
Southern Methodist University Southern Methodist University 

SMU Scholar SMU Scholar 

Operations Research and Engineering 
Management Theses and Dissertations 

Operations Research and Engineering 
Management 

Summer 8-6-2019 

Extreme-point Tabu Search Heuristics for Fixed-charge Extreme-point Tabu Search Heuristics for Fixed-charge 

Generalized Network Problems Generalized Network Problems 

Angelika Leskovskaya 
Southern Methodist University, aleskovs@smu.edu 

Follow this and additional works at: https://scholar.smu.edu/engineering_managment_etds 

 Part of the Operational Research Commons 

Recommended Citation Recommended Citation 
Leskovskaya, Angelika, "Extreme-point Tabu Search Heuristics for Fixed-charge Generalized Network 
Problems" (2019). Operations Research and Engineering Management Theses and Dissertations. 5. 
https://scholar.smu.edu/engineering_managment_etds/5 

This Dissertation is brought to you for free and open access by the Operations Research and Engineering 
Management at SMU Scholar. It has been accepted for inclusion in Operations Research and Engineering 
Management Theses and Dissertations by an authorized administrator of SMU Scholar. For more information, 
please visit http://digitalrepository.smu.edu. 

https://scholar.smu.edu/
https://scholar.smu.edu/engineering_managment_etds
https://scholar.smu.edu/engineering_managment_etds
https://scholar.smu.edu/engineering_management
https://scholar.smu.edu/engineering_management
https://scholar.smu.edu/engineering_managment_etds?utm_source=scholar.smu.edu%2Fengineering_managment_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholar.smu.edu%2Fengineering_managment_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/engineering_managment_etds/5?utm_source=scholar.smu.edu%2Fengineering_managment_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/


EXTREME-POINT TABU SEARCH HEURISTICS FOR

FIXED-CHARGE GENERALIZED NETWORK PROBLEMS

Approved by:

Dr. Richard Barr

Dr. Michael Hahsler

Dr. Richard Helgason

Dr. Eli Olinick

Dr. Halit Üster
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Chapter 1

Introduction and Overview

Researchers and practitioners in the fields of operations research and computer

science are familiar with two main categories of network flow models, pure network

flow models and generalized network flow models and some of their special forms

that include shortest path, maximum flow, transportation, and assignment problems.

This widely used class of optimization models gained its popularity due to visual

representation, model flexibility and comprehensiveness, and solvability [54]. The

special-structure linear programming (LP) models can be described pictorially, as in

Figure 1.1, as a set of circles or nodes with a defined amount of some commodity

supplied or demanded at some or all of the nodes. Nodes are connected pairwise by

a set of arrows or directed arcs, across which commodity units flow while incurring

costs.
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Figure 1.1. Network Flow Model

The objective is to route the flow from source nodes with supplies of commodity,

shown as adjacent positive requirement, through the available arcs as flows, to sink
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nodes with commodity demands, shown as adjacent negative requirements for flow,

while minimizing the total cost and maintaining conservation of flow at each node.

The diversity of problems from fields such as engineering, communication sociol-

ogy, archaeology, government regulatory policies, financial planning, and production

falls into the network domain. Figure 1.2 depicts a pure network model for a multi-

period supply-chain network with inventories and backorders. It also represents an

LP model with 26 variables, 14 flow-balance constraints, and 52 individual variable

constraints. Its solution determines the minimum-cost plan for manufacturing level

by plant, distribution to warehouses, and sales for each period, and inventory levels

between periods [12]. The cost values are shown above arcs with lower and upper

bounds for flows positioned below arcs with default values cij = 0, lij = 0, uij =∞ if

not shown.

The mathematical formulation for the minimum cost pure network model is de-

fined as:

Minimize
∑

(i,j)∈A

cijxij (1.1)

subject to:
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi,∀i ∈ N (1.2)

0 ≤ xij ≤ uij,∀(i, j) ∈ A (1.3)

whereN = the set of problem nodes, A = the set of all problem arcs, bi = requirement

at node i, uij = upper bound on arc (i, j), cij = cost per unit of flow on arc (i, j),

and xij = flow on arc (i, j). Each directed arc in a network corresponds to a variable

whose flow value is to be determined. Since constraint (1.2) ensures that the total flow

into and out of a node match its supply or demand requirements (or zero if neither),

each arc appears in the constraints of only its two endpoint nodes (one coefficient
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is +1 , one −1). These equations and variables thereby form a node-arc incidence

matrix with an example provided in Section 1.1.2.

When a network model comes from the fact that all nodes are partitioned into

two subsets N1 and N2 of possibly unequal cardinality such that each node in N1 is

a source node, each node in N2 is a sink node, and for each arc (i, j) ∈ A, i ∈ N1

and j ∈ N2, the embodied structure is called a transportation or bipartite network.

It is a special case of the minimum cost flow problem above. More complex practical

network problems typically have intermediate, or transshipment nodes, through which

commodities may be shipped en route to their final destination.

Regarding the solvability property, efficient algorithms and codes are available to

quickly solve large-scale instances of pure network flow models. These techniques

exploit the special structure of the constraint coefficient matrix and the ability to

represent a basic solution as a spanning tree of the nodes [10, 11, 22, 31, 32, 56, 61,

70, 71, 77].

Pure network flow problems and algorithms have been studied extensively with

their extensions to incorporate fixed-charges on all or some of the arcs. Fixed-charge

networks (FC) have a special property for a fixed-charge arc: if the arc is permitted

to transmit flow, a charge is incurred that is independent of the amount of flow.

The problem was originally discussed by Hirsch and Dantzig in [64] and a variety

of solution approaches and algorithms were proposed in [9, 13, 60, 76, 79, 85, 90,

92, 101, 109] for transportation problems. The fixed-charge network flow problem

has many practical applications in transportation, network design, plant location

problems, production scheduling, investment and distribution problems. The main

decision is whether or not to use an arc in the network modeled by adding fixed

charges on appropriate arcs.
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The mathematical formulation for the pure fixed-charge network model is the

following:

FCP : Minimize z =
∑

(i,j)∈A

(cijxij + fijyij) (1.4)

subject to:
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi,∀i ∈ N (1.5)

0 ≤ xij ≤ uijyij,∀(i, j) ∈ A (1.6)

0 ≤ yij ≤ 1,∀(i, j) ∈ A (1.7)

yij integer,∀(i, j) ∈ A (1.8)

where yij = 1 if arc (i, j) is active, 0 otherwise, and fij is the fixed charge associated

with the activation of flow on arc (i, j).

Generalized networks (GN) are enhancements of the pure-network modeling form

described above. These LP models have much of the same structure but allow flow to

be modulated by a multiplier associated with each arc, such that for each unit of flow

entering an arc a multiple of it arrives at its destination node. If an arc’s multiplier

is 1, it operates exactly like a pure network arc. If the multiplier is greater/less than

1, the arriving units are greater/fewer than the entering quantity. This characteristic

enlarges the modeling applications and enables the flow units to grow, shrink, or

change units within the network. Generalized networks therefore expand modeling

capabilities of many practical problems that cannot be adequately captured by a pure

network representation [54]. For a simple illustration, Figure 1.3 represents a 2-period

example in which beginning cash at the start of period 1 can be carried over either by

1-period investment with 8% return or 2-period investment with 11% return. When

a loan is paid out of future funds, it can be modeled with the backward generalized

arc and a multiplier of 1/1.1 for this example.
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Figure 1.3. Investment Model

In optimization, the generalized network problem represents a linear program

whose constraint coefficients also have the form of a node-arc incidence matrix, but

without the requirement that two non-zero column entries be −1 and +1, but rather

−1 and a positive real number. Generalized networks can be viewed as a practical

extension of pure networks that have applications in resource allocation, production,

distribution, scheduling, capital budgeting, and other settings [53].

While generalized network flow problems and algorithms have been studied ex-

tensively, the extension of linear generalized network models to generalized network

problems with fixed charges has received scant attention. For the transportation prob-

lem for example, a fixed cost could be incurred for origin-destination shipment. In the

facility location problem a fixed amount of investment may result in the establishment

or expansion of a plant or warehouse. Production planning problems can be modeled

by imposing fixed charges on appropriate arcs of the network. Unlike fixed-charge
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transportation problems for pure networks, to the best of our knowledge there are

no computational results or test problems for fixed-charge generalized transportation

problems available. No computational study was found for fixed-charge generalized

transshipment network problems in the published literature. The main contribution of

this research is to adapt and extend methods and best practices for pure fixed-charge

network models and generalized networks to a broader problem class – fixed-charge

generalized network flow problems with transportation and transshipment structure

variations. In the coming chapters, these models, motivated by practical applica-

tions and termed fixed-charge generalized networks, are formulated mathematically

and solution methods are proposed, implemented, and tested computationally.

1.1. Mathematical Formulations

Our research addresses the following problem: an investigation of fixed-charge gen-

eralized network problems, including an implementation and computational testing of

a series of fixed-charge generalized networks heuristics for transportation and trans-

shipment structures. As background to the discussion, the following sections provide

notation, mathematical formulations, and a literature review of applications, algo-

rithms, solution methods, and computer implementations for generalized networks

and fixed-charge generalized networks.
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1.1.1. The Problem’s Notations

Following conventional notation1, a generalized network G(N ,A) is a collection of

nodes, N , arcs, A = {(i, j)|i, j ∈ N}, and associated parameters. The GN problem

is a linear program of the form: minimize cx, subject to Ax = b, 0 ≤ x ≤ u. Matrix

A has the form of a node-arc incident matrix defined as in [52, 77]:

Aik =


+1 if arc k is directed away from node i

−µk if arc k is directed toward node i

0 otherwise

and it has a full row rank. If matrix A is not a full rank, then the problem corresponds

to the pure network problem as shown in [51].

The vector b ∈ <|N | is the requirements vector. A supply (demand) at node i ∈ N

is represented by positive (negative) bi. The decision variable vector x represents the

flows on arcs in the network. The element xij represents the flow on arc (i, j) ∈ A.

Parameters associated with each arc (i, j) ∈ A are: a multiplier µij, a variable unit

cost cij, an arc capacity or upper bound uij, and an arc lower bound lij. All such

parameters, except cij, are assumed to be non-negative unless stated otherwise. Pure

network models have µij = 1 for all arcs (i, j).

1As in [14], matrices are denoted by boldface uppercase Greek or Roman letters, such as

A,B,N,Φ; vectors by boldface lowercase Greek or Roman letters or numerals, such as a,b,x,1, λ;

and scalars and set members by italicized lowercase Greek and Roman letters or numerals that are

not boldface, such as a, b, 1, ε. The element in the ith row and jth column of matrix A is denoted

by aij . Sets are denoted by italicized uppercase letters, such as N ,A. All vectors are assumed

to have an orientation consistent with their use: all premultiplied vectors are row vectors and all

postmultiplied vectors are column vectors. The vector of all zeroes is denoted by 0.
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1.1.2. Generalized Networks

Origins of generalized network models and their solution methods go back to the

1960s when Dantzig presented The Weighted Distribution Problem, discussed the lin-

ear graph structure of the basis, and proposed a simplex-based algorithm to solve the

general weighted distribution problem [30]. The generalized network simplex algo-

rithm was later discussed by Kennington and Helgason [77], Jensen and Barnes [68],

Elam, Glover, and Klingman [35], and Brown and McBride [20]. Nonsimplex solution

approaches (primal-dual, dual, and relaxation) were developed by Jewell [69], Jensen

and Bhaumik [67], and Bertsekas and Tseng [17]. According to the Mathematical

Programming Glossary, published by the INFORMS Computing Society [1], a “gen-

eralized network is a network in which the flow that reaches the destination could be

different from the flow that leaves the source.” This can be viewed as an advantage

of a generalized network over a pure network in which an arc does not allow flow to

change its magnitude from a source node to a sink node.
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Figure 1.4. Example Generalized Network Flow Model

In the GN formulation’s node-arc incidence matrix, instead of +1 for a source

row i and −1 for a destination row j, there is +1 for a source row i and −µij for a
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destination row j. An example generalized network is depicted in Figure 1.4 where

triangles on each arc provide arc multiplier values and the node-arc incidence matrix

is the following:

A =


1 1 0 0 0 0

−0.85 0 1 1 −1 0

0 −0.5 −0.9 0 1 1

0 0 0 −1.5 0 −2



Coefficients of change µij are called multipliers and arcs with non-unity multipliers

are called generalized arcs. As assumed in [5], each arc multiplier µij is a positive

rational number. If µij is less than 1, the arc is lossy ; if µij > 1, the arc is gainy, and

if µij = 1, it is a pure network arc. Generalized arcs as well as ordinary arcs have

attached costs and bounds. Costs and bounds are applied to the original arc flow,

before it is transformed by a multiplier [54].

Mathematically, the generalized minimum cost network flow model is defined as:

GN : Minimize
∑

(i,j)∈A

cijxij (1.9)

subject to:
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

µjixji = bi,∀i ∈ N (1.10)

lij ≤ xij ≤ uij, ∀(i, j) ∈ A (1.11)

The network diagram labeling convention for a GN arc is shown in Figure 1.5.

Thus, in a GN node-arc incidence matrix, a column with non-zero components of +1

and −µij in rows i and j, respectively, corresponds to the generalized arc (i, j). The

continuous values are shown with parentheses around lower lij and upper uij bounds.
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The variable cost is shown above the arc and the multiplier is represented pictorially

by attaching it to an arc within a triangle, placed next to the node that receives the

flow. To make lower bounds all zeros, the above model can be reformulated via the

variable substitution xij = xij − lij. See, for example, the description in [5, 112].

i 
µij

j
(lij,uij)

cij,xij

Figure 1.5. Generalized Network Arc

1.1.3. Fixed-charge Networks

The fixed-charge problem (FCP) is one of the more challenging problems in the

area of mathematical programming. The fact that the objective function is piece-wise

linear, and a fortiori nonlinear, makes it difficult to apply linear programming methods

directly. It is an NP-hard problem [85]. The fixed-charge network flow problem

has many practical applications in transportation, network design, plant location

problems, production scheduling, investment and distribution problems [13] with the

main decision to use an arc in the network or not using it by adding fixed charges

on appropriate arcs. The FCP was originally formulated by Hirsch and Dantzig in

1954 [64] and provided two fundamental results: (1) the objective function of FCP

is concave and (2) an extreme point optimum exists. A large variety of exact and

approximation methods were proposed since to solve the fixed-charge transportation

problem for the pure network. As shown in [63], each extreme point is a local minimum

for FCP with strictly positive fixed charges, therefore the existence of an extreme point

optimum does not assume a straight-forward procedure for its attainment as with pure
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problem. Chapter 2 provides the literature review for the solution approaches to the

fixed-charge problem.

The overall model for the fixed-charge network problem is a mixed-integer program

with the following analytical model:

FCP : Minimize
∑

(i,j)∈A

(cijxij + fijyij) (1.12)

subject to:
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = bi,∀i ∈ N (1.13)

0 ≤ xij ≤ uijyij,∀(i, j) ∈ A (1.14)

0 ≤ yij ≤ 1,∀(i, j) ∈ A (1.15)

yij integer,∀(i, j) ∈ A (1.16)

where yij = 1 if arc (i, j) is active, and 0 otherwise and fij being fixed charge associ-

ated with the activation of flow on arc (i, j). The node balance equation maintains

the flow balance at each node. The objective function minimizes the overall cost and

includes variable and fixed cost as shown in Figure 1.6.

1.1.4. Fixed-charge Generalized Networks

The inclusion of fixed charges to generalized network models received small at-

tention in the network flow domain especially in the area of computational studies.

Most of available research literature covers fixed-charge transportation networks and

addresses the solution methods, exact and approximation, for that type of problems

with proposed testbed parameters and generated problems, computational results,

and comparisons with state-of-the-art commercial solvers. While some solution ap-

proaches and methods proposed for fixed-charge transportation networks can be rea-

sonably applied to the generalized network problems, the modifications should be
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made due to the structural differences in the basis forest. To fill the gap, this work

proposes a new heuristic, suggests a new set of testbed problems, and conducts a

computational study for the set of generated fixed-charge generalized transportation

problems (FCGT). Chapter 2 provides the description of the approach and computa-

tional results to FCGT. In addition, to the best of our knowledge, no research provides

a computational study for the fixed-charge generalized transshipment network problem

(FCGN). Chapter 3 of this work proposes meta-heuristic for solving such a class of

problems. The overall model for the fixed-charge generalized network problem is a

mixed-integer program with the following mathematical model:

FCGN : Minimize
∑

(i,j)∈A

(cijxij + fijyij) (1.17)

subject to:
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

µjixji = bi,∀i ∈ N (1.18)

0 ≤ xij ≤ uijyij, ∀(i, j) ∈ A (1.19)

0 ≤ yij ≤ 1,∀(i, j) ∈ A (1.20)

yij integer,∀(i, j) ∈ A (1.21)
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where yij = 1 if arc (i, j) is active, and 0 otherwise and fij being fixed charge asso-

ciated with the activation of flow on arc (i, j). The objective function minimizes the

overall cost. The node balance equation maintains the flow balance at each node.

1.2. Review of Generalized Networks Applications

An important extension of the traditional minimum cost flow problem is the gen-

eralized minimum cost flow problem in which each arc has a positive multiplier called

a gain or loss factor that transforms the flow on the arc. As stated in [110], the prob-

lem has a distinguished history since it was introduced by Kantorovich in his 1939

paper [74], where optimization was justified as a planning and production tool, and

mainly when Dantzig [30] extended his network simplex method to handle generalized

flow. Other publications provided example applications including machine loading,

metal-processing, the aircraft route allocation, financial budgeting, warehousing with

“breeding” or “evaporation,” catering problems with losses, and the two-equation ca-

pacitated linear program [69]. This section describes some well-known applications

for generalized networks and fixed-charge generalized networks.

There are numerous real-world applications for generalized networks and fixed-

charge generalized networks. Generalized networks have wider application than pure

networks due to the fact that arc multipliers allow significantly richer models [66].

Arc multipliers can modify the amount or level of flow [53]. Generalized networks

therefore are used to model perishable goods held in inventory, water flowing in irriga-

tion channels, investments gains and losses, electrical power carried on transmission

lines, crops planted and harvested, and livestock raised for market. One example of

such network with multipliers that change the flow level is the investment problem

as shown in Figure 1.7. Glover, Klingman, and Phillips in Network Models in Opti-

mization and Their Applications in Practice [54] introduced several applications for
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generalized networks such as financial models, production and inventory applications,

and machine scheduling. These applications all include quantities that can naturally

grow or diminish.

T0 T1

(0,100K)

1.11 

1.08 

T2
1.09 

1/1.1 

Funds available at 

start of period 1

1-period 

investment with 

8% return

1-period bank loan 

@ 10% interest

Maximize flow: 

Funds after two 

periods

2-period investment with 

11% return, at most 100K

Figure 1.7. Generalized Arc Multipliers that Change Flow Level

Glover, Klingman, and Phillips [54] also discussed the re-expression process, where

conceptual transformations rather than physical changes are produced. Examples of

such models are a bus or a plane that can be re-expressed in terms of the number

of passengers it can carry or a job in terms of hours required to be completed. Arc

multipliers are used in such models to transform one type of commodity into another.

This interpretation is used to model product manufacturing stages (RM→WIP→FG),

conversion of water power into electricity, conversion of one type currency for another,

and distillation of a liquid to produce a gas.

One of the earliest well-known examples is an application to the Machine Loading

problem known as the Generalized Transportation problem. It was introduced by

Charnes and Cooper [24] and formally defined by Lourie in [87] as follows: for a given
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number of different machine types with a specified availability and different products

to be produced in a required amount, determine how much of each product to produce

on each machine at a minimum total production cost and with satisfied production

requirements. Assigning production of machines to products with different efficiencies

is the example of using generalized arcs multipliers that transform units of flow as

shown in Figure 1.8.

Products 
(units)

Machines
(hrs available)

10 units

5 units

10 units

M1

M2

P1

P2

P3

P4

M3

≤ 30 hrs

≤ 50 hrs

≤ 20 hrs

15 units

Figure 1.8. Generalized Arc Multipliers that Transform Flow Units

Another example of possible uses of generalized networks is described by the model

of a water distribution system with losses concerning the movement of water through

canals to various reservoirs and in which multipliers represent the losses from evap-

oration and seepage [67]. Kim [83] represents copper refining processes by a large

D-C electrical network with multipliers representing the appropriate resistance which

allows analysis of the effect of short circuits in the refining process. The warehouse
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funds-flow model by Charnes and Cooper [24] examines multi-period sales, produc-

tion, and inventory of both products and cash. In this model the multipliers repre-

sent conversion rates between cash and products. Mulvey [94] proposed a generalized

network model to assign aircraft to high altitude jet routes over the U.S. Another

important application is the model for the distribution of natural gas for the Alaskan

Pipeline that was reformulated as a generalized network by Glover, Hultz, Klingman,

and Stutz [48]. Because gas in the pipeline is used to drive pumps, gas is lost while it

moves along the pipelines that can be represented with multipliers for the GN model.

See [48] for an extensive list of applications.

The optimization model with a generalized network structure and its application to

a generation expansion planning problem was proposed in [81]. The model generates

decisions for what types and sizes of generating plants should be brought into an

electric power system. The problem is referred to as the Generation Planning Problem

(GPP) and is becoming increasingly critical for the electric power sector.

The North American natural gas system is an example of market connected via a

pipeline network structure and that includes Canada, the United States, and Mexico

[37]. The natural gas system of North America database [37] has 17,000 natural

gas reservoirs, each with up to 200 variables, represented in 23 production supply

regions. Natural gas is used in residential, commercial, industrial, and electric power

consumption sectors.

In the chemical industry, production and manufacturing applications, process de-

sign and synthesis, multi-component blended-flow problems, and production planning

are suitable for generalized network optimization and were investigated and modeled

by Kallrath [73], Kelly [75], Klingman, Mote, and Phillips [84], and Lee [86]. The

model developed by Klingman, Mote, and Phillips for one of the nation’s largest sup-

pliers of phosphate-based chemical products includes production, distribution, multi-
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periods, and multi-commodity stages and uses generalized network components [84].

In supply chain management, one is concerned with managing the physical flow

of goods (and the virtual flow of information) throughout a network of physically

distinct production, distribution, and retail stages [38]. The term flows refers to two

types of flows: material and information flows. The overarching goal of supply chain

management is to maximize the profitability of the entire supply chain and not that

of any one single stage in the chain such as transportation or material handling. Such

applications are modeled as generalized networks with multipliers as conversion units.

1.3. Solving Generalized Networks

The generalized network flow problem represents a large class of LP problems.

Even in the early days of LP research, specialized solution methods were developed

to exploit the sparse mathematical structure of these models. In the early 1960s,

Dantzig [30] extended his primal network simplex method to generalized networks.

