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Model selection based on experimental data is an essential challenge in biological data

science. In decades, the volume of biological data from varied sources, including laboratory

experiments, field observations, and patient health records has seen an unprecedented in-

crease. Mainly when collecting data is expensive or time-consuming, as it is often in the case

with clinical trials and biomolecular experiments, the problem of selecting information-rich

data becomes crucial for creating relevant models.

Motivated by certain geometric relationships between data, we partitioned input data

sets, especially data sets that correspond to a unique basis, into equivalence classes with

the same basis to identify a unique algebraic model. The analysis of the data relationships

and properties will facilitate the computations, storage, and access to sizable discrete data

sets.
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3.3.3. Upper Bound for the Number of Gröbner Bases . . . . . . . . . . . . . . . . . . . . 30

4. MODEL SELECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



4.2. Model Selection with Complement Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3. Model Selection by Representatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4. Model Selection by Staircases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5. DoEMS: A Website Linking Design of Experiments and Model Selection . . . . . . . . 49

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2. Workflow of DoEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3. Data Partition and Equivalence Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4. Check Linear Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5. Extract Equivalence Class Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1. Reverse Engineering of Gene Regulatory Networks . . . . . . . . . . . . . . . . . . . . . . . . 63
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Chapter 1

INTRODUCTION

A general data science life cycle in Figure 1.1 contains five stages: 1. data capture, which

includes data acquisition, data extraction and data entry. In this step, researchers and data

scientists pay more attention to improve the data quality; 2. data maintain, which contains

data processing, data cleansing and data architecture. Especially for large data sets, an

efficient data maintenance system is essential to data readability and sustainability; 3. data

process contains data mining, classification, data modelling. Insights can be generated by

models and algorithms, such as the classification of data; 4. data analysis includes predictive

analysis, qualitative analysis. Predictive/regression models should be applied to analyze data

properties, such as the associative relationships between data points; 5. data communication,

which has data reporting, data visualization, decision making, is an essential step to extract

insights from data analysis results to help to make a future decision.

1.1. Gene Regulatory Networks

Gene, an increasingly popular topic nowadays, has been in our life every day by holding

the information of building the cells in our body. In other words, genes contain instructions

for the mechanisms of cellular processes. Gene regulation is a process of genetic information

extracting and utilizing. The mathematical model of gene regulation is extremely compli-

cated as it involves genes, DNA, RNA, proteins and small molecules. We call the network

that contains gene regulation a gene regulation network (GRN). A GRN is a collection of

regulators: proteins, genes and enzymes. These regulators will interact with each other to

fulfil some functionalities. An earrly example of a GRN is considered to be the lac operon

in 1961. In this GRN, proteins in lactose metabolism are expressed by E. coli.

1



Figure 1.1: Life Cycle of Data Science [7].

1.2. Model Selection

Network inference in systems biology is plagued by too few input data and too many

candidate models which fit the data. However, not all candidate models reflect the behaviours

of real biological systems. Different model selection strategies have been developed to restrict

the model selection to more appropriate dynamic networks. Some strategies put restrictions

of the network topology [25]. Some other model selection strategies will restrict functions

to be biologically motivated, such as the chain functions [22] or biologically meaningful

functions [38]. When the data are discrete, models can be written as a linear combination

of finitely many monomials. The problem of selecting a model can be reduced to selecting

an appropriate monomial basis.

To implement the model selection on GRN, standard monomials of GRN models and

data set partitions are used. Based on the traditional five stages of the data science life

cycle, our work in model selection on GRN and model classification is contained in three
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steps: process, analyze and communicate.

• Process

Discrete data sets, such as inputs in the lac operon [49] network, which are based on

the experiments on the gene activities, are used to construct gene network models and

make a model selection. Since model selection can be applied to all possible data sets

in each case with the specific number of states p, the number of variables n and the

number of points m, all possible data sets are generated in different cases based on

supporting algorithms written in Python and Macaulay2. The outlier data sets and

the problems related to data collection will not be considered in this work.

• Analyze

First, the properties of models based on geometic characterization and Gröbner bases

(GB) theorems are studied. To have a better estimation of models, the formulas for

the number of GBs and a more accurate upper bound of the number of models based

on algebraic geometry are generated. With a better estimate for the number of models,

scientists can calculate the approximate time they need to construct a new model. In

this way, scientists can avoid computational redundancy.

Then, the relationship between input data sets and the relationship between input

data sets and model bases are considered. From data sets to models, different GBs

are generated through coding in Macaulay2 and C. We also improved the algorithms

in calculating GBs in Python. From the calculation of GBs, it is common for different

data sets to share the same GBs. This property gave us the motivation to study the

relationship between data sets. Data sets partition/classification research is expen-

sive, considering the high experimental cost with redundancy model information from

different data sets.

Lastly, the relationship between data sets geometrically was explored and the char-

acterization for unique Gröbner basis data sets and non-unique Gröbner basis data

sets were considered. Then, we applied linear algebra methods to create a relationship

matrix between data sets. This idea proved to be practical as recently affine transfor-

mations were used to partition input data into equivalence classes on the same basis.
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To better represent different classes, a “standard position” was proposed for data sets.

Data set distance was proposed to measure how far a set is from being in a standard

position.

• Communicate

According to the life cycle of data science in Figure 1.1, data visualization, decision

making or data reporting are better ways to communicate meaningful data analysis

results to society. The website was created DoEMS to help extract data analysis reports

and statistical results. More details and functionality will be shown in Chapter 5. With

DoEMS, researchers can analyze a model with standard monomials and equivalence

classes of data sets to make an experimental design.

1.3. Experimental Design

Gene regulatory networks often contain a significant amount of uncertainty. The method-

ology is desirable for prioritizing potential experiments to reduce network uncertainty op-

timally, considering the cost and time required for biological experiments. This process of

prioritizing biological experiments to reduce the uncertainty of GRN is called experimental

design [13].

As suggested in two review papers of computational and experimental approaches in GRN

[24, 41], to proceed, researchers should consider the following steps: 1. Construct candidate

mathematical models of gene regulation. 2. Design experiments that produce maximally

informative observations. 3. Develop methodologies for choosing a candidate model that

‘best’ fits the observations. 4. Analyze and validate the model. Use the model to formulate

and test new hypotheses about the structure and function of gene regulation.

• Capture

The capture step in the life cycle of data science based on the experience gained from

the previous steps is the experimental design step. For example, considering the results

from the analyze step in Section 1.2, equivalence classes are generated on the same

basis. The implication of this work is a guide for biologists in designing experiments
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to collect data that result in a unique model (set of predictions), thereby reducing

ambiguity in modelling and improving predictions.

Moreover, we can get further details or guidance from DoEMS [50] developed in the

communicating step as researchers can make a comparison of ECs with their desirable

data sets. Then they can plan to add some extra points or start from specific data sets,

which associate with specific models or even choose the data sets with fewest active

GRN nodes or the data sets with the most active GRN nodes.
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Chapter 2

BACKGROUND

2.1. Algebraic Geometry

Most definitions and known results in this section can be found in [10].

Let F be a finite field of characteristic p. We will typically consider the finite field

Zp = {0, 1, . . . , p − 1}, that is the field of remainders of integers upon division by p with

modulo-p addition and multiplication. Let R = F[x1, . . . , xn] be a polynomial ring over the

finiete field F. Finally let m denote the number of points in a subset of Fn.

Definition 2.1 A monomial order ≺ (sometimes called a term order or an admissible order)

is a total order on the set of all (monic) monomials in a given polynomial ring, satisfying

If u ≺ v and w is any other monomial, then uw ≺ vw.

The choice of a term order ≺ on the monomials allows for sorting the terms of a polyno-

mial. Let us take a set of monomials s = {x21, x22, x1x3, x1, 1}, as an example to show some

well known monomial orders.

Example 2.1 Lexicographic order (lex), with x1 > x2 > . . . > xn, first compares exponents

of x1 in the monomials, and in the case of equality compares exponents of x2, and so forth.

Then, in lex order

x21 > x1x3 > x1 > x22 > 1.

2

Example 2.2 Graded lexicographic order (grlex, or deglex), with x1 > x2 > . . . > xn, first

compares the total degree (sum of exponents) and in the case of same total degree applies
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lexicographic order. Then, in grlex order

x21 > x1x3 > x22 > x1 > 1.

2

Example 2.3 Graded reverse lexicographic order (grevlex, or degrevlex), with x1 > x2 >

. . . > xn, compares the total degree first, then uses a reverse lexicographic order in the case

of same total degree, it reverses the outcome of the lexicographic such that larger monomials

of the same degree are considered to be smaller in grevlex. Then, in grevlex order

x21 > x22 > x1x3 > x1 > 1.

2

Definition 2.2 A subset I ⊂ F[x1, . . . , xn] is an ideal if it satisfies:

• 0 ∈ I.

• If f , g ∈ I, then f + g ∈ I.

• If f ∈ I and h ∈ F[x1, . . . , xn], then hf ∈ I.

Definition 2.3 If f1, . . . , fs are polynomials in F[x1, . . . , xn], then we set

〈f1, . . . , fs〉 =
{ s∑

i=1

hifi : h1, . . . , hs ∈ F[x1, . . . , xn]
}

Here, 〈f1, . . . , fs〉 is an ideal of F[x1, . . . , xn]. We call 〈f1, . . . , fs〉 the ideal generated by

f1, . . . , fs.

Definition 2.4 The leading term of a polynomial g ∈ F[x1, · · · , xn] is thus the term of

the largest monomial for the chosen monomial order ≺, written LT≺(g). Also, we call

LT≺(I) = 〈LT≺(g) : g ∈ I〉 the leading term ideal for an ideal I.
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Notice also if f and g are nonzero polynomials, then deg(f) ≤ deg(g) ⇐⇒ LT (f) divides

LT (g). Based on the division algorithm, every f ∈ R can be written as f = q · g + r, where

q, r ∈ R, and either r = 0 or deg(r) < deg(g).

Example 2.4 With grevlex order and variable order x1 > x2 > x3, the polynomial g =

x1x
2
2 + x31 + x1x2 + x1 + 1 has the leading term x1x

2
2. While with grlev order, the leading

term of g is x31. 2

Definition 2.5 The monomials which do not lie in LT≺(I) are called standard monomials,

denoted SM≺(I).

Example 2.5 Let LT≺(I) = {x21, x2} be a set of leading terms of an ideal I. The set of

standard monomial is SM≺(I) = {1, x1}. 2

Definition 2.6 Let f1, . . . , fs ∈ R. Then the set

V(f1, . . . , fs) := {(a1, . . . , an) ∈ Fn : fi(a1, . . . , an) = 0, 1 ≤ i ≤ s}

is the affine variety defined by f1, . . . , fs.

Definition 2.7 Given input-output data V = {(s1, t1), . . . , (sm, tm)} ⊂ Fn×Fn, then the set

I of polynomial functions which vanish on the inputs, called the ideal of points is computed

as

I({s1, . . . sm}) := {h ∈ R | h(si) = 0∀i} = ∩mi=1〈xj − sij〉 where si ∈ (si1, . . . , sin).

Here, si, ti are vectors, i = 1, . . . ,m.

Definition 2.8 Let ≺ be a term order on the monomials in R and let I be an ideal in R.

Then G ⊂ I is a Gröbner basis for I with respect to ≺ if 〈G〉 = I for all f ∈ I there exists

g ∈ G such that the leading term LT≺(g) divides LT≺(f).

Definition 2.9 A reduced Gröbner basis for a polynomial ideal I is a Gröbner basis G for

I such that:
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• Leading coefficient of g is 1, for all g ∈ G.

• For all g ∈ G, no monomial of g lies in 〈LT (G− {g})〉.

Definition 2.10 (Normal Form) Let G = {g1, . . . , gt} be a Gröbner basis w.r.t. ≺ for

an ideal I ⊂ F[x1, . . . , xn] and let f ∈ F[x1, . . . , xn]. Then there is a unique polynomial

r ∈ F[x1, . . . , xn], called the normal form of f w.r.t. ≺ with following two properties:

• No term of r is divisible by any of LT (g1), . . . , LT (gt).

• There is g ∈ I such that f = g + r.

Theorem 2.1 (Buchberger Algorithm) Let I = 〈f1, . . . , fs〉 6= {0} be a polynomial ideal.

Then a Gröbner basis for I can be constructed in a finite number of steps by the following

algorithm:

Input: A set of polynomials F = {f1, . . . , fs} that generates I; a monomial order ≺.

Output: A Gröbner Basis G for I.

1. G := F

2. gi := LT≺(fj), ∀fj ∈ G and aij := LCM(gi, gj) (least common multiple of gi and gj).

3. Choose two polynomials fi and fj in G and let Sij := (aij/gi)fi − (aij/gj)fj (leading

terms will cancel by construction).

4. Reduce Sij until the result is not further reducible, with multivariate division algorithm

[10]. Then add non-zero result to G.

5. Repeat Steps 1-4 for all possible Sij and new polynomials generated at Step 4.

6. Output G.

Example 2.6 Considering input data set S1 = {(0, 0), (0, 1)}, the ideal of points is I =

(x1, x2)
⋂

(x1, x2−1). By applying Algorithm 2.1, we can get a unique GB {x22−x2, x1} Then

S1 is associated with a unique standard monomial basis {1, x2} (see Definition 2.5). Also,

for the data set S2 = {(1, 0), (1, 1)}, the ideal of points is I = (x1 − 1, x2)
⋂

(x1 − 1, x2 − 1).
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By applying Algorithm 2.1, we can get GB(I) = {x22 − x2, x1} and the standard monomial

basis is {1, x2}. 2

Example 2.7 Consider two inputs S3 = {(0, 0), (1, 1)} ⊂ (Z2)
2. The corresponding ideal I =

(x1, x2)
⋂

(x1− 1, x2− 1) of the points in S3 has two distinct reduced Gröbner bases, namely

G1 = {x1 − x2, x22 − x2}, G2 = {x2 − x1, x21 − x1}

Here, ’ ’ marks the leading terms of the polynomials in a Gröbner basis.

First, leading coefficients of elements in bases G1 and G2 are all 1. Second, no monomial

in any element of the basis is in the ideal generated by the leading terms of the other

elements of the basis. For example, for g1 = x1 − x2 in G1, neither x1 nor x2 lies in 〈x22〉.

The leading term of g2 = x22− x2 is x22 as indicated. So G1 and G2 are two reduced Gröbner

bases associated with input S. Then the standard monomial basis of G1 is {1, x2} and the

standard monomial basis of G2 is {1, x1}. 2

To save the computational cost of GRN with numerous input data sets, some specific data

structure, especially structures related to unique Gröbner basis. The most important struc-

ture is called a staircase.

Definition 2.11 A staircase is a nonempty subset λ ⊆ Fn such that if u ∈ λ and v ≤ u

(coordinate-wise), then v ∈ λ.

Example 2.8 λ1 = {(0, 0), (1, 0), (0, 1)} is a staircase. However, λ2 = {(1, 0), (0, 1), (1, 1)}

is not a staircase, as point (0, 0) which is smaller than (1, 0) is not in λ2. 2

Let
(Fn

m

)
denote the collection of all sets of m points in Fn. Then for λ = {λ1, . . . , λm} ∈

(Fn

m

)
,

let
∑
λ denote the vector sum

∑m
i=1 λi ∈ Fn. Let Λ denote the set of all staircases in

(Fn

m

)
.

The staircase polytope of Λ is the convex hull of all points
∑
λ where λ ∈ Λ (see [6, 35] for

more details).

Definition 2.12 For an ideal I, we call P the staircase polytope of I if P is the stair-

case polytope of the exponent vectors of the standard monomial sets associated to I for any

monomial order.
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Figure 2.1: The lattice graph of a staircase. By adding either black or green square points,
we obtain a new staircase. However, adding the red hexagonal point will break the rules of
staircases.

The number of reduced Gröbner bases for an ideal is in bijection with the number of vertices

of the staircase polytope, which was proved for ideals of points in [35] and for all other

zero-dimensional ideals in [6].

Theorem 2.2 ([21]) Let S ⊆ Fn and I(S) be the ideal of the points in F. Then |S| =

dimFR/I(S).

An ideal is zero dimensional if dimK R/I <∞; when K is algebraically closed and |S| = m <

∞, m = dimK R/I(S). A field K is algebraically closed iff the only irreducible polynomials

in the polynomial ring K[x] are those of degree one. When working over a finite field,

extensions of classic results in algebraic geometry state that when the number m of input

points is finite, then m coincides with the dimension of the vector space R/I(S) over F [21],

which is stated in Theorem 2.2.

Example 2.9 Let S = {(1, 1), (2, 3), (3, 5), (4, 6)} ⊂ R2. So dimR R[x, y]/I(S) = 4. Also

Λ(I(S)) = {(1, x, x2, x3), (1, x, x2, y), (1, x, y, y2), (1, y, y2, y3)}. So the number of reduced

Gröbner bases for I(S) is four. Note that there are five staircases in
(F2

4

)
, namely Λ =

{{(0, 0), (1, 0), (2, 0), (3, 0)}, {(0, 0), (1, 0), (2, 0), (0, 1)}, {(0, 0), (1, 0), (0, 1), (1, 1)}, {(0, 0),

(1, 0), (0, 1), (0, 2)}, {(0, 0), (0, 1), (0, 2), (0, 3)}}. The staircase polytope of Λ is the convex
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Figure 2.2: The staircase polytope graph of S = {(1, 1), (2, 3), (3, 5), (4, 6)}. Vertices are
calculated as the sums of the coordinates of the five staircases in this example.

hull of the vector sums {(6,0), (3,1), (2,2), (1,3), (0,6)}, which has vertices (6,0), (3,1), (1,3),

and (0,6), corresponding to the four standard monomial sets of I(S). 2

2.2. Polynomial Dynamical Systems

Definition 2.13 A polynomial dynamical system (PDS) over F is a function f = (f1, . . . , fn) :

Fn → Fn where fi ∈ R.

