the intrinsic fragmental vibrations. The
computational cost of the whole calculation in GSVA is
equivalent to doing the normal mode analysis for the entire
system, and the most expensive part lies in the calculation of
the Moore−Penrose inverse (fx)+ of the full Hessian matrix.
This work provides a new and reliable theoretical tool for

analyzing as well as comparing the molecular vibrations, and we
anticipate our GSVA method to become a routine procedure in
computational chemistry
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Chapter 1

Before we start

It is not a good idea to have no idea about the basic copyright, history, requirement,

functionality as well as theory of the program before we use it.

1.1 Copyright

The program pURVA as well as this manual MUST NOT be released out of CATCO

group at Southern Methodist University. According to policy §12.1 and §12.2 of Southern

Methodist University, the leakage of the intellectually property may face legal charge.

1.2 History

The original URVA method was implemented by Zoran Konkoli in the link L716 of

Gaussian package. However, this part is never incorporated into the public version

of Gaussian. Since then, many other contributors including Dr. Wenli Zou added

functionalities into this part and migrated this part from older version of Gaussian into

newer version of Gaussian for several times. As Gaussian package was written in Fortran

77, the corresponding URVA part was written in the same language.

Later on from 2015, Dr. Dieter Cremer and Dr. Elfi Kraka wanted to have an indepen-

dent version of URVA program. They asked Yunwen Tao in the group to this job. He

started with programming in Fortran 90 language which is an extension to Fortran 77.

Then he switched the whole project into Python language which is more flexible and

easy to use. The new version of the URVA program was then named as pURVA.

1
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1.3 Execution of pURVA

The proper execution of pURVA requires Python interpreter with the version 2.7.x.

Versions lower than this might lead to trouble.

Here are the list of Python modules needed to run pURVA: (1) NumPy, (2) SciPy, (3)

SymPy, (4) sys, (5) os, (6) copy, (7) gc, (8) math and (9) time.

Make sure that all these modules have been installed properly.

pURVA expects and then reads in an external text file as the user input file. After this

file is prepared, in the terminal, type in

$ python main.py myinputfile

From the standard output, we could monitor how the calculation goes. The calculation

results will be dumped into external text files on the disk.

To make life easier, running pURVA on ManeFrame cluster is recommended as pURVA

has been developed and tested on the same machine. Before running pURVA, remember

to load the Python interpreter by using

$ module load python

1.4 Theory as Unified Reaction Valley Approach

The name of “Unified Reaction Valley Approach” firstly appeared on scientific journals

in 1997 when Konkoli, Kraka and Cremer published their comprehensive studies of CH3

+ H2 ! CH4 + H on J. Phys. Chem. A[1]. In that paper, one of the highlights is

to introduce the approach that calculates the adiabatic mode coupling coe�cient that

is decomposition of reaction path curvature into adiabatic local modes which was a

novel approach dealing with vibrational spectroscopy. URVA is based on the Reaction

Path Hamiltonian(RPH) that was intensively developed by Miller, Handy[2], Page and

McIver[3]. In the year of 2011, Dr. Kraka published a well-written review on the rela-

tionship between RPH and URVA[4]. Most recently, Dr. Zou proposed a new approach

to decompose the reaction path direction and curvature into internal coordinates which

opens the possibility to study chemical reactions in large systems, e.g. organometallic

compounds and enzymes[5].

One of the most important papers involved in URVA is the introduction of Diabatic

Mode Ordering(DMO) procedure which has now been widely used in several projects

within CATCO group[6].
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Input description

There are two major types of input that are allowed in the input file.

• Keyword input

• Section input

2.1 Keyword input

Just for convenience, keyword input is often written before section input. The format

of keyword input line is:

@keyword name = [keyword value]

The @ symbol should be in the first column. No space is allowed after it. On both sides

of = sign, it should be space. There might be several optional keyword values available,

however, only one option is accepted.

2.1.1 @DATAFILETYPE keyword

This keywords specifies the format of input data source file for URVA analysis.

@DATAFILETYPE = old/new/xyz

old: The input data source file is generated by Gaussian package by setting correspond-

ing IOp(1/45). This type of data contains most complete information.

NOTE: If the data file is generated by Gaussian with version number lower than 16.A,

all floating numbers should be converted from ”D” into ”E” format.

3
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new: The input data source file is generated by a modified version of Gaussian package.

This type of data has no Hessian and gradient stored.

xyz: XYZ file containing the Cartesian coordinates of multiple snapshots.

2.1.2 @DATAFILEPATH keyword

This keyword specifies the path of the input data file.

@DATAFILEPATH = "../path/to/data/file"

The quotation marks should be included.

2.1.3 @ENERGY keyword

This keyword specifies whether SCF energy and its first and second derivatives will be

calculated.

@ENERGY = on/off

2.1.4 @PARM keyword

This keyword specifies the way to deal with internal coordinates parameters provided

by user.

@PARM = No/GeomOnly/All

No: Do nothing with regard to these internal coordinates specifications.

GeomOnly: Only calculate the value of these internal coordinates.

All: Besides the value of internal coordinates, other properties related to these internal

coordinates will be calculated.

2.1.5 @VIBRATION keyword

This keyword specifies whether or not to do normal mode analysis.

@VIBRATION = on/off

If the keyword value is set to on, the @DATAFILETYPE must be set to old.
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2.1.6 @DIRCURV keyword

This keyword decides whether or not to calculate reaction path direction �(s) and

curvature �(s).

@DIRCURV = on/off

If the keyword value is set to on, the @DATAFILETYPE must be set to old or new.

2.1.7 @AVAM keyword

This keyword specifies whether or not to calculate the adiabatic mode coupling coe�cient

An,s(s).

@AVAM = on/off

If the keyword value is set to on, the @DATAFILETYPE must be set to old, the @PARM

must be set to All, the @VIBRATION must be set to on and the @DIRCURV must be

set to on

2.1.8 @CURVCPL keyword

This keyword specifies whether or not to calculate the curvature coupling coe�cient

Bµ,s(s).

@CURVCPL = on/off

If the keyword value is set to on, the @DATAFILETYPE must be set to old, the

@VIBRATION must be set to on, and the @DIRCURV must be set to on.

2.1.9 @CORIOLIS keyword

This keyword specifies whether or not to calculate the Coriolis mode-mode coupling

coe�cient Bµ,�(s).

@CORIOLIS = on/off

If the keyword value is set to on, the @DATAFILETYPE must be set to old and the

@VIBRATION must be set to on.
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2.1.10 @ADIABFC keyword

This keyword specifies whether or not to calculate adiabatic force constant ka.

@ADIABFC = on/off

If the keyword value is set to on, the @DATAFILETYPE must be set to old and the

@PARM must be set to All.

2.2 Section input

Section input is used when multiple parameters need to be read in, the format of the

section input is:

SECTION NAME

parameter line 1

parameter line 2

...

END SECTION NAME

2.2.1 TITLE section

This section accepts remarks provided by user. The content will be displayed in standard

output.

TITLE

Please put remarks here.

Multiple lines are accepted.

END TITLE

This section is quite useful to take note of the parameters we use for URVA calculations.

2.2.2 PARAMETER section

This section contains the internal coordinates specifications provided by the user. Dif-

ferent types of internal coordinates including ring coordinates are acceptable.
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Bond length, bond angle, dihedral angle, out-of-plane angle, pyramidalization angle,

ring puckering amplitude, ring puckering phase angle, ring deformation amplitude and

ring deformation phase angle are supported.

PARAMETER

Internal coordinate specification

END PARAMETER

Bond length:

std N1 N2 : "bond name"

Bond angle:

std N1 N2 N3 : "angle name"

Dihedral angle:

std N1 N2 N3 N4 : "dihedral name"

Out of plane angle(the angle between the bond length N1-N2 and the plane N2-N3-N4):

oop N1 N2 N3 N4 : "out of plane name"

Pyramidalization angle(the angle �
P

is related to the three bond angles N2-N1-N3, N3-

N1-N4, N4-N1-N2):

pyr N1 N2 N3 N4 : "pyramidalization angle name"

Radius of planar reference ring(R)(N
ring

: number of ring atoms):

ring N
ring

- ( N1 N2 ... N
atoms

) -[0 0]: "ring breathing name"

Planar deformation amplitude(t
n

)(n=1�N
ring

� 2):

ring N
ring

- ( N1 N2 ... N
atoms

) -[1 n]: "deformation amplitude name"

Planar deformation phase angle(�
n

)(n=1�N
ring

� 2):

ring N
ring

- ( N1 N2 ... N
atoms

) -[2 n]: "deformation phase angle name"

Puckering amplitude(q
n

)(n=2�(N
ring

�1)/2 for odd N
ring

or 2�N
ring

/2 for even N
ring

):

ring N
ring

- ( N1 N2 ... N
atoms

) -[3 n]: "puckering amplitude name"
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Puckering phase angle(�
n

)(n=2�(N
ring

� 1)/2 for odd N
ring

or 2�N
ring

/2-1 for even

N
ring

):

ring N
ring

- ( N1 N2 ... N
atoms

) -[4 n]: "puckering phase angle name"

2.2.3 CURVCOR section

The CURVCOR interface will be activated if this section is found.

For most situations, it is usually enough for N
l

and N
r

to take the value of 25.

CURVCOR

Ln = N
l

Rn = N
r

END CURVCOR

2.2.4 AUTOSMTH section

The AUTOSMTH interface will be activated if this section is found.

AUTOSMTH interface requires the activation of CURVCOR interface.

�s is the stepsize of mass-weighted IRC with the unit of amu1/2-Bohr.

Using the value of 3 is usually enough for N
l

and N
r

.

t is a cut-o� for second derivative of smoothened curve. Increase it when necessary.

Recommended value: 2.5.

AUTOSMTH

StepSize = �s

Ln = N
l

Rn = N
r

d2ythresh = t

END AUTOSMTH
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2.2.5 RMSPK section

The RMSPK interface will be activated if this section is found.

RMSPK interface requires the activation of AUTOSMTH.

Any points in the curvature plot having the value larger than k will be left out as spike.

The value of p ranges from 0.5 to 1.0 as a percentage number. Any points leading to

consecutive di�erence larger than the percentile of p will be labeled as spike condidates.

Recommened value: 0.85.

Gradient check threshold g is used to filter out normal points from spike candidates.

Recommended value: 1.2.

RMSPK

CutHigh = k

Percentage = p

GradRatio = g

END RMSPK

2.2.6 DMO section

If this section input is not found, default parameter values will be used.

s
max

is an overlap threshold after each mode reordering step. If the overlap criteria of

s
max

could not be reached, the criteria will be reduced to s
min

gradually. Recommend

values for s
max

and s
min

: 0.990 and 0.890.

If local di�culty is encountered, linear interpolation will be adopted, space between two

consecutive points will be divided into N
min

pieces. If the di�culty is still not solved,

N
min

will be increased up to N
max

. Recommended values for N
min

and N
max

: 30 and

200.

If the DMO could not get through for a specific point due to the following reasons:

• Change of symmetry of reaction complex, e.g. linear ! non-linear

• Discontinuity of reaction path

• Failure of reaction path following close to local minimum region
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one solution to circumvent this problem is to calculate and re-order the vibrational

frequencies for a specific region of reaction path. This function could be activated by

setting IO
cut

to 1. In this way, the reaction path with its s value ranging from s
start

to

s
end

will have vibrational frequencies calculated.

In some situations, due to the innate di�culty of path following algorithm, the DMO

might fail at the transition state(TS) point. And also the first point o� TS point in

either forward or reverse direction might also lead to problems. In order to remediate

this problem, we can skip a few points in that region by setting IO
skip

to 1. If one

point o� the TS point in reverse(or forward) direction also needs to be skipped, N
left

(

or N
right

) should be set to 1.

DMO

Sthresh = s
max

Slowest = s
min

Np = N
min

NMax = N
max

Cut = IO
cut

CutA = s
start

CutB = s
end

Skip = IO
skip

SkipA = N
left

SkipB = N
right

END DMO
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Output description

In pURVA, results are all written to external files instead of standard output. All output

files have the su�x of “.csv” or “.dat”. The execution of pURVA will abort if a result file

with a duplicated name is found in the current folder. Make sure that current directory

is cleaned up before execution.

3.1 Energy and derivatives

Usually the Self-Consistent Field(SCF) energy is calculated and used to construct the

potential energy surface along the reaction path.

In order to check this value, the @DATAFILETYPE must be set to old or new and

@ENERGY must be set to on.

The unit of SCF energy is Hartree as one of the atomic units(a.u.). In order to calculate

first and second derivatives of SCF energy against reaction coordinate/parameter s,

cubic spline fitting is used. For the second derivative of SCF energy, the region between

s = �0.1 and s = +0.1 is predicted via cubic spline fitting from the information outside

this region.