Jewell [69] also provided solution techniques for generalized networks, called process-

flow networks or flow with gains, using a primal-dual algorithm. In 1954 to solve a

transportation problem Charnes and Cooper [23] proposed the stepping-stone method

with the procedure to resolve a degeneracy. Authors acknowledged that the stepping-

stone method may not be applicable to solving all linear programming problems while

other methods, such as the simplex method proposed by Dantzig, can be used. The

paper also provided comparison and explanation of both methods to solve a sam-

ple transportation problem with three origins, five destinations, and a total of 16

products [23]. The attempt to extend the approach to some generalized network

problems was discussed by Charnes and Raike [25] with two one-pass algorithms pro-

vided. Hadley [62] made one important observation about generalized transportation

problems: because the coefficient matrix is of full rank, division cannot be eliminated
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and an optimal basic solution may involve fractional values, therefore the integrality

property of pure networks does not hold for generalized networks. Following sections

discuss the special structures of the generalized networks and outline the main steps

of the primal network simplex algorithm for GN.

1.3.1. Special Structures of GN

The generalized primal network simplex algorithm, also known as the general-

ized network simplex algorithm or primal network simplex algorithm for generalized

networks, is an adaptation of the linear programming simplex method developed

by Dantzig in 1947 [30, 31]. This specialization allows simplex operations to be

performed directly on the network graph instead of performing matrix calculations.

As stated first by Dantzig in [30], then investigated in early research by Balas and

Ivanescu [7, 8], Eisemann [34], Glover and Klingman [55], and Lourie [87], any basis

B extracted from a generalized network G can be placed in a block-diagonal form by

simple permutation of rows and columns:

B =



B1

B2

. . .

Bi

. . .

Bq


(1.22)

with each square submatrix component Bi, i = 1, 2, ..., q being upper triangular or

nearly upper triangular with only one element below the diagonal. Furthermore, each

component Bi corresponds to a connected subgraph of G. Summaries for generalized
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networks basis structure and algorithms were provided in other papers and textbooks

such as [6, 14, 16, 20, 35, 48, 88, 96, 102]. The component or subgraph corresponding

to each Bi is a quasi-tree or a tree with an added single arc which creates exactly one

circular path or loop in the quasi-tree.

The generalized network G = (N ,A) is a directed network that may have self-

loops and multiple arcs joining the same pair of nodes with same or different orienta-

tion [55]. A self-loop is an arc that leads from a node [30, 50] and represents a slack

variable in order to change an inequality to an equality. While for pure networks

a basis forms a spanning tree of nodes, generalized bases have a more complicated

structure and require elaborate processing techniques to fully exploit. For the gener-

alized network problem, its basis forms a forest of quasi-trees where each quasi-tree

is either a tree rooted at a slack node, called a rooted tree, or a graph with a single

cycle, called a one-tree [30, 50, 55], as illustrated in Figure 1.9.
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Figure 1.9. Sub-graphs as (a) a rooted tree and (b) an one-tree

20



Jewell [69] discussed GN bases’ special features that are different from pure net-

works: absorbing and generating loops, which can destroy or create flow, respectively.

Though no general formulas to efficiently calculate such flows were provided, it was

stated that “these special features make the construction of a special-purpose algo-

rithm an interesting problem” [69]. The explicit formula for calculating flows on a

loop in a component of graph G was first provided by Dantzig [30], however it still

required the solution of parametric equations, which made computer implementation

challenging. Another solution approach discussed by Eisemann [34] considers loops

and slacks with a loop absorption factor, which summarizes the capacity of the loop

to either absorb surplus or to generate a deficiency within the cycle. As for which

direction to traverse a loop, Eisemann suggested chosing the direction arbitrarily and

then hold it fixed as long as the loop exists [34].

The first efficient methods for determining duals for the simplex pricing-out pro-

cedure and the change of basis were proposed by Glover and Klingman [50], using

the expression of the loop factor and the loop direction as in [34]. These authors also

proposed a method for efficiently updating the basis representation, flows, and dual

evaluators in transportation and network optimization problems [55]. Those pivotal

additions in algorithm development led to the efficient computer implementation of

NETG summarized by Elam, Glover, and Klingman in [35].

The following definitions are adopted for the current discussion:

• Reduced cost: There is a dual variable or node potential πi for each node

i ∈ N and the reduced cost of an arc (i, j) is defined as cπij = cij − πi + µijπj.

• Loop factor: For a GN basis loop, its loop factor is defined as the ratio:

R

F
=

∏
µij, for arcs traversed in the reverse direction∏
µij, for arcs traversed in the forward direction

. (1.23)

• Cycle factor: A cycle factor used for computing flows and duals for a GN
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basis quasi-tree is defined as follows:

(1− R

F
) = 1− loop factor (1.24)

1.3.2. Primal Network Simplex Algorithm for GN

Generally, the primal network simplex method for pure networks is an iterative

procedure that “moves” from one basic solution to an improving or equal-valued

adjacent basis (spanning tree structure) until an optimal spanning tree solution is

identified [24]. Similarly, the generalized network simplex method “moves”, or pivots,

from one basic solution (forest of quasi-trees structure) to an adjacent basis until

an optimal one is located. At every iteration of the generalized network simplex

algorithm the following main operations are performed: (1) identify a potentially

improving arc to enter the basis, (2) select an arc to leave the current solution based

on flow changes, and (3) exchange these variables by updating the solution and the

basis forest structure. At every iteration, the generalized network simplex algorithm

maintains a feasible basis and transforms it successfully into an improved feasible

basic quasi-forest structure until the optimal solution is identified [50].

The generalized network simplex algorithm maintains a partitioning of the arc set

A into (F ,L,U), called a basis forest structure. The arcs in F correspond to those

in a basis forest of quasi-trees, and the arcs in L and U are nonbasic arcs with flow

at their lower and upper bounds.

1.3.2.1. Obtaining an Initial Basis Structure

The primal simplex network algorithm requires a starting basic feasible solution.

Start procedures and strategies for solving generalized networks were discussed by

Glover, Hultz, Klingman, and Stutz [48], Brown and McBride [20], and Jarvis, Ratliff,
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and Trick [65]. A starting basis may be constructed (following the “Big M” method)

of high-cost artificial arcs that are driven from the solution by the standard simplex

pivoting process. An “artificial starting solution” can be constructed with problem

arcs to minimize the number of artificial variables that are to be eliminated to achieve

feasibility. The disadvantage of the second method is the possibility of spending too

much time trying to calculate and determine the optimal basis, while the first method

may require more pivots to obtain the optimal solution.

As discussed in [65], conditions for constructing an initial basis are:

• There is one arc for each node in the basis

• Each quasi-tree has exactly one cycle, which may be a self-loop

• The net flows into and out of the node equals the node’s supply/demand

• The flow on any non-basic arc is either zero or the arc’s capacity

• The flow on any arc is between zero and the arc’s capacity

Bixby [18] provides a discussion for constructing an initial starting basis for pure

network problems by describing four alternate initial basis approaches. These ap-

proaches can be extended for generalized networks.

1.3.2.2. Optimality Testing and Entering Arc

If the objective function can be improved by changing the flow on a nonbasic arc,

that arc is a candidate for entry into the basis. Pivot strategies define the rules for

identifying such entering arcs [95]. The earlier defined reduced cost cπij for a non-basic

arc is used to determine if optimality has been reached:

• Basis Forest Structure Optimality Conditions . A feasible basic forest

structure (F ,L,U) with the flow x∗ is an optimal basis forest structure if for
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some vector π of node potentials, the pair (x∗, π) satisfies the following opti-

mality conditions:

cπij = 0,∀(i, j) ∈ F (1.25)

cπij ≥ 0,∀(i, j) ∈ L (1.26)

cπij ≤ 0,∀(i, j) ∈ U (1.27)

There are several pivot rules for entering arc: Dantzig’s pivot rule, which selects the

arc with the largest in magnitude value of reduced cost, or |cπij|; the first eligible arc

pivot rule, selects the first arc with nonzero reduced cost encountered in examining

the arc list; and the candidate list pivot rule, which maintains a candidate list of arcs

with nozero reduced costs and selects the arc with the largest in magnitute reduced

cost from the candidate list [49, 93]. Greenberg discussed pivot selection tactics in

[61], and also defined sum of infeasibility approach when a basic variable violates its

lower or upper bounds. More pivot rules are discussed by Terlaky and Zhang [107].

1.3.2.3. Identifying the Leaving Arc and Updating the Basis

The ratio test process finds the representation of the incoming arc with the respect

to the current basis and then determines the leaving arc. The algorithmic description

can be found in [35, 48, 89]. Because of the GN basis structure, a pivot operation

depends on the relation of the incoming and leaving arcs. It can modify the composi-

tion of the quasi-trees in a variety of ways. The endpoints of the incoming arc can be

in the same quasi-tree or in two separate quasi-trees while at the same time each can

be on the quasi-tree’s loop or in a tributary tree (trees that arise upon suppression

of all quasi-tree loop arcs).
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A basic exchange step is to replace the selected outgoing basis arc with the incom-

ing nonbasic variable. Different types of pivots discussed and examples are provided

by Ali, Charnes, and Song [6] and Jarvis, Ratliff, and Trick [65].

Survey of generalized networks applications, background material for developing

the primal network simplex algorithm for the generalized network flow problems,

and details of generalized network simplex algorithm procedures are summarized by

Ahuja et al. [5] Textbooks as well as their references such as Kennington and Helgason

[77], Jensen and Barnes [68], and Murty [96] provide descriptions of data structures,

algorithmic steps, and computational advice for a generalized network algorithm im-

plementation.

The next section reviews the literature on implementations for generalized net-

works. It also describes terminology, concepts that are now standard in network

programming literature [5, 14], and data structures for efficient algorithm implemen-

tation. Chapter 2 provides the literature review for fixed-charge problem solution

approaches.

1.4. Literature Review of GN Implementations

The literature review discusses computationally efficient algorithms and imple-

mentations for generalized networks. The first specialized software for GN problem

was developed in 1970’s. As discussed by Kennington and Lewis in the Encyclopedia

of Optimization, many of the computer codes that have been developed for GN are

specializations of the primal simplex algorithm which exploit the graphical structure

of the basis and solve system of equations on a graph rather that with matrix opera-

tions [78]. Survey of generalized network codes with a partial list with names, a year

developed, authors, and the language (Assembly, FORTRAN, and C) can be found

in [78] and in Table 1.1.
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Table 1.1. Partial List of Generalized Network Codes [78]

Code Year Language Authors

NETG 1973 FORTRAN F.Glover, D.Klingman, J.Stutz [48]

GENNET 1984 FORTRAN G.Brown, R.McBride [20]

GRNET 1985 FORTRAN M.Engquist, M.Chang [36]

LPNETG 1985 FORTRAN J.Mulvey, S.Zenios [95]

ACS 1986 FORTRAN I.Ali, A.Charnes, T.Song [6]

GNO-PC 1988 C W.Nulty, M.Trick [98]

GENFLO(parallel, primal) 1989 FORTRAN M.Ramamurti [102]

NETPD(primal-dual) 1994 FORTRAN N.Curet [29]

RAMSES(dual) 1997 C J.Kennington, R.Mohamed [80]

The network primal simplex algorithm can be used to solve special cases of the

minimum cost network flow models and has the advantage of solving a broad class of

problems [88]. It has proven to be extremely effective in solving large scale network

flow problems. The generalized network primal simplex algorithm is similar to the

primal network simplex algorithm for pure networks. It maintains a good feasible

basis structure at every iteration and by pivoting transforms the solution into im-

proved basis structure. Orlin [100] has shown that using the entering variable with

a minimum reduced cost and following a lexicographic rule for the leaving variable

as proposed independently by Charnes [22] and Dantzig, Orden, and Wolfe in [31],

then summarized by Terlaky in Encyclopedia of Optimization [106], the maximum

number of pivots for the assignment or the shortest path problem and the maximum

number of consecutive degenerate pivots for the minimum cost network flow problem

is O(|N |2|A| log |N |) for a directed graph G = (N ,A).

The primal simplex algorithm can be specialized for generalized networks with a

basis represented graphically as a collection of quasi-trees. As mentioned in [77] and
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[80], the key operations for the network simplex algorithm implementations can be

directly performed on the quasi-forest using appropriate data structures. While data

structure should distinguish between subset of nodes (self-loops and one-trees), it also

facilitates the three essential operations of a primal simplex pivot such as 1) pricing,

or determination of an entering arc, 2) the representation of this incoming arc with

respect to the current basis and the ratio test operation to determine the leaving

arc, and 3) the updating the basis structure, flows, and node duals when needed.

The data structure first proposed by Johnson in 1966 is known as the triple-label or

augmented predecessor index (API) method [71]. For this method each node has three

labels: predecessor, successor, or down-left, and brother, or right, if the root node

is pictured as being at the top of the tree. An improved data structure, called the

augmented threaded index (ATI) method, was discussed by Glover, Klingman, and

Stutz [55] with computational simplifications in [50, 56], then also by Elam, Glover,

and Klingman [35] and Glover, Hultz, Stutz, and Klingman [45, 48]. Other data

structures were later presented by Ali, Charnes, and Song [6], Brown and McBride

[20], Engquist and Chang [36], and Jarvis, Ratliff, and Trick [65].

The design of a solution method necessarily depends on the data structure chosen

to represent the basis. For this research a basis for a generalized network is maintained

as a quasi-forest using the following node labels: predecessor, thread, reversed thread,

depth, number of nodes in quasi-tree Ti with a root i, last node in quasi-tree Ti, and

a loop factor value if a node is on a cycle of an one-tree root. As for arcs, an arc

in the form (i, pred(i)) is considered to be the forward arc with a multiplier µi,pred(i),

while (pred(i), i) is the reverse arc with a multiplier µpred(i),i. There is a link for each

node to the corresponding basic arc and a list of all network arcs together with their

data, such as from-node, to-node, cost, multiplier, and upper and lower bounds. Next

paragraphs discuss implementations and their contributions to the field.
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The first efficient implementation of the primal simplex algorithm for GN prob-

lems was developed by Elam, Glover, and Klingman in [35, 50, 55] known as a strong

convergent primal simplex algorithm for generalized networks. The developed code

NETG written in FORTRAN exploits the special structure of a basis using the Ex-

tended Augmented Predecessor Index (EAPI) method and it is based on the triple label

representation for trees introduced by Johnson [71] for pure networks. Glover, Kling-

man, and Stutz [56] utilized a preorder thread index in their Augmented Threaded

Index method for pure networks and showed that it is more efficient than triple-label

representation with less storage space required. By using simple ordered lists, NETG

only stores cost parameters, multipliers, and upper bounds values for each arc, or a

column of the coefficients matrix. The main advantage of using these ordered lists

is that there is no need to determine and store the inverse of the basis matrix which

usually requires computations and storage to maintain and update.

The algorithm address the degeneracy problem that arises in the attempt to solve

GN and GN-related problems by updating and maintaining the EAPI basis struc-

ture that also ensures convergence of the algorithms. The strongly convergent primal

simplex algorithm for GN was proposed with the specifications for efficient implemen-

tations procedures of determining and updating duals as described in [50, 55]. The

contributions of the algorithm are: all bases have the special topological structure,

the algorithm is finitely convergent without reliance on techniques such as lexicogra-

phy or perturbation, and a special screening criterion is available for non-degenerate

basis exchanges. These mathematical differences over the original simplex methods

also contributed to several computational advantages over other codes developed for

solving GN problems.

The development of NETG demonstrated an advantage of representing and solving

GN on graphs such as ability to characterize 1) the nonzero elements of the repre-
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sentation of an incoming nonbasic arc and the signs of these elements to identify the

leaving arc efficiently and 2) which node potentials to recalculate and how these val-

ues are altered after the basis pivot. By investigating rules for the starting strategy,

the pivot selection criteria, and degeneracy handling, Glover, Hultz, Klingman, and

Stutz [48] enhanced NETG in 1978. For the testing purposes, a generalized network

problem generator (NETGENG) was developed with all parameters retained and the

ability to specify the range of values for arc multipliers. The problem varied in size

up to 1,000 nodes and 7,000 arcs with the complete specifications and test results dis-

cussed in [47]. In addition, factors affecting solution speed such as start procedures,

pivot selection techniques, degeneracy, tolerance level, the “Big-M” value, and pivot

tie-breaking rules were computationally tested within NETG. Solution strategies and

computational tests results are provided in [47, 48]. In many later implementations,

the code NETG is considered the state-of-the-art algorithm and NETGENG is used

to generate problems for test purposes.

In 1984, the Augmented Threaded Index method was used in GENNET written

in FORTRAN by Brown and McBride [20] with a description of an efficient primal

simplex method for the generalized network problem. Benchmark problems tested

have up to 1,000 nodes and up to 7,000 arcs for generalized randomly generated with

NETGENG network problems and compared with NETG. The algorithmic approach

is based on a pre-order traversal method in addition to the predecessor, depth, and

cycle factor to represent the basis. For enhanced algorithmic performance, Brown

and McBride included 1) a dual basis aggregation technique that maintained explicit

values of depth, dual, and pre-order traversal labels only for nodes with successors,

2) a dynamic candidate queue that is a dynamic list of interesting arcs and nodes

scanned in a cyclic manner to chose an entering arc [20], and 3) a starting strategy

using the “Big-M” method. Authors claimed GENNET has proven to be a worthy
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successor of GNET with more efficient performance on real models than on randomly

generated test problems of nominally equivalent size.

Orlin [100] stated that it has been established by Elam et al. [35] and Brown and

McBride [20] that in practice simplex-type procedures are very efficient for solving

generalized network flow problems. Orlin also showed equivalency of the “strongly

convergent” pivot rule developed in [35] with the lexicographic rule [22, 31, 106] for

avoiding cycling.

In 1985, Engquist and Chang [36] provided a brief description for implementing

GRNET written in FORTRAN, the primal simplex code for generalized networks

that builds on the labeling procedures used in one of the fastest pure network codes

developed by Barr, Glover, and Klingman [10]. GRNET implementation also uses

the thread as in GENNET by Brown and McBride, however it does not make use of

the rooted loop orientation as in NETG [35, 50] in the quasi-tree representation. The

method of such representation is useful when applied to processing networks. Five

cases for updating the basis graph are discussed based on the location for end nodes

of incoming and leaving arcs. Also some techniques to increase updating efficiently

are considered such as retracing the predecessor path of the incoming arc while up-

dating flows on arcs. GRNET employs the reverse thread function, which eliminates

searching in the basis update, and also uses an artificial start basis while the advanced

start could improve the solution time [36]. The testing and comparison with MINOS

on ten problems generated with NETGENG shows that GRNET is about 60 times

faster than MINOS.

Mulvey and Zenios [95] investigated the efficiency of different internal program-

ming techniques, such as pivot strategies, column normalization factors, and the

“Big-M” starting method for the primal simplex generalized network code LPNETG

written in FORTRAN. The underlying primal simplex algorithm used in LPNETG is
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described by Kennington and Helgason [77], and McBride [89]. A detailed procedure

for generating the input parameters for NETGENG is provided to allow the repro-

ducibility of the experiment. Mulvey and Zenios stated “a computer code testing

cannot be considered complete unless it establishes the efficiency of the program with

respect to other algorithms.” The program comparisons revealed that, on average,

LPNETG was 18% faster than NETG, while for some of the smallest problems NETG

was more efficient, which indicated mostly that with the basic algorithmic approach

unchanged some internal programming techniques may improve the efficiency of a

computer code.

In 1986 Ali, Charnes, and Song [6] computationally tested their code written

in FORTRAN to establish the suitability of the data structures for efficient imple-

mentation and provided the detailed algorithmic specification of the primal simplex

algorithm for the generalized network problem. Testing indicated that generalized

network algorithms are on the order of 2.5 to 3.5 times slower than pure network

algorithms.

In 1988, Nulty and Trick [98] developed the first primal simplex code written in

the C language that uses the predecessor, thread, reverse thread, and the level node

labels presented in Kennington and Helgason [77] to represent the basis.

While the primal simplex method has been computationally superior to primal-

dual simplex and out-of-kilter methods for solving large-scale generalized network

linear programs, NETPD written in FORTRAN was developed by Curet in 1994 [29]

with a specialization of the dual simplex algorithm. It employs a dynamically sized

subbasis matrix to monotonically decrease the number of infeasible node constraints

while simultaneously optimizing a dual program.

In 1997, a specialization of the dual simplex algorithm for the generalized network

problem that uses a dual two phase method along with efficient dual partial pricing
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schemes and specialized routines for the dual ratio test was implemented in RAMSES

written in the C language by Kennington and Mohamed [80].

The relaxation method proposed by Bertsekas and Tseng in 1988 also has been

extended for the generalized network problem [17]. The algorithm adopts the non-

linear programming relaxation method based on the iterative improvement of the

dual cost while maintaining a flow that satisfies complementary slackness. The first

fast combinatorial solution to the generalized minimum cost flow problem that pro-

vided strongly polynomial approximation schemes was proposed by Wayne [111]. The

algorithm solves the generalized circulation problem (also knows as the generalized

maximum flow problem) with supplies and demands being zero. Though it was shown

that the best interior point methods are faster for computing optimal solutions, the

proposed combinatorial algorithm proved to be faster for computing approximate

optimal solutions for large problems. While the minimum ratio and the scaling mini-

mum ratio circuit-canceling algorithms were discussed, no implementation details or

computational results were provided. As for parallel algorithms, GENFLO proposed

by Ramamurti [102] and GRNET2 developed by Clark and Meyer [26, 27] for solv-

ing generalized networks used a gradient penalty method to find a starting feasible

solution.

In summary, while different solution methods based on the primal network simplex

algorithm and heuristics were proposed, implemented and tested for GN and for pure

networks, currently to the best of our knowledge there has been no solution method

proposed and computationally tested for fixed-charge generalized networks (FCGN).

1.5. Expected Contributions and Algorithm Approach

The extensive literature review of GN applications, algorithms, solution methods,

and implementation in previous sections revealed that currently there is no computa-

32



tional testing results available for fixed-charge generalized networks. Although several

papers have been presented discussing the algorithm development and software im-

plementations for solving generalized networks, none of these consider the case of

fixed-charges on some or all of the arcs. This research investigates a type of network

problems, called the fixed-charge generalized network problem, which is an extension

of the classic generalized network formulation that adds fixed-charges to the arcs,

solves models with proposed meta-heuristics, and provides computational results.

The expected contribution of this research is to (1) develop a heuristic approach

that incorporates the fixed-charge into the simplex pivoting process for the fixed-

charge generalized transportation networks, (2) expand the approach to solve fixed-

charge generalized transshipment networks of large size with up to 10, 000 nodes and

100, 000 arcs, (3) propose testbed problems parameters for FCGT, compatible with

testbed problems for classical pure fixed-charge transportation networks, and testbed

problems for transshipment structures, (4) conduct computational studies by testing

the heuristic algorithms on newly created testbed problems and compare results with

exact solutions, when possible, for both transportation and transshipment structures.