It is well known that GBs exist for every ≺ and make multivariate polynomial division well

defined in that remainders are unique. A set of standard monomials SM≺(I) for a given

term order forms a basis for R/I as a vector space over F.

Given input-output data V = {(s1, t1), . . . , (sm, tm)} ⊂ Fn × Fn, find all PDSs [29] that

fit V and select a minimal PDS with respect to polynomial division. The general strategy

is as follows: For each xj, compute one interpolating function fj ∈ R such that fj(si) = tij,

then compute the ideal I = I({s1, . . . , sm}) of the input points.

The model space for V is the set

f + I := {(f1 + h1, . . . , fn + hn) : hi ∈ I}

of all PDSs which fit the data in V and where f = (f1, . . . , fn) is as computed above. A PDS

can be selected from f + I by choosing a monomial order ≺, computing a Gröbner basis G
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for I, and then computing the normal form (remainder), denoted f
G

, of each fi by dividing

fi by the polynomials in G. We call

(f1
G
, f2

G
, . . . , fn

G
)

the minimal PDS with respect to ≺, where G is a Gröbner basis for I with respect to ≺.

Changing the monomial order may change the resulting minimal PDS. While it is possible

for two reduced Gröbner bases to give rise to the same normal form (see [29]), it is still the

case that in general, a set of data points may have many GBs associated with it. In this way,

the number of distinct reduced GBs of I gives an upper bound for the number of different

minimal PDSs. Therefore, we aim to find the number of distinct reduced Gröbner bases for

a given data set.

Example 2.10 From Example 2.7, S3 = {(0, 0), (1, 1)} ⊂ (Z2)
2 has two distinct reduced

Gröbner bases

G1 = {x1 − x2, x22 − x2}, G2 = {x2 − x1, x21 − x1}

Hence, there are two resulting minimal models: any minimal PDS with respect to G1 will

be in terms of x2 only as x1 is the leading term and all x1’s in PDS are divided out, which

results standard monomial basis to be {1, x2}. while, any minimal PDS with respect to G2

will be in terms of x1 only as x2 is the leading term and all x2’s in PDS are divided out.

Then the standard monomial basis is {1, x1}.

If the inputs set is {(0, 0), (0, 1)}, then its associated ideal I has a unique GB, {x22−x2, x1},

resulting in a unique minimal PDS.

The polynomial g = x1 − x2 has different leading terms for different monomial orders.

In fact, for monomial orders with x1 � x2, the leading term of g will be x1, while for orders

with x2 � x1 the opposite will be true. We say that g has ambiguous leading terms. We will

mark only ambiguous leading terms.

2
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As the elements of the quotient ring, R/I are equivalence classes of functions defined over

the inputs {s1, . . . sm} and since a set of standard monomials is a basis for R/I, it follows

that each reduced polynomial f
G

is written in terms of standard monomials.

A combinatorial structure that contains information about all reduced Gröbner bases

of a polynomial ideal I is the Gröbner Fan of I. It is a polyhedral complex of cones, each

corresponding to an initial ideal of I. [15, 33]

The cones are in one-to-one correspondence with the reduced GB of I.

2.3. Linear Shifts of Data Sets

The linear shift was first introduced in [14] and [26] as a new term to describe results

after affine transformation for any data sets in F. Both of them defined the linear shift using

mapping functions. However, Definition 2.14 provides a ring-centered definition of a linear

shift while Definition 2.15 provides a data-centered definition.

Definition 2.14 ([14]) Let a1, . . . , an ∈ F \{0}, let b1, . . . , bn ∈ F, and let Φ : R → R be

the homomorphism defined by xi 7→ aixi + bi for i = 1, . . . , n. Then Φ is called a linear shift

of R.

Definition 2.15 ([26]) Let Si = {xi1, . . . ,xin}, Sj = {xj1, . . . ,xjn} ⊂ Fn be data sets. We

say that Si is a linear shift of Sj, denoted Si ∼ Sj, if there exists φ = (φ1, . . . , φn) : Fn → Fn

such that φk(x
i
k) = akx

i
k + bi = xjk, ak ∈ F×, bk ∈ F, k = 1, . . . , n, and Si = φ(Sj). We will

denote input data sets as

Si = {(xi11, xi21, . . . , xin1), . . . , (xi1m, xi2m, . . . , xinm)}

and

Sj = {(xj11, x
j
21, . . . , x

j
n1), . . . , (x

j
1m, x

j
2m, . . . , x

j
nm)}.

Here, xik = (xik1, x
i
k2, . . . , x

i
km) is the vector of the k-th coordinate in the data set Si, and

xjk = (xjk1, x
j
k2, . . . , x

j
km) is the vector of k-th coordinate in the data set Sj.
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As the research in [26] is more focused on the relationship between data sets, which is

more applicable for GRN model research with input data sets, we will use the point version

of Definition 2.15 instead of the ring version of Definition 2.14 for the discussion in Chapter

3, Chapter 4 and Chapter 6.

Example 2.11 For n = 2,m = 3, p = 3, in Figure 2.3, the data set (black points) in left,

center and right is the linear shift of data set (green points) by function set φ = (φ1, φ2).

2

Figure 2.3: The data set (black points) {(0, 0), (1, 1), (2, 2)} in the left plot are linear shifts
of the data set (green points) {(0, 2), (1, 0), (2, 1)} via φ = (φ1, φ2) = (x, x+ 2).
The data sets (black points) {(0, 0), (0, 1), (1, 2)} in the center plot is the linear shift of the
data set (green square points) {(1, 0), (1, 1), (2, 2)} via φ = (φ1, φ2) = (x+ 1, x).
The data sets (black points) {(0, 0), (1, 0), (2, 1)} in the right plot is the linear shift of the
data set (green square points) {(0, 1), (1, 1), (2, 2)} via φ = (φ1, φ2) = (x, x+ 1).

Theorem 2.3 ([26]) If S1 ∼ S2, then I(S1) and I(S2) have the same number of reduced

Gröbner bases. In particular, when I(S1) has a unique reduced Gröbner basis, I(S2) will also

have a unique reduced Gröbner basis.

Example 2.12 In Example 2.6, we know that the inputs S1 = {(0, 0), (0, 1)} have a unique

GB {x22 − x2, x1}. Notice that S1 and S2 return the same GB and standard monomial

SM = {1, x2}. Based on Theorem 2.3, S1 = {(0, 0), (0, 1)} is the linear shift of the points in

S2 = {(1, 1), (0, 1)},

{(0, 0), (0, 1)} (φ1,φ2)
====⇒ {(1, 1), (0, 1)}
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with mapping functions φ1 = x + 1 and φ2 = x. By applying the function f1 to the first

coordinate and f2 to the second coordinate of the points in the data set {(0, 0), (0, 1)}, we

will shift the data set to {(1, 1), (0, 1)}. 2

Theorem 2.4 ([26]) If S ⊂ Fn is a staircase, then I(S) has a unique reduced Gröbner

basis.

Based on Theorem 2.4 and Theorem 2.3, we can get a sufficient condition for unique reduced

Gröbner basis.

Proposition 2.3.1 If S ⊂ Fn is a linear shift of some staircase λ ⊂ Fn, then I(S) has a

unique Gröbner basis.

Example 2.13 S1 = {(0, 0), (1, 0), (0, 1)} is a staircase in F2 with p = 3. S2 = {(0, 1), (2, 2),

(0, 2)} is a subset of F2 and S1 ∼ S2, since S2 = Φ(S1), where φ1 = 2x, φ2 = 2x + 2. I(S2)

has a unique reduced GB, {x1x2 + x1, x
2
2 − 1, x21 + 2}. 2

However, a linear shift of a staircase is not a necessary condition for I(S) to have a unique

reduced GB. See the next example.

Example 2.14 Data set S = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 1)} is not a linear shift of a

staircase in F3 with p = 2. However, I(S) has a unique reduced GB, {x23 + x3, x2x3, x
2
2 +

x2, x1x3 + x1, x1x2, x
2
1 + x1}. 2

The observation in Example 2.6 and Example 2.14 motivates us to study relationships be-

tween input data sets. We already know that if two data sets are linear shift of each other,

they will have same number of GBs based on Theorem 2.3.

The linear shift is meaningful in model selection and data partition as we can use partition

to a cluster data sets only by checking if one data set is a linear shift of all the others. Based

on Theorem 2.3, only by checking the linear shift relationship between input data sets, we

can distinguish different model basis instead of calculating each basis. In this chapter, we

made data partition by linear shift relationship. In the next chapter, we will dive into each
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equivalence class associated with different Gröbner basis concerning model selection in the

finite fields.
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Chapter 3

MODEL ESTIMATION

In this chapter, we will focus on estimating the number of reduced Gröbner bases and

the number of models associated with a data set. As each Gröbner basis possibly gives a

distinct model [14], we use GBs as a way of estimating the number of models for a data

set. So we will count the number of GBs associated with a data set. In this chapter, we

will start our discussion from the geometric characterization of data sets, then extend to the

estimation of the number of GBs. We will go through the formulas in different finite fields

and a general upper bound in any finite field to discover the relationship between data sets

associated with models in the finite field Zp.

The work of the chapter has been published in [44].

3.1. Introduction

In recent decades, scientists and mathematicians developed many efficient solvers in the

polynomial system [3, 9, 32, 43, 47] based on Gröbner bases. In all these applications,

researchers focused on generating models but did not offer solutions to distinguish between

models with different input data sets.

There are many novel applications of Gröbner bases. For example, in [30], the authors

introduced a new method that goes beyond Gröbner bases in the field of 3D scenery image

mining. In [2], the authors showed there are applications of Gröbner bases in robotics

engineering. Gröbner bases and polynomial ideal theory are used to solve the problem of

the S-packing colouring of a finite undirected and unweighted graph. However, these new

applications still have to enumerate all monomial bases in the computation process. The

computational efficiency of Gröbner bases is an urgent problem based on review [16] of

18



Gröbner bases. More specifically, in the process of improving GB computation efficiency,

scientists focused on two directions: 1. improve the algorithm, such as F4 [8] and F5 [17],

which are traditional GB algorithms. The authors in [31] introduced a new algorithm M4GB

for computing GBs based on the F4 algorithm. 2. Estimation of computational cost [35],

The authors developed theorems with polytope of input points and proved an upper bound

for the number of GBs.

The traditional method is to enumerate all GBs of ideals [20]. Researchers have found

new algorithms to improve the complexity [28]; however, we know that GB computation still

has exponential complexity with numerous inputs.

Surprisingly there is no closed form for the number of reduced GBs for an ideal. What is

known is an upper bound [35], which is not sharp, especially when the characteristic of the

field is positive. In this work, we will characterize the number of GBs in a finite field in 3

ways:

1. geometrically characterize the number of GBs. We will generate geometric character-

ization of input data sets which are associated with a specific number of GBs. Indi-

vidually, we will pay attention to data set structure associated with unique reduced

GBs.

2. creates and prove the formulas of number of GBs in simple cases. We will extend our

discussion on the number of distinctly reduced Gröbner bases for different cases based

on geometric observations.

3. prove a better upper bound of the number of GBs in a finite field. Comparing our new

upper bound with previous works [35] shows a better estimation on the number of GBs

of sizable data sets. The new upper bound can help estimate the cost of computing

reduced Gröbner bases before real experiments.

Considering the Znp which contains pn points. For n = 1, all ideals have a unique reduced

GB since all polynomials are single-variate and as such are factor closed. We consider cases

for n > 1. We say that a polynomial f ∈ R is factor closed if every monomial m ∈ supp(f)
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is divisible by all monomials smaller than m with respect to an order ≺. The following result

gives an algebraic description of ideals with unique reduced GBs for any monomial order.

Theorem 3.1 ([14]) A reduced Gröbner basis G with factor-closed generators is reduced for

every monomial order; that is, G is the unique reduced Gröbner basis for its corresponding

ideal.

For empty sets or singletons in Znp , it is straightforward to show that the ideal of points

has a unique reduced GB for any monomial order; that is, for a point s = (s1, . . . , sn), the

associated ideal of s is I = 〈x1 − s1, . . . , xn − sn〉 whose generators form a Gröbner basis

which is unique (via Theorem 3.1). According to Theorem 3.3, the same applies to pn − 1

points. In the rest of this work, we consider the number of reduced Gröbner bases for an

increasing number of points.

Note that over a finite field, the relation xp − x always holds.

3.2. Characterizing Data Sets Geometrically

The description of geometric characteristics can express essential features in many fields

like dynamical systems. Scientists can explore nuances of specific dynamical systems based

on their geometric behaviour with different boundary conditions. In our problem of counting

the number of Gröbner bases, the geometric characteristics in unique GB and nonunique GBs

models can provide scientists with a more intuitive way in exploring the experimental data

sets. We aim to identify a connection between the geometric configuration of data sets and

the number of associated GBs.

3.2.1. Geometric Characteristics of Two Points

Example 3.1 Consider two points in Z2
2. The left graph in Figure 3.1 is the plot of all

points in Z2
2. By decomposing the 2-square on which they lie, we find that pairs of points

that lie along horizontal lines have unique reduced Gröbner bases for any monomial order;

see Figure 3.2. For example, {(0, 0), (0, 1)} has ideal of points 〈x1, x22 − x2〉. By Theorem
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Figure 3.1: The lattice of points in Z2
2 (left), in Z3

2 (center), and in Z2
3 (right).

3.1 we see that the generators of I form a unique reduced GB. Similarly {(1, 0), (1, 1)} has

ideal of points 〈x1 − 1, x22 − x2〉, which also has a unique reduced GB. Note that while they

have different GBs, they have the same leading term ideal, namely, 〈x1, x22〉. In the same

way, pairs of points that lie along vertical lines have unique reduced GBs: sets {(0, 0), (1, 0)}

and {(0, 1), (1, 1)} have the unique leading term ideal 〈x21, x2〉. In each case, these sets have

points with one coordinate change.

On the other hand, pairs of points that lie on diagonals have 2 distinct reduced Gröbner

bases as such points have two coordinate changes. For example, the set of points {(0, 0), (1, 1)}

has GBs {x1−x2, x22−x2} and {x21−x1, x2−x1} with leading term ideals 〈x1, x22〉 and 〈x21, x2〉

respectively. Similarly the set {(0, 1), (1, 0)} has {x1−x2−1, x22−x2} and {x21−x1, x2−x1−1}

as Gröbner bases with leading term ideals 〈x1, x22〉 and 〈x21, x2〉 respectively. 2

Figure 3.2: Four configurations of pairs of points in Z2
2. From left to right: {(1, 0), (0, 1)}

and {(0, 0), (1, 0)} each have 1 GB, while {(0, 0), (1, 1)} and {(1, 0), (0, 1)} have 2 distinct
GBs.
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Example 3.2 Now consider two points in Z3
2. The center graph in Figure 3.1 is the plot

of all points in Z3
2. In Figure 3.3, pairs of points that lie on edges of the 3-cube have 1

reduced Gröbner basis, as the points have one coordinate change: for example, the set

{(1, 0, 1), (1, 1, 1)} (first from the left in Figure 3.3) has the unique reduced GB {x1−1, x22−

x2, x3 − 1} and {(0, 0, 0), (0, 0, 1)} (second) has the unique GB {x1, x2, x23 − x3}. Points

that lie on faces of the 3-cube have 2 GBs as they have 2 coordinate changes: the third

set {(1, 1, 1), (0, 1, 0)} in Figure 3.3 has GBs {x1 − x3, x2 − 1, x23 − x3} and {x21 − x1, x2 −

1, x3 − x1}. Finally points that lie on lines through the interior have 3 GBs as they have 3

coordinate changes: the fourth set {(1, 0, 1), (0, 1, 0)} has GBs {x1−x3, x2−x3−1, x23−x3},

{x1 − x2 − 1, x22 − x2, x3 − x2 − 1}, and {x21 − x1, x2 − x1 − 1, x3 + x1}. 2

Figure 3.3: Four configurations of pairs of points in Z3
2. From left to right: {(1, 0, 1), (1, 1, 1)}

and {(0, 0, 0), (0, 0, 1)} have 1 GB; {(1, 1, 1), (0, 1, 0)} has 2 GBs; and {(1, 0, 1), (0, 1, 0)} has
3 GBs.

Next, we consider data over the field Z3.