NOTE: 1 Hartree = 627.509 474 kcal/mol

Output files:

• energy.csv

SCF energy vs. s

• energy 1 d.csv

First derivative of SCF energy vs. s

11
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• energy 2 d.csv

Second derivative of SCF energy vs. s

3.2 Internal coordinates

The value of user-defined internal coordinates could be calculated. All types of internal

coordinates described in section 2.2.2 are supported.

In order to have this result, @PARM must be set to GeomOnly or All.

The unit of printed internal coordinates is atomic unit with bohr for distance and radian

for angles.

NOTE: 1 Bohr = 0.529177

˚A; 1 rad = 57.295 8

�

Output file:

• q n.csv

3.3 Decomposition of reaction path direction and curva-

ture into internal coordinates

In order to have this result, @PARM must be set to All.

Output files:

• eta-q n.csv

Decomposition of reaction path direction into internal coordinates

• kappa-q n.csv

Decomposition of reaction path curvature into internal coordinates

3.4 Generalized vibrational frequency

For any point on reaction path, we could have 3N � K � 1 vibrations, in which K is

the total number of translations and rotations. In pURVA, K takes the value of 6 which

excludes the possibility of analysis of reactions like H2 + H ! H + H2 where the whole

reaction complex stays in a linear geometry.
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In order to have this result, @VIBRATION must be set to on.

Output file:

• freq dmo.csv

Generalized vibrational frequencies vs. s

NOTE: Unit of frequencies is cm�1
.

3.5 Scalar curvature

The original scalar curvature calculated without correction around the TS region and

spike removal will be written to file originalkappa.dat.

In order to have this result, @DIRCURV must be set to on.

If the CURVCOR and AUTOSMTH modules are used, the corrected curvature data will

be written to merged.dat.

If RMSPK module is also used, the curvature data after spike removal will be written

to merged-nospk.dat.

3.6 Adiabatic force constant

The adiabatic force constant of chemical bonds between two atoms along the reaction

path will be written to adiabfc-ka.csv.

In order to have this result, @ADIABFC must be set to on.

In some situations, there might be noise in the result. These noise regions could be

nicely removed via cubic spline fitting.

NOTE: Only result of bond length between 2 atoms could make sense.
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Chapter 4

Examples

4.1 Example 1. HCN ! HNC isomerization

@DATAFILETYPE = old
@PARM = All
@VIBRATION = on
@DIRCURV = on
@AVAM = off
@CURVCPL = off
@CORIOLIS = off
@ENERGY = on
@ADIABFC = off

@DATAFILEPATH = "./examples/hcn/IRC.browse"

TITLE
HCN Reaction test job
Frequency calculation from -3.09985216909 to 3.97984648135
END TITLE

PARAMETER
std 2 3 : bond-NH
std 1 3 : bond-CH
END PARAMETER

DMO
Sthresh = 0.990
Slowest = 0.890
Np = 30
NMax = 200
Cut = 1
CutA = -3.09985216909
CutB = 3.97984648135
END DMO

125



Chapter 4 16

4.2 Example 2. CH3 + H2 ! CH4 + H

The whole calculation may take up to 15 minutes.

@DATAFILETYPE = old
@PARM = All
@VIBRATION = on
@DIRCURV = on
@AVAM = off
@CURVCPL = off
@CORIOLIS = off
@ENERGY = on
@ADIABFC = off

@DATAFILEPATH = "./examples/ch3h2/IRC.forward.2"

TITLE
CH3+H2 Reaction test job
END TITLE

PARAMETER
std 2 3 : bond-NH
std 1 3 : bond-CH
END PARAMETER

DMO
Sthresh = 0.990
Slowest = 0.890
Np = 30
NMax = 200
Cut = 0
END DMO

4.3 Example 3. Gold catalysis Step-1

For this reaction complex, we do three URVA analysis runs. In the first run, basic

information including energy, internal coordinates are calculated. In the second run,

scalar curvature is corrected in its TS region and spikes are also removed. In the last

run, vibrational frequencies are calculated for three segments of the reaction path due

to several local di�culties around TS point.
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4.3.1 First run

@DATAFILETYPE = old
@PARM = GeomOnly
@VIBRATION = off
@DIRCURV = off
@AVAM = off
@CURVCPL = off
@CORIOLIS = off
@ENERGY = on
%%@ADIABFC = off

@DATAFILEPATH = "./examples/gold/IRC.browse"
@BASEPATH = "/path/to/pURVA/folder"

TITLE
Gold catalysis step 1 test job - first run
END TITLE

PARAMETER
std 1 16 : bond-C1C16
std 5 16 : bond-O5C16
std 1 10 : bond-C1C10
std 2 5 : bond-C2O5
std 2 4 : bond-C2O4
END PARAMETER
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4.3.2 Second run

@DATAFILETYPE = old
@PARM = All
@VIBRATION = off
@DIRCURV = on
@AVAM = off
@CURVCPL = off
@CORIOLIS = off
@ENERGY = off
@ADIABFC = off

@DATAFILEPATH = "./examples/gold/IRC.browse"

TITLE
Gold catalysis step 1 test job - second run
END TITLE

PARAMETER
std 1 16 : bond-C1C16
std 5 16 : bond-O5C16
std 1 10 : bond-C1C10
std 2 5 : bond-C2O5
std 2 4 : bond-C2O4
END PARAMETER

CURVCOR
Ln = 25
Rn = 25
END CURVCOR

AUTOSMTH
StepSize = 0.03
Ln = 3
Rn = 3
d2ythresh = 2.4
END AUTOSMTH

RMSPK
CutHigh = 20.0
Percentage = 0.85
GradRatio = 1.2
END RMSPK
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4.3.3 Third run

This run may take up to 25 minutes.

@DATAFILETYPE = old
@PARM = No
@VIBRATION = on
@DIRCURV = off
@AVAM = off
@CURVCPL = off
@CORIOLIS = off
@ENERGY = off
@ADIABFC = off

@DATAFILEPATH = "./examples/gold/IRC.browse"

TITLE
Gold catalysis step 1 test job - third run
END TITLE

DMO
Sthresh = 0.980
Slowest = 0.880
Np = 5
NMax = 80
Cut = 0
END DMO
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Appendix G

Flowchart of Modifications of the Gaussian 16 Source Code
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URVA Browsing File in G16

August 9, 2017

The URVA browsing file is generated by the user input. The format of the
browse file is determined by IOp(1/169).

If	Browsing	
file	is	

requested	

IOp(1/169)

0
(default)

1 11

Old	Browse New	
Browse URVA_c.0

file

URVA_qh-XXXX.2
URVA_fh-XXXX.2

New	
Browse

Hessian

If this IOp option is set to 11, a new type of browsing file (for large systems)
can be generated along with the hessian matrices in the ONIOM model. In this
case, a user input file called “URVA c.0” is expected.

In “URVA c.0”, there are two lines. The first line is a number K and the
second line is also a number N . N means we record the information of Hessian
every N steps. K should start from 0, and it increases by 1 in each IRC step.
When it hits N , the Hessian will be recorded. Then K turns back to 1 and
starts to increase again.

We have modified three links of G16. The L1002 can generate a file “URVA n.1”
which contains the information of the total number of atoms and the labels of

1
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L1002.exe ONIOM-QM CPHF 

URVA_n.1

L120.exe ONIOM-Hessian 

URVA_q.1
URVA_q.2

L123.exe Reaction path following 

URVA_qh-XXXX.2
URVA_fh-XXXX.2

URVA_s.1
New	Browse	file

URVA_c.0
file

QM atoms.
L120 will read in “URVA c.0”, and the QM Hessian and full Hessian will be

saved as “URVA q.1” and “URVA q.2”.
L123 will also read in “URVA c.0”, it will rename “URVA q.1” and “URVA q.2”

into “URVA qh-XXXX.2” and “URVA fh-XXXX.2” respectively. XXXX is the
number of steps of IRC, starting from 0000. Then the “URVA c.0” will be up-
dated. “URVA s.1” records the number of IRC step and reaction parameter s.
Furthermore, the new browsing file will be generated.

2
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Appendix H

Record of Modification of the Gaussian 16 Source Code

If you are interested in special details about the pURVA codes, please contact Dr. Elfi

Kraka, Director of the Computational and Theoretical Chemistry Group @ SMU.
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Appendix I

Source Code of CURVCOR for Reaction Path Curvature Correction
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1 CURVCOR for FCHK Files

This script is designed to calculate the correct reaction path curvature vector
for the TS region based on Gaussian formatted checkpoint files. It is mostly
used for large reaction systems.

1 # This script is designed for calculating the CORRECTED
2 # curvature values/vectors for points along the reaction path where
3 # these points are quite close to the transition state(TS) point.
4 #
5 # The reason for designing this script is that previous URVA method
6 # was designed for points along the path where the gradient is

signifcantly large.
7 #
8 # However, for points around TS, the gradient is almost zero. This

cause
9 # the following problems:

10 #
11 # 1) The older curvature calculation equation can not be applied any

longer
12 # 2) Non-sense spikes arise for curvature values around TS points
13 # 3) The path direction does not make sense if gradient direction is

used
14 # 4) Component analysis (see Wenli Zou’s JCTC paper) can not function

properly
15 #
16 # In order to cure these problems, correct curvature and path direction

are
17 # calculated here according to a new set of equations.
18 #
19 # Warnings
20 # * This script cannot be applied to points located in entrance and

exit channel
21 # where the gradient also vanishes.
22 #
23 # * In choosing the points which need to be corrected, special care

should be taken care of
24 #
25 #
26

27 # How to use this script?
28 # 1. set up running mode(MODE).
29 # a) = 1, path direction only
30 # b) = 2, path direction with curvature
31 #
32 # 2. specify input formatted checkpoint files(Fn,F1,Fp)
33 # F1 = <filename.fchk> of the point in question
34 # Fn = <filename.fchk> of the point before F1
35 # Fp = <filebane.fchk> of the point after F1
36 #
37 # Limitation:
38 # 1) This script could only be used for new browsing files without

Hessian stored
39 # (For old browsing file, the systems are much smaller and the PES

is more steep
40 # than in large systems.)
41 #
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42 #
43

44 from __future__ import print_function
45 import numpy as np
46 import pprint
47 import sys
48 import gc
49 import copy
50

51 #### SET UP BEFORE RUNNING ####
52

53 MODE = 2
54 NEGASIGN = 0
55 NEGASIGN2= 0
56 F1 = "../pd-example/triple_stepsize/r-04.fchk" # IRC Point of Interest
57 Fn = "../pd-example/triple_stepsize/r-05.fchk"
58 Fp = "../pd-example/triple_stepsize/r-03.fchk"
59

60 ###############################
61

62 def chunks(l, n):
63 """Yield successive n-sized chunks from l."""
64 for i in range(0, len(l), n):
65 yield l[i:i + n]
66

67 def LT2Sqr(N,T):
68 "Transform a lower triangular vector into a square matrix"
69 S=[]
70 for i in range(N):
71 S.append( [] )
72 for i in range(N):
73 for j in range(N):
74 S[i].append(0)
75

76

77 k = 0 -1 # corrected for python
78 for i in range(N):
79 if i == 1:
80 k = k + 1
81 S[i][0] = T[k]
82 S[0][i] = T[k]
83 #print S
84 if i != 1:
85 for j in range(i):
86 k = k + 1
87 S[i][j] = T[k]
88 S[j][i] = T[k]
89 #print S
90 k = k + 1
91 S[i][i] = T[k]
92 #print S
93

94 return S
95 ###################################
96

97

98
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99

100 # Start the main script
101

102 F1h=open(F1,"r")
103 print ("Reading file F1: "+F1)
104 F1all=F1h.readlines()
105

106 Fgrad=0
107 Vgrad=[]
108 pgrad=1
109 Fimode=0
110 Vimode=[]
111 pimode=1
112 Fmass=0
113 Vmass=[]
114 pmass=1
115 for i in F1all:
116 if len(i)> 0:
117 if i.split()[0]=="Number":
118 if i.split()[1]=="of":
119 if i.split()[2]=="atoms":
120 NAtom = int( i.split()[4] )
121

122 if i.split()[0]=="Cartesian":
123 if i.split()[1]=="Gradient":
124 numgrad = int( i.split()[4] )
125 nrowgrad = numgrad / 5
126 if numgrad % 5 > 0:
127 nrowgrad = nrowgrad + 1
128 Fgrad=1
129 continue
130 if Fgrad == 1:
131 if pgrad <= nrowgrad:
132 Vgrad.append( i.split() )
133 pgrad= pgrad +1
134 else:
135 Fgrad = 0
136

