
Southern Methodist University Southern Methodist University 

SMU Scholar SMU Scholar 

Biological Sciences Theses and Dissertations Biological Sciences 

Fall 12-2019 

Recruitment of Polycomb-Group Proteins at giant in Drosophila Recruitment of Polycomb-Group Proteins at giant in Drosophila 

Embryos Embryos 

Elnaz Ghotbi Ravandi 
Southern Methodist University, eghotbiravan@smu.edu 

Follow this and additional works at: https://scholar.smu.edu/hum_sci_biologicalsciences_etds 

 Part of the Biology Commons, Developmental Biology Commons, and the Molecular Biology 

Commons 

Recommended Citation Recommended Citation 
Ghotbi Ravandi, Elnaz, "Recruitment of Polycomb-Group Proteins at giant in Drosophila Embryos" (2019). 
Biological Sciences Theses and Dissertations. 5. 
https://scholar.smu.edu/hum_sci_biologicalsciences_etds/5 

This Dissertation is brought to you for free and open access by the Biological Sciences at SMU Scholar. It has been 
accepted for inclusion in Biological Sciences Theses and Dissertations by an authorized administrator of SMU 
Scholar. For more information, please visit http://digitalrepository.smu.edu. 

https://scholar.smu.edu/
https://scholar.smu.edu/hum_sci_biologicalsciences_etds
https://scholar.smu.edu/hum_sci_biologicalsciences
https://scholar.smu.edu/hum_sci_biologicalsciences_etds?utm_source=scholar.smu.edu%2Fhum_sci_biologicalsciences_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholar.smu.edu%2Fhum_sci_biologicalsciences_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/11?utm_source=scholar.smu.edu%2Fhum_sci_biologicalsciences_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=scholar.smu.edu%2Fhum_sci_biologicalsciences_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=scholar.smu.edu%2Fhum_sci_biologicalsciences_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/hum_sci_biologicalsciences_etds/5?utm_source=scholar.smu.edu%2Fhum_sci_biologicalsciences_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/


RECRUITMENT OF POLYCOMB-GROUP PROTEINS 

AT GIANT IN DROSOPHILA EMBRYOS 

 

 

 

 

 

 

 

                                                                                              Approved by: 

 

 

 

 

__________________________ 

Prof. Richard Jones 

Professor of Biology 

 

 

__________________________ 

Prof. Bill Orr 

Professor of Biology 

 

 

__________________________ 

Prof. Robert Harrod 

Associate Professor of Biology 

 

 

__________________________ 

Prof. Tae Hoon Kim 

Professor of Biology 

  



RECRUITMENT OF POLYCOMB-GROUP PROTEINS 

AT GIANT IN DROSOPHILA EMBRYOS 

 

A Dissertation Presented to the Graduate Faculty of the 

Dedman College  

Southern Methodist University  

in  

Partial Fulfillment of the Requirements 

 for the Degree of 

 Doctor of Philosophy 

 with a  

Major in Molecular and Cell Biology  

by  

Elnaz Ghotbi Ravandi 

B.S., Plant Biology, Bahonar University of Kerman 

M.S., Plant Cellular Biology, Bahonar University of Kerman 

 

December 21, 2019 

 



Copyright (2019) 

Elnaz Ghotbi Ravandi 

All Rights Reserved 



 

iv 

 

ACKNOWLEDGMENTS 

I would like to express my appreciation and gratefulness to my advisor, Professor Richard 

Jones, for giving me the amazing opportunity to pursue my Ph.D. in his lab. Dr. Jones always 

inspired me with his amazing analytical thinking abilities, honesty, humbleness and sincere 

affection for science. He will be my role model for the rest of my scientific life. My deepest 

gratitude goes to my committee members, Professors Bill Orr, Robert Harrod and Tae Hoon Kim 

for providing me with scientific advices and suggestions throughout the last five and half years.  

I am very thankful to my lab colleague, Piao Ye, and fly lab manager, Judith Benes, for all 

of their support, help and guidance with my project. I have been very blessed for being surrounded 

by amazing friends: Lacin Yapindi, Tetiana Bowley, Lena Odnokoz, Amila Nanayakkara and Aditi 

Malu, who made my graduate years very memorable.  

I would like to extend my special thanks to my parents, Eshrat and Kayvan, and my siblings 

for their constant support and motivation. Finally, the main gratitude goes to my husband, Ishmael 

Dehghan, whose patience, love and support continuously motivated and encouraged me through 

my graduate years. 

 

 

   

 



 

v 

 

Elnaz Ghotbi Ravandi                                    B.S., Plant Biology, Bahonar University of Kerman 

nnnnnnM.S., Plant Cellular Biology, Bahonar University of Kerman 

 

Recruitment of Polycomb-Group proteins at giant in Drosophila embryos 

 

Advisor: Richard S. Jones, Ph.D. 

Doctor of Philosophy conferred December 21, 2019 

Dissertation completed December 2, 2019 

Polycomb Group (PcG) proteins are evolutionarily conserved epigenetic transcriptional 

regulators that maintain the transcriptional repression of silenced genes. PcG proteins are mainly 

recognized as negative regulators of Hox genes but they target hundreds of other developmental 

decision makers and signaling factors. Mammalian PcG proteins are involved in maintaining the 

pluripotent state of stem cells and their misexpression may lead to a number of human cancers.  

Recruitment of Drosophila PcG proteins requires the presence of specific DNA sequences 

called Polycomb Response Elements (PREs). PREs are complex elements which vary in sequence 

composition and contain binding sites for different DNA binding proteins. We have previously 

mapped two PREs for PcG target gene, giant (gt): PRE1 overlaps with gt promoter region, and 

PRE2, located approximately 6 kb upstream of gt transcription start site (TSS). However, whether 

these two PREs are functionally redundant for the recruitment of PcG proteins and PcG-mediated 

repression or contribute to independent aspects of gt regulation needed to be determined. Here, we 

showed that mutation of predicted extended consensus Pleiohomeotic (Pho) binding sites, led to 

the loss of Pho binding as well as significantly reduced recruitment of Polycomb repressive 

complex 1 (PRC1) and Polycomb repressive complex 2 (PRC2) to PRE1 in embryos from cellular 

blastoderm and mid-embryogenesis stages. We further showed that recruitment of PcG proteins 

and maintenance of the transcriptional repression of gt by PRE2 is independent from PRE1 

activity. Pho-like (Phol) is partially redundant with Pho during larval development and binds to 
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the same DNA sequences in vitro. Surprisingly, we showed that Phol binding is less dependent on 

the presence of consensus Pho/Phol binding sites and appears to play a minimal role in recruiting 

other PcG proteins to gt. Moreover, our results suggested that PRE binding proteins, Spps and 

Dsp1, are differently dependent on the presence of Pho for PRE1 binding. Spps binding to PRE1 

is dependent on Pho. On the other hand, Dsp1 binds PRE1 independently of Pho. 

PcG mediated silencing is divided into two phases: initiation and maintenance. During the 

initiation phase, PcG proteins initially recognize and bind to their target genes. Once PcG proteins 

are recruited to their target genes, they can maintain transcriptional repression through an 

unlimited number of cell cycles. Most studies on PcG proteins have been focused on the 

maintenance phase of PcG silencing, and the molecular mechanisms by which PcG proteins are 

initially recruited to their target genes remained unknown. Two models have been proposed for 

the initial recruitment of PcG proteins to their target genes: instructive and responsive models. 

Instructive model suggests that transcription factors regulate recruitment of PcG proteins to the 

chromatin of their target genes. On the other hand, the responsive model suggests that recruitment 

of PcG proteins is dependent on the transcriptional state of the target genes and repressed 

chromatin is more compatible for the assembly and stable binding of PcG proteins. In order to 

experimentally test these two models, we examined the recruitment of PcG silencing complexes 

at a transcriptionally inert gt transgene in a background in which endogenous gt is transcriptionally 

active. We demonstrated that PcG proteins do not respond to gt transcriptional state. Furthermore, 

we provided evidence for the inhibitory effect of the gt transcriptional activator, Caudal (cad), on 

the recruitment of PcG proteins and proposed that this inhibitory effect is antagonized by the 

presence of the gt repressor, Hunchback (Hb). 
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CHAPTER 1: 

 

 

BACKGROUND 

 

1.1 Polycomb group proteins 

PcG proteins are essential regulators of development and differentiation that maintain the 

transcriptional repression of silenced genes by altering chromatin structure (Simon and Kingston, 

2013). 

Polycomb (Pc) was found in Drosophila melanogaster, as the first PcG gene. While 

performing genetic studies, Lewis (1947) isolated a dominant Pc mutation with the phenotype of 

additional sex combs, a row of modified bristles, on the second and third pairs of legs of adult 

males. Additional dominant and recessive mutations with the same phenotype were identified in 

the following years. Lewis (1978) reported that mutation of Pc results in the transformation of 

thoracic and first seven abdominal segments into the eighth abdominal segment and proposed that 

Pc is a global repressor of all the Bithorax complex (BX-C) genes. Genetic screenings identified a 

number of genes in which mutations caused the extra-sex-combs phenotype, resembling the 

phenotype of weak Pc mutant. These genes were collectively referred to as PcG proteins (Jürgens, 

1985). 

Genome-wide studies in Drosophila, like chromatin immunoprecipitation (ChIP)-chip and 

ChIP-seq, demonstrated the accumulation of PcG proteins at hundreds of genomic loci showing 

that they have a role in silencing many target genes encoding transcription factors, receptors, 
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signaling proteins, morphogens and regulators. PcG proteins are present and conserved in plants, 

Drosophila and mammals (Oktaba et al., 2008). 

1.2 PcG proteins complexes 

Drosophila PcG proteins assemble into three distinct complexes: Polycomb repressive 

complex 1 (PRC1), which can be subdivided into canonical (cPRC1) and non-canonical (ncPRC1) 

complexes, Polycomb repressive complex 2 (PRC2) and Pho-repressive complex (PhoRC) 

(Figure 1.1).  

 

 

 

 

 

 

Figure 1.1- PcG core complexes and their associating proteins in Drosophila. 
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1.2.1 Polycomb repressive complex 1  

Drosophila PRC1 is composed of the core components; Polycomb (Pc or its mammalian 

homolog Cbx2, 4, 6, 7 and 8), Polyhomeotic (Ph or its mammalian subunit Phc1-3), Posterior sex 

combs (Psc, or its six mammalian homologs, Polycomb group RING fingers [PCGFs] including 

Bmi1/PCGF4) and Sex combs extra (Sce, also known as dRing1 and its mammalian homologous 

subunits, Ring1A and Ring1B) (Di Croce and Helin, 2013; Schwartz and Pirrotta, 2013). 

Mutations in genes that encode components of PRC1 result in mis-expression of PcG target genes 

and embryonic lethality. Embryos lacking both maternal and zygotic Pc show the homeotic 

phenotype, which is transformation of all thoracic and abdominal segments to an eighth abdominal 

segment identity (Haynie, 1983; Lawrence et al., 1983). 

Pc contains a chromodomain which can recognize and bind H3K27me3 histone 

modification. Studies showed that chromodomain is required and sufficient to anchor Pc to PcG-

regulated genes (Messmer et al., 1992; Platero et al., 1995; Cao et al., 2002; Fischle et al., 2003; 

Min et al., 2003; Wang et al., 2004). 

Ph contains a protein interaction sterile alpha motif (SAM) domain, which is also present 

in other PcG proteins, Sfmbt and Scm (Isono et al., 2013). Ph subunits multimerize through their 

SAM domains and undergo clustering that enhances binding and spreading of PcG proteins (Isono 

et al., 2013). Mutations in SAM domain of Ph result in the disruption of polymerization and 

complete loss of Ph activity and PcG-mediated repression of target genes (Gambetta and Müller, 

2014). These findings proposed that SAM domain of Ph is essential for the silencing activity of 

PRC1. 

The Psc subunit is involved in the PRC1-mediated chromatin compaction and inhibition of 

nucleosome remodeling complexes (King et al., 2005). Psc can be replaced by its functional 
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homolog, Su(z)2, in PRC1 complex (Lo et al., 2009). Psc and Su(z)2 share similar amino-acid 

compositions in their C-terminal and contain a 200-amino acid homology region (Brunk et al., 

1991; van Lohuizen et al., 1991; Emmons et al., 2009). The C-terminal non-homologous region is 

required for chromatin compaction and inhibition of chromatin remodeling, while the homology 

region mediates incorporation of Psc/Su(z)2 into the PRC1 complex (King et al., 2005; Lo et al., 

2009).  

Sce, also known as dRing, monoubiquitylates lysine 118 of histone H2A (H2AK118ub1) 

(Wang et al., 2004). Pengelly et al. (2015) showed that the catalytic activity of Sce is not necessary 

for repression of canonical PcG target genes.  

Various ncPRC1s have been identified in both flies and vertebrates. Mammalian PRC1 

complexes are very complex and diverse because each Drosophila subunit has several mammalian 

homologs and can form combinational complexes. Mammalian ncPRC1 complexes containing 

different PCGFs, occupy distinct genomic loci and have specific enzymatic activities compared to 

canonical complexes. PRC1 diversity indicates that each PCGF, or the accessory proteins 

associated with it, may drive targeting by a different mechanism (Gao et al., 2012).   

Drosophila ncPRC1 complex, dRAF, contains Psc, dRing and the histone H3K36 

demethylase, Kdm2 (Gao et al., 2012). Lagarou et al. (2008), showed that dRAF complex in 

Drosophila, but not cPRC1 complex, is responsible for catalyzing the H2AK118ub1 both in vitro 

and in vivo. The ubiquitylation mark recruits PRC2 complex and inhibits elongation of RNA 

polymerase II (RNAPII) (Blackledge et al., 2014). However, other studies showed that cPRC1 and 

ncPRC1 mediated H2AK118ub resulted in the recruitment of PRC2 and deposition of H3K27me3 

(Blackledge et al., 2014; Kalb et al., 2014; Cooper et al., 2016). Moussa et al. (2019) reported that 

ectopic recruitment of both cPRC1 and ncPRC1 subunits in mouse embryonic stem cells (mESCs) 
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resulted in the formation of a functional PRC1 and transcriptional silencing. However, the same 

study further showed that only cPRC1-dependent gene repression can be maintained through 

genome replication.  

1.2.2 Polycomb repressive complex 2  

PRC2 core complex is composed of Enhancer of zeste (E(z), or its mammalian homologs; 

Ezh1 or Ezh2), Suppressor of zeste 12 (Su(z)12 ), or its mammalian homolog with the same name), 

Extra sex combs (Esc), or its mammalian homolog Eed) and p55 (Nurf55 or Caf1, or its 

mammalian homologs; RBBP4 and RBBP7) (Di Croce and Helin, 2013; Schwartz and Pirrotta, 

2013).  

E(z) contains a SET domain which mono di and trimethylates lysine 27 of histone H3 

(H3K27) (Cao et al., 2002; Czermin et al., 2002; Kuzmichev et al., 2002; Muller et al., 2002; 

reviewed in Cao and Zhang, 2004). Deposition of H3K27me3 is required for PcG-mediated 

repression.  

Su(z)12 interacts with E(z) and is required for the activity and stable formation of PRC2 

complex through a conserved VEFS-box domain (O’Meara and Simon, 2012).  

The Esc subunit facilitates protein-protein interactions through its WD (tryptophan and 

aspartic acid residues) repeats (O’Meara and Simon, 2012), and allosterically enhances PRC2 

repression by preferential binding to H3K27me3 and allowing local spreading of silencing 

(Margueron et al., 2009; O’Meara and Simon, 2012). E(z) possesses a low enzymatic activity in 

the absence of Esc and Su(z)12 (reviewed in O’Meara and Simon, 2012). 

 P55 is the only subunit of PRC2 complex present in a number of other chromatin 

remodeling complexes (O’Meara and Simon, 2012). P55 can physically interact with Su(z)12 as 

well as H3 and H4, but little is known about the functional significance of these interactions, 
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because loss of p55 has subtle consequence on PRC2 activity (Nowak et al., 2011; O’Meara and 

Simon, 2012; Wen et al., 2012). 

1.2.3 Pho-repressive complex 

Two Pho-containing PcG complexes exist in Drosophila. Pho repressive complex 

(PhoRC), consists of Pho or Phol bound to Scm-related gene containing four mbt domains (Sfmbt) 

(Klymenko et al., 2006; Grimm et al., 2009). A second Pho-containing complex is Pho-INO80 that 

contains the INO80 nucleosome remodeling complex (Klymenko, 2006).  

Among all the PcG proteins, Pho and Phol are the only subunits with verified DNA-binding 

activity. They bind DNA in a sequence-specific manner and have central roles in the recruitment 

of PcG complexes to their target genes (Grossniklaus and Paro, 2014). Pho and Phol are partially 

redundant for the recruitment of PcG proteins at bxd PRE in wing imaginal discs (Wang et al., 

2004).  

Phol and Pho share 80% sequence identity and all amino acids involved in making DNA 

contacts are conserved in these two proteins. They also share a conserved spacer domain which 

binds to Sfmbt (Alfieri et al., 2013). Brown et al. (2003) showed that in gel shift assays, Phol binds 

to the oligonucleotide containing a Pho-binding site but not to the one with a mutated Pho binding 

site, suggesting that Pho and Phol can recognize and bind to the same sequence of DNA. 

Kahn et al. (2014) showed that both Pho and Phol can form a complex with Sfmbt, but Pho 

is favored and outcompetes Phol in PhoRC complex. Consistent with it, the same authors reported 

that the interaction of Pho and Phol with Sfmbt is mutually exclusive, as they showed that Phol 

binding was increased upon RNAi knockdown of Pho. Furthermore, genome-wide analysis 

suggested different genomic distributions for Pho and Phol. Although ChIP-chip peaks for Pho 
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correspond to PREs and colocalize with Sfmbt, Phol peaks reside outside PcG domains, within 

300 bp of TSS of a subset of active genes in Sg4 cells (Kahn et al., 2014). 

Both Phol and Pho contain four zinc fingers that are 96% and 80% identical to those of Yin 

Yang1 (YY1), a mammalian transcription factor, respectively (Brown et al., 2003). Despite YY1 

binding to the similar DNA sequnces as Pho and Phol, it does not bind to mammalian PcG target 

genes. YY1 transgene is able to rescue homeotic phenotypes of Pho mutant flies (Atchison et al., 

2003), suggesting an efficient interaction of YY1 with Sfmbt. However, the interactions involved 

in the recruitment of PcG proteins to PREs in Drosophila are not conserved in mammals, as YY1 

does not play a role in the mammalian PcG-mediated repression (Kahn et al., 2014). 

1.3 Polycomb response elements  

1.3.1 Introduction 

Zink and Paro (1989) detected PcG proteins at specific bands on Drosophila salivary gland 

polytene chromosomes. Some of these bands represented locations of Hox genes suggesting the 

presence of PcG-recruiting DNA sequences in these genes. In 1991, Muller and Bienz identified a 

DNA fragment from the regulatory region of the homeotic gene, Ultrabithorax (Ubx), which was 

able to maintain the β-galactosidase expression in a pattern recapitulating of the endogenous Ubx 

throughout embryogenesis (Müller and Bienz, 1991). Soon after, more DNA fragments were 

discovered that could recruit PcG proteins in transgenic experiments. These specific cis-regulatory 

sequences were called “Polycomb response elements” (PREs).  

Recruitment of Drosophila PRC2 and PRC1 to their target genes needs the presence of one 

or more PREs (Simon et al., 1993). PREs are complex elements which vary in sequence 

composition and size (Kassis and Kennison, 2010). Some PREs are located at the promoter of 

genes, depleted of nucleosomes. These PREs are well-positioned to regulate the transcriptional 

activity of the PcG target genes. Other PREs, such as Hox PREs, are located many kilobases far 
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from the promoters they control, and form looping interactions with the promoters of their 

repressed target genes (Oktaba et al., 2008).  

Genome-wide studies on the PcG proteins, estimated the presence of two hundred PREs in 

the Drosophila genome (Schwartz et al., 2010). Although many PREs are known, very few PREs 

have been studied in detail. The bxd PRE from the cis-regulatory region of Ubx was the first PRE 

to be identified by several research groups in 1990s (Simon et al., 1993; Chan et al., 1994). 

Although studies of different Drosophila PREs have identified a number of binding sites 

to be important for PRE activity (reviewed in Kassis and brown, 2013), the exact sequence 

composition required for PRE activity remain unknown (Kassis and Brown, 2013). This is 

attributable to the presence of different combinations of PRE binding proteins and low 

conservation of their consensus binding site sequences. PREs contain binding sites for many 

different DNA binding proteins including Pho, GAGA factor (Gaf), Pipsqueak (Psq), Dorsal 

switch protein 1 (Dsp1), Zeste, Sp1 factor for pairing-sensitive silencing (Spps) and Grainyhead 

(Grh) (Kassis and Kennison, 2010). 

 Previous studies showed that not all identified PRE binding proteins are present at all 

PREs. Pho is the only known PRE binding protein, identified at all characterized PREs (Kassis 

and Brown, 2013). Moreover, PRE binding proteins can bind to many sites that are not within 

PREs (Kassis and brown, 2013). Several research groups have attempted to develop alignment 

algorithms to predict location of PREs based on the consensus sequences of PRE binding proteins 

(Ringrose et al., 2003; Fielder and Rehmsmeier, 2006). However, prediction programs have failed 

due to the heterogeneous nature of PREs (Schwartz et al., 2006; Oktaba et al., 2008; Cunningham 

et al., 2010). 
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1.3.2 Mapping Drosophila PREs 

PRE fragments were discovered in transgenic Drosophila using three approaches. First, the 

majority of PREs produce a phenomenon called “pairing-sensitive silencing” (PSS) in which PRE-

containing transgene represses the expression of the P element reporter gene, mini-white, and the 

degree of repression is stronger in flies homozygous for PRE–containing P element at same or 

nearby sites compared to the flies heterozygous for it (Kassis, 1994). However, not all 

characterized PREs produce PSS (Muller et al.,1999), and minimal PRE fragments may need 

additional sequences to act as a pairing-sensitive silencer.  

Second, when incorporated in a transgenic construct and integrated elsewhere in 

Drosophila genome, PREs are able to prevent the ectopic expression of reporter genes, and this 

repression is dependent on PcG proteins (Müller and Bienz, 1991; Simon et al., 1993; Chan et al., 

1994; Chiang et al., 1995). Simon et al. (1993) showed that PRE–including transgenes containing 

Ubx regulatory regions were able to maintain PcG repression of a lacZ reporter gene in a pattern 

recapitulating that of the endogenous Ubx expression. Moreover, loss of the bxd PRE activity of 

Ubx and ectopic expression of the transgene was observed in a Pc mutant background (Fristch et 

al., 1999). Additional characterization of the bxd PRE indicated that although a short ~560 bp 

fragment was able to maintain PcG repression, improved maintenance could be obtained with 

larger constructs. The latter finding proposed that sequences flanking the strictly delimited PREs 

may contribute to PRE activity, or alternatively, PREs could cooperate with one another in the 

regulatory regions (Simon et al., 1993; Chan et al., 1994; Cunningham et al., 2010).  

 Third, PRE-containing transgenes were able to form new PcG protein binding sites in 

the polytene chromosomes of the larval salivary glands (Zink et al., 1991).  
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1.3.3 PRE binding proteins implicated in PRE function 

  Multiple studies suggested that sequence-specific PRE binding proteins play important 

roles in the recruitment of PcG complexes to PREs. Consensus sequences for the identified PRE 

binding proteins are listed in Table 1.1. 

 

 

 Table 1.1- Consensus binding sites for 

known PRE binding proteins (Pirrotta et 

al., 2017). 

 

 

 

 

 

 

1.3.3.1 Pho and Phol  

Pho is the only PRE binding protein that is present at all well characterized PREs. Pho 

binding sites are required for the PRE activity of the endogenous Ubx gene (Kozma et al., 2008), 

but are not sufficient to recruit PcG proteins (Americo et al., 2002). 

Wang et al. (2004) reported that Pho and Phol play an important but redundant role in the 

recruitment of PcG proteins at bxd PRE, other genetic experiments also demonstrated stronger 

derepression of Ubx in wing discs in pho; phol double mutants compared to pho mutants (Brown 

et al., 2003).  

Protein Sequence Specifity 

Pho GCCAT(T/A)TT 

Phol GCCATTAC 

Gaf GAGAG 

Psq GAGAG 

Spps (G/A)(G/A)GG(C/T)G(C/T) 

Dsp1  GAAAA 

Grh  TGTTTTTT 
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Genome–wide studies have shown that binding of Pho is strongly correlated with genomic 

location of PRC1 subunits, strengthening the consensus view of Pho’s central role in the 

recruitment of PcG proteins (Oktaba et al., 2008). Despite strong correlation of Pho binding with 

Pc and Ph, Phol peaks do not show a high correlation (only 21%) with genomic positions bound 

by PRC1 (Schuettengruber et al., 2009). However, Brown et al. (2003) proposed that Pho and Phol 

recognize and bind to the same sequence of DNA. 

1.3.3.2 Gaf and Psq 

GAGAG sequences are the binding sites for two proteins, Gaf and Psq (Lehmann et al., 

1998). Gaf/Psq-binding sites are important for the function of many PREs (reviewed in Kassis, 

2002; Fujioka et al., 2008). In vitro studies suggest that binding of Gaf makes the DNA more 

accessible for Pho binding (Mahmoudi et al., 2003). However, mutated Gaf sites showed that Gaf 

had no effect on bxd PRE activity (Brown et al., 2003). ChIP studies have shown that Gaf binds to 

about 50% of sites bound by PcG proteins (Negre et al., 2006; Schuettengruber et al., 2009). 

Studies showed that Psq mutation increases derepression of Ubx in larvae heterozygous for a Pc 

allele, indicating that Psq might play an important role in PcG repression (Huang et al., 2002).  

1.3.3.3 Spps 

Spps is a member of Sp1/KLF zinc finger protein family. Studies showed that Sp1/KLF 

binding sites are required for PSS and PRE activity of a 181 bp PRE from engrailed (en) gene 

(Americo et al., 2002; Brown et al., 2005). Spps colocalizes with PRC1 in polytene chromosomes, 

and its mutation enhances pho mutant phenotype, indicating that Pho and Spps either function 

cooperatively or in different parts of the same pathway to repress PcG target genes (Brown and 

Kassis, 2010). In a recent study, Brown et al. (2017) showed loss of recruitment of Pho, E(z), and 

PRC1 subunits and a global reduction of H3K27me3 in PcG domains in mutant larvae lacking 
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both maternal and zygotic Spps. The latter study suggested Spps is involved in PcG stable binding 

or recruitment.  