Example 3.3 Let p = 3 and n = 2. The right graph in Figure 3.1 is the plot of all points in

Z2
3. Similar to the Boolean case in Figure 3.2, pairs of points that lie on horizontal or vertical

lines have one associated reduced Gröbner basis for any monomial order, while pairs of points

that lie on any skew line have two distinct GBs. For example, the set {(0, 0), (0, 2)} in Figure

3.4 has ideal of points 〈x1, x22 + x2〉, which has a unique reduced Gröbner basis via Theorem

3.1. On the other hand, the set of points {(1, 2), (2, 1)} has two GBs, namely {x1+x2, x
2
2+1}

and {x21 − 1, x2 + x1} with leading term ideals 〈x1, x22〉 and 〈x21, x2〉 respectively. 2
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Figure 3.4: Three configurations of points in Z2
3. From left to right: {(0, 0), (0, 2)} has 1 GB,

while {(1, 2), (2, 1)} and {(0, 2), (1, 0)} each have 2 distinct GBs.

In the case of m = 2 points, we see data that lie on horizontal or vertical edges have ideals

of points with unique Gröbner bases, that is unique models, while data whose coordinates

change simultaneously have multiple models associated with them. Though the number n

of coordinates impacts the number of resulting models, the field cardinality p does not.

3.2.2. Geometric Characteristics of Three Points

Figure 3.5: Configurations of sets of 3 points in Z3
2 corresponding to different numbers of

GBs. Points that are in configurations similar to the green triangles (left) have a unique
reduced Gröbner basis for any monomial order; the pink triangle (center) has two distinct
GBs; and the red triangle (right) has three distinct GBs.

The example illustrates that points that lie on faces of the 3-cube have 1 Gröbner basis;

points forming a triangle which lies in the interior with two collinear vertices having two

distinct GBs, and points in other configurations have 3 GBs.

Now we consider data in Z3.

Example 3.4 Let p = 3 and n = 2. By Theorem 3.3, we have that NGB(3, 2, 3) ≤

3. Consider the point configurations in Figure 3.6. The data set corresponding to the

green triangle (left) is S1 = {(0, 0), (0, 1), (1, 1)} and has a unique reduced Gröbner basis:
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{x22 − x2, x1x2 − x1, x
2
1 − x1}. The data set corresponding to the pink triangle (center) is

S2 = {(0, 1), (1, 2), (2, 0)} and has two distinct associated reduced GBs:

{x32 − x2, x1 − x2 + 1}, {−x1 + x2 − 1, x31 − x1}.

The data set corresponding to the pink triangle (right) is S3 = {(0, 0), (1, 1), (2, 0)} and also

has two GBs:

{x32−x2, x1x22−x1x2 +x22−x2, x21−x1x2 +x1−x2}, {x32−x2,−x21 +x1x2−x1 +x2, x
3
1−x1}.

2

Figure 3.6: Configurations of sets of 3 points in Z2
3 corresponding to unique and non-unique

Gröbner bases. Points that are in configurations similar to the green triangle (left) have a
unique reduced Gröbner basis for any monomial order; the pink triangles (center and right)
have two distinct GBs.

Using Figure 3.6, we see that 3 points that are collinear or have two adjacent collinear points

have unique Gröbner bases, while other configurations result in 2 distinct ones. There are no

data sets of 3 points in Z2
3 that have 3 associated Gröbner bases (data not shown). Therefore

the upper bound in Theorem 3.3 is not sharp for p = 3, n = 2.

3.2.3. Larger Data Sets

In this section, we offer empirical observations for the number r of distinct reduced

Gröbner bases for data sets of m points, where 2 ≤ m ≤ 6. Furthermore, we state a

conjecture for decreasing r by adding points in so-called linked positions, using the geometric
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insights from m = 2, 3 points.

To generalize the observations from small data sets to larger data sets, we start with

configurations of two points and then consider changes in r as points are added. To generalize

the geometric pattern from small data sets to larger data sets, we start with configurations

of 2 points, then consider changes in the number of Gröbner bases as points are added.

Definition 3.1 Given a set S of points, we say that a point q is in a linked position with

respect to the points in S if q is adjacent to a point in S and has a minimal sum of distances

to the points in S. 2

Figure 3.7 shows the changes in the number of Gröbner bases when points are added at

either linked or non-linked positions.

Example 3.5 Consider the set S = {(0, 1), (1, 2)}, which has r = 2 Gröbner bases associ-

ated to it. We aim to add a point so that the augmented set has r = 1. There are four

points adjacent to the points in S, namely (0, 0), (0, 2), (1, 1) and (2, 2); see the green points

in the top panel of Figure 3.7. The sum of the distances between (0, 0) and the points in

S is
√

5 + 1; similarly for (2, 2). On the other hand, (0, 2) and (1, 1) both have a distance

sum of 2. So (0, 2) and (1, 1) are in linked positions with respect to S. Note that inclusion

of either (0, 2) or (1, 1) to S reduces r to 1, while inclusion of either of (0, 0) or (2, 2) keeps

r = 2. 2

Example 3.6 Consider the the set S = {(0, 1), (1, 1)}, which has a unique Gröbner basis.

There are five points adjacent to S, namely (0, 0), (0, 2), (1, 0), (1, 2), and (2, 1); see the

green points in the bottom panel of Figure 3.7. The first four points have a distance sum

of
√

2 + 1, while the last point (2, 1) has a distance sum of 3. So these four points are in

linked positions with respect to S and inclusion of any one of them keeps r = 1. On the

other hand, (2, 1) is not in linked position; nevertheless adding it to S results in a unique

Gröbner basis due to it being collinear to the points in S. 2
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Figure 3.7: The green square points are in linked position with respect to the blue points.
Green triangles are associated with unique GB, while pink triangles are associated with
non-unique GBs.

Based on the geometric characteristics in the above figures and results, we summarize

rules to aid in decreasing the number of candidate models as enumerated by the number of

Gröbner bases:

1. For two points, fewer changing coordinates in the data points will lead to fewer GBs.

In the simplest case, if only one coordinate changes, a unique model will be generated.

2. For three points, more points lying on horizontal or vertical edges will reduce the

number of GBs. A unique Gröbner basis arises when the data lie on a horizontal line,

a vertical line or form a right triangle.

3. In the process of adding points, to decrease or keep the number of minimal models, the

better candidates of new data points are those in linked positions with respect to an
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Figure 3.8: Point configurations based on the number of Gröbner bases for m = 2, . . . , 6.
The left two columns contain points that form green polygons and correspond to a unique
Gröbner basis. The right column contains the pink polygons corresponding to non-unique
GBs.

existing data set: this guarantees more points lying on horizontal or vertical edges.

By adding points in linked positions, data sets with multiple Gröbner bases can be trans-

formed into data sets with a unique one.

We end this discussion with a conjecture about linked positions.

Conjecture 3.2.1 Let S be a set of points, q is a point not in S, and T = S ∪ {q}. If q

is in a linked position and the convex hull of the points in T does not contain “holes” (i.e,

lattice points not in T ), then #GB(T ) ≤ #GB(S).
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3.3. Number of Gröbner Bases in Finite Fields

As we conclude the geometric characterization of input data sets, we know that a specific

data set structure is associated with a unique Gröbner basis, and adding the appropriate

points to data sets with non-unique Gröbner bases will help to reduce the number of GBs.

In this section, we will generate formulas of the number of Gröbner bases given two-point

data sets in Znp and three-point data sets in Znp based on the discussion of leading term ideals

in the finite field.

3.3.1. Formula of Two Points

The following formula is proposed for the number of GBs for data sets of 2 points.

Theorem 3.2 Let P = (p1, . . . , pn), Q = (q1, . . . , qn) ⊂ Znp where P 6= Q, and let I ⊂

Zp[x1, . . . , xn] be the ideal of the points P,Q. The number of distinct reduced Gröbner bases

for I is given by

NGB(p, n, 2) =
∑
pi 6=qi
i=1,...,n

1 (3.1)

Proof: Let V = {P,Q} ⊂ Znp with P = (p1, . . . , pn), Q = (q1, . . . , qn). Let I ⊂

Zp[x1, . . . , xn] be the ideal of the points in V . By Theorem 2.2, the number of elements

of any set of standard monomials for I is |V | = 2. Since sets of standard monomi-

als must be closed under division, the only option for such a set is {1, xi} for some i =

1, . . . , n. So the possible associated minimally generated leading term ideals are of the form

〈x1, . . . , xi−1, x2i , xi+1, . . . , xn〉. We consider the number of leading term ideals in regards to

the number of coordinate changes between the points.

If P and Q only have one different coordinate, say p1 6= q1, then the only possible minimal

generating set for the leading term ideal of I is {x21, x2, . . . , xn}. If P , Q have two different
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coordinates, say pi 6= qi for i = 1, 2, then the possible minimal generating sets for the leading

term ideal of I are {x21, x2, . . . , xn} when x1 ≺ x2 and {x1, x22, x3, . . . , xn} when x2 ≺ x1.

Increasing the number of coordinate changes will add another leading term ideal. In general,

if pi 6= qi for i = 1, . . . , k where k ≤ n, then the possible minimal generating sets for the

leading term ideal of I are as follows:

1. {x21, x2, . . . , xn} when x1 is the smallest variable in the monomial order among x1, . . . , xk

2. {x1, x22, x3, . . . , xn} when x2 is smallest among x1, . . . , xk

...

k. {x1, . . . , xk−1, x2k, xk+1, . . . , xn} when xk is smallest among x1, . . . , xk.

2

Lemma 3.1 The maximum number of distinct reduced Gröbner bases for an ideal of two

points in Znp is NGB(p, n, 2) ≤ n.

With different choices of smallest coordinate, there are up to n different sets of standard

monomials, each corresponding to a distinct reduced Gröbner basis. So, there are up to n

reduced Gröbner bases, with the maximum achieved by two points with no coordinates in

common.

In applications, modelling is often driven by data. So geometric descriptions of data sets

can reveal essential features in the underlying network. We illustrate the above results by

considering different configurations of points. We begin with data over Z2.

3.3.2. Formula for Three Points

Theorem 3.3 The number of distinct reduced Gröbner bases for ideals of 3 points in Znp is

NGB(p, n, 3) ≤


n(n−1)

2
for p = 2

n(n+1)
2

for p ≥ 3.

(3.2)
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Proof: We begin by considering the Boolean base field. By Theorem 2.2, the form of a set of

standard monomials for an ideal of 3 points is {1, xi, xj} for xi 6= xj. Considering the choice

of xi and xj, there are up to n(n−1)
2

different standard monomial sets, each corresponding to

a distinct reduced Gröbner basis by Theorem 3.5.

For a base field with p > 2, the two possible forms of standard monomial sets are

{1, xi, xj} for xi 6= xj, and {1, xi, x2i }. As we showed above, there are up to n(n−1)
2

distinct

reduced Gröbner bases corresponding to {1, xi, xj}. Further, the maximum number for the

standard monomial form {1, xi, x2i } is n. As the two standard monomial forms can both be

associated to the same data set, the upper bound for a non-Boolean field is n(n−1)
2

+n = n(n+1)
2

.

2

Example 3.7 Let p = 2 and n = 2. Then NGB(2, 2, 3) ≤ 1; that is, all ideals of 3 points in

Z2
2 have a unique reduced Gröbner basis, which is corroborated by Theorem 3.3 and the fact

that ideals of a single point have only one distinct Gröbner basis for any monomial order.

2

Unlike the bound for 2 points, there are cases of sets of 3 points for which the upper

bound is not sharp. For example, when n = 4, the upper bound is NGB(2, 4, 3) ≤ 6;

however, the maximum number is 5, which we tested exhaustively (data not shown).

3.3.3. Upper Bound for the Number of Gröbner Bases

The following results provide an upper bound for the number of reduced Gröbner bases

for an ideal over any field. In [5, 6, 35], the upper bound of the number of Gröbner bases

is not applicable for a large number of coordinates with respect to the computational cost

estimation. In this case, a tighter upper bound should be provided before GRN model

selection and experimental design.
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Lemma 3.2 ([5]) The number of vertices of a lattice polytope P ⊂ Rn is #vert(P ) =

O
(
vol(P )(n−1)/(n+1)

)
.

Theorem 3.4 ([6, 35]) Let I be an ideal such that dimKR/I = m. Let Λ(I) be the set of

standard monomial sets for I over all monomial orders. Then the number of distinct reduced

Gröbner bases of I is in bijection with the number of vertices of the staircase polytope of I;

that is, #GBs = O
(
m2nn−1

n+1

)
.

Now we summarize the bijective correspondences for the number of reduced Gröbner bases

for an ideal of points.

Theorem 3.5 Let I be an ideal. There is a one-to-one correspondence among the following:

1. distinct reduced Gröbner bases of I

2. leading term ideals of I

3. sets of standard monomials for I

4. vertices of the staircase polytope of I.

Proof: Equivalence 1 ⇐⇒ 2 is a result in [11]; 2 ⇐⇒ 3 is by construction of standard

monomials; and 1 ⇐⇒ 4 was proved in [35] for ideals of points and in [6] for other zero-

dimensional ideals. 2

As the authors in [35] showed that the sum of the coordinates of a staircase of m points

(see the left panel in Figure 3.9) corresponds to a vertex of a certain polytope, we must

count the number of ways to place m points on the lattice.

Suppose r blue points have been placed (see Figure 3.10). We wish to count the number of

ways to place the next point. The red point violates the staircase property. The only choice

is green or black point. Note that the black point maximizes the sum of the coordinates.

We now focus on the general setting of subsets of any size m in Znp , for any p and any n.

In Theorem 3.4, the stated upper bound for the number of Gröbner bases for an ideal

I of m points in Kn is m2nn−1
n+1 , where K is any field; furthermore the number of Gröbner
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bases coincides with the number of vertices of the staircase polytope of I. When the base

field is finite, however, this bound becomes unnecessarily large for even small m. Unlike in

characteristic-0 fields, all coordinates in positive-characteristic fields are bounded above by p;

for example, see Figure 3.9. We will use the fact that staircases in a finite field are contained

in a hypercube of volume pn to modify the bound. The only part of the construction of the

staircase polytope that is affected by the characteristic is the maximum value of any vertex.

As a vertex is a vector sum
∑
λ of points in a staircase λ, the modification comes from

placing staircase points aimed to maximize the sum.

Figure 3.9: The staircase λ ⊂ R2 (left)
has

∑
λ = (0, 6) while the staircase λ ⊂

Z2
3 (right) has

∑
λ = (1, 3).

Figure 3.10: The staircase λ ⊂ Z2
3 with a

red square point (left) has
∑
λ = (3, 3)

while the staircase λ ⊂ Z2
3 with a green

square point (right) has
∑
λ = (2, 4).

Consider any staircase λ of 5 elements. In the following discussion, we will consider the

placement of points so that the vector sum is maximized. We proceed in a “greedy” manner

by maximizing a fixed coordinate. Suppose four (blue) points have already been placed so

as to maximize the value of the second coordinate of
∑
λ; see Figure 3.10. Placing the

green point (1, 1) contributes 1 to the running sum, that is,
∑m

j=1 λj2 = 4, while placing the

redpoint (2, 0) keeps the sum of the coordinate unchanged. In fact, to maximize the sum

of the second coordinate, choose any point whose second coordinate is largest among the

available positions, so that the configuration continues to be a staircase. For the kth point,

the coordinate of ej is (k − 1) mod p.

M =

(
p(p− 1)

2
bm/pc+

(m mod p)(m mod p− 1)

2

)
.

Next we state a result about data sets and their complements.
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Lemma 3.3 ([14]) Let I be the ideal of input points S, and let Ic be the ideal of the com-

plement Fn \ S of S. Then we have SM≺(I) = SM≺(Ic) and LT≺(I) = LT≺(Ic) for a given

monomial order ≺. Hence, we have #GB(S) = #GB(Fn \ S).

Theorem 3.6 The number of distinct reduced Gröbner bases for an ideal of m points in Znp

is

NGB(p, n,m) =



O
(

(p2 bm/pc+ (m mod p)2)
n−1
n+1

)
: 0 < m ≤ bpn/2c

O
(

(p2 b(pn −m)/pc+ (−m mod p)2)
nn−1

n+1

)
: bpn/2c ≤ m < pn

1 : m = 0, pn.

(3.3)

Proof: Let I be an ideal of m points in Znp . Recall that the number of Gröbner bases of

I is bijective with the number of vertices of the staircase polytope P of I by Theorem 3.5.

The cases m = 0, pn are trivial. So we proceed with 0 < m ≤ bpn/2c.

As P is the convex hull of the points
∑
λ where λ is a staircase corresponding to the

exponent vectors of the standard monomial sets of I, we will show that the staircase polytope

of I is contained in a larger convex body whose volume we can compute easily.

Let λ = {λ1, . . . , λm}. Then
∑
λ =

∑m
i=1 λi =

∑m
i=1

(∑m
j=1 λji

)
ei where λji denotes the

i-th coordinate of the j-th point and ei is the standard basis vector. Note that the maximum

sum of the i-th coordinate is

max
m∑
j=1

λji = (1 + . . .+ p− 1)bm/pc︸ ︷︷ ︸
pbm/pc points

+ (1 + . . .+m mod p− 1)︸ ︷︷ ︸
remaining m mod p points

=
p(p− 1)

2
bm/pc+

(m mod p)(m mod p− 1)

2

which we denoted by M . So the staircase polytope P ⊂ Rn is contained in the hypercube

[0,M ]n, which has volume Mn. Therefore vol(P) ≤ Mn. By Lemma 3.2 and Theorem 3.4,
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we have that

NGB(p, n,m) = O
(
vol(P)(n−1)/(n+1)

)
= O

(
(Mn)

n−1
n+1

)
= O

((
p2 bm/pc+ (m mod p)2

)nn−1
n+1

)
. (3.4)

For the final case when m ≥ bpn/2c, the number of Gröbner bases can be computed by

plugging pn −m into the second argument of the above bound, according to Theorem 3.3.

