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Measurement error in observations is widely known to cause bias and a loss of power

when fitting statistical models, particularly when studying distribution shape or the rela-

tionship between an outcome and a variable of interest. Most existing correction methods

in the literature require strong assumptions about the distribution of the measurement

error, or rely on ancillary data which is not always available. This limits the applicability

of these methods in many situations. Furthermore, new correction approaches are also

needed for high-dimensional settings, where the presence of measurement error in the

covariates adds another level of complexity to the desirable structure of the models, such

as sparsity. This dissertation presents new correction methods for measurement error in

two important statistical problems: density deconvolution and errors-in-variables models.

For both density deconvolution and linear errors-in-variables regression, new estimators

based on the empirical phase function are proposed. Compared to the existing methods,

phase function-based estimators require only mild assumptions about the measurement

error distribution. For high-dimensional errors-in-variables models, a new estimator that

extends the flexible Simulation-Extrapolation (SIMEX) correction procedure is proposed

in order to achieve sparsity of the solution. All the new estimators have been shown to

have strong theoretical support and good finite sample performance. Data examples are

provided to illustrate the practical use of each estimator in reality.
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Chapter 1

Introduction

Statistics is the science of collecting, visualizing, and analyzing data. However, data

are obtained from measurement processes that are subject to errors. The sources of

measurement error can range from the lack of accuracy in the instruments used to measure

variables to the inadequacy of short-term measurements for long-term variables. As a

result, it is common that the obtained data are not samples of the variables of interests,

but consist of contaminated versions of these variables. Broadly speaking, measurement

error modeling refers to statistical models that correct for measurement errors in such

scenarios.

Measurement errors are well-known to have a substantial impact on statistical models.

Particularly, the impacts are most serious when trying to understand the effect of the

variable of interest on a specific measured outcome, or when trying to understand the

shape of the population distribution of the variable of interest. In general, measurement

errors cause bias and loss of power in statistical models. For example, consider the simple

linear regression model, Y = β0 + β1X + ε, and the data consists of pairs (Yi,Wi) with

Wi = Xi + Ui, i = 1, . . . , n, with Ui being the measurement error for observation i. If

measurement error is ignored, regression of Y on W results in an inconsistent estimator of

both the intercept β0 and the slope β1, see Carroll et al. (2006). Therefore, measurement

error should be accounted for to understand the true relationship between Y and X.

The above example represents a typical errors-in-variables (EIV) models. In such

models, the general interest is to model an outcome of interest Y as a function of

p1−dimensional error-prone covariates X and p2-dimensional error-free covariates Z.

The function is usually involved some some parameters Θ. However, the observed sample

consists of measurements (W1,Z1, Y1), . . . , (Wn,Zn, Yn), withWi = Xi+Ui, i = 1, . . . , n
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where the measurement errors vector Ui are assumed to have mean zero and covariance

matrix Σu. The parameter Θ can be finite dimensional, such as in the case of linear and

generalized linear models, Cox survival models, or infinite dimensional, such as in the

case of nonparametric regression models.

Most popular correction methods for measurement errors in EIV models require strong

distributional assumptions or potentially unavailable auxiliary data for model estimation.

Specifically, it is generally assumed that the covariance matrix Σu is known. In the simple

linear regression case (p1 = 1 and p2 = 0), a consistent and unbiased estimator of the

slope β1 is obtained as β̂1 = β̂W1 σ
2
X/(σ

2
X +σ2

U), where β̂W1 is the estimated slope obtained

by regressing Y on W . Calculation of this estimator requires that the variance of measure-

ment error σ2
U be known or estimable. In the multiple predictor setting, there is generally

no closed-form solution for the corrected estimator. Instead, simulation-extrapolation

(SIMEX), first proposed by Stefanski and Cook (1995) and Küchenhoff et al. (2006), is

frequently used. The SIMEX procedure evaluates the effects of measurement error on

the estimator by increasing the level of measurement error through a simulation step,

and then extrapolating to the setting of no measurement error. SIMEX also requires

that Σu be known or estimable. Another approach to correcting for measurement error

is regression calibration, see Carroll and Stefanski (1990). Here, a regression of X on W

is used to estimate X, say X̂, and then the linear model parameters are estimated by

regressing Y on X̂. The regression of X on W is assumed to be available through an

either validation data or an instrumental variable T .

When the distributions of X and U are fully specified, likelihood methods can also

be used to estimate parameters, see Schafer and Purdy (1996) and Higdon and Schafer

(2001). Implementation of these likelihood methods generally requires the use of numeri-

cal methods such as Gaussian quadrature or Monte Carlo integration. The EM algorithm

of Dempster et al. (1977) can also be used. An approach that does not require the distri-

bution of X to be known is the conditional score method of Stefanski and Carroll (1987).

However, this method does require that both parametric models for Y |X and W |X be

specified.

2



For the linear EIV models where Y = Xβ + ε, W = X + U , another approach to

estimating coefficients β is based on the method of moments, dating back to the work of

Reiersøl (1941), who estimated the slope of the simple EIV model through third-order

moments. Gillard (2014) considered slope estimators based on third and fourth moments,

and finds these to have large variances. More recently, methods based on the matching of

higher-order moments (or variants such as cumulants) have been explored with renewed

interest. Erickson and Whited (2002) expressed high-order residual moments as nonlin-

ear functions of both coefficients and nuisance parameters, while Erickson et al. (2014)

expressed the third and fourth residual cumulants as a linear function of the coefficients.

The latter also established that the two methods were asymptotically equivalent. The

method of moments approach is nonparametric, in that it does not require parametric

distributions to be specified for any of the components. However, an implementation

based on the first M sample moments generally requires 2M finite population moments.

In high dimensional setting, the presence of measurement error introduces an added

layer of complexity and can have severe consequences on the lasso estimator: the num-

ber of non-zero estimates can be inflated, sometimes dramatically, and as such the true

sparsity pattern of the model is not recovered, see Rosenbaum et al. (2010). Several

methods have been proposed that correct for measurement error in high-dimensional set-

ting. Rosenbaum et al. (2010) proposed a matrix uncertainty selector (MU) for additive

measurement error in the linear model. Rosenbaum et al. (2013) proposed an improved

version of the MU selector, and Belloni et al. (2017) proved its near-optimal minimax

properties and developed a conic programming estimator that can achieve the minimax

bound. The conic estimators require selection of three tuning parameters, a difficult task

in practice. Another approach for handling measurement error is to modify the loss and

conditional score functions used with the lasso, see Sørensen et al. (2015) and Datta

et al. (2017). Additionally, Sørensen et al. (2018) developed the generalized matrix un-

certainty selector (GMUS) for the errors-in-variables generalized linear models. Both the

conditional score approach and GMUS require the subjective choice of tuning parameters.

The second problem where it is important to correct for measurement errors is in

3



density estimation. This problem is often referred to as density deconvolution. When the

noise-to-signal ratio is large, implementing a correction becomes crucial as the density of

the observed data can deviate substantially from the true density of interest. Let fX(x)

denote the density function of a random variable X, and assume that it is of interest to

estimate fX(x) when X is not directly observable. Specifically, we are only able to observe

contaminated versions of X, say W = X + U , where U represents measurement error.

Thus, we are interested in estimating the density function of X based on an observed

sample W1,W2, ...,Wn with Wi = Xi + Ui, i = 1, . . . , n. Here, the Xi are an iid sample

from a distribution with density fX , with Ui representing the measurement error of the

ith observation. The Ui are assumed both mutually independent and independent of the

Xi.

The nonparametric density deconvolution problem when first considered assumed that

the distribution of the measurement error was fully known, see Carroll and Hall (1988)

and Stefanski and Carroll (1990). The development that followed in the literature mostly

considered the case of known measurement error, and generally treated the measurement

error as homoscedastic, including Fan (1991a), Fan (1991b), Fan and Truong (1993), Hall

and Qiu (2005), Lee et al. (2010). The case of heteroscedastic measurement error was

considered by Fan (1992) and Delaigle and Meister (2008). The problem of the measure-

ment error having an unknown distribution was considered by Diggle and Hall (1993)

and Neumann and Hössjer (1997) who assumed that samples of error data are available,

and by Delaigle et al. (2008) who used replicate data to estimate the entire character-

istic function of the measurement error. McIntyre and Stefanski (2011) considered the

heteroscedastic case with replicate observations. Their work assumed the measurement

errors all follow a normal distribution with unknown variances only. The phase function

deconvolution approach developed by Delaigle and Hall (2016) is groundbreaking in that

they estimate the density function fX with both the measurement error distribution and

variance unknown, and without the need for replicate data. Their method is based on

minimal assumptions: The measurement error terms Ui are only assumed to be mutu-

ally independent and independent of the Xi and to have a strictly positive characteristic
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function. However, Delaigle and Hall (2016) only considered the case where the Ui are

homoscedastic, while heteroscedastic data is a reality often encountered in practice. In

fact, the variance of measurement error often increases with the true underlying value,

see Guo and Little (2011).

This thesis proposes new estimators based on the empirical phase functions and a

new estimation procedure for errors-in-variables models in high dimensional settings.

Specifically, in chapter 2, we develop a new density deconvolution estimator when the

measurement errors are heteroscedastic of unknown type. In chapter 3, we apply the phase

function method to linear errors-in-variables (EIV) models. In chapter 4, we propose a

new estimation procedure that augments the traditional SIMEX for EIV models in high

dimensional settings. Chapter 5 concludes the thesis with a brief summary and future

direction.
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Chapter 2

Density Deconvolution with Heteroscedastic Measurement Error of Unknown Type

2.1. Overview

This chapter considers the problem of density estimation when the measurement er-

ror is present. The density estimators that adjust for measurement error are broadly

referred to as density deconvolution estimators. While most methods in the literature

assume the distribution of the measurement error to be fully known, a recently proposed

method based on the empirical phase function (EPF) can deal with the situation when

the measurement error distribution is unknown. The EPF density estimator has only

been considered in the context of additive and homoscedastic measurement error; how-

ever, the measurement error of many biomedical variables is heteroscedastic in nature.

In this chapter, we developed a phase function approach for density deconvolution when

the measurement error has unknown distribution and is heteroscedastic. A weighted em-

pirical phase function (WEPF) is proposed where the weights are used to adjust for het-

eroscedasticity of measurement error. The asymptotic properties of the WEPF estimator

are evaluated. Simulation results show that the weighting can result in large decreases in

mean integrated squared error (MISE) when estimating the phase function. The estima-

tion of the weights from replicate observations is also discussed. Finally, the construction

of a deconvolution density estimator using the WEPF is compared to an existing de-

convolution estimator that adjusts for heteroscedasticity, but assumes the measurement

error distribution to be fully known. The WEPF estimator proves to be competitive,

especially when considering that it relies on minimal assumption of the distribution of

measurement error.
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2.2. Introduction

Many biomedical variables cannot be measured with great accuracy, leading to ob-

servations contaminated by measurement error. Examples of such variables have been

suggested in numerous epidemiological and clinical settings, including the measurement

of blood pressure, radiation exposure, and dietary patterns, see Carroll et al. (2006). The

sources of measurement error range from the instruments used to measure the variables of

interest to the inadequacy of short-term measurements for long-term variables; as such,

the observed measurements have larger variance than the true underlying quantity of

interest. The presence of measurement error can have a substantive impact on statistical

inference. For example, not correcting for measurement error can result in biased param-

eter estimates, and loss of power in detecting relationships among variables, see Carroll

et al. (2006). Appropriate corrections need to be implemented when performing any data

analysis with measurement error present to avoid making erroneous inferences.

In this chapter, we develop the phase function approach for density deconvolution

when the measurement error has unknown distribution and is heteroscedastic. The model

considered in this chapter assumes the observed data are of the form Wi = Xi+σiεi where

the Xi are an iid sample from fX , the measurement error terms εi are independent and

each εi has a positive characteristic function and satisfies E(εi) = 0 and Var(εi) = 1.

The σi are non-negative constants and represent measurement error heteroscedasticity.

Specifically, Var(Wi) = σ2
X + σ2

i where σ2
X denotes the variance of X. Additionally, it

is assumed that the random variable X is asymmetric. This assumption is fundamental

to the identifiability of the phase function of X, which forms the basis of estimation. A

more detailed discussion of the model assumptions is presented in Section 2.3.1, see also

Delaigle and Hall (2016).