1.3.3.4 Zeste 

Zeste is involved in both activating and silencing activities of PREs depending on the 

context (Saurin et al., 2001). Genome-wide binding data showed small overlap between Zeste and 

Pho and/or Ph (Oktaba et al., 2008; Schuettengruber et al., 2009). Zeste mutants do not show PcG 

phenotypes and are homozygous viable and fertile (Goldberg et al., 1989).  

1.3.3.5 Dsp1 

Dsp1 plays an important role in the recruitment of PcG complexes to polytene 

chromosomes. Dsp1 mutants die prematurely as adults with homeotic phenotypes (Decoville et 

al., 2001). Dejardin et al. (2005) showed that mutations of Dsp1 binding sites within the PREs of 

en and Fab7, abrogated PSS of mini-white gene, suggesting that Dsp1 is required for the silencing 

activity of PREs. Genome-wide studies on Drosophila embryos demonstrated that Dsp1 binds to 

about 50% of the Ph/Pc sites, while its consensus binding sites are absent at these PREs 

(Schuettengruber et al., 2009). Dsp1 contains two high mobility group (HMG) domains which 

bind minor groove of DNA, and introduces a prominent bend into the DNA (Agresti and Bianchi, 

2003; Stros, 2010), facilitating long-range interactions or binding of PcG proteins. 

1.3.3.6 Grh 

Grh was first identified at the iab-7 PRE, and shown to interact with Pho in vitro (Blastyak 

et al., 2006). There are discrepancies in the literature about the consensus binding sites for Grh. 

Studies have suggested that binding and presence of Grh may be important for only a subset of 

PREs. Tuckfield et al. (2002) have found that interaction of mammalian Grh-family member, CP2, 

with a mammalian Ring protein, DinG, was necessary for transcriptional repression by PcGs. 

Drosophila Grh can act as either a transcriptional repressor or activator in the regulation of many 
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genes. Hur et al. (2002) showed that Grh binding sites were not able to maintain PcG-mediated 

repression of a Ubx-lacZ reporter construct in Drosophia embryos. The role of Grh in PcG-

mediated repression is not clear yet. 

1.3.4 PREs in vertebrates 

In recent years, few mouse or human DNA fragments were shown to act like Drosophila 

PREs in recruiting PRC2 or PRC1 subunits, when incorporated in transgenic constructs and 

integrated the in genome (Mendenhall et al., 2010; Arnold et al., 2013; Woo et al., 2010). Some 

of these elements appear to autonomously recruit both PRC complexes, while others recruit only 

one of the two complexes. 

 Little is known about DNA binding proteins or sequence composition involved in the 

recruitment of mammalian PcG proteins. Studies showed that unmethylated CpG islands are the 

functional equivalent of PREs in vertebrates (Farcas et al., 2012; Klose et al., 2013). CpG islands 

are regions of high density of cytosine and guanine dinucleotides compared to the rest of the 

genome. Since methylated cytosine tends to mutate to thymine, methylation of CpG dinucleotides 

elsewhere in the genome leads to their eventual depletion over evolutionary time. The majority of 

CpG islands do not undergo DNA methylation, and thus maintain a high density of CpG 

dinucleotides (Deaton and Bird, 2011). CpG islands, lacking bound-transcriptional activators, have 

been reported to target PRC2 (Mendenhall et al., 2010; Lynch et al., 2012; Jermann et al., 2014). 

1.4 Trithorax group proteins and TrxG response elements 

Trithorax group (TrxG) proteins are required to maintain the active state of their target 

genes. Several of these proteins were initially identified in Drosophila as suppressors of homeotic 

phenotype in a screen for suppressors of Pc or Antennapedia (Antp) mutations (Kennison and 

Tamkun, 1988).  
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Members of the TrxG complex are involved in chromatin remodeling, histone modification 

and transcription initiation and elongation (Kingston and Tamkun, 2014; Steffen and Ringrose, 

2014). For examples; Set1, Trithorax (Trx) and Trithorax-related (Trr) are involved in methylation 

of H3K4. Set1 is responsible for global gene activation, while Trx and Trr target specific genes 

(Schuettengruber et al., 2011; Shilatifard, 2012). CBP acetylates H3K27, while UTX demethylates 

H3K27. Ash1, another subunit of the TrxG, contains histone methyl transferase activity specific 

for H3K36 (Schuettengruber et al., 2011).  

Studies have shown that TrxG proteins also act through PREs, which in this case are called 

TrxG response elements (TREs) (reviewed in Ringrose and Paro, 2004). The first evidence 

showing that PREs could maintain either the active or silenced chromatin state comes from testing 

a DNA fragment from the BX-C, Fab-7, within a vector with a Gal4-inducible lacZ gene followed 

by the mini-white marker (Cavalli and Paro, 1998). Inclusion of PRE-containing Fab-7 fragment, 

resulted in the transcriptional repression of both lacZ and mini-white genes. However, after Gal4-

mediated activation of lacZ, expression of both genes, lacZ and mini-white, were maintained in 

the developing embryos (Cavalli and Paro, 1998). Further studies indicated that the transcriptional 

state of a DNA element, determines whether they act as PREs or TREs (Schmitt et al., 2005).  

An enhancer-trap assay (reviewed by Kassis and Brown, 2013), using an en-lacZ transgene 

which contains two PREs of en, showed that each PRE could interact with flanking regulatory 

DNA as either PRE or TRE based on the genomic context. The latter finding suggests that PREs 

form looping interactions with enhancers or silencers surrounding the transgene insertion site. 

 

 

 



 

15 

 

1.5 Mechanisms of recruitment of PcG proteins 

1.5.1 PcG-associated proteins 

1.5.1.1 Polycomb-like 

In addition to the core components of PcG complexes, additional proteins interact with 

these complexes and contribute to PcG-mediated repression. Polycomb-like (Pcl) is a 

substoichiometric subunit of PRC2. Nekrasov et al. (2007) reported that in Drosophila embryos, 

a fraction of PRC2 contains Pcl as a stable subunit and inclusion of Pcl in PRC2 is necessary for 

deposition of high levels of H3K27me3 at PcG target genes. In larvae, Pcl exists in a complex that 

is distinct from PRC2 or PRC1 and contributes to target site binding by the latter complexes (Savla 

et al., 2008). The same authors further showed that Pcl binds to bxd PRE in the absence of PRC2 

and PRC1, while its binding was dependent on the presence of Pho and Phol. Choi et al. (2017) 

showed that Pcl contains a winged helix DNA binding domain, through which it interacts with 

DNA and extends PRC2 residence time on chromatin and therefore stimulates deposition of 

H3K27me3.  

Mammalian homologs of Pcl; PHF1, MTF2, and PHF19, all contain one Tudor domain 

and two PHD fingers (Perino et al., 2018). MTF2 and PHF19 both recruit PRC2 to its target genes 

in mESCs, but through different ways. PHF19 needs its Tudor domain for PRC2 targeting to 

chromatin, while MTF2 uses its second PHD finger for PRC2 recruitment (Ballaré et al., 2012; 

Brien et al., 2012; Casanova et al., 2011; Hunkapiller et al., 2012; Walker et al., 2010). 

Furthermore, PHF1 was reported to trigger the activity of PRC2, both in HeLa cells and 

recombinant nucleosomes, but it does not seem to be involved in recruiting PRC2 to chromatin 

(Cao et al., 2008; Sarma et al., 2008). Perino et al. (2018) showed that MTF2 was essential for 

DNA-driven recruitment of PRC2 complex in mouse ESCs. MTF2 interacts with DNA backbone, 
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and the associated helical structure dictate MTF2 binding to unmethylated CpGs (Perino et al., 

2018). 

1.5.1.2 Jarid2 

Jarid2 is a member of Jumonji family of proteins, which does not possess histone 

demethylase activity unlike other members of this family (Sanulli et al., 2015). Grijzenhout et al. 

(2016) reported identification of a PRC2 complex containing Jarid2. A more recent study showed 

that Jarid2 is required for both the initial targeting and stable binding of PRC2 to chromatin  (Oksuz 

et al., 2018). Interestingly, genome-wide localization studies also showed that Jarid2 is needed for 

the binding of PcG proteins to their target genes in ESCs. Jarid2 has two DNA binding domains, 

an AT-rich interaction domain (ARID), required for the recruitment of PRC2 to its target genes 

(Pasini et al., 2010), and a Zn-finger domain, which specifically binds GC-rich regions (Li et al., 

2010). Considering that PcG proteins are associated with GC-rich promoters, these data suggest a 

role for Jarid2 in the recruitment of PcGs to their target genes.  

Jarid2 was reported to be di- and tri-methylated by PRC2 complex on lysine 116 in 

mammalian cells (Sanulli et al., 2015).  Although methylated Jarid2 was shown to be dispensable 

for the recruitment of PRC2, it promotes enzymatic activity of E(z) and is required for the proper 

deposition of PRC2-mediated H3K27me3 (Sanulli et al., 2015). 

1.5.1.3 Sex Comb on Midleg (Scm) 

Scm is conserved between Drosophila and mammals, and is largely found in an 

uncharacterized protein complex that is distinct from PRC1 in Drosophila embryos (Peterson et 

al., 2004). However, its co-purification with PRC1 in substochiometric amounts was also reported 

(Peterson et al., 2004). Scm and Sfmbt proteins contain mbt domains, through which they interact 

with one another (Kassis and Kennison, 2010). Scm, Sfmbt and Ph contain both Zn finger motifs 

and SPM-type SAM domains, leading to the physical interaction of Scm with these two protein 



 

17 

 

(Saurin et al., 2001; Peterson et al., 2004; Grimm et al., 2009). The polymerization capacity of 

Scm though its SAM domain and its interaction with other PcG proteins may play an important 

role in the propagation of PcG domain from target sites to the neighboring chromatin environment 

(Kang et al., 2015) 

By using RNAi and mutations to knock down various PcG subunits, Wang et al. (2010) 

demonstrated that binding of Scm to bxd PRE is not dependent on the presence of Pho, PRC1 or 

PRC2. However, Scm depletion dislodges both PRC1 and PRC2, while it has no effect on the 

association of Pho with chromatin (Wang et al., 2010). A more recent study showed that Scm 

binding to bxd PRE was greatly reduced upon mutation of Pho binding sites in this PRE fragment, 

suggesting the dependence of Scm binding on the presence of Pho (Frey et al., 2016).  

1.5.2 Histone marks and histone modifying enzymes  

Histone modifications, deposited by histone modifying complexes, have been shown to 

regulate PcG recruitment. Among the histone modifications, TrxG deposited active histone marks 

can inhibit PRC2 activity and counteract PcG-mediated silencing (Klymenko and Müller, 2004; 

Papp and Müller, 2006). Yuan et al. (2010) reported that in HeLa cells, H3K27me3 does not co-

exist with H3K36me2/me3 on the same histone H3 tail. Moreover, the activity of human, mouse 

and Drosophila PRC2 is inhibited by preinstalled H3K4 and H3K36 methylation in vitro, 

indicating a conserved mechanism for inhibiting PcG-mediated silencing (Paro et al., 2015).  

Schmitges et al. (2011) found that a complex of PRC2 subunits, Nurf55-Su(z)12, binds the 

N-terminus of unmodified H3 and this binding is prevented by H3K4me3. In vitro assays showed 

that impaired nucleosome binding does not inhibit the PRC2 catalytic activity by H3K4me3-

containing nucleosomes, but it is rather the reduced catalytic turnover that drives H3K4me3-

mediated inhibition (Schmitges et al., 2011). These data suggest that PRC2 can act like a control 

module which inhibits deposition of H3K27me3 on genes with pre-existing active histone marks. 
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The Tudor domains of all three mammalian homologs of Pcl (PHF1, MTF2, and PHF19) 

bind H3K36me3 with high affinity. PHF19 recruits NO66, the H3K36 demethylase (Alhaj Abed 

and Jones, 2012; Brien et al., 2012). KDM2b, another H3K36me2/me3 demethylase, also 

colocalizes to PHF19-contaning PRC2 in ESCs (Alhaj Abed and Jones, 2012; Ballaré et al., 2012), 

suggesting that Pcl-family proteins facilitate the recruitment of PRC2 into newly repressed target 

genes to change the expression state of these genes.  

E(z) is the only methyltransferase for H3K27, and catalyzes both H3K27me1/me2, in 

addition to H3K27me3 (Ferrari et al., 2014). However, the three forms of methylated H3K27 are 

mutually exclusive. H3K27me1 is enriched within the gene body of active genes and shows a 

positive correlation with H3K36me3. De et al. (2019) also reported that H3K36me3 domain 

inhibited the interactions between PREs and the neighboring chromatin as well as spreading of the 

PcG domain. H3K27me2 accumulates within intergenic and intragenic domains and serves as a 

protection against non-specific H3K27 acetylation (Ferrari et al., 2014). The recent findings 

suggest that PRC2 transiently binds to most of the genomic chromatin and samples the chromatin 

regardless of the DNA sequence, leading to the H3K27me1/me2. Additional factors, including 

non-coding RNAs (ncRNAs), transcription factors, transcriptional state, or histone modifications 

can then stabilize binding of PRC2 to chromatin where it can catalyze H3K27me3. 

1.5.3 Hierarchical versus cooperative model 

Using RNAi and mutations to knock down various PcG subunits, Wang et al. (2004) 

proposed a hierarchical model for the recruitment of PcG proteins at Ubx in larval wing imaginal 

discs. According to this model, Pho binds PREs and directly interacts with components of PRC2, 

E(z) and Esc, recruiting them to PREs. The E(z) subunit of PRC2 tri-methylates H3K27 in 

nucleosomes adjacent to PRE. H3K27me3 then serves as a docking site for PRC1 (Cao et al., 2002; 

Czermin et al., 2002; Fischle et al., 2003; Kuzmi- chev et al., 2002; Min et al., 2003). Pc  
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chromodomain binds to H3K27me3 (Muller et al., 2002; Cao and Zhang, 2004), helping to recruit 

PRC1, which compact arrays of nucleosomes and inhibit nucleosome remodeling in vitro (Figure 

1.2). However, this early sequential model was based on the recruitment to a PRE of a single gene 

and not all other studies supported this model. Alternative mechanisms have been suggested for 

the establishment of PcG-mediated repression at other PREs. Genome-wide studies revealed that 

PRC1 and PRC2 do not always colocalize and PRC1-bound regions, devoid of H3K27me3, are 

present at a large subset of genomic regions (Schwartz et al., 2006; Schaaf et al., 2013; Loubie`re 

et al., 2016). Schaaf et al. (2013) found that PRC1 is present at most active genes bound by 

cohesion and facilitates phosphorylation of RNAPII to the elongating form, phosphorylated 

RNAPII at serine 2 (RNAPII S2p).  

 

 

 

 

Using Drosophila cultured cell lines lacking critical subunits of PRC1 or PRC2, Kahn et 

al. (2016) showed that at most PREs, PRC1 or dRAF was required for the recruitment of PRC2, 

while at some PREs, PRC1 and PRC2 are recruited independently of each other. However, their 

Figure 1.2- Hierarchical binding of PcG proteins at PREs (adopted from Wang et al., 2004). 
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data suggested that the presence of both PRC1 and PRC2 is required for effective repression at 

most PREs.  

In another study, Kahn et al. (2014) showed that binding of Sfmbt and Pho to the majority 

of PREs is disrupted in cells lacking Psc/Su(Z)2 subunits of PRC1. Scm directly interacts with 

both PRC1 and PRC2, and is suggested to be a connecting mediator between these two complexes 

(Kang et al., 2015). Scm also interacts with Sfmbt and Ph through its SAM domain and mediates 

the recruitment of PRC1 independently of PRC2, stabilizing the binding of PhoRC through a 

positive feedback loop (Kang et al., 2015). Therefore, PRC2-independent recruitment of PRC1 

might be mediated by Scm, which acts as a molecular bridge between PRC1 and PhoRC. 

1.5.4 Involvement of ncRNAs in PcG recruitment􀀁 

Multiple lines of evidence implicated the role of ncRNAs in targeting mammalian PcG 

complexes. Plath et al. (2003) and Zhao et al. (2008) demonstrated that a 1.6 kb ncRNA transcribed 

from the Xist locus, called RepA, recruited PRC2 to the X chromosome resulting in the X 

chromosome inactivation. Surprisingly, RepA and mammalian PRC2 were shown to be required 

for the initiation and spreading of X chromosome inactivation, but not for the maintenance of the 

silencing. In another study, Yap et al. (2010), demonstrated that Cbx7, one of the mammalian 

homologs of Pc, binds ANRIL ncRNA and recruits PRC1 to ink4a/ARF locus and silences Ink4a. 

Another evidence for the role of ncRNAs in the regulation of PcG target genes, was provided by 

HOTAIR ncRNA. HOTAIR is required for the transcriptional repression of HoxD cluster by 

recruiting mammalian PRC2 in trans to it (Rinn et al., 2007). There are few reports linking ncRNAs 

to PcG recruitment in Drosophila. Young et al. (2012) showed the enrichment of Drosophila long 

intergenic noncoding RNAs (lincRNA) loci with PcG-associated chromatin. This observation 

might argue for a role of ncRNAs in PcG recruitment in cis but could also be interpreted as 

preferential association of lincRNA loci with developmentally regulated genes. 
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1.5.5 Instructive versus responsive models for the recruitment of PcG proteins 

PcG-mediated repression of target genes can be divided into two phases: initiation and 

maintenance phases. During the initiation phase, PcG proteins recognize the repressed state of 

their target gene and take over the repression from gene-specific transcription factors. Once the 

maintenance phase is established, PcG proteins maintain repression through an indefinite number 

of cell cycles. Within the topic of initiation of PcG-mediated repression, the mechanisms by which 

PcG proteins distinguish between repressed versus active states of target genes are not understood. 

Instructive and responsive models have been proposed for the recruitment of PcG 

complexes to unmethylated CpG islands/Drosophila PREs (Klose et al., 2013). The instructive 

model suggests that biochemical interactions of sequence-specific transcription factors and/or 

lncRNAs with PcG complexes may target these complexes to their transcriptionally repressed 

target promoters (Figure 1.3A). At active gene promoters, transcription factors may directly 

recruit TrxG proteins to the promoters of their transcriptionally active target genes (Klose et al., 

2013). 

Few studies reported the direct recruitment of mammalian PRC1 by transcription factors, 

providing support to the instructive model (Dietrich et al., 2012; Yu et al., 2012). Genome-wide 

analysis of Pc binding in Rest mutant mESCs showed that Rest, a repressor of neuronal genes in 

non-neuronal cells, was required for PRC1 recruitment to a subset of PcG target neuronal genes 

(Dietrich et al., 2012). In another report, direct physical and functional interaction between 

Runx1/CBFβ and PRC1 has been observed (Yu et al., 2012). CBFβ is a Core-binding transcription 

factor with roles in stem cell self-renewal and tissue differentiation in mammalian cells and Runx1 

is a subunit of CBFβ. Yu et al. (2012) provided evidence that Runx1 can directly recruit PRC1 to 

chromatin independently of PRC2. However, recruitment of PRC1 in the absence of PRC2 and 

H3K27me3 may indicate PcG-independent roles for PRC1. PRC1 has been shown to regulate the 
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transition of paused RNAP II to elongating form at active genes independently of other PcG 

proteins (Schaaf et al., 2013). 

The results of at least one study support the instructive model in Drosophila. Hb, a 

repressive transcription factor of Hox genes, can recruit dMi-2, a subunit of a nucleosome 

remodeling and deacetylation complex (NuRD) (Kehle et al., 1998). Hb-mediated recruitment of 

NuRD complex to Hox genes, may result in local chromatin changes and nucleosome remodeling 

that allow binding of PcG proteins to the nucleosome template. Alternatively, the Hb-dMi-2 

complex may directly interact with a PcG protein and recruit it to DNA (Kehle et al., 1998). 

However, a main challenge to the instructive model is to explain how PcG proteins can interact 

with the wide range of transcription factors or ncRNAs at different genes. On the other hand, the 

responsive model proposes that both PcG and TrxG sample the chromatin environment at 

PREs/CpG islands irrespective of their transcriptional state, which presumably would initially 

involve transient interactions. Potential stable targeting of PcG complexes would then be 

responsive to the transcriptional state of their target genes (Klose􀀂et al., 2013; Figure 1.3B). 

Conversely, in the presence of RNAPII and ongoing transcription at transcribed genes, 

accumulation of TrxG complexes, which antagonize the function of PcG complexes, would be 

favored. Therefore, the capacity of PcG proteins to sample CpG islands/PREs would permit them 

to respond to the transcriptional state of their target genes without a requirement for direct 

interactions with transcription factors or ncRNAs (Klose􀀂et al., 2013).  

Riising et al. (2014) demonstrated that blocking transcription with two different inhibitors; 

5,6-dichloro-1-beta-D-ribofurano-sylbenzimidazole riboside (DRB), which inhibits serine 2 

phosphorylation of RNAPII by inhibiting the kinase activity of cyclin-dependent kinase 9 (CDK9) 

subunit of P-TEFb, and Triptolide, which induces proteasomal degradation of RNAPII by 



 

23 

 

inhibiting the ATPase activity of the XPB helicase subunit of TFIIH (Bensaude, 2011), resulted in 

the recruitment of Suz12, a PRC2 subunit, and deposition of H3K27me3 on the promoters of a 

subset of PcG-target genes but not on those of PcG-independent genes in mouse ESCs.  

Another study consistent with the responsive model showed that constitutive transcription 

through the Fab-7 PRE, induced by an actin promoter, resulted in the activation of Fab-7 PRE and 

prevented establishment of PcG-mediated repression (Schmitt et al., 2005). This observation 

suggested that transcription through endogenous PREs, producing either sense or antisense RNA, 

must be active continuously to prevent the access and recruitment of PcG complexes to the 

chromatin. Several studies investigated if transcriptional activation could preclude PcG proteins 

from PREs. Kaneko et al. (2014) proposed that PRC2 binds nascent transcripts in vitro and this 

interaction in turn inhibits its histone methyltransferase activity. When transcription is silenced, 

and therefore no nascent transcript is produced, PRC2 is relieved from RNA-mediated inhibition, 

allowing the deposition of H3K27me2/3. Therefore, presence of PRC2 at actively transcribed 

promoters, lacking H3K27me2/3, could be explained as a consequence of RNA-mediated 

inhibition of PRC2 activity. An in vitro histone methyltransferase assay showed that RNA binding 

to PRC2 inhibited H3K27 methylation but had only a small effect on Ezh2 auto-methylation. This 

data suggested that RNA is not an active-site inhibitor of PRC2 activity, but rather inhibits its 

activity though other ways (Wang et al., 2017). Beltran et al. (2016) proposed that nascent RNAs 

and nucleosomes compete to bind to PRC2 and association of PRC2 with chromatin antagonizes 

its interaction with RNA. They further showed that release of PRC2 from chromatin and RNA, 

increases its binding to the RNA and nucleosomes, respectively. 
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1.6 Maintenance of PcG silencing through cell division  

PcG-mediated repression can persist through numerous cell cycles and chromatin 

reorganizations that accompany cell cycle progression. A potential mechanism to maintain 

repression, and binding by PcG proteins, is the retention of the H3K27me3 mark (Hansen et al., 

2008). Maintenance of H3K27me3 on chromatin during S phase has been shown by 

immunofluorescence, ChIP, and proximity ligation studies (Hansen et al., 2008; Lanzuolo et al., 

2011). Retention of at least some H3K27me3 is in agreement with the retention of E(z) (Petruk et 

Figure 1.3- Comparison of instructive and responsive models for recruitment of PcG 

complexes to PREs at target gene promoters. (A) The instructive model, shows the interaction 

of sequence-specific transcription factors with TrxG complexes to recruit them to their target 

genes. At repressed gene promoters, TFs directly recruit PcG proteins. (B) The responsive model 

proposes that stable binding of PcG and TrxG to PREs, is dependent on the transcriptional state of 

the target gene. 
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al., 2012). Since PRC2 can bind the H3K27me3 mark and stimulate further H3K27 methylation 

(Margueron et al., 2009), even low levels of H3K27me3 remained following each replication can 

trigger efficient K27me3 of surrounding nucleosomes. However, Petruk et al. (2012) reported that 

nucleosomes behind the replication fork lack significant amount of H3K27me3 histone mark, 

suggesting that parental histone methyl transferases, and not the methylated histones, remain 

associated with targets through DNA replication. It has been shown that quantitatively less PcG 

proteins remain bound to chromatin during mitosis than in interphase (Follmer et al., 2012), 

therefore, it is likely that both PRC1 and PRC2 remain associated with newly replicated daughter 

strands during S phase of interphase. Components of both complexes, Pc from PRC1 or E(z) from 

PRC2, are physically near the replication fork (Petruk et al., 2012) but there is no evidence about 

the physical contacts between PcG components and replication fork features (Probst et al., 2009). 

ChIP studies on homogenous population of cells showed retention of PcG subunits on replicating 

DNA (Francis et al., 2009; Lanzuolo et al., 2011). The maintenance of PRC1 on the template after 

fork passage has been shown for mammalian SV40 replication system (Francis et al., 2009) and 

even after replication of naked DNA by the bacteriophage T7 system (Lengsfeld et al., 2012). Psc, 

subunit of PRC1, is able to maintain stable Psc-Psc association with the template DNA as the fork 

passes (Lo et al., 2012). 

 H3K27me3 is proposed to propagate during cell replication through two mechanisms: 

first, the parental H3K27me3 nucleosomes are locally re-deposited during replication. Second, 

these modified parental nucleosomes can be served as templates for PRC2 to copy the H3K27me3 

mark into newly incorporated nucleosomes (Margueron et al., 2009; Jiao and Liu, 2015; Justin et 

al., 2016). 
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Muller et al. (2017) provided evidence that PREs are needed for both generation and 

propagation of H3K27me3 in daughter strand chromatin. PRC2 is first recruited to PREs and then 

binds to parental H3K27me3 nucleosomes in flanking chromatin after replication (Muller et al., 

2017). Studies suggesting that parental PRC components anchored at PREs, are responsible for 

reestablishing the mark, predict that removal of a PRE would result in the loss of silencing and 

H3K27me3 after the first cell cycle, a prediction that is not supported by the findings of other 

studies. Coleman and Struhl (2017) showed that upon excision of a PRE, the local availability of 

PRC2 reduces and this in turn allows some of the newly incorporated nucleosomes escape being 

modified, resulting in the serial dilution of H3K27me3 histone mark through cell divisions. The 

same authors further reported a ~10-12% decrease in H3K27me3 levels following each replication 

cycle, while a 50% reduction was expected if PRC2 first bound the PRE and copied the mark. 