2

It is straightforward to show that our bound grows much slower than O
(
m2nn−1

n+1

)
re-

ported in [35], which we have also verified computationally. In Appendix A, there is a table

of selected numerical results of the new upper bound in comparison to the values of the

original upper bound in [35]. Figure 3.11 provides a comparison for selected cases among

p = 2, 3 and n = 2, 3, 4.

The values from Equation 3.3 are closer to the actual number of GBs according to The-

orem 3.3, which makes our bound retain the symmetric nature of the maximum number of

Gröbner bases for ideals of points in Znp . For example, for p = 2, n = 4, and m = 5 in

Figure 3.11, the original bound is over 2000, while the modified bound is in the same order

of magnitude as the actual maximum number of GBs.

The significance of this result is that Equation 3.3 provides a more accurate representation

of the maximum number of models associated to a data sets, which may aid in experimental

design. It is straightforward to show that our bound grows much slower than the bound

O
(
m2nn−1

n+1

)
reported in [35], which we have also verified computationally. Below is a table

of selected numerical results of the new upper bound in comparison to the values of the

original upper bound in [35].
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p = 2, n = 2. p = 3, n = 2.

p = 2, n = 3. p = 2, n = 4.

Figure 3.11: Plots comparing the maximum number of Gröbner bases. The caption in each
plot indicates the values of p and n for Znp . In each case, all subsets of size m are computed,
where m = 0 . . . pn, and listed on the horizontal axis. The vertical axis is the maximum
number of GBs for a set of size m. The blue solid line with dots shows the actual maximum
number of GBs. The yellow dotted line with triangles is the original upper bound given by
Theorem 3.4, where the red dashed line with squares is the modified upper bound given by
Equation 3.3.
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# of points max # of GBs original bound modified bound

1 1 1 1

2 4 27.86 27.86

3 5 195.07 47.59

4 6 776.05 147.03

5 13 2264.94 195.07

6 12 5434.08 389.08

7 13 11388.61 471.48

8 9 21618.82 389.08

Table 3.1: For cases p = 2, n = 4 and m = 1, . . . , 8, we compare the actual maximum
number of GBs with the original bound [35] and the modified bound in Theorem 3.6.
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Chapter 4

MODEL SELECTION

The work of ECs theorems in this Chapter is under the publish preparation.

4.1. Introduction

As the model space can be large [28], this creates ambiguity in predictions. We can

eliminate ambiguity by reducing the number of GBs. While our ultimate goal is to identify

data sets with a unique GB [14], a new method of deleting redundant information is motivated

by Example 2.12. By checking if an unknown data set is the linear shift of a known data

set, the information of the model type and standard monomial basis will be found without

additional computational cost. For discovering the relationship between data sets, we started

with a linear shift, which was first defined in [26]. Considering the model selection process in

[4], it is essential to reduce the search space of numerous input data sets that are associated

with different distinct network models.

The following contributions are made in the process. First, all possible data sets are

calculated with a fixed number of variables (n) and the number of states (p). As theorems

and properties of the relationship between data set were proved in previous work [26, 39, 14]

and this dissertation, all equivalence classes (EC) are generated by applying linear shifts to

data sets using Python. Two important properties were found:

• relationship between data set and complement data set

• relationship between the new data set and original data set by adding points, especially

to help to reduce the number of GBs.

Then, to better characterize and compare different equivalence classes to enable the model

selection in each EC, two new definitions are created:
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• Data set distance based on the Euclidean distance of data set

• Representative of each equivalence class based on the data set distance defined.

Defining a representative is essential for model selection as it reduces the search space to a

few data sets instead of the numerous data sets in
(Fn

m

)
without picking up representatives.

Furthermore, the concise comparison, that uses representative data sets of different models

can help researchers get the most valuable predictive model.

Lastly, a specific geometric configuration called a staircase, which is associated with

unique Gröbner bases, was studied with algebraic geometry methods. An important finding

to help model selection is that if a staircase exists in one EC, it is a representative and the

only staircase in that EC. We can directly pick a staircase as a representative and generate

other data sets in the same EC by linear shift. Then instead of calculating GBs one by

one for all of the data sets in the EC, the other GBs can be generated, applying linear shift

mapping function to the GB of the representative. All the data sets in this EC are associated

with unique GB.

Note that linear shift is a bijection and we prove that it is an equivalence relation. The

properties and definitions were implemented into the Python package in Appendix A. This

package contains many functions such as making partitions of data sets and finding a set’s

EC and incorporates parallel computing.

4.2. Model Selection with Complement Data Sets

In the process of model selection, with limitation of computing resources, it is a better

choice to compute complement data sets, if original data sets have too many points. The

next theorem shows that if two sets are in the same equivalence class, then so are their

complements.

Theorem 4.1 If S1
ψ∼ S2, then there exists a linear shift φ such that the complement data

set of Si can linearly shift the complement data set of Sj, S
c
1

φ∼ Sc2.
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Proof: Recall that linear shifts are bijective, which means all linear shift functions are

one-to-one mappings from Fn onto Fn.

Suppose S1
ψ∼ S2 and |S1| = |S2| = m. As ψ : S1 → S2 is a bijection and S1, S2 ⊆ Fn, ψ

can be extended as a bijection on Fn. As Sc1, S
c
2 are also contained in Fn, the restriction of

ψ to Sc1 is a bijection from Sc1 onto Sc2. Hence Sc1
ψ|Sc

1∼ Sc2 and thus Sc1 and Sc2 are in the same

equivalence class, φ = ψ|Sc
1
. 2

Theorem 4.2 Let S = {S1, . . . Sr} be an equivalence class of sets of m points. Then

{Sc1, . . . Scr} is an equivalence class of sets of pn −m points, denoted Sc.

Proof: Suppose S = {S1, . . . Sr} is an equivalence class. By construction, two properties

hold: 1) for all Si, Sj ∈ S, we have that Si
φ∼ Sj; and 2) if Si ∈ S and Si

φ∼ T , then T ∈ S.

We show that 1) and 2) hold for Sc = {Sc1, . . . Scr}.

1) Let Sci 6= Scj ∈ {Sc1, . . . , Scr}. We know Si, Sj ∈ S, and so Si ∼ Sj. By Theorem 4.1,

Scj ∼ Scj .

2) If Sci 6∈
(Fn

m

)
, but there is some Scj ∼ Sci , it means that Si ∼ Sj by Theorem 4.1. Then

as S is an equivalence class, Sj ∈ S. So Si ∼ Sk,∀Sk ∈ S. By construction of S and Sc, for

Si ∈ S, then Sci ∈ Sc. 2

We get the following results.

Theorem 4.3 Let S be an equivalence class for a fixed number of points. Then |S| = |Sc|.

Proof: Suppose |S| > |Sc|. Then there exists Si ∈ S such that its complement set Sci 6∈ Sc.

It follows that Sci 6∼ Scj ,∀Scj ∈ Sc. For Si ∼ Sj,∀Sj ∈ S and based on Theorem 4.1, we know

that Sci ∼ Scj ,∀Scj ∈ Sc. So |S| 6> |Sc|. Similarly we find that |S| 6< |Sc|. Hence, |S| = |Sc|.

2

Theorem 4.3 indicates that the number of data sets in an equivalence class and the comple-

ment equivalence class is the same. Let us step back to the set of ECs: will the number of

all ECs and number of all complement ECs be the same?
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Theorem 4.4 Let S = {S1, . . . , Sk1} be the collection of equivalence classes for sets with

m points, and T = {T1, . . . , Tk2} the collection of equivalence classes for sets with pn − m

points. Then k1 = k2.

Proof: Suppose S = {S1, . . . , Sk1} is the collection of equivalence classes for sets with m

points, and T = {T1, . . . , Tk2} is the collection of equivalence classes for sets with pn − m

points. The total number of subsets of size m is given by
(
pn

m

)
. As S partitions the collection

of all subsets of size m, (
pn

m

)
= |S1|+ . . .+ |Sk1|.

Likewise (
pn

pn −m

)
= |T1|+ . . .+ |Tk2|.

From Theorems 4.2 and 4.3, we know that SCi is an equivalence class of sets of size pn −m

and |Si| = |SCi | for each i. So SCi = Tj for some index j and |Si| = |Tj|. As
(
pn

m

)
=
(

pn

pn−m

)
,

then it follows that k1 = k2.

2

Figure 4.1: The number of equivalence classes for a fixed number of points. The x-axis is the
number m of points for 4 combinations of p and n, and the y-axis is the log of the number
of ECs for a data set with m points.
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The last theorem says that the number of equivalence classes is symmetric with respect

to increasing set size (number of points). From Figure 4.1, we know in four cases, the data

set and its complement data set will have the same number of ECs. In [14] it was shown

that a set and its complement have the same number of leading term ideals and the standard

monomial basis for I(Si) with respect to a fixed monomial order ≺ is the “complement” of the

leading term ideal for I(SCi ). So the two sets have the same number of standard monomial

bases and the number of equivalence classes for sets and their complements correspond.

4.3. Model Selection by Representatives

From the properties of the linear shift in Section 4.1, the data sets can be partitioned to

different equivalence classes. In each equivalence class, implementing model selection using

representatives is meaningful as representatives are associated with the most concise model

bases. As shown in Figure 4.2, we change the search of all sets in the finite field, which

contains |
(F2

3

)
| = 84 data sets, to 6 representatives.

Figure 4.2: Summary of data sets partition with three states, two coordinates, three points.

Definition 4.1 Let S ⊂ Fn. Then the set distance of S, denoted D(S, 0), is the sum of the

Euclidean distances of all points in S to the origin.

Definition 4.2 The data set SR is a representative for its equivalence class if SR has a

minimum set distance.
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Example 4.1 For p = 2, n = 3 and m = 3, there are 8 data sets associate with the same

standard monomial set SM1 = {{1, x3, x2}}. Based on Definition 4.2, the data set, which

has the smallest set distance, is S1 = {(0, 0, 0), (0, 0, 1), (0, 1, 0)}. S1 is a linear shift of other

7 data sets associate with SM1. For example, S2 = {(0, 0, 0), (0, 0, 1), (0, 1, 1)} can linearly

shift to S1 with Φ = (x, x, x+ 1). 2

From Definitions 4.1 and 4.2, we first set p to be a large prime number and fix the number of

points m to 2 and let the number of variables change from n = 2 to k to get the properties of

the representative with increasing number of variables. Our discussion below will show how

to construct representatives and count number of representatives for the case of two points.

Formula 4.1 For any 2 points {(xi11, . . . , xin1), (xi12, . . . , xin2)} ⊂ F2 with n variables and

number of statesn p ≥ 2, the total number of representatives is

#Representatives = 2n − 1.

Proof:

1. When n = 1, the representative, which has smallest set distance, is SR = {(0), (1)}.

So the number of representatives is 1.

2. When n = 2, we should consider the representative SR = {PR
1 , P

R
2 } that is a linear

shift from data set Si = {(xi11, xi21), (xi12, xi22)} ⊆ Fn and has minimal set distance. Let

us start with constructing mapping functions of the origin point (0, 0) = PR
1 (minimal

distance point) to one point (xi11, x
i
21) ∈ Si:

φk(0) = ak · 0 + bk = bk = xik1,∀k ∈ {1, 2}

So, we get the value of one parameter in mapping functions, b1 = xi11 and b2 = xi12.

We denote the other point in the representative set as PR
2 = (xR12, x

R
22). Then (xi12, x

i
22)
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is a linear shift from the representative’s point PR
2 :

φk(x
R
k2) = akx

R
k2 + bk = akx

R
k2 + xik1 = xik2,∀k ∈ {1, 2}.

Then by substituting xik1 for bk from first step results, we can get the expression of ak

with given data set:

akx
R
k2 = xik2 − xik1,∀k ∈ {1, 2}.

From the definition of linear shift, we know that a1 6= 0, a2 6= 0. So three cases exist:

(a) xi12 = xi11 and xi22 6= xi21: we will have xR12 = 0 and xR22 6= 0 for a1 6= 0, a2 6= 0.

Hence the data set can only be shifted to the representative SR = {(0, 0), (0, 1)},

as (0, 1) has the smallest distance.

(b) xi12 6= xi11 and xi22 = x21: we will have xR12 6= 0 and xR22 = 0 for a1 6= 0, a2 6= 0.

Hence SR = {(0, 0), (1, 0)}, as (1, 0) has the smallest distance.

(c) xi22 6= xi21 and xi12 6= xi11: we will have xR12 6= 0 and xR22 6= 0 for a1 6= 0, a2 6= 0.

Hence SR = {(0, 0), (1, 1)}, as (1, 1) has the smallest distance.

So, for any data sets with 2 coordinates, it can linearly shift to one of the repre-

sentatives: {(0, 0), (0, 1)}, {(0, 0), (1, 0)}, {(0, 0), (1, 1)}. We now know the number of

representatives is 3.

3. When n = 3, for 2 points Si = {(xi11, xi21, xi31), (xi12, xi22, xi32)} with large enough number

of states p, do the same process as with 2 variables: first, shift the origin (xR11, x
R
21, x

R
31) =

(0, 0, 0) ∈ SR to (xi11, x
i
21, x

i
31)

φk(0) = ak · 0 + bk = bk = xik1,∀k ∈ {1, 2, 3}.

So we know the values of b1, b2 and b3. Then apply the following linear shift mapping

functions to (xi12, x
i
22, x

i
32):

φk(x
R
k2) = akx

R
k2 + bk = akx

R
k2 + xik1 = xik2, ∀k ∈ {1, 2, 3}
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We get equations for the representative point: akx
R
k2 = xik2 − xik1, ∀k ∈ {1, 2, 3}.

The total number of representatives is the number of combinations of each coordi-

nate’s equality of two points in the given data set. More specifically, if xik1 6= xik2,

xRk2 = 1 then ak = xik2 − xik1. If xik1 = xik2, x
R
k2 = 0 then ak can be any non-

zero number. Considering all combinations for n coordinates, the maximum number

of equal coordinates of given data sets is n − 1 since we cannot make all coordi-

nates equal for two different points. For each coordinate the representative value can

be 0 or 1 and we should eliminate the case (0, 0, 0) as it’s already a point in SR.

Then the number of all possible representatives is 23 − 1. The representative data

sets are {(0, 0, 0), (1, 0, 0)}, {(0, 0, 0), (0, 1, 0)}, {(0, 0, 0), (0, 0, 1)}, {(0, 0, 0), (1, 1, 0)},

{(0, 0, 0), (1, 0, 1)}, {(0, 0, 0), (0, 1, 1)}, {(0, 0, 0), (1, 1, 1)}.

4. When n > 3, with the same process as for n = 3, the number of representatives 2n− 1

can be counted by considering all combinations of coordinate values to be 0 or 1. We

can always construct a mapping function from the origin PR
1 = (0, . . . , 0) to one point

in data set Si ∈ F with the mapping functions parameters:

bk = xik1

ak =


0 when xik1 = xik2

xik2 − xik1 when xik1 6= xik2.

(4.1)

Here, k = 1, . . . , n. For PR
2 = (PR

11, . . . , P
R
n2), P

R
k2 = 1 if xik1 6= xik2, else PR

k2 = 0 for

k = 1, . . . , n.

2

From the above discussion of choosing representatives for different data sets with varying

numbers of variables, we know in each case for n,m, p, a data set will be a (linear shift of a)

representative. These results motivated us to distinguish different representatives not only
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from the input data set’s structure (as the previous discussion) but also from the monomial

basis and leading terms of the inputs. As researchers discussed before (see [14]), a staircase

is an essential structure as regards to standard monomials bases, which will always return a

unique Gröbner basis.

4.4. Model Selection by Staircases

As we already defined the representative in each EC, the relationship between represen-

tative and unique data structure: the staircase was studied to enable the model selection on

unique GB only by picking staircase representatives.

Theorem 4.5 ([26]) If S1, S2 ⊆ Fn are both staircases and S1 ∼ S2, then S1 = S2.

Example 4.2 As staircases are all associated with unique GBs, are they linear shifts of

each other? No. In Figure 4.3, where n = 2, m = 3 and p = 3, the staircase with black

points {(0, 0), (0, 1), (0, 2)} on the left cannot be shifted to the staircase with black points

{(0, 0), (1, 0), (2, 0)} on the right, for there is no map for the first coordinate with single value

0 on the left to the three different values of the first coordinate in the data set on the right

plot. 2

Figure 4.3: The black points {(0, 0), (0, 1), (0, 2)} on the left cannot be shifted to the black
points {(0, 0), (1, 0), (2, 0)} on the right.

Lemma 4.1 If S1 6= S2 are two staircases in
(Fn

m

)
, then for any term order LT≺(I(S1)) 6=

LT≺(I(S2)) and they have different standard monomial bases. There is no mapping function

Φ that can linear shift S1 to S2 or S2 to S1.
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Proof: If there exists two staircases Si, Sj with same standard monomials and same leading

terms, then there exists a point u ∈ Si and u 6∈ Sj. There are two cases:

1. u > P,∀P ∈ Sj. Suppose the number of points in Si is |Si| ≥ |Sl| + 1, where Sl =

{w ∈ Si : w < u}. As Si is a staircase, Sl will contain all the points below u. But

for u > P,∀P ∈ Sj, we have that |Sj| ≤ |Sl| < |Si| So, |Si| 6= |Sj|, contradicting the

assumption that Si and Sj have the same number of points.