It is expected that the proposed heuristics will be effective in terms of solution quality

with dramatically faster processing speed compared to more general solution methods.

The algorithm approach for solving FCGT and FCGN problems in this research

builds on extreme-point tabu search ideas developed by Walker [109] and investigated

in [15, 19, 72, 44, 105, 104]. The algorithm extends the approach used for fixed-charge

transportation problems in [44, 104] to develop heuristics for fixed-charge generalized

networks. It uses the primal network simplex method for generalized networks by

exploiting the special structure of the problem bases, including quasi-tree forest solu-

tion representation and a streamlined processing of the simplex steps, such as pricing

of the entering arc, ratio test, and pivoting. The code that solves generalized network
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relaxation is developed in FORTRAN by the author. The following chapters describe

proposed heuristic solution approaches, new sets of parameters and testbed generated

instances for generalized transportation and transshipment problems, and provide de-

tailed statistical analysis of computational results and a comparison between proposed

heuristics and the state-of-the-art commercial software CPLEX.
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Chapter 2

Extreme-point Tabu Search Heuristic for Solving Fixed-charge Generalized

Transportation Problems

This chapter focuses on solution methods for generalized transportation problems

that involve fixed costs. Generalized networks have enjoyed a wider and richer range

of applications than pure networks because their arcs’ flow multipliers can modify the

amount or level of flow [53, 66]. The addition of fixed charges to arcs further expands

these modeling capabilities and fills a gap in published research.

The fixed-charge generalized transportation problem (FCGT) is a bipartite net-

work consisting of a set of source or origin nodes (O), each with supply ai, i ∈ O,

and a set of sink or destination nodes (D), each with a demand bj, j ∈ D for a single

commodity. Each source is connected to one or more sinks by directed arcs (A) with

flow multipliers, upper bounds, variable costs, and fixed costs, which are assessed if

the arc has positive flow. The objective is to route the flow from the source nodes’

supplies across arcs to meet the sinks’ demand requirements at minimum total cost,

as follows.

35



FCGT : Minimize
∑
i∈O

∑
j∈D

(cijxij + fijyij) = FC(x) (2.1)

subject to:
∑
j∈D

xij ≤ ai,∀i ∈ O (2.2)∑
i∈O

µijxij = bj,∀j ∈ D (2.3)

0 ≤ xij ≤ uijyij,∀(i, j) ∈ A (2.4)

0 ≤ yij ≤ 1,∀(i, j) ∈ A (2.5)

yij integer,∀(i, j) ∈ A (2.6)

where for each arc (i, j) ∈ A, xij is its flow, µij is the flow multiplier, uij the upper

bound, cij the unit cost, fij the fixed cost, and binary variable yij = 1 if the arc

is active or 0 otherwise. The objective function (2.1) minimizes the total fixed and

variable cost. The node balance equations, (2.2) and (2.3), maintain the flow balance

at each node, while (2.4) enforces the flow bounds and connects arc activity to the

fixed charges.

In the absence of published algorithms for FCGT, we develop an extreme-point

Tabu-search (EPTS) heuristic solution algorithm that capitalizes on and exploits the

special structure of a simplex basis for the Balinski’s linear approximation [9], GT:

GT : Minimize
∑
i∈O

∑
j∈D

xij(cij + fij/uij) = LC(x) (2.7)

subject to:
∑
j∈D

xij ≤ ai,∀i ∈ O (2.8)∑
i∈O

µijxij = bj,∀j ∈ D (2.9)

0 ≤ xij ≤ uij,∀(i, j) ∈ A (2.10)
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Computational testing demonstrates the effectiveness of the EPTS approach by iden-

tifying near-optimal solutions over five orders of magnitude faster than a state-of-the-

art commercial optimizer. The methodology relies on many components of the primal

simplex method as specialized for generalized transportation problems [50, 55].

The sections below present example applications for GT and FCGT, a summary of

the primal simplex method for linear generalized transportation problems, the EPTS

heuristic for FCGT that is based on this algorithm, and the results of computational

testing.

2.1. Applications and Algorithmic History

An early well-known example of GT is its application to a machine loading problem

introduced by Charnes and Cooper [24] and formally defined by Lourie in [87] as

follows: for a given number of different machine types with a specified availability

and different products to be produced in a specified amount, determine how much of

each product to produce on each machine at a minimum total production cost and

with satisfied production requirements. Assigning production of products to machines

with different efficiencies is the example of using generalized arcs multipliers that

transform units of flow from hours into finished products, as shown in Figure 2.1.

Linear generalized networks have been also used to model perishable goods held in

inventory, water flowing in irrigation channels, investments gains and losses, electrical

power carried on transmission lines, crops planted and harvested, and livestock raised

for market [5, 45, 46, 48, 54]. Extensive modeling techniques and example applications

can be found in Glover et al. [54].

Generalized network algorithms have been devised to exploit the special structure

of their simplex bases as documented in [6, 20, 35, 55, 80, 77, 96].
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Figure 2.1. Generalized Arc Multipliers that Transform Flow Units

Although fixed-charge models can be formulated as a mixed integer programming

problem and solved using general-purpose exact methods, the exponential growth of

the required computational effort limits their range of application. Two approaches

to ameliorating such barriers have been the development of specialized exact algo-

rithms for certain problem classes and the creation of heuristic approximation algo-

rithms. Both have been successful, particularly methods for network-related classes,

and heuristics have dramatically extended the addressable problem sizes and the

range of fixed charges, but only for pure networks (without flow multipliers).

Exact methods for fixed-charge pure networks have been studied extensively since

Hirsch and Dantzig [64] observed that adding fixed charges to the objective function

makes it difficult to directly apply linear programming methods. They proved that

for the case of non-negative fixed charges, the objective function is concave and the
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optimal solutions occur at extreme points and therefore the search for the optimal

solution may be restricted to the extreme points of the feasible region. The first

exact method for the fixed-charge transportation problem (FCTP) used extreme point

ranking and was proposed by Murty [97] and formalized by Gray [60]. Degeneracy

issues were addressed in [90] by proposing a modified vertex ranking procedure. Exact

methods proposed over the years included dynamic programming [82] and more often

algorithms were based on branch-and-bound methods [13, 79, 91, 92, 101]. Recently,

Roberti et al. in [103] proposed an exact branch-and-price algorithm based on a a

new integer programming formulation and tested it on randomly generated FCTP

involving up to 70 sources and 70 sinks.

The practical limitations of computational effort for solving problems by exact

methods led to the development of approximation approaches [9], heuristics and meta-

heuristics [108]. One of the strategies, to employ an extreme point search technique,

was discussed by Walker [109]. Another heuristic approach for FCTP was described

by Sun and McKeown [105] that used a tabu search approach. Tabu search as a

meta-heuristic was introduced by Glover and developed by him over several years

[39, 41, 59, 43, 57, 58]. Adlakha and Kowalski [2] proposed a simple heuristic for small

FCTP problems. Later authors provided a new approximation method of obtaining

lower bounds for the optimal solution within a 5% error as compared to CPLEX for 10

x 10 and 10 x 15 size problems [3, 4]. A successive linear approximation procedure for

generalized fixed-charge transportation problems with resource losses in the situations

of evaporation with liquid commodity, heat losses in an electrical distribution network,

or deterioration losses with perishable commodities such as food items was proposed

by Diaby in [33]. The procedure is not based on extreme point enumeration and

consists of solving a sequence of pro-rated problems. Using preprocessing of the data

and/or adding set covering constraints to strengthen the formulation was suggested

39



by McKeown and Ragsdale in [92].

Two of the most successful papers with computational results are from Sun [104]

and Glover et al. [44], both of which are based on extreme-point search. Glover et

al. developed a parametric ghost image process heuristic which to the best of our

knowledge represents the state-of-the-art heuristic method for FCTP [42, 44] and

uses meta-heuristics to search for a better extreme point non-adjacent to the current

optimal solution. The iterated local search heuristic based on utilization of reduced

costs for guiding the restart phase was proposed recently in [21] for fixed-charge

transportation problems.

The fixed-charge pure networks have characteristics that can be readily exploited

by both exact and heuristic methods. The most notable are the less-than-full-row rank

of their basic solutions and the resultant spanning tree structure of their bases. As

detailed below, generalized transportation bases have a more complicated structure

and require more elaborate processing techniques to fully exploit.

2.2. Characteristics of Generalized Transportation Problems

Even in the early days of linear programming research, specialized solution meth-

ods for linear network flow problems were developed to exploit the sparse mathe-

matical structure of these models. The most successful methods have been based on

Dantzig’s primal simplex algorithm, which starts with a basic solution and proceeds

through a series of bases until the optimal solution is identified.

As stated first by Dantzig in [30], then investigated in early research by Balas and

Ivanescu [7, 8], Eisemann [34], Glover and Klingman [55], and Lourie [87], any basis

B extracted from a generalized network GN = (N ,A), where N is the set of network

nodes, can be placed in a block-diagonal form by simple permutation of rows and

columns:
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B =



B1

B2

. . .

Bi

. . .

Bq


(2.11)

with each square submatrix component Bi, i = 1, 2, ..., q, being upper triangular or

nearly upper triangular with only one element below the diagonal. Furthermore, each

component Bi corresponds to a connected subgraph of GN . Summaries for generalized

networks basis structure and algorithms are provided in other papers and textbooks

such as [6, 14, 16, 20, 35, 48, 88, 96, 102].

The generalized transportation problem GT = (O,D,A) is a directed network

that may have self-loops and multiple arcs joining the same pair of nodes with the

same orientation [55]. A self-loop is an arc that leads from a node [30, 50] and

represents a slack variable for (2.2) in order to change an inequality to an equality.

For GT, its basis B forms a forest of quasi-trees, or trees with one additional arc;

each component quasi-tree, Bi, is either a tree rooted at a slack node, called a rooted

tree, or a graph with a single cycle, called a one-tree [30, 50, 55], as illustrated in

Figure 2.2.

As Jewell [69] observed, these basis quasi-trees have absorbing and generating

loops that can destroy or create flow, respectively. The method for calculating flows

on such loops was first provided by Dantzig [30], however it still required the solution

of parametric equations. Eisemann [34] characterized these loops and slacks with a

loop absorption factor, reflecting the loop’s capacity to either absorb surplus or to
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Figure 2.2. Sub-graphs as (a) a rooted tree and (b) an one-tree

generate a deficiency within the cycle [34].

These characteristics have been studied extensively and used within the primal

simplex method for generalized transportation problems. This algorithm is summa-

rized in the following sections as a prelude to a description of the EPS heuristic for

problems with fixed costs on the arcs.

2.3. Primal Simplex for Generalized Transportation Problems

The primal network simplex method for generalized networks solves GNs by

traversing a sequence of basic solutions until the optimal solution is reached. A

GN problem has full row rank and the mathematical structure of a basic solution

is that of a forest of quasi-trees, which can be manipulated to streamline computer

implementation.
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The algorithm begins by constructing an initial basic solution and iterating through

a sequence of adjacent bases until reaching the optimal solution. A pivot operation

performs the change of basis by removing a currently basic arc, adding a nonbasic

one, and adjusting the flows accordingly. The main steps of an iteration are:

1. Pricing and selection. Price out nonbasic arcs (NB) to identify attractive candi-

dates for inclusion in the current basis. Select one as the incoming arc a+ ∈ NB

that could improve the current solution value. If none are found, the current

basis is optimal; stop.

2. Ratio test. Using the representation of a+ with respect to the current basis (B),

apply the ratio test to identify the leaving arc a− ∈ B, and δ, the level of flow

increase on a+ that forces a−’s flow to zero.

3. Pivot. Execute a pivot to update the basis flows resulting from adding the

incoming arc at level δ, adjusting the flows in its representation, removing the

leaving arc, and updating B’s forest of quasi-trees.

2.3.1. Representation of a Nonbasic Arc

The representation of a non-basic arc defines that variable’s equivalence to a linear

combination of variables in the current basis. This concept is used throughout the

primal simplex method for generalized transportation problems, including pricing,

the ratio test, pivoting, and updating an implementation’s data structures. It is also

central to the EPTS heuristic developed later.

The problem of finding the representation of a non-basic arc (i, j) in terms of the

basis arcs is computationally equivalent to finding the flow decreases on the current

basic arcs to satisfy node requirements of −1 unit of available supply at node i ∈ O

and −µij units of demand at node j ∈ D. (Flow increases are negative in a represen-

tation.) Thus the subgraphs containing nodes i and j are identified to compute the
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flow changes in each to satisfy the indicated requirements. The affected portions of

those subgraphs form the basis equivalent path (BEP) for the entering arc. Algorithm

2.1 identifies (i, j)’s basis equivalent path and basis representation [50].

Algorithm 2.1 Identify nonbasic arc (i, j)’s basis equivalent path and representation,

Ãij.

1: Assume arc (i, j) is nonbasic at its lower bound. Consider the effect of increasing

its flow by 1 unit.a

2: At source node i, one unit of flow is withdrawn from the current basis and the

basic arcs’ flows in the quasi-tree’s unique path from i to its root node k are

adjusted accordingly, resulting in a deficit or surplus of flow, λk, at k.

3: The λk flow adjustment is accommodated by a flow change in the root arc at k

or changes in arcs of the one-tree’s cycle, which passes through k.

4: Similarly, µij units of flow are injected at sink node j and the basic arcs’ flows in

the quasi-tree’s unique path from j to its root node ` are adjusted accordingly,

resulting in a deficit or surplus of flow, λ`, at `.

5: The λ` flow adjustment is accommodated by a flow change in the root arc at ` or

changes in arcs of the one-tree’s cycle, which passes through `.

6: The combined set of arcs affected by steps 1–5 form the basis equivalent path of

(i, j). The representation of (i, j) in terms of B is the vector of flow reductions

(negative if flow increases) in the BEP’s arcs. [Note that steps 3 and 5 will both

adjust some of the same arc(s) if the two quasi-trees are not distinct.]

aArcs that are nonbasic at their upper bounds can be evaluated similarly, with flow injected into

the basis at node i and withdrawn at node j.

For example, Figures 2.3 and 2.4 show different cases for endpoints of the entering

arc (i, j)—either having a common root in the same one-tree component or different

roots in the case of endpoints of entering arc being in two different components.
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Thicker black arcs indicate the basis equivalent path arcs.

Figure 2.5 shows an example basis quasi-tree with flows and calculations for deter-

mining the representation Ãij of nonbasic arc (i, j) with flow xij. This is constructed

from the basic arcs in the two paths Pi and Pj that start, respectively, at nodes i and

j and end at their common root at node s and whose union forms the basis equivalent

path of (i, j).

In this example, the effects of increasing flow xij by 1 on incoming arc (i, j) are:

(a) on path Pi, change flow xik by +1, xsk by +8/4, and xss by −8/4; and (b) on

path Pj, to change xmj by −2/4, xmk by +1/2, xsk by −5/4, and the xss by +5/4.

By combining these calculations, the representation Ãij of arc (i, j) with respect to

basis xB is shown to be:

xB =



xsk

xik

xmj

xmk

xss


, Ãij =



−8/4

1

0

0

8/4


+



5/4

0

2/4

−1/2

−5/4


=



−3/4

1

1/2

−1/2

3/4


2.3.2. Step 1: Pricing and Selection

Pricing a nonbasic variable with zero flow involves determining the marginal

change in the solution value if its level is increased by one and its representation

is adjusted correspondingly. For linear generalized networks, pricing a nonbasic arc

(i, j) to determine its cij can be accomplished two ways:

1. Tracing. Using Algorithm 2.1, trace (i, j)’s BEP and accumulate the arcs’

costs (adjusted by the flow multipliers) to determine the total impact on the

basis’ variable cost, αij. The marginal cost is then Cij = Cij − αij.

45



One-tree component

x in
ji

Common 

cycle

4

[0, uij]

2

6

1 5

3
Rooted tree 

component

7

Figure 2.3. BEP of Incoming arc for one-tree component

One-tree component

j

6-j

[0, uij]

4-j

2-j

3-j 1-j

5-j

1-i

2-i

i

Rooted tree 

component

Figure 2.4. BEP of Incoming arc between two components

46



ji

s

xsk=5

xik=20 xmj=8

xss=95

+100

2

4

k m10

xmk=10

+20

+18-280

-32

(a) (b)

ji

s

 -5/4 + 8/4

-1  -2/4

+5/4 - 8/4

+100

2

4

k m10

+1/2

+20

+18-280

-32

PjPi BEP = Pi U Pj

Figure 2.5. (a) Basis with flows and nonbasic (i, j), (b) Color BEP and representation

of (i, j)

2. Duals calculation. Compute the marginal cost using the node dual values, Ri

and Kj, using: cij = cij −Ri − µijKj, based on GT’s dual formulation, GT-D.

GT-D : Maximize
m∑
i=1

aiRi +
n∑
j=1

bjKj +
∑

(i,j)∈A

Uijwij (2.12)

subject to: Ri + µijKj ≤ cij,∀(i, j) ∈ A (2.13)

Ri, Kj unrestricted in sign (2.14)

wij ≤ 0,∀(i, j) ∈ A (2.15)
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where Ri the dual variable associated with source node i ∈ O, Kj is the dual variable

for sink node j ∈ D, and wij is the dual associated with the upper bound of arc

(i, j) ∈ A.

In either case, cij < 0 indicates the potential of arc (i, j) to improve the current

basis’ value. While the results of both methods are equivalent, approach 2 is clearly

more efficient if node duals are available.

Since pricing can reveal many candidates for the incoming arc, there are a variety

of techniques to choose one. Many selection rules have been offered, including candi-

date lists, first encountered, steepest descent, DEVEX, best overall, most improving,

etc. This is discussed later in more detail.

Once the incoming arc has been selected, the flow change δ and the leaving basic

arc must be computed prior to executing a pivot. Both are determined using the

ratio test.

2.3.3. Step 2: Ratio Test

For an incoming nonbasic arc (i, j), the ratio test uses the arc’s representation to

(a) determine δ, the arc’s level of flow in the new basis, and (b) the arc to leave the

basis. These are found by applying Algorithm 2.1 and determining, for each basic arc

(r, s) ∈ BEP , the maximum allowable flow decrease (depending on orientation), δrs.

To ensure feasibility of the new basic arc flows, the flow change δ = min(r,s)∈BEP{δrs|δrs ≥

0}, and the leaving arc’s δrs = δ. (Ties should be handled as described in [35].) The

actual solution value improvement from performing the pivot will be cδ.

Using our previous example from Figure 2.5 with the basis xB and basis flows b,

the leaving variable has the minimum ratio from xB ÷ Ãij, using only the positive

representation values.
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xB =



xsk

xik

xmj

xmk

xss


: b÷ Ãij =



5

20

8

10

195


÷



−3/4

1

1/2

−1/2

3/4


=



na

20

16

na

380


Therefore arc xmj has the minimum ratio of 16 and will have zero flow when the flow

increase on (i, j) is δ = 16.

After calculating δ, we refer to any arc for which δrs = δ as a blocking arc. The

strongly feasible basis technique was proposed for pure networks by Barr, Glover,

and Klingman in [11] and independently by Cunningham [28] and then generalized

by Elam et al. in [35] for generalized networks. The strongly convergent algorithm

specifies the selection procedure for the leaving arc (r, s) in the case of ties to be:

(1) the last blocking arc, in the set of basic arcs to be decreased to its lower bound,

encountered in traversing BEP and if there is no such arc then (2) the first blocking

arc in the set of the entering arc (i, j) itself and basic arcs to be increased to its

upper bound, encountered in traversing BEP. Our approach to FCGT applies similar

technique to maintain the strongly feasible basis at each basis exchange step that

reduces the number of degenerate pivots and converges to the optimal solution in a

finite number of iterations.

2.3.4. Step 3: Pivot Execution

Updating the basis for FCGT depends on the relation of the entering and leaving

arcs. It can modify the structure of the quasi-trees in a variety of ways because the

endpoints of the entering arc can be in the same quasi-tree, in two separate quasi-

trees, can be on a loop, or in a tributary tree, or the tree that arises upon suppression
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Figure 2.6. (a) Expressions for ratio test of incoming arc (i, j), (b) New basis after

adding setting xij = δ = 16 and removing xmj

of all quasi-tree loop arcs. The step of pivoting and updating the basis forest of quasi-

trees can be performed by changing data structures, recomputing affected flows using

computational simplifications similar to the pricing-out step for one-tree components.

For rooted-tree components, updating flows and node duals is a straightforward pro-

cedure. For one-trees, when one value of the flow is determined, all other values can

be calculated by a single traversal of the loop arcs in the subgraph that contains node

i. Using the same procedure, flows can be calculated in the subgraph that contains

node j and then two resulting sets of flows can be added to get the desired representa-

tion whether or not subgraphs for i and j are the same. Those are details that might
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be added to the implementation with no bearing on the relation between pricing-out

and change of basis step.

2.4. Extreme-Point Tabu Search Heuristic for FCGT

Despite this extensive work, the problem of applying fixed charges to generalized

network flow problems has not been addressed in the literature. In practice, fixed

charges emerge in a wide range of applications and provide added realism to linear

formulations. Such is the case for generalized transportation problems as in Figure 2.7,

which this research addresses. The meta-heuristic techniques of tabu search [43] can

be employed in concert with the mathematical structure of GT (the linear relaxation

of FCGT) to great advantage in solving the fixed-charge problem. These techniques

include specialized move evaluation, short-term memory for tabu conditions with

aspiration criteria, long-term memory for diversification, and candidate-list strategies.

2.4.1. Extreme-Point Tabu Search Overview

Tabu search is a meta-heuristic for exploring a solution space beyond local opti-

mality. The neighborhood of any solution is defined as the set of other solutions that

can be reached by a single move. The process uses a variety of rules and memory

structures to perform a sequence of moves and visit a series of solutions with the goal

of finding the optimal one.

The neighborhood of a given solution can be quite large, many available moves

are not promising, and some moves can lead the search back to a previously visited

point. Short-term memory can help avoid such cycling by temporarily assigning some

moves a tabu status so that they will be avoided, unless overridden by meeting an

aspiration criterion. Longer-term memory can be employed for diversification to force

exploration of neighborhoods far away from the current solution.
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Figure 2.7. Addition of Fixed Charges on Generalized Arcs

For the EPTS heuristic for FCGT, a solution will be a basic feasible solution to

GT, as in [104]. To transition from one solution to another will involve adding a

new arc to the current solution and removing an existing arc from the basis, while

maintaining feasibility. Such a move will be accomplished by executing a simplex

pivot.

Potential moves are evaluated using operations on the current solution’s forest

of quasi-trees, short-term memory for moves, aspiration criteria, and candidate list

structures. If no improving moves are available, a local optimum has been reached.

Diversification is employed to move to new neighborhoods and, possibly, better local

optima.

