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Abstract
The Atlantic thermohaline circulation (THC) transports large amounts of heat

from the equatorial region northward toward the polar regions and is responsible for
the relatively mild climate in the north Atlantic. Various studies have shown the At-
lantic THC can have multiple stable equilibria. It has also been shown that increases
in freshwater input into the Atlantic can reduce the strength of the THC, forcing it
into its weak state. A stochastic freshwater forcing component has been introduced
in simple models as a means to examine the effect short time scale weather events
has on transitions between equilibria, which in turn can contribute to sudden cli-
mate change. The basic dynamics of such processes are studied here in the context
of simple box models, verifying results from previous research.

1 Introduction
The feedback between climate change and changes in global ocean circu-
lation patterns has become a topic of growing interest in climate research.
Of particular interest is the Atlantic thermohaline circulation (THC). Nu-
merical simulations and simple box models have shown that the Atlantic
THC is highly sensitive to freshwater perturbation fluxes and exhibits mul-
tiple stable equilibria. Due to this sensitivity to freshwater perturbations
and the THC’s effect on climate, there is growing concern that further cli-
mate change could lead to a shutdown of the Atlantic THC, which would
in turn drastically affect the climate of the north Atlantic. Thus, accurate
representations of the dynamics of the Atlantic transport are of interest.

The long time scales of the ocean circulation do not capture effects of
short time scale weather events that could affect the freshwater input of
the THC. Therefore, a random white-noise salinity flux term has been sug-
gested as a means of capturing these effects in ocean circulation models
(see, e.g. [1]). Though highly idealized, this approach allows for a con-
ceptual analysis of how freshwater fluctuations on short time scales can
induce fluctuations in the Atlantic THC and cause the THC to jump from
one stable steady state to another. Such quick transitions could drastically
affect climate processes. This work seeks to verify previous analyses of
the multiple equilibria of THC models in the presence of stochastic salinity
fluxes.

2 PDE model
Here, we follow the analysis of Eyink [3], which adds a stochastic compo-
nent to the model of Cessi and Young [2].

2.1 Governing equations
• Start with 2D, Boussinesq equations for a fluid driven by temperature

and salinity gradients in a box 0 ≤ z ≤ d, −l ≤ y ≤ l

• Linear equation of state

ρ = ρ0[1 + αS(S − S0)− αT (T − T0)]

• Introduce a stream function v = −∂zψ, w = ∂yψ, the equations reduce
to

∂t∇2ψ + J(ψ,∇2ψ) = g(αT∂yT − αS∂yS) + ν∇4ψ

∂tT + J(ψ, T ) = κT∇2T

∂tS + J(ψ, S) = κS∇2S

• Boundary conditions:

T (y, d) = ∆T (θ(y)), ∂zS(y, d) = ∆SF (y)/d,

∂zT (y, 0) = 0, ∂zS(y, 0) = 0,

∂yT (±l, z) = 0, ∂yS(±l, z) = 0

• Introduce the aspect ratio ε = πd
l , nondimensionalize:

P−1[∂tζ + J(ψ, ζ)] = ∂yT − ∂yS + (∂2
z + ε2∂2

y)ζ

∂tT + J(ψ, T ) = (∂2
z + ε2∂2

y)T

L−1[∂tS + J(ψ, S)] = (∂2
z + ε2∂2

y)S

ζ = (∂2
z + ε2∂2

y)ψ, P = ν/κT the Prandtl number, L = κS/κT the Lewis
number

2.2 Stochasticity and multiscale expansion
Stochasticity is added in the salinity forcing term by:

∆SF (y)/d→ (∆S/d)F̄ (y, t) + Σ0F̃ (y, t)

where F̄ (y, t) is the averaged salinity flux and F̃ (y, t) is a random forcing
term. The systematic salinity flux F̄ is assumed to vary on a slow scale.
The boundary conditions for the above equations are then

T (y, 1) = aθ(y), ∂zS(y, t, 1) = bF̄ (y, ε2t) + cF̃ (y, t)

a = gαT∆Td3ε2

νκT
, b = gαS∆Sd3ε2

νκT
, c =

gαSΣ0(εd)5/2

νκ
1/2
T

Assuming a scaling [2]

a = εa1, b = ε3b3

and expanding the ψ, T, S fields as

(ψ, T, S) = ε(ψ1, T1, S1) + ε2(ψ2, T2, S2) + . . .

we can analyze the solutions and solvability conditions at each order of the
expansion to ultimately determine a stochastic PDE for the salinity field:

∂tχ = ∂2
y[µ2χ(χ− η)2 + χ− γ2∂2

yχ− rf̄ (y, τ )] + ∂yF̃ (y, τ )

This PDE can be analyzed to determine the dynamics and state transitions
of the stream function.