2. u ≤ P, ∃P ∈ Sj. If u 6∈ Sj, then Sj is not a staircase.

As both cases lead to contradictions, different staircases have different leading terms and

standard monomials. By the proof of case 1 and case 2, S1 and S2 have different standard

monomial bases and LT≺(I(S1)) 6= LT≺(I(S2)) as S1 and S2 are different staircases. But if

S1 ∼ S2 (there exists a linear shift between S1 and S2), we know LT≺(I(S1)) = LT≺(I(S2)

by Theorem 2.3. So, there is no linear shift between staircases. 2

Theorem 4.6 Any equivalence class will contain at most one staircase.

Proof: Based on Lemma 4.1, we know that a staircase cannot be linearly shifted to another

staircase. So any equivalence class will contain at most one staircase. 2

Theorem 4.7 If an equivalence class contains a staircase, then this staircase is the repre-

sentative.

Proof: Suppose S1 = {(x111, . . . , x1n1), . . . , (x11m, . . . , x1nm)} is a staircase of m points and

S2 = {(x211, . . . , x2n1), . . . , (x21m, . . . , x2nm)} is in the same equivalence class. Then the set

distance of S2 to the origin is as follows:
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D(S2, 0) =
m∑
t=1

√
(x21t)

2 + . . .+ (x2nt)
2 ≥

m∑
t=1

√
(x21t − x21t1)2 + . . .+ (x2nt − x2nt1)2

≥
m∑
t=1

√
(a1x11t + b1 − x21t1)2 + . . .+ (anx1nt + bn − x2nt1)2

≥
m∑
t=1

√
(a1x11t + b1 − b1)2 + . . .+ (anx1nt + bn − bn)2

≥
m∑
t=1

√
(a1x11t)

2 + . . .+ (anx1nt)
2

> D(S1, 0)

Here, ai,bi are the linear shift complements from staircase S1 to S2, (x21t1 , . . . , x
2
nt1

) =

(b1, . . . , bn) is the shifted origin point in S2. We know the distance of S1 to origin will

always be smaller than S2 to origin for ai 6= 0 for i = 1, . . . ,m. So, we know that S1 is

the representative in its equivalence class and we already know from Theorem 4.6 there is

only one staircase in each equivalence class. Then we have that S1 as a staircase is the

representative. 2

Theorem 4.8 For any non-staircase representative SR1 ⊂ Fn, there is a staircase represen-

tative Ss ⊂ Fn such that: D(Ss, 0) < D(SR1 , 0).

Proof: For any non-staircase representative SR1 , there exists a staircase data set, denoted

Ss, with a smaller distance to origin based on the Definition 2.11. Based on Theorem 4.7,

Ss is the representative of an EC. So, Ss is a staircase representative. 2

Example 4.3 For any non-staircase representative SRi
, such as the triangle blue points

{(0, 0), (1, 0), (3, 0)} or {(0, 0), (1, 1), (2, 2)} in Figure 4.4 below, we can find a staircase set

SRj
(circle green points) {(0, 0), (1, 0), (2, 0)} with D(SRi

, 0) > D(SRj
, 0). From Theorem

4.7 we know if SRj
is a staircase in its EC, then it will be a representative. For any non-

staircase representative set SRi
we can find a staircase SRj

with a smaller set distance which
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is a representative in a different EC. So, for any non-staircase representative there exists a

staircase representative that has a smaller set distance than the non-staircase representative.

2

(0,0) (1,0) (2,0) (3,0) (0,0) (1,0)

(1,1)

(2,0)

(2,2)

Figure 4.4: Staircase representatives and non-staircase representatives. The set with green
circle points is a staircase and the set with blue triangle points is not a staircase.

However if a representative has maximum distance among all representatives, it does not

necessarily have the most number of leading term ideals, as the next example illustrates.

Example 4.4 S1 = {(0, 0, 0), (1, 1, 1), (2, 2, 2)} ⊆ Z3
3 has maximum distance and has 3

leading term ideals. Yet there exist sets like S2 = {(0, 0, 0), (0, 1, 1), (1, 0, 2)} with D(S1, 0) >

D(S2, 0) in Z3
3 with 3 points.

GB1 = {x33 − x3, x23 + x2 + x3, x
2
3 + x1 − x3}

GB2 = {x23 + x2 + x3, x2x3 − x2, x22 − x2, x1 − x2 + x3}

GB3 = {x1 − x2 + x3, x
2
2 − x2, x1x2, x21 − x1}

GB4 = {x23 + x1 − x3, x2 − x1 − x3, x1x3 + x1, x
2
1 − x1}

Here, S2 has 4 reduced Gröbner bases and 4 leading term ideals. 2
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Chapter 5

DoEMS: A Website Linking Design of Experiments and Model Selection

The website is publicly available at https://s2.smu.edu/doems.

5.1. Introduction

For research on algebraic geometry, there are many online tools are available, e.g. GAP,

Macaulay2 and Sage. Software systems such as Macaulay2 and Sage, have implemented

advanced algorithms, e.g. FGLM, based on the development of algorithms for computing

Gröbner bases. Researchers can use advanced computing tools to calculate model bases

given data sets. However, calculating a Gröbner basis is typically a very time-consuming

process for large polynomial systems. Till now no website can help researchers directly query

Gröbner bases based on data alone.

As an implementation of our research results described in Chapter 3 and Chapter 4,

we designed and developed a computational website DoEMS [50], to enable researchers

to efficiently query GRN discrete data sets and their associated standard monomial bases,

leading term ideals and Gröbner bases. From Chapter 4, we know the properties of the linear

shift, ECs and representatives defined. DoEMS will also provide extra information about

these properties. Meanwhile, we created a Python3 package and implemented a database

that contains information about ECs and representatives in many n,m, p cases. By querying

with different entries, DoEMS will return various models and data summary reports.
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5.2. Workflow of DoEMS

Figure 5.1: Flow chart of computational paths with DoEMS.

As the above flow chart shows, researchers can use the database as a fast method to get

information on type of models and number of models given input data. More specifically,

with different inputs, scientists are able get information about ECs and their representatives.

1. As the left path in the flow chart shows, Figure 5.1, some researchers may want to

discover the distribution of data sets with given n,m, p. Then from our database, we

can easily get partition (ECs) with different data sets associate with same SM and LT.

For example, given p = 3, n = 2 and m = 3, Table 5.1 provides a summary of data

set partitions. Table 5.1 is a glance of the number of GBs in the results report, which

shows that there are 6 ECs.
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# datasets # classes max( # model basis) min( # model basis)

84 6 2 1

Table 5.1: Statistical Summary Table.

With model bases appear in Table 5.2, researchers can continue search on DoEMS to

find more models’ information.

# model basis # datasets model basis classlabel

1 3 {{1, x2, x22}} p3 n2 m3 4

1 3 {{1, x1, x21}} p3 n2 m3 5

1 36 {{1, x2, x1}} p3 n2 m3 3

2 6 {{1, x2, x22}, {1, x1, x21}} p3 n2 m3 2

2 18 {{1, x2, x22}, {1, x2, x1}} p3 n2 m3 0

2 18 {{1, x2, x1}, {1, x1, x21}} p3 n2 m3 1

Table 5.2: Equivalence Classes Summary Table.

2. To make experimental design (the middle flow in Figure 5.1), usually researchers have

ideal LT, model bases or GB for network model and want to recovering the data sets

associate to these models. DoEMS is powerful in recovering the data sets or ECs with

given model bases. From Theorem 4.1, we know the same leading term of GB models

may return data sets that cannot be linear shifted to each other. So the benefit of

DoEMS database is that it contains the representatives of each model basis. By fast

comparison of representatives’ leading term ideals, researchers can quickly get all ECs

that contain all data sets which have the same leading term ideal and the same model

bases. A better experimental design will contain representatives associate to given

model bases. For example, with n = 3,m = 3 and p = 2, DoEMS generates the

representative of each equivalence class in Table 5.3.
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# datasets representative dataset model basis

8 {(0, 0, 0), (0, 0, 1), (1, 0, 0)} {{1, x3, x1}}
8 {(0, 0, 0), (0, 1, 0), (1, 0, 1)} {{1, x3, x2}, {1, x2, x1}}
8 {(0, 0, 0), (1, 0, 1), (1, 1, 0)} {{1, x3, x2}, {1, x3, x1}, {1, x2, x1}}
8 {(0, 0, 0), (0, 1, 1), (1, 0, 0)} {{1, x3, x1}, {1, x2, x1}}
8 {(0, 0, 0), (0, 1, 0), (1, 0, 0)} {{1, x2, x1}}
8 {(0, 0, 0), (0, 0, 1), (1, 1, 0)} {{1, x3, x2}, {1, x3, x1}}
8 {(0, 0, 0), (0, 0, 1), (0, 1, 0)} {{1, x3, x2}}

Table 5.3: Representatives Summary Table.

3. DoEMS is a very useful tool to search the model basis given data sets. Given m point

data sets in Fn, it is a time-consuming work to get all models. But by Theorem 4.1,

we know data sets in the same EC will have the same standard monomial sets and the

same leading term ideals. Researchers can quickly find the model basis of a given data

set by checking if the data set is a linear shift of representatives in Table 5.3 in the

database, which makes the computation cost as low as O(m).

5.3. Data Partition and Equivalence Classes

First, to construct the SQL database, we need to make data partition based on the linear

shift properties in Section 2.3. With the linear shift relationship, data sets in the same

equivalence class are guaranteed to be associated with the same standard monomials.

Algorithm 5.1 (Generate All ECs)

Description: generate all equivalence classes of a specific finite field Fn with m points.

Input: number of states: p, number of coordinates: n and number of points: m.

Output: ECs in the given case.

Generate all possible data sets S =
(Fn

m

)
with given p, n and m.

Select one data set P1 ∈ S.

Initialize set E = [P1] and set Srest = S \ P1.
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Initialize a list L = [ ] to store all mapping functions for one coordinate.

for a in [1, . . . , p− 1]

for b in [0, . . . , p− 1]

append function parameters list [a, b] to L.

LS = [[[a1, b1], . . . , [an, bn]] for 0 < ai < p and 0 ≤ bi < p, i = 1, . . . , n].

# Generate list of all combination of function parameters for n coordinates.

while P1 6= ∅
for fi in LS = [f1, . . . , fk].

apply fi to P1 to generate new data set P ∗.

append P ∗ to equivalence class list E and remove P ∗ from Srest.

output E to file.

set P1 to first element in Srest and set E = [P1].

Example 5.1 In Figure 5.2, the Boolean network with three coordinates and 3 points will

be partitioned to 7 equally sized equivalence classes (all have 8 data sets). These ECs have

a different number of GBs.

p = 2, n = 3, m = 3. p = 2, n = 3, m = 3.

Figure 5.2: Graphs of quivalence classes with p = 2, n = 3 and m = 3.

In Figure 5.3, the 3-state network with 2 coordinates and 3-point data sets will be par-

titioned to 6 ECs. From the right plot in 5.3, we know almost half of the data sets are from

the equivalence class represented by {(0, 0), (1, 0), (2, 0)}. 2
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p = 3, n = 2, m = 3. p = 3, n = 2, m = 3.

Figure 5.3: Equivalence classes graphs with p = 2, n = 2 and m = 3.

5.4. Check Linear Shift

Example 5.2 Considering the data set S2 = {(1, 0), (1, 1)}, S2 is the linear shift of the data

set S1 = {(0, 0), (0, 1)} with mapping function set φ1 = x+ 1, φ2 = x. The specific matrix L

with mapping function parameters, input matrix,denoted A1, and output matrix, denoted

A2.

L · A1 =


a1 0 b1

0 a2 b2

0 0 1




0 0

0 1

1 1

 =


1 0 1

0 1 0

0 0 1




0 0

0 1

1 1

 =


1 1

0 1

1 1

 = A2

Example 5.3 With known data set S1 = {(0, 0), (1, 0), (2, 1)} and S2 = {(0, 0), (0, 2), (0, 1)},

we want to check the linear shift between these two data sets. Instead of calculating all pos-

sible linear shift functions for two variables, For n = 2,m = 3 = n+ 1, we get the invertible

input matrix A1 and output matrix A2:
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A1 =


1 2 0

0 1 0

1 1 1

A2 =


0 0 0

1 2 0

1 1 1


As L · A1 = A2, calculate linear shift matrix:

L = A2 · A−11 =


0 0 0

1 2 0

1 1 1




1 2 0

0 1 0

1 1 1



−1

=


0 0 0

1 2 0

1 1 1




1 − 2 0

0 1 0

−1 1 1

 =


0 0 0

1 0 0

0 0 1


No matter what order of points arrangement we give to the output matrix, due to the first

row containing are only zero values, we will always get first diagonal element of linear shift

matrix L to be 0. which is not allowed by our definition of linear shift. It means there is no

linear shift between S1 and S2. 2

Definition 5.1 Let S1 and S2 be two data sets in
(Fn

m

)
and we can construct input matrix

A1 and output matrix A2. The matrix L is a linear shift matrix if:

L · A1 = A2

To calculate linear shift matrix with L = A2 ·A−11 , the input matrix A1 need to be a square

matrix to compute the inverse. Then input matrix A1 and output matrix A2 should be

reconsidered with different cases of m and n: 2
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• m = n + 1: the input data sets matrix is a square matrix. The linear shift matrix L

applied to input matrix A1:

L · A1 =



a1 . . . 0 b1

...
. . .

...
...

0 . . . an bn

0 . . . 0 1





x11 . . . x1m

...
. . .

...

xn1 . . . xnm

1 . . . 1


=



y11 . . . y1m

...
. . .

...

yn1 . . . ynm

1 . . . 1


= A2

If the input data sets matrix is a non-singular matrix, we can invert the matrix and

get the linear shift matrix as follows:

L = A2 · A−11 =



y11 . . . y1m

...
. . .

...

yn1 . . . ynm

1 . . . 1





x11 . . . x1m

...
. . .

...

xn1 . . . xnm

1 . . . 1



−1

m,n+1

L is the matrix with fixed structure, satisfying the following rules:

1. All diagonal elements are non-zero.

2. The last diagonal element is 1.

3. Elements except diagonal elements and last column elements are 0.

The matrix L can be written as the sum of a diagonal matrix with parameters ai and

a matrix only with parameters bi in the last column.
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L = D +B =



a1 . . . 0 0

...
. . .

...
...

0 . . . an 0

0 . . . 0 1


+



0 . . . 0 b1

...
. . .

...
...

0 . . . 0 bn

0 . . . 0 0


Here, the value of the diagonal elements is the vector (a1, a2, . . . , an, 1) and the value of

the last column elements is (b1, b2, . . . , bn, 1). It is time consuming to check all possible

ai and bi for n variables. Suppose the input data sets produced a singular matrix, that

is:

det(A1) = det



x11 . . . x1m

...
. . .

...

xn1 . . . xnm

1 . . . 1


= 0

There is no inverse matrix of input data sets for any order of input data sets. We can’t

inverse the input data sets matrix but we can obtain a property based on this case.

• m > n+ 1: the linear shift matrix and the input matrix are reconstructed as:

L·A1 =



a1 . . . 0 0 . . . 0 b1

...
. . .

...
...

. . .
...

...

0 . . . an 0 . . . 0 bn

0 . . . 0 0 . . . 0 1


n+1,m



x11 . . . x1n x1n+1 . . . x1m

...
. . .

...
...

. . .
...

xn1 . . . xnn xnn+1 . . . xnm

0 . . . 0 1 . . . 0

...
. . .

...
...

. . .
...

1 . . . 1 1 . . . 1


m,m

=



y11 . . . y1m

...
. . .

...

yn1 . . . ynm

1 . . . 1
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Then the input data sets matrix becomes square matrix and if we can inverse new A1,

we will get information of linear shift matrix L.

L =



a1 . . . 0 0 . . . 0 b1

...
. . .

...
...

. . .
...

...

0 . . . an 0 . . . 0 bn

0 . . . 0 0 . . . 0 1


n+1,m

=



y11 . . . y1m

...
. . .

...

yn1 . . . ynm

1 . . . 1





x11 . . . x1n . . . x1m

...
. . .

...
. . .

...

xn1 . . . xnn . . . xnm

0 . . . 1 . . . 0

...
. . .

...
. . .

...

1 . . . 1 . . . 1



−1

Then if first n rows and n columns in linear shift matrix L is not diagonal, there is no

linear shift between input and output data sets.

• when m < n + 1 the output matrix and the input matrix were reconstructed with

adding n + 1 −m columns to the original matrix A1 and A2 in the case n + 1 = m.

Then linear shift matrix L is



a1 . . . 0 b1

...
. . .

...
...

0 . . . an bn

0 . . . 0 1


=



y11 . . . y1m 0 . . . 0 b1

...
. . .

...
...

. . .
...

...

ym1 . . . ymm 0 . . . 0 bm

ym+11 . . . ym+1m am+1 . . . 0 bm+1

...
. . .

...
...

. . .
...