An outline of the approach, using objective functions from (2.1) and (2.7), is:

• Phase 1, Initialize: Tighten the arcs’ upper bounds, solve the relaxation of

FCGT as a linear program GT minimizing LC(x), and save the final solution

x as x•, the incumbent best found, with fixed-charge value z• = FC(x•).

52



• Phase 2, Improve: Starting at x, move through a series of adjacent extreme-

point solutions, each of which improves z = FC(x) until reaching x′, a local

optimum with respect to FC(). If FC(x′) < z•, update incumbent by setting

z• = FC(x′) and x• = x′

• Phase 3, Diversify and Improve: Apply the following m1 times: starting at

the most recent solution x′, make m2 diversification moves to solution x; then

reapply Phase 2 to move to a new local optimum and save any newly discovered

incumbent.

• Phase 4, Termination: Exit the process, returning x• as the best solution found

with value z•.

The EPTS algorithm is documented as Algorithm 2.2 and related procedures. The

individual portions of the heuristic are detailed next.

Algorithm 2.2 FCGT EPTS Algorithm

Require: P ,m1,m2 .

Ensure: x•, z•

1: z• ←∞, Iter ← 0 . Initialize values

2: uij ← min {uij, ai, bjµij },∀(i, j) ∈ A . Tighten arc upper bounds

3: x′ ← LPRSolve(u)

4: x′′ ← LocSearch(x′), z′′ ← ZF(x′′)

5: IncumbentUpdate(x•, z•,x′′)

6: for k = 1, m1 do . Diversification inner loop

7: x′ ← Diversify(x′′,m2) . Move m2 diversification moves away

8: x′′ ← LocSearch(x′)

9: IncumbentUpdate(x•, z•,x′′)

10: end for

11: Return x•, z•
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2.4.2. Phase 1: Initialization

The EPTS heuristic starts with finding an optimal solution, x, to GT, the linear

relaxation of FCGT .

1. Bound tightening. Because of the structure of transportation problems, the flow

on any arc (i, j) cannot exceed the smaller of supply ai and demand bj/µij. Since

fij is linearized as fij/uij, the smallest possible uij will minimize the distance be-

tween FC() and LC() over its operable range. Hence the algorithm attempts to

tighten the upper bounds used by adjusting uij = min{uij, ai, bj/µij},∀(i, j) ∈

A.

2. Initial solution. GT is solved minimizing LC(x) to produce optimal solution

x, which is saved as the initial incumbent solution x• with value z• = FC(x•).

Solution x is the starting basis for Phase 2 and the duals are recomputed using

the cij variable costs only.

2.4.3. Phase 2: Improvement and Local FC Optimum

While Phase 1 of the EPTS heuristic involves the solution of the linear problem

GT via the network simplex method, Phase 2 is concerned with finding solutions that

minimize FC(x), the true fixed-charge objective. As described previously, a potential

incoming arc (i, j) is evaluated based on its reduced cost, cij = cij−Ri−µijKj. Since

the GT node duals only reflect variable costs and a portion of the fixed costs, the full

effect of the flow changes is determined by using both pricing methods mentioned in

Section 2.3.2, as described next.

2.4.3.1. Move Evaluation

The EPTS move evaluation process calculates the total reduced cost, κij, which
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gives the effect on FCGT’s FC(x) objective if nonbasic arc (i, j) is pivoted into the

basis at its maximum allowed flow level, δ. Steps are given in Algorithm 2.3.

Algorithm 2.3 Total reduced cost calculation, κij, for nonbasic (i, j)

1: Compute the representation and BEP for (i, j) using Algorithm 2.1,

2: Apply the ratio test along the BEP to determine flow change δ.

3: Retrace the BEP to determine the total reduced cost κij as:

κij = δcij +
∑

(k,`)∈BEP (i,j)∪(i,j)

φ(k, `, δ)

where φ(k, `, δ) =


Fk` if xk` = 0, flow increases, and δ > 0

−Fk` if xk` > 0, flow decreases, and δ = xk`

0 otherwise

and cij = cij −Ri − µijKj using duals based on variable costs only.

Although the effort to compute κij is significantly higher than simple arc pricing

with duals, it provides the exact value of the pivot’s effect on the current objective

FC(x). For example, the ratio test might find that δ = 0 and a pivot would result

in a degenerate solution with no improvement in objective, despite an attractive

cij. Fortunately the second and third BEP traversals are expedited by knowing the

previously computed BEP and representation values, so that φ(k, `, δ) can be quickly

determined.

2.4.3.2. Candidate List

Beginning with the earliest mathematical programming solution systems, a variety

of heuristics have been used to select an incoming variable from all possible nonbasics.

Insted of selecting the one with the best reduced cost, a more successful approach—
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originally termed “multiple pricing” and “partial pricing,” [99]—has been to gather

a candidate list of attractive nonbasics to select from for a defined number of pivots

and then replenishing the list with a new set of candidate variables [59, 93]. The

motivation lies in the observation that is faster to search from a set of pre-selected

candidates arcs than to evaluate all possibilities and choose the best at every iteration.

Our EPTS algorithm for FCGT employs a candidate list and other several nonba-

sic arc filters to select an incoming arc for a pivot. Since arc data is typically stored

grouped by arcs leading into or out of a node, a convenient means of subdividing the

search for attractive nonbasics is to evaluate those associated with a node and select

the most attractive one, if any, to put on the list. Arc data is searched as a circular

list of node-grouped arcs, adding the best eligible arc from a node group, until the

candidate list is full or all arcs have been evaluated. If no eligible arcs can be found,

a local optimum has been reached and this phase of the algorithm terminates.

Prior to each move or pivot, all list members are evaluated; the most attractive

member (with largest κij) is selected as the incoming arc and removed from the list,

along with any other arcs that have become unattractive. After a given number of

such selections are made, the list is discarded and a new one is created.

The algorithm’s pivot strategy is controlled by two parameters, (k1, k2), where k1

is the maximum number of selections to be made from the current list and k2 is the

maximum length of the list. Hence a (10, 20) strategy uses a candidate list of up to

20 arcs, from which up to 10 pivots can be made before rebuilding the list. While

creating a new list, if k2 attractive arcs cannot be found, the search is likely nearing

the local optimum and a secondary pivot strategy, such as (1, 1), can be deployed to

reduce the pricing time when few eligible candidates are expected to be found.

56



2.4.3.3. Tabu Status and Aspiration Criterion

To improve the search for a local optimum and avoid returning to a previously

constructed extreme-point solution, the EPTS heuristic employs several techniques

from the tabu search meta-heuristic pioneered by Glover [43, 57, 59]. Some of these

mechanisms involve maintaining historical information about the status of each vari-

able and adjusting move decisions based on this memory-based data.

The tabu status technique uses recency-based “short-term memory” to record when

an arc last left an active status and ensure that it is not re-activated for a given number

of moves. Hence, when a solution variable is the leaving arc in a pivot, it is assigned a

temporary “tabu” status and blocked from re-entering the solution for a pre-specified

number of iterations. At that time, the arc’s tabu status is set as TabuEnd = Iter

+ TabuTenure, where Iter is the current iteration number and TabuTenure is the

user-defined number of iterations the arc should not be considered for entry into a

solution again.

This static tabu search method, as described in [108], can be readily incorporated

into the candidate list move selection mechanism. Before applying Algorithm 2.3 to

evaluate a nonbasic arc to add to the current list, the arc’s TabuEnd status can be

checked for eligibility. If currently Iter < TabuEnd, the arc should not be considered.

The static tabu search technique is remarkably powerful and has been shown to

significantly improve the quality of solutions discovered for integer programming and

combinatorial problems.

However, strict application of the tabu classification rule has been found to be

enhanced by the addition of aspiration criteria, which define situations when the rule

can be overridden for moves. Criteria can include aspiration by: default, when all

possible moves are tabu; objective, when a tabu move would reach a new incum-

bent best solution; search direction, when a search has stalled at an objective; and
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influence, if a tabu move would significantly change the structure of a solution [58].

Our EPTS algorithm uses the default and objective aspiration criteria, based on

κij move evaluations. When building a candidate list or selecting an incoming arc

from an existing list at a solution point x, an arc’s tabu status can be overridden if

κij +FC(x) < z•, the value of the best solution found so far. So if the proposed move

would produce a new incumbent solution, then the tabu status is overridden by the

aspiration criterion and the nonbasic arc is brought to the quasi-tree forest basis.

2.4.3.4. Stopping Criteria and Incumbent Update

If at some point the candidate list cannot be fully replenished, then pricing shifts

to the secondary strategy. If no improving nonbasic arcs exit, Phase 2 terminates

with the current solution, x, as a local optimum. If FC(x) < z•, a new incumbent

best solution has been found and z• ← FC(x) and x• ← x.

2.4.4. Phase 3: Diversification of Local Search

Since the objective function is concave, even when the heuristic’s optimality crite-

ria are met and no improving arcs can be found, it is not true that a global minimum

has been reached [109]. It is still possible that there exists an improved solution

outside of the neighborhood.

Numerous approaches have been proposed for moving the search out of local min-

imum to different regions of the solution landscape. One of such mechanisms is the

long-term memory component of the tabu search that guides other search procedures

to move from one solution to another to overcome local optimality.

Our EPTS heuristic adapts a variation of the approach described in [39, 40, 41,

104, 105]. The diversification component of FCGT is the long-term memory search

process that brings into the basis non-basic variables that were non-basic for the
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longest time.

The diversification phase is called when a particular number of non-improving

iterations or pivots were encountered. The goal of the diversify approach is to move

away from the current local minimum to hopefully improve the solution by exploring

a new region that was not reached before by local search.

A parameter for the maximum number of times the diversification function is

performed is defined as m1. If that parameter has been reached then the search

heuristic stops and the best solution is reported. The diversification step consists of

bringing into the basis several non-basic arcs that have been non-basic the longest

time. The parameter m2 defines the number of non-basic arcs or variables forced to

enter the basis and determined beforehand. The overall objective function value more

than likely will be worse after bringing several non-basic arcs into the basis forest of

quasi-trees, but the goal is to induce the search to a new subregion of the solution

space [105]. After pivoting the number of non-basics into basis forest of quasi-trees,

the search returns to the local search trying to find another local optimum which

hopefully is better than the previous local optimum found and therefore finding the

global optimum.

2.4.5. Phase 4: Termination

Parameter m1 described in phase 3 provides a stopping criteria that makes the

search finite. Meeting the optimality criteria, reaching the maximum number of itera-

tions or moves, and reaching the maximum number of diversification steps determine

the termination of the search process.

2.5. Computational Testing

This section describes the experimental design used to test the effectiveness of the
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proposed heuristic approach against a commercially available state-of-the-art solver.

The experiment is designed to test the quality of solution and the solution time. The

software used, the problems set, results, and statistical analysis are described in the

following paragraphs.

2.5.1. Solvers Tested

2.5.1.1. Commercial Software Description

The commercial software used for comparison purposes is CPLEX version 12.6.0.0

from IBM at Southern Methodist University’s Lyle School of Engineering with default

settings, single thread mode, and a time limit of 3600 seconds. Only the time that

CPLEX solver used to solve the problem is used for comparison. The time limit is

altered to ensure a timely termination of testing.

2.5.1.2. FIXNET Software Description

The base for the implementation of the EPTS heuristic for the fixed-charge gener-

alized transportation problem is a one-multiplier generalized network solver FIXNET,

developed by the author and written in FORTRAN, which can solve uncapacitated

and capacitated generalized and pure networks, including transportation and trans-

shipment structures. The current implementation extends the capabilities of GN to

solve the class of fixed-charge generalized transportation problems.

The data structure for nodes holds the node potential, requirements (supply/demand),

and quasi-tree structure for each node. The quasi-tree data is maintained using the

concept of predecessors and threads as defined by Barr et al. [11], which additionally

stores the information about loop factors for the nodes that belong to one-trees. The

data structure for arcs holds all the information for each arc including from and to
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nodes, upper bounds, multipliers, conditional lower bounds, a flag to determine if the

arc is part of basis set F , or non-basic sets L or U , the reduced cost and total reduced

cost as part of the entering arc selection process.

The FIXNET code captures multiple statistics as it solves each test problem in-

cluding but not limited to the relaxed solution, total cost for the relaxed solution,

local search solution, variable and fixed cost at the local search solution, number of

degenerate pivots, number of arcs at upper bound for the local search solution with

total flow at upper bound, number of times aspiration criteria was applied, number

of rooted trees and number of nodes on cycles for the relaxed solution and for the

local search solution to analyze the basis forest structure for the solution. Timing

statistics are captured for several sections of the code and include time for relaxed

solution and overall solution time which also includes reading from the data file and

reinverting the network to eliminate round-off errors and recalculate node duals for

different costs.

2.5.2. Test Environment

General use Linux machine Dell R730 with Intel Xeon@2.6 GHz, 320GB RAM

was used as the computing environment to run all test problems with the FIXNET

code written in FORTRAN and compiled using gfortran and CPLEX for comparison.

2.5.3. Test Problems

2.5.3.1. Problem Generator

The available network generator GNETGEN (NETGEN modification by F. Glover)

is used as a basic tool to generate all random generalized networks flow problems.

The generator was modified to include the parameters needed for FCGT problem
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such as fixed charges on arcs. The output file generated by GNETGEN with fixed

charges is read by createInput program that outputs a network file in the FIXNET

acceptable formats. Another routine written in AWK, creates a data file for AMPL

front end for CPLEX. The test problem definitions for each type of nodes-arc levels

and fixed-charge types (FCtypes) are shown in Table 2.1.

2.5.3.2. Test Set Generated

Due to the absence of published research for fixed-charge generalized networks, we

did not find any standard problem set for testing performance of proposed heuristic for

FCGT. For consistency, we use available testbed parameters as in Sun et al. [104] and

Glover et al. [44] for FC transportation problems for pure networks with 100% fixed

charge capacitated and 100% dense transportation network problems. The variable

costs range over values from 3 to 8 and multipliers range over values from 0.5 to

1.5. Total supply for 30x100 size problems is 30,000 and for 50x100 size problems is

50,000.

The test set main factors and levels that later are used for the ANOVA analysis,

shown in Table 2.2. Differences in types of fixed-charges on arcs for test problems

are in their ranges of fixed costs (FC) and described in the Table 2.3.

2.5.4. Test Results

User specified parameters such as candidate list strategy (15, 20) for its length, 20,

and number of pivots between replenishment, 15, and Tabu parameter 25 are used for

all test problems solved by FIXNET solver. Parameter calibration were run on 3, 072

problems to test four different candidate list strategies and six different tabu length

parameters. Candidate list strategy (15, 20) and tabu parameter of 25 were shown to

be robust and therefore are used in all test runs. The following subsections describe
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Table 2.1. Test Set Definitions

Problem Set UB minimum Multiplier type

fcgnTest1-nodes-arcs-FCtype 1000 mixed or [0.5-1.5]

fcgnTest2-nodes-arcs-FCtype 800 mixed or [0.5-1.5]

fcgnTest3-nodes-arcs-FCtype 1000 lossy or [0.5-1.0]

fcgnTest4-nodes-arcs-FCtype 800 lossy or [0.5-1.0]

fcgnTest5-nodes-arcs-FCtype 1000 gainy or [1.0-1.5]

fcgnTest6-nodes-arcs-FCtype 800 gainy or [1.0-1.5]

fcgnTest7-nodes-arcs-FCtype 800 pure or [1.0-1.0]

fcgnTest8-nodes-arcs-FCtype 1000 pure or [1.0-1.0]

Table 2.2. Test Set: Problem Factors and Levels

Factor Levels

Number of nodes and arcs for TP network (130,3000) (150,5000)

Minimum value of upper bound on an arc 800 1,000

Minimum value of multiplier on an arc 0.5 1.0

Maximum value of multiplier on an arc 1.0 1.5

Fixed-charges on an arc 8 levels: A–H

Table 2.3. Parameters for Fixed-charge Types

Problem FC Type FC Range

1 A [50, 200]

2 B [100, 400]

3 C [200, 800]

4 D [400,1600]

5 E [800, 3200]

6 F [1600, 6400]

7 G [3200, 12800]

8 H [6400, 25600]
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the statistical results for the data of 128 problems run by FIXNET and CPLEX.

Tables 2.4 - 2.7 list the codes’ performances for test problems. To compare the

qualities of the integer solution values obtained by FIXNET and CPLEX, we define

the metric, R, as: R = z1/z2, where z1 and z2 are the best integer upper-bound

solution values obtained by FIXNET and CPLEX, respectively, per Sun et al. [104].

For example, if R = 1.01, then FIXNET’s solution value was 1% larger than the best

from CPLEX.

Also shown is the time multiple, the ratio of the CPLEX solution time to that of

the FIXNET. A time multiple of 2, then, indicates that CPLEX required twice the

solution time as FIXNET. The table shows the solution value and solution time for

each code, R metric, and time multiple.

There are 128 problems divided into four tables for 130 nodes and 3000 arcs, 150

nodes and 5000 arcs, and for a minimum value of upper bound limit of 800 and 1000.

Each table shows 32 test problems results and provided overall average, standard

deviation, minimum, median, and maximum values for each column.

2.5.5. Statistical Analysis

Two main hypothesis were tested: one for solution quality and another one for

solution time. The first hypothesis states there is no statistical difference in solution

quality between the FIXNET code and CPLEX results, where z̄1 is the average ob-

jective value for 128 test problems solved by CPLEX and z̄2 is the average objective

value for the same 128 test problems solved by FIXNET code.

H0 : z̄1 = z̄2 (2.16)

H1 : z̄1 6= z̄2 (2.17)
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Table 2.4. Empirical results for 130 nodes and 3000 arcs network with 800 of minimum

value for UB

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest2-130-3000-A 95,749 96,571 1.009 12.54 0.02 535.2

fcgnTest2-130-3000-B 101,644 103,133 1.015 2.39 0.02 102.0

fcgnTest2-130-3000-C 123,007 126,032 1.025 62.80 0.02 4020.3

fcgnTest2-130-3000-D 152,589 156,552 1.026 16.69 0.02 1068.7

fcgnTest2-130-3000-E 211,423 220,774 1.044 50.78 0.02 3251.0

fcgnTest2-130-3000-F 309,944 330,598 1.067 4.18 0.02 178.5

fcgnTest2-130-3000-G 515,732 562,115 1.090 21.80 0.04 558.2

fcgnTest2-130-3000-H 927,249 1,008,104 1.087 238.57 0.02 10177.8

fcgnTest4-130-3000-A 186,597 186,753 1.001 54.12 0.02 3464.9

fcgnTest4-130-3000-B 211,636 211,781 1.001 3600.00 0.02 153583.6

fcgnTest4-130-3000-C 230,272 231,465 1.005 3600.00 0.02 230473.8

fcgnTest4-130-3000-D 280,474 282,164 1.006 1322.65 0.02 56427.0

fcgnTest4-130-3000-E 406,078 408,982 1.007 3600.00 0.02 230473.8

fcgnTest4-130-3000-F 671,863 678,027 1.009 3600.00 0.02 230473.8

fcgnTest4-130-3000-G 1,095,638 1,107,427 1.011 3600.00 0.04 92165.9

fcgnTest4-130-3000-H 2,033,811 2,049,132 1.008 3600.00 0.01 460947.5

fcgnTest6-130-3000-A 84,721 85,036 1.004 21.30 0.01 2727.6

fcgnTest6-130-3000-B 95,727 96,607 1.009 6.27 0.02 401.6

fcgnTest6-130-3000-C 112,186 113,110 1.008 12.13 0.02 776.2

fcgnTest6-130-3000-D 141,452 145,325 1.027 32.91 0.02 2107.0

fcgnTest6-130-3000-E 190,802 195,845 1.026 4.94 0.02 316.0

fcgnTest6-130-3000-F 294,321 307,546 1.045 2.12 0.02 136.0

fcgnTest6-130-3000-G 492,861 512,241 1.039 0.91 0.01 117.1

fcgnTest6-130-3000-H 885,265 953,115 1.077 1.43 0.02 91.7

fcgnTest7-130-3000-A 111,283 111,817 1.005 3600.00 0.02 230473.8

fcgnTest7-130-3000-B 125,433 126,267 1.007 3600.00 0.04 92165.9

fcgnTest7-130-3000-C 144,935 145,717 1.005 3600.00 0.06 57600.0

fcgnTest7-130-3000-D 179,764 182,204 1.014 3600.00 0.09 41889.7

fcgnTest7-130-3000-E 238,706 240,583 1.008 3600.00 0.05 65825.6

fcgnTest7-130-3000-F 370,447 373,127 1.007 3600.00 0.04 92165.9

fcgnTest7-130-3000-G 624,195 625,540 1.002 3600.00 0.04 92165.9

fcgnTest7-130-3000-H 1,096,563 1,108,508 1.011 3600.00 0.03 115200.0

Overall average 398,199 408,819 1.022 1633.39 0.03 71001.94

Overall st.dev. 420,489 429,626 0.025 1776.94 0.02 105831.27

Minimum 84,721 85,036 1.001 0.91 0.01 91.68

Median 220,954 226,119 1.009 150.68 0.02 7099.06

Maximum 2,033,811 2,049,132 1.090 3600.00 0.09 460947.50
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Table 2.5. Empirical results for 130 nodes and 3000 arcs network with 1000 of mini-

mum value for UB

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest1-130-3000-A 92,417 92,877 1.005 37.50 0.02 2401.0