137 if i.split()[0]=="Vib-Modes":
138 Fimode=1
139 numimode = 3 * NAtom
140 nrowimode = numimode / 5 # we only need part of this data

section
141 if numimode % 5 > 0 :
142 nrowimode = nrowimode + 1
143 continue
144 if Fimode == 1:
145 if pimode < nrowimode:
146 Vimode.append(i.split())
147 pimode = pimode + 1
148 continue
149 if pimode == nrowimode:
150 j= numimode % 5
151 #print (j)
152 #print (i.split())
153 tmp=[]
154 if j!=0: # Corrected
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155 for k in range(j):
156 tmp.append (str(i.split()[k]) )
157 else:
158 tmp = i.split()
159 Vimode.append(tmp)
160 pimode = pimode + 1
161 if pimode > nrowimode:
162 Fimode = 0
163 if i.split()[0]=="Real":
164 if i.split()[1]=="atomic":
165 if i.split()[2]=="weights":
166 Fmass=1
167 nummass=int(i.split()[5])
168 nrowmass = nummass / 5
169 if nummass % 5 > 0:
170 nrowmass = nrowmass + 1
171 continue
172 if Fmass == 1:
173 if pmass < nrowmass:
174 Vmass.append(i.split())
175 pmass = pmass + 1
176 continue
177 if pmass ==nrowmass:
178 j= nummass % 5
179 tmp = []
180 if j != 0: # Corrected
181 for k in range(j):
182 tmp.append(str(i.split()[k]))
183 else:
184 tmp = i.split()
185 Vmass.append(tmp)
186 pmass = pmass + 1
187 if pimode > nrowmass:
188 Fmass = 0
189

190

191

192

193 #print (Vmass)
194 Vmass = [item for sublist in Vmass for item in sublist]
195 Vmass = [float(i) for i in Vmass]
196 Vgrad = [item for sublist in Vgrad for item in sublist]
197 Vgrad = [float(i) for i in Vgrad]
198 Vimode = [item for sublist in Vimode for item in sublist]
199 Vimode = [float(i) for i in Vimode]
200 #print (Vimode)
201 Veta = copy.deepcopy(Vimode)
202

203 #print (Vmass)
204 #print (Vgrad)
205

206 tmpc=[]
207 for i in range(len(Vgrad)):
208 j = i / 3
209 tmpc.append( Vgrad[i] / (Vmass[j]**0.5) )
210 cinv = 1/np.linalg.norm( tmpc )
211
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212 print ("1/|C| = ",cinv)
213

214

215

216 # PRINT RESULT #1
217 #

#################################################################################

218

219 if MODE ==1: # Print New Eta from imaginary mode vector
220 print ("MODE = 1")
221

222 if NEGASIGN == 1:
223 print ("Reaction Path direction reversed by user.")
224

225 print ("V1: Corrected Path Direction vector[UNMASS-WEIGHTED] is
printed:")

226 for i in range(numimode):
227 if NEGASIGN == 0:
228 print ( "%22.15E" % Vimode[i],end="")
229 else:
230 tmp = Vimode[i] * -1
231 print ( "%22.15E" % tmp,end="")
232 j=i+1
233 if j%3==0:
234 print ("")
235 print ("Above numbers are for test use.")
236 #print ("Calculations Done.")
237 #print (np.linalg.norm(Vimode))
238

239 del Veta
240 Veta = copy.deepcopy(Vimode)
241 for i in range(NAtom):
242 for j in range(3):
243 Veta[ 3*i+j ] = Vimode[ 3*i+j ]*1/np.sqrt( Vmass[i] )
244 tmp=np.linalg.norm(Veta)
245 for i in range(NAtom):
246 for j in range(3):
247 Veta[ 3*i+j ] = Veta[ 3*i+j ] / tmp
248 print ("V2: Corrected Path Direction vector[MASS-WEIGHTED] is printed:

")
249 for i in range(numimode):
250 if NEGASIGN == 0:
251 print ( "%22.15E" % Veta[i],end="")
252 else:
253 tmp = Veta[i] * -1
254 print ( "%22.15E" % tmp,end="")
255 j=i+1
256 if j%3==0:
257 print ("")
258 print ("Please paste above numbers into new browsing file to replace

the old Eta.")
259

260 #print (Vimode)
261 del Veta
262 Veta = copy.deepcopy(Vimode)
263 for i in range(NAtom):
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264 for j in range(3):
265 Veta[ 3*i+j ] = Vimode[ 3*i+j ]*1*np.sqrt( Vmass[i] )
266 tmp=np.linalg.norm(Veta)
267 for i in range(NAtom):
268 for j in range(3):
269 Veta[ 3*i+j ] = Veta[ 3*i+j ] / tmp
270 print ("V3: Corrected Path Direction vector[MASS-WEIGHTED] is printed:

")
271 for i in range(numimode):
272 if NEGASIGN == 0:
273 print ( "%22.15E" % Veta[i],end="")
274 else:
275 tmp = Veta[i] * -1
276 print ( "%22.15E" % tmp,end="")
277 j=i+1
278 if j%3==0:
279 print ("")
280

281 print ("Please paste above numbers into new browsing file to replace
the old Eta.")

282

283 print ("Calculations Done.")
284

285 #print (np.linalg.norm(Veta))
286 #print (len(Vimode))
287 #print (len(Vmass))
288 #

##################################################################################

289

290

291 if MODE ==2: # Mode 2
292 print ("MODE = 2")
293 #print (type(Veta),type(Vimode))
294 Veta = copy.deepcopy(Vimode)
295 for i in range(NAtom):
296 for j in range(3):
297 Veta[ 3*i+j ] = Vimode[ 3*i+j ]*1*np.sqrt( Vmass[i] )
298 tmp=np.linalg.norm(Veta)
299 for i in range(NAtom):
300 for j in range(3):
301 Veta[ 3*i+j ] = Veta[ 3*i+j ] / tmp
302

303 print ("Corrected Path Direction vector[MASS-WEIGHTED] is printed:")
304 for i in range(numimode):
305 if NEGASIGN == 0:
306 print ( "%22.15E" % Veta[i],end="")
307 else:
308 tmp = Veta[i] * -1
309 print ( "%22.15E" % tmp,end="")
310 j=i+1
311 if j%3==0:
312 print ("")
313 print ("Please paste above numbers into new browsing file to replace

the old Eta.")
314

315 ## F1
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316 Fhess=0
317 phess=1
318 Vhess1=[]
319 Fcoor=0
320 pcoor=1
321 Vcoor1=[]
322

323

324 for i in F1all:
325 if len(i)> 0:
326 if i.split()[0]=="Current":
327 if i.split()[1]=="cartesian":
328 if i.split()[2]=="coordinates":
329 numcoor = int(i.split()[5])
330 nrowcoor = numcoor / 5
331 if numcoor % 5 > 0:
332 nrowcoor = nrowcoor + 1
333 Fcoor=1
334 continue
335 if Fcoor == 1:
336 if pcoor < nrowcoor:
337 Vcoor1.append(i.split())
338 pcoor = pcoor + 1
339 continue
340 if pcoor == nrowcoor:
341 j = numcoor % 5
342 tmp = []
343

344 if j != 0:
345 for k in range(j):
346 tmp.append(str(i.split()[k]))
347 else:
348 tmp = i.split()
349 Vcoor1.append(tmp)
350 pcoor = pcoor + 1
351 if pcoor > nrowcoor:
352 Fcoor = 0
353

354

355 if i.split()[0]=="Cartesian":
356 if i.split()[1]=="Force":
357 if i.split()[2]=="Constants":
358 numhess = int(i.split()[5])
359 nrowhess = numhess / 5
360 if numhess % 5 > 0:
361 nrowhess = nrowhess + 1
362 Fhess=1
363 continue
364 if Fhess == 1:
365 if phess < nrowhess:
366 Vhess1.append(i.split())
367 phess = phess + 1
368 continue
369 if phess ==nrowhess: # Corrections
370 j = numhess % 5
371 tmp=[]
372 if j != 0:
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373 for k in range(j):
374 tmp.append(str(i.split()[k]))
375 else:
376 tmp = i.split()
377 Vhess1.append(tmp)
378 phess = phess + 1
379 if phess > nrowhess:
380 Fhess = 0
381

382 Vcoor1 = [item for sublist in Vcoor1 for item in sublist]
383 Vcoor1 = [float(i) for i in Vcoor1]
384

385 Vhess1 = [item for sublist in Vhess1 for item in sublist]
386 Vhess1 = [float(i) for i in Vhess1]
387

388

389 #print (Vhess1)
390

391

392 Fph=open(Fp,"r")
393 print ("Reading file Fp: "+Fp)
394 Fpall=Fph.readlines()
395 Fnh=open(Fn,"r")
396 print ("Reading file Fn: "+Fn)
397 Fnall=Fnh.readlines()
398

399

400 ### for P point
401 Fhess=0
402 phess=1
403 Vhessp=[]
404 Fcoor=0
405 pcoor=1
406 Vcoorp=[]
407 Fgrad=0
408 Vgradp=[]
409 pgrad=1
410

411 for i in Fpall:
412 if len(i)> 0:
413 if i.split()[0]=="Current":
414 if i.split()[1]=="cartesian":
415 if i.split()[2]=="coordinates":
416 numcoor = int(i.split()[5])
417 nrowcoor = numcoor / 5
418 if numcoor % 5 > 0:
419 nrowcoor = nrowcoor + 1
420 Fcoor=1
421 continue
422 if Fcoor == 1:
423 if pcoor < nrowcoor:
424 Vcoorp.append(i.split())
425 pcoor = pcoor + 1
426 continue
427 if pcoor == nrowcoor:
428 j = numcoor % 5
429 tmp = []
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430

431 if j != 0:
432 for k in range(j):
433 tmp.append(str(i.split()[k]))
434 else:
435 tmp = i.split()
436 Vcoorp.append(tmp)
437 pcoor = pcoor + 1
438 if pcoor > nrowcoor:
439 Fcoor = 0
440

441 if i.split()[0]=="Cartesian":
442 if i.split()[1]=="Gradient":
443 numgrad = int( i.split()[4] )
444 nrowgrad = numgrad / 5
445 if numgrad % 5 > 0:
446 nrowgrad = nrowgrad + 1
447 Fgrad=1
448 continue
449 if Fgrad == 1:
450 if pgrad <= nrowgrad:
451 Vgradp.append( i.split() )
452 pgrad= pgrad +1
453 else:
454 Fgrad = 0
455

456

457 if i.split()[0]=="Cartesian":
458 if i.split()[1]=="Force":
459 if i.split()[2]=="Constants":
460 numhess = int(i.split()[5])
461 nrowhess = numhess / 5
462 if numhess % 5 > 0:
463 nrowhess = nrowhess + 1
464 Fhess=1
465 continue
466 if Fhess == 1:
467 if phess < nrowhess:
468 Vhessp.append(i.split())
469 phess = phess + 1
470 continue
471 if phess ==nrowhess:
472 j = numhess % 5
473 tmp=[]
474

475 if j != 0:
476 for k in range(j):
477 tmp.append(str(i.split()[k]))
478 else:
479 tmp = i.split()
480

481 Vhessp.append(tmp)
482 phess = phess + 1
483 if phess > nrowhess:
484 Fhess = 0
485

486 Vhessp = [item for sublist in Vhessp for item in sublist]
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487 Vhessp = [float(i) for i in Vhessp]
488 Vcoorp = [item for sublist in Vcoorp for item in sublist]
489 Vcoorp = [float(i) for i in Vcoorp]
490 Vgradp = [item for sublist in Vgradp for item in sublist]
491 Vgradp = [float(i) for i in Vgradp]
492

493

494 #print (Vhessp)
495 #print (Vcoorp)
496

497

498 ### for N point
499 Fhess=0
500 phess=1
501 Vhessn=[]
502 Fcoor=0
503 pcoor=1
504 Vcoorn=[]
505 Fgrad=0
506 Vgradn=[]
507 pgrad=1
508

509

510 for i in Fnall:
511 if len(i)> 0:
512 if i.split()[0]=="Current":
513 if i.split()[1]=="cartesian":
514 if i.split()[2]=="coordinates":
515 numcoor = int(i.split()[5])
516 nrowcoor = numcoor / 5
517 if numcoor % 5 > 0:
518 nrowcoor = nrowcoor + 1
519 Fcoor=1
520 continue
521 if Fcoor == 1:
522 if pcoor < nrowcoor:
523 Vcoorn.append(i.split())
524 pcoor = pcoor + 1
525 continue
526 if pcoor == nrowcoor:
527 j = numcoor % 5
528 tmp = []
529 if j != 0:
530 for k in range(j):
531 tmp.append(str(i.split()[k]))
532 else:
533 tmp = i.split()
534 Vcoorn.append(tmp)
535 pcoor = pcoor + 1
536 if pcoor > nrowcoor:
537 Fcoor = 0
538