Note that the heteroscedasticity of the measurement error will require either that the

constants σi be known, or that there are replicate data so that the σi can be estimated

from the data. To illustrate the use of this estimator in a biomedical setting, a real-

data example is included in Section 2.5. This example uses data from the Framingham
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Heart Study, which collected several variables related to coronary heart disease for study

subset of n = 1615 patients. For each patient, two measurements of long-term systolic

blood pressure (SBP) were collected at each of two examinations. The distribution of

true long-term SBP is estimated using the empirical phase function (EPF) and weighted

empirical phase function (WEPF) density deconvolution estimator. These estimators are

compared to a naive density estimator that makes no correction for measurement error,

as well as the estimator of Delaigle and Meister (2008) assuming the measurement error

follows a Laplace distribution.

The remainder of the chapter is organized as follows. Section 2.3 discusses the model

assumptions, considers estimation of the phase function and introduces a weighted em-

pirical phase function (WEPF) which adjusts for heteroscedasticity in the data. A small

simulation study compares two different weighting schemes. Section 2.4 shows how the

WEPF can be inverted to estimate the density function fX and presents an approxima-

tion of the asymptotic mean integrated squared error for selecting the bandwidth. The

WEPF deconvolution estimator is compared to that of Delaigle and Meister (2008), who

treat the heteroscedastic case with known measurement error distribution. Section 2.5

illustrates the method using data from the Framingham Heart Study and Section 2.6

contains some concluding remarks.

2.3. Phase Function Estimation

2.3.1. Model and Main Assumptions

The model considered in the chapter assumes the observed data are of the form Wi =

Xi + σiεi where the Xi are an an iid sample from fX , the measurement error terms

εi are mutually independent and independent from Xi, and that each εi has a strictly

positive characteristic function. Note that the model does not require that the εi have the

same type of distribution, but only that each εi has a characteristic function satisfying

the above requirement. The assumption of a strictly positive characteristic function is

equivalent to εi being symmetric about zero with support on the entire real line. Many

commonly used continuous distributions, including the Gaussian, Laplace, and Student’s
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t distributions, satisfy this assumption. In general, the only symmetric distributions

excluded are those defined on bounded intervals (such as the uniform). For convenience,

it is assumed that Var[εi] = 1, so that the constant σ2
i represents the heteroscedastic

measurement error variance of the ith observation. Specifically, Var(Wi) = σ2
X +σ2

i where

σ2
X denotes the variance of X. The density function fX is assumed to be asymmetric.

More specifically, it is assumed that the random variable X does not have a symmetric

component. This means that there is no symmetric random variable S for which X can

be decomposed as X = X0 + S for arbitrary random variable X0. This asymmetry is

crucial to the ability to estimate the true density function of X. As discussed in Delaigle

and Hall (2016), if one were to assumed that the density function fX were sampled from

a random universe of distributions, then the assumption of indecomposability is satisfied

with probability 1. Practically, the indecomposability assumption is not unreasonable

as data are rarely observed from a perfectly symmetric distribution. There is a special

type of distribution for X that cannot be recovered by this method, namely when X is

itself a convolution (sum) of a skew distribution and a symmetric distribution. The result

from Delaigle and Hall (2016) indicates that this need not be a concern for the general

practitioner implementing this method. While the exposition in this chapter assumes

that the measurement error components are independent, the methodology could be

generalized to a setting where Cov[εi, εj] = σij 6= 0 for some pairs i 6= j. This would

not affect the proposed estimator directly, but would have consequences for how the

bandwidth is chosen. The latter question is beyond the scope of the present chapter.

2.3.2. The Weighted Empirical Phase Function (WEPF)

The phase function of a random variable X, denoted ρX(t), is defined as the charac-

teristic function of X standardized by its norm,

ρX(t) =
φX(t)

|φX(t)|
(2.1)

with φZ(t) the characteristic function of a random variable Z and |z| = (zz̄)1/2 denoting

the norm function with z̄ the complex conjugate of z. Let W = X + σε with ε having
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characteristic function φε(t) ≥ 0 for all t. It is easy to verify that the random variables

W and X have the same phase function, ρW (t) = ρX(t). Delaigle and Hall (2016) used

this relation and an empirical estimate of φW (t) in equation (2.1) to estimate the phase

function, see their paper for details on implementation.

In the case of heteroscedastic errors, we propose to use a weighted empirical phase

function (WEPF) to adjust for heteroscedasticity. Define function

φ̂W (t|q) =
n∑
j=1

qj exp(itWj) (2.2)

where q = {q1, . . . , qn} denotes a set of non-negative constants that sum to 1. Function

(2.2) is a weighted empirical characteristic function and noting random variable Wi =

Xi + σiεi has characteristic function φWi
(t) = φX(t)φεi(σit), i = 1, . . . , n, it follows that

E[φ̂W (t|q)] = φX(t)
n∑
j=1

qjφεj(σjt).

The WEPF is defined as

ρ̂W (t|q) =
φ̂W (t|q)

|φ̂W (t|q)|
=

∑
j qj exp(itWj){∑

j

∑
k qjqk exp[it(Wj −Wk)]

}1/2
. (2.3)

For qeq = {1/n, . . . , 1/n}, ρ̂W (t|qeq) essentially reduces to the phase function proposed

by Delaigle and Hall (2016). Use of weights choice qeq will be referred to as the empirical

phase function (EPF) estimator. Other choices of weights can serve as an adjustment

for heteroscedasticity – observations with large measurement error variance can be down-

weighted to have smaller contribution to the phase function estimate.

The asymptotic properties of the WEPF are given in the Theorem 2.1 below.

Theorem 2.1. Assume that maxj qj = O(n−1) and that each measurement error compo-

nent εj has a strictly positive characteristic function. It then follows that the WEPF as

defined in (2.3) is a consistent estimator of the phase function of W , and hence of the

phase function of X. Also, the asymptotic variance of the WEPF is given by
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AVar[ρ̂W (t|q)− ρW (t)] =
1

2 |φX (t)|2 ψε (t|q)

n∑
k=1

q2k
[
1− |φX (t)|2 φ2

εk
(σkt) + φ2

εk
(σkt)

]
− Re {φ2

X (t)φX (−2t)}
2 |φX (t)|4 ψε (t|q)

n∑
k=1

q2kφεk(2σkt) (2.4)

where ψε (t|q) = [
∑

k qkφεk(σkt)]
2 .

The proof of Theorem 2.1 can be found in the Appendix 2.7.1. Equation (2.4) shows

that the asymptotic variance of ρ̂W (t|q) depends on φεj(t) j = 1, . . . , n, the characteristic

functions of the measurement error components. While one would ideally like to choose

weights q that minimize said asymptotic variance, this is unrealistic as the method pro-

posed in this chapter makes no parametric assumptions about the measurement error,

meaning the φεj are unknown. A much simpler weighting scheme is proposed here, relying

only on knowledge of the measurement error variances.

Note that E(Wi) = E(X) = µ. As such, for weights q, the estimator µ̂q =
∑n

j=1 qjWj

is an unbiased estimator of µ. The weights

q∗i = σ−2Wi

[ n∑
j=1

σ−2Wj

]−1
= (σ2

X + σ2
i )
−1
[ n∑
j=1

(σ2
X + σ2

j )
−1
]−1

(2.5)

result in a minimum variance estimator of µ. This does have a connection to the phase

function, as ρ′X(0) = µ; see the supplemental material of Delaigle and Hall (2016) for

the connection between the phase function and the odd moments of the underlying dis-

tribution. Let qopt = {q∗1, . . . , q∗n} denote the vector of mean-optimal weights and let

WEPFopt denote the weighted empirical phase function estimator calculated using the

mean-optimal weights. Both the performance of the EPF and the WEPFopt will be con-

sidered for estimating the phase function and density function.

2.3.3. Estimating the Variance Components

In practice, it is often the case that neither the measurement error variances σ2
1, . . . , σ

2
n

nor σ2
X is known. These quantities can be easily estimated from replicate observations.
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This section describes how to estimate the variance components for a heteroscedastic

measurement error variance model. In a setting where the underlying measurement error

variance structure is unknown, the procedure outlined in this section can be used to

estimate the mean-optimal weights in (2.5) used for estimating the WEPF.

Consider replicate observations, Wij = Xi + τieij, j = 1, . . . , ni, i = 1, . . . , n with

mini ni ≥ 2, E(eij) = 0, Var(eij) = 1, and τ 2i representing heteroscedastic measurement

error variance at the observation level. Note that Wij −Wij′ = τi (eij − eij′) and thus

E
[
(Wij −Wij′)

2] = 2τ 2i for j 6= j′. Define grand mean

W̄ =
1

n

n∑
i=1

[
1

ni

ni∑
j=1

Wij

]
=

1

n

n∑
i=1

Xi +
1

n

n∑
i=1

[
τi
ni

ni∑
j=1

eij

]

and note that E(W̄ ) = µ and

Var(W̄ ) =
σ2
X

n
+

1

n2

n∑
i=1

τ 2i
ni
.

It can also be shown that

E
[(
Wij − W̄

)2]
= σ2

X + τ 2i +O(n−1). (2.6)

Subsequently, the variance components can be estimated by

τ̂ 2i =
1

ni (ni − 1)

ni−1∑
j=1

ni∑
j′=j+1

(Wij −Wij′)
2 , i = 1, . . . , n,

and, motivated by (2.6), σ̂2
X =

1

N

∑n
i=1

∑ni

j=1(Wij − W̄ )2 − 1

n

∑n
i=1 τ̂

2
i with N =

∑
i ni.

The analysis then proceeds by defining individual-level averages Wi = (n−1i )
∑ni

j=1Wij and

noting that Wi = Xi + σiεi where σi = τi/
√
ni and εi has a distribution with a positive

characteristic function whenever the same is true for all elements of the set {ei1, . . . , eini
}.

The estimate of σi is given by σ̂i = τ̂i/
√
ni.

12



2.3.4. Simulation Study

A small simulation study was conducted to compare the performance of the EPF and

WEPFopt estimators. The true Xi data were sampled from the following three distribu-

tions: (1) X ∼ χ2
3/
√

6 (Scaled χ2
3), (2) X ∼ (0.5N(1, 1) + 0.5χ2(5)) /

√
9.5 (Mixture 1),

and (3) X ∼ (0.5N(5, 0.62) + 0.5N(2.5, 1)) /
√

2.2425 (Mixture 2). The first two distri-

butions are right-skewed while the third distribution is bimodal. All three distributions

were scaled to have unit variance. The phase functions of these distributions are shown

in Figure 2.4 of the Appendix 2.7.3. The measurement error terms εij = τieij were

sampled from a normal distribution with mean 0 and variance structure τ 2i = Jσ2
i with

σ2
i = 0.025σ2

X , i = 1, . . . , n/2 and σ2
i = 0.975σ2

X , i = n/2 + 1, . . . , n. For each candi-

date distribution of X, a total of N = 1000 samples Wij = Xi + τieij, i = 1, . . . , n and

j = 1, . . . , J were generated for sample sizes n = 250, 500, and 1000. Scenarios with no

replicates (J = 1) and also with replicates (J = 2 and 3) were considered in the simula-

tion. Under the scenario with no replication, the measurement error variance was treated

as known. In settings with J = 2 and 3 replicates, the measurement error variances were

estimated from the replicate data using the procedure outlined in Section 2.3.3. The

choice of observation-level measurement error variance τ 2i = Jσ2
i results in the combined

replicate values Wi = J−1
∑

jWij having measurement error variance σ2
i . This was done

to make the simulation results with and without replicates easily comparable. For each

simulated dataset, the mean-optimal weight vector qopt was calculated (or estimated in the

case of replicate data) using equation (2.5). The WEPFopt estimator was then calculated

using these weights. Additionally, the EPF estimator was calculated using equal weights

for all observations. As the quality of the empirical characteristic function decreases with

increasing t, the suggestion of Delaigle & Hall Delaigle and Hall (2016) was followed and

the estimated phase functions were only computed on the interval [−t∗, t∗], where t∗ is

the smallest t > 0 such that |φ̂W (t|q)| < n−1/4. The EPF and WEPF are compared

using (estimated) mean integrated squared error (MISE) ratios, MISEeq/MISEopt, where

MISEeq and MISEopt denote the MISEs of the EPF and WEPFopt estimators respectively.