fcgnTest1-130-3000-B 102,556 103,715 1.011 25.21 0.04 645.4

fcgnTest1-130-3000-C 115,185 117,253 1.018 8.53 0.02 546.1

fcgnTest1-130-3000-D 146,472 148,290 1.012 2.24 0.01 286.8

fcgnTest1-130-3000-E 208,957 216,289 1.035 8.47 0.02 542.4

fcgnTest1-130-3000-F 329,878 350,065 1.061 44.87 0.04 1148.8

fcgnTest1-130-3000-G 525,997 561,945 1.068 478.91 0.02 20431.2

fcgnTest1-130-3000-H 909,331 999,018 1.099 80.55 0.02 5157.0

fcgnTest3-130-3000-A 188,884 188,995 1.001 253.84 0.03 8123.0

fcgnTest3-130-3000-B 205,646 205,825 1.001 297.65 0.02 19055.6

fcgnTest3-130-3000-C 243,962 244,551 1.002 9.01 0.02 576.8

fcgnTest3-130-3000-D 297,458 298,834 1.005 1781.74 0.01 228135.7

fcgnTest3-130-3000-E 407,548 411,877 1.011 457.70 0.02 29301.9

fcgnTest3-130-3000-F 613,303 622,369 1.015 3600.00 0.04 92165.9

fcgnTest3-130-3000-G 1,069,340 1,085,471 1.015 3600.00 0.04 92165.9

fcgnTest3-130-3000-H 1,925,228 1,977,657 1.027 3600.00 0.02 153583.6

fcgnTest5-130-3000-A 83,704 84,204 1.006 28.76 0.01 3682.4

fcgnTest5-130-3000-B 94,220 94,624 1.004 8.55 0.01 1095.1

fcgnTest5-130-3000-C 110,144 111,383 1.011 0.74 0.01 94.3

fcgnTest5-130-3000-D 138,347 142,631 1.031 46.28 0.02 2962.9

fcgnTest5-130-3000-E 192,723 200,963 1.043 4.19 0.02 268.6

fcgnTest5-130-3000-F 292,146 310,160 1.062 55.76 0.02 3569.5

fcgnTest5-130-3000-G 498,590 519,061 1.041 27.01 0.01 3458.1

fcgnTest5-130-3000-H 870,628 927,512 1.065 56.42 0.02 2406.8

fcgnTest8-130-3000-A 112,833 113,199 1.003 3600.00 0.04 92165.9

fcgnTest8-130-3000-B 122,542 123,898 1.011 3600.00 0.02 153583.6

fcgnTest8-130-3000-C 143,237 144,141 1.006 3600.00 0.05 76791.8

fcgnTest8-130-3000-D 179,973 179,984 1.000 3600.00 0.05 76791.8

fcgnTest8-130-3000-E 246,057 247,741 1.007 3600.00 0.04 92165.9

fcgnTest8-130-3000-F 378,477 380,110 1.004 3600.00 0.04 92165.9

fcgnTest8-130-3000-G 631,238 638,869 1.012 3600.00 0.05 65825.6

fcgnTest8-130-3000-H 1,116,227 1,122,982 1.006 3600.00 0.02 153583.6

Overall average 393,539 405,203 1.022 1353.56 0.02 46089.97

Overall st.dev. 404,697 418,495 0.025 1682.16 0.01 60967.11

Minimum 83,704 84,204 1.000 0.74 0.01 94.34

Median 226,460 230,420 1.011 167.20 0.02 6640.00

Maximum 1,925,228 1,977,657 1.099 3600.00 0.05 228135.72
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Table 2.6. Empirical results for 150 nodes and 5000 arcs network with 800 of minimum

value for UB

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest2-150-5000-A 145,634 146,140 1.003 275.00 0.02 11732.08

fcgnTest2-150-5000-B 152,547 154,688 1.014 78.31 0.03 2505.99

fcgnTest2-150-5000-C 171,869 173,661 1.010 64.73 0.04 1657.12

fcgnTest2-150-5000-D 200,605 205,896 1.026 476.10 0.03 15235.17

fcgnTest2-150-5000-E 271,000 290,289 1.071 593.82 0.02 25333.70

fcgnTest2-150-5000-F 375,329 396,433 1.056 80.06 0.02 3415.38

fcgnTest2-150-5000-G 577,676 621,744 1.076 60.42 0.02 3867.90

fcgnTest2-150-5000-H 984,349 1,056,675 1.073 103.02 0.03 3296.54

fcgnTest4-150-5000-A 300,199 300,457 1.001 287.78 0.05 6138.67

fcgnTest4-150-5000-B 326,901 327,121 1.001 71.67 0.03 2293.43

fcgnTest4-150-5000-C 362,259 363,080 1.002 3600.00 0.02 153583.62

fcgnTest4-150-5000-D 395,566 398,868 1.008 3600.00 0.02 230473.75

fcgnTest4-150-5000-E 533,002 539,940 1.013 3600.00 0.04 92165.90

fcgnTest4-150-5000-F 809,654 816,569 1.009 3600.00 0.02 230473.75

fcgnTest4-150-5000-G 1,268,954 1,295,758 1.021 3600.00 0.02 230473.75

fcgnTest4-150-5000-H 2,318,198 2,351,353 1.014 3600.00 0.04 92165.90

fcgnTest6-150-5000-A 133,556 134,384 1.006 33.48 0.02 2143.28

fcgnTest6-150-5000-B 144,183 145,750 1.011 1174.57 0.04 30070.92

fcgnTest6-150-5000-C 159,408 163,524 1.026 1276.01 0.02 54437.29

fcgnTest6-150-5000-D 191,292 196,155 1.025 6.72 0.02 430.29

fcgnTest6-150-5000-E 246,603 257,087 1.043 151.31 0.02 9687.00

fcgnTest6-150-5000-F 355,263 366,340 1.031 14.47 0.02 617.21

fcgnTest6-150-5000-G 551,199 593,668 1.077 124.65 0.02 7979.90

fcgnTest6-150-5000-H 956,078 992,928 1.039 92.58 0.02 5926.94

fcgnTest7-150-5000-A 174,885 175,606 1.004 3600.00 0.06 57600.00

fcgnTest7-150-5000-B 189,422 190,846 1.008 3600.00 0.03 115200.00

fcgnTest7-150-5000-C 219,006 220,431 1.007 3600.00 0.08 46082.95

fcgnTest7-150-5000-D 257,661 259,674 1.008 3600.00 0.09 41889.69

fcgnTest7-150-5000-E 340,455 351,475 1.032 3600.00 0.02 230473.75

fcgnTest7-150-5000-F 492,446 499,206 1.014 3600.00 0.07 51201.82

fcgnTest7-150-5000-G 781,501 788,399 1.009 3600.00 0.07 51201.82

fcgnTest7-150-5000-H 1,310,903 1,324,079 1.010 3600.00 0.03 115200.00

Overall average 490,550 503,069 1.023 1730.15 0.03 60154.86

Overall st.dev. 465,361 474,926 0.024 1698.97 0.02 76496.29

Minimum 133,556 134,384 1.001 6.72 0.02 430.29

Median 333,678 339,298 1.013 884.20 0.03 27702.31

Maximum 2,318,198 2,351,353 1.077 3600.00 0.09 230473.75
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Table 2.7. Empirical results for 150 nodes and 5000 arcs network with 1000 of mini-

mum value for UB

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest1-150-5000-A 141,444 141,911 1.003 64.98 0.02 2772.30

fcgnTest1-150-5000-B 153,395 154,173 1.005 39.44 0.02 2525.15

fcgnTest1-150-5000-C 165,237 167,270 1.012 56.56 0.02 2413.05

fcgnTest1-150-5000-D 202,641 207,865 1.026 10.65 0.02 454.19

fcgnTest1-150-5000-E 269,725 277,052 1.027 770.73 0.05 16440.51

fcgnTest1-150-5000-F 377,150 393,364 1.043 43.35 0.03 1387.18

fcgnTest1-150-5000-G 591,978 627,149 1.059 1795.29 0.04 45962.37

fcgnTest1-150-5000-H 987,862 1,084,330 1.098 2685.09 0.04 68742.70

fcgnTest3-150-5000-A 300,692 300,904 1.001 201.66 0.05 3687.35

fcgnTest3-150-5000-B 307,406 307,609 1.001 3600.00 0.02 230473.75

fcgnTest3-150-5000-C 335,554 333,668 0.994 3600.00 0.03 115200.00

fcgnTest3-150-5000-D 404,886 406,103 1.003 3600.00 0.08 46082.95

fcgnTest3-150-5000-E 542,330 551,278 1.016 3600.00 0.05 76791.81

fcgnTest3-150-5000-F 793,989 808,525 1.018 23.48 0.03 751.34

fcgnTest3-150-5000-G 1,305,463 1,314,328 1.007 3600.00 0.03 115200.00

fcgnTest3-150-5000-H 2,465,266 2,487,311 1.009 3600.00 0.04 92165.90

fcgnTest5-150-5000-A 133,532 133,972 1.003 357.31 0.02 15243.47

fcgnTest5-150-5000-B 150,938 152,665 1.011 4.09 0.03 131.04

fcgnTest5-150-5000-C 157,178 159,417 1.014 41.34 0.03 1322.91

fcgnTest5-150-5000-D 189,913 196,037 1.032 619.74 0.02 39676.06

fcgnTest5-150-5000-E 253,274 260,501 1.029 79.16 0.02 5067.60

fcgnTest5-150-5000-F 353,658 378,625 1.071 6.18 0.02 263.81

fcgnTest5-150-5000-G 569,891 603,294 1.059 136.60 0.02 5827.82

fcgnTest5-150-5000-H 925,685 978,339 1.057 11.02 0.01 1410.99

fcgnTest8-150-5000-A 178,830 179,353 1.003 3600.00 0.06 57600.00

fcgnTest8-150-5000-B 188,771 189,818 1.006 3600.00 0.05 65825.56

fcgnTest8-150-5000-C 216,078 218,218 1.010 3600.00 0.06 57600.00

fcgnTest8-150-5000-D 259,043 261,126 1.008 3600.00 0.06 57600.00

fcgnTest8-150-5000-E 340,987 351,006 1.029 3600.00 0.02 230473.75

fcgnTest8-150-5000-F 482,548 488,722 1.013 3600.00 0.03 115200.00

fcgnTest8-150-5000-G 769,946 779,461 1.012 3600.00 0.05 65825.56

fcgnTest8-150-5000-H 1,342,828 1,347,275 1.003 3600.00 0.06 57600.00

Overall average 495,566 507,521 1.021 1792.08 0.04 49928.72

Overall st.dev. 487,291 495,548 0.024 1706.60 0.02 60573.64

Minimum 133,532 133,972 0.994 4.09 0.01 131.04

Median 321,480 320,638 1.012 1,283.01 0.03 42819.21

Maximum 2,465,266 2,487,311 1.098 3600.00 0.08 230473.75
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The second hypothesis states there is a significant difference in solution time with

the FIXNET code obtaining results faster than CPLEX with T̄1 and T̄2 being average

solution time respectively for CPLEX and FIXNET solvers.

H0 : T̄1 = T̄2 (2.18)

H1 : T̄1 6= T̄2 (2.19)

The level of significance of α = 5% was used for all statistical tests. The follow-

ing paragraphs describe the statistical results for the test data of 128 problems run

separately by FIXNET and CPLEX.

2.5.5.1. Analysis of Quality of Solution due to Code Type

To support the first hypothesis, an analysis of variance was performed to determine

factors affecting the solution quality. The factors considered were the code type, the

total number of nodes and arcs, minimum value of upper bound on an arc, multiplier

type (mixed, lossy, gainy, and pure networks), and fixed-charges type. It is expected

that the solution quality may vary due to different problem sizes, multiplier types,

and fixed-cost ranges. One important factor for this analysis is to determine if the

solution quality due to the code type or any interactions with code type. Also it is

important to analyze how close FIXNET objective values compared to CPLEX’s. A

boxplot of objective values found by CPLEX and FIXNET codes is shown in Figure

2.8. This figure includes all 256 test problems and shows that the solutions found by

FIXNET are comparable to those found by CPLEX.

All 256 observations were used for analysis using the ANOVA procedure with

Python 3.7.1 (default, Dec 10 2018, 22:54:23) [MSC v.1915 64 bit (AMD64)] Jupyter

notebook, server version 5.7.4. with significance level of 5%. The results show that
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Figure 2.8. Box plot of objective value obtained by CPLEX and FIXNET codes

there is no statistically significant difference between CPLEX and FIXNET solution

values with F (1, 254) = 0.044 and p = 0.8349 and descriptive statistics as shown in

Figure 2.9.

Figure 2.9. Solution Value Descriptive Statistics by Code Type

A Tukey post-hoc testing shows both codes are in the same group. While code

type and minimum level of upper bound are not statistically significant factors for

the solution quality, the overall model shows statistical significance for the number of
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nodes and arcs factor. The analysis indicates that there is no statistically significant

difference between solution values for problems with 130 nodes and 3000 arcs and

problems with 150 nodes and 5000 arcs. The model determines there is a statistically

significant difference between solution values for problems with different fixed-charges

and also with different multipliers. The overall model of multiplier types, fixed-charge

types and their interaction have F (63, 192) = 2218.340 with p = 0.0000. The model’s

overall coefficient of determination R2 = 0.99 with fixed-charges type being the most

influential factor on solution quality as shown in Figures 2.10 and 2.11.

Figure 2.10. ANOVA model for Solution Value

A Tukey post-hoc testing shows problems of fixed-charges types of A, B, C, D,

and E are in the same group as well as F, G, and H in the other group with two

groups being different groups. Similar distinction was observed for pure transporta-

tion networks with fixed-charges between test problems due to fixed-charge types.

Descriptive statistics are shown in Figure 2.12.

As for multipliers types, gainy networks are not in the same group as lossy net-

works based on their solution values, while lossy networks are different from mixed

and pure. Descriptive statistics are shown in Figure 2.13.
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Figure 2.11. Regression Statistics for Solution Value
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Figure 2.12. Solution Value Descriptive Statistics by Code Type and Fixed-charge

Type

Figure 2.13. Solution Value Descriptive Statistics by Code Type and Multiplier Type
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2.5.5.2. Analysis of Solution Time due to Code Type

To support the second hypothesis, an analysis of variance was performed to deter-

mine factors affecting the solution times. The factors considered were the code type,

the total number of nodes and arcs, minimum value of upper bound on an arc, multi-

plier type (mixed, lossy, gainy, and pure networks), and fixed-charge type. A boxplot

of solution times for CPLEX and FIXNET clearly shows that FIXNET performance

was faster as in Figure 2.14. One important factor for this analysis is to determine

if the solution time difference is due to the code type or any interactions with code

type.

Figure 2.14. Box plot of solution times spent by CPLEX and FIXNET codes to find

a solution

All 256 observations were used for analysis using the ANOVA procedure with

Python 3.7.1 (default, Dec 10 2018, 22:54:23) [MSC v.1915 64 bit (AMD64)] Jupyter

notebook, server version 5.7.4. with significance level of 5%. The results show that
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there is a statistically significant difference in the time to obtain a solution by CPLEX

and by the FIXNET code with overall model F (1, 254) = 116.662, p = 0.0000 and de-

scriptive statistics as shown in Figure 2.15. The Tukey test shows that the FIXNET

code performs faster than CPLEX to find a solution. On average for all tested prob-

lems FIXNET was more than 56, 000 times faster than CPLEX with optimality gap

on average 2.215%.

Figure 2.15. Solution Time Descriptive Statistics by Code Type

There was no statistically significant difference in the solution time due to min-

imum upper bound value. All other factors including number of nodes and arcs,

multiplier types, and fixed charge types showed statistically significant effect on so-

lution time including second order interactions of code type with number of nodes

and arcs, with fixed-charges types, and with multiplier types as shown in Figure 2.16.

Model’s overall coefficient of determination R2 = 0.904. Descriptive statistics for

solution time by number of nodes and arcs and by fixed-charge type are shown in

Figures 2.17 and 2.18.

While code type is the factor that affects solution time the most, the next impor-

tant factor is multiplier type. The Tukey post-hoc testing showed there are distinctive

groups for multipliers types with descriptive statistics as shown on Figure 2.19. It

also showed that 130− 3000 and 150− 5000 size networks are in the same group for

solution time as well as problems with different fixed-charge types. The last testing

shows that generated problems with larger range of fixed charges, which were con-
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Figure 2.16. ANOVA model for Solution Time

Figure 2.17. Solution Time Descriptive Statistics by Code Type and Number of

Nodes/Arcs
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Figure 2.18. Solution Time Descriptive Statistics by Code Type and Fixed Charges

Type
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sidered difficult problems to solve for pure fixed-charge transportation problems in

[44, 104], can be solved on average to 3.7% of optimality compared to the commercial

solver CPLEX in 0.09 seconds in the worst case.

Figure 2.19. Solution Time Descriptive Statistics by Code Type and Multiplier Type

Overall for both codes, gainy types of networks ran faster than lossy and pure,

mixed types ran faster than pure, and lossy ran slower than mixed types of networks.

The analysis also shows that the FIXNET code dominated CPLEX when solving pure

networks and lossy networks.

2.5.5.3. Analysis of Solution Quality Variation

Based on obtained solution values from all test problems solved by CPLEX and by

FIXNET code, the R metric is calculated as defined earlier. The analysis is used to

determine if there are any factors which affect the value of R. The factors considered

were the total number of nodes and arcs, minimum value of upper bound on an

arc, multiplier type (mixed, lossy, gainy, and pure networks), and fixed-charge type.

The analysis of solution quality showed there is no statistically significant difference

between the two codes, but indicated multipliers types and fixed-charge types affected

the solution quality. Descriptive statistics for R are shown in Figure 2.20.
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Figure 2.20. Descriptive Statistics for R

The analysis showed that there were several factors affecting the variability of the

solutions with overall model F (63, 192) = 49.235 and p = 0.0000 with the coefficient

of determination R2 = 0.942, factors and their interactions as shown in Figure 2.21.

Descriptive statistics for R by number of nodes and arcs, multiplier type, and fixed-

charge type are shown in Figures 2.22, 2.23, and 2.24 respectively.

Figure 2.21. ANOVA model for R metric

Figure 2.22. Descriptive Statistics for R by Number of Nodes/Arcs

As in the pure fixed-charge transportation problems computational study by Sun

et al. [104], problems with bigger fixed charges can be considered more difficult to
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Figure 2.23. Descriptive Statistics for R by Multiplier Type

Figure 2.24. Descriptive Statistics for R by Fixed-charge Type
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solve to optimality. Descriptive statistics for R by problem difficulty group is shown

in Figure 2.25.

Figure 2.25. Descriptive Statistics for R by Problem Difficulty Group

2.5.6. Conclusions

Computational testing shows the effectiveness of the proposed extreme-point tabu

search heuristic by testing the results of 128 generated problems and conducting

statistical analysis. As expected and shown with analysis, there is no statistically

significant difference in solution quality between FIXNET and CPLEX results while

there is a statistically significant difference in the solution time with FCGT heuristics

performing more than 50,000 times faster than CPLEX providing 2.2% optimality

gap on average for 128 tested problems.

2.6. Conclusions

The addition of fixed charges to generalized arcs of transportation network prob-

lems expands modeling capabilities of wide range in finance, production, distribution,

transportation, and scheduling applications. In the absence of published solution ap-

proaches for fixed-charge generalized transportation problems, this chapter proposes

an efficient heuristic to solve FCGT and provides computational testing that fills

a research literature gap for such a problem type. The extreme-point tabu-search

heuristic builds on the primal generalized network simplex method and uses special
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quasi-tree basis forest structure in its core. The proposed heuristic solution algorithm

is implemented with the short, intermediate, and long-term memory processes such as

candidate list, tabu, aspiration criteria, modified reduced cost that takes into account

the effect of the fixed charges, and diversification phase to overcome local optimality.

Computationally it has been tested on 128 generated instances with newly pro-

posed parameters for fixed-charge generalized networks. The analysis showed statis-

tical significance of multipliers and fixed-charge ranges types on both solution quality

and solution time while post-hoc testing revealed no differences in solution time for

problems with different fixed-charge ranges. The proposed EPTS heuristic was able

to find a better solution for one problem than commercial solver CPLEX and on aver-

age for all test problems it is more than 56,000 times faster than the state-of-the-art

commercial solver CPLEX with an average optimality gap of 2.2%. CPLEX reached

time limit of 3600 seconds for 53 out of 128 problems with average solution time of

1627.30 seconds compared to 0.03 seconds on average for the proposed extreme-point

tabu-search heuristic for fixed-charge generalized transportation network problems.
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Chapter 3

Dynamic Linearization Meta-Heuristics for Solving Fixed-Charge Generalized

Transshipment Problems

The extreme-point tabu search meta-heuristic proposed in the previous chapter

was based on a tabu search, candidate list, aspiration criteria, and diversify phase

designed to overcome local optimality. It proved to be effective for the fixed-charge

generalized transportation problems. In the absence of published algorithms for fixed-

charge generalized transshipment networks, we developed the solution approach to

solve transshipment problems of larger sizes, with number of nodes 5,000 or 10,000

and number of arcs 50,000 or 100,000 with incorporation of dynamic linearization

of the objective function. A parametric approach for solving fixed-charge problems

first was sketched by Glover in [42] and proposed as the parametric ghost image

processes for fixed-charge transportation networks in [44]. The approach involves

a parameterization of the objective function that is progressively modified by the

meta-heuristic procedures that in turn use basic tabu search strategies. The inclusion

of such approach variation to the heuristic proposed in this chapter incorporates a

dynamically modified objective function with linear parameters in order to improve

the solution quality for generated fixed-charge generalized transshipment problems.

The basic approach and a background for the parametric ghost image process is

provided in [44] as well as an algorithmic approach to solve fixed-charge transportation

problems. The author mentions that the implementation developed applies to fixed-

charge problems using generalized networks with a two-multiplier generalized network

solver GN2. However, no generalized networks parameters/factors were provided and

83



no generalized problems were generated or analyzed in the paper, no computational

results were available, and no discussion was provided regarding implementation of

the special basis forest structure for generalized network models. In addition, to the

best of our knowledge, there is no published research for fixed-charge generalized

transshipment problems currently available.

The fixed-charge generalized transshipment network model can be defined math-

ematically as follows:

FCGN : Minimize
∑

(i,j)∈A

(cijxij + fijyij) = FC(x) (3.1)

subject to:
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

µjixji = bi,∀i ∈ N (3.2)

0 ≤ xij ≤ uijyij,∀(i, j) ∈ A (3.3)

0 ≤ yij ≤ 1,∀(i, j) ∈ A (3.4)

yij integer,∀(i, j) ∈ A(3.5)

3.1. Algorithmic Approach for FCGN Heuristic

The variant of the parametric ghost image approach, called dynamic linearization

(DL) of the objective function, is proposed for use in the modified extreme-point tabu

search meta-heuristic, discussed in the previous chapter, with the intention to improve

the solution quality. It is expected that the solution time will be increased due to the

fact that several relaxations and local optimum procedures will be repeated. However,

the goal is to improve the quality of the solution. The dynamic linearization of the

objective function heuristic starts with the solution of the relaxation problems as in

the FCGT heuristic to determine the lower and upper bounds for the objective value:
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GN : Minimize
∑

(i,j)∈A

(cij + fij/uij)xij = LC(x) (3.6)

subject to:
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

µjixji = bi,∀i ∈ N (3.7)

0 ≤ xij ≤ uij,∀(i, j) ∈ A (3.8)

where (cij + fij/uij)xij is the approximation of total cost that take into consideration

the proportion of fixed cost on arc (i, j).

Similar to the concepts described in [44], a non-negative parameter vector v =

(vij : (i, j) ∈ A) is introduced to parameterize the proportion of fixed-charge to the

total cost of the objective function by calculating 1/vij. For the original relaxation

problem, the “parameterized penalty,” or proportion of the fixed charges to the total

cost, is calculated as fij/uij. In this case we can set vij = uij to initialize v. After

finding the first local optimum, the flow xij is determined, and then the total cost can

be linearized and approximated by solving the modified relaxation problem with the

objective
∑

(i,j)∈A(cij + fij/vij)xij, with vij being updated as a function of its current

value and the solution x. Graphically, it can be viewed as in Figure 3.1.