539 if i.split()[0]=="Cartesian":
540 if i.split()[1]=="Gradient":
541 numgrad = int( i.split()[4] )
542 nrowgrad = numgrad / 5
543 if numgrad % 5 > 0:
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544 nrowgrad = nrowgrad + 1
545 Fgrad=1
546 continue
547 if Fgrad == 1:
548 if pgrad <= nrowgrad:
549 Vgradn.append( i.split() )
550 pgrad= pgrad +1
551 else:
552 Fgrad = 0
553

554

555 if i.split()[0]=="Cartesian":
556 if i.split()[1]=="Force":
557 if i.split()[2]=="Constants":
558 numhess = int(i.split()[5])
559 nrowhess = numhess / 5
560 if numhess % 5 > 0:
561 nrowhess = nrowhess + 1
562 Fhess=1
563 continue
564 if Fhess == 1:
565 if phess < nrowhess:
566 Vhessn.append(i.split())
567 phess = phess + 1
568 continue
569 if phess ==nrowhess:
570 j = numhess % 5
571 tmp=[]
572

573 if j != 0:
574 for k in range(j):
575 tmp.append(str(i.split()[k]))
576 else:
577 tmp = i.split()
578

579 Vhessn.append(tmp)
580 phess = phess + 1
581 if phess > nrowhess:
582 Fhess = 0
583

584

585 del F1all
586 gc.collect()
587 del Fpall
588 gc.collect()
589 del Fnall
590 gc.collect()
591

592

593 Vhessn = [item for sublist in Vhessn for item in sublist]
594 Vhessn = [float(i) for i in Vhessn]
595 Vcoorn = [item for sublist in Vcoorn for item in sublist]
596 Vcoorn = [float(i) for i in Vcoorn]
597 Vgradn = [item for sublist in Vgradn for item in sublist]
598 Vgradn = [float(i) for i in Vgradn]
599

600
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601 #print (Vhessn)
602 #print (Vcoorn)
603

604 # SUMMARY #
605 # Mass: Vmass
606 # Hessian: Vhess1, Vhessp, Vhessn
607 # 1st Normal mode: Vimode
608 # Coordinates: Vcoor1, Vcoorp, Vcoorn
609 # gradient: Vgrad, Vgradp, Vgradn
610

611 #print (len(Vmass)) = NAtom
612 #print (len(Vcoorn)) = NAtom * 3
613

614 s = 0
615 for i in range(len(Vcoorn)):
616 j = i / 3
617 tmp = ((Vcoorn[i] - Vcoorp[i])**2 ) * Vmass[j]
618 s = s + tmp
619 ds = (s**0.5)/2
620 a1= "Step size of IRC is "
621 a2= " amuˆ(1/2)*Bohr"
622 print ("%s %7.4F %s" % (a1,ds,a2 ))
623

624 s = 0
625 for i in range(len(Vcoor1)):
626 j = i / 3
627 tmp = ((Vcoor1[i] - Vcoorp[i])**2 ) * Vmass[j]
628 s = s + tmp
629 dsp = (s**0.5)/1
630

631 s = 0
632 for i in range(len(Vcoor1)):
633 j = i / 3
634 tmp = ((Vcoor1[i] - Vcoorn[i])**2 ) * Vmass[j]
635 s = s + tmp
636 dsn = (s**0.5)/1
637 a3 = "dsn: "
638 a4 = "dsp: "
639 print ("%s %s %7.4F %s" % (a3,a1,dsn,a2 ))
640 print ("%s %s %7.4F %s" % (a4,a1,dsp,a2 ))
641

642

643 ########################################
644 ## mass weighting Hessian
645 #print ( np.matrix(LT2Sqr(4,[1,2,3,4,5,6,7,8,9,10])) )
646 #print (len(Vhess1),len(Vhessp),len(Vhessn) )
647 ffM1 = LT2Sqr( 3*NAtom, Vhess1 )
648 ffMp = LT2Sqr( 3*NAtom, Vhessp )
649 ffMn = LT2Sqr( 3*NAtom, Vhessn )
650 del Vhess1
651 gc.collect()
652 del Vhessp
653 gc.collect()
654 del Vhessn
655 gc.collect()
656 for i in range(3*NAtom):
657 for j in range(3*NAtom):

148



658 im = i / 3
659 jm = j / 3
660 ffMp[i][j] = ffMp[i][j] / ( (Vmass[im])**0.5 * (Vmass[jm

]**0.5) )
661 ffMn[i][j] = ffMn[i][j] / ( (Vmass[im])**0.5 * (Vmass[jm

]**0.5) )
662 ffM1[i][j] = ffM1[i][j] / ( (Vmass[im])**0.5 * (Vmass[jm

]**0.5) )
663

664 #print (type(ffMp))
665

666 ## Fˆ(1) -> derivative of F(s0) with regard to ds
667 ffMp = np.matrix( ffMp )
668 ffMn = np.matrix( ffMn )
669 mF1 = (ffMp - ffMn ) / (dsn+dsp)
670 del ffMn
671 gc.collect()
672 del ffMp
673 gc.collect()
674

675 ## Summary
676 # F -> ffM1 (list)
677 # Fˆ(1) -> mF1 (matrix)
678 # v -> Veta (list)
679

680 ffM1 = np.matrix(ffM1)
681 Veta = np.array(Veta)
682

683 tmp = (Veta * ffM1 ) ## v+ F
684 tmp = np.asarray( tmp ) # change from matrix into array
685 #print (type(tmp))
686 a = np.dot(tmp, Veta) ## v+ F v
687 #print (a)
688 del tmp
689 gc.collect()
690

691 I = np.identity( 3*NAtom )
692 I = I * 2 * a
693 #print (I)
694 Left = np.matrix(I) - ffM1 # symmetric
695

696 #gc.collect()
697 #print (Left)
698 Leftinv = np.linalg.inv( Left )
699 #print (Leftinv)
700 del Left
701 gc.collect()
702

703 #print (type(mF1))
704 #print (type(Veta))
705 tmp = mF1.dot(Veta) ## Fˆ(1) v
706 #print (mF1.dot(Veta))
707 del mF1
708 gc.collect()
709 tmp = np.asarray(tmp)[0]
710

711 #print (len(tmp),len(Veta))
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712 a = np.dot(Veta,tmp) ## v+ Fˆ(1) v
713 #print (a)
714 av = Veta * a ## v+ Fˆ(1) v v
715 #print (len(tmp),len(av))
716 Right = tmp - av
717

718 del tmp
719 gc.collect()
720 del av
721 gc.collect()
722 #print (Right)
723

724 cur = Leftinv.dot(Right)
725 tt = cur.tolist()
726 #print (tt[0])
727 print ("Corrected Curvature vector[MASS-WEIGHTED] is printed:")
728 for i in range(numimode):
729 if NEGASIGN2 == 0:
730 pass
731 print ( "%22.15E" % tt[0][i],end="")
732 else:
733 tmp = tt[0][i] * -1
734 pass
735 print ( "%22.15E" % tmp,end="")
736 j=i+1
737 if j%3==0:
738 pass
739 print ("")
740 print ("Please paste above numbers into new browsing file to replace

the old Kappa.")
741

742 #print (cur)
743 a1="Scalar curvature( corrected) for this point is"
744 a2="amuˆ(-1/2)*Bohrˆ(-1)"
745 print ( "%s %10.5F %s" % ( a1, np.linalg.norm(cur),a2 ) )
746 #print ("Calculations Done.")
747 #print(len(Vgrad),len(Vgradp),len(Vgradn))
748 #print (len(Veta))
749

750 Vetap = copy.deepcopy(Vgradp)
751 for i in range(NAtom):
752 for j in range(3):
753 Vetap[ 3*i+j ] = Vetap[ 3*i+j ]*1/np.sqrt( Vmass[i] )
754 tmp=np.linalg.norm(Vetap)
755 for i in range(NAtom):
756 for j in range(3):
757 Vetap[ 3*i+j ] = Vetap[ 3*i+j ] / tmp
758

759 Vetan = copy.deepcopy(Vgradn)
760 for i in range(NAtom):
761 for j in range(3):
762 Vetan[ 3*i+j ] = Vetan[ 3*i+j ]*1/np.sqrt( Vmass[i] )
763 tmp=np.linalg.norm(Vetan)
764 for i in range(NAtom):
765 for j in range(3):
766 Vetan[ 3*i+j ] = Vetan[ 3*i+j ] / tmp
767
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768 #curap = ( np.array(Vetap) - np.array(Veta) ) / (1*ds) # GARBAGE! #
Error too large!

769 #a3="Scalar curvature(approximated) for this point is"
770 #print ( "%s %10.5F %s" % ( a3, np.linalg.norm(curap),a2 ) )
771

772

773 # Give also the curvature with original formula
774 # 1/C -> cinv
775 # f(mass-weighted) -> ffM1
776 # g(mass-weighted) -> tmpc
777

778 tmpc = np.array(tmpc)
779 ffM1 = np.array(ffM1)
780 tmpeta = []
781 for i in range(len(tmpc)):
782 tmpeta.append( tmpc[i] * cinv )
783 tmpeta = np.array(tmpeta)
784 tmpv=[]
785 for i in range(len(tmpeta)):
786 tmpv.append( np.dot(tmpeta, ffM1[i] ) )
787 gfg = np.dot( tmpeta, tmpv )
788 result=[]
789

790 for i in range(len(tmpeta)):
791 result.append( tmpv[i] - gfg* tmpeta[i] )
792 for i in range(len(result)):
793 result[i] = result[i] * cinv
794

795 a1="Scalar curvature(un-corrected) for this point is"
796 print ( "%s %10.5F %s" % ( a1, np.linalg.norm(result),a2 ) )
797

798 #print (len(tmpv))
799

800 #print (np.linalg.norm(tmpeta))
801 #print (len(tmpc))
802 #print (len(ffM1))
803

804 print ("This point is "+F1)
805 print ("Calculations Done.")

Listing 1: CURVCOR Script for FCHK Files
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2 CURVCOR for Old Browsing Files

This script is designed to calculate the corrected scalar curvature for the TS
region based on old browsing files. The correct reaction path curvature vector
is also calculated but not shown. This script is later adapted into the pURVA
program.

Besides the main script, it has another two modules named util.py and
util2.py.

1 # This script is identical to CURVCOR, however, it is tailored for
2 # old browsing file.
3 #
4 # This script could later be adapted to pURVA...
5 #
6 # USER INPUT:
7 # 1. browsing file name
8 # 2. labels of F1, Fp, Fn (e.g. P2, P3, P1)
9 #

10 # INPUT INFO.:
11 # 1. CC
12 # 2. Mass
13 # 3. Hessian
14 #
15

16

17 import sys
18 from util2 import *
19 from util import *
20 import numpy as np
21 import gc
22

23 #print sys.argv
24

25 inpf = sys.argv[1]
26 v1= sys.argv[2]
27 v2= sys.argv[3]
28 v3= sys.argv[4]
29 inpstr = [v1,v2,v3]
30 #inpstr = [ ’P3’,’P4’,’P5’ ]
31 #inpf = "IRC.browse"
32

33 ################
34 origin = 0.0
35 ################
36

37 a,b,c=parsestr(inpstr)
38

39 if a >= b or a >= c or b >= c:
40 print ("Error: Please check input!")
41 sys.exit()
42 else:
43 d1 = b-a
44 d2 = c-b
45 if d1 != d2:
46 print ("Error: Please check input!")
47 sys.exit()
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48

49

50 # Get the info. of s values
51 svals = []
52 svals = initscan(inpf)
53 sa,sb,sc = assigns(svals,a,b,c,origin)
54

55 print ("Reaction parameter s: "+str(sb))
56

57

58 # Get mass, CC, Grad, Hess for corresponding s value
59 Vmass, VcoorA,VgradA, VhessA = procbrow(sa,inpf)
60 Vmass, VcoorB,VgradB, VhessB = procbrow(sb,inpf)
61 Vmass, VcoorC,VgradC, VhessC = procbrow(sc,inpf)
62

63 # Get the normal modes
64 eig,nm,cdisp=solWils(VcoorB,VhessB,Vmass) # This part might cause

problem in the curve
65 #print len(nm)
66 #print len(cdisp)
67

68 VcoorA = [item for sublist in VcoorA for item in sublist]
69 VcoorB = [item for sublist in VcoorB for item in sublist]
70 VcoorC = [item for sublist in VcoorC for item in sublist]
71