However, given that the free PRC2, not anchored at PRE(s), rapidly exchange with chromatin-

bound PRC2 in vivo, the possible contribution of free PRC2 in binding and propagation of 

H3K27me3 can explain the latter results. 

1.7 PcG proteins and cancer 

PcG proteins are involved in the development of tumors through misspecification of cells 

towards a stem cell state, which will be the main driving force behind tumor proliferation, and 

transcriptional repression of tumor-suppressor genes (Pardal et al., 2000). The ability of stem cells 

to evade proliferative restriction allows the accumulation of mutations and epigenetic changes, 

leading to the malignancy. Studies have shown that PcG proteins are involved in inhibition of 

differentiation and promotion of stem cell self-renewal and thus play an important role in tumor 

progression and development.  

PRC1 and PRC2 genes are aberrantly expressed in a broad range of human cancers 

(Sparmann and van Lohuizen, 2006; Rajasekhar and Begemann, 2007). Activity of Bmi1, a 
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homolog of Drosophila Psc, is crucial for the maintenance of normal and cancer stem cells and its 

overexpression was reported in several human cancers. Elevated levels of Bmi1 protein were found 

in squamous cell carcinomas (He et al., 2009), neuroblastomas (Nowak et al., 2006), and bladder 

tumors (Shafaroudi et al., 2008). Furthermore, deregulation of Bmi1 was reported in leukemia 

(Lessard and Sauvageau, 2003). Bmi1 was also reported to play a pivotal role in lung 

carcinogenesis and loss of Bmi-1 reduced the self-renewal ability and thus limited progression of 

lung cancer stem cells (Dovey et al., 2008). 

Ezh2, Suz12 and Pcl3, subunits of mammalian PRC2, are also overexpressed in a variety 

of different human cancers (Rajasekhar and Begemann, 2007; Sparmann and van Lohuizen, 2006). 

The Ezh2 gene is amplified in many human prostate cancer cell lines, and indicates aggressiveness 

in lymphoma, melanoma, bladder tumors, prostate and breast cancers (Varambally et al., 2002; 

Kleer et al., 2003; Sarama ki et al., 2006). Zingg et al. (2014) reported that a tumor suppressor, 

Adenosylmethionine decarboxylase 1 (AMD1), is among Ezh2 targets. It was further shown that 

Ezh2 function is essential for the initiation of melanoma and its inactivation prevents metastatic 

spread of melanoma (Zingg et al., 2014). Mimori et al. (2005) and Kidani et al. (2009) provided 

evidence that the emergence of colorectal cancer and oral squamous carcinomas was linked to the 

deregulation of Ezh2 gene. 

Bmi1 and Ezh2 are both involved but play different roles in the progression of 

glioblastomas. Although downregulation of Ezh2 protein decreased the self-renewal and the 

tumor-initiating capacity of cancer stem cells (Suva et al., 2009), knockdown of Bmi1 levels in 

glioblastomas reduced the proliferation of the glioma stem cells (Godlewski et al., 2008). 

1.8 PcG and differentiation 

Hox genes, the most prominent PcG targets in Drosophila, are organized in two complexes: 

The Antennapedia complex (ANT-C) and BX-C. ANT-C comprises five Hox genes (lab, pb, Dfd, 
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Scr, and Antp), involved in the development of head and the anterior thorax (Kaufman et al., 1990). 

BX-C contains three Hox genes (Ubx, abd-A, and Abd-B), which specify parts of the posterior 

thorax and the abdomen (Duncan, 1987; Lewis et al., 2003). PcG genes maintain repression of 

Drosophila Hox genes in the patterns initially established by the products of the segmentation 

genes (Pirrotta, 1997a). Mutations in the PcG genes lead to derepression of Hox gene expression 

and homeotic transformations (Lewis, 1978).  

Additional PcG targets are genes encoding key developmental regulators and signaling 

proteins in ESCs. Knockout of PRC2 and PRC1 genes leads to the loss of H3K27me3 and 

H2AK119ub1 marks, expression of developmental genes and differentiation defects in ESCs 

(Chamberlain et al., 2008; Shen et al., 2008). ESCs lacking Ezh2, Eed and Suz12 are not able to 

differentiate due to the inability of these cells to repress pluripotent genes during differentiation 

(Pasini et al., 2007; Chamberlain et al., 2008). Jarid2, a substochiometric subunit of PRC2, is 

required for the differentiation of ESCs and proper embryo development (Pasini et al., 2010). In 

accordance with the latter study, Landeira et al. (2010) reported that while presence of Jarid2 is 

not necessary for PRC2-mediated silencing, Jarid2 knockout ESCs are not able to properly 

differentiate (Landeira et al., 2010).  

1.9 Embryogenesis in Drosophila 

Following fertilization, Drosophila nuclei synchronously divide, while cytokinesis does 

not occur (Figure 1.4). The latter results in the formation of syncytium in which nuclei are not 

separated by cell membranes. This allows morphogen gradients to play a key role in the patterning 

of early Drosophila embryos. Initiation of first nuclear cycle (nc1) happens after fusion of the male 

and female pronuclei. Through nc 1–3, nuclei divide at the anterior of the embryo (Gilbert, 2000). 

During nc 4–6, nuclei spread throughout the whole embryo along the anterior–posterior axis. The 

first 8 nuclear divisions take place rapidly, averaging 8 minutes for each nuclear cycle (Gilbert, 
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2000). At nc9, pole cells form at the posterior end of the embryo, which later give rise to the germ 

cells in the adults (Gilbert, 2000). After the ninth nuclear cycle, the nuclei move to the periphery 

of the embryo, forming the syncytial blastoderm which lasts untill nc13 (Zolakar and Erk, 1976; 

Foe et al., 1993). Through nuclear divisions 10-13 duration of interphase increases slightly with 

each cycle (Farrell and O'Farrell, 2014). Nonetheless, the overall rate of nuclear division is still 

rapid through these stages. The first prolonged interphase happens at nc14, mainly due to the 

lengthening of S phase and introduction of G2 at this stage embryos (Farrell and O'Farrell, 2014). 

During nc14, cell membranes partition the 6000 or so nuclei, forming the cellular blastoderm 

(Figure 1.4; Zolakar and Erk, 1976). This coincides with the midblastula transition (MBT), in 

which widespread zygotic gene expression starts (Farrell and O'Farrell, 2014).  

Gastrulation starts just after completion of cellularization and includes coordinated 

movements of cells that give rise to endoderm, mesoderm and ectoderm layers. These layers serve 

as the tissue primordia for the larval organs. Following this stage, further development forms an 

embryo with distinct morphological segments. 

 

 

 

Figure 1-4- Nuclear divisions during early Drosophila embryogenesis. During divisions 3-9, 

nuclei divide and spread throughout embryo. Nuclei migrate to the periphery of the embryo 

during divisions 10–13 (Syncytial blastoderm). Cellularization happens after nc13 (Kotadia et 

al., 2010). 
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1.10 The origins of anterior-posterior polarity in Drosophila 

1.10.1 Maternal effect genes 

The anterior-posterior axis of Drosophila is established by localized maternally expressed 

mRNAs. patterned before the formation and function of nuclei. The bicoid (bcd) and nanos (nos) 

mRNAs are synthesized in nurse cells, loaded into the oocyte and localized in the anterior and 

posterior portion of the unfertilized egg, respectively. hunchback (hb) and cad mRNAs are 

distributed uniformly throughout the oocyte. Upon fertilization, translation of localized bcd and 

nos mRNA produces opposing gradients of their protein products; bcd highest at the anterior and 

nos highest at the posterior end of the embryo. Bcd protein inhibits the translation of the cad 

mRNA, resulting in the posterior localization of Cad protein (Dubnau and Struhl, 1996; Rivera-

Pomar et al., 1996). Nos protein binds to maternal hb mRNA, and prevents its translation in the 

posterior portion of the embryo (Tautz, 1988; Wharton and Struhl, 1991).  

1.10.2 Zygotically expressed genes 

Maternally-expressed proteins can activate a hierarchy of zygotic genes, starting with gap 

genes. Gap genes are a group of genes which were initially defined by mutant phenotypes in which 

multiple adjacent body segments are missing, resembling a gap in the normal body (Petschek et 

al., 1987). The examples of gap genes are hb, Kruppel (Kr), knirps (kni), gt, tll and huckebein (hkb) 

(Campos-Ortega and Hartenstein, 1985). These genes are expressed in single or double domains 

along the anterior-posterior axis, and decay around mid-embryogenesis.  

Gap genes encode transcription factors which control the expression of other gap genes 

and pair-rule genes. Pair-rule genes divide the embryo into striped pattern of seven parasegments 

and encode transcription factors regulating the expression of other pair-rule genes, segment 

polarity genes and hometic genes (Gilbert, 2000). Segment polarity genes define the anterior and 

posterior polarities within each parasegment, resulting in 14 stripes (Sanders et al., 2019). 
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1.11 giant, our PcG-target gene 

gt is a zygotic gap gene that affects the development of the head and abdominal regions in 

Drosophila. Identification of gt as a PcG target gene was based on the isolation of dominant E(z) 

allele that suppress the nos maternal effect (Pelegri and Lehmann, 1994). Later, Negre et al. (2006) 

also showed the derepression of gt in PcG mutant background.  

gt is initially transcribed in two broad anterior and posterior stripes at nc12. During cellular 

blastoderm stage, the anterior domain splits into two stripes, and finally, a fourth stripe develops 

at the anterior terminus (Figure 1.5A). 

 

 

 

 

 Expression of gt is regulated by four characterized enhancers located within the gt 

upstream regulatory region. gt_(-1), (-163 to -1402) which is bifunctional and produces both the 

anterior and posterior expression domains. gt_(-3) (-1410 to -2596) and gt_(-10) (-8904 to -10649) 

A 

B 

Figure 1.5- Pattern of gt expression and schematic map of gt upstream regulatory region. 

(A) In situ hybridization of transgenic syncytial and cellular blastoderm embryos with lacZ 

probe. Lateral views of embryos are shown, anterior to the left, dorsal up. (B) Upstream 

regulatory region showing locations of gt enhancers; gt_(-1), gt_(-3), gt_(-6) and gt_(-10). 



 

32 

 

produce the posterior and the anterior tip expression, respectively. gt_(-6) (-4438 to -6620) 

produces the most anterior expression stripe (Figure 1.5B; Berman et al., 2002; Schroeder et al., 

2004). The role played by the apparent redundancy of gt_(-1) with gt_(-10) and gt_(-3) in 

regulation of  gt is not clear (Berman et al., 2002). 

Hb and Bcd play important roles in regulation of gt expression. The expression of the 

anterior stripe is activated by Bcd, while Cad is the activator of the posterior stripe. Gt regulates 

its own expression, by binding and auto-activating gt_(-1) enhancer (Hoermann et al., 2016). Kr 

and Hb restrict the anterior and posterior boundaries of gt posterior stripe, respectively (Mohler et 

al., 1989; Eldon and Pirrotta, 1991). The terminal system, which acts through Tsl, activates the 

zygotic gap genes tll and hkb in the terminal regions (Weigel et al., 1990). Eldon and Pirrotta 

(1991) showed that Tsl has contrasting effects on the expression of gt, showing a repressive effect 

posteriorly and an activating effect anteriorly. Low concentrations of Bcd activates Kr (Hülskamp 

and Tautz, 1991), while both Bcd and Cad are activators of kni (Schulz and Tautz, 1995). High 

concentrations of Hb represses expression of kni, Kr and gt, whereas lower concentrations allow 

Kr activity but still prevent kni and gt expression (Struhl et al., 1992). Kni negatively regulates Kr 

expression (Jaeger et al., 2004). Gt has been demonstrated to repress kni and Kr (Kraut and Levine, 

1991; Eldon and Pirotta, 1991; Small et al., 1992).  

Among all the PcG-target genes in Drosophila, the gt gene is selected as our model gene 

because regulation of gt by its specific activating and repressive transcription factors is well 

characterized. This permits construction of genetic systems in which gt is uniformly repressed by 

PcG proteins after the decay of its repressor at cellular blastoderm-stage embryos, or is 

ubiquitously expressed by knocking down its inhibitor and ubiquitous expression of its activator. 
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hb is expressed both maternally and zygotically. Maternal Hb protein forms an anterior to 

posterior slope in the fertilized embryo and degrades at nc14 (Tautz, 1988; Wharton and Struhl, 

1991).  Maternal Hb is substituted by zygotic Hb at blastoderm stage. Proper posterior localization 

of nos mRNA in the oocyte requires the activity of Oskar (Osk) (Ephrussi et al., 1991). Bcd and Tll 

are activators of zygotic hb at anterior and posterior ends, respectively. bcd osk tsl females produce 

embryos in which maternal hb is ubiquitously expressed as the result of mutant allele of osk. Zygotic 

hb is not activated as the result of mutant alleles of bcd and tsl. In these embryos, maternal Hb is 

degraded at cellular blastoderm stage and not replaced by zygotic Hb, yet gt is not expressed. 

Maternal cad mRNA is ubiquitously translated in embryos derived from bcd osk tsl females due to 

the absence of Bcd at syncytial blastoderm. However, it fails to activate expression of gt due to the 

presence of maternal Hb and its repressive effects. Terminal system, which is absent from bcd osk 

tsl embryos, is required for the activation of zygotic expression of cad (Mlodzik and Gehring, 

1987). Therefore, in the embryos from bcd osk tsl females both maternal Hb and Cad are distributed 

ubiquitously, while neither of them is zygotically expressed. In the absence of zygotic Hb, 

maintenance of gt repression requires PcG activity.  

 Embryos produced by bcd osk tsl females, offer an in vivo model of a homogenous 

population of cells in which repression of a target gene is transitioning from gene-specific 

transcription factors to PcG proteins. Using the embryos derived from bcd osk tsl females, the 

molecular mechanisms and sequence of events led to the establishment of PcG-mediated 

repression was studied (Alhaj abed et al., 2018).  

1.12 Transcription: Initiation and elongation 

Eukaryotic transcription starts upon binding of an activator to the enhancer DNA sequences 

which promotes the recruitment of general transcription factors and RNAPII to the target gene 
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promoters (Thomas and Chiang, 2006). The latter results in the formation of a functional pre-

initiation complex (PIC) and initiation of transcription.  

The core promoter elements (CPEs) are located either upstream or downstream of  TSS, or 

within the coding region (Juven-Gershon et al., 2008). Major CPEs include the TATA box, 

initiator (Inr) and downstream promoter element (DPE) (Juven-Gershon et al., 2008). The TATAA 

sequence is recognized by TATA binding protein (TBP) and several TBP-associated factors 

(TAFs), forming the TFIID complex. TFIIA interacts with TBP subunit of TFIID and stabilizes 

the interaction between TBP and TATA element.  

The sequences immediately flanking the TATA box can contain the TFIIB recognition 

elements (BRE). TFIIB is involved in the formation of a stable complex with TBP-bound DNA 

and positioning RNAPII (Deng and Roberts, 2007). RNAPII binds to the core promoter along with 

TFIIF. TFIIH and TFIIE are the next general transcription factors recruited to the PIC. TFIIH is 

composed of ten subunits that regulate the formation of ATP-dependent open form of PIC, required 

for productive transcription initiation (Laine and Egly, 2006). The majority of eukaryotic genes 

have promoters that lack a canonical TATA sequence. In genes lacking canonical TATA 

sequences, Inr and DPE can be recognized by TFIID and efficiently form a functional PIC 

(Baumann et al., 2010).  

Deposition of specific modifications on the C-terminal domain (CTD) of RNAPII and N-

terminal histone tails of the nucleosomes is an important step for the initiation of transcription. 

Acetylation of histone H3 and H4 at lysines generates an open chromatin state competent for 

transcription (Ansari et al., 2009). In contrast, tri-methylation of H3K9 by methyltransferases leads 

to the formation of a repressive chromatin state (Li et al., 2007; Hager et al., 2009).  
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RNAPII loaded onto an active promoter is mostly in a hypo-phosphorylated state. Serines 

at positions 2 and 5 of RNAPII-CTD are phosphorylated at specific stages of transcription (Gomes 

et al., 2006). The kinase activity of the cyclin-dependent kinase 7 (CDK7) subunit of TFIIH is 

responsible for the phosphorylation of Serine 5 residue of the RNAPII (RNAPII S5p) (Ohkuma 

and Roeder, 1994), while CDK9 subunit of positive transcription elongation factor-b (P-TEFb) 

phosphorylates CTD at Serine 2 (RNAPII S2p).  

Progression of RNAPII towards the 3′ of the gene is accompanied by a reduction in the 

phosphorylation status of RNAPII S5 and an increase in the phosphorylation of RNAPII S2. AS 

CDK9 phosphorylates RNAPII S2, phosphatases SSU72 and Rtr1, or its human homolog RPAP2, 

dephosphorylate RNAPII S5 along with transcription elongation (Reyes-Reyes and Hampse, 

2007).  

1.13 Rationale 

gt has two PREs, a proximal PRE1 and a distal PRE2 (Abed et al. 2013). We have 

previously described a temporal hierarchy of PcG protein de novo recruitment at the gt locus in 

syncytial blastoderm through cellular blastoderm/gastrulating embryos (Abed et al. 2018). PhoRC 

binding to gt PRE1 precedes its stable binding to PRE2 (Abed et al. 2018). Both Pho and Sfmbt 

are weakly present at both PREs in syncytial blastoderm stage embryos, but do not stably bind to 

PRE2 until embryos reach cellular blastoderm/gastrulation, approximately 30 minutes later than 

their stable binding to PRE1. This observation raised the possibility that PhoRC binding to PRE2 

may be at least partially dependent on the presence of PhoRC at PRE1. In order to determine 

whether PhoRC must first bind to PRE1 to assist PhoRC binding to PRE2, and to examine 

recruitment of other PcG proteins to both PREs in the absence of Pho at PRE1, we compared the 

recruitment of PcG proteins in reporter transgenes that contain either the entire wild type gt 

regulatory region or the same gt fragment with mutant Pho binding sites in PRE1. This study shed 
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light on the operation of relatively uncharacterized gt PREs and presented an in-depth analysis of 

the functions of individual PRE binding proteins at these PREs. 

A major gap in our understanding of PcG proteins, is the molecular mechanisms which 

lead to the initiation of PcG mediated-silencing. Within the topic of initiation, the mechanisms by 

which PcG proteins discern the transcriptionally repressed and active states of their target genes 

are not understood. Instructive and responsive models have been proposed for the initial 

recruitment of PcG complexes to PREs/CpG islands (Klose et al., 2013). Despite the few studies 

which supported either models in mammalian cells (Kehle et al., 1998; Dietrich et al., 2012; Yu et 

al., 2012; Riising et al., 2014; Beltran et al., 2016), the mechanisms triggering the initial 

recruitment of PcG proteins have been left unraveled. By investigating the recruitment of PcG 

proteins at the transcriptionally inert gt transgene in a background in which endogenous gt is 

transcriptionally active, we experimentally tested these two models for PcG targeting in vivo and 

answered a very important question on the mechanisms by which PcG proteins discern the 

transcriptionally repressed and active states of their target gene. The results of our study will be 

relevant to stem cell biology and oncogenic effects resulting from misexpression of PcG proteins. 
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CHAPTER 2:  

 

MATERIALS AND METHODS 

 

2.1 Generation of transgenic lines  

2.1.1 Construction of SD10 plasmids 

 The SD10 P element reporter vector was converted into a Gateway Destination Vector by 

ligating C.1 cassette (Invitrogen), containing the Chloramphenicol resistance gene (CmR) and the 

ccdB gene flanked by attR1 and attR2 sites, into the SD10 SphI site. SD10-PRE1.1 was constructed 

by PCR amplifying a 555 bp fragment extending from 543 upstream to 12 bp downstream of the 

gt TSS from the CH322-05H16 BAC clone (BACPAC resources: http://www.pacmanfly.org/) 

using primers with attB sites and ligating the PCR product into the pENTR1A vector using BP 

Clonase II enzyme mix (Invitrogen). The gt PRE1.1 fragment was then recombined into the SD10 

destination vector using LR Clonase II enzyme mix (Invitrogen). Pho consensus binding sites 

within PRE1.1 fragment in pENTR were sequentially mutated using Phusion II Site-Directed 

Mutagenesis kit (Thermo Scientific). The mutations were confirmed by sequencing, and the 

mutant and wild type (wt) fragments were then digested with NspI and ligated to the SphI site of 

SD10 P element reporter vector, located between en enhancer and promoter. P element constructs 

were injected into embryos by BestGene (Chino Hills, CA). Five homozygous lines were obtained 

for SD10-PRE1.1-wt. A single line was obtained for SD10-PRE1.1-mut. Eight additional SD10- 

PRE1.1-mut lines were generated by remobilizing the original transgene using the genomic 2-3 

P element transposase source (Robertson et al., 1988).   
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2.1.2 Construction of Pelican plasmids 

The Pelican P element reporter vector (Barolo et al., 2000) was converted into a Gateway 

Destination vector by ligating Gateway Cassette C.1 into the Pelican StuI site. The attB sequences, 

required for phage φC31 integrase-mediated recombination, were amplified from pUASP-attB 

vector (Drosophila Genome Resource Center, DGRC) and then inserted into Pelican AvrII site, 

between the gypsy insulator and the left P sequence. A 10,781 bp gt genomic fragment that extends 

from 10,421 bp upstream to 360 bp downstream of gt TSS was first assembled from fragments 

from overlapping BAC clones. A NruI-HindIII fragment from the CH322-101F02 BAC clone was 

first ligated to a HindIII-NotI fragment from the CH322-05H16 BAC clone within the pBS-KS 

vector. A BsrGI fragment that included the gt fragment was blunt-ended with Klenow and then 

inserted into the DraI and EcoRV sites of the pENTR1A vector. In order to be able to distinguish 

ChIP signals from the gt fragment and endogenous gt gene, the PCR priming sites for regions 4, 

6, and 9 were mutated by sequential rounds of site directed mutagenesis using the Phusion II Site-

Directed Mutagenesis Kit (Thermo Scientific). The gt fragment that includes only these primer 

site mutations will be referred as wild type (wt) in subsequent descriptions.  

2.1.2.1 Pelican-gt-wt/mut 

The same Pho sites that were mutated in the smaller PRE1.1 fragment, were mutated in the 

larger ~10.8 kb gt fragment. The entire inserts of both the wt and Pho-Phol mutant pENTR1A 

plasmids were sequenced to confirm that no unintended mutation had been introduced prior to 

recombining them into the Pelican-attB vector.  Both Pelican-gt-wt and Pelican-gt-mut constructs 

were integrated into the attP40 landing site on the second chromosome through the φC31 integrase 

and transgenic flies were generated by BestGene (Chino Hills, CA).  
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2.1.2.2 Pelican-gt-promoter mut 

 To construct transgenic flies containing a transcriptionally inert gt gene, TATA box, 

Initiator region (Inr) and downstream promoter region (DPE) of 10,781 bp gt fragment in 

pENTR1A-gt were consecutively mutated using Phusion II Site-Directed Mutagenesis Kit 

(Thermo Scientific) and primers listed in Table 2.1. Both wt and the transcriptionally inert gt 

fragment, were then transferred into the modified version of Pelican destination vector, as 

previously described, through LR Clonase II. The resulting expression vectors were sent to 

BestGene, Inc. for embryo injections. The constructs were integrated into the attP40 landing site 

on the second chromosome through the φC31 integrase and Pelican-gt-promoter mut (Pelican-gt-

pm) were generated.  

 

 

Table 2.1- Primers used to mutate DPE, TATA box and Inr sites and their corresponding 

annealing temperatures. 

 

 

 

Amplicon Primer Primer Sequence (5'-3') Annealing 

temp (C∘) 

DPE 

Mutagenic 

Forward CGCAGGTCAGTCTCCTCTCGTCGGA 72 

  Reverse TTCGACATCGTCAGCGTGACTCATGTGCAACA

TCAGAGCTAGATCACCAG 

  

TATA  

Mutagenic 

Forward TCGGAACCCCCTCGACCCGCGCCGAAAATCCG

CAGGCTGCG 

65 

  Reverse CGAGAGGAAATCAGTTTGCG   

Inr 

Mutagenic 

Forward AACCCCCTGCATTTATACCG 66 

 Reverse CCGACGAGAGGAAACTGACCTGCGTTCGACAT

CGTCAGCG 
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2.2 ChIP experiments 

2.2.1 Embryo collection for ChIP assays 

About 1,800-2,000, 4,000-5,000, and 6,000-8,000 females were added to small, medium 

and large size cages, respectively. Embryos were collected from cages using apple or grape juice 

agar plates supplemented with yeast paste. To minimize the number of older embryos, a 2-hour 

pre-lay collection was done before any collection. Agar plates were placed, usually upside down, 

in the cage for exactly 30 or 60 minutes at 25°C and then removed and aged at 25°C for the time 

After Egg Lay (AEL) to target the appropriate developmental stages (Table 2.2). The embryos 

were washed off the plates, followed by dechorionation with 50% bleach for 2 minutes. Embryos 

were then washed thoroughly with deionized water and PBST (0.5 % Triton X-100, 1X PBS).  

 

 

3Table 2.2- Developmental stages and the corresponding mass 

amount in ChIP assays. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

The embryos were then fixed as previously described (Ahaj Abed et al., 2018; Blythe and 

Wieschaus, 2015). Embryos were crosslinked using 108 μl of formaldehyde (Fisher #BP531) in 2 

Embryo Stage Time AEL (min) Mass (mg) 

nc10-13 80-140 30 

nc13 110-140 20 

nc14a 140-170 10 

nc14b 170-200 10 

nc14b-nc15  170-230 10 

Stage 10 260-320 10 
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ml PBST and 6 ml heptane. After 15 minutes, 0.125 M glycine (pH=7) in PBST was added to 

quench the f ixation for 3 minutes. Embryos were then washed with ice-cold PBST at least three 

times, prior to adding 1X protease inhibitor (Sigma #P8340). The embryos were kept on ice at 4°C 

until they were hand-sorted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Since Drosophila females often retain fertilized eggs, crosslinked embryos were manually 

sorted using a Zeiss Primovert microscope to eliminate older embryos, based on their morphology. 