The succession of LPs with dynamically updated linearized objective function

in alternation with tabu search, intensify and diversify phases, is solved to produce

an improved solution. Let m1 be the maximum number for the objective function

linearizations, m2 be the maximum number of the diversify phase performed, m3 be

the number of nonbasic arcs brought to the basis to diversify the solution region

search, and m4 be the maximum number of moves or iterations. An outline of the

method FCGN can be described as following:
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Figure 3.1. Total Cost vs Variable Cost

Algorithm 3.1 FCGN Dynamic Linearization Heuristic for the Fixed-charge Gen-

eralized Transshipment Network

Require: P ,m1,m2,m3,m4

Ensure: x•, z•

1: z• ←∞, Iter ← 0 . Initialize values

2: x′ ← LPRSolve(v)

3: x′′ ← LocSearch(x′), z′′ ← ZF(x′′)

4: IncumbentUpdate(x•, z•,x′′)

5: while primary iter LE m1 and global Iter LE m4 do

6: v← Vupdate(v,x′) . Update v using x′

7: x′ ← LPRSolve(v)

8: x′′ ← LocSearch(x′)

9: IncumbentUpdate(x•, z•,x′′)

10: for k = 1, m2 do . Diversification inner loop

11: x′ ← Diversify(x′′,m3)

12: x′′ ← LocSearch(x′)

13: IncumbentUpdate(x•, z•,x′′)

14: end for

15: end while

16: Return x•, z•
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Algorithm 3.2 LPRSolve(v) Procedure

Require: v, c, f , µ,b,u

Ensure: x•, z•

1: Minimize
∑

(i,j)∈A(cij +
fij
vij

)xij, subject to:

2:
∑

j:(i,j)∈A xij −
∑

j:(j,i)∈A µjixji = bi,∀i ∈ N

3: 0 ≤ xij ≤ uij, ∀(i, j) ∈ A

4: Return x∗ . Optimal solution to relaxation using v

Algorithm 3.3 Vupdate (v) Procedure

Require: v,x,maxFlow,MaxSol, β, α1, α2

Ensure: v

1: NumSol← NumSol + 1

2: Y = 1/min{NumSol,MaxSol}

3: for (i, j) ∈ A do

4: Meanij = Y xij + (1− Y )Meanij

5: UMean = βMeanij + (1− β)MaxFlowij

6: vij = α1xij + α2vij + (1− α1 − α2)UMean

7: end for

8: Return v . adjusted value of v

The move evaluation process calculates the total reduced cost, κij, which gives the

effect on FCGN’s FC(x) objective if nonbasic arc (i, j) is pivoted into the basis at

its maximum allowed flow level, δ. The steps are given in Algorithm 3.4.
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Algorithm 3.4 Total reduced cost calculation, κij, for nonbasic (i, j)

1: Compute the representation and BEP for (i, j) using Algorithm 2.1,

2: Apply the ratio test along the BEP to determine flow change δ.

3: Retrace the BEP to determine the total reduced cost κij as:

κij = δcij +
∑

(k,l)∈BEP (i,j)∪(i,j)

φ(k, `, δ)

where φ(k, `, δ) =


Fk` if xk` = 0, flow increases, and δ > 0

−Fk` if xk` > 0, flow decreases, and δ = xk`

0 otherwise

and cij = cij − πi + µijπj using duals based on variable costs only.

Although the effort to compute κij is significantly higher than simple arc pricing

with duals, it provides the exact value of the pivot’s effect on the current objective

FC(x). For example, the ratio test might find that δ = 0 and a pivot would result

in a degenerate solution with no improvement in objective, despite an attractive

cij. Fortunately the second and third BEP traversals are expedited by knowing the

previously computed BEP and representation values, so that φ(k, `, δ) can be quickly

determined.

3.2. Computational Testing

This section describes the experimental design used to test the effectiveness of the

proposed heuristic approach against a commercially available state-of-the-art solver.

The experiment is designed to test the quality of solution and the solution time. The

software used and the problems set are described in the following paragraphs.
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3.2.1. Commercial Software Description

The commercial software used for comparison purposes is CPLEX version 12.6.0.0

from IBM at Southern Methodist University’s Lyle School of Engineering with default

settings, single thread mode, and a time limit of 3600 seconds. Only the time that

CPLEX solver used to solve the problem is used for comparison. The time limit is

altered to ensure a timely termination of testing.

3.2.2. FIXNET Software Description

The base for the implementation of the EPTS heuristic for the fixed-charge gener-

alized transportation problem, a one-multiplier generalized network solver FIXNET,

developed by the author and written in FORTRAN, can solve uncapacitated and ca-

pacitated generalized and pure networks, including transportation and transshipment

structures. The current implementation extends the capabilities of GN to solve the

class of fixed-charge generalized transportation problems.

The data structure for nodes holds the node potential, requirements (supply/demand),

and quasi-tree structure for each node. The tree data is maintained using the concept

of threads as defined by Barr et al. in [11] additionally storing the information about

loop factors for the nodes that belong to one-tree roots or cycles. The data structure

for arcs holds all the information for each arc including from and to nodes, upper

bounds, conditional lower bounds, a flag to determine if the arc is part of basic set

F , the reduced cost and total reduced cost as part of the arc selection process.

The FIXNET code captures multiple statistics as it solves each test problem in-

cluding but not limited to the relaxed solution, total cost for the relaxed solution,

local search solution, variable and fixed cost at the local search solution, number of

degenerate pivots, number of arcs at upper bound for the local search solution with

total flow at upper bound, number of times aspiration criteria was applied, number
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of rooted trees and number of nodes on cycles for the relaxed solution and for the

local search solution to analyze the basis forest structure for the solution. Timing

statistics are captured for several sections of the code and include time for relaxed

solution and overall solution time which also includes reading from the data file and

reinverting the network to eliminate round-off errors and recalculate node duals for

different costs.

3.2.3. Test Environment

General use Linux machine Dell R730 with Intel Xeon@2.6 GHz, 320GB RAM

was used as the computing environment to run all test problems with the FIXNET

code written in FORTRAN and compiled using gfortran and CPLEX for comparison.

3.2.4. Problem Set Definition and Generation

The test set used for testing the solution quality and the solution time was designed

to compare FIXNET performance with the state-of-the-art solver CPLEX. The results

are compared using statistical analysis to determine if there are differences in quality

of the solution and in solution time. The test set main factors and levels shown in

Table 3.1.

Table 3.1. Transshipment Networks Test Set: Problem Factors and Levels

Factors Levels

Number of nodes 5,000 10,000

Number of arcs (nested within nodes) 50,000 100,000

Percent source nodes 2% 5%

Percent demand nodes 2% 5%

Percent arcs with fixed charges 25% 50%

Range of fixed-charges on an arc 1,000 to 2,000 10,000 to 20,000
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The test problem definitions are shown in Tables 3.2 – 3.5. The total supply for

each test problem was fixed at 100,000 with the variable cost for each arc ranged from

1 to 50 and the arc multipliers being in the interval [0.5, 1.5]. All test problems are

100% capacitated with the upper bound being in the range [1000, 2000].

Table 3.2. Test Set Transshipment Problems with 5,000 nodes and 50,000 arcs

Problem Number Number Source Sink % FC Fixed-Charge

ID of Nodes of Arcs Nodes Nodes Arcs Range

1-5000-50000 5,000 50,000 100 100 25 [1000,2000]

2-5000-50000 5,000 50,000 100 250 25 [1000,2000]

3-5000-50000 5,000 50,000 250 100 25 [1000,2000]

4-5000-50000 5,000 50,000 250 250 25 [1000,2000]

5-5000-50000 5,000 50,000 100 100 25 [10000,20000]

6-5000-50000 5,000 50,000 100 250 25 [10000,20000]

7-5000-50000 5,000 50,000 250 100 25 [10000,20000]

8-5000-50000 5,000 50,000 250 250 25 [10000,20000]

9-5000-50000 5,000 50,000 100 100 50 [1000,2000]

10-5000-50000 5,000 50,000 100 250 50 [1000,2000]

11-5000-50000 5,000 50,000 250 100 50 [1000,2000]

12-5000-50000 5,000 50,000 250 250 50 [1000,2000]

13-5000-50000 5,000 50,000 100 100 50 [10000,20000]

14-5000-50000 5,000 50,000 100 250 50 [10000,20000]

15-5000-50000 5,000 50,000 250 100 50 [10000,20000]

16-5000-50000 5,000 50,000 250 250 50 [10000,20000]
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Table 3.3. Test Set Transshipment Problems with 10,000 nodes and 50,000 arcs

Problem Number Number Source Sink % FC Fixed-Charge

ID of Nodes of Arcs Nodes Nodes Arcs Range

1-10000-50000 10,000 50,000 200 200 25 [1000,2000]

2-10000-50000 10,000 50,000 200 500 25 [1000,2000]

3-10000-50000 10,000 50,000 500 200 25 [1000,2000]

4-10000-50000 10,000 50,000 500 500 25 [1000,2000]

5-10000-50000 10,000 50,000 200 200 25 [10000,20000]

6-10000-50000 10,000 50,000 200 500 25 [10000,20000]

7-10000-50000 10,000 50,000 500 200 25 [10000,20000]

8-10000-50000 10,000 50,000 500 500 25 [10000,20000]

9-10000-50000 10,000 50,000 200 200 50 [1000,2000]

10-10000-50000 10,000 50,000 200 500 50 [1000,2000]

11-10000-50000 10,000 50,000 500 200 50 [1000,2000]

12-10000-50000 10,000 50,000 500 500 50 [1000,2000]

13-10000-50000 10,000 50,000 200 200 50 [10000,20000]

14-10000-50000 10,000 50,000 200 500 50 [10000,20000]

15-10000-50000 10,000 50,000 500 200 50 [10000,20000]

16-10000-50000 10,000 50,000 500 500 50 [10000,20000]

3.2.5. Test Results

User specified parameters such as candidate list strategy (15, 20) for its length,

20, and number of pivots between replenishment, 15, Tabu parameter 25, number

the linearizations of the objective funtion, 20, and number of nonbasic arcs forced to

enter basis, 5, are used for all test problems solved by FIXNET solver. Parameter

calibration were run on 555 problems to test three different values for the number of

the linearizations and five different values for the number of nonbasic arcs being non-

basic the longest to enter the basis. Candidate list strategy (15, 20), tabu parameter

25, number of the objective function linearizations 20, and the number of nonbasic
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Table 3.4. Test Set Transshipment Problems with 5,000 nodes and 100,000 arcs

Problem Number Number Source Sink % FC Fixed-Charge

ID of Nodes of Arcs Nodes Nodes Arcs Range

1-5000-100000 5,000 100,000 100 100 25 [1000,2000]

2-5000-100000 5,000 100,000 100 250 25 [1000,2000]

3-5000-100000 5,000 100,000 250 100 25 [1000,2000]

4-5000-100000 5,000 100,000 250 250 25 [1000,2000]

5-5000-100000 5,000 100,000 100 100 25 [10000,20000]

6-5000-100000 5,000 100,000 100 250 25 [10000,20000]

7-5000-100000 5,000 100,000 250 100 25 [10000,20000]

8-5000-100000 5,000 100,000 250 250 25 [10000,20000]

9-5000-100000 5,000 100,000 100 100 50 [1000,2000]

10-5000-100000 5,000 100,000 100 250 50 [1000,2000]

11-5000-100000 5,000 100,000 250 100 50 [1000,2000]

12-5000-100000 5,000 100,000 250 250 50 [1000,2000]

13-5000-100000 5,000 100,000 100 100 50 [10000,20000]

14-5000-100000 5,000 100,000 100 250 50 [10000,20000]

15-5000-100000 5,000 100,000 250 100 50 [10000,20000]

16-5000-100000 5,000 100,000 250 250 50 [10000,20000]

arcs to enter the basis 5 were shown to be robust and therefore are used in all test

runs. The following subsections describe the statistical results for the data of 128

problems run by the FIXNET code compared to CPLEX.

Tables 3.8 - 3.11 list the codes’ performances for test problems. To compare

the qualities of the integer solution values obtained by FIXNET and CPLEX, we use

the earlier defined metric, R, as: R = z1/z2, where z1 and z2 are the best integer

upper-bound solution values obtained by FIXNET and CPLEX, respectively, per Sun

et al. [104]. For example, if R = 1.01, then FIXNET’s solution value was 1% larger

than the best from CPLEX.
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Table 3.5. Test Set Transshipment Problems with 10,000 nodes and 100,000 arcs

Problem Number Number Source Sink % FC Fixed-Charge

ID of Nodes of Arcs Nodes Nodes Arcs Range

1-10000-100000 10,000 100,000 200 200 25 [1000,2000]

2-10000-100000 10,000 100,000 200 500 25 [1000,2000]

3-10000-100000 10,000 100,000 500 200 25 [1000,2000]

4-10000-100000 10,000 100,000 500 500 25 [1000,2000]

5-10000-100000 10,000 100,000 200 200 25 [10000,20000]

6-10000-100000 10,000 100,000 200 500 25 [10000,20000]

7-10000-100000 10,000 100,000 500 200 25 [10000,20000]

8-10000-100000 10,000 100,000 500 500 25 [10000,20000]

9-10000-100000 10,000 100,000 200 200 50 [1000,2000]

10-10000-100000 10,000 100,000 200 500 50 [1000,2000]

11-10000-100000 10,000 100,000 500 200 50 [1000,2000]

12-10000-100000 10,000 100,000 500 500 50 [1000,2000]

13-10000-100000 10,000 100,000 200 200 50 [10000,20000]

14-10000-100000 10,000 100,000 200 500 50 [10000,20000]

15-10000-100000 10,000 100,000 500 200 50 [10000,20000]

16-10000-100000 10,000 100,000 500 500 50 [10000,20000]

Also shown is the time multiple, the ratio of the CPLEX solution time to that of

the FIXNET. A time multiple of 2, then, indicates that CPLEX required twice the

solution time as FIXNET.

The table shows the best solution for each code, R metric, solution times for

both codes and time multiple that shows how much faster FIXNET code is com-

pared to CPLEX. There are 64 problems divided into four tables for 5,000–50,000,

10,000–50,000, 5,000–100,000, and 10,000–100,000 nodes and arcs networks. Each

table shows 16 test problems results and provides the overall average, standard devi-

ation, minimum, median, and maximum values for each column. The generated 64
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problems were first run with the heuristic without the dynamic linearization of the

objective function to be able to see the improvements of the latter approach. The

summary results are provided in the Table 3.6.

The dynamic linearization of the objective function heuristic improved 41 out of

64 tested problems with R decreased from 1.1478 to 1.0210 while sacrificing time on

average from 0.74 seconds to 2.86 seconds, which is still faster then CPLEX solution

time by a factor of 753. One major improvement was for problems 7, 8, 13, 14, 15,

and 16 with fixed-charge range of 10,000–20,000: the heuristic without the dynamic

linearization for 24 of those problems could only find solutions within a 21.06% opti-

mality gap on average while the addition of the dynamic linearization of the objective

function has reduced this optimality gap on average to 2.95%. The summary of re-

sults for the EPTS FCGN heuristic with the dynamic linearization for 64 generated

transshipment problems is provided in the Table 3.7.

3.2.6. Statistical Analysis

Two main hypothesis were tested: one for solution quality and another one for

solution time. The first hypothesis states there is no statistical difference in solution

quality between the FIXNET code and CPLEX results, where z̄1 is the average ob-

Table 3.6. Summary Average Results for FCGN heuristic without the Dynamic Lin-

earization for 64 transshipment networks

Problem R CPLEX 12.6.0.0 FIXNET Time Multiple

Size Time in sec Time in sec

5,000-50,000, average for 16 problems 1.071 2319.22 0.55 4563

10,000-50,000, average for 16 problems 1.122 2787.51 0.63 4521

5,000-100,000, average for 16 problems 1.067 2402.36 0.82 2991

10,000-100,000, average for 16 problems 1.165 2711.52 1.03 2600

Overall Average, 64 problems 1.106 2555.15 0.76 3669
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Table 3.7. Summary Average Results for FCGN heuristic with the Dynamic Lin-

earization for 64 transshipment networks

Problem R CPLEX 12.6.0.0 FIXNET Time Multiple

Size Time in sec Time in sec

5,000-50,000, average for 16 problems 1.016 2319.22 1.78 1360

10,000-50,000, average for 16 problems 1.035 2787.52 2.37 1236

5,000-100,000, average for 16 problems 1.013 2402.36 2.78 933

10,000-100,000, average for 16 problems 1.036 2711.53 3.83 742

Overall Average, 64 problems 1.025 2555.15 2.66 1068

Table 3.8. Empirical results for 5,000 nodes and 50,000 arcs transshipment network

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

1-5000-50000 2,402,862 2,417,902 1.006 3600.00 1.50 2406.3

2-5000-50000 2,286,945 2,306,877 1.009 3600.00 1.62 2220.7

3-5000-50000 2,074,403 2,100,240 1.012 3600.00 1.94 1854.3

4-5000-50000 2,084,807 2,091,955 1.003 3600.00 2.49 1444.5

5-5000-50000 2,835,780 2,857,281 1.008 421.16 1.45 289.8

6-5000-50000 2,751,068 2,762,061 1.004 63.81 1.75 36.4

7-5000-50000 2,493,693 2,505,173 1.005 24.83 1.91 13.0

8-5000-50000 2,569,595 2,585,979 1.006 11.29 1.93 5.9

9-5000-50000 2,627,148 2,653,551 1.010 3600.00 1.54 2339.1

10-5000-50000 2,573,229 2,638,675 1.025 3600.00 1.53 2351.0

11-5000-50000 2,288,626 2,308,734 1.009 3600.00 1.52 2375.3

12-5000-50000 2,353,455 2,387,345 1.014 3600.00 1.94 1858.1

13-5000-50000 3,663,600 3,809,449 1.040 3600.00 1.55 2315.6

14-5000-50000 3,731,012 3,904,555 1.047 3600.00 1.84 1956.7

15-5000-50000 3,375,812 3,502,397 1.037 212.09 1.82 116.8

16-5000-50000 3,415,538 3,508,242 1.027 374.30 2.11 177.4

Overall Average 2,720,473 2,771,276 1.016 2319.22 1.78 1360.05

Overall st.dev. 539,974 588,643 0.014 1710.89 0.28 1034.90

Minimum 2,074,403 2,091,955 1.003 11.29 1.45 5.86

Median 2,571,412 2,612,327 1.009 3600.00 1.79 1856.19

Maximum 3,731,012 3,904,555 1.047 3600.00 2.49 2406.27
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Table 3.9. Empirical results for 10,000 nodes and 50,000 arcs transshipment network

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

1-10000-50000 4,349,744 4,378,779 1.007 3600.00 1.98 1821.3

2-10000-50000 4,490,927 4,595,162 1.023 3600.00 1.93 1869.4

3-10000-50000 3,976,488 4,037,253 1.015 3600.00 1.89 1904.1

4-10000-50000 3,984,397 4,047,308 1.016 3600.00 2.22 1622.5

5-10000-50000 5,180,831 5,235,711 1.011 107.82 1.97 54.7

6-10000-50000 5,015,553 5,106,374 1.018 1187.09 2.56 464.0

7-10000-50000 4,513,842 4,561,029 1.010 33.66 2.75 12.2

8-10000-50000 4,797,182 4,870,013 1.015 71.70 2.84 25.2

9-10000-50000 4,833,268 4,916,706 1.017 3600.00 2.07 1735.6

10-10000-50000 5,000,547 5,182,411 1.036 3600.00 2.06 1745.5

11-10000-50000 4,157,376 4,301,084 1.035 3600.00 2.16 1669.6

12-10000-50000 4,536,323 4,822,248 1.063 3600.00 2.13 1694.1

13-10000-50000 6,995,251 7,318,128 1.046 3600.00 2.40 1501.0

14-10000-50000 7,758,786 8,377,551 1.080 3600.00 2.75 1311.0

15-10000-50000 6,671,524 7,163,171 1.074 3600.00 2.94 1223.9

16-10000-50000 7,432,854 8,077,346 1.087 3600.00 3.21 1121.2

Overall Average 5,230,931 5,436,892 1.035 2787.52 2.37 1235.95

Overall st.dev. 1,251,018 1,439,861 0.027 1474.74 0.42 697.18

Minimum 3,976,488 4,037,253 1.007 33.66 1.89 12.24

Median 4,815,225 4,893,360 1.021 3600.00 2.19 1561.76

Maximum 7,758,786 8,377,551 1.087 3600.00 3.21 1904.14
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Table 3.10. Empirical results for 5,000 nodes and 100,000 arcs transshipment network

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

1-5000-100000 1,341,449 1,351,240 1.007 3600.00 2.11 1706.7

2-5000-100000 1,403,777 1,409,230 1.004 3600.00 2.33 1543.7

3-5000-100000 1,286,840 1,294,613 1.006 3600.00 2.28 1578.1

4-5000-100000 1,271,657 1,281,088 1.007 3600.00 2.87 1255.6

5-5000-100000 1,661,398 1,668,129 1.004 32.85 2.64 12.4

6-5000-100000 1,595,888 1,599,188 1.002 15.61 2.73 5.7

7-5000-100000 1,425,020 1,429,909 1.003 13.46 2.67 5.0

8-5000-100000 1,342,179 1,345,508 1.002 13.25 3.96 3.3

9-5000-100000 1,481,727 1,521,095 1.027 3600.00 2.87 1253.9

10-5000-100000 1,553,536 1,595,726 1.027 3600.00 2.41 1491.3

11-5000-100000 1,380,995 1,425,067 1.032 3600.00 2.43 1479.3

12-5000-100000 1,444,148 1,477,136 1.023 3600.00 2.87 1253.9

13-5000-100000 2,231,972 2,278,722 1.021 3600.00 2.56 1404.9

14-5000-100000 2,082,997 2,100,067 1.008 3600.00 2.95 1220.7

15-5000-100000 1,867,499 1,908,741 1.022 1679.39 3.28 511.8

16-5000-100000 1,974,116 2,003,720 1.015 683.13 3.51 194.7

Overall Average 1,584,075 1,605,574 1.013 2402.36 2.78 932.56

Overall st.dev. 298,959 306,819 0.010 1644.14 0.48 671.73

Minimum 1,271,657 1,281,088 1.002 13.25 2.11 3.34

Median 1,462,937 1,499,115 1.008 3600.00 2.70 1253.88

Maximum 2,231,972 2,278,722 1.032 3600.00 3.96 1706.66
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Table 3.11. Empirical results for 10,000 nodes and 100,000 arcs transshipment net-

work

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

1-10000-100000 2,499,089 2,509,067 1.004 3600.00 3.12 1153.4

2-10000-100000 2,419,839 2,552,253 1.055 3600.00 2.83 1271.2

3-10000-100000 2,208,953 2,262,214 1.024 3600.00 3.29 1093.2

4-10000-100000 2,183,920 2,297,404 1.052 3600.00 3.38 1066.7

5-10000-100000 2,827,207 2,857,851 1.011 59.10 3.71 15.9

6-10000-100000 2,798,864 2,801,327 1.001 35.17 3.84 9.2

7-10000-100000 2,497,241 2,499,202 1.001 50.50 3.62 14.0

8-10000-100000 2,448,628 2,456,658 1.003 39.66 4.30 9.2

9-10000-100000 2,899,632 2,989,534 1.031 3600.00 3.23 1113.0

10-10000-100000 2,802,874 3,034,923 1.083 3600.00 3.30 1089.4

11-10000-100000 2,521,131 2,641,567 1.048 3600.00 3.27 1102.4

12-10000-100000 2,666,660 2,950,758 1.107 3600.00 3.50 1027.4

13-10000-100000 3,863,185 4,019,042 1.040 3600.00 4.44 810.6

14-10000-100000 3,851,366 3,956,674 1.027 3600.00 5.37 670.7

15-10000-100000 3,604,918 3,740,119 1.038 3600.00 5.20 692.4

16-10000-100000 3,668,229 3,857,794 1.052 3600.00 4.88 737.3

Overall Average 2,860,109 2,964,149 1.036 2711.53 3.83 742.25

Overall st.dev. 569,500 601,891 0.030 1589.36 0.78 468.42

Minimum 2,183,920 2,262,214 1.001 35.17 2.83 9.17

Median 2,732,762 2,829,589 1.034 3600.00 3.56 918.99

Maximum 3,863,185 4,019,042 1.107 3600.00 5.37 1271.17
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jective value for 64 test problems solved by CPLEX and z̄2 is the average objective

value for the same 64 test problems solved by the FIXNET code.