The results are summarized in Table 2.1.
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Replicates Distribution n = 250 n = 500 n = 1000

No replicate X ∼ χ2
3/
√

6 1.220 (0.021) 1.280 (0.020) 1.277 (0.023)
X ∼ Mixture 1 1.298 (0.023) 1.321 (0.022) 1.303 (0.022)
X ∼ Mixture 2 1.065 (0.017) 1.085 (0.018) 1.109 (0.019)

2 replicates X ∼ χ2
3/
√

6 1.075 (0.016) 1.155 (0.018) 1.139 (0.018)
X ∼ Mixture 1 1.044 (0.007) 1.021 (0.006) 1.005 (0.004)
X ∼ Mixture 2 1.003 (0.004) 1.007 (0.003) 1.007 (0.002)

3 replicates X ∼ χ2
3/
√

6 1.150 (0.019) 1.177 (0.019) 1.150 (0.020)
X ∼ Mixture 1 1.020 (0.008) 1.017 (0.006) 1.001 (0.004)
X ∼ Mixture 2 1.001 (0.004) 1.005 (0.003) 1.008 (0.002)

Table 2.1: The ratio MSEeq/MSEopt and the corresponding jackknife standard error (in
parentheses) when estimating the phase function of X with normal measurement error
and variance structure given in Case 1 of Table 2.2, based on N = 1000 samples, when
there are no replicate (assuming the true variances of measurement errors are known), 2
replicates, and 3 replicates per observation.

In Table 2.1, an MISE ratio greater than 1 indicates better performance of the WEPFopt

estimator compared to the EPF estimator. The table also reports estimated standard

errors for the MISE ratios. The standard errors were estimated using the following jack-

knife procedure. For the jth simulated sample, let (ISEeq,j, ISEopt,j) denote the integrated

squared error for the EPF and the WEPFopt respectively, j = 1, . . . , N . Let R(−j) denote

the MISE ratio calculated after deleting the jth ISE pair. Then, the jackknife standard

error for the MISE ratio is given by

SEjack =

√√√√ 1

N

N∑
j=1

(
R(−j) − R̄

)2

where R̄ = N−1
∑N

j=1R(−j).

Inspection of Table 2.1 shows that the WEPFopt performs better than the EPF for

the measurement error configuration considered. When the measurement error variances

are known, the gain from using WEPFopt can be substantial. Specifically, the MISE of

WEPFopt is seen to between 6.5% and 30% lower than the MISE of the EPF for the

distributions considered. When there are J = 2 and J = 3 replicates per observation,

the WEPFopt performs slightly better than the EPF for the scaled χ2
3 distribution, while

their performance is nearly identical for Mixtures 1 and 2. In this setting, the use of

the suggested weighting scheme never results in poorer performance of the WEPFopt
14



Case Variance Structure

Case 1 σ2
i = 0.025σ2

X , i = 1, . . . , n/2 and σ2
i = 0.975σ2

X , i = n/2 + 1, . . . , n

Case 2 σ2
i = (0.25 + 0.5i/n)σ2

X , i = 1, . . . , n

Case 3 σ2
i = (0.025 + 0.95i/n)σ2

X , i = 1, . . . , n

Table 2.2: Three measurement error variance structures used in simulations.

Replicates X Case 1 Case 2 Case 3

No replicate X ∼ χ2
3/
√

(6) 1.277 (0.023) 1.030 (0.005) 1.113 (0.002)
X ∼ Mixture 1 1.303 (0.022) 1.027 (0.006) 1.117 (0.012)
X ∼ Mixture 2 1.109 (0.019) 1.011 (0.006) 1.039 (0.012)

2 replicates X ∼ χ2
3/
√

(6) 1.139 (0.018) 0.925 (0.014) 0.978 (0.015)
X ∼ Mixture 1 1.005 (0.004) 0.992 (0.005) 0.998 (0.004)
X ∼ Mixture 2 1.007 (0.002) 1.001 (0.003) 1.002 (0.002)

3 replicates X ∼ χ2
3/
√

(6) 1.150 (0.020) 0.965 (0.014) 1.034 (0.016)
X ∼ Mixture 1 1.001 (0.004) 0.994 (0.004) 0.998 (0.004)
X ∼ Mixture 2 1.008 (0.002) 0.999 (0.002) 1.002 (0.002)

Table 2.3: The effect of the error variance structure on the ratio MISEeq/MISEopt and
the corresponding jackknife standard error (in parentheses) based on 1000 samples of size
n = 1000.

estimator compared to the EPF estimator.

Next, the effect of different underlying measurement error variance structures on the

MISE ratio of the EPF and WEPFopt was examined. The sample size was fixed at

n = 1000 and the three different measurement error variance structures considered are

outlined in Table 2.2. The ratios MSEeq/MSEopt based on 1000 simulated datasets are

reported in Table 2.3. Again, jackknife estimates of standard error are also reported.

Inspection of Table 2.3 illustrates the effect of different heterogeneity patterns of mea-

surement error variances on the performance of the EPF and WEPFopt estimators. When

the measurement error variances are known (J = 1), the WEPFopt has a lower MISE than

the EPF in all the considered configurations, with the heterogeneity pattern only affect-

ing the size of the improvement. In the case of J = 2 replicates per observation, there

were four instances in Case 2 and Case 3 of measurement error variances where the EPF

performed better than the WEPFopt. This occurrence was likely because the estimated

weights for WEPFopt were calculated from estimated variance components based on only

a small number of replicates. When the number of replicates increases from J = 2 to
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J = 3, measurement error variances are estimated with higher accuracy, so the MISE

ratio increase in general. Note that, although using WEPFopt can sometimes lead to a

worse performance, the loss tends to be small (at most 8% as seen in the Case 2 mea-

surement error variance setting when X follows a Scaled-χ2
3 with 2 replicates); however,

using WEPFopt can still result in large gains (as much as 15% in the Case 1 measurement

error variance setting when X follows a Scaled-χ2
3 with 3 replicates).

In general, the simulation study shows that weighting to adjust for heteroscedasticity

in estimating the phase function never results in a much poorer estimator, but sometimes

leads to a large gain in efficiency. The loss/gain depends on how accurate measurement

error variances were estimated as evidenced by the improvement in going from J = 2

to J = 3 replicates. In the next section, this is explored in the context of density

deconvolution.

2.4. Density Estimation

2.4.1. Constructing an Estimator of fX

The outline here is a brief overview of how the method of Delaigle and Hall (2016) can

be implemented using the WEPF to estimate the density function fX . Let φ̂W (t|q) and

ρ̂W (t|q) denote the weighted empirical characteristic function and corresponding WEPF

respectively. Let w(t) denote a non-negative weight function. Also let xj, j = 1, . . . ,m

denote a set of arbitrary values with respective probability masses pj. Delaigle and Hall

(2016) suggest a two-stage estimation method for fX . First, one finds a characteristic

function of the form ψ(t|x,p) =
∑

j pj exp(itxj) that has phase function close to the

WEPF. Since this characteristic function corresponds to a discrete distribution with

probability mass pj at the point xj for j = 1, . . . ,m, the second stage of estimation

involves smoothing ψ(t|x,p) before applying an inverse Fourier transformation to obtain

the estimated density f̂X(x). Delaigle and Hall (2016) suggest sampling the xj uniformly

on the interval [min Wi, max Wi] with m = 5
√
n. The goal is then to find the set {pj}mj=1
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that minimizes

T (p) =

∫ ∞
−∞

∣∣∣∣ρ̂W (t|q)− ψ(t|x,p)

|ψ(t|x,p)|

∣∣∣∣2w(t)dt (2.7)

under the constraint of also minimizing the variance of the corresponding discrete dis-

tribution, v(p) =
∑m

j=1 pjx
2
j − (

∑m
j=1 pjxj)

2. This non-convex optimization problem of

finding the solution {p̂j}mj=1 can be solved using MATLAB. Details are given in Delaigle

and Hall (2016). The present implementation differs only in that the estimated phase

function is weighted to adjust for heteroscedasticity. Beyond using a different estimator

of the phase function, the optimization problem remains unchanged.

Now, let ψ(t|x, p̂) =
∑

j p̂j exp(itxj) be the characteristic function with the p̂js the

probability masses estimated by minimizing (2.7). The deconvolution density estimator

based on the WEPF is then

f̂X (x) =
1

2π

∫
exp (−itx) φ̃ (t)K ft (ht) dt (2.8)

where

φ̃(t) =


ψ(t|x, p̂), for t ≤ t∗

r(t), for t > t∗

with t∗ being the smallest t > 0 such that |φ̂W (t|q)| < n−1/4. Here, K ft(t) denotes the

Fourier transform of a deconvolution kernel function and r(t) denotes a ridging func-

tion. The ridging function ensures that the estimator is well-behaved outside the range

[−t∗, t∗]. The proposed choice of ridging function is r(t) = φ̂W (t|q)/φ̂L(t), with φ̂L(t) the

characteristic function of a Laplace distribution with variance equal to an estimator of

σ2
L =

∑
j qjσ

2
j , the weighted sum of the measurement error variances. In application here,

the common choice K ft(t) = (1− t2)3 for |t| ≤ 1 is used. The weight function is chosen to

be w(t) = ω(t)|φ̂W (t|q)ψ(t|x,p)|2 with ω(t) = 0.75(1− t2) for |t| ≤ 1 (the Epanechnikov

kernel) rescaled to the interval [−t∗, t∗]. This choice of weight function avoids numerical

difficulties that can arise when dividing by very small numbers.
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2.4.2. Bandwidth Selection

The proposed phase function deconvolution estimator that accounts for heteroscedas-

ticity in (2.8) is an approximation of the estimator

f̃ (x) =
1

2π

∫
exp (−itx)K ft (ht)

φ̂W (t|q)∑
j qjφεj(σjt)

dt (2.9)

with φ̂W (t|q) defined in (2.2). Note that (2.9) is an estimator that one could compute

if the measurement error distribution were known, but that it is different from the het-

eroscedastic estimator proposed by Delaigle and Meister (2008). Taking expectation of

the integrated squared error (ISE) of (2.15), ISE =
∫

[f̃ (x) − fX (x)]2dx, gives mean

integrated squared error (MISE)

MISE =
1

2π

∫
|φX (t)|2

[
K ft (ht)− 1

]2
dt+

1

2π

∫ [
K ft (ht)

]2 ∑
j q

2
j[∑

j qjφεj (σjt)
]2dt

− 1

2π

∫
|φX (t)|2

[
K ft (ht)

]2 ∑
j q

2
jφ

2
εj

(σjt)[∑
j qjφεj (σjt)

]2dt. (2.10)

An argument similar to that of Delaigle and Meister (2008) when evaluating the asymp-

totic MISE (AMISE) of their heteroscedastic estimator, one can show that the last term

of (2.10) is negligible, giving

AMISE =
1

2π

∫
|φX (t)|2

[
K ft(ht)− 1

]2
dt+

1

2π

∫ [
K ft(ht)

]2 ∑
j q

2
j[∑

j qjφεj (σjt)
]2dt

In the present application, both φX (t) and φεj (t), j = 1, . . . , n are unknown. However,

note that |φX (t)|2 = φX (t)φX (−t) is the characteristic function of the random variable

X − X ′, where X, X ′ are iid fX . Regardless of the shape of fX , the random variable

X−X ′ is symmetric about 0 and has variance 2σ2
X . This suggests replacing |φX (t)|2 with

the characteristic function of a symmetric distribution with mean 0 and variance 2σ̂2
X .

Appropriate choices might be the normal distribution, i.e. substituting exp (−σ̂2
Xt

2) for

|φX (t)|2, or the Laplace distribution, i.e. substituting (1 + σ̂2
Xt

2)
−1

. Additionally, one
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can use appropriate approximations for φεj (σjt). For example, the Laplace choice is

a reasonable one, see Meister (2006) and Delaigle (2008). One can therefore substi-

tute
(
1 + 0.5σ̂2

j t
2
)−1

for φεj (σjt). This Normal-Laplace substitution gives approximate

AMISE function

Â (h) =
1

2π

∫ exp
(
−σ̂2

Xt
2
) [
K ft (ht)− 1

]2
+
[
K ft (ht)

]2 ∑
j q

2
j[∑

j qj
(
1 + 0.5σ̂2

j t
2
)−1]2

 dt

(2.11)

and the value of h that minimizes the above function can then be used to evaluate the

density deconvolution estimator in equation (2.8).