72 a1= "Step size of IRC is "
73 a2= " amuˆ(1/2)*Bohr"
74 a3 = "dsn: "
75 a4 = "dsp: "
76

77 s = 0
78 for i in range(len(VcoorB)):
79 j = i / 3
80 tmp = ((VcoorA[i] - VcoorB[i])**2 ) * Vmass[j]
81 s = s + tmp
82 dsp = (s**0.5)/1
83

84 s = 0
85 for i in range(len(VcoorB)):
86 j = i / 3
87 tmp = ((VcoorB[i] - VcoorC[i])**2 ) * Vmass[j]
88 s = s + tmp
89 dsn = (s**0.5)/1
90

91 print ("%s %s %7.4F %s" % (a3,a1,dsp,a2 ))
92 print ("%s %s %7.4F %s" % (a4,a1,dsn,a2 ))
93

94 NAtom = len(Vmass)
95

96 ffM1 = LT2Sqr( 3*NAtom, VhessB )
97 ffMp = LT2Sqr( 3*NAtom, VhessC )
98 ffMn = LT2Sqr( 3*NAtom, VhessA )
99

100 del VhessA
101 gc.collect()
102 #del VhessB
103 #gc.collect()
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104 del VhessC
105 gc.collect()
106

107 for i in range(3*NAtom):
108 for j in range(3*NAtom):
109 im = i / 3
110 jm = j / 3
111 ffMp[i][j] = ffMp[i][j] / ( (Vmass[im])**0.5 * (Vmass[jm]**0.5)

)
112 ffMn[i][j] = ffMn[i][j] / ( (Vmass[im])**0.5 * (Vmass[jm]**0.5)

)
113 ffM1[i][j] = ffM1[i][j] / ( (Vmass[im])**0.5 * (Vmass[jm]**0.5)

)
114

115 ffMp = np.matrix( ffMp )
116 ffMn = np.matrix( ffMn )
117 mF1 = (ffMp - ffMn ) / (dsn+dsp)
118 del ffMn
119 gc.collect()
120 del ffMp
121 gc.collect()
122

123 ffM1 = np.matrix(ffM1)
124 Veta = np.array( nm[0] ) # Might change
125

126 tmp = (Veta * ffM1 )
127 tmp = np.asarray( tmp )
128 a = np.dot(tmp, Veta)
129 del tmp
130 gc.collect()
131

132 I = np.identity( 3*NAtom )
133 I = I * 2 * a
134

135 Left = np.matrix(I) - ffM1
136

137 Leftinv = np.linalg.inv( Left )
138

139 del Left
140 gc.collect()
141

142 tmp = mF1.dot(Veta)
143 del mF1
144 gc.collect()
145 tmp = np.asarray(tmp)[0]
146

147 a = np.dot(Veta,tmp)
148

149 av = Veta * a
150

151 Right = tmp - av
152

153 del tmp
154 gc.collect()
155 del av
156 gc.collect()
157
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158 cur = Leftinv.dot(Right)
159 tt = cur.tolist()
160

161 a1="Scalar curvature( corrected) for this point is"
162 a2="amuˆ(-1/2)*Bohrˆ(-1)"
163 print ( "%s %10.5F %s" % ( a1, np.linalg.norm(cur),a2 ) )
164

165

166 tmpc = []
167 for i in range(len(VgradB)):
168 j = i / 3
169 v = VgradB[i] * ( Vmass[j]**(-0.5) )
170 tmpc.append(v)
171

172 tmpc = np.array(tmpc)
173 cinv = 1.0 / np.linalg.norm(tmpc)
174

175 ffM1 = np.array(ffM1)
176 tmpeta = []
177 for i in range(len(tmpc)):
178 tmpeta.append( tmpc[i] * cinv )
179 tmpeta = np.array(tmpeta)
180 tmpv=[]
181

182 for i in range(len(tmpeta)):
183 tmpv.append( np.dot(tmpeta, ffM1[i] ) )
184 gfg = np.dot( tmpeta, tmpv )
185 result=[]
186

187 for i in range(len(tmpeta)):
188 result.append( tmpv[i] - gfg* tmpeta[i] )
189 for i in range(len(result)):
190 result[i] = result[i] * cinv
191

192 a1="Scalar curvature(un-corrected) for this point is"
193 print ( "%s %10.5F %s" % ( a1, np.linalg.norm(result),a2 ) )
194

195 ### Here we calculate the un-mass-weighted scalar curvature.
196 # Gradient -> VgradB
197 # Hessian -> ffM1
198

199 ffM1 = LT2Sqr( 3*NAtom, VhessB )
200 del VhessB
201 gc.collect()
202

203 #print ffM1
204 #print VgradB
205

206 tmpc = []
207 for i in range(len(VgradB)):
208 v = VgradB[i]
209 tmpc.append(v)
210 tmpc = np.array(tmpc)
211 cinv = 1.0 / np.linalg.norm(tmpc)
212

213 ffM1 = np.array(ffM1)
214 tmpeta = []
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215 for i in range(len(tmpc)):
216 tmpeta.append( tmpc[i] * cinv )
217 tmpeta = np.array(tmpeta)
218 tmpv=[]
219

220 for i in range(len(tmpeta)):
221 tmpv.append( np.dot(tmpeta, ffM1[i] ) )
222 gfg = np.dot( tmpeta, tmpv )
223 result=[]
224

225 for i in range(len(tmpeta)):
226 result.append( tmpv[i] - gfg* tmpeta[i] )
227 for i in range(len(result)):
228 result[i] = result[i] * cinv
229

230

231 a1="Scalar curvature(unmasswghted) for this point is"
232 a2="Bohrˆ(-1)"
233

234 print ( "%s %10.5F %s" % ( a1, np.linalg.norm(result),a2 ) )

Listing 2: CURVCOR Script for Old Browsing Files

1 import numpy as np
2 from scipy.linalg import sqrtm
3

4 ## MPACMF
5 def MPACMF(A,B,IQ):
6 "! IQ=\
7 ! 1 C=A*B\
8 ! 2 C=A(TRANSPOSE)*B\
9 ! 3 C=A*B(TRANSPOSE)"

10 # 1: A(L,M),B(M,N),C(L,N)
11 #
12 A = np.matrix(A)
13 B = np.matrix(B)
14 if IQ == 1:
15 A = A.transpose()
16 B = B.transpose()
17 C = A * B
18 C = C.transpose()
19 if IQ == 2:
20 B = B.transpose()
21 C = A * B
22 C = C.transpose()
23 if IQ == 3:
24 A = A.transpose()
25 C = A * B
26 C = C.transpose()
27 return C
28

29 #######################
30

31 ## MMpyMF
32 def MMpyMF(A,B):
33 # A - (L,M) fortran
34 # B - (M,N) fortran
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35 # C - (L,N) fortran
36 # A = matrix( [1,2,3, ...,L],
37 # [2,...
38 # [3,...
39 # [4,...
40 # [.
41 # [M
42

43

44 # B = matrix( [1,2,3, ...,M],
45 # [2,...
46 # [3,...
47 # [4,...
48 # [.
49 # [N
50

51 # C = matrix( [1,2,3, ...,L],
52 # [2,...
53 # [3,...
54 # [4,...
55 # [.
56 # [N
57

58 A = np.matrix(A)
59 B = np.matrix(B)
60 A = A.transpose()
61 B = B.transpose()
62 C = A * B
63 C = C.transpose()
64

65 return C
66 #######################################
67

68 ## MatMP1
69 def MatMp1(A,B):
70 "Interface MatMp1 subroutine into Python"
71 # A - (M,L) fortran
72 # A[L][M]
73 # B - (M,N) fortran
74 # B[N][M]
75 # Product - (L,N) fortran
76 # C[N][L]
77 #
78 # = matrix( [1,2,3, ...,M],
79 # [2,...
80 # [3,...
81 # [4,...
82 # [.
83 # [L
84

85

86 # = matrix( [1,2,3, ...,M],
87 # [2,...
88 # [3,...
89 # [4,...
90 # [.
91 # [N
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92

93 # = matrix( [1,2,3, ...,L],
94 # [2,...
95 # [3,...
96 # [4,...
97 # [.
98 # [N
99

100 A = np.array( A )
101 B = np.array( B )
102 #B = B.transpose()
103 #print A
104 #print B
105 L = len(A)
106 N = len(B)
107 M = len(A[0])
108

109 C=[]
110 for i in range(N):
111 C.append( [] )
112 for i in range(N):
113 for j in range(L):
114 C[i].append(0)
115

116 for i in range(N):
117 for j in range(L):
118 C[i][j] = np.dot( A[j], B[i] )
119 C = np.array(C)
120

121 return C
122 ###############################################
123

124 ## pDiagSq
125 def pDiagSq(Indx,B):
126 "!--- General inverse enhanced version of DiagSqrt.\
127 !--- A is a diagonal matrix with diagonal terms\
128 !--- Indx = 0, sqrt(B)\
129 !--- ne 0, sqrt(B)**-1 if B(i) > 0.\
130 !--- It’s assumed that B(i) .ge. 0. It doesn’t work if there are\
131 !--- negative elements in B, which is not checked."
132 B = np.array(B)
133 N = len(B)
134 A = np.zeros((N,N))
135 eps = 1.0e-8
136 if Indx == 0:
137 for i in range(N):
138 A[i,i] = (abs(B[i]))**0.5
139 else:
140 for i in range(N):
141 if (abs(B[i]) > eps):
142 A[i,i] = 1 / (abs(B[i]))**0.5
143

144 return A
145 ################################################
146

147 #pDiagSq(1,[1,2,3,4,5])
148
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149 #x=np.matrix([[4,0],[0,4]])
150 #print sqrtm(x)
151 #print np.linalg.pinv(sqrtm(x))
152

153 ## SqrtMp
154 def SqrtMp(Mode,S):
155 "!--- Calculate square-root matrix X=Sˆ1/2 and/or its (general)

inverse\
156 !--- Xi. Here S must be a SYMMETRIC matrix.\
157 !--- Mode > 0: Calculate X\
158 !--- < 0: Calculate Xi"
159

160 S = np.matrix( S )
161 if Mode > 0:
162 P = sqrtm( S )
163

164 if Mode < 0:
165 P = np.linalg.pinv( sqrtm( S ) )
166

167 return P
168

169 ##############
170

171

172 ## LT2Sqr
173 def LT2Sqr(N,T):
174 "Transform a lower triangular vector into a square matrix"
175 S=[]
176 for i in range(N):
177 S.append( [] )
178 for i in range(N):
179 for j in range(N):
180 S[i].append(0)
181

182 k = 0 -1 # corrected for python
183 for i in range(N):
184 if i == 1:
185 k = k + 1
186 S[i][0] = T[k]
187 S[0][i] = T[k]
188 #print S
189 if i != 1:
190 for j in range(i):
191 k = k + 1
192 S[i][j] = T[k]
193 S[j][i] = T[k]
194 #print S
195 k = k + 1
196 S[i][i] = T[k]
197 #print S
198

199 return S
200 ############################
201

202

203

204 # GSortho
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205 def GSorth(Reorder,N,M,Vec):
206 Tol = 0.1
207 NGen = 0
208 IGen = 0 #- 1 #Corrected
209

210 Scr=[]
211 #for i in range(N):
212 # Scr.apend([])
213

214 for i in range(N):
215 #for j in range(N):
216 Scr.append(0)
217 #########################################
218

219 for Idx in range(M+N): # 0 ... M+N-1
220 NGen = NGen + 1
221 #Idx2 = Idx + 1
222 if Idx <= (M-1):
223 #print "check idx"
224 for j in range(N):
225 Scr[j] = Vec[Idx][j]
226 else:
227 for j in range(N):
228 Scr[j] = 0
229 IGen = IGen + 1
230 Scr[IGen-1] = 1
231

232 for Jdx in range(NGen-1):
233 X = -1 * np.dot(Vec[Jdx],Scr[0:N])
234 #print "l2",Scr[0:N]
235 for j in range(N):
236 Scr[j] = X*Vec[Jdx][j] + Scr[j]
237 X = np.dot(Scr[0:N],Scr[0:N])
238 X = X**0.5
239

240 if X > Tol:
241 #print "YES"
242 X = 1/X
243 #print Scr[0:N]
244 for i in range(N):
245 Vec[NGen-1][i] = X*Scr[i]
246 #print "NGen=",NGen
247 #print Vec[NGen-1]
248 else:
249 NGen = NGen - 1
250 if NGen == N:
251 break
252