H0 : z̄1 = z̄2 (3.9)

H1 : z̄1 6= z̄2 (3.10)

The second hypothesis states there is a significant difference in solution time with

the FIXNET code obtaining results faster than CPLEX with T̄1 and T̄2 being average

solution times respectively for CPLEX and FIXNET solvers.

H0 : T̄1 = T̄2 (3.11)

H1 : T̄1 6= T̄2 (3.12)

The level of significance of α = 5% was used for all statistical tests. The follow-

ing paragraphs describe the statistical results for the test data of 64 transshipment

problems run separately by the FIXNET and CPLEX code types.

3.2.6.1. Analysis of Quality of Solution due to Code Type

To support the first hypothesis, an analysis of variance was performed to determine

factors affecting the solution quality. The factors considered were the code type, the

total number of nodes and arcs, number of sources, number of sinks, percent of fixed-

charge arcs, and fixed-charge type. It is expected that solution quality may vary due

to the different problem sizes, nodes and arcs, percent of fixed-charge arcs, and fixed-

charge types. One important factor for this analysis is to determine if the solution

quality difference is due to the code type or any interactions with code type. A
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boxplot of objective values found by CPLEX and FIXNET codes is shown in Figure

3.2. This figure includes all 128 test problems and shows that the solutions found by

the FIXNET are comparable to those found by CPLEX.

Figure 3.2. Box plot of objective value obtained by CPLEX and FIXNET codes

All 128 observations were used for analysis using the ANOVA procedure with

Python 3.7.1 (default, Dec 10 2018, 22:54:23) [MSC v.1915 64 bit (AMD64)] Jupyter

notebook, server version 5.7.4. with significance level of 5%. The results show that

there is no statistically significant difference between CPLEX and FIXNET solution

values with F (1, 126) = 0.117 and p = 0.7327 and descriptive statistics as shown in

Figure 3.3.
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Figure 3.3. Solution Value Descriptive Statistics by Code Type

A Tukey post-hoc testing shows both codes are in the same group. While code type

and number of sinks are not statistically significant factors for the solution quality,

the overall model shows there is a statistically significant difference between solution

values for problems with different number of nodes, arcs, sources, percent of fixed-

charge arcs, and fixed-charge types as overall model have F (7, 120) = 175.091 with

p = 0.0000. The model’s overall coefficient determination R2 = 0.91 with number

of nodes and number of arcs being the most influential factors on solution quality as

shown in Figure 3.4.

Figure 3.4. ANOVA model for Solution Value

A Tukey post-hoc testing shows problems with different number of nodes, arcs,

sources, percent of fixed-charge arcs, and fixed-charge types are in different groups.
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Descriptive statistics are shown in Figure 3.5, 3.6, 3.7, and 3.8 by code type and

by number of nodes and arcs, number of sources, percent of fixed-charge arcs, and

fixed-charge types respectively.

Figure 3.5. Solution Value Descriptive Statistics by Code Type, Number of Nodes,

and Number of Arcs

Figure 3.6. Solution Value Descriptive Statistics by Code Type and Number of

Sources
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Figure 3.7. Solution Value Descriptive Statistics by Code Type and Percent of Fixed-

charge Arcs

Figure 3.8. Solution Value Descriptive Statistics by Code Type and Fixed-charge

Types

3.2.6.2. Analysis of Solution Time due to Code Type

To support the second hypothesis, an analysis of variance was performed to deter-

mine factors affecting the solution times. The factors considered were the code type,

the total number of nodes and arcs, number of sources, number of sinks, percent of

fixed-charge arcs, and fixed-charge type. A boxplot of solution times for CPLEX and

FIXNET clearly shows that FIXNET performance was faster as in Figure 3.9. One

important factor for this analysis is to determine if the solution time difference is due

to the code type or any interactions with code type.

All 128 observations were used for analysis using the ANOVA procedure with

Python 3.7.1 (default, Dec 10 2018, 22:54:23) [MSC v.1915 64 bit (AMD64)] Jupyter

notebook, server version 5.7.4. with significance level of 5%. The results show that

there is a statistically significant difference in the time to obtain a solution by CPLEX
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Figure 3.9. Box plot of solution times spent by CPLEX and FIXNET codes to find

a solution
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and by the FIXNET code with overall model F (1, 126) = 166.799, p = 0.0000 and

descriptive statistics as shown in Figure 3.10. A Tukey test shows that the FIXNET

code performs faster than CPLEX in finding a solution.

Figure 3.10. Solution Time Descriptive Statistics by Code Type

There is no statistically significant difference in the solution time due to number

of nodes, number of arcs, number of sources, and number of sinks. Other factors,

including percent of fixed-charge arcs and fixed-charge types and their interaction

with code type, showed statistically significant effect on solution time including second

order interactions of code type with percent of fixed-charge arcs and fixed-charge types

as shown in Figure 3.11. The model’s overall coefficient of determination R2 = 0.926

with F (7, 120) = 213.451, p = 0.0000.

Figure 3.11. ANOVA model for Solution Time
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While code type is the factor that affects solution time the most, the next im-

portant factor is fixed-charge type. A Tukey post-hoc testing showed that there

are distinctive groups for percent of fixed-charge arcs and fixed-charge types with

descriptive statistics as shown on Figure 3.12.

Figure 3.12. Solution Time Descriptive Statistics by Code Type, Percent Fixed-charge

Arcs, and Fixed-charge Type

3.2.6.3. Analysis of Solution Quality Variation

Based on obtained solution values from all test problems solved by CPLEX and the

FIXNET code, the R metric is calculated as defined earlier. The analysis is used to

determine if there are any factors which affect the value of R. The factors considered

were the total number of nodes and arcs, number of sources and sinks, percent of fixed-

charge arcs, and fixed-charge range type. The analysis of solution quality showed there

is no statistically significant difference between the two codes, but indicated percent

of fixed-charge arcs and number of sinks affected the solution quality. The analysis of

quality variation showed that there were several factors affecting the variability of the

solutions with overall model F (5, 122) = 43.245 and p = 0.0000 with the coefficient

of determination R2 = 0.642, factors and their interactions as shown in Figure 3.13.

A Tukey post-hoc testing of solution quality variation showed that there are dis-

tinctive groups for number of nodes and percent of fixed-charge arcs with descriptive
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Figure 3.13. ANOVA model for R

statistics as shown on Figures 3.14 and 3.18. There is a statistically significant dif-

ference due to the number of nodes with the larger node problems and larger percent

of fixed-charge arcs showing higher variation. Also, larger number of both sources

and sinks cause higher variation. There is no group difference for fixed-charge range

types. Descriptive statistics are shown in Figures 3.15, 3.16, 3.17, 3.19 respectively

for number of arcs, sources, sinks, and fixed-charge types.

Figure 3.14. Descriptive Statistics for R by Number of Nodes

Figure 3.15. Descriptive Statistics for R by Number of Arcs

108



Figure 3.16. Descriptive Statistics for R by Number of Sources

Figure 3.17. Descriptive Statistics for R by Number of Sinks

Figure 3.18. Descriptive Statistics for R by Percent of Fixed-charge Arcs

Figure 3.19. Descriptive Statistics for R by Fixed-charge Type
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3.3. Conclusions

This chapter extends the approach applied to fixed-charge generalized transporta-

tion networks to fixed-charge generalized transshipment problems. Transshipment

problems of large sizes with 5,000 and 10,000 nodes, 50,000 and 100,000 arcs were

generated and the FCGT extreme-point tabu search heuristic that incorporates a di-

versification phase was applied first. To improve the solution quality, the addition of

the dynamic linearization of the objective function to the meta-heuristic EPTS FCGN

is developed. The computational results showed the overall improvement in the qual-

ity of the solution compared to the heuristic without the dynamic linearization of the

objective function for transshipment network problems. The meta-heuristic builds on

the extreme-point tabu search approach and uses the special basis structure of the

forest of quasi-trees for generalized networks. The quality of the solution obtained

by the meta-heuristic with the dynamic linearization for 64 transshipment networks

on average is within 2.5% of optimality reported by CPLEX. While the solution time

has increased slightly compared to smaller transportation problems to 2.66 seconds

on average, it was 1,000 times faster on average than the commercial state-of-the-art

solver CPLEX. The proposed heuristic, testbed parameters and generated problems,

and computational results fill the gap in the published research for fixed-charge gen-

eralized transshipment network problems.
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Chapter 4

Summary of Findings and Conclusions

The fixed-charge generalized network problem has a number of real world ap-

plications that receive scant attention compared to pure classical fixed-charge trans-

portation and transshipment problems. This dissertation presented meta-heuristics to

solve the problems and provided computational comparisons with commercial solver

CPLEX.

Chapter 1 is an overview of generalized networks that presented the mathematical

model formulations including models with fixed charge component and interval-flow

networks. Example real-world applications are also presented showing the diverse

areas where generalized networks with fixed charges are useful.

Chapter 2 presents the initial heuristics for solving the capacitated generalized

fixed charge transportation network problem. The heuristic employs the quasi-forest

structure of a generalized network to perform a pivot in an attempt to find a basic

feasible solution. Once found, the heuristic improves the solution through a tabu

search approach using recency based memory and a network-based implementation

of the primal simplex method as a local search method. Different candidate list

strategies and tabu parameters are calibrated for the FIXNET implementation. The

meta-heuristic is extended by the inclusion of the diversification phase that showed

improved performance for both solution quality and solution time compared to the

local search approach. An extensive computational comparison is performed to evalu-

ate the performance on randomly generated problems of 130 nodes and 3000 arcs and

150 nodes and 5000 arcs networks and different ranges of magnitude of fixed costs
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relative to variable costs. Objective function values and solution time metrics are

used as criteria to compare the performance of the heuristic with the state-of-the-art

solver CPLEX.

Chapter 3 investigates the application of the proposed meta-heuristic to the class

of fixed-charge generalized transshipment problems of larger size with number of nodes

50,000 or 10,000 and number of arcs 50,000 or 100,000. To improve the solution qual-

ity the meta-heuristic is expanded to investigate the performance of the dynamic

linearization of the objective function process for solving FCGN. The robust param-

eters for candidate list strategies and tabu are used for testbed generalized problems.

Experimental design is conducted and best practices for FCGN is developed.

In summary, the main contributions of this research are (1) the development of a

heuristic approach for the fixed-charge generalized transportation problems (FCGT),

(2) the development of a heuristic solution method with dynamic linearization of

objective function for the fixed-charge generalized transshipment problems (FCGN)

of larger sizes with up to 10,000 nodes and 100,000 arcs, (3) presenting new test

problem sets for both FCGT and FCGN, and (4) providing computational testing

of codes for FCGT and FCGN heuristics to demonstrate the effectiveness of each in

terms of speed and quality of solutions.
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Chapter 5

APPENDIX A

5.1. FCGT: Empirical Results Summary by Groups

5.1.1. Summary by Fixed-charge Range Types

5.1.2. Summary by Multiplier Range Types

5.1.3. Summary by Number of Nodes and Arcs

5.1.4. Summary by Difficulty of the Problem based on FC Ranges
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Table 5.1. Empirical results for [50,200] fixed-charge range

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest1-130-3000-A 92,417 92,877 1.005 37.50 0.02 2401.0

fcgnTest2-130-3000-A 95,749 96,571 1.009 12.54 0.02 535.2

fcgnTest3-130-3000-A 188,884 188,995 1.001 253.84 0.03 8123.0

fcgnTest4-130-3000-A 186,597 186,753 1.001 54.12 0.02 3464.9

fcgnTest5-130-3000-A 83,704 84,204 1.006 28.76 0.01 3682.4

fcgnTest6-130-3000-A 84,721 85,036 1.004 21.30 0.01 2727.6

fcgnTest7-130-3000-A 111,283 111,817 1.005 3600.00 0.02 230473.8

fcgnTest8-130-3000-A 112,833 113,199 1.003 3600.00 0.04 92165.9

fcgnTest1-150-5000-A 141,444 141,911 1.003 64.98 0.02 2772.3

fcgnTest2-150-5000-A 145,634 146,140 1.003 275.00 0.02 11732.1

fcgnTest3-150-5000-A 300,692 300,904 1.001 201.66 0.05 3687.3

fcgnTest4-150-5000-A 300,199 300,457 1.001 287.78 0.05 6138.7

fcgnTest5-150-5000-A 133,532 133,972 1.003 357.31 0.02 15243.5

fcgnTest6-150-5000-A 133,556 134,384 1.006 33.48 0.02 2143.3

fcgnTest7-150-5000-A 174,885 175,606 1.004 3600.00 0.06 57600.0

fcgnTest8-150-5000-A 178,830 179,353 1.003 3600.00 0.06 57600.0

Overall average 154,060 154,511 1.004 1001.77 0.03 31280.7

Overall st.dev. 67,199 67,098 0.002 1553.18 0.02 59515.3

Minimum 83,704 84,204 1.001 12.54 0.01 535.2

Median 137,500 138,148 1.003 227.75 0.02 4913.0

Maximum 300,692 300,904 1.009 3600.00 0.06 230473.8
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Table 5.2. Empirical results for [100,400] fixed-charge range

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest1-130-3000-B 102,556 103,715 1.011 25.21 0.04 645.4

fcgnTest2-130-3000-B 101,644 103,133 1.015 2.39 0.02 102.0

fcgnTest3-130-3000-B 205,646 205,825 1.001 297.65 0.02 19055.6

fcgnTest4-130-3000-B 211,636 211,781 1.001 3600.00 0.02 153583.6

fcgnTest5-130-3000-B 94,220 94,624 1.004 8.55 0.01 1095.1

fcgnTest6-130-3000-B 95,727 96,607 1.009 6.27 0.02 401.6

fcgnTest7-130-3000-B 125,433 126,267 1.007 3600.00 0.04 92165.9

fcgnTest8-130-3000-B 122,542 123,898 1.011 3600.00 0.02 153583.6

fcgnTest1-150-5000-B 153,395 154,173 1.005 39.44 0.02 2525.2

fcgnTest2-150-5000-B 152,547 154,688 1.014 78.31 0.03 2506.0

fcgnTest3-150-5000-B 307,406 307,609 1.001 3600.00 0.02 230473.8

fcgnTest4-150-5000-B 326,901 327,121 1.001 71.67 0.03 2293.4

fcgnTest5-150-5000-B 150,938 152,665 1.011 4.09 0.03 131.0

fcgnTest6-150-5000-B 144,183 145,750 1.011 1174.57 0.04 30070.9

fcgnTest7-150-5000-B 189,422 190,846 1.008 3600.00 0.03 115200.0

fcgnTest8-150-5000-B 188,771 189,818 1.006 3600.00 0.05 65825.6

Overall average 167,060 168,032 1.007 1456.76 0.03 54353.7

Overall st.dev. 69,963 69,648 0.005 1737.57 0.01 73216.8

Minimum 94,220 94,624 1.001 2.39 0.01 102.0

Median 151,743 153,419 1.007 187.98 0.03 10790.4

Maximum 326,901 327,121 1.015 3600.00 0.05 230473.8
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Table 5.3. Empirical results for [200,800] fixed-charge range

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest1-130-3000-C 115,185 117,253 1.018 8.53 0.02 546.06

fcgnTest2-130-3000-C 123,007 126,032 1.025 62.80 0.02 4020.30

fcgnTest3-130-3000-C 243,962 244,551 1.002 9.01 0.02 576.79

fcgnTest4-130-3000-C 230,272 231,465 1.005 3600.00 0.02 230473.75

fcgnTest5-130-3000-C 110,144 111,383 1.011 0.74 0.01 94.34

fcgnTest6-130-3000-C 112,186 113,110 1.008 12.13 0.02 776.25

fcgnTest7-130-3000-C 144,935 145,717 1.005 3600.00 0.06 57600.00

fcgnTest8-130-3000-C 143,237 144,141 1.006 3600.00 0.05 76791.81

fcgnTest1-150-5000-C 165,237 167,270 1.012 56.56 0.02 2413.05

fcgnTest2-150-5000-C 171,869 173,661 1.010 64.73 0.04 1657.12

fcgnTest3-150-5000-C 335,554 333,668 0.994 3600.00 0.03 115200.00

fcgnTest4-150-5000-C 362,259 363,080 1.002 3600.00 0.02 153583.62

fcgnTest5-150-5000-C 157,178 159,417 1.014 41.34 0.03 1322.91

fcgnTest6-150-5000-C 159,408 163,524 1.026 1276.01 0.02 54437.29

fcgnTest7-150-5000-C 219,006 220,431 1.007 3600.00 0.08 46082.95

fcgnTest8-150-5000-C 216,078 218,218 1.010 3600.00 0.06 57600.00

Overall average 188,095 189,558 1.010 1670.74 0.03 50198.51

Overall st.dev. 75,959 75,265 0.008 1783.25 0.02 66985.64

Minimum 110,144 111,383 0.994 0.74 0.01 94.34

Median 162,322 165,397 1.009 670.37 0.02 25051.63

Maximum 362,259 363,080 1.026 3600.00 0.08 230473.75
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Table 5.4. Empirical results for [400,1600] fixed-charge range

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest1-130-3000-D 146,472 148,290 1.012 2.24 0.01 286.85

fcgnTest2-130-3000-D 152,589 156,552 1.026 16.69 0.02 1068.69

fcgnTest3-130-3000-D 297,458 298,834 1.005 1781.74 0.01 228135.72

fcgnTest4-130-3000-D 280,474 282,164 1.006 1322.65 0.02 56427.05

fcgnTest5-130-3000-D 138,347 142,631 1.031 46.28 0.02 2962.86

fcgnTest6-130-3000-D 141,452 145,325 1.027 32.91 0.02 2107.00

fcgnTest7-130-3000-D 179,764 182,204 1.014 3600.00 0.09 41889.69

fcgnTest8-130-3000-D 179,973 179,984 1.000 3600.00 0.05 76791.81

fcgnTest1-150-5000-D 202,641 207,865 1.026 10.65 0.02 454.19

fcgnTest2-150-5000-D 200,605 205,896 1.026 476.10 0.03 15235.17

fcgnTest3-150-5000-D 404,886 406,103 1.003 3600.00 0.08 46082.95

fcgnTest4-150-5000-D 395,566 398,868 1.008 3600.00 0.02 230473.75

fcgnTest5-150-5000-D 189,913 196,037 1.032 619.74 0.02 39676.06

fcgnTest6-150-5000-D 191,292 196,155 1.025 6.72 0.02 430.29

fcgnTest7-150-5000-D 257,661 259,674 1.008 3600.00 0.09 41889.69

fcgnTest8-150-5000-D 259,043 261,126 1.008 3600.00 0.06 57600.00

Overall average 226,134 229,232 1.016 1619.73 0.03 52594.49

Overall st.dev. 83,833 83,210 0.011 1659.76 0.03 73374.93

Minimum 138,347 142,631 1.000 2.24 0.01 286.85

Median 195,949 201,025 1.013 971.20 0.02 40782.87

Maximum 404,886 406,103 1.032 3600.00 0.09 230473.75
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Table 5.5. Empirical results for [800,3200] fixed-charge range

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest1-130-3000-E 208,957 216,289 1.035 8.47 0.02 542.38

fcgnTest2-130-3000-E 211,423 220,774 1.044 50.78 0.02 3250.98

fcgnTest3-130-3000-E 407,548 411,877 1.011 457.70 0.02 29301.92

fcgnTest4-130-3000-E 406,078 408,982 1.007 3600.00 0.02 230473.75

fcgnTest5-130-3000-E 192,723 200,963 1.043 4.19 0.02 268.56

fcgnTest6-130-3000-E 190,802 195,845 1.026 4.94 0.02 316.00

fcgnTest7-130-3000-E 238,706 240,583 1.008 3600.00 0.05 65825.56

fcgnTest8-130-3000-E 246,057 247,741 1.007 3600.00 0.04 92165.90

fcgnTest1-150-5000-E 269,725 277,052 1.027 770.73 0.05 16440.51

fcgnTest2-150-5000-E 271,000 290,289 1.071 593.82 0.02 25333.70

fcgnTest3-150-5000-E 542,330 551,278 1.016 3600.00 0.05 76791.81

fcgnTest4-150-5000-E 533,002 539,940 1.013 3600.00 0.04 92165.90

fcgnTest5-150-5000-E 253,274 260,501 1.029 79.16 0.02 5067.60

fcgnTest6-150-5000-E 246,603 257,087 1.043 151.31 0.02 9687.00

fcgnTest7-150-5000-E 340,455 351,475 1.032 3600.00 0.02 230473.75

fcgnTest8-150-5000-E 340,987 351,006 1.029 3600.00 0.02 230473.75

Overall average 306,229 313,855 1.028 1707.57 0.03 69286.19

Overall st.dev. 113,006 112,993 0.017 1736.96 0.01 86280.77

Minimum 190,802 195,845 1.007 4.19 0.02 268.56

Median 261,500 268,777 1.028 682.28 0.02 27317.81

Maximum 542,330 551,278 1.071 3600.00 0.05 230473.75
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Table 5.6. Empirical results for [1600,6400] fixed-charge range