Older embryos would significantly affect ChIP signals, due to greater amount of chromatin. The 

percentage of contaminating older embryos is dependent on the genotype of the embryos, ranging 

from 10-50% of the collected embryos. Carefully staged embryos were then weighed, flash frozen 

in liquid nitrogen and stored at 80°C. In order to approximately equalize the chromatin amount per 

Figure 2.1- Elimination of older 

Drosophila embryos by hand 

sorting based on the morphology 

(adopted from Chen et al., 2013). 
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ChIP using embryos at different developmental stages, we used different masses of embryos for 

each embryonic stage per tube (Table 2.2). Each embryo aliquot has enough chromatin for nine 

ChIP samples and two aliquots of input genomic DNA. 

2.2.2 ChIP Protocol 

For each ChIP sample, 50 μl of Protein A magnetic beads (Pierce #88846) was added, left 

at magnetic stand for 2-3 minutes, and then washed with 500 μl PBST-3% BSA. The beads were 

then blocked with 1 ml of PBST (0.5 % Triton X-100, 1X PBS)-3% BSA for 1 hour.  

Dilutions of antibodies were prepared in 250 μl volume of PBST-3% BSA and then were 

added to the magnetic beads while rotating at room temperature for 20 minutes, then at 4°C for 

2.5 hours. During this time, flash frozen embryos, while still not completely thawed, were 

homogenized in 100 μl of RIPA buffer supplemented with 1mM DTT, 1X protease inhibitor 

(Sigma-Aldrich #P8340). Once embryos were homogenized, 600 μl of RIPA was added to get the 

final volume to 700 μl. Homogenized embryos were then centrifuged in a refrigerated microfuge 

at full speed at 4°C for 5 minutes. Supernatant was then discarded and the pellet was resuspended 

first in 100 μl of RIPA buffer and then sufficient amount of RIPA was added to obtain the final 

concentration of 10 mg of embryos/ml for nc14b, nc14b-nc15 and stage 10, 20 mg/ml for nc13 

and 30 mg/ml for nc10-13. The chromatin was then sonicated on ice using a microtip probe and 

Misonix sonicator 3000: 30% power, 15 sec pulses, 45 sec pauses, total of 4.5 minutes. After each 

3 pulses series, the sonicated chromatin was gently mixed, and spun down quickly to collect the 

liquid. Ice bath was regularly renewed to make sure that the tube did not get warm during 

sonication. This sonication should give a size of ≤ 1 kb for 90% of the resulting DNA fragments 

with a 30-35% peak at 1 kb.   
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The sonicate was then centrifuged at high speed, and supernatant was transferred to a new 

tube and then pre-adsorbed with 80 μl Protein A agarose/Salmon Sperm DNA (Millipore #16-157) 

at 4°C for 1 hour. After 2.5 hours of incubation of Ab-beads and 1 hour of sonicate pre-clearing, 

tubes containing Ab-beads were spun down, placed on the magnetic stand and supernatant was 

removed. The mixture of chromatin and Protein A agarose beads was also centrifuged and 100 μl 

aliquots of supernatant were added to each of magnetic bead containing tubes. 500 μl RIPA buffer 

was added to each sample and the samples were then incubated on a rotating wheel at 4°C 

overnight. A 20 μl aliquot of sonicated chromatin was used as input DNA, and 0.5 μl of 10 mg/ml 

RNAse A was added to it and incubated for 30 minutes at 37°C. 77.5 μl of elution buffer (50 mM 

Tris-HCl pH 7.5, 10 mM EDTA, 1% SDS, 300 mM NaCl) and 2.5 μl of 10 mg/ml Proteinase K 

(final concentration of 0.25 mg/ml) was added to each input tube, to bring the volume to 100 μl. 

Input tubes were then incubated at 65°C overnight. After overnight incubation, ChIP samples were 

centrifuged and then washed on a magnetic stand with a series of the following buffers for 2 

minutes each: 3x low salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-

HCl pH 8.0, 150 mM NaCl), 1x high salt wash buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 

20 mM Tris-HCl pH 8.0, 500 mM NaCl), 2x with LiCl wash buffer (0.25 M LiCl, 1% NP-40, 1% 

SDC, 1 mM EDTA, 10 mM Tris-HCl pH 8.0), and 1x with TE (10 mM Tris-HCl pH 8.0, 1 mM 

EDTA). 

After the last wash with TE, beads were resuspended with 100 μl elution buffer and 

incubated at 65°C for 15 minutes. Tubes were vortexed every 5 minutes, followed by brief spinning 

down. After 15 minutes, beads were collected on the magnetic stand, and supernatant was 

transferred to new tubes, supplemented with 95 μl TE and 5 μl of 10 mg/ml Proteinase K, and 

incubated at 65°C for 4 hours to reverse crosslinking. 100 μl of TE was added to the input tubes, 
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and input DNA was left at room temperature during the 4-hour incubation. 10 μl of Sodium acetate 

(3M) was added to each of the ChIP samples and input DNA, prior to extraction with equal 

amounts of phenol/chloroform and chloroform. 40 μg of glycogen (2 μl of 20 mg/ml glycogen) 

was added to each tube and ethanol precipitation, using 2X volume ethanol, was performed at -

20°C overnight. All samples were centrifuged for at least 15 minutes at full speed and the pellets 

were washed once with 80% ethanol, SpeedVac-dried for 10 minutes and resuspended in 33 μl of 

water and 50 μl (1.5 X) volume of Agencourt Ampure beads (Beckman Coulter #A63880). 

Thoroughly-mixed samples were incubated for 15 minutes at room temperature, followed by 

leaving on magnetic stand for another 15 minutes. Supernatant was removed from the tubes, and 

the beads were washed with 200 μl of 80% ethanol twice, 30 seconds each time. Beads were then 

left on the magnetic stand to dry for 15 minutes. Dried beads were then resuspended in appropriate 

amount of PCR water, 15 μl for each primer set, and incubated for another 5 minutes before 

transferring the supernatant to the new tubes. An additional equal volume of water was added to 

the input DNA to make the 10% input sample as the qPCR standard.  

2.2.3 Antibodies used in ChIP assays and the corresponding volumes 

Pc, 10 μl (Wang et al., 2004) 

Pho, 5 μl (Brown et al., 2003)  

E(z), 10 μl (Carrington and Jones, 1996)  

H3, 0.5 μl (Abcam #ab1791) 

Mock, 0.5 μl (Anti-IgG, Cell Signaling #2729) 

Pcl, 10 μl (O’Connell et al., 2001)  

Dsp1, 5 μl (R. Jones lab, unpublished) 

Spps, 2.5 μl (Brown et al., 2010) 
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Sfmbt, 5 μl (Alhaj abed, 2018) 

Pho-like, 15 μl (Wang et al., 2004) 

Hb, 5 μl (Ahaj Abed et al., 2018) 

Cad, 5 μl (Ahaj Abed et al., 2018) 

H3K27me3, 0.2 μl (Millipore #07-449) 

H3K27ac, 0.2 μl (Abcam #ab4729) 

H3K4me3, 0.2 μl (Abcam, ab8580) 

H3K36me3, 0.2 μl (Abcam #9050) 

H2AK119ub (Cell Signaling #D27C4) 

P-Rpb1 CTD (S2) (Cell Signaling #E1Z3G) 

P-Rpb1 CTD (S5) (Cell Signaling #D9N51) 

Scm, 10 μl (Peterson et al., 2004) 

Psc, 10 μl (Provided by Nicole Francis) 

dMi-2 0.5, 1, 2 μl (Provided by Alexander Brehm)  

Kr 5, 10, 15 μl (R. Jones lab, unpublished) 

F(s)1h, 4 μl (Provided by Der-Hwa-Hwang) 

Lsd1, 5 μl (R. Jones lab, unpublished) 

Kni, 5, 10, 15 μl (R. Jones lab, unpublished) 

CBP, 10, 15 μl (Provided by Mattias Mannervik) 

RBP4, 1, 2 μl (abcam #ab51462) 

2.2.4 PCR cycling 

For each reaction tube, the reaction master mixture was prepared as described in Table 

2.3. 5 μl of DNA was added to each PCR reaction and a series of 10%, 1% and 0.2% dilutions of 
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input genomic DNA were used as standards for each primer set. All amplifications were performed 

in triplicates using Rotor Gene RG3000 thermocycler for a total number of 40 cycles. Sequences 

of PCR primers and their annealing temperature are listed in Table 2.4.  

 

 

4Table 2.3- qPCR reaction master mixture. 

 

 

 

 

Rotor Gene 5 software was used to determine Ct values and sample concentrations were 

calculated using the  CT method (Rao et al., 2013), and then normalized to the negative regions, 

12 or Pka-C1. The Pka-C1 gene is not bound by PcG proteins (modENCODE) and is both 

maternally and zygotically expressed (Lott et al., 2011; Fisher et al., 2012). The p-values for all 

the statistical analyses were calculated using unpaired two-tailed Student's t-test. All graphs were 

plotted using GraphPad Prism 7. 

 

 

5Table 2.4- Primers used in ChIP-qPCR assays and their corresponding annealing 

temperatures. 

 For 20 µl 

H2O 6.5  

Quanta Biosciences Perfecta SYBR green 

supermix 

12.5 

Forward primer, 10 µM 0.5 

Reverse primer, 10 µM 0.5 

Amplicon Primer Primer Sequence (5'-3') Annealing 

temp (C∘) 

3-endogenous Forward GGAGTCTTCCTGGGTGTCTCTACGC 55 

  Reverse CCACTTGCCGCACAGCCAAT   
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3-transgene Forward GGAGTCTTCCTGGGTGTCTCTACGC 55 

 Reverse CTTGTTGGTCAAAGTAAACGACAT

GGT 

 

4-endogenous gt Forward GGAGTCTTCCTGGGTGTCTCTACGC 55 

  Reverse CCACTTGCCGCACAGCCAAT  

4-Pelican-gt-wt Forward GGAGTCTTCCTGGGTGTCTCTACGC 55 

  Reverse CTTGTTGGTCAAAGTAAACGACAT

GGT 

 

4-Pelican-gt-

mut 

Forward TCTCGTGCATTAGCATGGTGTT 58 

 
Reverse CCTACCTGCTTCGTACCGCTTC 

 

6-endogenous gt Forward TTTCTCGTGCATTAGCATTCACAA 58 

  Reverse GCCTACCTGCTTCGTACTCAGAG 
 

6-Pelican-gt-

wt/mut 

Forward TTTCTCGTGCATTAGCATTCACAA 58 

  Reverse CCTACCTGCTTCGTACCGCTTC  

9-endogenous gt Forward CGTATAGCCCAGCCCAATC 56 

  Reverse GCTCATTATGGCGAAGGAACA 
 

9-Pelican-gt-

wt/mut 

Forward CACCAGGTTCCCGAGTTCTAC 56 

  Reverse ATTGTGGCGAAGGCTGTATG 
 

Pka- C1 Forward CCGGGCCATGCAATAAAGTA 58 

  Reverse CGCTTCCTCCAACTCCCTATATTC 
 

SD10-∆gt1  Forward CCGGGCCATGCAATTTTCAT 58  
Reverse CGCTTCCTCCAACTGGGATTTAAG 

 

SD10-PRE1.1-

wt/mut 

Forward ATATGCCACGCCATCTTAGCAC 55 

 Reverse CCTCAGTTCTCAGTCCGCTTCTAAT  

4-endogenous gt Forward CCA AAT GCC ACA CAC AAC ACA  55 

  Reverse GCC AGT TTC ACA TGC ACA TCA A   

4-Pelican-gt-wt Forward CAATCAGCAGATTCTCCGGCT 58 

  Reverse AGCCGCACTCGCGCTTCTAC   

4-Pelican-gt-

mut 

Forward (en 

enhancer) 

ATTGGCATTGTTATTGCCCAG 55 

 Reverse (en 

promoter) 

GGGCTTGTTAGGCAGCAATATG  

6-endogenous gt Forward 

(within 

PRE1.1) 

GAGCGGGACAGAGTCAGAAG 56 
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2.3 Immunostaining of embryos 

Embryos were collected in 4-hour time period at 25° C, fixed and processed as previously 

described (AlHaj Abed et al., 2013) with the following modifications. Fix solution contained 4% 

formaldehyde (750 μl of 16% formaldehyde or 324 μl of 37% formaldehyde) in 1X PEM in the 

total volume of 3 ml. Embryos were crosslinked for 20 minutes, followed by at least 3 washes with 

heptane to remove residuals of fixative.  

Rabbit anti-Hb antibody was diluted 1:250, guinea pig anti-Gt was diluted 1:500 (Kosman 

et al., 1998), rat anti-Kni antibody (Stephen Small) was diluted 1/500, rat anti-Kr antibody (Yu 

and Small, 2008) was diluted 1/150, rabbit anti-Cad antibody was diluted 1/400. Rabbit anti- -

galactosidase antibodies (Cappel) were diluted 1:1500. Biotin-SP–conjugated goat-anti-rabbit 

secondary antibodies (Jackson Immunoresearch) were diluted 1:10,000. Biotin-SP–conjugated 

goat-anti-rat secondary antibodies (Jackson Immunoresearch) were diluted 1:500. Biotin-SP–

conjugated goat-anti-guinea pig secondary antibodies (Jackson Immunoresearch) were diluted 

1:5000. Streptavidin-horseradish peroxidase (Jackson Immunoresearch) was diluted 1:5000. 

Images were obtained using a Ziess Axiovert 200M microscope. Staining were developed by 

incubating embryos in 1 mg/ml diaminobenzidine (Sigma-Aldrich) in 0.1 M Tris-HCl (pH 7), 

0.02% NiCl2, 0.001% H2O2. Time required for the signals to be detected is mostly dependent on 

the antibody and the dilution used. If signals are not detected after 10-15 minutes of staining, trace 

  Reverse (en 

promoter) 

GGGGCTTGTTAGGCAGCAAT  

7 Forward CTGACCAGCCAAGCGAAAAG 55 

 Reverse GGCCGGTGCAAACTTAAGATAG  

10 Forward ATATGCCACGCCATCTTAGCAC 55 

  Reverse CCTCAGTTCTCAGTCCGCTTCTAAT  

12 Forward CCA AAT GCC ACA CAC AAC ACA  55 
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amount of H2O2 (0.0005%) can be gradually added to the embryos. Adding too much H2O2 results 

in a very high background. Reactions were stopped by washing with PBST (0.01% Trition-X-100). 

Embryos were dehydrated in increasing ethanol series (30%, 60%, 90% and 100%) and mounted 

in Permount (Fisher Scientific). Images were obtained using a Ziess Axiovert 200 M microscope. 

2.4. In situ hybridization of embryos 

Embryos were processed as described for immunostaining. In situ hybridization of 

embryos were performed using previously described protocol with following modifications 

(Lehmann R, Tautz D. 1994). Single-stranded digoxigenin-labeled RNA probes for gt and lacZ 

were synthesized using an in vitro RNA transcription kit (DIG RNA Labeling kit from Roche) and 

listed primers (Table 2.5), from CH322-05H16 BAC clones and Pelican P element reporter vector 

(Barolo et al., 2000), respectively. To make gt probes, first a 1.8 kb fragment was amplified using 

gt-out primers and then the PCR product was re-amplified using gt-T7 primers. Probes were 

hydrolyzed to make 300-700 bp RNA fragments using 0.2M sodium carbonate buffer, prior to 

hybridizing to the fixed embryos. Proteinase K digestion step is dispensable, and should be 

followed only if the probe gives a very good staining ratio of signal to background. Otherwise, this 

step can result in a high staining background. Probe denaturation was performed at 80°C for 5 

minutes, followed by hybridization at 45°C overnight. Anti-Digoxigenin-antibody conjugated to 

alkaline phosphatase (Roche) was used with the final working dilution of 1:1000 and detection 

was done by incubating embryos in NBT/BCIP solution. Stained embryos were washed in PBST 

and dehydrated in ethanol series (30%, 60%, 90%, and 100%), and mounted in Permount (Fisher 

Scientific #SP15). Images were obtained using a Zeiss Axiovert 200 M microscope. 
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6Table 2.5- Primers used to make gt and lacZ probes and their corresponding annealing 

temperatures. 

 

 

2.5 Extraction of genomic DNA from adult flies 

Each fly was gently homogenized in 100 μl of lysis buffer containing 0.1 M Tris-HCl pH 

9, 0.1 M EDTA, 1% SDS. Homogenate was then incubated for 30 minutes at 70°C. 1 M Potassium 

acetate (14 μl of 8 M Potassium acetate) was added to each tube, thoroughly mixed and incubated 

on ice for 30 minutes. Following centrifugation for 15 minutes, supernatant was transferred to a 

new tube and DNA was precipitated by adding 0.5 volume isopropanol. The pellet was washed 

with 70% ethanol twice, air dried and resuspended in 50 μl of PCR water. Extracted DNA was 

directly used in PCR reactions.  

2.6 Preparation of Drosophila embryo extracts 

Embryos were dechorionated in 50% bleach for 2 minutes and washed extensively with 

0.03% Trtiton-X-100. Embryos were then homogenized in 2X volume of lysis buffer containing 

40 mM HEPES pH 7.5, 350 mM NaCl, 10% glycerol, 0.1% tween-20, and 1X protease inhibitor 

cocktail (Sigma #P8340), using appropriate pestles. The homogenized extract was centrifuged at 

13,000 rpm for 30 min at 4°C. The supernatant was flash frozen and stored at -80°C. 

Amplicon  Primer Primer Sequence (5'-3') Annealing 

temp (C∘) 

gt-out Forward            CCA GGA GGC GAC CAA CGA GA  72 

 Reverse  CCA GAG ACC ATA CAC CGA ACA CCA T  

gt-T7 Forward AAG TAATACGACT CACTATAG 

GGCTATGAAAAA 

70 

  Reverse CAAGCCCCTGATGCACCACCAC   

lacZ-T7 Forward GGAAAACCCTGGCGTTACCCAACTTAATC 72 

  Reverse AAGTAATACGCCTCCGCCGCCTTCATACTGC   



 

51 

 

2.7 Western Blot analysis 

Extracts of Drosophila embryos were run on a SDS-PAGE and the proteins were then 

transferred to nitrocellulose membrane. Blocking of membrane was performed in 5% milk diluted 

in TBS-0.1%Tween for 2 hours. P rimary rabbit antibodies were diluted 1:1000 in 5% milk TBS-

0.1%Tween and incubated with the membrane overnight at 4°C. Membranes were washed three 

times with TBS-0.1%Tween followed by incubation with horseradish peroxidase conjugated to 

goat anti-rabbit secondary antibodies (1:25,000, Jackson Immunoresearch). Membranes were 

washed three additional times with 5% milk TBS-0.1%Tween. Protein-antibody complexes were 

detected using Amersham ECL Prime Western Blotting Detection Reagent (GE Healthcare). 

Molecular weights of proteins were roughly calculated by comparison to standards of known 

molecular weight (Bio-Rad). 

2.8 RT-qPCR  

Embryos were collected for one hour, and then aged at 25°C for 110 minutes to reach nc13-

nc14a. Embryos were then dechorinated in 50% bleach for 2 minutes and then manually sorted. 

Total RNA was isolated using manufacturer’s protocol provided by Aurum total RNA mini kit 

(Bio-Rad). To quantitate RNA concentration, spectrophotometer (Eppendorf No. 613102570)  was 

used and reading was taken at wave lengths of 260 nm. For all samples, 3 μg of RNA was reverse 

transcribed using Maxima First Strand cDNA synthesis kit (Thermo Scientific). Reaction mixture 

was prepared according to the manufacturer’s protocol and then incubated for 10 minutes at 25°C 

followed by 30 minutes at 55°C. Reaction was terminated by heating at 85°C for 5 minutes. cDNA 

was analyzed by qPCR using gene-specific primers (Table 2.6). PCR reactions were performed in 

triplicates. To calculate the triplicate mean values, CT quantification method with 

rp49 transcript as normalization reference, was used.   
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7Table 2.6- Primers used in RT-qPCR and their corresponding annealing temperatures. 

Amplico

n 

Primer Primer Sequence (5'-3') Annealin

g temp 

(C∘) 

rp49 Forward ATGACCATCCGCCCAGCATACA 55 

  Reverse GTCGATACCCTTGGGCTTGCG   

lacZ Forward GGAGTCTTCCTGGGTGTCTCTACGC 55 

  Reverse CTTGTTGGTCAAAGTAAACGACATGGT   

 

 

2.9 Affinity purification of 6X Histidine-tagged proteins  

2.9.1 Protein extraction 

Bacteria containing vectors expressing 6X Histidine-tagged E(z), Pc, Dsp1, Kni and Kr 

were cultured in 2XYT media supplemented with 100 μg/ml Ampicillin at 25°C overnight. 

Saturated overnight cultures were diluted 1:20 with 100 μg/ml Ampicillin. IPTG was added to a 

final concentration of 1 mM to induce protein expression after an additional 3-4 hours of growth. 

The cultures were then incubated at 37°C for another 3 hours or at 25°C overnight. Bacterial lysates 

containing polyhistidine-tagged fusion proteins were isolated after centrifugation for 10 minutes 

at 6000 rpm at 4°C. Cells were lysed in 8 M urea, 0.1 M NaH2PO4, 0.01 M Tris-HCl pH 8. Ni+2-

NTA agarose beads (Invitrogen, R901-01) was used as an affinity chromatography matrix for 

purifying recombinant proteins. 1:4 ratio of Ni+2-NTA: lysate was used and the mixture was 

incubated for 1 hour at room temperature. The mixture was then transferred to the column and 

Histidine-tagged proteins were eluted in elution buffer containing 8 M urea, 0.1 M NaH2PO4, 0.01 

M Tris-HCl pH 4.5. The eluent was then dialyzed against the coupling buffer (0.1 M NaHCO3, 0.5 

M NaCl pH 8.3) overnight. 
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2.9.2 Medium preparation 

Each gram of CN-Br-activated sepharose powder (GE Healthcare) gives a volume of 3.5 

ml which has the capacity for binding to up to 5-10 mg of protein. Appropriate amount of CN-Br 

beads was suspended in 1 mM HCl and rotated to get separated. The beads were then washed 

though the sintered glass filter with the vacuum suction with 1 mM HCl and coupling buffer (0.1 

M NaHCO3, 0.5 M NaCl, pH 8.3). CN-Br beads were then suspended with recombinant proteins 

for 1 hour at room temperature. The ligand- CNBr coupled beads were centrifuged at 2200 rpm 

for 5 minutes and then washed with coupling buffer, followed by blocking with 0.1 M Tris-HCl, 

pH 8 at room temperature for 2 hours. The mixture was washed 3X with the wash buffers (0.5 M 

NaCl, 0.1 M NaOAc) with alternating pHs, 2 and 8. The mixture of ligand-CNBr coupled beads 

was left in the pH 8 wash and then stored at 4°C. Aliquots of the supernatant were run on a SDS-

PAGE gel, followed by coomassie blue staining before and after coupling to determine coupling 

efficiency. BCA assay was performed using BCA protein assay kit (Thermo Scientific) to 

determine the total concentration of proteins. 

2.9.3 Affinity purification of antibodies 

Histidine-tagged recombinant proteins-CNBr beads, whether used as pre-adsorption or test 

beads, were washed with PBTN (1x PBS, 0.3 M NaCl, 0.1%Triton-X-100). The anti-serum was 

diluted with equal amount of PBTN, added to the pre-adsorption beads and incubated for 1 hour 

at room temperature. The mixture was poured into a column and the flow through was collected. 

Approximately, 4-5 mg of proteins attached to CNBr beads were used, considering that the total 

volume of CNBr beads does not exceed 2 ml. The pre-adsorbed anti-serum was incubated with 

Histidine-tagged protein-CNBr coupled beads at 4°C overnight. The mixture was then poured into 

a column. The flow through was collected and beads were washed with 100 ml PBTN. Elution 
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step was performed with 2X 5 ml fractions of elution buffer containing 0.2 M glycine, 0.8 M NaCl 

pH 2.5. The flow rate of elution buffer was kept very slowly and the elution was done one ml at a 

time. After collecting the eluate, pH was equilibrated by adding 50 μl of 2 M Tris-HCl pH 8 to 

each 1 ml of purified antibodies. Eluate was dialyzed in buffer containing 1X PBS, 0.02% NaN3 

at 4°C for at least 4 hours then 50 or 100 μl aliquots were taken, flash frozen and stored in -80. 

The affinity purified antibody was tested in ChIP and/or western blot assays. E(z), Pc, Dsp1, Kni 

and Kr antibodies were affinity-purified using this protocol. 

2.10 Affinity purification of GST-tagged proteins 

Bacteria containing pGEX plasmids expressing GST-tagged proteins were cultured in 

2XYT media supplemented with 100 μg/ml Ampicillin as described for purification of 6X 

Histidine-tagged proteins. Cultures were induced by 1 mM IPTG. Bacterial lysates were isolated 

after centrifugation for 10 minutes at 6000 rpm at 4°C and then resuspended in 30 ml ice-cold 1X 

PBS to wash. After centrifugation, the pellet was resuspended in 10 ml ice-cold STE buffer (10 

mM Tris-Hcl pH 8, amM EDTA,150 mM NaCl). 100 μl of freshly made lyozyme solution added, 

and incubated on ice for 15 minutes. Sonication was performed for the total time of 1 minute after 

adding 100 μl of 1 M DTT and 1.4 ml of 10% Sarkosyl to the lysate. Debris was pelleted and 

supernatant was saved. 4 ml of 10% Triton X-100 was added and STE buffer was added to 20 ml, 

leaving the final concentrations of Sarkosyl and Triton X-100 to 0.7% and 2%, respectively. The 

solution was then incubated at room temperature for 30 minutes. To make 50% slurry of 

Glutathione Sepharose beads, 2 ml of Glutathione Sepharose beads was thoroughly mixed with 48 

ml of PBS. Supernatant was discarded after the centrifugation and the pellet was resuspended in 2 

ml of PBS. 1 ml of 50% slurry of Glutathione Sepharose beads was added to the lysate and the 

mixture was incubated for 1 hour at room temperature with agitation. The beads were washed with 
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50 ml PBS for 3 times, resuspended in 5 ml of PBS and loaded into a column. The beads were then 

washed with 100 ml of PBS and eluted with 2 X 5 ml fractions of elution buffer. Eluent was then 

dialyzed in dialysis buffer containing 1X PBS, 0.02% NaN3 at 4°C for at least 4 hours then 100 μl 

aliquots were taken, flash frozen and stored in -80. The affinity purified antibody was tested in 

ChIP and western blot assays. E(z) anti-sera were affinity-purified using this protocol. 