253 if Reorder == 1:
254 pass
255 #not implemented
256

257 return Vec
258 #######################
259

260 #a=[[0.1,0.4,0.6,0.8],\
261 # [0.2,0.3,0.7,0.9],\
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262 # [0 ,0 , 0, 0],\
263 # [0, 0 , 0, 0] ]
264 #
265 #print GSorth(0,4,2,a)
266

267

268 ## Print Vib.
269 def prtVib(eig,disp):
270 NVib = len(eig)
271 frq = []
272 for i in eig:
273 if i > 0:
274 frq.append((i**0.5)*5140.48715246)
275 else:
276 frq.append( -1*((-1*i)**0.5)*5140.48715246)
277 for i in range(len(frq)):
278 print ("Freq %3i =%8.1f"%(i+1,frq[i]))

Listing 3: util.py Module of CURVCOR Script for Old Browsing Files

1 import sys
2 from calc import *
3

4 # atomic masses
5 defatw = [ 0.00000000, 1.00782504, 4.00260325, 7.01600450,

9.01218250,
6 11.00930530, 12.00000000, 14.00307401, 15.99491464,

18.99840325,
7 19.99243910, 22.98976970, 23.98504500, 26.98154130,

27.97692840,
8 30.97376340, 31.97207180, 34.96885273, 39.96238310,

38.96370790,
9 39.96259070, 44.95591360, 47.94794670, 50.94396250,

51.94050970,
10 54.93804630, 55.93493930, 58.93319780, 57.93534710,

62.92959920,
11 63.92914540, 68.92558090, 73.92117880, 74.92159550,

79.91652050,
12 78.91833610, 83.91150640, 84.91170000, 87.90560000,

88.90540000,
13 89.90430000, 92.90600000, 97.90550000,

98.90630000,101.90370000,
14

102.90480000,105.90320000,106.90509000,113.90360000,114.90410000,
15

117.90180000,120.90380000,129.90670000,126.90040000,131.90420000,
16

132.90542900,137.90500000,138.90610000,139.90530000,140.90740000,
17

141.90750000,144.91270000,151.91950000,152.92090000,157.92410000,
18

158.92500000,163.92880000,164.93030000,165.93040000,168.93440000,
19

173.93900000,174.94090000,179.94680000,180.94800000,183.95100000,
20

186.95600000,189.95860000,192.96330000,194.96480000,196.96660000,
21
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201.97060000,204.97450000,207.97660000,208.98040000,208.98250000,
22

210.98750000,222.01750000,223.01980000,226.02540000,227.02780000,
23

232.03820000,231.03590000,238.05080000,237.04800000,242.05870000,
24

243.06140000,246.06740000,247.07020000,249.07480000,252.08290000,
25

252.08270000,255.09060000,259.10100000,262.10970000,261.10870000,
26 262.11410000,266.12190000,264.12470000,

0.00000000,268.13880000]
27

28 def parsestr(strlist):
29 a = strlist[0]
30 b = strlist[1]
31 c = strlist[2]
32 if len(a) < 2 or len(b) < 2 or len(c) < 2:
33 print ("Error: Please check the input string!")
34 sys.exit()
35

36 if "P" in a:
37 sa = 1
38 else:
39 sa = -1
40 if "P" in b:
41 sb = 1
42 else:
43 sb = -1
44 if "P" in c:
45 sc = 1
46 else:
47 sc = -1
48

49 if a == "TS":
50 va = 0
51 else:
52 va = int( a[1:] ) *sa
53 if b == "TS":
54 vb = 0
55 else:
56 vb = int( b[1:] ) *sb
57 if c == "TS":
58 vc = 0
59 else:
60 vc = int( c[1:] ) *sc
61

62 #print va,vb,vc
63 return (va,vb,vc)
64

65 def initscan(f1):
66 sval = []
67 p = 0
68 with open(f1) as f:
69 for line in f:
70 if "XXIRC" in line:
71 p = 1
72 continue
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73 if p == 1:
74 s = float( line.split()[-1] )
75 sval.append(s)
76 p = 0
77 for i in range(len(sval)-1):
78 if sval[i] >= sval[i+1]:
79 print ("Error: Reaction coordinates "+str(sval[i] )+" "+str(

sval[i+1])+"\n" )
80

81 return sval
82

83 def assigns(svals,a,b,c,origin):
84 of = 0
85 for i in range(len(svals)):
86 if svals[i] == origin:
87 of = 1
88 oi = i
89 if of != 1:
90 print ("origin error!")
91 sys.exit()
92

93 ai = oi + a
94 bi = oi + b
95 ci = oi + c
96

97 if (ai+1) > len(svals) or (bi+1) > len(svals) or (ci+1) > len(svals
):

98 print ("Error: input exceeding limit...")
99 sys.exit()

100

101 sa = svals[ai]
102 sb = svals[bi]
103 sc = svals[ci]
104

105 return sa,sb,sc
106 #print ai,bi,ci
107

108

109 def procbrow(sval,inpf):
110 cut =[]
111 p = 0
112 with open(inpf) as f:
113 for line in f:
114 if "BEGIN" in line:
115 p = 1
116 cut.append(line)
117 continue
118 if p == 1:
119 cut.append(line)
120 if "END" in line:
121 p = 2
122 if p == 2:
123 mat = checkmatch(sval,cut) # check if match
124 if mat == 1:
125 Vmass,Vcoor,Vgrad,Vhess = takedat(cut)
126

127 p = 3
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128 cut = []
129 continue
130

131 return (Vmass, Vcoor, Vgrad, Vhess)
132

133 def checkmatch(sval,cut):
134 p =0
135 match = 0
136 test = -909.909
137 for i in range(len(cut)):
138 if "XXIRC" in cut[i]:
139 p = 1
140 continue
141 if p == 1 :
142 test = float( cut[i].split()[-1] )
143 p = 0
144 if sval == test:
145 match = 1
146

147 #print match
148 return match
149

150

151 def takedat(cut):
152 pnz = 0
153 pms = 0
154 Vmass=[]
155 pcoor = 0
156 Vcoor=[]
157 pgrad = 0
158 Vgrad=[]
159 #print cut
160 phess = 0
161 Vhess=[]
162

163

164 for i in range(len(cut)):
165 line = cut[i]
166 if "NZ" in line:
167 pnz = 1
168 continue
169 if pnz == 1:
170 NAtom = int(line.split()[0])
171 #print NAtom
172 pnz = 0
173 if "IAnZ" in line:
174 pms = 1
175 continue
176 if pms > 0:
177 an = int(line.split()[0])
178 mass = defatw[an]
179 #print an,mass
180 Vmass.append( mass )
181 pms = pms + 1
182 if pms == (NAtom + 1):
183 pms = -1
184 if "CC" in line:
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185 pcoor = 1
186 continue
187 if pcoor > 0:
188 line = line.replace("D","E",3)
189 c1 = line[0:22]
190 c2 = line[22:44]
191 c3 = line[44:66]
192 Vcoor.append([ float(c1), float(c2), float(c3) ])
193 #print c1,c2,c3
194 pcoor = pcoor + 1
195 if pcoor == (NAtom + 1):
196 pcoor = -1
197 continue
198 if len(line) > 3:
199 if "FX" in line[:2]:
200 pgrad = 1
201 continue
202 if pgrad > 0:
203 #print pgrad,NAtom
204 line = line.replace("D","E",3)
205 c1 = line[0:22]
206 c2 = line[22:44]
207 c3 = line[44:66]
208 #print c1,c2,c3
209 Vgrad.append( float(c1))
210 Vgrad.append( float(c2))
211 Vgrad.append( float(c3))
212 pgrad = pgrad + 1
213 if pgrad == (NAtom + 1):
214 pgrad = -1
215 continue
216 if "FFX" in line:
217 phess = 1
218 continue
219 if phess > 0:
220 line = line.replace("D","E",3)
221 c1 = line[0:22]
222 c2 = line[22:44]
223 c3 = line[44:66]
224 #print c1,c2,c3
225 Vhess.append( float(c1))
226 Vhess.append( float(c2))
227 Vhess.append( float(c3))
228 phess = phess + 1
229 if phess == ( NAtom*(3*NAtom+1)/2 + 1 ):
230 phess = -1
231 continue
232

233 #print NAtom
234 #print len(Vcoor)
235 #print len(Vmass)
236 #print len(Vgrad)
237 #print len(Vhess)
238 return (Vmass,Vcoor,Vgrad,Vhess)

Listing 4: util2.py Module of CURVCOR Script for Old Browsing Files
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Appendix J

Source Code of AUTOSMTH for Reaction Path Curvature Smoothing
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1 AUTOSMTH Script

This script is designed to merge the two curves of uncorrected curvature and
corrected curvature into a smooth curve. The whole procedure is automatic.

1 # This script is designed to do
2 # fully automatic smoothening function
3 # for the curves including:
4 # 1) Scalar curvature plot
5 # 2) components of scalar curvature plot
6 # 3) components of path direction
7 #
8 # The smoothening consists of 2 major steps:
9 # 1. Using exponential function to merge two ends

10 # 2. Using cubit spline fitting to correct central part
11 #
12 # Input original curve data
13 # 1. Old curve whose central region is problematic and needs correct
14 # 2. New curve who started from the central region, however, needs

extra work to
15 # 2.a Make it merge into the old curve at two ends
16 # 2.b Correct the central region
17 #
18 # Note: This script drops most error handles...
19 # This script is expected to incorporate into pURVA.
20

21 import sys
22 from scipy import optimize
23 import math
24 from scipy.interpolate import interp1d
25 import numpy as np
26 from smoothutils import *
27

28

29 # USER SETTING-UP ####################
30 oldcurvf = ’grmpme/oldcurv.dat’ # uncorrected curvature [two-column]
31 newcurvf = ’grmpme/newcurv.dat’ # corrected curvature [two-column]
32 dstep = 0.03 # Step size of IRC path
33 RL = [3,3] # a parameter for spline fitting
34

35 continuethresh = 0.5 # Increase this value WHEN NECESSARY
36 ######################################
37

38 #############################
39 # ADVANCED SETTING-UP
40 #continuethresh = 0.4
41 prederrthresh = 0.1 # Way No. 1
42

43 #RL = [1,1] # Way No. 2 # Chosen as the default approach
44 #############################
45

46

47 # Read in data
48 olddat=[]
49 with open(oldcurvf) as oldf:
50 for line in oldf:
51 if len(line) > 1:
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52 #print line
53 s = float( line.split()[0] )
54 v = float( line.split()[1] )
55 olddat.append( [s,v] )
56

57 newdat=[]
58 with open(newcurvf) as newf:
59 for line in newf:
60 if len(line) > 1:
61 s = float( line.split()[0] )
62 v = float( line.split()[1] )
63 newdat.append( [s,v] )
64

65

66 newfor=[]
67 chkfor=[]
68 newrev=[]
69 chkrev=[]
70

71 # split forward and reverse
72 for i in range(len(newdat)):
73 if newdat[i][0] >= 0.0:
74 newfor.append( newdat[i] )
75 chkfor.append(0)
76 #print newdat[i]
77

78

79 for i in range(len(newdat)):
80 if newdat[i][0] <= 0.0:
81 newrev.append( newdat[i] )
82 chkrev.append(0)
83 # print newrev
84

85 # Make sure that new dat and old dat have the same grid point
86 for i in range(len(newfor)):
87 for j in range(len(olddat)):
88 if newfor[i][0] == olddat[j][0]:
89 chkfor[i] = 1
90

91 for i in range(len(newrev)):
92 for j in range(len(olddat)):
93 if newrev[i][0] == olddat[j][0]:
94 chkrev[i] = 1
95

96 if sum(chkfor) != len(chkfor):
97 print ("Error: Grid point not match...")
98 sys.exit()
99 if sum(chkrev) != len(chkrev):

100 print ("Error: Grid point not match...")
101 sys.exit()
102

103

104 # Get the label for TS point
105 TSindex = -1
106 for i in range(len(olddat)):
107 if olddat[i][0] == 0.0:
108 TSindex = i
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109 #print TSindex
110

111

112 # Detect problematic region in old curve (maybe optional)
113

114 # Scale the new curve starting from the center and expand to two ends
115 # Check 2 things:
116 # 1. The value
117 # 2. The gradient
118 # This step should be an iterative procedure, which move step by step
119 # from transition state point to the end(s)
120 #
121

122

123 ### moved !
124 #def diffe(x,Snew,Vnew,Vold,dstep):
125 # # calculate the difference between the scaled value and original

value(calculated by old formula)
126 # if abs(Vnew) > abs(Vold):
127 # sign0 = -1 # scale down
128 # else:
129 # sign0 = 1 # scale up
130 # #print x
131 # k = math.exp(sign0*(abs(Snew)/dstep)/x)
132 # err = abs(k*Vnew - Vold)
133 #
134 # return err
135 ##############
136