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest1-130-3000-F 329,878 350,065 1.061 44.87 0.04 1148.80

fcgnTest2-130-3000-F 309,944 330,598 1.067 4.18 0.02 178.51

fcgnTest3-130-3000-F 613,303 622,369 1.015 3600.00 0.04 92165.90

fcgnTest4-130-3000-F 671,863 678,027 1.009 3600.00 0.02 230473.75

fcgnTest5-130-3000-F 292,146 310,160 1.062 55.76 0.02 3569.48

fcgnTest6-130-3000-F 294,321 307,546 1.045 2.12 0.02 136.02

fcgnTest7-130-3000-F 370,447 373,127 1.007 3600.00 0.04 92165.90

fcgnTest8-130-3000-F 378,477 380,110 1.004 3600.00 0.04 92165.90

fcgnTest1-150-5000-F 377,150 393,364 1.043 43.35 0.03 1387.18

fcgnTest2-150-5000-F 375,329 396,433 1.056 80.06 0.02 3415.38

fcgnTest3-150-5000-F 793,989 808,525 1.018 23.48 0.03 751.34

fcgnTest4-150-5000-F 809,654 816,569 1.009 3600.00 0.02 230473.75

fcgnTest5-150-5000-F 353,658 378,625 1.071 6.18 0.02 263.81

fcgnTest6-150-5000-F 355,263 366,340 1.031 14.47 0.02 617.21

fcgnTest7-150-5000-F 492,446 499,206 1.014 3600.00 0.07 51201.82

fcgnTest8-150-5000-F 482,548 488,722 1.013 3600.00 0.03 115200.00

Overall average 456,276 468,737 1.033 1592.15 0.03 57207.17

Overall st.dev. 173,125 170,486 0.024 1828.93 0.01 79698.92

Minimum 292,146 307,546 1.004 2.12 0.02 136.02

Median 376,239 386,737 1.025 67.91 0.03 3492.43

Maximum 809,654 816,569 1.071 3600.00 0.07 230473.75
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Table 5.7. Empirical results for [3200,12800] fixed-charge range

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest1-130-3000-G 525,997 561,945 1.068 478.91 0.02 20431.23

fcgnTest2-130-3000-G 515,732 562,115 1.090 21.80 0.04 558.19

fcgnTest3-130-3000-G 1,069,340 1,085,471 1.015 3600.00 0.04 92165.90

fcgnTest4-130-3000-G 1,095,638 1,107,427 1.011 3600.00 0.04 92165.90

fcgnTest5-130-3000-G 498,590 519,061 1.041 27.01 0.01 3458.14

fcgnTest6-130-3000-G 492,861 512,241 1.039 0.91 0.01 117.12

fcgnTest7-130-3000-G 624,195 625,540 1.002 3600.00 0.04 92165.90

fcgnTest8-130-3000-G 631,238 638,869 1.012 3600.00 0.05 65825.56

fcgnTest1-150-5000-G 591,978 627,149 1.059 1795.29 0.04 45962.37

fcgnTest2-150-5000-G 577,676 621,744 1.076 60.42 0.02 3867.90

fcgnTest3-150-5000-G 1,305,463 1,314,328 1.007 3600.00 0.03 115200.00

fcgnTest4-150-5000-G 1,268,954 1,295,758 1.021 3600.00 0.02 230473.75

fcgnTest5-150-5000-G 569,891 603,294 1.059 136.60 0.02 5827.82

fcgnTest6-150-5000-G 551,199 593,668 1.077 124.65 0.02 7979.90

fcgnTest7-150-5000-G 781,501 788,399 1.009 3600.00 0.07 51201.82

fcgnTest8-150-5000-G 769,946 779,461 1.012 3600.00 0.05 65825.56

Overall average 741,888 764,779 1.037 1965.35 0.03 55826.69

Overall st.dev. 281,730 275,842 0.030 1739.15 0.02 61073.42

Minimum 492,861 512,241 1.002 0.91 0.01 117.12

Median 608,087 626,344 1.030 2697.65 0.04 48582.09

Maximum 1,305,463 1,314,328 1.090 3600.00 0.07 230473.75
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Table 5.8. Empirical results for [6400,25600] fixed-charge range

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest1-130-3000-H 909,331 999,018 1.099 80.55 0.02 5157.03

fcgnTest2-130-3000-H 927,249 1,008,104 1.087 238.57 0.02 10177.82

fcgnTest3-130-3000-H 1,925,228 1,977,657 1.027 3600.00 0.02 153583.62

fcgnTest4-130-3000-H 2,033,811 2,049,132 1.008 3600.00 0.01 460947.50

fcgnTest5-130-3000-H 870,628 927,512 1.065 56.42 0.02 2406.83

fcgnTest6-130-3000-H 885,265 953,115 1.077 1.43 0.02 91.68

fcgnTest7-130-3000-H 1,096,563 1,108,508 1.011 3600.00 0.03 115200.00

fcgnTest8-130-3000-H 1,116,227 1,122,982 1.006 3600.00 0.02 153583.62

fcgnTest1-150-5000-H 987,862 1,084,330 1.098 2685.09 0.04 68742.70

fcgnTest2-150-5000-H 984,349 1,056,675 1.073 103.02 0.03 3296.54

fcgnTest3-150-5000-H 2,465,266 2,487,311 1.009 3600.00 0.04 92165.90

fcgnTest4-150-5000-H 2,318,198 2,351,353 1.014 3600.00 0.04 92165.90

fcgnTest5-150-5000-H 925,685 978,339 1.057 11.02 0.01 1410.99

fcgnTest6-150-5000-H 956,078 992,928 1.039 92.58 0.02 5926.94

fcgnTest7-150-5000-H 1,310,903 1,324,079 1.010 3600.00 0.03 115200.00

fcgnTest8-150-5000-H 1,342,828 1,347,275 1.003 3600.00 0.06 57600.00

Overall average 1,315,967 1,360,520 1.043 2004.29 0.03 83603.57

Overall st.dev. 547,746 534,542 0.036 1764.48 0.01 115347.02

Minimum 870,628 927,512 1.003 1.43 0.01 91.68

Median 1,042,212 1,096,419 1.033 3142.55 0.02 63171.35

Maximum 2,465,266 2,487,311 1.099 3600.00 0.06 460947.50
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Table 5.9. Empirical results for [1.0− 1.5] multipliers range

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest5-130-3000-A 83,704 84,204 1.006 28.76 0.01 3682.36

fcgnTest5-130-3000-B 94,220 94,624 1.004 8.55 0.01 1095.11

fcgnTest5-130-3000-C 110,144 111,383 1.011 0.74 0.01 94.34

fcgnTest5-130-3000-D 138,347 142,631 1.031 46.28 0.02 2962.86

fcgnTest5-130-3000-E 192,723 200,963 1.043 4.19 0.02 268.56

fcgnTest5-130-3000-F 292,146 310,160 1.062 55.76 0.02 3569.48

fcgnTest5-130-3000-G 498,590 519,061 1.041 27.01 0.01 3458.14

fcgnTest5-130-3000-H 870,628 927,512 1.065 56.42 0.02 2406.83

fcgnTest6-130-3000-A 84,721 85,036 1.004 21.30 0.01 2727.63

fcgnTest6-130-3000-B 95,727 96,607 1.009 6.27 0.02 401.60

fcgnTest6-130-3000-C 112,186 113,110 1.008 12.13 0.02 776.25

fcgnTest6-130-3000-D 141,452 145,325 1.027 32.91 0.02 2107.00

fcgnTest6-130-3000-E 190,802 195,845 1.026 4.94 0.02 316.00

fcgnTest6-130-3000-F 294,321 307,546 1.045 2.12 0.02 136.02

fcgnTest6-130-3000-G 492,861 512,241 1.039 0.91 0.01 117.12

fcgnTest6-130-3000-H 885,265 953,115 1.077 1.43 0.02 91.68

fcgnTest5-150-5000-A 133,532 133,972 1.003 357.31 0.02 15243.47

fcgnTest5-150-5000-B 150,938 152,665 1.011 4.09 0.03 131.04

fcgnTest5-150-5000-C 157,178 159,417 1.014 41.34 0.03 1322.91

fcgnTest5-150-5000-D 189,913 196,037 1.032 619.74 0.02 39676.06

fcgnTest5-150-5000-E 253,274 260,501 1.029 79.16 0.02 5067.60

fcgnTest5-150-5000-F 353,658 378,625 1.071 6.18 0.02 263.81

fcgnTest5-150-5000-G 569,891 603,294 1.059 136.60 0.02 5827.82

fcgnTest5-150-5000-H 925,685 978,339 1.057 11.02 0.01 1410.99

fcgnTest6-150-5000-A 133,556 134,384 1.006 33.48 0.02 2143.28

fcgnTest6-150-5000-B 144,183 145,750 1.011 1174.57 0.04 30070.92

fcgnTest6-150-5000-C 159,408 163,524 1.026 1276.01 0.02 54437.29

fcgnTest6-150-5000-D 191,292 196,155 1.025 6.72 0.02 430.29

fcgnTest6-150-5000-E 246,603 257,087 1.043 151.31 0.02 9687.00

fcgnTest6-150-5000-F 355,263 366,340 1.031 14.47 0.02 617.21

fcgnTest6-150-5000-G 551,199 593,668 1.077 124.65 0.02 7979.90

fcgnTest6-150-5000-H 956,078 992,928 1.039 92.58 0.02 5926.94

Overall average 314,046 328,502 1.032 138.72 0.02 6388.98

Overall st.dev. 266,194 283,793 0.023 310.61 0.01 12308.13

Minimum 83,704 84,204 1.003 0.74 0.01 91.68

Median 191,047 196,096 1.030 27.88 0.02 2125.14

Maximum 956,078 992,928 1.077 1276.01 0.04 54437.29

122



Table 5.10. Empirical results for [0.5− 1.0] multipliers range

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest3-130-3000-A 188,884 188,995 1.001 253.84 0.03 8122.98

fcgnTest3-130-3000-B 205,646 205,825 1.001 297.65 0.02 19055.57

fcgnTest3-130-3000-C 243,962 244,551 1.002 9.01 0.02 576.79

fcgnTest3-130-3000-D 297,458 298,834 1.005 1781.74 0.01 228135.72

fcgnTest3-130-3000-E 407,548 411,877 1.011 457.70 0.02 29301.92

fcgnTest3-130-3000-F 613,303 622,369 1.015 3600.00 0.04 92165.90

fcgnTest3-130-3000-G 1,069,340 1,085,471 1.015 3600.00 0.04 92165.90

fcgnTest3-130-3000-H 1,925,228 1,977,657 1.027 3600.00 0.02 153583.62

fcgnTest4-130-3000-A 186,597 186,753 1.001 54.12 0.02 3464.92

fcgnTest4-130-3000-B 211,636 211,781 1.001 3600.00 0.02 153583.62

fcgnTest4-130-3000-C 230,272 231,465 1.005 3600.00 0.02 230473.75

fcgnTest4-130-3000-D 280,474 282,164 1.006 1322.65 0.02 56427.05

fcgnTest4-130-3000-E 406,078 408,982 1.007 3600.00 0.02 230473.75

fcgnTest4-130-3000-F 671,863 678,027 1.009 3600.00 0.02 230473.75

fcgnTest4-130-3000-G 1,095,638 1,107,427 1.011 3600.00 0.04 92165.90

fcgnTest4-130-3000-H 2,033,811 2,049,132 1.008 3600.00 0.01 460947.50

fcgnTest3-150-5000-A 300,692 300,904 1.001 201.66 0.05 3687.35

fcgnTest3-150-5000-B 307,406 307,609 1.001 3600.00 0.02 230473.75

fcgnTest3-150-5000-C 335,554 333,668 0.994 3600.00 0.03 115200.00

fcgnTest3-150-5000-D 404,886 406,103 1.003 3600.00 0.08 46082.95

fcgnTest3-150-5000-E 542,330 551,278 1.016 3600.00 0.05 76791.81

fcgnTest3-150-5000-F 793,989 808,525 1.018 23.48 0.03 751.34

fcgnTest3-150-5000-G 1,305,463 1,314,328 1.007 3600.00 0.03 115200.00

fcgnTest3-150-5000-H 2,465,266 2,487,311 1.009 3600.00 0.04 92165.90

fcgnTest4-150-5000-A 300,199 300,457 1.001 287.78 0.05 6138.67

fcgnTest4-150-5000-B 326,901 327,121 1.001 71.67 0.03 2293.43

fcgnTest4-150-5000-C 362,259 363,080 1.002 3600.00 0.02 153583.62

fcgnTest4-150-5000-D 395,566 398,868 1.008 3600.00 0.02 230473.75

fcgnTest4-150-5000-E 533,002 539,940 1.013 3600.00 0.04 92165.90

fcgnTest4-150-5000-F 809,654 816,569 1.009 3600.00 0.02 230473.75

fcgnTest4-150-5000-G 1,268,954 1,295,758 1.021 3600.00 0.02 230473.75

fcgnTest4-150-5000-H 2,318,198 2,351,353 1.014 3600.00 0.04 92165.90

Overall average 713,689 721,693 1.008 2511.29 0.03 118726.27

Overall st.dev. 649,061 658,921 0.007 1563.37 0.02 105663.93

Minimum 186,597 186,753 0.994 9.01 0.01 576.79

Median 405,482 407,543 1.007 3600.00 0.02 92165.90

Maximum 2,465,266 2,487,311 1.027 3600.00 0.08 460947.50
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Table 5.11. Empirical results for [0.5− 1.5] multipliers range

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest1-130-3000-A 92,417 92,877 1.005 37.50 0.02 2401.05

fcgnTest1-130-3000-B 102,556 103,715 1.011 25.21 0.04 645.40

fcgnTest1-130-3000-C 115,185 117,253 1.018 8.53 0.02 546.06

fcgnTest1-130-3000-D 146,472 148,290 1.012 2.24 0.01 286.85

fcgnTest1-130-3000-E 208,957 216,289 1.035 8.47 0.02 542.38

fcgnTest1-130-3000-F 329,878 350,065 1.061 44.87 0.04 1148.80

fcgnTest1-130-3000-G 525,997 561,945 1.068 478.91 0.02 20431.23

fcgnTest1-130-3000-H 909,331 999,018 1.099 80.55 0.02 5157.03

fcgnTest2-130-3000-A 95,749 96,571 1.009 12.54 0.02 535.18

fcgnTest2-130-3000-B 101,644 103,133 1.015 2.39 0.02 102.03

fcgnTest2-130-3000-C 123,007 126,032 1.025 62.80 0.02 4020.30

fcgnTest2-130-3000-D 152,589 156,552 1.026 16.69 0.02 1068.69

fcgnTest2-130-3000-E 211,423 220,774 1.044 50.78 0.02 3250.98

fcgnTest2-130-3000-F 309,944 330,598 1.067 4.18 0.02 178.51

fcgnTest2-130-3000-G 515,732 562,115 1.090 21.80 0.04 558.19

fcgnTest2-130-3000-H 927,249 1,008,104 1.087 238.57 0.02 10177.82

fcgnTest1-150-5000-A 141,444 141,911 1.003 64.98 0.02 2772.30

fcgnTest1-150-5000-B 153,395 154,173 1.005 39.44 0.02 2525.15

fcgnTest1-150-5000-C 165,237 167,270 1.012 56.56 0.02 2413.05

fcgnTest1-150-5000-D 202,641 207,865 1.026 10.65 0.02 454.19

fcgnTest1-150-5000-E 269,725 277,052 1.027 770.73 0.05 16440.51

fcgnTest1-150-5000-F 377,150 393,364 1.043 43.35 0.03 1387.18

fcgnTest1-150-5000-G 591,978 627,149 1.059 1795.29 0.04 45962.37

fcgnTest1-150-5000-H 987,862 1,084,330 1.098 2685.09 0.04 68742.70

fcgnTest2-150-5000-A 145,634 146,140 1.003 275.00 0.02 11732.08

fcgnTest2-150-5000-B 152,547 154,688 1.014 78.31 0.03 2505.99

fcgnTest2-150-5000-C 171,869 173,661 1.010 64.73 0.04 1657.12

fcgnTest2-150-5000-D 200,605 205,896 1.026 476.10 0.03 15235.17

fcgnTest2-150-5000-E 271,000 290,289 1.071 593.82 0.02 25333.70

fcgnTest2-150-5000-F 375,329 396,433 1.056 80.06 0.02 3415.38

fcgnTest2-150-5000-G 577,676 621,744 1.076 60.42 0.02 3867.90

fcgnTest2-150-5000-H 984,349 1,056,675 1.073 103.02 0.03 3296.54

Overall average 332,393 352,874 1.040 259.17 0.03 8087.24

Overall st.dev. 277,267 304,924 0.031 564.50 0.01 14679.22

Minimum 92,417 92,877 1.003 2.24 0.01 102.03

Median 205,799 212,077 1.027 58.49 0.02 2515.57

Maximum 987,862 1,084,330 1.099 2685.09 0.05 68742.70
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Table 5.12. Empirical results for [1.0− 1.0] multipliers range

Problem CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

ID Solution Value Solution Value Time in sec Time in sec

fcgnTest7-130-3000-A 111,283 111,817 1.005 3600.00 0.02 230473.75

fcgnTest7-130-3000-B 125,433 126,267 1.007 3600.00 0.04 92165.90

fcgnTest7-130-3000-C 144,935 145,717 1.005 3600.00 0.06 57600.00

fcgnTest7-130-3000-D 179,764 182,204 1.014 3600.00 0.09 41889.69

fcgnTest7-130-3000-E 238,706 240,583 1.008 3600.00 0.05 65825.56

fcgnTest7-130-3000-F 370,447 373,127 1.007 3600.00 0.04 92165.90

fcgnTest7-130-3000-G 624,195 625,540 1.002 3600.00 0.04 92165.90

fcgnTest7-130-3000-H 1,096,563 1,108,508 1.011 3600.00 0.03 115200.00

fcgnTest8-130-3000-A 112,833 113,199 1.003 3600.00 0.04 92165.90

fcgnTest8-130-3000-B 122,542 123,898 1.011 3600.00 0.02 153583.62

fcgnTest8-130-3000-C 143,237 144,141 1.006 3600.00 0.05 76791.81

fcgnTest8-130-3000-D 179,973 179,984 1.000 3600.00 0.05 76791.81

fcgnTest8-130-3000-E 246,057 247,741 1.007 3600.00 0.04 92165.90

fcgnTest8-130-3000-F 378,477 380,110 1.004 3600.00 0.04 92165.90

fcgnTest8-130-3000-G 631,238 638,869 1.012 3600.00 0.05 65825.56

fcgnTest8-130-3000-H 1,116,227 1,122,982 1.006 3600.00 0.02 153583.62

fcgnTest7-150-5000-A 174,885 175,606 1.004 3600.00 0.06 57600.00

fcgnTest7-150-5000-B 189,422 190,846 1.008 3600.00 0.03 115200.00

fcgnTest7-150-5000-C 219,006 220,431 1.007 3600.00 0.08 46082.95

fcgnTest7-150-5000-D 257,661 259,674 1.008 3600.00 0.09 41889.69

fcgnTest7-150-5000-E 340,455 351,475 1.032 3600.00 0.02 230473.75

fcgnTest7-150-5000-F 492,446 499,206 1.014 3600.00 0.07 51201.82

fcgnTest7-150-5000-G 781,501 788,399 1.009 3600.00 0.07 51201.82

fcgnTest7-150-5000-H 1,310,903 1,324,079 1.010 3600.00 0.03 115200.00

fcgnTest8-150-5000-A 178,830 179,353 1.003 3600.00 0.06 57600.00

fcgnTest8-150-5000-B 188,771 189,818 1.006 3600.00 0.05 65825.56

fcgnTest8-150-5000-C 216,078 218,218 1.010 3600.00 0.06 57600.00

fcgnTest8-150-5000-D 259,043 261,126 1.008 3600.00 0.06 57600.00

fcgnTest8-150-5000-E 340,987 351,006 1.029 3600.00 0.02 230473.75

fcgnTest8-150-5000-F 482,548 488,722 1.013 3600.00 0.03 115200.00

fcgnTest8-150-5000-G 769,946 779,461 1.012 3600.00 0.05 65825.56

fcgnTest8-150-5000-H 1,342,828 1,347,275 1.003 3600.00 0.06 57600.00

Overall average 417,726 421,543 1.009 3600.00 0.05 93972.99

Overall st.dev. 359,558 362,327 0.007 0.00 0.02 53249.62

Minimum 111,283 111,817 1.000 3600.00 0.02 41889.69

Median 251,859 253,708 1.007 3600.00 0.05 76791.81

Maximum 1,342,828 1,347,275 1.032 3600.00 0.09 230473.75
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Table 5.13. Empirical results summary for EPTS FCGT with 130 nodes and 3000

arcs

CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

Solution Value Solution Value Time in sec Time in sec

Overall average 395,869 407,011 1.022 1493.48 0.02 58545.95

Overall st.dev. 409,387 420,722 0.025 1722.20 0.02 86590.11

Minimum 83,704 84,204 1.000 0.74 0.01 91.68

Median 220,954 226,119 1.011 159.56 0.02 6640.00

Maximum 2,033,811 2,049,132 1.099 3600.00 0.09 460947.50

Table 5.14. Empirical results summary for EPTS FCGT with 150 nodes and 5000

arcs

CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

Solution Value Solution Value Time in sec Time in sec

Overall average 493,058 505,295 1.022 1761.12 0.03 55041.79

Overall st.dev. 472,662 481,484 0.024 1689.51 0.02 68639.79

Minimum 133,532 133,972 0.994 4.09 0.01 131.04

Median 331,227 330,394 1.013 972.65 0.03 34873.49

Maximum 2,465,266 2,487,311 1.098 3600.00 0.09 230473.75

Table 5.15. Empirical results summary for EPTS FCGT “difficult” problems with F,

G, H fixed-charge ranges

CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

Solution Value Solution Value Time in sec Time in sec

Overall average 838,044 864,679 1.038 1853.93 0.03 65545.81

Overall st.dev. 511,048 514,990 0.030 1749.79 0.02 87353.95

Minimum 292,146 307,546 1.002 0.91 0.01 91.68

Median 720,904 728,744 1.029 2240.19 0.03 48582.09

Maximum 2,465,266 2,487,311 1.099 3600.00 0.07 460947.50
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Table 5.16. Empirical results summary for EPTS FCGT “easy” problems with A-E

fixed-charge ranges

CPLEX 12.6.0.0 FIXNET R CPLEX 12.6.0.0 FIXNET Time Multiple

Solution Value Solution Value Time in sec Time in sec

Overall average 208,316 211,038 1.013 1491.31 0.03 51542.71

Overall st.dev. 98,342 99,567 0.013 1673.06 0.02 71604.64

Minimum 83,704 84,204 0.994 0.74 0.01 94.34

Median 188,827 189,406 1.008 327.48 0.02 15239.32

Maximum 542,330 551,278 1.071 3600.00 0.09 230473.75
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