2.4.3. Simulation Study

Simulation studies were done to evaluate the performance of the equally-weighted and

mean-optimal weighted phase function deconvolution density estimators. These corre-

spond to the use of the EPF and WEPFopt as the phase function estimate before per-

forming the deconvolution operation as described in Section 2.4.1. Additionally, as it

is already established in the literature, the Delaigle & Meister estimator, as proposed

in Delaigle and Meister (2008) for heteroscedastic data, was also calculated. The three

candidate distributions for X as described in Section 2.3.4 were considered. Both normal

and Laplace distributions were considered for the measurement error, each in conjunction

with the three measurement error variance models outlined in Table 2.2 being considered.

In all cases the sample size was taken to be n = 500. Due to the computational cost of

evaluating the phase function deconvolution estimators, a total of 500 samples were gen-

erated for each combination of X-distribution and variance model. For the phase-function

estimators, the approximate AMISE bandwidth minimizing (2.11) was computed. The

bandwidth of the Delaigle-Meister estimator was a two-stage plug-in bandwidth as sug-

gested in their paper. For all the three deconvolution estimators, the integrated squared

error (ISE) was computed for each sample.

Table 2.4 presents the simulation results corresponding to the setting where the mea-
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surement error variances are assumed known, and Table 2.5 presents the simulation results

corresponding to the case with J = 2 replicates per observation and the variance com-

ponents are estimated as outlined in Section 2.3.3. The simulation with replicate obser-

vations contains results for the Delaigle-Meister estimator both using the estimated vari-

ances (D&MVarE) and treating the variances as known (D&MVarK). Note that the simula-

tions with replicate observations use the individual-level average data Wi = (Wi1+Wi2)/2

to compute the deconvolution estimators and are therefore not directly comparable to the

simulation without replication and measurement error variances assumed known. Due to

the presence of outliers in the ISE calculations, the median as well as the first and third

quartiles of 10× ISE are reported.

20



True X Error type Error case EPF WEPFopt D&M

Scaled χ2
3 Normal 1 0.225 0.199 0.193

[0.189, 0.282] [0.159, 0.240] [0.166, 0.230]

2 0.483 0.482 0.458

[0.404, 0.581] [0.392, 0.571] [0.386, 0.547]

3 0.419 0.366 0.315

[0.321, 0.493] [0.296, 0.421] [0.264, 0.39]

Laplace 1 0.191 0.172 0.181

[0.167, 0.245] [0.147, 0.210] [0.145, 0.213]

2 0.311 0.306 0.299

[0.243, 0.392] [0.236, 0.371] [0.229, 0.367]

3 0.27 0.268 0.266

[0.224, 0.352] [0.205, 0.339] [0.222, 0.325]

Mixture 1 Normal 1 0.184 0.140 0.117

[0.128, 0.248] [0.085, 0.194] [0.082, 0.155]

2 0.605 0.555 0.527

[0.452, 0.723] [0.433, 0.715] [0.416, 0.63]

3 0.436 0.385 0.304

[0.319, 0.566] [0.271, 0.503] [0.182, 0.401]

Laplace 1 0.142 0.107 0.105

[0.078, 0.201] [0.060, 0.160] [0.073, 0.141]

2 0.265 0.258 0.242

[0.19, 0.384] [0.182, 0.354] [0.156, 0.326]

3 0.254 0.232 0.212

[0.178, 0.339] [0.173, 0.293] [0.142, 0.271]

Mixture 2 Normal 1 0.098 0.090 0.073

[0.063, 0.175] [0.051, 0.136] [0.053, 0.105]

2 0.296 0.296 0.274

[0.224, 0.387] [0.21, 0.391] [0.201, 0.343]

3 0.223 0.2 0.172

[0.152, 0.286] [0.132, 0.26] [0.118, 0.217]

Laplace 1 0.073 0.073 0.070

[0.049, 0.128] [0.044, 0.107] [0.041, 0.104]

2 0.154 0.146 0.164

[0.1, 0.22] [0.1, 0.23] [0.103, 0.239]

3 0.139 0.125 0.141

[0.096, 0.189] [0.081, 0.174] [0.101, 0.192]

Table 2.4: Density estimation for n = 500 with no replicates and measurement error
variances are assumed to be known. The median, as well as first and third quartiles,
[Q1, Q3], of 10 × ISE of density estimators under 500 simulations.
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True X Error type Error case EPF WEPFopt D&MVarK D&MVarE

Scaled χ2
3 Normal 1 0.204 0.192 0.178 0.274

[0.164, 0.259] [0.156, 0.241] [0.154, 0.205] [0.233, 0.319]

2 0.321 0.322 0.336 0.423

[0.252, 0.387] [0.267, 0.385] [0.28, 0.405] [0.384, 0.474]

3 0.29 0.285 0.249 0.384

[0.234, 0.327] [0.237, 0.33] [0.21, 0.298] [0.335, 0.419]

Laplace 1 0.176 0.165 0.148 0.209

[0.142, 0.216] [0.140, 0.207] [0.123, 0.180] [0.176, 0.246]

2 0.277 0.273 0.281 0.343

[0.223, 0.349] [0.222, 0.337] [0.234, 0.338] [0.301, 0.378]

3 0.219 0.218 0.23 0.298

[0.18, 0.266] [0.176, 0.267] [0.184, 0.276] [0.249, 0.325]

Mixture 1 Normal 1 0.128 0.120 0.097 0.206

[0.088, 0.182] [0.077, 0.166] [0.062, 0.145] [0.162, 0.277]

2 0.31 0.309 0.308 0.464

[0.214, 0.387] [0.217, 0.4] [0.232, 0.401] [0.404, 0.534]

3 0.257 0.242 0.195 0.374

[0.175, 0.345] [0.182, 0.339] [0.12, 0.266] [0.309, 0.451]

Laplace 1 0.102 0.105 0.082 0.147

[0.066, 0.156] [0.074, 0.159] [0.058, 0.117] [0.106, 0.199]

2 0.216 0.21 0.223 0.308

[0.151, 0.271] [0.14, 0.267] [0.154, 0.272] [0.255, 0.355]

3 0.193 0.176 0.161 0.267

[0.13, 0.283] [0.119, 0.242] [0.114, 0.244] [0.229, 0.333]

Mixture 2 Normal 1 0.081 0.084 0.064 0.123

[0.055, 0.111] [0.051, 0.110] [0.049, 0.088] [0.098, 0.150]

2 0.189 0.185 0.164 0.247

[0.112, 0.251] [0.118, 0.243] [0.126, 0.227] [0.204, 0.285]

3 0.132 0.125 0.118 0.201

[0.096, 0.193] [0.082, 0.194] [0.077, 0.144] [0.172, 0.239]

Laplace 1 0.070 0.070 0.056 0.087

[0.049, 0.101] [0.046, 0.099] [0.037, 0.082] [0.059, 0.122]

2 0.136 0.117 0.15 0.181

[0.086, 0.187] [0.077, 0.163] [0.106, 0.186] [0.156, 0.214]

3 0.117 0.103 0.125 0.169

[0.076, 0.175] [0.073, 0.165] [0.086, 0.168] [0.138, 0.208]

Table 2.5: Density estimation for n = 500 with J = 2 replicates for each observation. The
median, as well as first and third quartiles, [Q1, Q3], of 10 × ISE of density estimators
under 500 simulations.

Inspection of Table 2.4 reveals that the Delaigle-Meister (D&M) estimator tends to

have the smallest median ISE, although there are a few instances in which the phase

function estimators outperform the D&M estimator, notably for Mixture 2 and Laplace
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measurement error. It is also clear that calculating the mean-optimal weights is very

advantageous in this setting, with the mean-optimally weighted estimator having smaller

median ISE than the equally weighted estimator in all but one instance. Overall, one can

conclude that the WEPF estimator performs very well and compares favorably to the

D&M estimator, the latter requiring knowledge of the measurement error distribution to

be useful in practice.

Inspection of the simulation results in Table 2.5 is very insightful. Note that the

measurement error variances here are estimated based on only J = 2 replicates for each

observation. As such, one might not expect good performance. However, the two phase

function estimators perform very favorable when compared to the D&M estimator with

known measurement error variances. The mean-optimally weighted estimator generally

performs better than the equally weighted estimators in terms of median ISE, although

there are two exceptions. It is interesting that weights estimated based on only two repli-

cates give such good performance. Also revealing is that the WEPF estimator performs

significantly better than the D&M estimator with estimated variances, with the median

ISE of the mean-optimally weighted estimator often reflecting more than a 50% reduction

in median ISE when comapared to the D&M counterpart.

Figures 2.1 and 2.2 show plots of the density estimators corresponding to the first,

second, and third quantiles (Q1, Q2, and Q3) of ISE for each of the methods EPF,

WEPFopt, and the D&M estimators corresponding to X having scaled χ2
3 and Mixture

1 distribution. In all three instances, the estimators were calculated with estimated

measurement error variances based on J = 2 replicates per observation. Observation-

level measurement error was taken to be Case 1 of Table 2.2. Both normal and Laplace

distributions were considered for the measurement error. The sample size was fixed

at n = 500. The figures also show the true density curve for comparison. Although

all three estimators considered are able to capture the shape of the true density, the

D&M estimators with estimated variance do the worst among the three: For X having a

scaled χ2
3 distribution, it puts much more density in negative support than the EPF and

WEPFopt and tends to underestimate the modal height. Both the EPF with WEPFopt,
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perform well for the scaled χ2
3 distribution, with the WEPFopt seemingly capturing the

shape around the mode a little better than the EPF. When evaluating Figure 2.2 showing

the same plots for X having the distribution Mixture 1, the general observations are

very similar. The EPF and WEPFopt have visually similar performance, while the D&M

estimator underestimates the density around the mode. The Appendix 2.7.3 also contains

a set of plots corresponding to X having Mixture 2 distribution. Similar observations

apply there.

Additional simulation results are presented in the Appendix 2.7.3. There, the EPF,

WEPF and D&M estimators are compared under the assumption that one can find an

optimal bandwidth (a bandwidth minimizing ISE) for any observed sample. When no

replicate data is available and the measurement error variances are assumed known, the

D&M estimator has the best performance, and the WEPF outperforms the EPF in all but

one case considered. However, once the measurement error variance needs to be estimated

(for both J = 2 and J = 3 replicates per case), the WEPF estimator tends to have the

best performance, with the D&M estimator faring worse than the EPF estimator. Finally,

a simulation with plug-in bandwidth and J = 3 replicates is also presented. Here, the

EPF and WEPF both outperform the D&M estimator.

2.5. Analysis of Framingham Data

In this section, the EPF and WEPFopt density deconvolution estimators are illustrated

using a classical dataset in the deconvolution literature, a subset of the Framingham

Heart Study. The data consists of several variables related to coronary heart disease

for n = 1615 patients. For each patient, two measurements of long-term systolic blood

pressure (SBP) were collected at each of two examination. As per Carroll et al., Carroll

et al. (2006) let Mij be the average of the two measurements at exam j for j = 1, 2,

and let Wij = log(Mij − 50). The Wij are assumed to be related to true long-term

SBP, Xi according to Wij = Yi + σiεij with Yi = log(Xi − 50). Density deconvolution is

therefore used to estimate the density on the Y -scale, f̂Y (y), after which it follows that

f̂X(x) = (x− 50)−1f̂Y [log(x− 50)], x > 50.
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For the SBP data, the EPF and WEPFopt were estimated, the latter with mean-

optimal weights qopt using variance components estimated as described in Section 2.3.3.

For both the EPF and WEPFopt, deconvolution bandwidths were estimated using (2.11).

These two estimators are shown in Figure 2.3, together with the Delaigle & Meister

(2008) estimator using the same estimated variances and Laplace measurement error.

(The D&M estimator was also calculated for normal measurement error and was nearly

identical.) A naive kernel estimator of the data using a normal references bandwidth

is also shown for comparative purposes. Other bandwidth selection approaches for the

naive kernel estimator were also considered with very similar results. The naive kernel

estimator is much flatter around the mode and fatter in the tails. This is expected,

as the kernel estimator makes no correction for the measurement error present in the

data. Furthermore, it can be seen that the WEPFopt and EPF deconvolution density

estimators are similar. The two density estimators based on phase functions suggest that

the distribution of X may be multi-modal, while the D&M estimator is unimodal and

positive skew.