2.11 Transgenic RNAi Project (TRiP) lines 

The TRiP Project at Harvard University has generated over 12,000 Gal4-inducible short 

hairpin RNA expressing transgenic Drosophila lines that may be used for the targeted depletion 

of thousands of fly proteins. TRiP reagents and fly stocks are transferred to the 

Bloomington Drosophila Stock Center (BDSC) for distribution to the fly community. Maternally 

expressed Gal4 drivers in conjunction with TRiP UAS-shRNA transgenes were used to knock 

down the levels of proteins of interest. In order to test the efficiency of UAS-shRNA-mediated 

knock down of specific proteins, I looked at the mortality rate and cuticle patterns of the embryos. 

Transgenic lines tested for the efficient knockdown is listed in Table 2.7. 

 

 

Name BDSC Stock ID Vector Insertion site 

Ash1 36803 VALIUM22 attp40 

Hb 54478 VALIUM22 attP2 

Cad 57546 VALIUM20 attP40 

Set1 40931 VALIUM20 attp40 

Fs(1)h 41693 VALIUM20 attp40 

Fs(1)h 41943 VALIUM20 attp40 

Fs(1)h 44009 VALIUM20 attp40 

Cdk9 41932 VALIUM20 attp40 

Set2 42511 VALIUM20 attp40 

Haywire 53345 VALIUM20 attp40 

Set2 55221 VALIUM20 attp40 

8Table 2.7- TRiP lines tested for the efficient knockdown using maternally expressed Gal4 

driver. 

https://bdsc.indiana.edu/stocks/54478
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Cdk7 57245 VALIUM20 attp40 

Cdk7 62304 VALIUM20 attp40 

Ash2 64942 VALIUM20 attp40 

Lsd-1 65020 VALIUM20 attp40 

Wds 60399 VALIUM20 attp40 

Mat1 57312 VALIUM20 attp40 

Xpd 65883 VALIUM20 attp40 

CycT 32976 VALIUM20 attp2 

Ash2 35388 VALIUM22 attp2 

Cdk9 35323 VALIUM22 attp2 

Lilli 34592 VALIUM20 attp2 

Cdk7 53199 VALIUM22 attp2 

dMi-2 35398 VALIUM22 attp2 

CBP 37489 VALIUM20 attp2 

Hopped CBP -2.1  VALIUM20 2nd chromosome 

Hopped CBP-2.2  VALIUM20 2nd chromosome 

Hopped CBP-3.1  VALIUM20 2nd chromosome 

Hopped CBP-17  VALIUM20 2nd chromosome 

Hopped CBP-36.3  VALIUM20 2nd chromosome 

Hopped CBP-36.2  VALIUM20 2nd chromosome 

Hopped CBP-10  VALIUM20 2nd chromosome 

 

 

2.12 Establishment of bcd osk tsl Drosophila genetic system 

All the preliminary work to generate and verify the bcd osk tsl Drosophila genetic system 

has been done by the former graduate student, Jumana Alhaj Abed. bcd6 osk6 tslPZRev32 on the right 

arm of the third chromosome (3R), was gifted from Leslie Stevens. Another stock containing bcd7 

osk6 tsl4, was obtained from crossing the tsl4 allele (Bloomington Drosophila Stock Center #3289) 

to the bcd7osk6 (Bloomington Drosophila Stock Center #3252) chromosome (R. Jones). Both 

stocks were not able to homozygose because of the presence of unidentified recessive lethal 

mutations and thus were crossed together to generate trans-heterozygous females containing bcd7 

osk6 tsl4/bcd6 osk6 tslPZREV32 females. Embryos derived from bcd osk tsl females, offer an in vivo 
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model of a homogenous population of cells in which gt is uniformly repressed by PcG proteins 

during early embryogenesis. 

2.13 Establishment of Drosophila genetic system which expresses gt uniformly 

In order to produce embryos in which gt is ubiquitously active, the levels of maternal Hb, 

a repressor of gt, was knocked down in a bcd osk tsl maternal background. Zygotic Hb is not 

expressed in the resulting embryos due to bcd and tsl. Cad, the activator of gt, is uniformly 

expressed.  

2.14 Knock down of maternal levels of Cad in bcd osk tsl maternal background 

Maternally expressed Gal4 drivers in conjunction with UAS-shRNA, was used to knock 

down the levels of maternal Cad, an activator of gt, in a bcd osk tsl maternal background. Zygotic 

Hb is not expressed due to bcd and tsl. Hb, the repressor of gt, is uniformly expressed in the 

resulting embryos. 

2.15 Knock down of maternal levels of Cad and Hb proteins in bcd osk tsl maternal 

background 

In order to generate a genetic system in which all known activators and repressors of gt are 

absent, maternal levels of both Hb and Cad proteins were knocked down in a bcd osk tsl maternal 

background. Activators of gt, Cad, Bcd and Gt, are absent in the resulting embryos. Furthermore, 

kni and Kr, repressors of gt, are not expected to be expressed in this genetic system due to the 

absence of their activators, Cad and Bcd, respectively. Hb, another known repressor of gt, is 

present at very low levels due to the maternally expressed shRNAs for this protein. 

2.16 Cuticle Preparation 

Embryos were collected in 24-hour time period and aged for another 24 hours at 25°C. 

Embryos were then washed off the plates and dechorinated for 2 minutes in 50% bleach. To de-

vitellinize, embryos were vigorously shaken in a mixture of 1:1 heptane: ice-cold methanol for 30 



 

58 

 

seconds. De-vitellinized embryos sank to the bottom of the tube and were washed three times with 

methanol to remove traces of heptane.  Embryos were then washed with 0.1% Triton three times 

to remove methanol. Embryos were transferred onto a microscope slide and mountant 

(Polysciences) was added. Slides were covered by cover glasses and incubated at 70°C for 

overnight before inspection under microscope. 
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CHAPTER 3:  

 

THE REQUIREMENT OF PHO FOR THE RECRUITMENT OF PCG PROTEINS AND 

MAINTENANCE OF PCG-MEDIATED REPRESSION AT GT PRES 

 

3.1 Introduction 

Drosophila PREs have been shown to be required for the recruitment of PcG proteins and 

formation of PcG domains. Studies of different Drosophila PREs have identified a number of 

consensus protein binding sites, including those for Pho, Phol, Dsp1 and Spps, to be important for 

PRE activity (reviewed in Kassis and brown, 2013). However, the exact sequence motifs required 

for PRE activity remain elusive due to the presence of different combinations of PRE binding 

proteins and low conservation of their consensus binding site sequences (Kassis and Brown, 2013).  

Pho has been shown to bind to at all characterized PREs (Kassis and Brown, 2013), and 

thus is a good indicator of the presence of a PRE. Genome-wide studies have shown that binding 

of Pho is strongly correlated with PRC1 subunits (Oktaba et al. 2008) and the hierarchical model 

for the recruitment of PcG proteins, places Pho at the base of the recruitment (Wang et al., 2004). 

Phol is partially functionally redundant with Pho during larval development and all amino acids 

involved in making DNA contacts are conserved in these two proteins (Alfieri et al., 2013). Pho 

binding sites are demonstrated to be required for bxd PRE activity of the endogenous Ubx gene 

(Kozma et al. 2008). Mutations of Pho binding sites within bxd PRE, demonstrated that recruitment 

of PRC1 and PRC2 is dependent on the binding of Pho to Pho binding sites (Frey et al., 2016). 

However, a number of studies have published evidence that Pho is not sufficient to recruit PcG 
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proteins (Americo et al., 2002; Brown et al., 1998; Fritsch et al., 1999; Shimell et al., 2000; Poux 

et al., 2001a). 

Several Drosophila PcG target genes, such as engrailed-invected (en-inv), dachshund 

(dac), vestigial (vg), and gt, have a minimum of two PREs (Abed et al. 2013; Ahmad and Spens 

2018; Cunningham et al. 2010; DeVido et al. 2008; Ogiyama et al. 2018). At some genes, such as 

dac, the two PREs are at least partially non-redundant and cooperate to form PcG domains 

(Ogiyama et al. 2018). However, deletion of four strong PREs of en/inv region did not result in the 

alteration of the PcG domain or the derepression of en (De et al. 2016).  

Two PREs have been mapped for the gt locus; PRE1, a 1.9 kb fragment, which overlaps 

with the gt_(-1) enhancer and encompasses the gt promoter. PRE2 localized 6 kb upstream from 

the gt TSS and overlaps with gt_(-6) enhancer. We have previously described the temporal 

sequence of de novo recruitment of PcG proteins at gt two PREs, in syncytial blastoderm through 

cellular blastoderm/gastrulating embryos (Abed et al. 2018). PhoRC binding to PRE1 precedes its 

stable binding to PRE2 by 30 minutes (Abed et al. 2018). This raises key questions about possible 

dependency of PhoRC binding to PRE2 on the presence of PhoRC at PRE1 and the requirement 

of Pho binding to PRE1 for the recruitment of PcG proteins to both PREs. 

In order to determine whether PhoRC binding to PRE2 is dependent on its presence at 

PRE1 and the consequence of absence of Pho on the binding of PcG proteins to both PREs, we 

have generated flies carrying reporter transgenes which contain either the entire wild type gt 

regulatory region or the same gt fragment with mutations in Pho/Phol binding sites in PRE1. We 

found that PRE2 is redundant with PRE1 for the recruitment of PcG proteins and maintenance of 

transcriptional repression. Two other PRE binding proteins, Dsp1 and Spps, are differently 

dependent on Pho for PRE1 binding. Surprisingly, we find that Phol binding to PRE1 is unaffected 
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by the mutation of Pho consensus binding sites that eliminate binding by Pho. Our findings shed 

light on the functions of individual PRE binding proteins and the modulating effect of PcG proteins 

at transcriptionally active genes. 

3.2 Results 

3.2.1 Mutations of Pho binding sites eliminated PRE1.1 activity  

In order to more narrowly define the boundaries of gt PRE1, a smaller fragment extending 

from 543 upstream to 12 bp downstream from gt TSS (PRE1.1), was tested for the PRE activity 

within the context of the SD10 P element reporter vector (Figure 3.1A; DeVido et al., 2008). SD10 

includes en enhancer and promoter that produces lacZ expression in 14 stripes, recapitulating the 

expression pattern of endogenous en at this developmental stage (Figure 3.1C). Inclusion of a 

fragment with PRE activity results in the maintenance of lacZ expression from SD10 transgenes 

in 14 stripes, while lack of a PRE, results in the ectopic expression of lacZ between the stripes 

(Abed et al., 2013; Cunningham et al., 2010; DeVido et al., 2008).  

The PRE activity of PRE1.1 was assessed by immunostaining of stage 14 embryos from 

five SD10-PRE1.1 transgenic lines using anti-β-galactosidase (anti-β-gal) antibody. All tested five 

lines exhibited the PRE activity in the maintenance assays (a representative embryo is shown in 

Figure 3.1D). 

Two predicted Pho/Phol consensus binding sites, CGCCATTT, are present within PRE1.1. 

These binding sites resemble the extended Pho/Phol binding sites (CGCCAT(T/A)TT). In order to 

investigate the requirement of Pho for the activity of PRE1.1, we mutated the core sequence of 

Pho binding sites (GCCAT; Figure 3.1B) and cloned this fragment into the SD10 vector and 

transgenic lines were generated. Nine out of nine lines demonstrated ectopic β-gal expression in 
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the maintenance assays (a representative embryo is shown in Figure 1D), indicating the disruption 

of PRE1.1 activity due to the mutation of the Pho/Phol consensus binding sites.   

 

 

 

 

Figure 3.1- Mutations of Pho-Phol consensus binding sites disrupt PRE1.1 activity. (A) 

Schematic above shows the gt genomic region containing two PREs, shown as blue bars. 

PRE1.1 fragment (+12 to -543) is shown as red bar. (B) Sequence alignment of the wild type 

PRE1.1 region containing two extended Pho-Phol consensus binding sites with PRE1.1 

containing mutant Pho-Phol consensus sequences; coordinates of the mutated sites are 

indicated above. (C) Schematic representation of the SD10 P element reporter vector. Orange 

and red rectangles labeled “en” represent the engrailed promoter and enhancer, respectively. 

Arrows indicate the direction of transcription of the reporter gene (lacZ) and marker (mini-

white gene). Green and red arrows below indicate the approximate locations of PCR priming 

sites for detection of ChIP signals from SD10-PRE1.1 and SD10-∆gt1 transgenes, respectively. 

(D) Representative stage 14 embryos from lines carrying SD10-PRE1.1-wt or SD10-PRE1.1-

mut transgenes immunostained with anti-β-galactosidase. Embryos are shown as lateral views, 

dorsal up, anterior to the left. 
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3.2.2 Binding of Phol and Sfmbt was not abrogated by the mutation of Pho binding sites in 

SD10 vector 

In order to confirm that mutations of Pho/Phol binding sites can abrogate Pho binding in 

SD10 vector, we performed ChIP assays on nc14b-nc15 SD10 transgene carrying embryos. Pho 

binds to the endogenous PRE1.1 and PRE1.1-wt transgene, while its binding to SD10-PRE1.1-

mut transgene was reduced to background levels (Figure 3.2). To determine if Phol binds to 

PRE1.1 and if its binding is also affected by the mutations of Pho/Phol binding sites, we looked at 

Phol binding in SD10-PRE1.1-wt and SD10-PRE1.1-mut embryos. Phol binds to the endogenous 

and SD10-PRE1.1-wt transgene. However, Phol binding to SD10-PRE1.1-mut transgene was 

decreased to half, but not eliminated by the mutations of Pho/Phol binding sites (Figure 3.2). 

Given that Phol and Phol were shown to bind to the exact DNA sequences in vitro (Brown et al., 

2003), the latter observation was surprising, and raised three possibilities: 1) Mutation of Pho/Phol 

bindings sites reduces but does not abrogate binding of Phol. 2) Phol binds to other sites within 

PRE1.1. 3) Phol binds to sites within SD10 vector. To test which of these possibilities was correct, 

we looked at Phol binding to SD10 vector. Our lab previously used the modified version of SD10 

vector, in which gt inserts were flanked by FRT sites (Alhaj Abed et al., 2013). In the latter study, 

a series of gt fragments were cloned into the SD10 vector to be tested for PRE activity in the 

context of SD10 vector. FRT-flanked fragments were later deleted by FLP recombinase, leaving 

only the SD10 construct (SD10-∆gt1), resulting in the ectopic β-gal expression and loss of 

maintenance of en-like lacZ expression (Alhaj Abed et al., 2013). Unexpectedly, Phol binding to 

the transgene of SD10-∆gt1 embryos was at the same level as that to the SD10-PRE1.1-mut 

transgene. These results suggested that mutation of Pho binding sites abrogated binding of Phol to 

mutated sites and the detected Phol signal resulted from Phol binding to the SD10. Phol was shown 

to bind outside PcG domains, within 300 bp of TSS of a subset of active genes (Kahn et al., 2014). 
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Given that en promoter is located just downstream of PRE1.1, we suggest that Phol may bind to 

the en promoter.  

Both Pho and Phol make a dimer with Sfmbt and interact with it in a mutually exclusive 

manner (Kahn et al. 2014). In order to test if the detected Phol at the transgene of SD10-PRE1.1-

mut and SD10-∆gt1 embryos is present as a subunit of PhoRC, we looked at Sfmbt signals at SD10 

containing embryos. Sfmbt binds to the transgene of SD10-PRE1.1-wt embryos at the levels 

comparable to endogenous PRE1.1. However, Sfmbt binding to SD10-PRE1.1-mut was 

surprisingly at the same level of that at SD10-∆gt1 transgene and showed about 60% reduction 

compared to the endogenous PRE1.1 (Figure 3.2).  

 

 

 

 

 

 

Figure 3.2- Effects of Pho-Phol consensus binding sites mutations on PhoRC recruitment. 

ChIP-qPCR was performed with anti-Pho, anti-Phol and anti-Sfmbt antibodies, as indicated 

above, using nc14b-nc15 SD10-PRE1.1-wt, SD10-PRE1.1-mut and SD10-∆gt1 embryos. ChIP 

signals are presented as fold enrichment relative to Pka-C1, shown at 1. Error bars show standard 

deviations for three biological replicates. 
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3.2.3 PRE1 is redundant with PRE2 for the maintenance of PcG-mediated repression of gt 

In order to test gt PRE activities within the entire gt upstream regulatory region, a 10.8 kb 

gt fragment (-10421 to +360), including all four enhancers and two PREs, was used (Figure 3.3A). 

To distinguish signals of the transgenes from the endogenous gt in ChIP-qPCR experiments, we 

introduced base pair substitution in the PCR priming sites for regions 4, 6 and 9. This gt fragment 

was then inserted into a modified Pelican reporter vector (Figure 3.3B, Barolo et al., 2000). The 

transgene was integrated into the attP40 docking site and transgenic flies were generated. In order 

to examine the recruitment of PcG proteins to PRE1 and PRE2, in the absence of Pho at PRE1, the 

same sequence changes that were made in PRE1.1 fragment in the context of SD10 vector, were 

introduced in this larger fragment. 

 

 

Figure 3.3- Pelican-gt reporter construct. (A) Schematic map of the gt genomic region 

including 4 enhancers and two PREs. Regions amplified by qPCR (4, 6 and 9) in ChIP assays 

are represented as small red bars. Enhancer-containing regions are indicated with black bars. (B) 

Diagram of modified Pelican P element reporter vector. “I” represents gypsy insulators. “P” 

represents P element transposition sequences. Locations of added Gateway cassette and attB 

sequence indicated. Arrows indicate the direction of transcription of the reporter gene (lacZ) and 

marker (white).  
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PcG-mediated repression of gt is redundant with transcription factors, such as Hb and Kr, 

during early embryonic stages. Negre et al. (2006) showed the ectopic expression of gt in PcG 

mutant background in stage 10 embryos, which indicates that gt repression is PcG-mediated in this 

developmental stage (Negre et al., 2006). In situ hybridization of Pelican-gt-wt embryos showed 

lacZ expression in a pattern recapitulating endogenous gt expression (Figure 3.4). This 

observation demonstrated that the ~10.8 kb fragment contains all the regulatory elements 

necessary for regulating gt expression. Maintenance of gt-like pattern of lacZ expression in 

Pelican-gt-mut transgene through stage 10 showed that PcG-mediated repression of gt was not 

affected by the mutations of Pho binding sites and the activity of PRE2 alone was sufficient for 

the maintenance of PcG-mediated repression (Figure 3.4). However, the possible presence of 

weak small PREs cannot be excluded. 

 

 

Figure 3.4- Maintenance of gt-like lacZ expression from Pelican-gt-wt and Pelican-gt-mut 

transgenes. Pelican-gt-wt (left) and Pelican-gt-mut (right) embryos hybridized with gt or lacZ 

RNA probes, as indicated. Embryonic stages are indicated on the left. 
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RT-qPCR analysis showed small but significant increase of lacZ transcription due to the 

mutations of Pho binding sites from Pelican-gt-mut transgene compared to that from Pelican-gt-

wt transgene at syncytial and cellular blastoderm embryonic stages (Figure 3.5). At stage 10, there 

is still an increase in lacZ expression from Pelican-gt-mut transgene but this increase is not 

significant. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5- Mutation of PRE1 Pho-Phol sites resulted in a 

greater amplitude of lacZ expression. Genotype and 

developmental stages of embryos are indicated below. RT-

qPCR signals were normalized to rp49 transcript. Y-Axis 

shows the relative expression of lacZ to Pelican-gt-wt 

embryos. Error bars show the standard deviation for three 

biological replicates. *p ≤ 0.05, unpaired two-tailed Student's 

t test.   
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3.2.4 Distribution of PcG proteins in Pelican transgene-containing embryos 

Binding of PcG proteins at Pelican-gt-mut transgene was compared to that at Pelican-gt-

wt transgene and the endogenous gt at three time points:  syncytial blastoderm (nc10-13), cellular 

blastoderm-early germband elongation (nc14b-nc15), and stage 10.   

Both Pho and Phol are strongly bound to PRE1 (region 4) at gt and Pelican-gt-wt transgene 

in nc10-13 embryos, while their binding to PRE2 (region 9) is very weakly positive at this stage. 

Pho and Phol PRE1 signals increase from nc10-13 to nc14b-nc15. However, Pho binding did not 

change from nc14b-nc15 to stage 10 at PRE1 of Pelican-gt-wt and endogenous gt, while signal of 

Phol dropped to one third in stage 10 embryos (Figure 3.6). Pho signals at PRE2 of endogenous 

gt and Pelican-gt-wt transgene increased across the time points, while Phol signals at PRE2 stayed 

weakly positive at all time points. Sfmbt binding to PRE1 of endogenous gt and Pelican-gt-wt 

transgene increased from nc10-13 to stage 10, however, its binding to PRE2 stayed weak but well 

above the background at all stages (Figure 3.6). 

Binding of Pho is abrogated at Pelican-gt-mut transgene due to the mutation of Pho binding 

sites at all embryogenic stages. Interestingly, signal of Pho at PRE2 of Pelican-gt-mut transgene 

is not affected by the lack of Pho binding at PRE1 (Figure 3.6).  
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Surprisingly, Phol binding level to PRE1 of Pelican-gt-mut transgene was comparable to 

that at Pelican-gt-wt transgene and endogenous gt in nc10-13 and nc14b-nc15 embryos. At stage 

10, Phol binding showed a small but statistically significant reduction at PRE1 of Pelican-gt-mut 

transgene compared to the endogenous gt (Figure 3.6).  

Sfmbt signals at PRE1 of Pelican-gt-mut transgene showed a significant reduction (~50% 

reduction) at all time points, but did not drop to the background levels. Sfmbt binding to PRE2 

was not affected by the absence of Pho at PRE1 of  Pelican-gt-mut transgene. 

Our lab previously showed that E(z) and Pc, respective components of PRC2 and PRC1, 

are weakly associated with gt in nc10-12 and nc13 embryos, prior to their stable binding in nc14b 

Figure 3.6- Effects of mutant PRE1 Pho-Phol consensus binding sites on PhoRC 

recruitment to PRE1 and PRE2. Time course ChIP-qPCR assays using Pelican-gt-wt and 

Pelican-gt-mut embryos at the developmental stages indicated on the left using anti-Pho, anti-

Sfmbt and anti-Phol antibodies.  ChIP signals are presented as fold enrichment relative to Pka-

C, shown at 1. Error bars show the standard deviations for three biological replicates. *p ≤ 0.05, 

**p ≤ 0.01 and ***p ≤ 0.001, unpaired two-tailed Student's t test. 
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embryos (Abed et al., 2018). We have interpreted this weak interaction of E(z) and Pc with 

chromatin as “sampling”, in which PRC1 and PRC2 sample the chromatin environment at PREs 

independently of Pho, prior to the strong and prolonged interaction of PRC2 with chromatin and 

thus deposition of H3K27me3, and stable binding of PRC1.  

Similar to our previous report, E(z) was weakly positive and negative at gt PRE1 and PRE2, 

respectively, at endogenous gt and Pelican-gt-wt transgene in nc10-13 embryos. E(z) binding at 

PRE1 and PRE2 of Pelican-gt-wt transgene and endogenous gt increases from nc10-13 to nc14b-

nc15 (Figure 3.7).  Interestingly, mutation of Pho binding sites, resulted in the significant 

reduction of E(z) binding at PRE1 of Pelican-gt-mut transgene compared to the endogenous PRE1, 

as early as nc10-13 (Figure 3.7). This indicates that even the weak association of E(z) with 

chromatin or “sampling” was dependent on the presence of Pho. E(z) signal remained significantly 

reduced, dropped to half, at PRE1 of Pelican-gt-mut transgene through later time points. On the 

other side, E(z) binding at PRE2 was not affected by the Pho mutations in PRE1 and its signal at 

PRE2 of Pelican-gt-mut transgene embryos was comparable to that of the endogenous gt gene 

(Figure 3.7). 

In accordance with the weak association of PRC2 with chromatin, H3K27me3 signals were 

close to background levels at endogenous gt and Pelican-gt-wt transgene in nc10-13 embryos. 

H3K27me3 signals increased across the gt region from nc10-13 to nc14b-nc15 consistent with the 

stable binding of PRC2 at this stage. However, H3K27me3 did not drastically increase through 

stage 10 (Figure 3.7). Deposition of H3K27me3 was a little stronger at PRE1 compared to PRE2 

of the endogenous gt and Pelican-gt-wt transgene. Given that H3K27me3 signal at PRE1 of 

Pelican-gt-mut transgene was already close to background level at nc10-13, absence of Pho did 

not have an effect on the deposition of H3K27me3 at this stage (Figure 3.7). However, H3K27me3 
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signal sank to near the background levels at nc14b-nc15 and stage 10 embryos, due to the lack of 

Pho binding. Deposition of H3K27me3 at regions 6 and 9 (PRE2) of Pelican-gt-mut transgene was 

not affected by mutations of Pho sites (Figure 3.7). 

 

 

 

 

 

 Pcl, a substochiometric subunit of PRC2, is required for high levels of trimethylation of 

H3K27 at PcG target genes (Nekrasov et al., 2007). Pcl is detected at PRE1 of the endogenous gt 

and Pelican-gt-wt transgene as early as nc10-13. Pcl signal at endogenous and Pelican-gt-wt PRE1 

increases further at nc14b-nc15 and stays at the same level at stage 10. Pcl binding at PRE2 is 

relatively lower than endogenous PRE1 at all developmental stages. Pcl recruitment at PRE2 

Figure 3.7- Effects of mutant PRE1 Pho-Phol consensus binding sites on recruitment of 

PRC1, PRC2 and deposition of H3K27me3 at gt.  Time course ChIP-qPCR assays were 

performed as in figure 3.6, except using anti-E(z), anti-Pcl and anti-H3K27me3. ChIP signals 

from three biological replicates are presented as in figure 3.6. 
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slightly increases from nc10-13 to nc14b-nc15 and noticeably rises at stage 10 (Figure 3.7). Pcl 

binding to Pelican-gt-mut PRE1 was significantly reduced, but did not sink to background levels, 

as the result of absence of Pho. Binding of Pcl to PRE2 of Pelican-gt-mut transgene was not 

affected by the absence of Pho at PRE1 (Figure 3.7) 

 

 

 

 

 

 

 

 

 

 

 

Mock (rabbit IgG) was used as our negative control which gave a negative to mildy positive 

signals at all tested region in three embryonic stages (Figure 3.8). Concurrent with unstable 

binding of PRC2 and negative H3K27me3 signal, Pc signal was close to background level in nc10-

Figure 3.8- Effects of mutant PRE1 Pho-Phol consensus binding sites on 

recruitment of PRC1 at gt.  Time course ChIP-qPCR assays were performed as 

in figure 3.6, except anti-Pc and IgG (mock) antibodies. ChIP signals from three 

biological replicates are presented as in figure 3.6. 
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13 embryos. Binding of Pc at PRE1 of endogenous gt and Pelican-gt-wt transgene increased from 

nc10-13 to stage 10 (Figure 3.8). 