...

yn1 . . . ynm 0 . . . an bn

1 . . . 1 0 . . . 0 1





x11 . . . x1m 0 . . . 0

...
. . .

...
...

. . .
...

xm1 . . . xmm 0 . . . 0

xm+11 . . . xm+1m 1 . . . 0

...
. . .

...
...

. . .
...

1 . . . 1 0 . . . 1



−1

Based on the above discussion, we know:
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when m = n+ 1, let the input matrix A1 =



x11 . . . x1m

...
. . .

...

xn1 . . . xnm

1 . . . 1


, and when m > n+ 1,

A1 =



x11 . . . x1n x1n+1 . . . x1m

...
. . .

...
...

. . .
...

xn1 . . . xnn xnn+1 . . . xnm

0 . . . 0 1 . . . 0

...
. . .

...
...

. . .
...

1 . . . 1 1 . . . 1



, and when m < n+ 1, A1 =



x11 . . . x1n . . . x1m

...
. . .

...
. . .

...

xn1 . . . xnn . . . xnm

0 . . . 1 . . . 0

...
. . .

...
. . .

...

1 . . . 1 . . . 1



.

Based on the discussion above, we know from the linear shift matrix, we can quickly check

the linear shift relationship between two data sets. By the above construction of the input

matrix and output matrix, we can calculate the linear shift matrix in the case of det(A1) 6= 0

and det(A2) 6= 0.

Algorithm 5.2 (Existence of Linear Shift)

Description: check if one data set is a linear shift of the other data set.

Input: two different data sets S1, S2 ∈
(Fn

m

)
.

Output: return Yes if S1 is a linear shift of S2, else return No.

Initialize matrix A1 from input S1.

Initialize matrix A2 from input S2.

if det(A1) 6= 0

if det(A2) 6= 0

compute linear shift matrix L = A2 · A−11 .

if first n rows and n columns of L is a diagonal matrix

return YES
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else: return NO

else: return Unknown

else: return Unknown

However, the linear shift matrix cannot return all possible linear shift relationship. To

implement our theorems of relationships, we created a Python package based on Algorithm

5.3 to find all mapping functions between two data sets.

Algorithm 5.3 (Generate Linear Shift Mapping Functions)

Description: return all possible linear shift mapping function for two data sets.

Input: two different data sets S1 and S2.

Output: return mapping functions if S1 is a linear shift of S2, else return ”No”.

Pick first point P0 in S2.

Initialize the mapping function list F .

Initialize result list R.

Initialize number of states p.

for point P in S1

if P = P0: Continue.

else: for coordinate i in [1, . . . , n]

for a in [1, . . . , p− 1]

b = (Pi − a ∗ P0i)%p

append [a, b] to Fi

# append all possible mapping function parameters tuple to fi

LS = {(f1, f2, ..., fn) for f1 in F1 . . . for fn in Fn}
# generate all possible mapping function combinations for n coordinates.

for f in LS

S3 = f(S2)

# generate S3 from S2 using mapping functions in f .

if S3 = S1

add function list f to R.

return “No” if length(R) = 0, else return R.
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Example 5.4 For S1 = {(0, 0), (1, 0)} and S2 = {(0, 1), (1, 1)}, using the Python package

with Algorithm 5.3, we can get linear shift parameters for all possible functions: [[[a11, b11],

[a12, b12]], [[a21, b21], [a22, b22]]] = [[[1, 0], [1, 1]], [[1, 1], [1, 1]]], which means there are two possi-

ble mapping functions sets: Φ1 = (x, x+ 1),Φ2 = (x+ 1, x+ 1). 2

5.5. Extract Equivalence Class Information

After generating all equivalence classes by Algorithm 5.1, we can make a model selection

by data sets with more meaningful structures such as the representative of each EC, which

has the smallest set distance. If an EC contains a staircase, it indicates that all data sets in

the EC associated with a unique GB by Theorem 2.4 and this staircase is the representative

by Theorem 4.7.

Algorithm 5.4 (Find Representatives)

Description: pick a representative from an equivalence class.

Input: an equivalence class E.

output: a representative of E.

Initialize representatives list: rep = [ ].

Initialize rep = dataset[0]; D = +∞ ; count = 0.

for data set S in equivalence class E

Initialize Dnew as distance to the origin D(S, 0).

if Dnew < D

D = Dnew

rep = S

return rep,distance

Algorithm 5.5 (Find Staircase)

Description: Check if a data set is a staircase.

Input: a set of input points S

Output: return True if input data set S is a staircase, else return False.

#Find boundary points B of data set S
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Initialize B = {}.
for i from 0 to |S| − 1 do

set Pmax = Si

for j from 0 to |S| − 1 do

if Si 6= Sj and all coordinates of Sj ≥ Si

then Pmax = Sj

B = B ∪ {Pmax}
#Create staircase points Sstair with boundary points B.

Initialize Sstair = {B[0]}
for each point P in B do

# calculate all points below P .

Snew = {(x1, x2, ..., xn) for x1 in [0, . . . , P1 − 1] . . . for xn in [0, . . . , Pn − 1]}
Sstair = Sstair ∪ Snew

return True if S = Sstair, else return False.

Algorithm 5.6 (Find Standard Monomial)

Description: Check if a point is in the standard monomial data set with given leading terms.

Input: a point P and leading terms LT .

Output: return True if input point is in standard monomial data set, else return False.

Initialize e as the exponents of P.

Initialize E as the exponents of LT.

Initialize flagless = True.

For i from 0 to |E| − 1 # for loop of each leading term exponent in LT .

Initialize flagsmall = 0 # flagsmall records number of variables less than leading term Ei

for j from 0 to |e| − 1 # for loop of each coordinate exponent of P .

if ej < Eij

flagsmall = flagsmall + 1

If flagsmall = 0: flagless = False

# P is on the leading term boundary or out of the LT points boundary.

return True if flagless = True, else return False.

62



Chapter 6

Applications

The results about the model analysis in this chapter are published in [27].

6.1. Reverse Engineering of Gene Regulatory Networks

The first GRN is considered well understood is lac operon. However, only a few GRNs

are fully understood and studied. Therefore, instead of constructing models and fit data,

researchers are more focused on developing modelling methods that will generate models

directly from input data sets. These data-driven modelling methods are called reverse en-

gineering. In other words, reverse engineering of gene regulatory networks is a process that

recovers the regulatory relationships between genes in the system. Reverse engineering is

based on input data sets such as gene activity level or expression level. Many methods have

been proposed in the last few decades leading to a wide range of mathematical approaches

[29].

There are numerous modeling techniques used in reverse engineering, including machine

learning, Bayesian networks, Boolean networks, differential equations, information theory,

PetriNets, neural networks, and genetic algorithms [19]. Each method has its advantages

and disadvantages. With the increase in the number of genes, the computational cost is

enormous. For example, for 30 genes, there are 2.71·10158 probable network variants using

Bayesian networks [28].

In [9], the authors developed a comparative study of five reverse engineering methods: 1.

Boolean methods are used to infer GRNs by applying Boolean logic to the discretized gene

states (0 or 1 states), which indicated the expression level of mRNA. 2. Bayesian methods

use the Baye’s rule to reverse engineer GRNs by using conditional probability distributions
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[18]. 3. regulation matrix methods that use the linear system y = bi +
∑n

j=1 aijxj around

a steady state. Moreover, steady-states are measures before/after a specific perturbation

such as temperature. 4. Both gene expression profiles and biological information should

be considered to avoid the fundamental limits of methods related to high dimension or

computational complexity. Alternatively, eliminate the uncertainty of data. 5. Machine

learning approaches, which mostly focuse on genetic algorithms, neural networks or fuzzy

logic. Technologies are developed for inference algorithms [48] and gene expression data

clustering [37].

In the last decades, more and more novel methods have been developed in many gene

networks [12]. Scientists pay more attention to data relationship or data manipulation in

the process of reverse engineering modelling. For example, the missing input data sets

measurement has been proposed to deal with the high-dimensional time-series data [34].

Alternatively, a novel unsupervised machine learning methodology has been developed to

analyze a data set and determine the most probable number of states [45]. More methods

have been applied to GRN problems and implemented to a more accurate and applicable

analysis of GRN.

In the above reverse engineering methods, discrete models of GRN have gained popularity

in computational systems biology. In this field, the algebraic geometry of data sets and

model selection methods based on given input data sets are studied. The problems in GRN

model selection are challenging considering the enormous computational costs for all possible

models and the qualitative and quantitative analyses for different models before making a

final decision. Based on previous research on discrete models of GRN [15], to best recover

the specific gene regulatory networks, scientists can choose Gröbner bases, which can reflect

right and concise regulatory relationships in systems.

6.2. Associating Models with Gröbner Bases

We consider input data sets with 4, 5, 7 points as examples to show how we analyze

models based on Gröbner bases. Examples 6.1, 6.2 and 6.3 show a work flow of model
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analysis highlighting the relationship between data sets and their Gröbner bases, standard

monomial sets, and number of PDS models as we discussed in Chapters 3 and 4. Recall

that 2 GBs can result in the same model. So here we start from a data set associated with

the most different GBs and show the relationship between each GB and associated SM and

model. Last, we will present the experimental design of reducing the number of GBs by

adding extra points.

Example 6.1 For 4 points S1 = {(0, 0, 1, 1), (0, 1, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0)}, the model

computation process is

1. Extract Gröbner bases and standard monomials of the equation fx1 based on the output

point [0, 1, 0, 1]T and 4 input points S1. Here, there are six different Gröbner basis and

associate standard monomials in Appendix B.

2. Using the evaluation matrix, calculate 6 models related to 6 different GBs. For exam-

ple, with

GB1 = {x24 + x4, x
2
3 + x3, x3x4 + x2 + x3 + x4 + 1, x1 + x3 + x4}

and SM1 = {1, x4, x3, x4x3}, we get the linear system problem:

1 x4 x3 x4x3

1 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

·

a

b

c

d

=

output

0

1

0

1

Solving this linear system we get a = 1, b = 0, c = 1, d = 0, so

fx1 = a · 1 + b · x4 + c · x3 + d · x3x4 = 1 + x4
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Based on the same process which results in GB1 to GB6, we conclude that there are 2

different models for gene x1:

4 GBs =⇒Model1 : fx1 = 1 + x4

2 GBs =⇒Model2 : fx1 = 1 + x1 + x3

Then we analyze different model results. Here, Model1 is related to 4 GBs and Model2

is related to 2 GBs. So 6 GBs yields 2 normal forms.

3. A further step can help to get a unique Gröbenr basis, after adding at least 4 points

{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (1, 0, 0, 0)} to original data set S, we got a staircase

data set: {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (1, 0, 0, 0), (1, 0, 0, 1),

(1, 0, 1, 0)}, which has a unique GB model:

GB = {x24 + x4, x
2
3 + x3, x2x4, x2x3, x

2
2 + x2, x1x3x4, x1x2, x

2
1 + x1}

SM = {1, x4, x3, x3x4, x2, x1, x1x4, x1x3} and the model for gene x1 is:

Model : fx1 = x2 + x3 + x3x4

With output data [0, 0, 1, 0, 1, 0, 0, 1]T , the expression model is fixed and unique.

2

Example 6.2 For 5 points S2 = {(0, 0, 1, 0), (0, 1, 0, 1), (1, 0, 0, 1), (1, 1, 0, 0), (1, 1, 1, 1)} re-

searchers can at most get 13 different GBs. Different models are generated from 13 GBs

with output data [1, 0, 0, 1, 0]T for gene x1. For example, based on SM1 and SM3, different

models are generated:
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SM1 : {1, x4, x3, x3x4, x2}

fx1 = 1 + x4

fx2 = 1 + x2 + x3 + x4

fx3 = x3

fx4 = x4

SM3 : {1, x4, x2, x2x4, x1}

fx1 = 1 + x4

fx2 = x1 + x2 + x4 + x2x4

fx3 = 1 + x1 + x2x4

fx4 = x4

Here, SM1 and SM3 have same model function for x1. Then we summarized 4 different

models generated from same data set and Model1 has the largest frequency among all models:

10 GBs =⇒Model1 : fx1 = 1 + x4

GB5 =⇒Model2 : fx1 = 1 + x1 + x2 + x2x3

GB11 =⇒Model3 : fx1 = 1 + x1 + x2 + x1x3

GB13 =⇒Model4 : fx1 = x3 + x1x2

We now analyze different model results. Here, Model1 is related to 10 GBs and Model2,

Model3 and Model4 are related to a unique GB. So 13 GBs yields 4 normal forms.

With further calculation, we need add at least 6 more points to get a unique GB generated

from 11 points: {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 1), (1, 0, 0, 0),

(1, 0, 0, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 1)} with fixed one SM: {1, x4, x3, x3x4, x2, x2x4, x2x3,

x1, x1x4, x1x3, x1x2} and unique GB.

Model : fx1 = x2 + x3 + x1x2 + x1x3 + x2x4 + x3x4

2

Example 6.3 For 7 points S3 = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 1, 1),

(1, 1, 0, 1), (1, 1, 1, 0)} we get 2 different SMs and resulting models as below:

Model1 : fx1 = x2 + x3 + x2x4 + x3x4
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Model2 : fx1 = x1 + x2 + x3

After adding 4 more points: {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 0, 0, 1),

(1, 0, 1, 0), (1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0)}, we will get a unique GB model:

Model : fx1 = x2 + x3 + x1x2 + x1x3 + x2x3.

2

Example 6.4 Consider data sets in Z4
2. Let Smax be a data set whose ideal of points has the

maximum number of Gröbner bases. Define Sunique = Smax ∪ Sadd where Sadd is a collection

of points such that the augmented data set Sunique has an ideal of points with a unique GB.

With the Python package for searching least number of adding points in getting unique GB,

the summary in Table 6.1 for different cases is

|Smax| 2 3 4 5 6 7 8 9 10 11 12 13

|Sunique| 5 5 8 11 11 11 11 12 15 15 15 15

|Sadd| 3 2 4 6 5 4 3 3 5 4 3 2

#GBSmax 4 5 6 13 12 13 9 13 12 13 6 5

% reduce 0.25 0.40 0.21 0.15 0.18 0.23 0.30 0.31 0.18 0.23 0.27 0.40

Table 6.1: Adding the fewest number of points to data sets with the maximum number of
GBs to create data sets with unique GBs.

The table summarizes the fewest points which must be added to guarantee a unique

GB from a data set associated with the maximum number of GBs for different sized data

sets. Here, %reduce =
#GBSmax−1

#GBSmax ·|Sadd|
is the percentage of the number of GB reduced with

adding one point. From the table, an average of 20% of the maximum number of GBs will

be reduced by adding one extra point in each case. 2
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6.3. Lac Operon Network

The lac operon is a system of genes which control the transport and metabolism of

lactose in many bacteria including E. coli. While there are numerous models for the lac

operon (see, for example, [23, 36, 40, 49]), we consider a Boolean model proposed in [46].

There the authors reduced the system to a core sub-network consisting of the following four

variables: M representing lac mRNA, L inter-cellular lactose, Le extracellular lactose, and

Ge extracellular glucose. The Boolean model for this sub-network is given by the following

Boolean functions, where extraneous variables are introduced to capture intermediate values

(Lm, Lem) of lactose inside and outside of the cell respectively: see Section 4.2.2 in [46] for a

full description of the model.

fM = ¬Ge ∧ (L ∨ Lm)

fL = M ∧ Le ∧ ¬Ge

fLm = ((Lem ∧M) ∨ Le) ∧ ¬Ge

fLe = Le

fGe = Ge

fLem = Lem

For the sake of illustrating the utility of the above results, we reduce this model to only

include the four essential variables. To this end, we replace Lem with Le and Lm with L,

and remove all instances of Lem and Lm via substitution. Doing so produces

fLm = ((Le ∧M) ∨ Le) ∧ ¬Ge = Le ∧ ¬Ge (6.1)

which we substitute into the function fM :

fM = ¬Ge ∧ (L ∨ (Le ∧ ¬Ge)) = ¬Ge ∧ (L ∨ Le). (6.2)
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This results in the following Boolean network on four variables, with wiring diagram

depicted in Figure 6.1:

fM = ¬Ge ∧ (L ∨ Le)

fL = M ∧ Le ∧ ¬Ge

fLe = Le

fGe = Ge.

Figure 6.1: Wiring diagram for a simplified Boolean model of the lac operon in E. coli.
Directed edges with pointed ends indicate positive regulation, while directed edges with
round ends indicate negative regulation. The variables Ge and Le regulate the operon from
outside the cell, represented by a rectangle around M and L.

Boolean functions can be rewritten as polynomial functions over Z2 using the following

translations: the Boolean expression x∨ y can be represented as the polynomial x+ y+ xy,

x ∧ y as xy, and ¬x as x + 1. Applying these rules to the above functions yields the finite

dynamical system f : Z4
2 → Z4

2; where, f = (fx1 , fx2 , fx3 , fx4) and each fxi is a polynomial

in the variables x1 := M , x2 := L, x3 := Le and x4 := Ge.

fx1 = x2x3x4 + x2x3 + x2x4 + x3x4 + x2 + x3

fx2 = x1x3x4 + x1x3

fx3 = x3

fx4 = x4
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The standard monomials set for this model is

SM = {x2x3x4, x1x3x4, x2x3, x1x4, x2x4, x1x3, x3x4, x1, x2, x3, x4, 1}.