80 100 120 140 160 180 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035 Naive
EPF
WEPF

opt

Laplace ME

Figure 2.3: Estimation of the density fX in the Framingham data. Four density estimates
are shown: a naive kernel estimator (measurement error is ignored), the EPF estimator,
the WEPFopt estimator, and the Delaigle & Meister estimator assuming Laplace mea-
surement error.
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2.6. Conclusions

This chapter presents a method for phase density deconvolution with heteroscedas-

tic measurement error of unknown type and builds on the work of Delaigle and Hall

(2016) who considered the homoscedastic case. Two estimators are proposed, one us-

ing equally weighted observations and the other using mean-optimal weights to adjust

for heteroscedasticity of the measurement error. A method based on approximating the

AMISE is proposed for bandwidth selection in both instances. In the simulation settings

considered, the WEPFopt estimator generally performed better than the EPF estimator,

although there were instances where their performance was comparable. The simula-

tion results suggest that mean-optimal weighting of observations will not have a detri-

mental effect on estimating the density function, and big gains are sometimes possible.

The practitioner cautious about estimaging weights from a small number of replicates

could always opt for a hybrid type of estimator, calculating WEPFhybrid using weights

qhybrid = αqopt + (1−α)/n where α indicates their degree of confidence in using the esti-

mated weights. The performance of this hybrid estimator is a future avenue of research.

In the setting where the measurement error variances are known, the method of Delaigle

and Meister (2008) will outperform both phase function estimators, although the latter

are still competitive in this setting. Also recall that the Delaigle & Meister estimator

requires knowledge of the measurement error distribution — an assumption not made

by the EPF and WEPF estimators. When there are only 2 replicates per individual

from which to estimate the measurement error variances, the phase function methods

performed substantially better than the Delaigle & Meister estimator. This suggests that

the phase function methods have some inherent robustness against variance estimate de-

viation from the true values, and that the phase function density estimators can generally

do the same as Delaigle & Meister estimator with much less assumption on measurement

error.
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2.7. Appendix

2.7.1. Asymptotic Properties of the Weighted Empirical Phase Function (WEPF)

Assume the observed data are of the form Wi = Xi + σiεi, where the Xi are an iid

sample from fX , the measurement error terms εi are independent of one another and

of the Xi, and each εi has a symmetric distribution with strictly positive characteristic

function and satisfies E(εi) = 0 and Var(εi) = 1. The σi are non-negative constants

that account for measurement error heteroscedasticity. For any random variable Z and

a complex number z, denote φZ(t) as the characteristic function of a random variable

Z and |z| = (zz̄)1/2 as the norm function with z̄ the complex conjugate of z. Define a

weighted empirical characteristic function for the Wi,

φ̂W (t|q) =
n∑
j=1

qj exp(itWj) (2.12)

where q = {q1, . . . , qn} denotes a set of non-negative constants that sum to 1. Let ψ̂W (t|q)

denote the squared norm of that function,

ψ̂W (t|q) =
∑
j

∑
k

qjqk exp [it(Wj −Wk)] .

The WEPF is defined as

ρ̂W (t|q) =
φ̂W (t|q)

ψ̂
1/2
W (t|q)

. (2.13)

The asymptotic properties of the WEPF are given in Theorem 2.1, which is restated here

for completeness.

Theorem 2.1. Assume that maxj qj = O(n−1) and that each measurement error compo-

nent εj has a strictly positive characteristic function. It then follows that the WEPF as

defined in (2.13) is a consistent estimator of the phase function of W , and hence of the
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phase function of X. Also, the asymptotic variance of the WEPF is given by

AVar[ρ̂W (t|q)− ρW (t)] =
1

2 |φX (t)|2 ψε (t|q)

n∑
k=1

q2k
[
1− |φX (t)|2 φ2

εk
(σkt) + φ2

εk
(σkt)

]
− Re {φ2

X (t)φX (−2t)}
2 |φX (t)|4 ψε (t|q)

n∑
k=1

q2kφεk(2σkt). (2.14)

where ψε (t|q) = [
∑

k qkφεk(σkt)]
2 .

Proof. Let φj(t) = φWj
(t) = φX(t)φεj(σjt). Note that

E
[
φ̂W (t|q)

]
= φX(t)

∑
j

qjφεj(σjt)

and

E

[∣∣∣φ̂W (t|q)
∣∣∣2] =

∑
j

q2j + |φX(t)|2
∑
j

∑
k 6=j

qjqkφεj(σjt)φεk(−σkt)

= |φX(t)|2
[∑

j

qjφεj(σjt)

]2
+O(n−1)

where the second expression relies on error distribution having a positive characteristic

function, and also on the assumption that maxj qj = O(n−1). Then, by application of

the generalized (non-iid) weak law of large numbers and Slutsky’s theorem,

ρ̂W (t|q)→
E
[
φ̂W (t|q)

]
{

E

[∣∣∣φ̂W (t|q)
∣∣∣2]}1/2

= ρX(t) +OP (n−1),

and thus ρ̂W (t|q) is a consistent estimator of ρX(t).

Next, note that ψ̂W (t|q) is a weighted U-statistic with second-order kernel. As such, we

can consider the projection of ψ̂W (t|q) onto the space of linear statistics when evaluating

its asymptotic variance. It is easily verified that the projection is given by

ψ̂proj (t|q) =
n∑
k=1

qk
[
φ (−t|q) eitWk + φ (t|q) e−itWk

]
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where φ (t|q) =
∑n

k=1 qkφk(t). This, combined with application of the functional delta

method, gives

ρ̂W (t|q)− ρW (t) =
1

ψ1/2 (t|q)

[
φ̂W (t|q)− φ (t|q)

]
− φ (t|q)

2ψ3/2 (t|q)

[
ψ̂proj (t|q)− ψ (t|q)

]
+Op

(
n−1
)

and

AVar [ρ̂W (t|q)] =
1

ψ (t|q)
Var

[
φ̂W (t|q)

]
+
|φ (t|q)|2

4ψ3 (t|q)
Var

[
ψ̂proj (t|q)

]
− φ (−t|q)

2ψ2 (t|q)
Cov

[
φ̂W (t|q) , ψ̂proj (t|q)

]
− φ (t|q)

2ψ2 (t|q)
Cov

[
φ̂W (t|q) , ψ̂proj (t|q)

]

where ψ (t|q) =
∑

j

∑
k qjqkφj(t)φk(−t). Note that ψ (t|q) = |φ (t|q)|2 +Op(n−1). Some

calculation now gives

Var
[
φ̂W (t|q)

]
=
∑
j

q2j
[
1− |φk (t)|2

]
,

Var
[
ψ̂proj (t|q)

]
= 2 |φ (t|q)|2

n∑
k=1

q2k
[
1− |φk (t)|2

]
+ φ2 (t|q)

n∑
k=1

q2k
[
φk (−2t)− φ2

k (−t)
]

+ φ2 (−t|q)
n∑
k=1

q2k
[
φk (2t)− φ2

k (t)
]
,

and

Cov
[
φ̂W (t|q) , ψ̂proj (t|q)

]
= φ (t|q)

[
n∑
k=1

q2k
(
1− |φk (t)|2

)]

+ φ (−t|q)

[
n∑
k=1

(
φk (2t)− φ2

k (t)
)]
.
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Combining these expressions gives

AVar [ρ̂W (t|q)] =
1

2ψ (t)

n∑
k=1

q2k
[
1− |φk (t)|2

]
− 1

2ψ2 (t)
Re

{
φ2 (t)

n∑
k=1

q2k
[
φk (−2t)− φ2

k (−t)
]}

.

The desired expression is followed from noting that

ψ (t|q) = |φX (t)|2 ψε (t|q)

and

φ (t|q) = φX (t)φε (t|q) ,

where φε (t|q) =
∑

k qkφεk(σkt), and φ2
ε (t|q) = ψε (t|q) .

2.7.2. Properties of the Phase Function Density Estimator

Note that the quantity φ̃(t) in equation (2.8) of the section 2.4.1 is an approximation

of the quantity φ̂W (t|q)/
(∑

j qjφεj(t)
)

, where the latter cannot be calculated since the

measurement error distributions are assumed unknown. An argument along the lines of

one contained in the online supplemental material of Delaigle and Hall (2016) shows that

it is informative to consider the estimator

f̃ (x) =
1

2π

∫
exp (−itx)K ft (ht)

φ̂W (t|q)∑
j qjφεj(σjt)

dt. (2.15)

Estimator (2.15) cannot be used to estimate the density in practice, but it is a useful

tool for investigating bandwidth selection for the estimator f̂X(x) in the equation (2.8).
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Estimator (2.15) has integrated squared error (ISE) given by

ISE =

∫ (
f̃ (x)− fX (x)

)2
dt

=
1

2π

∫ ∣∣∣∣∣K ft (ht)
φ̂W (t|q)∑
qjφεj (σjt)

− φX (t)

∣∣∣∣∣
2

dt

=
1

2π

∫ (
K ft (ht)

)2 ∣∣∣φ̂W (t|q)
∣∣∣2[∑

qjφεj (σjt)
]2 +

1

2π

∫
|φX (t)|2 dt

− 1

2π

∫
K ft (ht)

φ̂W (t|q)∑
qjφεj (σjt)

φX (−t) dt− 1

2π

∫
φX (t)K ft (ht)

φ̂W (−t|q)∑
qjφεj (σjt)

dt.

Taking expectation of ISE and substitution of the mean and variance of φ̂W (t|q) as

calculated in Section 2.7.1 gives corresponding mean integrated squared error (MISE):

MISE =
1

2π

∫ (
K ft (ht)

)2[∑
qjφεj (σjt)

]2
 n∑
j=1

q2j + |φX (t)|2
 n∑
j=1

qjφεj (σjt)

2 dt
− 1

2π

∫ (
K ft (ht)

)2[∑
qjφεj (σjt)

]2 |φX (t)|2
 n∑
j=1

q2jφ
2
εj (σjt)

 dt+ 1

2π

∫
|φX (t)|2

[
1− 2K ft (ht)

]
dt

=
1

2π

 n∑
j=1

q2j

∫ (K ft (ht)
)2 1[∑

qjφεj (σjt)
]2dt

− 1

2π

∫
|φX (t)|2

(
K ft (ht)

)2 [∑n
j=1 q

2
jφ

2
εj (σjt)

]
[∑n

j=1 qjφεj (σjt)
]2dt+ 1

2π

∫
|φX (t)|2

[
K ft (ht)− 1

]2
dt

=
1

2π

∫
|φX (t)|2

[
K ft (ht)− 1

]2
dt+

1

2π

∫ (
K ft (ht)

)2 [∑n
j=1 q

2
j

]
[∑n

j=1 qjφεj (σjt)
]2dt

− 1

2π

∫
|φX (t)|2

(
K ft (ht)

)2 [∑n
j=1 q

2
jφ

2
εj (σjt)

]
[∑n

j=1 qjφεj (σjt)
]2dt.

The MISE above is an approximation to the MISE of the phase function density estima-

ton. The use of this approximate MISE to do bandwidth selection is discussed in section

2.4.2.
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2.7.3. Additional Illustrations and Simulation Results

The simulation results comparing the EPF and WEPFopt estimators in Section 2.4

indicate that weighting doesn’t always lead to a large improvement. While the measure-

ment error distribution (and measurement error variance) has an impact on the quality

of the estimators, the actual shape of the phase function also determines how well it can

be estimated. For the three distributions considered in the simulation settings, the phase

functions are plotted below in Figure 2.4.

Considering Figure 2.4, it is clear that the distribution “Mixture 2 ” has a phase func-

tion with more curvature when compared to “Scaled χ2
3” and “Mixture 1 ”. This also

corresponds to the distribution where the WEPFopt has its worst performance compared

to the EPF.

0 2

0

1

(a) Scaled 2
3

0 2

0

1

(b) Mixture 1

0 0.4 0.8 1.2 1.6 2

t

-1

1

(c) Mixture 2

Figure 2.4: Phase functions of the three distributions considered in the simulation studies
in Sections 2 and 3, real component ( ) and imaginary component ( ).

Next, Figure 2.5 show plots of the density estimators corresponding to the first, second,
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and third quantiles (Q1, Q2, and Q3) of ISE for each of the methods EPF, WEPFopt, and

the D&M estimators corresponding to X having Mixture 2 distribution. In all three in-

stances, the estimators were calculated with estimated measurement error variances based

on J = 2 replicates per observation. Observation-level measurement error was taken to

be Case 1 of Table 2.2 in the section 2.3.4. Both normal and Laplace distributions were

considered for the measurement error. The sample size was fixed at n = 500. The figures

also show the true density curve for comparison. Although all three estimators considered

are able to capture the shape of the true density, the D&M estimators with estimated

variance tend to underestimate the density around the two modes and overestimate the

density around the local antimode in between. Both the EPF with WEPFopt, perform

well for the Mixture 2 distribution, with the WEPFopt seemingly capturing the shape

around the mode a little better than the EPF.