3 Stochasticity in a 2-box model
Making strong assumptions on the flow, the spatial dependence of the PDE
model can be reduced so that the dynamics of the flow are governed only
by temperature and salinity fields in a simple box model.

This section corroborates the findings of Cessi [1] in the analysis of a sim-
ple 2-box model similar to Stommel’s original model [4] with stochasticity
introduced into the salinity equation.

3.1 Governing equations
• Same linear equation of state as above
• Conservation equations:

Ṫ1 = −t−1
r (T1 −

θ

2
)− 1

2
Q(∆ρ)(T1 − T2)

Ṫ2 = −t−1
r (T2 +

θ

2
)− 1

2
Q(∆ρ)(T2 − T1)

Ṡ1 =
F (t)

2H
S0 −

1

2
Q(∆ρ)(S1 − S2)

Ṡ2 = −F (t)

2H
S0 −

1

2
Q(∆ρ)(S2 − S1)

Q = exchange function, F (t) = salinity flux
tr = temp. restoring time, H = depth of model ocean

• Coupled equations, ∆T,∆S = T2 − T1, S2 − S1:
d

dt
∆T = −t−1

r (∆T − θ)−Q(∆ρ)∆T

d

dt
∆S =

F (t)

H
S0 −Q(∆ρ)∆S

• Choose Q = t−1
d + V −1q(∆ρ)2, nondimensionalize:

ẋ = −α(x− 1)− x[1 + µ2(x− y)2]

ẏ = p(t)− y[1 + µ2(x− y)2]

3.2 Simplification: Multiple scales
Noting that α = td/tr is very large (typical timescales tr = 25 days, td =
219 years) and all other terms are O(1), we can simplify the system:

x = 1 + O(α−1)

⇒
ẏ = −y[1 + µ2(y − 1)2] + p̄ + p′(t) + O(α−1)

This is the familiar equation for a trajectory in a double-well potential

V (y) = µ2

(
y4

4
− 2

3
y3 +

y2

2

)
+
y2

2
− p̄y

subject to a Brownian force p′(t). For the non-perturbed case, solutions are
found to be ya ≈ 0.24, yb ≈ 0.69, yc ≈ 1.07.

3.3 Deterministic Perturbations
Let p′(t) be defined as

p′(t) =

{ 0, t ≤ 0

∆, t ≤ τ

0, t > τ

To find the minimum duration τ of a perturbation necessary to move the
solution past the unstable point, integrate:∫ yb

ya
[p̄ + ∆− y − µ2y(y − 1)2]−1dy =

∫ τ

0
dt

which gives τ as a function of the perturbation amplitude ∆.

To find ∆0, the critical perturbation amplitude, perturb the system for an
infinite amount of time, and a new steady state y′a is reached, where ya and
yb coalesce to y′a = y′b.

p̄ + ∆0 =
2

27
µ2[1 + (1− 3µ−2)3/2] +

2

3

3.4 Stochastic forcing
Stochasticity of the freshwater flux is determined by decomposing the
nondimensional freshwater flux into a time-averaged part and a stochas-
tic part:

p =
αSS0td
αTθH

F (t) = p̄ + p′(t).

Here, p′(t) is modeled as stochastic white noise. Discretizing the DE for
y in time, the equation is solved using the Euler scheme, with p̄ = 1.1,
µ2 = 6.2. At each time step, p′(t) is chosen as a random number from a
Gaussian distribution with zero mean and standard deviation σ = 3.3.

• Result: stochastic forcing can cause the circulation to fluctuate between
weak and strong steady states. A specific finite duration perturbation is
not necessary to cause these transitions as in the deterministic case. In-
stead, transitions can occur randomly due to freshwater perturbations of
varying amplitudes.

4 Discussion and future work
•At this stage, we wish to understand how this topic is generally ap-

proached in models and how the existing models may be modified.
• PDE model: Analysis of the multiscale expansion of Eyink is still in

progress. We wish to revisit the validity of the approximations, leading
to an improved model.
• Two-box model: We clearly see that allowing the freshwater flux term to

have a stochastic component, the flow can fluctuate quickly between the
two stable equilibria for undetermined magnitudes of the perturbation
and lengths of time.
– We wish to analyze the stochastic bifurcations that arise the stochastic

system.
– Idea: add a slowly varying periodic freshwater term and compare

model results with data
• Feedback and suggestions are welcome!
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