Pc binding to PRE2 was weakly positive at nc14b-nc15 and increased drastically at stage 

10 embryos. Pc signal dropped to background levels at PRE1 of Pelican-gt-mut transgene at nc14b-

nc15. At stage 10, Pc signal was significantly reduced, but still well above the background, at 

PRE1 of Pelican-gt-mut. Binding of Pc at region 6 and PRE2 (region 9) of Pelican-gt-mut was 

comparable with endogenous gt and Pelican-gt-wt transgene (Figure 3.8). Furthermore, we 

examined the requirement for the presence of Pho on the binding of PRE binding proteins, Dsp1 

and Spps, to PREs. Spps was weakly detected at PRE1 of the endogenous gt and Pelican-gt-wt 

transgene at nc10-13. Its signal increased through nc14b-nc15, but remained at the same level at 

stage 10. Spps signal stayed at background levels at PRE2 and region 6 across all time points, 

indicating the differential binding of Spps at two PREs (Figure 3.9). We surprisingly observed the 

significant reduction in Spps binding at Pelican-gt-mut PRE1 in all three embryonic stages. 

Reduction of Spps signals to background levels due to the absence of Pho, indicated that Spps 

binding to PRE1 was dependent on Pho (Figure 3.9). 

Dsp1 signal increased at PRE1 of the endogenous gt and Pelican-gt-wt transgene from 

nc10-13 to nc14b-nc15 and decreased somehow at stage 10. Dsp1 was very weakly detected at 

PRE2 at nc10-13 and nc14b-nc15 embryos and did not increase to slightly over the background 

level till stage 10 (Figure 3.9). Despite Spps, Dsp1 binding to PRE1 was not affected by the 

mutations of Pho binding sites. Dsp1 bound to PRE2 of Pelican-gt-mut transgene at the same level 

of Pelican-gt-wt transgene and endogenous gt (Figure 3.9). 
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3.3 Discussion 

3.3.1 Phol binding plays a minimal role in PRE activity 

Several Drosophila genes have more than one PRE that may contribute to their PcG 

dependent transcriptional repression (Abed et al., 2013; Ahmad and Spens, 2018; Cunningham et 

al., 2010; DeVido et al., 2008; Ogiyama et al., 2018). However, the functional implication of 

having two or more PREs at a genomic locus is not clear and may not be consistent at all loci. 

Some may form the bases of chromatin loops that contribute to the establishment or maintenance 

of repressive domains (De et al., 2016; Eagen et al., 2017; Ogiyama et al., 2018). In other cases, 

Figure 3.9- Recruitment of PRE binding proteins, Dsp1 and Spps, to PRE1 was 

differentially affected by the absence of Pho. Time course ChIP-qPCR assays were 

performed as in figure 3.6, except using anti-Dsp1 and anti-Spps antibodies. ChIP signals 

from three biological replicates are presented as in figure 3.6.   
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individual PREs may differently contribute to the regulation of associated genes and/or the 

establishment of H3K27me3 domains (Ahmad and Spens, 2018; Ogiyama et al., 2018). 

Two predicted Pho/Phol binding sites were present within the delimited PRE1 (PRE1.1). 

Base pair substitution of the core sequences of binding sites resulted in the disruption of PRE 

activity of PRE1.1 fragment within the context of SD10 vector. Pho and Phol can recognize and 

bind to the same sequence of DNA (Brown et al., 2003; Grossniklaus and Paro, 2014). However, 

the genome wide analysis showed different genomic distributions of Pho and Phol. Although, 

ChIP-chip peaks for Pho correspond to PREs and colocalize with Sfmbt, a subset of Phol peaks 

are located outside PcG domains, within 300 bp of TSS of a number of active genes (Kahn et al., 

2014). SD10 vector includes the en promoter region which serves as a candidate for Phol binding. 

However, the en promoter does not include a matching sequence with the core (GCCAT) or 

extended Pho/Phol binding sites (CGCCAT(T/A)TT), while the extended binding site has been 

proposed to permit binding of Phol near TSSs (Kahn et al. 2014). Furthermore, ChIP assays on 

SD10 transgene-containing embryos suggested that Phol is able to make a dimer with Sfmbt in the 

absence of Pho, which is counter to previous observations that Phol binds near TSSs independently 

of Sfmbt and other PcG proteins. Kahhn et al. (2014) reported that both Pho and Phol can form a 

dimer with Sfmbt, but Pho is favored and outcompetes Phol. The interaction of Pho and Phol with 

Sfmbt is mutually exclusive, as Phol binding to chromatin increases upon RNAi knockdown of 

Pho (Kahn et al., 2014). The presence of Phol-containing PhoRC is of interest because SD10 vector 

has been previously used to map PREs for gt and en (Cunningham et al., 2009; Alhaj Abed, 2013). 

Moreover, the activity of PRE1.1 was lost in SD10-PRE1.1-mut embryos, which indicates that 

Phol-containing PhoRC does not contribute to PcG-mediated repression.  
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ChIP experiments performed on Pelican-gt-wt and Pelican-gt-mut with anti-Phol showed 

that Phol binding to PRE1 of Pelican-gt-mut did not significantly reduce compared to that of 

Pelican-gt-wt. ChIP results from SD10-PRE1.1-mut and SD10-∆gt1 excludes the possibility of 

presence of unmutated Pho/Phol binding sites in PRE1.1. Level of Phol binding to PCR amplicons 

surrounding PRE1, regions 3 (+297, +560) and 5 (-362, -580), was lower than that of PRE1 (data 

not shown). The nearest upstream core Pho consensus site is located approximately 1 kb from gt 

TSS. Therefore, we propose that a region downstream of PRE1.1 (+12) and upstream of region 3 

(+297) might contain the additional Phol binding sites. We noted that a core Pho/Phol consensus 

site (ATGG) is located at +137, which is well within the ±300 bp of TSS suggested as targets for 

Phol binding (Kahn et al., 2014). Whether Phol may contribute to the transcriptional activity of gt 

remains elusive.  

3.3.2 PcG proteins dampen the transcription of transcriptionally active genes 

PcG-mediated repression of gt is redundant with transcription factors, Hb and Kr, during 

early embryonic stages. Negre et al. (2006) showed the ectopic expression of gt in PcG mutant 

background in stage 10 embryos, which indicated that maintanence of gt repression is PcG-

dependent in this stage. Transgene expression in Pelican-gt-mut and Pelican-gt-wt embryos was 

assessed by in situ hybridization using a lacZ probe. The absence of ectopic expression of lacZ in 

these embryos through stage 10 was indicative of PcG-mediated repression by PRE2 alone, 

although we cannot rule out possible contributions from additional unidentified weak PREs. 

Surprisingly, RT-qPCR analysis of the lacZ expression from Pelican-gt-mut and Pelican-

gt-wt embryos showed small but significant increase of lacZ transcription due to the mutations of 

Pho/Phol binding sites at nc10-13 and nc14b-pnc14b embryos. At stage 10, the increase in the 

lacZ expression from Pelican-gt-mut is less. Therefore, we propose that disruption of PRE1 
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activity results in a higher transcription level from the transgene in those cells in which  gt, and the 

transgene, are active. Our data suggest that binding of PcG proteins to PRE1 of the active state of 

gt has a moderating effect on transcription even under conditions of transcriptional activation. Our 

observation is inconsistent with the related study which showed that deletion of four major PREs 

in en-inv domain did not result in changes of level or pattern of en expression (De et al., 2016).  

Enderle et al. (2011) showed a significant positive correlation between the higher level of 

PcG binding and lower level of mRNA production and proposed a model in which PcG proteins 

reduce the transcriptional level once present at the active genes. Our findings of elevated lacZ 

expression upon mutation of Pho binding sites directly support their model. 

TrxG proteins, which maintain the active state of their target genes, also act through 

PRE/TREs. One possibility may be that mutation of Pho binding sites results in TRE activity of 

PRE1.1. 

3.3.3 Low signals of PcG proteins at PRE1 of the Pelican-gt-mut transgene 

Pho is located at the base of the hierarchical model for the recruitment of PcG proteins. 

Pho directly recruits E(z) (Wang et al., 2004), which in turn methylates H3K27 (Jenuwein et al., 

1998; Rea et al., 2000), providing a scaffold for the binding of Pc through its chromodomain (Cao 

et al., 2002; Fischle et al., 2003; Min et al., 2003; Wang et al., 2004). Mutation of Pho binding 

sites in PRE1 results in the reduced E(z), H3K27me3 and Pc signals at PRE1 of the mutant 

transgene. The reduction in Pc and E(z) binding and deposition of H3K27me3 at PRE1 of Pelican-

gt-mut was statistically significant but the signals did not drop to the background level at nc14b-

pnc14b and stage 10 embryos. Presence of E(z) and Pc in the absence of Pho can be explained 

through different possible mechanisms. 1) PREs, or their mammalian equivalent CGIs, act as 

nucleation sites for the recruitment of PcG proteins and formation of PcG domains. PRC2 can 
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spread from nucleation sites (PREs) and its stable binding and residence time on the chromatin 

decreases with distance from PREs (Oksuz et al., 2018). E(z) may spread from PRE2 or other 

unidentified weak PREs within gt regulatory region to region 6 and PRE1. Binding of E(z) and Pc 

as well as deposition of H3K27me3 at the mutant transgene increases across the time points along 

with the increase of the signals at PRE2. However, it is worth noting that signals of E(z), 

H3K27me3 and Pc at PRE1 is higher than region 6, which is closer to PRE2 (~3kb downstream of 

PRE2). 2) Low binding of PcG proteins at PRE1 of Pelican-gt-mut transgene, may also be 

attributed to the presence of weak unidentified PREs. 3) Another possible explanation for the weak 

PcG signals at PRE1 of Pelican-gt-mut is the recruitment by Phol-containing PhoRC complex. 

Sfmbt interacts with Scm through its SAM domain (Frey et al., 2016), and Scm plays the 

connecting role between RhoRC and PRC1 (Sfmbt-SAM: Scm-SAM: SAM-Ph) (Kim et al., 2005; 

Frey et al., 2016). 4) The alternative recruitment mechanisms and other PRE binding proteins 

which can bind PREs independently of Pho, such as Dsp1, may contribute to the low signals of 

PcG proteins. 5) Detection of PcG proteins, Pc, E(z), Pcl and Sfmbt, at mutant PRE1 may be due 

to the chromatin looping between PREs. The results from a number of studies suggest that PREs 

form chromatin loops with promoters, enhancers or silencers in the flanking regulatory DNA 

(Lanzuolo et al., 2007; Bantignies et al., 2011). Looping between gt PRE1 and PRE2 can explain 

the low signals of PcG proteins at PRE1 of Pelican-gt-mut, however, lack of Pho signal at PRE1 

of the mutant transgene cannot be explained through chromatin looping between the two PREs.  

3.3.4 Recruitment of PRE binding proteins, Dsp1 and Spps, is differentially dependent on 

the presence of Pho 

The role played by PRE binding proteins, such as Dsp1 and Spps, in the recruitment of 

PcG proteins is less studied. In this study, we showed that Spps and Dsp1 only bind to PRE1 

through nc14b-nc15 and their signals become weakly positive at PRE2 at stage 10. Our results 
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also suggested that Spps binding to PRE1 is dependent on Pho. Reduced binding of Pho has been 

reported in Spps mutants (Brown et al., 2018). Therefore, we suggest a cooperative binding of 

Spps and Pho to a subset of PREs. On the other hand, Dsp1 binding to the mutant PRE1 was not 

affected by the absence of Pho and Spps, indicating its independence of both Pho and Spps for 

PRE1 binding. 

3.3.5 The temporal difference in PcG binding to gt PREs 

Our time course ChIP assays showed that PhoRC and PRC2 bind to PRE1 as early as nc10-

13, while their binding to PRE2 is at background level at nc10-13, and increases at later embryonic 

stages (nc14b-pnc14b or stage 10). The temporal difference of PcG binding to two PREs may be 

due to changes in chromatin accessibility through earlier to later time points. ATAC-seq analysis 

showed that PRE2 region of gt becomes accessible at late nc13 (Blythe and Wieschaus, 2016), 

which is in accordance with the weaker binding of PcG proteins in nc10-13 embryos in ChIP 

assays (Alhaj abed et al., 2018). Binding of pioneer transcription factors, Zelda (Zld) and Gaf, to 

enhancers and promoters at earlier developmental stages facilitate chromatin accessibility (Moshe 

and Kaplan, 2017). Zld is present at PRE1 and not PRE2 of nc14a-nc14b wt embryos (Alhaj abed, 

unpublished data), while Gaf has not been detected at gt locus in embryonic stage (Negre et al., 

2006). Binding of Zld to PRE1 may well explain the difference in chromatin accessibility of PRE1 

and PRE2 in earlier embryonic stage.  

The general increase in the signals of PcG proteins from nc10-13 to nc14b-nc15 is in 

accordance with the lengthening of interphase. First nuclear divisions are very rapid, however, 

duration of interphase progressively increases slightly with each cycle in Drosophila embryos 

(Farrell and O'Farrell, 2014). The dramatic lengthening of interphase happens from nc13 to nc14 

through which interphase increases from 20 minutes to 70 minutes, mostly because of the 
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lengthening of S phase and introduction of G2 at nc14 (Edgar  and Farrell, 1989; Foe, 1989; Edgar  

and Farrell, 1990). Both changes result from downregulation of Cyclin-dependent kinase 1 (Cdk1), 

a cell cycle regulator, at this stage (Edgar and Farrell, 1990; Edgar et al., 1994; Farrell et al., 2012). 

Ezh2, mammalian homologue of E(z), was shown to be phosphorylated by CDK1 at threonine 

residues 345 and 487 (Kaneko et al., 2010). Phosphorylation of Ezh2 impedes the recruitment of 

PRC2 to chromatin and thus affects the global level of H3K27me3 at target loci (Chen et al., 2010). 

Based on the literature and our time-course ChIP results, we suggest that  CDK1 is downregulated, 

and the first prolonged interphase occurs at nc14. Therefore, E(z) is not phosphorylated by CDK1 

and is able to bind to chromatin, resulting in the deposition of H3K27me3 and recruitment of PRC1 

at this stage. 
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CHAPTER 4: 

 

 WHAT DICTATES THE INITIAL RECRUITMENT OF POLYCOMB-GROUP 

PROTEINS TO A DROSOPHILA TARGET GENE? 

 

4.1 Introduction 

PcG proteins are essential regulators of development and differentiation that do not initiate 

transcriptional silencing but maintain the transcriptional repression of silenced genes by altering 

chromatin structure (Simon and Kingston, 2013). After initial recognition and binding to their 

repressed target genes, PcG proteins are able to maintain the transcriptional repression through an 

unlimited number of cell cycles. However, the mechanisms that these proteins initially distinguish 

between the active and repressed states of their target genes remain a major gap in our 

understanding of the PcG-mediated repression. 

Klose et al. (2013) have proposed two models for the recruitment of PcG complexes to the 

PREs/CpG islands: instructive and responsive models. The instructive model suggests that 

biochemical interactions of sequence-specific transcription factors with PcG complexes may 

recruit these complexes to their transcriptionally repressed target promoters. Repressive 

transcription factors may directly target PcG proteins to PREs/CpG islands, or recruit co-repressors 

which make chromatin changes and facilitate binding of PcG proteins to their target genes.  

Susceptibility of CpG islands, equivalent of Drosophila PREs, to acquire H3K27 

methylation is dependent on the absence of binding sites for transcriptional activators (van 

Heeringen et al., 2014). Mutation in the binding site of the specificity protein 1 transcription factor 

(SP1) results in the recruitment of PcG proteins to CpG islands, indicating that binding of an 
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activating transcription factor leads to the exclusion of PcG proteins (Caputo et al. 2013). These 

observations suggest an alternative version of the instructive model proposing that activators or 

the co-activators can antagonize binding of PcG proteins.  

The results of at least one study support the instructive model in Drosophila (Kehle et al., 

1998). Hb, a repressive transcription factor of Hox genes, recruits dMi-2 as a co-repressor (Kehle 

et al., 1998). dMi-2 is the ATPase subunit of the NuRD histone deacetylase complex with 

nucleosome remodeling activity. Derepression of Ubx was observed in hb and PcG mutant 

embryos and became more extensive in the absence of dMi-2 (Kehle et al., 1998). The latter study 

suggested a linking role for dMi-2 between Hb and the recruitment of PcG proteins. Hb-dMi-2 

complex may directly recruit PcG proteins to their target genes. On the other hand, the nucleosome 

remodeling and deacetylation activity of NurD complex may result in chromatin changes leading 

to the recruitment of PcG proteins.  

The responsive model proposes that PcG complexes sample the chromatin environment at 

permissive chromatin sites, e.g. PREs or CGIs, and make weak association with their targets 

irrespective of their transcriptional state. Stable targeting of PcG complexes is then based on the 

transcriptional state of their target genes and the molecular features of the chromatin in repressed 

genes are compatible with, or stabilize, recruitment of PcG complexes. Riising et al. (2014) 

demonstrated that blocking transcription with chemical inhibitors, DRB and Triptolide, resulted in 

the recruitment of PRC2 and deposition of H3K27me3 at three different mammalian PcG target 

genes, while PRC2 recruitment was lost upon DRB removal. 

By construction of embryos with a transcriptionally inert gt transgene, in a background in 

which endogenous gt is transcriptionally active, we experimentally tested the instructive and 

responsive models for the recruitment of PcG proteins and provided promising evidence to support 
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the instructive model. We find that recruitment of PG proteins at gt is not dependent on the 

transcriptional state and, therefore, follows the instructive model. We further showed that the 

default state of the chromatin is compatible with the strong binding of PcG proteins and the binding 

of activating transcription factors makes the chromatin less favorable for the recruitment of PcG 

proteins. 

4.2 Results 

4.2.1 Establishment of Drosophila genetic system in which gt is uniformly expressed 

Based on the knowledge that gt is a PcG target gene (Pelegri and Lehmann, 1994) and the 

well-characterized maternal regulation of it by specific activating and repressive transcription 

factors, we developed the bcd osk tsl genetic system. 

 In embryos from bcd osk tsl females, gt is uniformly repressed due to the ubiquitous 

expression of maternal Hb, a repressor of gt, and the mutant allele of bcd, the activator of the 

anterior stripe of gt (Abed et al., 2018). In these embryos, zygotic hb is not activated as the result 

of bcd and tsl. Consequently, maternal Hb is degraded at cellular blastoderm stage and not replaced 

by zygotic Hb. In the absence of zygotic Hb, maintenance of gt repression requires PcG activity 

(Figure 4.1). Maternal Cad, an activator of the posterior stripe of gt, is uniformly distributed in 

embryos from bcd osk tsl females, due to the absence of Bcd. Expression of zygotic cad is 

dependent on the terminal system, which is inactive in this genetic system due to tsl. 

To produce embryos in which gt is ubiquitously expressed in all cells of the embryos, the 

levels of maternal Hb in bcd osk tsl background was knocked down by introducing maternally 

expressed Gal4 driver in conjunction with TRiP UAS-shRNA-hb (Figure 4.2). These female flies 

will be referred to as HbKD bcd osk tsl.  
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Figure 4.2- Genetic crosses to produce embryos in which gt is ubiquitously 

expressed. 

 

Figure 4.1- Genetic crosses to produce embryos in which gt is 

ubiquitously repressed. 
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The first few population cages of HbKD bcd osk tsl flies were set up at 25 °C and failed to 

show efficient knock down level of maternal Hb in immunostaining and ChIP assays (data not 

shown). Transferring the cage to 27 °C for at least one day before the collection, helped reach an 

efficient Gal4-driven knock down of maternally expressed Hb. The embryos from HbKD bcd osk 

tsl females, express minuscule amount of maternal Hb, due to the activity of UAS-shRNA-hb. 

Zygotic Hb is absent in this genetic system due to bcd and tsl. Similar to bcd osk tsl embryos, 

maternal cad is uniformly translated in HbKD bcd osk tsl embryos, and zygotic cad is absent due 

to tsl (Figure 4.3). 

Using RT-qPCR ana ly s i s , the level of gt and Kr expression in sorted nc13-14a HbKD 

bcd osk tsl and bcd osk tsl embryos was investigated (Figure 4.4). Expression of gt in bcd osk tsl 

embryos increased from ~8% to 295% of wt embryos upon the knock down of maternal Hb.  

Kr, a repressor of gt_(-3) enhancer, is expressed at ~50% and ~70% of its wt expression 

level in bcd osk tsl and HbKD bcd osk tsl embryos, respectively (Figure 4.4). The mildly increased 

expression level of Kr in HbKD bcd osk tsl embryos, may be due to the reduced level of Hb. Hb 

represses and activates Kr at high and low concentrations, respectively.  
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wt  bcd osk tsl HbKD bcd osk tsl 

α-Gt 

 Cellular  

blastoderm 

α-Gt 

 Syncytial  

blastoderm 
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 Cellular  

blastoderm 

α-Cad 

 Syncytial  
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α-Hb 

 Cellular  
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Figure 4.3- Characterization of bcd osk tsl and HbKD bcd osk tsl embryos. Embryos from bcd 

osk tsl and HbKD bcd osk tsl females immunostained with anti-Hb, anti-Cad and anti-Gt antibodies. 

Embryonic stages and the antibodies used are stated on the left.  
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4.2.2 Binding of transcriptional repressor, Hb, and activator, Cad, at gt  

Early expression of gt is regulated by maternally expressed transcription factors which bind 

to early acting enhancers, gt_(-3) and gt_(-10). Hb and Cad are known repressor and activator of 

gt_(-3) enhancer, respectively. 

Previous time-course ChIP assays on bcd osk tsl embryos showed the strong binding of 

both Hb and Cad at PCR region 6, which amplifies the gt_(-3) enhancer, in sorted nc10-12 embryos 

(Abed et al., 2018). Signals of Hb and Cad increased more through nc13 embryos, and dropped 

down to near background levels at nc14a-nc14b (Abed et al., 2018). 

To confirm the efficient knock down of maternal Hb in bcd osk tsl embryos, binding of Hb 

and Cad to gt_(-3) enhancer in sorted nc13 HbKD bcd osk tsl embryos was compared to that in 

bcd osk tsl embryos. As expected, Cad binds to region 6 of HbKD bcd osk tsl embryos at the same 

Figure 4.4- Expression of gt and Kr in nc13-14a embryos derived 

from HbKD; bcd osk tsl females. Genotype of embryos is indicated 

above. RT-qPCR signals were normalized to rp49 transcript. Y-Axis 

shows the relative expression of lacZ to wt embryos. Error bars show 

the standard deviation for three biological replicates.  
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level shown for bcd osk tsl embryos. Binding of Hb is greatly reduced at region 6 of HbKD bcd 

osk tsl embryos, showing ~79% decrease compared to that in bcd osk tsl counterparts (Figure 

4.5B). The levels of maternally expressed Hb and Cad decrease to near-backgound levels at region 

6 in nc14b HbKD bcd osk tsl and bcd osk tsl embryos, consistent with the timing of degradation 

of maternally deposited Cad and Hb (Figure 4.5C). However, Cad signal at the gt promoter region 

of nc14b HbKD bcd osk tsl and bcd osk tsl embryos, remained at the same level as that of nc13 

embryos, raising the possibility for the unspecific binding of Cad to the promoters, which are the 

targets for binding of many known proteins. To investigate the latter possibility, we looked at Cad 

signal at the promoter of the miR-9a gene, at which Cad has been shown to be absent 

(modENCODE). The strong Cad signal at miR-9a promoter of nc14b HbKD bcd osk tsl embryos, 

suggested the unspecific binding of affinity-purified Cad antibody to the promoter region of genes.  
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A 

B 

D C 

Figure 4.5- Binding of activator Cad and repressor Hb at gt upstream regulatory region of 

HbKD bcd osk tsl and bcd osk tsl embryos. (A) Schematic map of gt genomic region containing 

two PREs, shown as blue bars, and four enhancers, shown as black bars. PCR regions are shown 

as red bards (3-10) along the gt map. ChIP-qPCR performed with anti-Hb and anti-Cad antibodies 

in sorted nc13 (B) and nc14b embryos (C). (D) Cad signal at the promoter of miR-9a in nc14b 

embryos. Genotype of embryos is indicated on the left. ChIP signals are presented as fold 

enrichment to Pka-C1 on 2L, shown at 1. Error bars show the standard deviation for three 

biological replicates. 
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4.2.3 Differential recruitment of PcG proteins to repressed versus active gt 

In order to determine how PcG proteins differentially bind an active versus repressed gt 

gene, recruitment of PcG proteins and deposition of histone marks at gt gene in embryos from bcd 

osk tsl (reprssed state) and HbKD bcd osk tsl (active state) females were compared. Previous 

studies of bcd osk tsl embryos have demonstrated increased levels of H3K27me3 and stable 

binding of PRC1 and PRC2 at nc14b embryos following the weak association of PRC1 and PRC2 

complexes in earlier stages, nc10-12 to nc14a (Alhaj Abed et al., 2018). Therefore, nc14b stage 

was targeted to look at the possible differences in binding of PcG proteins at active and reprssed 

states of gt.  

Both subnuits of PhoRC, Pho and Sfmbt, are strongly detected at region 4 of both active 

and repressed states of gt. Pho binding at region 9 shows a clear reduction in the active state 

compared to the repressed one, decreasing from seven-fold enrichment in bcd osk tsl embryos to 

approximately four-fold enrichment in HbKD bcd osk tsl. Sfmbt signals also showed a similar 

trend, decreasing from six-fold enrichment at PRE2 of the repressed state to half at that of the 

active state. Binding of Pho and Sfmbt at other tested regions (3-12) of active state was roughly 

comparable to that of the repressed gt (Figure 4.6). 
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To detect PRC2 and PRC1, anti-E(z) and anti-Pc antibodies were used, respectively 

(Figure 4.7).  E(z) signal is detected above background at all tested gt regions of bcd osk tsl 

embryos, with strong peaks at regions 3 and 4. PRC2-dependent H3K27me3 signal is well above 

the background at most tested regions of the repressed state, with peaks of approximately three-

fold enrichment at regions 3, 4 and 9. Accordingly, strong Pc signals were detected at PRE1 and 

PRE2 of the repressed state. 