Based on our database of linear shift, the equivalence class that has the same standard

monomials will satisfy the reduced lac operon model. For the same standard monomials,

based on our linear shift properties, we get the equivalence class with 4 different GBs:

GB1 = {x24 + x4, x
2
3 + x3, x

2
2 + x2, x1x2, x

2
1 + x1},

GB2 = {x24 + x4, x
2
3 + x3, x

2
2 + x2, x1x2 + x1, x

2
1 + x1},

GB3 = {x24 + x4, x
2
3 + x3, x

2
2 + x2, x1x2 + x2, x

2
1 + x1},

GB4 = {x24 + x4, x
2
3 + x3, x

2
2 + x2, x1x2 + x1 + x2 + 1, x21 + x1}

and each of them corresponds to data sets S1, S2, S3, S4, respectively in Appendix B.

From the study of equivalence classes, we know the associated data set: {S1, S2, S3, S4}

of {GB1, GB2, GB3, GB4} is a equivalence class with the same SMs, D(S1, 0) ≤ D(S, 0), S ∈

{S1, S2, S3, S4}. Here, the S1 is associated with GB1, S1 = SR is the representative data

set of reduced model and also a staircase data set. By selecting the representative, it will

associate with the most simplified GB and functions for the reduced model. The expression

functions of different genes can be reconstructed from any data sets above with the evaluation

matrix.

Same as reduced model in Figure 6.1, we get polynomials of advanced models with same

strategy. Reduced model without inducer inclusion (left in Figure 6.2):
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Figure 6.2: Two advanced models: without inducer exclusion (left), and without catabolic
repression (right).

fM = ¬Ge ∧ (L ∨ Lm)

fL = M ∧ Le

fLm = (Lem ∧M) ∨ Le

=⇒

fx1 = x2x3x4 + x2x3 + x2x4 + x3x4 + x2 + x3

fx2 = x1x3

fx3 = x3

fx4 = x4

The standard monomials for the model without inducer exclusion (left in Figure 6.2) is

SM1 = {x2x3x4, x1x3, x2x3, x2x4, x3x4, x3, x2, x4, x1, 1}. For the same standard monomial set

SM1, based on linear shift properties, we get 8 different GBs from 8 different data sets.

Then the reduced model without catabolite repression is (right in Figure 6.2):

fM = L ∨ Lm

fL = M ∧ Le ∧ ¬Ge

fLm = ((Lem ∧M) ∨ Le) ∧ ¬Ge

=⇒

fx1 = x2x3x4 + x2x3 + x3x4 + x2 + x3

fx2 = x1x3x4 + x1x3

fx3 = x3

fx4 = x4
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The standarad monomials set for this model is SM2 = {x2x3x4, x1x3x4, x2x3, x1x4, x2x4, x1x3,

x3x4, x1, x2, x3, x4, 1}. The resulting GBs and data sets are the same as for the original re-

duced model.

The data sets with a unique model are the data set that can only recreate given expression

functions with fixed SMs. No more than one expression SMs set means the data set doesn’t

contain redundant information. This “filter” step is very important considering the reduction

of computation cost. For example, the model without inclusion (left in Figure 6.2) to all

possible 10 points data sets, the linear shift methods decrease candidates number from

|
(F4

10

)
| = 8008 to 8. At last, we make the model selection with a representative data set,

which will fully recover the model information with simplified Gröbner bases.

6.3.1. Experimental Design of Lac Operon

Figure 6.3: State space graph for the 4-dimensional finite dynamical system. Each node is a
state (M,L,Le, Ge) of the network and a directed edge from state a to state b indicates that
f(a) = b.

Consider the first component of the state space of f in Figure 6.3: C1 = {(0, 0, 0, 0), (0, 1, 0, 0),

(1, 0, 0, 0), (1, 1, 0, 0)}. Note that the data points in C1 form a staircase. By Corollary 2.3,

the ideal I(C1) has a unique reduced Gröbner basis, namely

GB1 = {x21 + x1, x
2
2 + x2, x3, x4}.

In particular the data set C1 has the unique leading term ideal L = 〈x21, x22, x3, x4〉 and

standard monomial basis S = {1, x1, x2, x1x2} for any monomial order. If we label the other

components similarly, C2 = {(0, 0, 0, 1), (0, 1, 0, 1), (1, 0, 0, 1), (1, 1, 0, 1)}, C3 = {(0, 0, 1, 0),
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(0, 1, 1, 0), (1, 0, 1, 0), (1, 1, 1, 0)}, C4 = {(0, 0, 1, 1), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 1, 1)}, we find

that they are linear shifts of C1, that is, C1
φ12∼ C2, C1

φ13∼ C3, and C1
φ14∼ C4, where

φ12 = (x1, x2, x3, x4 + 1), φ13 = (x1, x2, x3 + 1, x4), φ14 = (x1, x2, x3 + 1, x4 + 1).

According to Theorem 3.5, the data sets C2, C3, and C4 have the same leading term ideal

and standard monomial basis as C1. So each of C2, C3, and C4 also has a unique reduced

Gröbner basis; however all four data sets have different unique reduced Gröbner bases.

Figure 6.4: Experimental design for a Boolean network of the lac operon. The top row
contains data sets with the fewest active nodes. The bottom row contains data sets with the
most active nodes. Green represents 1 (active) and red represents 0 (inactive).

6.3.2. Efficient Way to Compute Gröbner Bases

Furthermore, we can directly apply the linear shift functions to produce the generators of

the other reduced Gröbner bases explicitly, rather than computing them from the respective

ideals:

GB2 = GB(I(C2)) = {x21 + x1, x
2
2 + x2, x3, x4 + 1},

GB3 = GB(I(C3)) = {x21 + x1, x
2
2 + x2, x3 + 1, x4},

GB4 = GB(I(C4)) = {x21 + x1, x
2
2 + x2, x3 + 1, x4 + 1}.
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While algorithms (and their corresponding complexities) related to the above theoretical

results are not in the scope of the presented work, we close with a note about its potential

to reduce significantly the time to compute Gröbner fans of zero-dimensional ideals. The

worst-case complexity of computing one Gröbner basis of a zero-dimensional ideal in a general

setting is quadratic in the number of variables n and cubic in the number of points m, that is

O(nm3+n2m2) [1], with various improvements in specialized settings. Computing a Gröbner

fan for a zero-dimensional ideal from a given Gröbner basis is proved to be “a polynomial-

time algorithm in the size of the output” [20]. In settings where data sets yield Gröbner

fans with distinct cones, we can take advantage of linear shifts. From one data set and

its calculated fan (set of reduced Gröbner bases), we can use the linear shift functions to

produce the reduced Gröbner bases for the ideals of the linearly shifted points.

6.4. EGFR Inhibition Model for Tumor Growth

Discrete dynamic models including PDSs can be used in systems pharmacology. In the

research of EGFR in [42], the authors translated a previously constructed pharmacodynamic

model of growth factor receptor (EGFR) signaling to discrete models, a Boolean model and

a three-state model. Also, they showed how the effects of an EGFR inhibitor could suppress

tumor growth. In their discussion, the results of the prediction of EGFR inhibitor effects on

tumor growth are mostly truth tables and based on Boolean rules.

However, there are no certain polynomials or GRN equations for the network of EGFR to

quantify the effects of EGFR inhibitor effects on tumor growth. In this section, we want to

construct the PDS of the network in Figure 6.5. After constructing Boolean PDS model and

non-Boolean PDS model, we can find monomial bases. Then apply our linear shift theorems

to find ECs associated with the same model basis.

For the Boolean network in Figure 6.5, based on the theorems in Chapter 4, we consider

model selection.
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Rkip∗ = ¬EGFR
Kras∗ = EGFR ∨ (¬Rasgap)
Raf1∗ = Kras ∨ (¬Rkip)

Proliferation∗ = Raf1 ∧miR221

Figure 6.5: EFGR Model

fx1 = E + 1 (6.3)

fx2 = E + (R + 1) + E(R + 1) (6.4)

fx3 = x2 + (x1 + 1) + x2(x1 + 1) (6.5)

fx4 = x3M (6.6)

The function (6.3) for x1 and function (6.4) for x2 are fixed by the parameters E and R.

Notice that the function for x4 is only related to the variable x3 and the parameter M . So

to recover the functions for the network, we will focus on reverse engineering the functions

for x3 and x4.

From the model functions (6.5) and (6.6), we know that to recover this network the

standard monomials should at least contain {x2x1, x2, x1, x3, 1}, since this is the smallest

factor-closed set. First, we can get the stable states for the 16 possible points in the case

p = 2 and n = 4 in Appendix B. By searching the equivalence class associated with SM

= {1, x1, x2, x3, x1x2}, we found the equivalence class that can recover the network in the

following table.
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|Bases| |Data sets| Standard monomials

1 8 {{1, x3, x2, x1, x1x2}}
2 8 {{1, x3, x2, x2x3, x1}, {1, x3, x2, x1, x1x2}}
2 8 {{1, x3, x2, x1, x1x3}, {1, x3, x2, x1, x1x2}}
3 8 {{1, x3, x2, x2x3, x1}, {1, x3, x2, x1, x1x3}, {1, x3, x2, x1, x1x2}}

Table 6.2: All equivalence classes associated with standard basis: {1, x1, x2, x3, x1x2}

To recover the full EFGR network, suppose we start with the data set

{(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)} → {1, x1, x2, x1x2}

which is associated with the standard monomial basis {1, x1, x2, x1x2}. What are all the

possible points that need to be added to recover the basis {1, x1, x2, x1x2, x3}? Based on

|Bases | Data set Smallest distance

1 {{0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0}} yes

1 {{0, 0, 0}, {0, 1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 1, 0}} no

1 {{0, 0, 0}, {0, 1, 0}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}} no

1 {{0, 0, 0}, {0, 1, 0}, {1, 0, 0}, {1, 1, 0}, {1, 1, 1}} no

Table 6.3: Recover EFGR model basis: {1, x1, x2, x1x2, x3} set by adding extra point.

Table 6.3, we know there are 4 candidates to recover the network with standard monomi-

als {1, x1, x2, x1x2, x3} and one data set is closest to the origin. Each of the closest data

sets can linear shift to the other three data sets in the other rows. The experimental de-

sign in Figure 6.6 contains two data sets that can recover the desired standard monomials

{1, x1, x2, x1x2, x3}. The first row is the data set with the fewest active nodes and the second

row is the data set with the most active nodes.
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Figure 6.6: Experimental design of EFGR Boolean network with smallest distance data set.
Green represents 1 (active). Red represents 0 (inactive).

Further discussion is suggested in [42] with multi-states for Rasgap, Kras, Rkip and

miR221. Next, we implement the analysis with the same process in a non-Boolean network.

Based on the non-Boolean modeling data in [42], we construct a new EGFR network

model.

fx1 = −E (6.7)

fx2 = 2R + E + 2RE + ER2 (6.8)

fx3 = 1 + 2x2 + x22 + 2x1x2 + 2x1x
2
2 (6.9)

fx4 = 2 + 2x3 + x3M + +2x23 + x23M +M2x3 + x23M
2 (6.10)

In the non-Boolean EGFR network, we should focus on equations of x3 and x4 as x1 and

x2 are fixed with input parameters E and R. Same as the process for Boolean networks, from

the model function (6.9) and (6.10), we can find the smallest factor-closed set to recover this

network. The standard monomials should at least include {x1x22, x22, x23, x2x1, x2, x1, x3, 1}.

The computation of ECs and representatives associated with the standard monomials is

future work in the next month.
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Chapter 7

CONCLUSION

7.1. Main Results

In the previous chapters, our work is mainly focused on four areas under the setting of a

finite field F:

1. Geometric characteristics of discrete input data sets for gene regulatory networks with

a discussion of their structure associated with unique and non-unique GBs. A linked

position conjecture was proposed, which indicates a method to reduce the number of

GBs.

2. Model estimation from the properties, such as the number of models and the upper

bound of the number of model bases, is considered. Specifically, we discussed a formula

for the number of GBs with 2 points and 3 points in the finite fields. Furthermore, we

proposed an upper bound, which provided a significant improvement compared to an

existing upper bound.

3. Model selection based on the relationship between data sets, such as the linear shift

relationship or model selection based on data sets structures, such as staircases or

representatives. Instead of calculating all candidate data sets, model selection can be

made only by checking linear shift relationship with a representative in each EC.

4. Analysis by querying the extensive database in DoEMS. By comparison in the same

equivalence class or different equivalence classes, researchers can maintain specific stan-

dard monomials by manipulating the data sets in the reports generated by DoEMS.
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7.2. Future Work

There are still questions that need more attention in the future. The plan of further work

is

• Generate formula for the number of Gröbner bases for three or more points data sets,

similar to the case with 2 points. However, the upper bounds for cases with three or

more points were found. The specific formula will be more meaningful, considering the

process of model selection.

• Create a larger database which will enable researchers to do data analysis with fewer

limits. Now the database for the website only provides simple cases such as p = 2, p = 3.

If larger data sets with p = 5, p = 7 are included with more points, the website can

help to analyze more application problems.

• Apply the analysis methodology of ECs and linear shifts to more applied problems

as the non-Boolean EGFR network in Section 6.4 or any other applicable polynomial

dynamical systems.
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Appendix A

Upper bound for the Number of GBs

Below we provide tables summarizing the comparison of the maximum number of distinct

reduced Gröbner bases to the predictions made by the original bound (third column) listed

in Theorem 3.4 and the modified bound (last column) listed in Equation 3.3. The second

column shows the actual maximum number as computed for all sets in Znp of size given in

the first column.

# of points max # of GBs original bound modified bound

1 1 1 1

2 2 2.520 2.520

3 1 4.327 1

4 1 6.350 1

Table A.1: p = 2, n = 2

# of points max # of GBs original bound modified bound

1 1 1 1

2 3 8 8

3 3 27 11.180

4 3 64 22.627

5 3 125 11.180

6 3 216 8

7 1 343 1

8 1 512 1

Table A.2: p = 2, n = 3
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# of points max # of GBs original bound modified bound

1 1 1 1

2 4 27.86 27.86

3 5 195.07 47.59

4 6 776.05 147.03

5 13 2264.94 195.07

6 12 5434.08 389.08

7 13 11388.61 471.48

8 9 21618.82 389.08

Table A.3: p = 2, n = 4

# of points max # of GBs original bound modified bound

1 1 1 1

2 2 2.520 2.520

3 2 4.327 4.327

4 2 6.350 4.642

5 2 8.550 4.642

6 2 10.903 4.327

7 2 13.391 2.520

8 1 16 1

9 1 18.721 1

Table A.4: p = 3, n = 2
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# of coordinates max # of GBs original bound modified bound

2 1 6.350 1

3 3 64 22.627

4 6 776.047 147.033

5 8 10321.270 1024

Table A.5: m = 4 points and p = 2
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Appendix B

Computational Results

B.1. Computational Results for Example 6.1

GB2 = {x24 + x4, x3x4 + x2 + x3 + x4 + 1, x23 + x3, x2x4, x2x3, x
2
2 + x2, x1 + x3 + x4},

SM2 = {1, x4, x3, x2} =⇒ fx1 = 1 + x4

GB3 = {x24 + x4, x1 + x3 + x4, x2x4, x
2
2 + x2, x1x4 + x1 + x2 + x4 + 1, x1x2, x

2
1 + x1},

SM3 = {1, x4, x2, x1} =⇒ fx1 = 1 + x4

GB4 = x1 + x3 + x4, x
2
3 + x3, x2x3, x

2
2 + x2, x1x3 + x1 + x2 + x3 + 1, x1x2, x

2
1 + x1,

SM4 = {1, x3, x2, x1} =⇒ fx1 = 1 + x1 + x3

GB5 = x1 + x3 + x4, x
2
3 + x3, x1x3 + x1 + x2 + x3 + 1, x21 + x1,

SM5 = {1, x3, x1, x1x3} =⇒ fx1 = 1 + x1 + x3

GB6 = x24 + x4, x1 + x3 + x4, x1x4 + x1 + x2 + x4 + 1, x21 + x1

SM6 = {1, x4, x1, x1x4} =⇒ fx1 = 1 + x4

B.2. Computational Results for Example 6.2

SM2 : {1, x4, x3, x2, x2x4}

fx1 = 1 + x4

fx2 = 1 + x2 + x3 + x4

fx3 = x3

fx4 = x4

SM3 : {1, x4, x2, x2x4, x1} =⇒ fx1 = 1 + x4

fx2 = x1 + x2 + x4 + x2x4
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fx3 = 1 + x1 + x2x4

fx4 = x4

SM4 : {1, x4, x3, x2, x2x3} =⇒ fx1 = 1 + x4

fx2 = 1 + x2 + x3 + x4

fx3 = x3

fx4 = x4

SM5 : {1, x3, x2, x2x3, x1} =⇒ fx1 = 1 + x1 + x2 + x2x3

fx2 = 1 + x1 + x3 + x2x3

fx3 = x3

fx4 = x1 + x2 + x2x3

SM6 : {1, x4, x3, x3x4, x1} =⇒ fx1 = 1 + x4

fx2 = 1 + x1 + x3 + x3x4

fx3 = x3

fx4 = x4

SM7 : {1, x4, x3, x1, x1x4} =⇒ fx1 = 1 + x4

fx2 = x4 + x1x4

fx3 = x3

fx4 = x4

SM8 : {1, x4, x3, x1, x1x3} =⇒ fx1 = 1 + x4

fx2 = 1 + x1 + x3 + x1x3

fx3 = x3

fx4 = x4

SM9 : {1, x4, x3, x2, x1} =⇒ fx1 = 1 + x4

fx2 = 1 + x2 + x3 + x4

fx3 = x3

fx4 = x4

SM10 : {1, x4, x2, x1, x1x4} =⇒ fx1 = 1 + x4

fx2 = x4 + x1x4
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fx3 = 1 + x2 + x4

fx4 = x4

SM11 : {1, x3, x2, x1, x1x3} =⇒ fx1 = 1 + x1 + x2 + x1x3

fx2 = 1 + x1 + x3 + x1x3

fx3 = x3

fx4 = x1 + x2 + x1x3

SM12 : {1, x4, x2, x1, x1x2} =⇒ fx1 = 1 + x4

fx2 = x2 + x1x2

fx3 = 1 + x2 + x4

fx4 = x4

SM13 : {1, x3, x2, x1, x1x2} =⇒ fx1 = x3 + x1x2

fx2 = x2 + x1x2

fx3 = x3

fx4 = 1 + x3 + x1x2

B.3. Database for Small Gene Networks

S1 = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0),

(0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 0, 1, 1)},

S2 = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0),

(0, 1, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}

S3 = {(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1), (1, 0, 1, 0),

(1, 0, 1, 1), (1, 1, 0, 0), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1)}