This remainder of this section compares the performance of the EPF density esti-

mator, the mean-optimal WEPF density estimator, and the D&M density estimators

computed under optimal bandwidth. The optimal bandwidth is defined as the band-

width value that minimizes the true integrated squared error (ISE) of the correspond-

ing estimator. For a sample W1, . . . ,Wn, let f̂est(x) denote a density estimator, where

est ∈ {EPF,WEPFopt,D&M} and fX(x) denote the true density of X. The true ISE is

defined as:

ISEest(h) =

∫
R

(f̂est(x)− fX(x))2dx.

All the settings for true distribution of X, measurement error distributions, and sample

size remain the same as given in the Section 2.4.3.

Table 2.6 presents simulation results for the EPF, mean-optimal WEPF, and D&M

density estimators with optimal bandwidth when measurement error variances are known,

while Table 2.7 presents results for the case where measurement error variances are es-

timated from J = 2 replicates per observation. Table 2.7 presents results for the D&M

estimators assuming known variances of measurement errors, as well as using the esti-

mated variances of measurement errors. The former is included as a reference for the

performance of the estimators. When using the true measurement error variances, the
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D&M estimator has lower median ISE than the two phase function density estimators.

However, with replicate data, although the D&M estimator computed using true vari-

ance has the lowest ISE, the D&M estimator computed using the estimated variances

from replicate data has the highest median ISE. It is also clear that calculating mean-

optimal weight is advantageous because the WEPFopt density estimator has lower median

ISE than the EPF density estimator in all but three instances.

These results are similar to the simulation results given in the Table 2.5. In all the

cases, the density estimators with optimal bandwidth has the ISE close to the density

estimators with plug-in bandwidth in Table 2.5, showing the reliability of the for selecting

the bandwidth.

A simulation was done to compare density estimators with both plug-in and optimal

bandwidth when J = 3 replicates are present for each observation. Table 2.8 shows that

with plug-in bandwidth, the two phase function density estimators have lower median ISE

than both the D&M estimators computed using true variances and the D&M estimators

computed using the estimated variances for measurement errors. Also, the mean optimal

WEPFopt density estimator has lower median ISE than the EPF density estimator in all

but five instances. Table 2.9 shows that with optimal bandwidth, the two phase function

density estimators have similar median ISE to the D&M estimator computed using the

true variance of measurement errors. This median ISE is much lower median ISE than

the D&M estimator computed using the estimated variance of measurement errors. In

other words, the simulation results with J = 3 replicate reinforces the fact that the phase

function density estimators using mean-optimal has performance comparable to the D&M

estimator, while making fewer assumptions about the distribution of measurement error.
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True X Error type Error case EPF WEPFopt D&M
Scaled χ2(3) Normal 1 0.219 0.197 0.164

[0.189, 0.279] [0.158, 0.240] [0.134, 0.193]
2 0.474 0.466 0.421

[0.401, 0.549] [0.384, 0.536] [0.33, 0.521]
3 0.407 0.363 0.278

[0.321, 0.461] [0.294, 0.417] [0.228, 0.347]
Laplace 1 0.186 0.171 0.144

[0.167, 0.241] [0.147, 0.202] [0.120, 0.177]
2 0.311 0.292 0.272

[0.243, 0.367] [0.236, 0.355] [0.2, 0.332]
3 0.268 0.26 0.231

[0.221, 0.352] [0.205, 0.339] [0.17, 0.289]
Mixture 1 Normal 1 0.180 0.138 0.100

[0.128, 0.248] [0.085, 0.192] [0.067, 0.137]
2 0.588 0.519 0.454

[0.452, 0.658] [0.433, 0.667] [0.334, 0.602]
3 0.43 0.385 0.239

[0.319, 0.566] [0.271, 0.503] [0.153, 0.349]
Laplace 1 0.142 0.107 0.090

[0.078, 0.201] [0.060, 0.160] [0.062, 0.111]
2 0.259 0.254 0.18

[0.19, 0.382] [0.182, 0.351] [0.129, 0.281]
3 0.254 0.232 0.168

[0.178, 0.339] [0.173, 0.293] [0.108, 0.217]
Mixture 2 Normal 1 0.085 0.066 0.068

[0.059, 0.131] [0.040, 0.101] [0.043, 0.094]
2 0.277 0.284 0.254

[0.205, 0.348] [0.204, 0.356] [0.157, 0.326]
3 0.218 0.193 0.129

[0.144, 0.272] [0.129, 0.252] [0.089, 0.187]
Laplace 1 0.056 0.045 0.060

[0.039, 0.096] [0.029, 0.077] [0.035, 0.094]
2 0.146 0.143 0.135

[0.097, 0.21] [0.09, 0.216] [0.085, 0.202]
3 0.133 0.117 0.125

[0.091, 0.176] [0.075, 0.161] [0.081, 0.154]

Table 2.6: The median and [Q1, Q3] of 10 × ISE of the density estimators with optimal
bandwidth based on 500 simulations. Each simulation has sample size n = 500 with no
replicate (measurement error variances are known).
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True X
Error
type

Error
case

EPF WEPFopt

D&M
(variance

estimated)

D&M
(variance
known)

Scaled χ2(3) Normal 1 0.198 0.192 0.209 0.140
[0.159, 0.259] [0.156, 0.235] [0.169, 0.245] [0.121, 0.172]

2 0.309 0.313 0.382 0.306
[0.248, 0.363] [0.258, 0.366] [0.316, 0.461] [0.237, 0.362]

3 0.277 0.276 0.329 0.216
[0.234, 0.313] [0.236, 0.314] [0.275, 0.376] [0.169, 0.262]

Laplace 1 0.176 0.165 0.154 0.121
[0.142, 0.207] [0.137, 0.204] [0.127, 0.190] [0.104, 0.154]

2 0.272 0.266 0.302 0.266
[0.221, 0.331] [0.222, 0.323] [0.257, 0.339] [0.203, 0.321]

3 0.219 0.218 0.243 0.197
[0.178, 0.26] [0.176, 0.255] [0.205, 0.288] [0.149, 0.257]

Mixture 1 Normal 1 0.128 0.120 0.159 0.075
[0.086, 0.182] [0.077, 0.166] [0.081, 0.155] [0.050, 0.097]

2 0.305 0.296 0.414 0.271
[0.206, 0.382] [0.217, 0.393] [0.356, 0.513] [0.184, 0.38]

3 0.243 0.238 0.32 0.158
[0.175, 0.333] [0.182, 0.332] [0.245, 0.396] [0.096, 0.219]

Laplace 1 0.102 0.105 0.119 0.067
[0.066, 0.156] [0.073, 0.157] [0.081, 0.155] [0.050, 0.097]

2 0.212 0.205 0.251 0.178
[0.145, 0.269] [0.14, 0.26] [0.199, 0.306] [0.115, 0.246]

3 0.19 0.173 0.217 0.135
[0.13, 0.279] [0.119, 0.241] [0.17, 0.285] [0.087, 0.213]

Mixture 2 Normal 1 0.063 0.062 0.104 0.059
[0.043, 0.097] [0.036, 0.093] [0.077, 0.117] [0.043, 0.074]

2 0.164 0.162 0.206 0.155
[0.096, 0.226] [0.107, 0.224] [0.165, 0.266] [0.103, 0.202]

3 0.125 0.11 0.166 0.097
[0.089, 0.18] [0.081, 0.179] [0.137, 0.215] [0.066, 0.133]

Laplace 1 0.051 0.050 0.074 0.049
[0.035, 0.083] [0.031, 0.080] [0.051, 0.097] [0.029, 0.073]

2 0.13 0.114 0.153 0.131
[0.08, 0.171] [0.069, 0.151] [0.119, 0.185] [0.091, 0.164]

3 0.104 0.095 0.136 0.108
[0.063, 0.154] [0.066, 0.146] [0.113, 0.184] [0.07, 0.149]

Table 2.7: The median and [Q1, Q3] of 10 × ISE of the density estimators with optimal
bandwidth based on 500 simulations. Each simulation has sample size n = 500 and J = 2
replicates per observation.
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True X
Error
type

Error
case

EPF WEPFopt

D&M
(variance

estimated)

D&M
(variance
known)

Scaled χ2(3) Normal 1 0.231 0.227 0.316 0.251
[0.194, 0.296] [0.188, 0.279] [0.281, 0.362] [0.212, 0.291]

2 0.246 0.249 0.324 0.272
[0.199, 0.298] [0.206, 0.303] [0.283, 0.371] [0.226, 0.314]

3 0.22 0.215 0.294 0.216
[0.182, 0.26] [0.183, 0.261] [0.249, 0.325] [0.185, 0.252]

Laplace 1 0.211 0.208 0.268 0.227
[0.177, 0.265] [0.177, 0.253] [0.228, 0.308] [0.193, 0.265]

2 0.232 0.229 0.293 0.251
[0.189, 0.285] [0.189, 0.283] [0.243, 0.32] [0.204, 0.299]

3 0.207 0.208 0.256 0.21
[0.184, 0.243] [0.175, 0.235] [0.228, 0.299] [0.186, 0.257]

Mixture 1 Normal 1 0.189 0.182 0.29 0.18
[0.148, 0.252] [0.138, 0.253] [0.238, 0.347] [0.134, 0.253]

2 0.202 0.197 0.321 0.218
[0.139, 0.262] [0.142, 0.265] [0.265, 0.364] [0.159, 0.271]

3 0.202 0.192 0.289 0.175
[0.136, 0.267] [0.122, 0.267] [0.225, 0.351] [0.121, 0.246]

Laplace 1 0.151 0.151 0.228 0.161
[0.102, 0.21] [0.1, 0.207] [0.188, 0.277] [0.119, 0.214]

2 0.163 0.158 0.238 0.179
[0.114, 0.227] [0.11, 0.234] [0.187, 0.31] [0.127, 0.262]

3 0.141 0.129 0.193 0.133
[0.094, 0.192] [0.085, 0.194] [0.152, 0.258] [0.088, 0.177]

Mixture 2 Normal 1 0.095 0.097 0.16 0.106
[0.062, 0.142] [0.064, 0.137] [0.12, 0.195] [0.074, 0.135]

2 0.127 0.125 0.187 0.136
[0.09, 0.164] [0.085, 0.164] [0.147, 0.214] [0.1, 0.176]

3 0.094 0.092 0.149 0.091
[0.061, 0.145] [0.062, 0.138] [0.107, 0.185] [0.057, 0.132]

Laplace 1 0.095 0.084 0.128 0.101
[0.069, 0.125] [0.052, 0.112] [0.096, 0.152] [0.069, 0.129]

2 0.097 0.098 0.144 0.113
[0.071, 0.141] [0.07, 0.138] [0.117, 0.171] [0.082, 0.159]

3 0.097 0.084 0.128 0.097
[0.057, 0.128] [0.057, 0.118] [0.1, 0.171] [0.073, 0.136]

Table 2.8: The median and [Q1, Q3] of 10 × ISE of the density estimators with plug-in
bandwidth based on 500 simulations. Each simulation has sample size n = 500 and J = 3
replicates per observation.
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True X
Error
type

Error
case

EPF WEPFopt

D&M
(variance

estimated)

D&M
(variance
known)

Scaled χ2(3) Normal 1 0.225 0.224 0.276 0.219
[0.192, 0.294] [0.187, 0.276] [0.233, 0.321] [0.186, 0.257]

2 0.239 0.24 0.289 0.24
[0.197, 0.282] [0.203, 0.289] [0.231, 0.348] [0.195, 0.298]

3 0.215 0.213 0.239 0.187
[0.182, 0.259] [0.183, 0.26] [0.209, 0.288] [0.144, 0.227]

Laplace 1 0.209 0.205 0.22 0.201
[0.177, 0.256] [0.176, 0.246] [0.188, 0.269] [0.166, 0.239]

2 0.228 0.227 0.243 0.216
[0.189, 0.278] [0.187, 0.274] [0.198, 0.29] [0.183, 0.273]

3 0.204 0.205 0.216 0.194
[0.183, 0.238] [0.175, 0.228] [0.188, 0.253] [0.162, 0.231]

Mixture 1 Normal 1 0.186 0.179 0.249 0.159
[0.145, 0.246] [0.132, 0.244] [0.195, 0.304] [0.101, 0.237]

2 0.202 0.197 0.321 0.218
[0.138, 0.251] [0.14, 0.264] [0.219, 0.336] [0.126, 0.25]

3 0.199 0.189 0.239 0.138
[0.136, 0.264] [0.122, 0.264] [0.182, 0.305] [0.091, 0.218]

Laplace 1 0.147 0.149 0.182 0.137
[0.102, 0.21] [0.1, 0.203] [0.147, 0.226] [0.092, 0.184]

2 0.163 0.156 0.195 0.154
[0.114, 0.227] [0.11, 0.234] [0.153, 0.268] [0.111, 0.236]

3 0.141 0.129 0.193 0.133
[0.092, 0.192] [0.085, 0.182] [0.119, 0.207] [0.069, 0.16]

Mixture 2 Normal 1 0.083 0.09 0.134 0.089
[0.06, 0.123] [0.063, 0.122] [0.101, 0.164] [0.065, 0.121]

2 0.12 0.115 0.162 0.119
[0.087, 0.152] [0.081, 0.152] [0.128, 0.19] [0.088, 0.155]

3 0.082 0.083 0.122 0.078
[0.053, 0.126] [0.049, 0.124] [0.085, 0.156] [0.044, 0.109]

Laplace 1 0.083 0.075 0.11 0.09
[0.059, 0.111] [0.046, 0.097] [0.08, 0.134] [0.063, 0.116]

2 0.084 0.084 0.119 0.097
[0.059, 0.12] [0.057, 0.118] [0.095, 0.152] [0.071, 0.139]

3 0.097 0.084 0.128 0.097
[0.054, 0.111] [0.05, 0.102] [0.088, 0.139] [0.062, 0.114]

Table 2.9: The median and [Q1, Q3] of 10 × ISE of the density estimators with optimal
bandwidth based on 500 simulations. Each simulation has sample size n = 500 and J = 3
replicates per observation.