E(z) was detected at lower levels at most gt regions in the active state compared to the 

repressed state. In concert with the decreased presence of E(z), deposition of H3K27me3 is mostly 

close to or below the background level at almost all tested regions of the active state with a small 

peak at PRE1, slightly above two-fold enrichment. Concurrent with the significant reduction of 

H3K27me3 in the active state, Pc signal is slightly above the background in most gt regions of the 

Figure 4.6- ChIP-qPCR performed in sorted nc14b embryos with IgG (mock), anti-Pho and 

anti-Sfmbt antibodies, as indicated above. Genotype of embryos is indicated on the left. ChIP 

signals from three biological replicates are presented as in figure 4.5. 
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active state (Figure 4.7). Pcl, a substochiometric subunit of PRC2, was strongly detected at regions 

4 and 9 of the repressed state. Although Pcl binding to the PRE1 of the active state is higher than 

that of the repressed state, its binding to PRE2 was greatly reduced to two-fold enrichment (Figure 

4.7). High level of Pcl binding at PRE1 of the active gene, while E(z) signal was slightly above 

the background at the same region, indicates the recruitment of Pcl independently of the canonical 

PRC2 at this region. 

 

 

 

 

H3K4me3, a histone mark associated with the promoter of active genes, was strongly 

enriched at the promoter region of the active state. However, its signal sinks to slightly above the 

background level at the promoter of the repressed gt (Figure 4.8). H3K27ac is another histone 

Figure 4.7- ChIP-qPCR in sorted nc14b embryos with anti-E(z), anti-H3K27me3, anti-Pc 

and anti-Pcl antibodies, as indicated above. Genotype of embryos is indicated on the left. 

ChIP signals from three biological replicates are presented as in figure 4.5. 
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mark deposited at promoters and enhancers of actively transcribed genes (Wang et al., 2008; Karlić 

et al., 2010). H3K27ac was shown to be mutually exclusive with H3K27me3 (Tie et al., 2009). 

Signals for H3K27ac are negative at almost all tested regions of repressed gt with a roughly two-

fold peak at region 4. On the other hand, deposition of H3K27ac was weakly positive at most 

regions (6, 7, 9 and 10) of active gt with a relatively strong peak at region 4 (Figure 4.8). RNAPII 

S5P is associated with transcription initiation. ChIP assays showed the presence of RNAPII S5p 

at the promoter region of both active and repressed states, however, RNAPII S5p signal was 

slightly lower at the promoter of the repressed gt (Figure 4.8). Detection of RNAPII S5P along 

with the absence of H3K4me3 at the promoter region of the bcd osk tsl embryos, may indicate the 

onset of transcription initiation that failed to progress to the downstream active histone mark. 

 

 

 

 

 

Figure 4.8- ChIP-qPCR in sorted nc14b embryos with anti-H3K4me3, anti-

H3K27ac, anti-RNAPII S5p antibodies, as indicated above. Genotype of 

embryos is indicated on the left. ChIP signals are presented as fold enrichment to 

region 12, on X chromosome, shown at 1. Error bars show the standard deviation 

for three biological replicates. 
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We investigated binding of Dsp1, Spps and Phol, PRE binding proteins, in the active versus  

repressed states. Surprisingly, Spps robustly binds to PRE1 of the active gt, while it is weakly 

detected at the same region of the repressed state (Figure 4.9).  Spps does not bind to PRE2 at 

both states of gt. Dsp1 binds more strongly to PRE1 compared to PRE2 and its binding level to 

both PRE1 and PRE2 is comparable at both gt states (Figure 4.9). 

 

 

 

 

Phol, a subunit of PhoRC, binds to PRE1 of both active and repressed gt. Nevertheles, it is 

not present at other tested regions of gt, including region 9 (PRE2) at both states (Figure 4.9). 

Figure 4.9- ChIP-qPCR in sorted nc14b embryos with anti-Spps, anti-Phol and anti-Dsp1 

antibodies, as indicated above. Genotype of embryos is indicated on the left. ChIP signals 

from three biological replicates are presented as in figure 4.5. 
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Comparing the binding of PcG proteins to the active and repressed states of gt, we showed 

that Pho, Sfmbt and Pcl bind at PRE1 of the active state at levels comparable or higher than those 

of the repressed state. However, their binding to PRE2 was strongly reduced in the active state. 

Beltran et al. (2016), proposed that nascent RNAs and nucleosomes compete to bind to PRC2. 

They further showed that association of PRC2 with chromatin antagonizes its interaction with 

RNA and release of PRC2 from chromatin and RNA, increases its binding to the RNA and 

nucleosomes, respectively. The latter observation suggests that RNA transcripts serve as an 

obstruction to PRC2 binding to the actively transcribed genes, therefore, PRC2 is released to bind 

to PREs/CpG islands in the absence of transcription. Using RT-qPCR analysis, we investigated 

the possibility of transcription from the upstream regulatory region of gt in three different 

genotypes; wt Oregon-R, bcd osk tsl and HbKD bcd osk tsl (Figure 4.10). The results showed the 

absence of transcription in all tested upstream regulatory regions of gt (4, 6, 7, 9, 10), compared 

to region 3, which is located within the transcribed body of gene. Therefore, the possibility of 

reduced binding of PRC1 and PRC2 at PRE2 due to the presence of transcripts was excluded. 
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4.2.4 Recruitment of PcG proteins to the transcriptionally inert gt transgene 

A transcriptionally inert gt transgene was generated by introducing base pair substitutions 

in the TATA box, Inr and DPE of the gt fragment in the Gateway entry clone (Figure 4.11A). The 

gt fragment was then inserted into a modified Pelican reporter vector (Figure 3.3). The Pelican-

gt-promoter mutant (pm) transgene was integrated into the attP40 docking site. Sequencing of the 

genomic DNA from adult flies confirmed the presence of the Pelican-gt-pm transgene in the latter 

flies.  

Transgene expression in Pelican-gt-pm was assessed by in situ hybridization of the 

resulting embryos with a lacZ probe. Mutations in the promoter region of the gt transgene, resulted 

in the absence of lacZ expression from Pelican-gt-pm embryos (Figure 4.11B). The effect of the 

promoter mutations was further validated by RT-qPCR (Figure 4.11C), showing that the level of 

Figure 4.10- Upstream regulatory region of gt is not 

transcribed in bcd oks tsl, Oregon-R and HbKD bcd osk tsl 

embryos. Genotype of embryos are indicated below. RT-qPCR 

signals on nc13-14a embryos were normalized to rp49 transcript. 

Y-Axis shows the relative expression of lacZ to Oregon-R 

embryos. Error bars show the standard deviation for three 

biological replicates.  
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lacZ expression in these embryos was the same as that in wt flies, which do not have the lacZ 

gene.  

  

   

Figure 4.11- Absence of lacZ expression in embryos from Pelican-gt-pm flies. (A) Sequence 

alignment of the wild type promoter region containing TATA box, Inr and DPE sites with 

mutated promoter sequences; coordinates of the mutated sites are indicated above. (B) In situ 

hybridization of the cellular blastoderm Pelican-gt-wt and Pelican-gt-pm embryos by lacZ and 

gt probes, as indicated on the left. Genotype of embryos is indicated above. (C) lacZ expression 

in nc13-14a wt and Pelican-gt-pm embryos. Y-Axis shows the relative expression of lacZ to 

Pelican-gt-wt embryos. RT-qPCR signals were normalized to rp49 transcript. Error bars show 

the standard deviation for three biological replicates.  
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4.2.4 Binding of repressor, Hb, and activator, Cad, to the transcriptionally gt inert transgene  

In order to investigate the mechanisms that PcG proteins initially distinguish between the 

active and repressed states of their target genes, we constructed embryos with a transcriptionally 

inert gt transgene in a background in which endogenous gt is transcriptionally active. In the 

resulting embryos, the same transcription factors bind to the gt enhancers of the transcritionally 

inert gt transgene and trascriptionally active endogenous gt gene. Therefore, the only 

differentiating factor between the endogenous and transgene gt would be the transcriptional state.  

To determine if binding of repressor, Hb, and activator, Cad, to gt_(-3) enhancer of the 

transcriptionally inert transgene was affected by the mutations of the promoter region, we looked 

at the binding pattern of these transcription factors in ChIP assays (Figure 4.12). In sorted nc13 

embryos, binding of Cad and Hb to regions 3 and 4 of the transcriptionally inert transgene was 

reduced compared to the endogenous gt and control transgene. Nonetheless, their binding to gt_(-

3) enhancer was not affected by the mutations introduced in the promoter region (Figure 4.12).   
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Figure 4.12- (A) Genetic crosses performed to obtain the embryos with the transcriptionally inert 

transgene in the active gt background. (B) Schematic map of gt genomic region. PCR regions 

are shown as red bards (3-10) along the gt map. PRE1 and PRE2 are represented as blue bars 

above. (C) ChIP-qPCR in sorted nc13 embryos with IgG (mock), anti-Cad and anti-Hb 

antibodies, as indicated above. Genotype of embryos is indicated on the left. ChIP signals from 

three biological replicates are presented as in figure 4.5. 
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4.2.5 Binding of PcG proteins and deposition of histone marks to the inert gt transgene in the 

transcriptionally active background 

In order to investigate if the inert gt transgene would be distinguished as active or repressed 

by PcG proteins in the active endogenous gt background, we compared the recruitment of PcG 

proteins to the transcriptionally inert and control transgenes. 

 Pho and Sfmbt bind to the control gt transgene at the approximately same level as the 

endogenous gt (Figure 4.13). However, their binding to the inert transgene showed a different 

pattern. Surprisingly, binding of both proteins were greatly reduced at region 3 and 4 of the inert 

transgene, while their binding to region 6 and 9, was similar to that of endogenous gt and control 

transgene (Pelican-gt-wt), which resembled binding of these proteins to the active gt. 

 

 

Figure 4.13- ChIP-qPCR in sorted nc14b embryos with IgG (mock), anti-Pho, anti-Sfmbt 

antibodies, as indicated above. Genotype of embryos is indicated on the left. ChIP signals 

from three biological replicates are presented as in figure 4.5. 
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The same binding pattern was observed for Pc, E(z) and Pcl. The latter proteins showed 

the similar binding level to the active endogenous gt as well as control and inert transgenes at 

regions 6 and 9. However, their binding to regions 3 and 4 of the inert transgene was greatly 

reduced compared with the active endogenous gt and control transgene (Figure 4.14).  

 

 

 

 

Deposition of H3K27me3 at regions 3 and 4 was also affected negatively by the mutations 

in the promoter region. H3K27me3 was enriched at the same level as actively transcribed gt at 

regions 6 and 9 (Figure 4.14). Spps binding at regions 6 and 9 of the inert transgene resembled 

that of the active gt, while its binding to regions 3 and 4 of the inert transgene was greatly reduced 

(Figure 4.15). 

Figure 4.14- ChIP-qPCR in sorted nc14b embryos with anti-E(z), anti-H3K27me3, anti-

Pc and anti-Pcl antibodies, as indicated above. Genotype of embryos is indicated on the 

left. ChIP signals from three biological replicates are presented as in figure 4.5. 
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Deposition of H3K27ac at regions 4, 6 and 9 of the inert transgene showed the similar 

pattern to the endogenous active gt and the control transgene. Interestingly, H3K27ac was enriched 

at higher levels at region 3 of the inert transgene compared to the endogenous gt and the control 

transgene (Figure 4.15).  

Comparison of RNAPII S5p signals at the endogenous gt, as well as inert and control 

transgenes, indicated its enriched signal at the promoter region (region 4) of the endogenous gt 

and control transgene, which sank to the background level in the inert transgene (Figure 4.15).  

Overal, PcG binding to transcriptional inert transgene was reduced at regions 3 and 4 

(PRE1), and no difference was observed in PcG signals to PRE2 of the inert transgene and 

Figure 4.15- ChIP-qPCR in sorted nc14b embryos with anti-Spps, anti-H3K27ac and 

anti-RNAPII S5p antibodies, as indicated above. Genotype of embryos is indicated on the 

left. ChIP signals are presented as in figure 4.5 for Spps and figure 4.8 for H3K27ac and 

RNAPII S5p. Error bars show the standard deviation for three biological replicates. 
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endogenous gt. These data support the conclusion that PcG recognition of gt as repressed or active 

is independent from its transcriptional state. As the transcriptionally inert gene transgene was 

expected to be more compatible for the recruitment of PcG proteins but shown to recruit lower 

level of PcG proteins to regions 3 and 4 and same level at PRE2 compared to the actively 

transcribed endogenous gt and Pelican-gt-wt transgene.  

4.2.6 Nucleosome density at gt of transcriptionally inert gt transgene 

As shown above, we surprisingly observed a reduction in the binding of all tested PcG 

proteins and even transcription factors, Hb and Cad, to regions 3 and 4 of the transcriptionally inert 

transgene. We further noticed an approximately two-fold increase of H3 signals, in these two 

regions of the transcriptionally inert transgene compared to the endogenous gt gene and control 

transgene (Figure 4.16).  

 Signals of H3 may be considered as an indication of nucleosome density. Increase of H3 

signals at the inert transgene indicates that mutations of promoter region resulted in the more 

compact chromatin region and consequently reduced binding of the tested proteins. 
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4.2.7 PcG binding to gt in Cad KD; bcd osk tsl and Cad; HbKD bcd osk tsl embryos  

Comparing the recruitment of PcG proteins at the transcriptionally inert gt transgene with 

the ubiquitously expressed control transgene and endogenous gt, we showed that the differential 

binding of PcG proteins to the gt regulatory region in the active (HbKD bcd osl tsl) and repressed 

(bcd osl tsl) states was due to the presence of different transcription factors in the two gt states. 

We have previously shown that in bcd osk tsl embryos, where Cad and Hb are uniformly 

distributed, the level of PRC1 and PRC2 binding at gt PREs is higher than that in HbKD bcd osk 

tsl embryos. This observation raised two possibilities; 1) Hb, and/or a corepressor it recruits, 

trigger recruitment of PcG proteins to gt in bcd osk tsl embryos. 2) In the absence of Hb, Cad 

inhibits binding of PcG proteins in HbKD bcd osk tsl embryos. To determine which of these two 

possibilities was correct, we looked at PcG binding to gt upon knocking down the levels of solely 

maternal Cad and both maternal Hb and Cad in bcd osk tsl background. Maternally expressed Gal4 

Figure 4.16- H3 signals are shown as percentage of input in sorted nc14b 

embryos. Genotype of embryos is indicated above. Error bars show the 

standard deviation for three biological replicates. 

  



 

105 

 

driver was used to knock down the maternal levels of Cad and both Hb and Cad proteins in bcd 

osk tsl background (Figure 4.17; 4.18).  

 

 

 

 

 

 

 Figure 4.18- Genetic crosses to produce embryos in which the levels of maternal 

Cad and Hb are knocked down in bcd osk tsl embryos. 

 

Figure 4.17- Genetic crosses to produce embryos in which the level of maternal 

Cad is knocked down in bcd osk tsl embryos. 
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ChIP assays on embryos from CadKD; bcd osk tsl females showed a 82% reduction in Cad 

binding to gt_(-3) enhancer (Figure 4.19). RT-qPCR assays on nc10-13 CadKD; bcd osk tsl 

embryos showed that gt was expressed in miniscule levels, while Kr was expressed three times 

more than its expression level in wt embryos (Figure 4.20).  

 

 

 

 

 

 

 

In embryos from Cad; HbKD bcd osk tsl females, Cad and Hb binding to gt_(-3) enhancer 

showed 78% and 73%  reduction, respectively (Figure 4.19). The latter embryos express Kr and 

gt 25.6% and 35.5% relative to expression levels in wt embryos, respectively (Figure 4.20). Bcd 

and low levels of Hb are activators for Kr expression, therefore, expression of Kr is reduced in the 

Figure 4.19- ChIP-qPCR in sorted nc13 embryos with 

anti-Cad and anti-Hb antibodies, as indicated above. 

Genotype of embryos is indicated on the left. ChIP signals 

from three biological replicates are presented as in figure 

4.5. 
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resulting embryos from Cad; HbKD bcd osk tsl females (Figure 4.20). All the known activators 

and repressors of gt are either absent (Bcd, Tll) or expressed in very low levels (Hb, Cad, Kr, Gt) 

in the latter genetic system, hence, gt was expected to be uniformly repressed in the resulting 

embryos. Immunostaining of CadKD; bcd osk tsl embryos confirmed the results of RT-qPCR 

assays for Kr and gt expression (Figure 4.21). Interestingly, Cad; HbKD bcd osk tsl embryos did 

not show any staining using anti-Kr and anti-Gt antibodies, indicating the low expression level of 

these proteins per nuclei (Figure 4.22).  

 

 

 

 

 

 

 

 

 

 

Figure 4.20- Expression of gt and Kr in nc13-14a embryos derived 

from CadKD; bcd osk tsl and Cad; HbKD bcd osk tsl females. 

Genotype of embryos is indicated above. RT-qPCR signals were 

normalized to rp49 transcript. Y-Axis shows the relative expression 

of lacZ to wt embryos. Error bars show the standard deviation for three 

biological replicates. 
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Figure 4.21- Embryos from CadKD; bcd osk tsl females immunostained 

with anti-Hb, anti-Cad, anti-Gt and anti-Kr antibodies. Embryonic stages 

and the antibodies used are stated on the left. 
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Pho binding to the gt regulatory region of CadKD; bcd osk tsl embryos, mirrored its binding 

to that of the bcd osk tsl females, with strong peaks at PRE1 and PRE2 and background signals at 

other gt region (3, 6, 7 and 10) (Figure 4.23). Signals of H3K27ac were weakly above the 

background and comparable at all tested gt regions of CadKD; bcd osk tsl and bcd osk tsl embryos 

(Figure 4.23). Although, gt is not expressed in embryos from bcd osk tsl and is expressed at very 

low levels in CadKD; bcd osk tsl embryos, RNAPII S5p, associated with transcription initiation, 

was detected at the promoter region of both genetic systems (Figure 4.23). Additionally, the signal 

Figure 4.22- Embryos from Cad; HbKD bcd osk tsl females immunostained 

with anti-Hb, anti-Cad, anti-Gt and anti-Kr antibodies. Embryonic stages 

and the antibodies used are stated on the left. 
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of RNAPII S5p at the promoter region (six-fold enrichment), is similar in embryos from both bcd 

osk tsl and CadKD; bcd osk tsl females. 

 

 

 

 

E(z) binding to regions 3, 4, 7, 9 and 10 of CadKD; bcd osk tsl embryos was slightly higher 

than that of the corresponding regions in bcd osk tsl embryos (Figure 4.24). In concert with E(z) 

signal, deposition of H3K27me3 showed slight increase at regions 3, 4 and 6 and robust elevation 

at regions 7, 9 and 10 of CadKD; bcd osk tsl embryos compared with embryos from bcd osk tsl 

females (Figure 4.24). Signals of Pcl at regions 3 and 4 of CadKD; bcd osk tsl embryos, showed 

an increase compared to those at the same regions of bcd osk tsl embryos. However, Pcl binding 

to regions 6, 7, 9 and 10 remained at the same level in both genetic systems (Figure 4.24). Pc 

Figure 4.23- ChIP-qPCR in sorted nc14b embryos with IgG and anti-Pho, anti-H3K27ac and 

anti-RNAPII S5p antibodies, as indicated above. Genotype of embryos is indicated on the left. 

ChIP signals are presented as figure 4.5 for mock and Pho or figure 4.8 for H3K27ac and RNAPII 

S5p. Error bars show the standard deviation for three biological replicates. 
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binding to the all tested gt regions (3-10) of CadKD; bcd osk tsl embryos increased by at least two 

times compared to bcd osk tsl embryos (Figure 4.24). 

We further investigated the binding of PcG proteins in the embryos in which all the known 

gt activators and repressors are either absent or expressed in low levels. Signals of RNAPII S5p, 

Pho and Pc increased dramatically at region 4 upon double knock down of Cad and Hb in bcd osk 

tsl embryos, while the latter signals at other tested regions of gt were comparable to those of 

CadKD; bcd osk tsl (Figure 4.25; Figure 4.26). H3K27ac signals did not show considerable 

changes at all tested regions in Cad; HbKD bcd osk tsl compared to CadKD; bcd osk tsl embryos 

(Figure 4.25).  

 

 

 

 

Figure 4.24- ChIP-qPCR in sorted nc14b embryos with anti-E(z) and anti-H3K27me3, 

anti-Pcl and anti-Pc antibodies, as indicated above. Genotype of embryos is indicated on 

the left. ChIP signals from three biological replicates are presented as in figure 4 
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Binding of Pcl and E(z) and deposition of H3K27me3 showed a mild elevation at region 4 

in Cad; HbKD bcd osk tsl, however, their binding to other tested regions was comparable with 

CadKD; bcd osk tsl (Figure 4.26). Our ChIP data in Cad; HbKD bcd osk tsl excluded the 

possibility of a positive role for Hb in recruiting PcG proteins, providing solid evidence for the 

inhibitory role of Cad on the recruitment of PcG proteins to gt. ChIP assays on CadKD; bcd osk 

tsl embryos also supported our hypothesis, as binding of PcG proteins to gt genomic region showed 

a mild increase compared to that in bcd osk tsl embryos.   

 

 

 

 

 

 

 

Figure 4.25- ChIP-qPCR in sorted nc14b embryos with IgG, anti-Pho, anti-H3K27ac 

and anti-RNAPII S5p antibodies, as indicated above. Genotype of embryos is indicated 

on the left. ChIP signals from three biological replicates are presented as in figure 4.5. 
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Figure 4.26- ChIP-qPCR in sorted nc14b embryos with anti-E(z), anti-H3K27me3, anti-

Pcl and anti-Pc antibodies, as indicated above. Genotype of embryos is indicated on the left. 

ChIP signals from three biological replicates are presented as in figure 4.5. 



 

114 

 

4.3 Miscellaneous data 

4.3.1 Testing TRiP knock down lines  

Maternally expressed Gal4 driver was used to test the efficiency of TRiP UAS-shRNAs 

for proteins involved in the initiation or elongation of transcription. In order to test the efficiency 

of UAS-shRNA-mediated knock down of specific proteins, mortality rate and cuticle patterns of 

the embryos were examined. The results of examining the knockdown efficiency of tested 

transgenic lines are listed in Table 4.1.  

 

 

Name BDSC 

Stock ID 

Vector Insertion 

site 

Temperature Phenotype 

Hb 54478 VALIUM22 attP2 25°C Head defect, lacking of T2, 

T3 and A1 segments 

Cad 57546 VALIUM20 attP40 25°C Severely deformed head, 

missing abdominal 

segments 

Ash1 36803 VALIUM22 attp40 25°C Normal, grew to adults 

Set1 40931 VALIUM20 attp40 25°C Normal, grew to adults 

Fs(1)h 41693 VALIUM20 attp40 25°C Eggs died very early or 

unfertilized eggs 

Fs(1)h 41943 VALIUM20 attp40 25°C Normal, grew to adults 

Fs(1)h 44009 VALIUM20 attp40 25°C Normal, grew to adults 

Cdk9 41932 VALIUM20 attp40 25°C Normal, grew to adults 

9Table 4.1- Efficiency of various TRiP RNAi fly stocks was tested based on cuticle patterns 

and mortality rate.  

https://bdsc.indiana.edu/stocks/54478
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Set2 42511 VALIUM20 attp40 25°C Normal, grew to adults 

Haywire 53345 VALIUM20 attp40 25°C 70-80% died as embryos 

with defects such as less 

number of denticle belts 

Set2 55221 VALIUM20 attp40 25°C Normal, grew to adults 

Cdk7 57245 VALIUM20 attp40 25°C Normal, grew to adults 

Cdk7 62304 VALIUM20 attp40 25°C Normal, grew to adults 

Ash2 64942 VALIUM20 attp40 25°C Normal, grew to adults 

Lsd-1 65020 VALIUM20 attp40 25°C Normal, grew to adults 

Wds 60399 VALIUM20 attp40 25°C Very few eggs, didn’t hatch 

Mat1 57312 VALIUM20 attp40 25°C 1/4th of the eggs died very 

early, the rest grew 

normally 

Xpd 65883 VALIUM20 attp40 25°C Normal, grew to adults 

CycT 32976 VALIUM20 attp2 25°C Normal, grew to adults 

Ash2 35388 VALIUM22 attp2 25°C Normal, grew to adults 

Cdk9 35323 VALIUM22 attp2 25°C Most embryos did not 

hatch, showed embryonic 

defects 

Lilli 34592 VALIUM20 attp2 25°C Normal, grew to adults 

Cdk7 53199 VALIUM22 attp2 25°C Normal, grew to adults 
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dMi-2 35398 VALIUM22 attp2 25°C Most embryos died, shorter 

embryos with missing 

denticle belts 

CBP 37489 VALIUM20 attp2 25 and27°C 

 29°C 

30-40% of embryos 

hatched and developed into 

adults. 60-70% died as 

embryos.  

Very few eggs were laid. 

Hopped 

CBP -2.1 

N/A VALIUM20 2nd 
chromosome 

25-27-29°C Few eggs were laid and 50-

60% of embryos hatched 

and died as first and second 

instar larvae. 

Hopped 

CBP-2.2 

N/A VALIUM20 2nd 
chromosome 

25-27-29°C Normal, grew to adults. 

Hopped 

CBP-3.1 

N/A VALIUM20 2nd 
chromosome 

25-27-29°C Few eggs were laid and 50-

60% of embryos hatched 

and died as first and second 

instar larvae. 

Hopped 

CBP-17 

N/A VALIUM20 2nd 

chromosome 

25-27-29°C Normal, grew to adults. 

Hopped 

CBP-36.3 

N/A VALIUM20 2nd 
chromosome 

25-27-29°C Normal, grew to adults. 

Hopped 

CBP-36.2 

N/A VALIUM20 2nd 

chromosome 
25-27°C 

29°C 

Laid few eggs, grew to 

adults. 

No eggs 

Hopped 

CBP-10 

N/A VALIUM20 2nd 
chromosome 

25-27-29°C Normal, grew to adults. 

 

 

4.3.2 Various tested antibodies in ChIP assays 

Scm, a substochiometric shared subunit of PRC1 and PRC2, was tested for the possible 

detection at gt PRE1 and PRE2. However, Scm was not detected across gt genomic region in nc14b 
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embryos from bcd osk tsl females. Scm signal was negative across the region with two significant 

peaks at regions 7 and 10, in nc14b embryos from HbKD bcd osk tsl females (Figure 4.27). Since 

no regulatory element is located at or close to regions 7 and 10, and these regions have consistently 

showed low signals for all tested proteins in both active and repressed states of gt, the observed 

peaks are suggested to be unspecific at these regions. 