137

138 #def graddiff(x,ps,js,qs,pv,jv,jo,qv,dstep):
139 # # This function returns the direction difference (with regard to

gradient)
140 # # ps -> s value for the point before that in question -> kp, pv
141 # # js -> s value for the point in question -> kj, jv
142 # # jo -> value of the point in question on old curve
143 # # qs -> s value for the point after that in question (old curve)
144 #
145 #
146 # if abs(jv) > abs(jo):
147 # sign0 = -1
148 # else:
149 # sign0 = 1
150 # kp = math.exp(sign0*(abs(ps)/dstep)/x)
151 # kj = math.exp(sign0*(abs(js)/dstep)/x)
152 # g1 = (kj*jv - kp*pv) / (js - ps )
153 # g2 = (qv - jo ) / (qs - js )
154 #
155 # return g2/g1
156 #################
157

158

159 #print newfor
160

161 forx=[]
162 forsign=[]
163 forratio=[]
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164 forkappa=[]
165 for i in range(len(newfor)-1):
166 #print "i",i
167 j = i + 1 # Current point
168 p = i # Point before current point
169 sj = newfor[j][0]
170 sp = newfor[p][0]
171 vj = newfor[j][1]
172 vp = newfor[p][1]
173 #print sp, sj
174 #print vp, vj
175 #
176 #
177 # p -> previous point
178 # j -> current point
179 # q -> past point
180 #
181 #
182 oj = olddat[ TSindex + j ][1] # Current point value in old curve
183 q = TSindex + j + 1 # The point past currect point in old curve
184 sq = olddat[q][0]
185 vq = olddat[q][1]
186 #print sq
187 Snew = sj
188 Vnew = vj
189 Vold = oj
190 #
191 #
192 # "diffe" here is a user-defined function
193 # x -> variable will be changed by optimizer
194 # Snew, Vnew, Vold and dstep -> parameters that are fixed during

optimization
195 #
196 #
197 res = optimize.minimize_scalar(diffe,method="Bounded",bounds=(1e

-2,1e10),args=(Snew,Vnew,Vold,dstep))
198 unknownx = res.x # The "x" after optimization
199

200 forx.append(unknownx)
201 if abs(vj) > abs(oj):
202 forsign.append(-1)
203 else:
204 forsign.append(1)
205

206 # check derivative then
207 #print unknownx
208 #print sj, unknownx
209 #print sp,sj,sq,’-’,vp,vj,"-",oj,vq,"-",dstep
210 #forratio.append(
211

212 # " unknownx " is used here
213

214 tmpresult = graddiff(unknownx,sp,sj,sq,vp,vj,oj,vq,dstep)
215

216 #print tmpresult
217 forratio.append( tmpresult[0] )
218 forkappa.append( tmpresult[1] ) # This is curvature value
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219

220 #print forratio
221 #print forkappa
222

223 # Re-order newrev list
224 tmp=[]
225 for i in range(len(newrev)):
226 j = len(newrev) - 1 - i
227 tmp.append( newrev[j] )
228 newrev = tmp
229

230 #print ""
231

232 revratio=[]
233 revkappa=[]
234 revx=[]
235 revsign=[]
236 for i in range(len(newrev)-1):
237 j = i + 1
238 p = i
239 sj = newrev[j][0]
240 sp = newrev[p][0]
241 vj = newrev[j][1]
242 vp = newrev[p][1]
243

244 oj = olddat[ TSindex - j ][1]
245 q = TSindex - j - 1
246 sq = olddat[q][0]
247 vq = olddat[q][1]
248

249 # print sq,sj,sp
250

251

252 Snew = sj
253 Vnew = vj
254 Vold = oj
255 res = optimize.minimize_scalar(diffe,method="Bounded",bounds=(1e

-2,1e10),args=(Snew,Vnew,Vold,dstep))
256 unknownx = res.x
257

258 revx.append(unknownx)
259 if abs(vj) > abs(oj):
260 revsign.append(-1)
261 else:
262 revsign.append(1)
263

264 # print unknownx
265 #revratio.append( graddiff(unknownx,sp,sj,sq,vp,vj,oj,vq,dstep) )
266 tmpresult = graddiff(unknownx,sp,sj,sq,vp,vj,oj,vq,dstep)
267 revratio.append( tmpresult[0] )
268 revkappa.append( tmpresult[1] )
269

270

271 #print revratio
272

273 # Checking gradient and then determine when to cut
274 ## input: forratio, revratio
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275

276 #print forratio
277 #print revratio
278

279 #detercut(forratio)
280

281 #def detercut(ratiolist,thresh):
282 # # determine where to cut for the scaling part
283 # gi = -1
284 # log = []
285 # for i in range(len(ratiolist)):
286 # if ratiolist[i] > 0:
287 # if ratiolist[i] < 1:
288 # ratiolist[i] = 1.0 / ratiolist[i]
289 #
290 # for i in range(len(ratiolist)):
291 # if ratiolist[i] >= 1.0:
292 # log.append( ratiolist[i] )
293 # if min(log) > thresh:
294 # print ("Smoothening with regard to gradient failed...")
295 # print ("Gradient ratio "+str(min(log))+" exceeding threshold

of "+str(thresh) )
296 # sys.exit()
297 # else:
298 # gi = ratiolist.index( min(log) )
299 #
300 # return gi+1
301 #
302

303

304 # detercut is based on the gradient ratio which is not so robust
305 #fn = detercut(forratio,continuethresh)
306 #rn = detercut(revratio,continuethresh)
307

308

309

310 # So we need to use curvature instead, which is implemented as
detercutB

311 fn = detercutB(forkappa,continuethresh)
312 rn = detercutB(revkappa,continuethresh)
313

314

315 print ("In forward direction, "+str(fn)+" points need correction.")
316 print ("In reverse direction, "+str(rn)+" points need correction.")
317

318

319 #
########################################################################

320 #
########################################################################

321 # Next step is to smooth back the central region.
322 # Another iterative procedure is expected.
323 #
324

325 # calculate the scaling factor and scaled values
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326 # input: forx, revx, forsign, revsign
327

328 #print forx,revx,forsign,revsign
329

330

331 # Get the last point information
332 forx = forx[ fn-1 ]
333 forsign = forsign[ fn-1 ]
334 revx = revx[ rn-1 ]
335 revsign = revsign[ rn-1 ]
336

337 #print forx,forsign
338 #print revx,revsign
339

340 print ("The scaling factor for forward direction is: exp("+str(forsign)
+"*abs(\"s\")/"+str(dstep)+"/"+str(round(forx,2))+")")

341 print ("The scaling factor for reverse direction is: exp("+str(revsign)
+"*abs(\"s\")/"+str(dstep)+"/"+str(round(revx,2))+")")

342

343 forsv = []
344 forkv = []
345 forvv = []
346 forvscale = []
347

348 revsv = []
349 revkv = []
350 revvv = []
351 revvscale = []
352

353 for i in range( fn ):
354 forsv.append( newfor[i+1][0] )
355 forvv.append( newfor[i+1][1] )
356 k = math.exp( forsign* abs(newfor[i+1][0])/dstep/forx )
357 forkv.append( k )
358 forvscale.append( k* newfor[i+1][1] )
359

360 for i in range( rn ):
361 revsv.append( newrev[i+1][0] )
362 revvv.append( newrev[i+1][1] )
363 k = math.exp( revsign* abs(newrev[i+1][0])/dstep/revx )
364 revkv.append( k )
365 revvscale.append( k* newrev[i+1][1] )
366

367

368 #print revvscale
369

370 formark = -1
371 revmark = -1
372

373 for i in range(len(olddat)):
374 if olddat[i][0] == forsv[-1]:
375 formark = 0
376 continue
377 if formark == 0:
378 forp1s = olddat[i][0]
379 forp1v = olddat[i][1]
380 formark = formark + 1
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381 continue
382 if formark == 1:
383 forp2s = olddat[i][0]
384 forp2v = olddat[i][1]
385 formark = formark + 1
386 continue
387

388 #print forp1s,forp2s
389

390 for i in range(len(olddat)):
391

392 j = len(olddat) - i - 1
393 if olddat[j][0] == revsv[-1]:
394 revmark = 0
395 continue
396 if revmark == 0:
397 revp1s = olddat[j][0]
398 revp1v = olddat[j][1]
399 revmark = revmark + 1
400 continue
401 if revmark == 1:
402 revp2s = olddat[j][0]
403 revp2v = olddat[j][1]
404 revmark = revmark + 1
405 continue
406 #print revp1s,revp2s
407

408 forsf = []
409 forsf.append( [ revp2s, revp2v ] )
410 forsf.append( [ revp1s, revp1v ] )
411

412 #print revsv
413 for i in range(len(revsv)):
414 j = len(revsv) - i - 1
415 forsf.append( [ revsv[j], revvscale[j] ] ) # bug!
416

417 #print forsf
418

419

420 forsf.append([ 0.0, 0.0] )
421

422

423 for i in range(len(forsv)):
424 forsf.append( [ forsv[i], forvscale[i] ] ) # bug !
425

426 forsf.append( [ forp1s, forp1v ] )
427 forsf.append( [ forp2s, forp2v ] )
428

429 #print forsf # This is corrected data before spline fitting (4 extra
original data included)

430

431

432

433 marks = []
434 sfmark= []
435 for i in range(len(forsf)):
436 marks.append(1)
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437 sfmark.append(0)
438

439 marks[0] =0
440 marks[1] =0
441 marks[2] =0
442 marks[-1]=0
443 marks[-2]=0
444 marks[-3]=0
445

446 #print sum(marks)
447

448

449 # Spline fitting procedure
450 # This is an iterative process
451 # input:
452 # 1. data for spline fitting -> forsf
453 # 2. label -> marks
454 #
455

456 #def spline1dlist(lis1):
457 # x=[]
458 # y=[]
459 # for i in range(len(lis1)):
460 # x.append( lis1[i][0] )
461 # y.append( lis1[i][1] )
462 # f = interp1d(x,y,kind=’cubic’)
463 #
464 # return f
465

466 #def get1point(data,marks):
467 # pts=[]
468 # for i in range(len(marks)):
469 # if marks[i] == 1:
470 # pts.append(data[i])
471 # break
472 # return pts
473

474

475 #def get2points(data,marks):
476 # # This function returns the two points to be predicted by spline

fitting
477 # pts=[]
478 # for i in range(len(marks)):
479 # if marks[i] == 1:
480 # pts.append(data[i])
481 # break
482 # for i in range(len(marks)):
483 # j = len(marks) - i - 1
484 # if marks[j] == 1:
485 # pts.append(data[j])
486 # break
487 #
488 # return pts
489

490

491 #def checkerr(f,pts):
492 # # check the error between predicted value and train value
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493 # x=[]
494 # y0=[]
495 # y1=[]
496 # err=[]
497 # for i in range(len(pts)):
498 # x.append(pts[i][0] )
499 # y0.append(pts[i][1])
500 # y1 = f(x)
501 # #print y0
502 # #print y1
503 # for i in range(len(y0)):
504 # err.append( abs(y0[i] - y1[i]) )
505 # print err
506 # return err
507

508 #def adjustmark(marks,l,r):
509 # # this function could make 1 into 0
510 # if l == 1:
511 # for i in range(len(marks)):
512 # if marks[i] == 1:
513 # marks[i] = 0
514 # break
515 # if r == 1:
516 # for i in range(len(marks)):
517 # j = len(marks) - i - 1
518 # if marks[j] == 1:
519 # marks[j] = 0
520 # break
521 # return marks
522

523

524 #def updateval( err,thresh,data,pts,f ):
525 #
526 # x=[]
527 # replaceflag = []
528 # for i in range(len(err)):
529 # if err[i] > thresh:
530 # replaceflag.append(1)
531 # else:
532 # replaceflag.append(0) # modified!!!!
533 #
534 # if len(pts) == 1:
535 # for i in range(len(data)):
536 # if pts[0][0] == data[i][0]:
537 # if replaceflag[0] == 1:
538 # #data[i][1] =
539 # x.append( pts[0][0] )
540 # m = f( x )
541 # data[i][1] = m[0]
542 # #print "w",f( pts[0][0] )
543 # print "1:got it!"
544 #
545 # if len(pts) == 2:
546 # for i in range(len(pts)):
547 # for j in range(len(data)):
548 # if pts[i][0] == data[j][0]:
549 # if replaceflag[i] == 1:
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550 # #data[j][1] =
551 # x.append( pts[i][0] )
552 # m = f( x )
553 # #print "m",type(m) ,m[0],type(m[0])
554 # data[j][1] = m[0] # f( pts[i][0] )
555 # print "2:got it!",pts[i][0]
556 # return data
557