41



Chapter 3

Linear Errors-in-Variables Estimation with Unknown Error Distribution

3.1. Overview

Parameter estimation in linear errors-in-variables models typically requires that the

measurement error distribution be known (or estimable from replicate data). A gener-

alized method of moments approach can be used to estimate model parameters in the

absence of knowledge of the error distributions, but requires the existence of a large num-

ber of model moments. In this paper, parameter estimation based on the phase function,

a normalized version of the characteristic function, is considered. This approach requires

the model covariates to have asymmetric distributions, while the error distributions are

symmetric. Parameter estimation is then based on minimizing a distance function be-

tween the empirical phase functions of the noisy covariates and the outcome variable.

No knowledge of the measurement error distribution is required to calculate this estima-

tor. Both the asymptotic and finite sample properties of the estimator are considered.

The connection between the phase function approach and method of moments is also

discussed. The estimation of standard errors is also considered and a modified bootstrap

algorithm is proposed for fast computation. The newly proposed estimator is competitive

when compared to generalized method of moments, even while making fewer model as-

sumptions on the measurement error. Finally, the proposed method is applied to several

real datasets concerning the measurement of air pollution.

3.2. Introduction

Errors-in-variables models arise when some covariates cannot be measured accurately.

Sources of measurement error include the instruments used to measure the variables
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of interest and the inadequacy of measurements taken over the short term being used

as proxies for long-term variables. In the classic measurement error framework, this

results in observed covariates having larger variance than the true predictors. Let X =

(X(1), . . . , X(p))> ∈ Rp denote the true model covariates and let Y ∈ R denote the

outcome of interest. For β1 ∈ Rp, the relationship between X and Y is assumed to be

Y = β0 + X>β1 + ε with intercept β0 ∈ R and error ε ∈ R. In an errors-in-variables

model, X is not directly observed. Rather, W = (W (1), . . . ,W (p))> ∈ Rp is observed with

W = X + U denoting the covariates contaminated by additive measurement error, and

U ∈ Rp denoting the measurement error. This model represents the classic formulation

of the errors-in-variables model and the estimation of β = (β0, β
>
1 )> is of interest.

Above, the model error ε is assumed to be symmetric about 0 with scale parameter

σ2 and the measurement error U is assumed to be symmetric about 0 ∈ Rp with scale

matrix Σu. Generally, σ2 and Σu represent, respectively, the variance of ε and covariance

matrix of U when these quantities are well-defined. The covariates X, measurement

error U and model error ε are furthermore assumed mutually independent. Given a

sample (W1, Y1), . . . , (Wn, Yn), it is well known that regression of the Yi on the Wi using

traditional methods such as ordinary least squares leads to an inconsistent and biased

estimate of β, see Carroll et al. (2006). Hence, adjusting for the presence of measurement

error is important for accurately describing the relationship between the true covariates

and the outcome of interest.

This chapter proposes a method of estimation that is fully nonparametric, in that

implementation does not require parametric specifications of any model components, nor

does it require the existence of model moments. Furthermore, the method does not require

that the measurement error variance be known, if it exists, and replication data is not

needed. The estimator makes use of the empirical phase function, a normalized version of

the empirical characteristic function. The empirical phase function was considered in the

context of density deconvolution by Delaigle and Hall (2016) and Nghiem and Potgieter

(2018). The method has two assumptions: the measurement error U is symmetric around

0 with strictly positive characteristic function, and the distribution of X is asymmetric.
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These assumptions are fundamental for the identifiability of the phase function of X,

which forms the basis of the estimation procedure. The assumptions are discussed in

greater detail in Section 3.3; see also Delaigle and Hall (2016) for an in-depth discussion.

The remainder of this chapter is organized as below. In Section 2, we introduce

the phase function-based estimator, develop its asymptotic properties, and establishes a

connection to the method of moments approach. Section 3 considers some computational

aspects relating to the estimator, including estimating standard errors in practice. Section

4 presents a simulation study to illustrate the performance of the phase function estimator

and compare it with existing methods. Section 5 applies the phase function estimator to

a real dataset, and Section 6 contains some concluding remarks.

3.3. Phase Function Minimum Distance Estimation

3.3.1. Phase Function-Based Estimation

Consider the simple linear errors-in-variables model with observed sample (Wi, Yi),

i = 1, . . . , n where

Yi = β0 + β1Xi + εi and Wi = Xi + Ui. (3.1)

Here, the Xi ∈ R are independent and identically distributed with asymmetric density

function fX , the Ui ∈ R and εi ∈ R are independent and identically distributed with re-

spective density functions fU and fε, both symmetric about 0 and having strictly positive

characteristic functions. Furthermore,the Xi, Ui and εi are assumed mutually indepen-

dent. It should be noted that the method developed here can also be used in the more

general setting where each error term Ui and εi has a unique density function, say fU,i and

fε,i, as long as these are all independent, symmetric about 0, and have strictly positive

characteristic functions. However, for simplicity of exposition the scenario with common

error densities fU and fε is presented. As to the assumed positivity of the characteristic

functions, we note that many commonly used continuous distributions in the application

of regression and measurement error satisfy this condition. This includes the Gaussian,

Laplace, and Student’s t distributions. In general, the only symmetric distributions ex-
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cluded are those defined on bounded intervals, such as the uniform. In the context of

density deconvolution, Delaigle and Hall (2016) assumed that the random variable X

does not have a symmetric component, i.e. there is no symmetric random variable S for

which X can be decomposed as X = X0 + S for arbitrary random variable X0. In the

present setting, this strict assumption is not required. More specifically, we only require

that the covariate X not be symmetric.

Now, let φX(t) = E [exp (itX)] denote the characteristic function of a random variable

X. The phase function of X is then defined as the normalized characteristic function,

ρX(t) =
φX(t)

|φX(t)|
, (3.2)

where |z| = (zz̄)1/2 is the complex norm with z̄ denoting the complex conjugate of z. We

now present our first result that establishes a relationship between the phase functions

of W and Y .

Lemma 3.1. Consider univariate random variables W = X +U and Y = β0 + β1X + ε.

Assume that X asymmetric with phase function ρX(t), and that U and ε are symmetric

about 0 with strictly positive characteristic functions. The phase function for Y is then

given by

ρY (t) = exp (itβ0) ρX(β1t) = exp (itβ0) ρW (β1t). (3.3)

Hence, the phase function of Y can be fully specified in terms of ρW (t), the phase function

of W , and parameters (β0, β1).

Proof. By independence of X and U , the characteristic function of W is given by

φW (t) = E(eitW ) = E(eit(X+U)) = E(eitX)E(eitU) = φX(t)φU(t).

By assumption, the characteristic function of U satisfies φU(t) = |φU(t)| for t. Thus, the

phase function for W is

ρW (t) =
φW (t)

|φW (t)|
=

φX(t)φU(t)

|φX(t)||φU(t)|
=

φX(t)

|φX(t)|
= ρX(t).
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Subsequently, the random variables W and X have the same phase function.

Empirical estimates of the phase functions of W and Y can be obtained from a random

sample (Wj, Yj), j = 1, . . . , n. Define

ρ̂W (t) =
φ̂W (t)

|φ̂W (t)|
=

∑n
j=1 exp(itWj)[∑n

j=1

∑n
k=1 exp {it (Wj −Wk)}

]1/2 ,
with a similar definition holding for ρ̂Y (t). The empirical phase functions can now be

used to construct minimum distance estimators of the model parameters (β0, β1). Define

statistic

D(b0, b1) =

∫ ∞
−∞
|ρ̂Y (t)− exp (itb0)ρ̂W (b1t)|2w(t)dt, (3.4)

where the weight function w(t) is chosen to ensure that the integral is well-defined. The

estimator (β̂0, β̂1) is then computed as the global minimizer of the function D(b0, b1).

The above idea can be easily extended to the case of multivariate regression with both

error-prone and error-free covariates. Consider the model Y = β0 + X>β1 + Z>β2 + ε

where X, β1 ∈ Rp1 and Z, β2 ∈ Rp2 . Here, Z represents the covariates measured without

error. As before, let W = X + U denote the contaminated version of X where U is p1-

dimensional symmetric measurement error. Let V = β0+X>β1+Z>β2 so that Y = V +ε.

It then follows that ρY (t) = ρV (t).

Similarly, consider the linear combination in terms of the contaminated W , say

Ṽ = β0 +W>β1 + Z>β2 = V + U>β1 = V + Ũ

with Ũ = U>β1 ∈ R having distribution symmetric about zero with strictly positive

characteristic function. It then also follows that ρṼ (t) = ρV (t). Hence, the variables Y ,

V and Ṽ all have the same phase function. To estimate β = (β0, β
>
1 , β

>
2 )>, it is possible

to construct a distance metric equivalent to (3.4),

D(b0, b1, b2) =

∫ ∞
−∞

∣∣ρ̂Y (t)− exp (itb0)ρ̂Ṽ (t|b1, b2)
∣∣2w(t)dt (3.5)
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where, given n random observations (Wj, Zj, Yj), the empirical phase function corre-

sponding to Ṽ is

ρ̂Ṽ (t|β1, β2) =

∑n
j=1 exp

{
it
(
W>
j β1 + Z>j β2

)}(∑n
j=1

∑n
k=1 exp

[
it
{

(Wj −Wk)
> β1 + (Zj − Zk)> β2

}])1/2 . (3.6)

Note that the statistic (3.5) does not treat the variables measured with and without error

any differently. As such, the phase function approach could be implemented without

knowledge of which variables are subject to measurement error. The estimate of β =

(β0, β
>
1 , β

>
2 )> is found by minimizing D(b0, b1, b2).

3.3.2. Asymptotic Properties of Phase Function Estimators

In this section, we verify that the estimators obtained by minimizing statistic D in (3.4)

satisfy the conditions required of M-estimators, and are therefore asymptotically normal.

To this end, we first establish the almost sure convergence of D to an appropriate limit.

Note that, while the asymptotic properties of the phase function-based estimator are

considered in the context of a simple linear errors-in-variables model, the results easily

extend to the multivariate case.

Lemma 3.2. Assume that independent pairs (W1, Y1), . . . , (Wn, Yn) are observed with

Wi = Xi + Ui and Yi = β0 + β1Xi + εi, with the distribution of Xi asymmetric, and with

Ui and εi having distributions symmetric about 0 and with strictly positive characteristic

functions. Furthermore, let w(t) be a non-negative weight function with bounded support,

taken without loss of generality to be [−c, c].

For this choice of weight function, the statistic D(b0, b1) defined in (3.4) converges

almost surely to a limit Dtrue(b0, b1) with

Dtrue(b0, b1) =

∫ ∞
−∞
|ρY (t)− exp(itb0)ρW (b1t)|2w(t)dt.

The limit has unique global minimum Dtrue(β0, β1) = 0.