 

 

 

 

 

 

 

 

 

  

 

 

 

dRing, a shared subunit of both canonical and non-canonical PRC1 complexes, was 

detected at PRE1 and PRE2 of both repressed and active states of gt in nc14b embryos. However, 

its binding at the active state was lower compared to the repressed state at both PREs (Figure 

4.28). Ring monoubiquitylates lysine 118 of histone H2A (H2AK118ub) in Drosophila or the 

corresponding lysine 119 in mammals (Wang et al., 2004). Using H2AK119ub antibody, 

Figure 4.27- ChIP-qPCR in sorted nc14b embryos with anti-Scm 

antibody, as indicated above. Genotype of embryos is indicated on 

the left and right. ChIP signals are presented as in figure 4.5.  Error 

bars show the standard deviation for two biological replicates in the 

active state. ChIP on the repressed state was performed in one 

replicate. 
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previously used successfully in Drosophila (Pengelly et al., 2015), the considerable deposition of 

this histone mark across the region of active gt was observed (Figure 4.28). However, the signals 

of H2AK118ub is not strongly correlated with dRing, as two peaks for this histone mark were 

localized at regions 3 and 6, which are not supported by the low binding of dRing at these regions. 

 

 

 

 

 

 

 

 

H3K36me2/me3 is the active histone mark associated with transcription elongation and is 

enriched at the gene body of actively transcribed genes. Using H3K36me3 antibody, a sharp peak 

Figure 4.28- ChIP-qPCR in sorted nc14b embryos with anti-dRing 

and anti-H2AK119ub antibodies, as indicated above. Genotype of 

embryos is indicated on the left and right. ChIP signals are presented 

as in figure 4.5. Error bars show the standard deviation for three 

biological replicates in the active state. ChIP on the repressed state 

was performed in one replicate. 
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was observed at region 4, which encompasses promoter region, at active state of gt. H3K36me3 

signal was weakly positive at region 3, which is ~300 to 500 bp downstream of TSS. Given that 

higher signal of H3K36me3 was expected at region 3 compared to region 4, this antibody was not 

verified for further use in ChIP assays (Figure 4.29). H3K36me3 signal was negative across the 

gt genomic region in the repressed state (Figure 4.29). 

 

 

 

 

 

 

 

 

Figure 4.29- ChIP-qPCR in sorted nc14b embryos with anti-H3K36me3 

and RNAPII S2p antibodies, as indicated above. Genotype of embryos is 

indicated on the left and right. ChIP signals are presented as in figure 4.8. 

ChIP experiments were performed in one replicate for H3K36me3 in both 

active and repressed states. ChIP on RNAPII S2p was performed in two 

replicates. 
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RNAPII S2p is associated with transcription elongation. Therefore, highest signal of 

RNAPII S2p was expected to be detected within the gene body at region 3. However, a peak was 

detected at region 4, but not 3, in ChIP assays (Figure 4.29), resembling what has been observed 

using RNAPII S5p (Figure 4.29). This antibody was also excluded from further use in ChIP 

assays.  

 

 

 

  

Signal of H3K4me3 showed peaks at regions 3 and 4 of transcriptionally active endogenous 

gt as well as Pelican-gt-wt and Pelican-gt-pm transgenes (Figure 4.30). Enriched signal of 

H3K4me3 at regions 3 and 4 of Pelican-gt-pm transgene, indicated that the observed histone mark 

is not associated with the active transcription at gt and may be due to the binding of TrxG proteins.   

Figure 4.30- ChIP-qPCR in sorted nc14b embryos from HbKD bcd osk tsl females 

crossed to either Pelican-gt-wt or Pelican-gt-pm with anti-H3K4me3. Genotype of 

embryos is indicated on the left and right. ChIP signals are presented as in figure 4.8. 

ChIP experiments were performed in one and two replicates for Pelican-gt-pm and 

Pelican-gt-wt, respectively. 
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Hb and Cad are the repressor and activator of gt_(-3) enhancer. dMi-2 and CBP are the 

possible candidates as the co-repressor and co-activator of Hb and Cad, respectively. CBP 

acetylates H3K27 and dMi-2 is a subunit of the NuRD histone deacetylase complex with 

nucleosome remodeling activity. The constitutive ribosomal gene rp49 was shown to be enriched 

for both dMi-2 and CBP within 1 kb upstream of TSS (modENCODE).  Nevertheless, antibodies 

against dMi-2 and CBP failed to show any specific signal cross the gt region and 600 bp upstream 

of TSS of rp49 (Figure 4.31). 

 

 

 

 

Figure 4.31- ChIP-qPCR in sorted nc10-13 Oregon-R embryos. 

Antibodies and amounts used are indicated above. Genotype of 

embryos is indicated on the left. ChIP signals are presented as fold 

enrichment as in figure 4.5 for dMi-2 and figure 4.8 for CBP. ChIP 

experiments were performed in one replicate. 
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Kni recruits CtBP as a co-repressor at some genes (Nibu et al. 1998). The histone lysine 

demethylase Lsd1 is a subunit of CtBP complex which can confer transcriptional activation, 

through demethylation of H3K9me3, or transcriptional repression through demethylation of 

H3K4me3 (Ray et al., 2014). Kni crude antiserum and Lsd1 purified antibody and antisera (462 

and 463) were used to determine the presence of these proteins at gt. The signals were negative 

across the gt genomic region (Figure 4.32). Since the signals at a positive region were not 

investigated, we are not able to determine if the negative signals of Lsd1 and Kni were due to the 

antibody unspecificity or the absence of these protein at gt.  

 

 

 

 

 

 

 

Figure 4.32- ChIP-qPCR in sorted nc14b-nc15 Oregon-R 

embryos. Antibodies and amounts used are indicated above. 

ChIP signals are presented as in figure 4.5. ChIP 

experiments were performed in one replicate. 
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RNAPII is consisted of 12 subunits. Rpb4 is the fourth largest subunit and an antibody 

against it, is commonly used to detect the presence of all forms of RNAPII. Using Western blot-

verified Rbp4 antibody, a negative signal was detected at gt promoter region (region 4), which 

showed the incapability of this antibody to recognize Rbp4 in ChIP assays (Figure 4.33). 

 

 

 

. 

 

 

4.4 Discussion   

4.4.1 Characterization of HbKD bcd osk tsl genetic system 

As mentioned previously (section 4.2.1), our first attempts for an efficient knock down of 

Hb failed with young females (2-4 days old) at 25 °C. Using slightly older females (5-9 days old) 

and higher temperature (27 °C) increased the knock down level from 50% to 79%. Ni et al. (2011) 

reported the dependence of the efficiency of shRNA-mediated knock downs on the maternal age 

and temperature. The age-dependent efficiency of knock down levels, can be explained through 

the faster rate of egg production in young females which results in the overall lower loading of 

maternally-deposited shRNAs into eggs (Ni et al., 2011). Gal4 is a yeast transcription factor, which 

Figure 4.33- ChIP-qPCR in sorted nc14b-nc15 Oregon-R 

embryos. Amounts used for anti-Rbp4 are indicated above. 

ChIP signals are presented as in figure 4.5. ChIP 

experiments were performed in one replicate. 
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serves as a transcriptional activator in UAS-Gal4 gene expression system. Gal4 has the highest 

activity at 30 °C, which is the optimal temperature for yeast. Therefore, at higher temperatures, 27 

or 29 °C, the Gal4-driven knock down is expected to be more effective. However, we observed 

higher rate of mortality and unfertilized eggs upon shifting the flies into higher temperatures. The 

mentioned observation may be due to the more efficient depletion of maternal Hb or the general 

Gal4-induced ectopic expression of other genes at higher temperatures. 

4.4.2 Binding of Hb and Cad to gt_(-3) enhancer in bcd osk tsl and HbKD bcd osk tsl embryos 

Maternal Hb and Cad proteins are uniformly expressed in syncytial blastoderm bcd osk tsl 

embryos and bind to gt_(-3) enhancer. The results of both immunostaining and ChIP assays, 

showed the miniscule amount of maternal Hb due to the efficient knock down of Hb. However, 

the level of Cad binding to gt_(-3) enhancer of nc13 HbKD bcd osk tsl was comparable to that of 

bcd osk tsl embryos at the same stage. There are a number of overlapping and non-overlapping 

binding sites for Hb and Cad within gt_(-3) enhancer (Schroeder et al., 2004), but the independent 

binding of these proteins to gt_(-3) enhancer in different nuclei, cannot be supported by the 

uniform repression of gt in bcd osk tsl embryos. Furthermore, we did not notice an increase in the 

signals of Cad binding to gt_(-3) enhancer in HbKD bcd osk tsl, where binding of Hb was greatly 

reduced by ~80%. The latter observation excludes the possibility of competitive binding of these 

transcription factors to their overlapping binding sites.  

4.4.3 Differential recruitment of PcG proteins to the PREs of active versus repressed states 

of gt 

ChIP assays on HbKD bcd osk tsl (active state) and bcd osk tsl (repressed state) embryos, 

indicated comparable binding levels of PhoRC to PRE1 of active and repressed states, while 

binding of these proteins to PRE2 of the active state was greatly reduced. Moreover, signals of 
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E(z), H3K27me3 and Pc were reduced at both PRE1 and PRE2 of the active state compared to the 

repressed gt.  

Pcl signals, a substochiometric subunit of PRC2, were even higher, at PRE1 of the active 

state compared to the repressed state. H3K27me3 signal showed a small peak at PRE1 despite the 

low signal of E(z) at this region. Canonical PRC2 occupies the chromatin for a short time. Pcl 

binds DNA and increases the dwelling time of PRC2 on chromatin and enhances histone methyl 

transferase activity of mammalian PHF1-PRC2 (Choi et al., 2017). The small peak of H3K27me3 

at PRE1, and its negative signal across other tested gt regions may be explained through the strong 

signal of Pcl at PRE1 and its weak presence at other regions. 

4.4.4 Reduced binding of PcG proteins to PRE1 of transcriptionally inert gt transgene 

Comparing the recruitment of PcG proteins at the transcriptionally inert transgene and 

active endogenous gt, we observed a consistent reduction of signals for all tested PcG proteins and 

H3K27me3 at regions 3 and 4. Furthermore, H3K27ac signal increased at region 3 of the inert 

transgene compared to the active endogenous gt. Region 3 represents ~300-500 bp downstream of 

gt TSS. Given that lacZ is not transcribed in the inert transgene, the absence of histone turnover 

may result in the buildup of H3K27ac histone mark at this region. 

The surprising reduction of PcG proteins at regions 3 and 4, which encompasses promoter 

and PRE1, can be explained by the observed increase in H3 signals at the latter regions of the 

transcriptionally inert gt transgene compared to the active endogenous gt and control transgene in 

ChIP assays. Although, H3 signals are not direct indicators of the chromatin accessibility, the 

consistent reduction in binding of all tested PcG proteins and even activator Cad and repressor Hb 

at regions 3 and 4, may suggest the presence of a compact chromatin environment. Recruitment of 

Gaf and TFIID is required for the generation of chromatin accessibility at the promoter of hsp26 
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(Boris et al., 2002). Base pair substitution of gt TATA box, inhibits binding of TFIID, and 

consequently transcription pre-initiation complex does not form. Lack of TFIID binding possibly 

results in a compact chromatin structure, precluding binding of transcription factors, Cad and Hb, 

and PhoRC proteins. Reduced presence of PhoRC may result in the decreased recruitment of PRC1 

and PRC2. We also noted that base pair changes introduced to gt promoter region, do not overlap 

with the consensus binding sites of Zld and Gaf. 

Comparing the recruitment of PcG proteins at the transcriptionally inert gt transgene in a 

genetic background in which endogenous gt is actively and uniformly expressed, we determined 

that binding of PcG proteins is not dictated by the transcriptional state of the target gene, but rather 

is affected by the presence of repressive or activating transcription factors. This observation 

supported the “instructive model”, which suggests that transcription factors, and not the 

transcriptional state, play the central role in the regulation of PcG binding. Multiples studies have 

provided the evidence that the recruitment of PcG proteins to their targets is not responsive to the 

transcriptional state, contradicting the “responsive model”. Papp and Muller, (2006) compared the 

recruitment of PcG proteins to the Ubx gene in the haltere and third-leg imaginal discs, where it is 

expressed in all cells, and in the wing imaginal disc, where it is uniformly stably repressed. Their 

quantitative analysis of X-ChIP, showed that PhoRC binding at both bx PRE (located ~32 kb 

downstream of TSS) and bxd PRE (30 kb upstream of TSS) was similar in both transcriptional 

states. PRC1 and PRC2 subunits were shown to bind at comparable levels to the bxd PRE at both 

active and repressed states, while their binding was lower at the active bx PRE compared to its 

repressed state. The aforementioned study revealed the constitutive binding of PcG proteins at Ubx 

PREs irrespective of the transcriptional state.  
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Langlais et al. (2012), used UAS-driven-flag-tagged PcGs in conjugation with engrailed 

(en)-Gal4 and cubitus interruptus (ci)-Gal4 drives in specific cell populations that express en and 

those that do not (express ci, instead). Using this system, PcG binding to PRE2, at TSS, and PRE1, 

~1 kb upstream of TSS, in the on and off states of the en gene in 3rd instar wing imaginal discs 

was compared. Pho was bound at comparable levels in both the on and off transcriptional states of 

en PRE1. Furthermore, the binding level of Pho, PRC1 and PRC2 at en PRE2 in the off state was 

higher than those in the on state, while the binding levels were comparable at en PRE1 in both 

states. However, it is worth noting that the number of cells expressing ci (off state of en) was 

greater than the en-expressing cells, and thus the detected higher level of PcG proteins in the off 

state cannot be thoroughly verified through this study.  

Multiple studies support the instructive model in mammalian systems. Transcription 

factors such as Rest and Runx1 have been proposed to recruit PcG proteins through direct 

biochemical interactions. Rest interacts with PRC1 complex and triggers its recruitment to a subset 

of PcG-regulated neuronal genes in mESCs (Dietrich et al., 2012).  

Core binding transcription factor Runx1 directly recruits PRC1 to chromatin independently 

of PRC2 in mammalian cells (Yu et al., 2012). However, PRC2-independent recruitment of PRC1 

may be distinct from PRC1 role in PcG silencing. PRC1 has been shown to regulate the transition 

of paused RNAP II to elongating form at active genes independently of other PcG proteins (Schaaf 

et al., 2013). 

4.4.5 Transcriptional activator Cad negatively affects binding of PcG proteins to gt 

ChIP assays on Cad KD; bcd osk tsl and Cad; HbKD bcd osk tsl embryos, provided 

evidence for the negative role of transcriptional activator Cad on the recruitment of PcG proteins 

to gt.  
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Maternal Hb and Cad are ubiquitously expressed in embryos from bcd osk tsl females. 

However, Cad fails to activate gt in the presence of Hb. A number of studies, have suggested an 

antagonistic role for Hb and Cad at other genes (Clyde et al., 2003; Small et al.,1992; Vincent et 

al., 2018). Hb is converted from a repressor into an activator upon binding of Bcd or Cad (Janssens 

et al., 2006; He et al., 2010; Kim et al., 2013; Samee et al., 2014). The repressive effect of Hb on 

stripe 2+7 enhancer of even-skipped, is counteracted by the Cad binding sites in the nearby 

sequences within the enhancer (Vincent et al., 2018). We suggest that the maternal Hb can counter-

activate Cad in embryos from bcd osk tsl females, resulting in the uniform repression of gt in these 

embryos. Despite the uniform expression of both Hb and Cad in bcd osk tsl embryos, a general 

reduction in binding of PcG proteins to gt regulatory region was observed upon the knock down 

of Hb in bcd osk tsl embryos. This observation proposes that Hb represses the inhibitory effect of 

activator Cad on the recruitment of PcG proteins, therefore, in the absence of Hb (HbKD; bcd osk 

tsl), Cad was then able to confer its inhibitory effects on the recruitment of PcG.  

H3K27ac is mutually exclusive with H3K27me3 and was shown to antagonize PRC2-

mediated H3K27me3 and consequently PcG silencing (Tie et al., 2009). Mutation of replication-

independent H3.3K27 in Drosophila, indicated that H3.3K27 is dispensable for transcription, 

while it is required for PcG-mediated repression (Leatham-Jensen et al., 2019). Furthermore, 

H3K27ac does not play a central role for gene activation but mainly functions to antagonize 

H3K27me (Pengelly et al., 2013).   

H3K27ac is deposited at all the tested regions of the gt regulatory region of the active state 

with a peak at region 4 (gt promoter and PRE1). The positive signal of H3K27ac at the promoter 

of active gt, may be due to the recruitment of CBP, a H3K27 acetyltransferase. CBP has been 

shown to function as a Bcd and Cad co-activator at gt and fushi tarazu loci, respectively (Shapira 
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et al., 2014). Furthermore, CBP genomic sites have been found at active promoters and enhancers 

as well as PREs of both active and silenced PcG-target genes (Tie et al., 2009; Philip et al., 2015). 

CBP binds to all gt enhancers in wt embryos (modENCODE). CBP can possibly be recruited as a 

TrxG subunit to gt_(-1) and gt_(-6) enhancers, which overlap with TRE/PREs. Alternatively, It 

may also be recruited as a co-activator for Bcd to gt_(-6) and gt_(-10) enhancers and for Cad to 

gt_(-1) and gt_(-3) enhancers. However, the presence of TrxG complex at gt has not been studied.  

Hb was shown to interact with dMi-2, a member of NuRD nucleosome remodeling and 

deacetylation complex, in two-hybrid assays (Kehle et al., 1998). Drosophila NuRD complex 

comprises helicase-containing nucleosome remodeling ATPases Mi-2, histone deacetylases Rpd3, 

histone chaperones p55 and GATA-type zinc finger proteins such as MBD-like, MTA-like and 

Simjang (Zhang et al., 2016). Reduced binding of Hb to gt_(-1) and gt_(-3) enhancers upon the 

knock down of Hb in bcd osk tsl embryos, may result in the absence of histone deacetylase activity 

of NuRD and mildly positive signal for H3K27ac at these regions which could inhibit PcG-

mediated methylation. The antagonizing effect of Hb on the Cad-mediated negative regulation of 

the recruitment of PcG proteins at gt, may be well explained by the deacetylation activity of NuRD 

complex on the H3K27ace histone mark deposited by CBP. However, the presence of NuRD has 

never been investigated at gt and our attempts to identify NuRD complex by using dMi-2 antibody 

failed due to the inefficiency of the latter antibody in our ChIP protocol.  

The only study supporting the instructive model in Drosophila showed the derepression of 

Ubx in hb and PRC1 mutant embryos, and the ectopic expression was more extensive in the 

absence of dMi-2 (Kehle et al., 1998). The result of this study was interpreted as an evidence on 

the positive role of a repressive transcription factor or its co-repressor in the recruitment of PcG 

proteins. However, based on the results of our study, we suggest that the deacetylation activity of 
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dMi-2 containing NuRD complex, contributes to the facilitated binding of PcG proteins in the 

presence of an activator. 

Despite the efficient knock down of Cad, and the absence of Bcd, gt was still expressed in 

Cad; HbKD bcd osk tsl embryos at low levels (33% relative to wt embryos). However, the 

increased recruitment of PcG proteins in Cad; HbKD bcd osk tsl embryos, where gt is expressed 

at low levels, compared to bcd osk tsl embryos, where gt is uniformly repressed, provides another 

evidence on the irresponsiveness of PcG proteins to the transcriptional state of gt. 

Zld not only facilitates activation by transcriptional activators, it can also cause low levels 

of transcription in earlier stages of embryogenesis. Zld was shown to activate low expression level 

of miR-309 in the absence of its known activator, bcd, in blastoderm stage (Fu et al., 2014). Low 

gt expression level in Cad; HbKD bcd osk tsl embryos may be triggered by Zld which binds to gt 

promoter (Alhaj Abed J, unpublished data).  

 A dramatic increase in the binding of Pho, Pcl, Pc and RNAPII S5p and a mile elevation 

in the signals of E(z) and H3K27me3 were observed at region 4 of Cad; HbKD bcd osk tsl 

compared to CadKD; bcd osk tsl embryos. We have determined that Hb binds strongly to region 4 

of nc13 CadKD; bcd osk tsl and bcd osk tsl embryos although at much lower levels compared to 

gt_(-3) enhancer. NuRD complex increases the local nucleosome density at regulatory sequences, 

which in turn interferes with the association of transcription factors, and co-activators with the 

chromatin. NuRD-mediated nucleosome rearrangements results in the decrease of RNAPII S5p 

occupancy at TSS, irrespective of the transcriptional state of the associated gene (Bornelov et al., 

2018). The latter study explains the increased signal of RNAPII S5p at promoter region of Cad; 

HbKD bcd osk tsl, despite the low level of gt expression in these embryos. We suggest that the 

decreased Hb, and consequently NuRD binding, to region 4 in Cad; HbKD bcd osk tsl embryos, 
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may contribute to the generation of more accessible or open chromatin and the increased binding 

of PcG proteins to this region.  

In conclusion, the ChIP assays on Cad; HbKD bcd osk tsl embryos suggested that the 

default state of native chromatin is to recruit PcG proteins and the presence of an activator may 

directly or indirectly, through the recruitment of a co-activator, result in the deposition of active 

histone marks which antagonize stable binding or catalytic activity of PcG complexes.  
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CHAPTER 5: 

CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 PRE binding proteins contribute differentially to PRE activity at gt 

Recruitment of Drosophila PRC2 and PRC1 to their target genes needs the presence of one 

or more PREs (Simon et al., 1993). PREs are complex DNA elements which vary greatly in 

sequence composition and size (Kassis and Kennison, 2010). Individual PREs may be bound by 

different combinations of various PRE binding proteins. Furthermore, their surrounding chromatin 

environment or topology can also add to the uniqueness of a PRE.  

We studied the binding of PcG proteins at gt PRE1 in the absence of Pho binding and also 

the dependency of PRE2 on PRE1 for the recruitment of PcG proteins and the maintenance of 

PcG-mediated repression. We found that PRE1 is redundant with PRE2 for the recruitment of PcG 

proteins and maintenance of PcG-mediated repression and Pho plays the major role in PRE1 

activity. We further showed that Phol binding is less dependent on the presence of consensus Pho-

Phol binding sites and appears to play a minimal role in recruiting other PcG proteins and 

maintenance of transcriptional repression of gt. PRE binding proteins Spps and Dsp1 show 

differential dependence on the presence of Pho for PRE1 binding. Dsp1 binds PRE1 independently 

from Pho binding, whereas Spps binding is dependent on Pho. Phol, Spps and Dsp1 mainly bind 

strongly to PRE1 and very weakly to PRE2. Moreover, stable binding of most tested PcG proteins 

to PRE1 precedes that to PRE2. Our results demonstrated the heterogeneity and complexity of 

PREs, albeit for the same gene, in terms of function and the proteins which contribute to their 

activity and how much we have yet to learn. 
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5.2 Initial recruitment of PcG proteins to gt is dictated by the absence of a transcriptional 

activator 

PcG proteins do not initiate transcriptional silencing but maintain the transcriptional 

repression of silenced genes by altering chromatin structure (Simon and Kingston, 2013). After 

initial recognition and binding of PcG proteins to their repressed target genes, they are able to 

maintain the transcriptional repression through an unlimited number of cell cycles. How these 

proteins initially distinguish between the active and repressed states of their target genes remains 

a major gap in understanding of PcG proteins. 

One important problem in studying the initial recruitment of PcG proteins to target genes 

has been the inability to obtain temporally synced populations of cells in which a target gene is 

uniformly repressed by PcG proteins. PcG-target genes are usually expressed heterogeneously in 

Drosophila embryos. Therefore, their presence in both active and PcG-mediated silenced states 

would result in the confusing data from ChIP assays of chromatin proteins. We have circumvented 

this technical problem by using Drosophila genetics to produce embryos in which the PcG target 

gene, gt, is either ubiquitously transcriptionally repressed or active. 

Within the topic of initiation, the mechanisms by which PcG proteins distinguish between 

repressed versus active states of target genes are not understood. Construction of embryos with a 

transcriptionally inert gt transgene in a background in which endogenous gt is transcriptionally 

active, uniquely positioned us to answer a very important but unanswered question concerning the 

mechanisms by which PcG proteins discern the transcriptionally repressed and active states of 

their target genes. The results of our studies showed that PcG proteins do not respond to the 

transcriptional state of gt and their recruitment is solely dictated by the transcription factors. 

Moreover, we demonstrated that the activating transcription factor Cad confers inhibitory effects 
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on the recruitment of PcG proteins and this inhibition is impeded by the repressive transcription 

factor Hb.  

5.3 Future directions 

• Investigating if Cad recruits CBP at gt and the recruitment of PcG proteins at gt in embryos 

in which CBP level is knocked down in bcd osk tsl background. Comparing PcG binding 

to gt in CBP KD; bcd oks tsl and CadKD; bcd osk tsl embryos, will provide us with more 

information about the mechanism that Cad reduces binding of PcG proteins to gt. 

• Determining whether NuRD is present at gt. NuRD is a co-repressor of Hb, but it is not 

known whether Hb recruits it to gt. The NuRD complex includes dMi-2 and histone 

deacetylases. The antagonistic effect of Hb on Cad inhibition of PRC2 recruitment may 

involve deacetylation of H3K27ac. In case of the presence of NuRD at gt, it will be 

interesting to investigate the recruitment of PcG proteins in embryos in which the level of 

dMi-2 is knocked down in bcd osk tsl background. This study may shed light on the 

mechanism by which Hb represses gt and prevents the inhibitory effects of Cad on the 

recruitment of PcG proteins. 

• Hb and Cad are the repressor and activator of kni, a PcG target gene. kni is uniformly 

repressed or expressed at levels comparable to gt in bcd osk tsl, HbKD; bcd osk tsl, CadKD; 

bcd osk tsl and Cad; HbKD bcd osk tsl embryos (data not shown). Surveying the 

recruitment of PcG proteins at kni in the aforementioned genetic systems, will provide us 

with more insights into how general the results of our study is and if they can be applied to 

other PcG target genes. 

• Determining the effects of the absence of PRE binding proteins Spps and/or Dsp1 on the 

recruitment of PcG proteins to gt. 
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