558

559 ## SPLINE FITTING
560 #def itersplif(data,marks):
561 # if len(data)!=len(marks):
562 # print ("Length not match...")
563 # sys.exit()
564 #
565 # if sum(marks) >= 2:
566 # run = 1
567 #
568 # while run == 1:
569 # if sum(marks) >= 2:
570 # #print "not last"
571 # train=[]
572 # for i in range(len(marks)):
573 # if marks[i] == 0:
574 # train.append( data[i] )
575 #
576 # f = spline1dlist(train)
577 # pts = get2points(data,marks)
578 # err = checkerr(f,pts) # Set threshold before here.
579 #
580 # data = updateval( err,prederrthresh,data,pts,f )
581 #
582 # # If error larger than threshold, take the spline fitting value

,
583 # # Otherwise, stay the same.
584 # # Remember to update the "data" when necessary
585 #
586 # #print marks
587 # marks = adjustmark(marks,1,1)
588 # #print marks
589 # #run = 0
590 # if sum(marks) == 0:
591 # run = 0
592 #
593 # if sum(marks) == 1:
594 # #print "last"
595 # train=[]
596 # for i in range(len(marks)):
597 # if marks[i] == 0:
598 # train.append( data[i] )
599 # f = spline1dlist(train)
600 # pts = get1point(data,marks)
601 # err = checkerr(f,pts)
602 # run = 0
603 # # This last point, we just take the spline fitting value!
604 # data = updateval( err,prederrthresh,data,pts,f )
605 # marks = adjustmark(marks,1,0)
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606 #
607 # return data
608

609

610

611 #print forsf
612

613 #################################################################
614 #forsf = itersplif(forsf,marks) # THIS IS NOT WORKING PROPERLY!!!
615 #################################################################
616

617

618

619 # Another way to automatic spline fitting this region is to
620 # use a quadratic function try to fit N-3, N-5, N-7, ... points
621 # until the residue error is below a threshold ...
622

623 quadgood = 0
624 expand = 0
625

626 while quadgood == 0:
627 for i in range(len(forsf)):
628 if forsf[i][0] == 0.0:
629 TSindex = i
630 #
631 expand = expand + 1
632 quadgood = 1
633

634

635 #
636 # Most simple way to do the automatic spline fitting
637 # is do tell the program how many points need to be
638 # ruled out for spline fitting on the left side and
639 # and the right side.
640 # The user need to give this number !
641 #
642

643

644

645 #def semispline( forsf, RL ):
646 # for i in range(len(forsf)):
647 # if forsf[i][0] == 0.0:
648 # TSi = i
649 # right = RL[1]
650 # left = RL[0]
651 # excp=[]
652 # excp.append( TSi )
653 # for i in range(right):
654 # j = TSi + i + 1
655 # excp.append(j)
656 # for i in range(left):
657 # j = TSi - i - 1
658 # excp.append(j)
659 # #print excp
660 # train=[]
661 # preds =[]
662 # for k in range(len(forsf)):
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663 # if k in excp:
664 # preds.append(forsf[k][0])
665 # else:
666 # train.append(forsf[k])
667 # #print train
668 # f = spline1dlist( train )
669 #
670 # for i in range(len(forsf)):
671 # if forsf[i][0] in preds:
672 # x =[]
673 # x.append(forsf[i][0])
674 # y = f(x)
675 # forsf[i][1] = y[0]
676 #
677 # return forsf
678

679

680

681 forsf = semispline( forsf,RL)
682

683

684

685 #print forsf
686

687 for i in range(len(forsf)):
688 print round(forsf[i][0],4)," ",round(forsf[i][1],4)

Listing 1: AUTOSMTH Script
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Besides the main script, it has one module named smoothutils.py.

1 # This is the library for
2 #
3

4 import sys
5 from scipy import optimize
6 import math
7 from scipy.interpolate import interp1d
8 import numpy as np
9

10

11

12 def diffe(x,Snew,Vnew,Vold,dstep): # Here x is the variable and others
are all parameters

13 # calculate the difference between the scaled value and original
value(calculated by old formula)

14 if abs(Vnew) > abs(Vold):
15 sign0 = -1 # scale down
16 else:
17 sign0 = 1 # scale up
18 #print x
19 k = math.exp(sign0*(abs(Snew)/dstep)/x)
20 err = abs(k*Vnew - Vold)
21

22 return err
23 #
24

25

26 def graddiff(x,ps,js,qs,pv,jv,jo,qv,dstep):
27 # This function returns the direction difference (with regard to

gradient)
28 # ps -> s value for the point before that in question -> kp, pv
29 # js -> s value for the point in question -> kj, jv
30 # jo -> value of the point in question on old curve
31 # qs -> s value for the point after that in question (old curve)
32 #
33 ### When pv == jv or jo == qv, exceptions happen!
34

35 if abs(jv) > abs(jo):
36 sign0 = -1
37 else:
38 sign0 = 1
39 kp = math.exp(sign0*(abs(ps)/dstep)/x)
40 kj = math.exp(sign0*(abs(js)/dstep)/x)
41 g1 = (kj*jv - kp*pv) / (js - ps )
42 g2 = (qv - jo ) / (qs - js )
43 #print "derviation:",(kj*jv - jo)
44 fx = jo # -> current point - old
45 fp = qv # -> past point - old
46 fn = kp*pv # -> before point - scaled
47 f2d = (fp - 2*fx + fn)/(dstep*dstep)
48 #print "curvature",f2d
49 if qv == jo:
50 g2 = 1.0
51

52 return (g2/g1,f2d)
53 # Return also the curvature value as "f2d"
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54

55 def detercutB(curvaturelist,thresh):
56 # Determine when to cut via looking at the curvature value
57 # The curvature characterize the change of gradients
58 #
59

60 gi = -1
61 log = []
62 for i in range(len(curvaturelist)):
63 log.append(abs(curvaturelist[i]))
64

65 if min(log) > thresh:
66 print ("Smoothening with regard to the 2nd derivative check

failed...")
67 print ("2nd derivative "+str(min(log))+" exceeding threshold of

"+str(thresh) )
68 sys.exit()
69 else:
70 gi = log.index(min(log))
71 return gi+1
72

73

74 def detercut(ratiolist,thresh):
75 # determine where to cut for the scaling part
76 gi = -1
77 log = []
78 for i in range(len(ratiolist)):
79 if ratiolist[i] > 0:
80 if ratiolist[i] < 1:
81 ratiolist[i] = 1.0 / ratiolist[i]
82 #print ratiolist
83 for i in range(len(ratiolist)):
84 if ratiolist[i] >= 1.0:
85 log.append( ratiolist[i] )
86 #print log
87 if min(log) > thresh:
88 print ("Smoothening with regard to gradient failed...")
89 print ("Gradient ratio "+str(min(log))+" exceeding threshold of

"+str(thresh) )
90 sys.exit()
91 else:
92 gi = ratiolist.index( min(log) )
93

94 return gi+1
95

96

97

98

99 #############################################
100 # Following is an example which shows clearly
101 # how to let Python to do optimization
102 #############################################
103 # from scipy import optimize
104 #
105 # def f(x,a,b):
106 # return a*(x-1-a-b)**2
107 #
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108 # a=10
109 # b=100
110 # res = optimize.minimize_scalar(f,args=(a,b))
111 # print res.x
112 ##############################################
113

114

115

116

117 def spline1dlist(lis1):
118 x=[]
119 y=[]
120 for i in range(len(lis1)):
121 x.append( lis1[i][0] )
122 y.append( lis1[i][1] )
123 f = interp1d(x,y,kind=’cubic’)
124

125 return f
126

127 def get1point(data,marks):
128 pts=[]
129 for i in range(len(marks)):
130 if marks[i] == 1:
131 pts.append(data[i])
132 break
133 return pts
134

135

136 def get2points(data,marks):
137 # This function returns the two points to be predicted by spline

fitting
138 pts=[]
139 for i in range(len(marks)):
140 if marks[i] == 1:
141 pts.append(data[i])
142 break
143 for i in range(len(marks)):
144 j = len(marks) - i - 1
145 if marks[j] == 1:
146 pts.append(data[j])
147 break
148

149 return pts
150

151 def checkerr(f,pts):
152 # check the error between predicted value and train value
153 x=[]
154 y0=[]
155 y1=[]
156 err=[]
157 for i in range(len(pts)):
158 x.append(pts[i][0] )
159 y0.append(pts[i][1])
160 y1 = f(x)
161 #print y0
162 #print y1
163 for i in range(len(y0)):
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164 err.append( abs(y0[i] - y1[i]) )
165 print err
166 return err
167

168 def adjustmark(marks,l,r):
169 # this function could make 1 into 0
170 if l == 1:
171 for i in range(len(marks)):
172 if marks[i] == 1:
173 marks[i] = 0
174 break
175 if r == 1:
176 for i in range(len(marks)):
177 j = len(marks) - i - 1
178 if marks[j] == 1:
179 marks[j] = 0
180 break
181 return marks
182

183

184 def updateval( err,thresh,data,pts,f ):
185

186 x=[]
187 replaceflag = []
188 for i in range(len(err)):
189 if err[i] > thresh:
190 replaceflag.append(1)
191 else:
192 replaceflag.append(0) # modified!!!!
193

194 if len(pts) == 1:
195 for i in range(len(data)):
196 if pts[0][0] == data[i][0]:
197 if replaceflag[0] == 1:
198 #data[i][1] =
199 x.append( pts[0][0] )
200 m = f( x )
201 data[i][1] = m[0]
202 #print "w",f( pts[0][0] )
203 print "1:got it!"
204

205 if len(pts) == 2:
206 for i in range(len(pts)):
207 for j in range(len(data)):
208 if pts[i][0] == data[j][0]:
209 if replaceflag[i] == 1:
210 #data[j][1] =
211 x.append( pts[i][0] )
212 m = f( x )
213 #print "m",type(m) ,m[0],type(m[0])
214 data[j][1] = m[0] # f( pts[i][0] )
215 print "2:got it!",pts[i][0]
216 return data
217

218

219

220
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221 # SPLINE FITTING
222 def itersplif(data,marks):
223 if len(data)!=len(marks):
224 print ("Length not match...")
225 sys.exit()
226

227 if sum(marks) >= 2:
228 run = 1
229

230 while run == 1:
231 if sum(marks) >= 2:
232 #print "not last"
233 train=[]
234 for i in range(len(marks)):
235 if marks[i] == 0:
236 train.append( data[i] )
237

238 f = spline1dlist(train)
239 pts = get2points(data,marks)
240 err = checkerr(f,pts) # Set threshold before here.
241

242 data = updateval( err,prederrthresh,data,pts,f )
243

244 # If error larger than threshold, take the spline fitting value,
245 # Otherwise, stay the same.
246 # Remember to update the "data" when necessary
247

248 #print marks
249 marks = adjustmark(marks,1,1)
250 #print marks
251 #run = 0
252 if sum(marks) == 0:
253 run = 0
254

255 if sum(marks) == 1:
256 #print "last"
257 train=[]
258 for i in range(len(marks)):
259 if marks[i] == 0:
260 train.append( data[i] )
261 f = spline1dlist(train)
262 pts = get1point(data,marks)
263 err = checkerr(f,pts)
264 run = 0
265 # This last point, we just take the spline fitting value!
266 data = updateval( err,prederrthresh,data,pts,f )
267 marks = adjustmark(marks,1,0)
268

269 return data
270

271

272

273 def semispline( forsf, RL ):
274 # Semi-automatic spline fitting
275

276 for i in range(len(forsf)):
277 if forsf[i][0] == 0.0:

185



278 TSi = i
279 right = RL[1]
280 left = RL[0]
281

282 # Points that need to be predicted
283 excp=[]
284 excp.append( TSi )
285 for i in range(right):
286 j = TSi + i + 1
287 excp.append(j)
288 for i in range(left):
289 j = TSi - i - 1
290 excp.append(j)
291

292 #print excp
293 train=[]
294 preds =[]
295 for k in range(len(forsf)):
296 if k in excp:
297 preds.append(forsf[k][0])
298 else:
299 train.append(forsf[k])
300 #print train
301 f = spline1dlist( train )
302

303 for i in range(len(forsf)):
304 if forsf[i][0] in preds:
305 x =[]
306 x.append(forsf[i][0])
307 y = f(x)
308 forsf[i][1] = y[0]
309

310 return forsf

Listing 2: smoothutils.py Module of AUTOSMTH Script
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Appendix K

Source Code of the pURVA program

If you are interested in special details about the pURVA codes, please contact Dr. Elfi

Kraka, Director of the Computational and Theoretical Chemistry Group @ SMU.
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