S4 = {{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {0, 1, 1, 1}, {1, 0, 0, 0}, {1, 0, 0, 1}, {1, 0, 1, 0},

{1, 0, 1, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}, {1, 1, 1, 0}, {1, 1, 1, 1}}

B.4. Graph of Stable Steady States
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Figure B.1: EFGR Model Steady States with E=0, R=0 and M = 0

Figure B.2: EFGR Model Steady States with E=0, R=0 and M = 1
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Appendix C

Python Code

# algorithm of fast linear shift check of two datasets

def LS_check(d1 , d2 , p):

if sorted(d1) == sorted(d2):

return ’Same datasets!’

if len(d1)!= len(d2):

return False

pt = d2[0]

funct= [[] for _ in range(len(d1 [0]))]

shiftfunct = []

for d in d1:

if d == pt:

continue

else:

for i in range(len(d)):

for k in range(1, p):

funct[i]. append ([k, (d[i] - k*pt[i])%p])

allfunctions = list(itertools.product (*funct ))

for func in allfunctions:

newdata = []

for point in d2:

newpoint = [0]* len(d1[0])

for i in range(len(point )):

newpoint[i] = (func[i][0]* point[i] + func[i][1])%p

newdata.append(newpoint)

if sorted(newdata) == sorted(d1):

L = len(d2[0])

newfunc = [[func[i][0], func[i][1]] for i in range(L)]

if newfunc not in shiftfunct:

shiftfunct.append(newfunc)

if len(shiftfunct) == 0:

return False
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else:

print(’Found liner shift from dataset:’,d2 ,’to dataset:’,d1)

print(’ with linear shift functions:’, shiftfunct)

class Linearshift_class:

def __init__(self ,n,m,p):

self.n=n

self.m=m

self.p=p

def subset_m(self):

#input: number of variables(n),

#number of state(p), number of points(m). All numbers are integer.

#output: whole n variables p state m points datasets.

#output is list of tuples.

def product (*args , repeat =1):

# product(’ABCD ’, ’xy ’) --> Ax Ay Bx By Cx Cy Dx Dy

# product(range(2), repeat =3) --> 000 001 010 011 100 101 110 111

# input: range(p), repeat number(number of variables)

# output: whole list of possible points with state: p and

#number of variables: n

pools = [tuple(pool) for pool in args] * repeat

result = [[]]

for pool in pools:

result = [x+[y] for x in result for y in pool]

for prod in result:

yield tuple(prod)

def powerset(iterable ):

import itertools

from itertools import chain , combinations

# input: whole list of possible points with state: p

# and number of variables: n

# output: subsets with points=m

xs = list(iterable)

comb = [combinations(xs,n) for n in range(len(xs)+1)]

return chain.from_iterable(comb)
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#generate all subsets that from m=1 to m=p^n

pro = list(product(range(self.p), repeat=self.n))

all_subset=list(powerset(set(pro)))

subset=list ([])

# filter out points=m datasets

for dataset in all_subset:

if len(dataset )== self.m:

subset.insert(len(subset),dataset)

return subset

def f1(self ,x1 ,a1 ,b1):

import numpy as np

#input: value of variable: x1 , parameter of x1: a1 ,

#intercept: b1. type: integer

#output: value of shifted variable x2 type: integer

#definition: https :// tigerprints.clemson.edu/all_dissertations /1730/

#a linear shift function apply to value x1: x2=(a1*x1+b1)mod(p)

x2=np.mod(a1*x1+b1,self.p)

return int(x2)

def check_dataset_equal(self ,X1 ,X2):

import numpy as np

#input: dataset 1: x1 , dataset 2: x2. type: List of List of list

#output: if two datasets are equal. type: True and False

a1=sorted(X1)

a2=sorted(X2)

return np.array_equal(a1,a2)

def change_type(self ,X):

#input: dataset: X. type: List of Tuples

#output: dataset: a. type: List of List of list

t=len(X)

m=len(X[0])

n=len(X[0][0])

a = list ([[[0 for i in range(n)] for j in range(m)]for q in range(t)])

for q in range(t):

for i in range(m):
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for j in range(n):

a[q][i][j]=int(X[q][i][j])

return a

def get_distance_origin(self ,set1):

#input: one shifted points set:set1. type: list of list

#output: distance of points to origin. type: float

#formula of distance for points (x1 ,x2 ,x3) to origin

#is sqrt((x1 -0)^2+(x2 -0)^2+(x3 -0)^2)

#and sum of set’s distance to origin is the sum of all points to origin.

import numpy as np

distancetotal =0

distancesum =0

for i in range(len(set1 )):

for k in range(len(set1[i])):

distancesum +=set1[i][k]*set1[i][k]

distancetotal +=np.sqrt(distancesum)

distancesum =0

return distancetotal

def findrep(self ,dataset ):

#input: dataset of n variable ,m number of points ,

#p number of state. type:list of list of list

#output: rep(list of list): representative ,

#distance(float): distance to origin of each points set ,

#count(integer ): number of duplicate representatives.

#rule: calculate all points

#and pick the set with minimun distance to origin.

#if there are more than one minimun distance sets ,

#print there are duplicated representatives and count number.

rep=[None];

oldset=dataset [0]

distance =1000

count=0

for set1 in dataset:

distance_new=self.get_distance_origin(set1)

if distance_new <distance:

distance=distance_new

rep=set1
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for set2 in dataset:

if self.get_distance_origin(set2 )== distance and set2!=rep:

print(’there are duplicated representatives ’,set2 ,’and’,rep)

count +=1

return rep ,distance ,count

#remove duplicate dataset

def remove_duplicate(self ,X):

#input: whole shifted dataset type:list of list of list

#output: new whole shifted dataset type:list of list of list

flag=list ([0 for i in range(len(X))])

for i in range(len(X)):

for j in range(i+1,len(X)):

if sorted(X[i])== sorted(X[j]):

flag[i]=1

X_new=list ([])

for i in range(len(X)):

if flag[i]==0:

X_new.append(X[i])

return X_new

def generate_points_new(self ,X):

import itertools

from itertools import chain , combinations

#input: number of variables(integer ):n, number of state(integer ): p,

#origin set of points(list of list): X.

#output: all possible shifted datasets .(list of list of list)

#generate number of points

#m=len(X)

#initialize p*(p-1) [all possible functions] columns and

#n [number of variables] rows matrix

values_each_variable=list ([[0 for i in range(self.p*(self.p-1))] for

j in range(self.n)])

# Assign all possible shifted points to matrix

for n1 in range(self.n):

t=0

for a1 in range(1,self.p):

for b1 in range(0,self.p):
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a=list ([0 for j in range(self.m)])

for i in range(self.m):

a[i]=self.f1(X[i][n1],a1 ,b1)

values_each_variable[n1][t]=a

t=t+1

# generate all permuation of pick one set from each row(each variable)

comb=list(itertools.product (* values_each_variable ))

finalD=list ([[[] for i in range(self.m)]for j in range(len(comb ))])

M=len(comb)

# transpose matrix to final output dataset

for j in range(M):

for i in range(self.m):

for k in range(self.n):

finalD[j][i]. append(comb[j][:][k][i])

# remove the duplicate sets in final dataset

final_dataset=self.remove_duplicate(finalD)

return final_dataset

def findrepresentativepoints(self ,X):

#input: number of variables(integer ):n, number of state(integer ): p,

#origin set of points(list of list): X

#output: R(list of list): represnetative ,

#distance(float): distance of set of points to origin ,

#count(integer ): number of duplicate represntatives ,

# equ_class(list of list of list): equivalence class

equ_class=self.generate_points_new(X)

R,distance ,count=self.findrep(equ_class)

return R,distance ,count ,equ_class

def removeclass(self ,wholedataset1 ,equ_class ):

#input: wholedataset(list of list of list)

#generated whole list of n variable p states m points sets ,

#equ_class(list of list of list): equivalence class

#output: dataset(list of list of list):

#remove equ_class from wholedataset

list3 =[1]* len(wholedataset1)

for i in range(len(wholedataset1 )):
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for j in range(len(equ_class )):

if sorted(wholedataset1[i])== sorted(equ_class[j]):

list3[i]=0

M=sum(list3)

dataset =[None]*M

dataset =[ wholedataset1[i] for i in range(len(list3)) if list3[i]==1]

return dataset

def findallrepresentatives(self):

import pandas as pd

import itertools

from itertools import chain , combinations

import numpy as np

#input: n: number of variables , p: number of state , m: number of points

#output: count2: number of equivalence classes ,

#information_list [0: count2 ]: summary of information of each equ_class ,

#number_class (1D-list of number ): number of sets in each EC

wholedataset1=self.subset_m ()

# generate whole dataset of n variable , p state , m points

wholedataset1=self.change_type(wholedataset1)

# change dataset from list of tuple to list of list of list

#step1: generate equ_class

X=wholedataset1 [0]

# select first set in wholedataset as origin set of points to start.

R,distance ,count ,equ_class1=self.findrepresentativepoints(X)

# compute first equ_class and representative

information_list = [[0 for x in range (4)] for y in range (1000)]

#initialize information list

information_list [0][0] =R

# assign representative to first column ,first row

information_list [0][1] =distance

# assign distance to second column , first row

#step2: remove equ_class

number_list=list ([])

number_list.append(len(wholedataset1 ))
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# initialize remain sets after removing each equ_class and

#assign first element with len(wholedataset1)

dataset=self.removeclass(wholedataset1 ,equ_class1)

number_list.append(len(dataset ))

# remove first equ_class from wholedataset1 and

#assign the length of removed dataset to number_list

#step3: equ_class output

count2 =0 # initialize number of equ_class

#generate dataframe of equ_class , assign the equ_class and

#distance of each set , and save it to txt file.

equ_class=pd.DataFrame(equ_class1)

filename1 = ’equ_p’+str(self.p)+’_n’+str(self.n)+’_m’

filename2 = str(self.m) +’_’+ str(count2 )+’.txt’

distance_data =[0 for i in range(len(equ_class ))]

for i in range(len(equ_class )):

distance_data[i]=self.get_distance_origin(equ_class.iloc[i,:])

equ_class[’distance ’]= distance_data

equ_class = equ_class.sort_values ([’distance ’])

equ_class.to_csv(filename1 + filename2)

#redo the steps 1,2,3 above until all equivalence

#classes are removed from wholedataset1.

while len(dataset )>0:

count2=count2 +1

X=dataset [0]

R,distance ,count1 ,equ_class=self.findrepresentativepoints(X)

dataset=self.removeclass(dataset ,equ_class)

information_list[count2 ][0]=R

information_list[count2 ][1]= distance

number_list.append(len(dataset ))

equ_class=pd.DataFrame(equ_class)

filename1 = ’equ_p’+str(self.p)+’_n’+str(self.n)+’_m’

filename2 = str(self.m) +’_’+ str(count2 )+’.txt’

distance_data =[0 for i in range(len(equ_class ))]

for i in range(len(equ_class )):

distance_data[i]=self.get_distance_origin(equ_class.iloc[i,:])

equ_class[’distance ’]= distance_data

equ_class = equ_class.sort_values ([’distance ’])

equ_class.to_csv(filename1+filename2)
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count2=count2 +1

number_class =[0]* count2

for i in range(0,count2 ):

number_class[i]= number_list[i]-number_list[i+1]

for i in range(0,count2 ):

information_list[i][2]= number_class[i]

# output summary file for all equivalence classes

information=pd.DataFrame(information_list [0: count2 ])

filename1=’equ_p’+str(self.p)+’_n’+str(self.n)+’_m’

+str(self.m) +’_summary.txt’

information.to_csv(filename1)

return count2 ,information_list [0: count2]

#adding fewest points to get unique GB.

def calculate_total(self , newcontent , m1_number ):

string2 = newcontent[i][1]

string3 = string2.split(’},’)

list1 = []

if len(string3) == m1_number:

for i in range(len(string3 )):

newlist = []

for j in range(len(string3 [0])):

if string3[i][j] in [’0’,’1’]:

newlist.append(int(string3[i][j]))

list1.append(newlist)

self.total.append(list1)

def checkm4add1pt(self , m4gbnumber , m5gbnumber , m1_number , m2_number ):

m4gbnumber = str(m4gbnumber)

#print(m4gbnumber)

m5gbnumber = str(m5gbnumber)

#print(m5gbnumber)

with open(’/Users/MacBook/Downloads/p2n4.txt’) as f:

content = f.readlines ()

#print(content [:100])

newcontent = []
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for i in range(len(content )):

newcontent.append(content[i]. split(’;’)[:2])

#print(newcontent)

self.total = []

max1= 0

for i in range(len(newcontent )):

if len(newcontent[i][1]. split(’},’)) == m1_number:

if int(newcontent[i][0]) > max1:

max1 = int(newcontent[i][0])

string2 = ’’

string3 = []

if newcontent[i][0] == m4gbnumber:

self.calculate_total(newcontent , m1_number)

m4gb6 = self.total

print(’Maximum number of GB models:’, max1)

if int(m4gbnumber) > max1:

print("Error! larger than maximum number of GB")

if int(m4gbnumber) == max1:

print("this is the largest number of GB in this case!")

newcontent = []

for i in range(len(content )):

newcontent.append(content[i].split(’;’)[:2])

self.total = []

for i in range(len(newcontent )):

string2 = ’’

string3 = []

if newcontent[i][0] == m5gbnumber:

self.calculate_total(newcontent , m2_number)

m5gb1 = self.total

for set1 in m4gb6:

#print(’set1 ’,set1)

for set2 in m5gb1:

#print(’set2 ’,set2)

flag = 0

for set11 in set1:

if set11 in set2:

flag += 1
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if flag == m1_number:

self.path = True

self.res.append ((set1 , set2))

#print(self.res)

print(’end of the test’)

def checkaddone(self , m4gbnumber , m5gbnumber , m1_number , m2_number ):

self.path = False

self.res = []

self.checkm4add1pt(m4gbnumber , m5gbnumber , m1_number , m2_number)

if not self.path :

print(self.path)

print(’There is no add one point path for ’

+ str(m4gbnumber) +’ Gbs ’ + )

print(str(m1_number) + ’ points to ’ + str(m5gbnumber)

+’ Gbs ’ +)

print(str(m2_number) + ’ points ’ )

else:# write result to file:

print(self.path)

print( str(m4gbnumber) + ’ Gbs for ’ + str(m1_number)

+’ points to ’ +)

print(str(m5gbnumber) + ’ Gbs for ’ + str(m2_number)

+’ points ’)

f1 = str(m4gbnumber )+’gb’+str(m1_number)

f2 = ’pts’+str(m5gbnumber )+’gb’+str(m2_number )+’pts’

file = open(’/UniqueGBmodelresults/’ + f1 + f2+’.txt’,’w’)

file.write(str(self.res))

file.close ()

print(’file has been created in your folder ’)
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York, 1998), B. Buchberger and F. Winkler, Eds., vol. 251 of London Mathematical
Society Lecture Notes Series, Cambridge University Press, pp. 179–204.

[40] Santillán, M. Bistable behavior in a model of the lac operon in Escherichia coli
with variable growth rate. Biophysical Journal 94, 6 (2008), 2065–2081.

[41] Schlitt, T., and Brazma, A. Current approaches to gene regulatory network
modelling. BMC Bioinformatics 8 (09 2007), 1471–2105.

[42] Steinway, S. N., Wang, R.-S., and Albert, R. Discrete Dynamic Modeling: A
Network Approach for Systems Pharmacology. In Systems Pharmacology and
Pharmacodynamics (2016), Springer International Publishing, pp. 81–103.

[43] Stigler, B. Polynomial Dynamical Systems in Systems Biology. In Proceedings of
Symposia in Applied Mathematics (2007), vol. 64, p. 53.

[44] Stigler, B., and Zhang, A. The number of Gröbner bases in finite fields. AWM
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