The proof of this lemma follows upon noting the empirical characteristic functions
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φ̂W (t) is an unbiased estimator of the true characteristic function φW (t) and converges

almost surely to φW (t) on any bounded interval [−c, c], see Theorem 2.1 of Feuerverger

et al. (1977). Applying the continuous mapping theorem, the empirical phase function

ρ̂W (t) also converges almost surely to the true phase function ρW (t) on [−c, c], and is an

asymptotically unbiased estimator thereof. The convergence of D to Dtrue follows from

this. Next, noting that a phase function is uniquely identified by the asymmetric part of

the corresponding distribution, the function Dtrue has a global minimum of 0 at the true

parameter values (β0, β1).

Theorem 3.1. Assume that conditions (i) and (ii) from Lemma 1 hold. Let β̂ = (β̂0, β̂1)
>

denote the minimizer of D in (3.4). This estimator is consistent for the true β =

(β0, β1)
>, and is asymptotically normal,

√
n
(
β̂ − β

)
→ N

(
0, B−1AB−1

)
(3.7)

where

A = E
(
λλ>

)
and B = E

(
∂λ

∂β>

)
(3.8)

with λ =
∂D

∂β
.

The consistency of β̂ follows from Lemma 1 above and Theorem 5.7 in van der Vaart

(2000). Having established consistency, and noting that D has infinitely many bounded

and continuous derivatives, asymptotic normality follows from Theorem 5.21 in van der

Vaart (2000).

3.3.3. Connection to Method of Moments Estimation

Delaigle and Hall (2016) show that for any random variable X with infinite number

of moments, the phase function of X can be expressed as

ρX(t) = exp

{
∞∑
j=1

(−1)j+1t2j−1κX2j−1
(2j − 1)!

}
,

where κXj denotes the jth cumulant of X. In other words, if the infinite series above
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converges, the phase function is determined uniquely by the odd-order cumulants of X.

In this context, consider the model (3.1). If X, U , and ε have an infinite number of finite

moments, the same holds true for W and Y . Specifically, for (W,Y ) following the linear

errors-in-variables model, it follows that

exp

{
i
∞∑
j=1

(−1)j+1t2j−1κY2j−1
(2j − 1)!

}
= exp

[
i

{
tβ0 +

∞∑
j=1

(−1)j+1(β1t)
2j−1κW2j−1

(2j − 1)!

}]
. (3.9)

One can use (3.9) and match the coefficients of t2j−1 to determine the relationship between

the jth odd cumulants of W and Y . For example, considering the coefficients of t and t3

gives κY1 = β0 + β1κ
W
1 and κY3 = β3

1κ
W
3 .

Now, using properties of the complex norm, it follows that

1

4
|ρY (t)− exp(itβ0)ρW (β1t)|2 = sin2

{
∞∑
j=1

(−1)j+1t2j−1(κY2j−1 − β
2j−1
1 κW2j−1)

(2j − 1)!
− tβ0

}
.

When inference is based on the sample phase functions, the population cumulants above

are replaced by their sample counterparts, and minimizing (3.4) is equivalent to choosing

the parameters β0 and β1 such that a function of the difference of all odd cumulants

is minimized. As such, when the underlying distributions have an infinite number of

moments, the phase function approach can be thought of as a method of moments-type

approach that makes use of all odd cumulants of the variables of interest.

3.4. Computational Considerations

3.4.1. Computing the Estimators

Direct minimization of statistics (3.4) and (3.5) is generally computationally expensive.

In this section, a computational method is proposed that leads to faster calculation of

the estimators. The idea is presented for the univariate errors-in-variables model, but

can easily be extended to the multivariate model setting.
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Lemma 3.3. Consider the statistics (3.4) with weight function

w(t) = Kt∗(t)

[
n∑
j=1

cos(tYj)
n∑
j=1

cos {t (b0 + b1Wj)}

]2

where Kt∗(t) = K(t/t∗) and K(t) is a non-negative kernel function with bounded support

on some interval [−1, 1]. Minimization of (3.4) is then equivalent to minimization of

D(b0, b1) =

∫ t∗

0

[
n∑
i=1

n∑
j=1

sin {t(Yi − b0 − b1Wj)}

]2
Kt∗(t)dt (3.10)

Proof. For any complex number z, let R(z) = Im(z)/Re(z) denote the ratio of the imag-

inary and real parts of z. Now, consider the relationship that exists between the phase

functions of Y and W as given in (3.3), and recall that any phase function has norm

equal to 1 for all t. It follows that (3.3) is equivalent to

R[ρY (t)] = R[exp(itβ0)]R[ρW (β1t)].

Furthermore, as the phase function is a scaled version of the characteristic function,

R[ρY (t)] = R[φY (t)] and (3.4.1) is equivalent to

R[φY (t)] = R[exp(itβ0)]R[φW (β1t)].

By Euler’s formula, this can be written as

E [sin (tY )]

E [cos (tY )]
=
E [sin (t (β0 + β1W ))]

E [cos (t (β0 + β1W ))]
.

Therefore, minimizing (3.4) is equivalent to minimizing

D(b0, b1) =

∫ ∞
−∞

(∑n
j=1 sin(tYj)∑n
j=1 cos(tYj)

−
∑n

j=1 sin (t (b0 + b1Wj))∑n
j=1 cos (t (b0 + b1Wj))

)2

w(t)dt.

If choosing the weight function as stated in the lemma, the integrand is an even function

with respect to t. Then the result follows from simplifying the resulting trigonometric
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products.

Formula (3.10) has computational complexity O(n2). However, by some algebra it can

be re-expressed as

D(b0, b1) =

∫ t∗

0

[
Sy

n∑
j=1

cos {t(b0 + b1Wj)} − Cy
n∑
j=1

sin {t(b0 + b1Wj)}

]2
Kt∗(t)dt,

(3.11)

with Cy =
∑n

j=1 cos(tYj) and Sy =
∑n

j=1 sin(tYj). Evaluating (3.11) has computational

complexity O(n). The particular choice of weight function avoids instabilities that can

occur in (3.4) as a result of dividing by numbers close to 0. With regards to choosing an

appropriate constant t∗, we follow the suggestion in Delaigle and Hall (2016) who let t∗

be the smallest t > 0 such that |φ̂Y (t)| ≤ n−1/4.

When considering simplification of statistic (3.10), It is also possible to eliminate the

integral in the equation. To this end, let φK,h(α) =
∫ h
−h cos(αt)Kh(t)dt. It then follows

that

D(b0, b1) ∝
∑
i,j,k,l

[
φK,t∗ {Yi − Yk − b1(Wj −Wl)} − φK,t∗ {Yi + Yk + 2b0 + b1(Wj +Wl)}

]
.

(3.12)

Note that while expression (3.12) eliminates the need to numerically evaluate an integral

as in (3.11), we generally found that the form in (3.11) was much faster to compute than

the expression involving the quadruple sum in (3.12).

Now, considering again the recommended computational form in (3.11). By an ap-

plication of the Leibniz rule, the first partial derivatives of D with respect to b0 and b1,

denoted here λ(b0, b1) = {λ0(b0, b1), λ1(b0, b1)}>, are

λ0 =
∂D

∂b0
= −2

∫ t∗

0

[∑
i,j

sin {t(Yi − b0 − b1Wj)}

][∑
i,j

cos {t(Yi − b0 − b1Wj)}

]
tKt∗(t)dt

(3.13)

λ1 =
∂D

∂b1
= −2

∫ t∗

0

[∑
i,j

sin {t(Yi − b0 − b1Wj)}

][∑
i,j

Wj cos {t(Yi − b0 − b1Wj)}

]
tKt∗(t)dt.

(3.14)

The expressions for λ0 and λ1 can be used as estimating equations to solve for (β̂0, β̂1).
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These expressions will also be useful in the next section when considering the estimation

of standard errors for the estimators.

3.4.2. Standard Error Estimation

We now consider estimation of the covariance matrix of β̂. Using the asymptotic

variance as given in Theorem 3.1 would be reasonable, but direct evaluation of matrices

A and B in (3.8) is not possible as this requires knowledge of the distributions of X,

U and ε. If these distributions were known, a likelihood approach could be used for

parameter estimation rather than the proposed phase function approach.

The bootstrap is a popular method for estimating the covariance matrix of estimated

parameters in a nonparametric setting such as this is the bootstrap. This requires re-

peated calculation of bootstrap estimators β̂∗b based on bootstrap samples (W ∗
b,i, Y

∗
b,i),

i = 1, . . . , n for b = 1, . . . , B drawn with replacement from the observed sample. The

estimated covariance matrix is then taken to be the sample covariance matrix of the

bootstrap replicates β̂∗b . The procedure can be slow due to the repeated evaluation of a

computationally expensive loss function for each bootstrap sample. Implementation is

described in Algorithm 1.

We propose here a modified bootstrap algorithm for estimating the standard errors

that combines bootstrap methodology with approximation of matrices A and B in (3.8).

To this end, note that matrix A is the covariance matrix of λ, the first partial deriva-

tives of (3.10) given by (3.13) and (3.14) in the univariate setting. As such, bootstrap

methodology can be used to estimate matrix A, while B can estimated by evaluating

the second derivatives of D at the parameter estimates β̂0 and β̂1. Expressions for these

second derivatives are unwieldy, but are easily evaluated numerically; see Section A.3 in

the supplemental material. We refer to this approach as the plug-in bootstrap approach

and outline implementation in Algorithm 2. Note that the plug-in covariance matrix is

orders of magnitude faster to compute that the boostrap estimator as it does not require

repeated minimization of a statistic involving numerical integration.
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• For b = 1, . . . , B

– Sample n pairs with replacement from the observed data to obtain
bootstrap sample (W ∗

i,b, Y
∗
i,b), i = 1, . . . , n.

– Calculate the bootstrap estimators β̂∗b by minimizing (3.10) using the
bootstrap sample.

• Calculate the empirical covariance matrix of the bootstrap statistics

Σ̂boot =
1

B

B∑
b=1

(
β̂∗b − β̄∗

)(
β̂∗b − β̄∗

)>
where β̄∗ = B−1

∑
b β̂
∗
b is the mean of the bootstrap replicates.

Algorithm 1: Full Bootstrap Algorithm

• For b = 1, . . . , B

– Sample n pairs with replacement from the observed data to obtain
bootstrap sample (W ∗

i,b, Y
∗
i,b), i = 1, . . . , n.

– Calculate λ∗b = λ∗b(β̂0, β̂1) as in (3.13) and (3.14) using the bth
bootstrap sample.

• Calculate

Âboot =
1

B

B∑
b=1

λ∗bλ
∗>
b and B̂ =

[
∂λ

∂[b0, b1]>

]
(b0,b1)=(β̂0,β̂1)

.

• Calculate plug-in covariance matrix Σ̂plug = B̂−1ÂbootB̂
−1.

Algorithm 2: Plug-in Bootstrap Algorithm
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3.5. Simulation Study

An extensive simulation study was conducted to evaluate the performance of the phase

function-based estimators for various underlying distributions. In this section, we report

and discuss a representative selection of these simulation results.

First, parameter estimation was explored in the univariate setting. Data were gener-

ated according to the model Yi = β0 + β1Xi + εi and Wi = Xi + Ui, i = 1, . . . , n with

true parameters (β0, β1) = (1, 3). Three asymmetric distributions were used to simulate

X, namely (1) a half-normal distribution, X ∼ |N(0, 1)|, (2) an exponential distribution,

X ∼ exp(1), and (3) a bimodal mixture distribution, X ∼ 0.5N(5, 12) + 0.5N(2.5, 0.62).

Three different distributions were considered for error components U and ε, namely the

normal, t-distribution with 2.5 degrees of freedom, and the Cauchy distribution. For the

Normal and t2.5 distributions, the error components were simulated to have mean 0 and

respective variances σ2
U and σ2

ε . For the Cauchy distribution, the error components were

simulated to be symmetric about 0 and have respective interquartile range (IQR) σU

and σε. The variance and IQR parameters were chosen to achieve specific noise-to-signal

ratios, pW = σ2
U/σ

2
X and pY = σ2

ε/(β1σX)2. The noise-to-signal ratios pairs reported here

are (pW , pY ) = (0.25, 0.40). Results are reported for sample sizes n ∈ {500, 1000}. Simu-

lation with other noise-to-signal ratios were carried out, and these results are reported in

the Section C.2 of the Supplement Material. For each possible configuration of simulation

specifications, N = 2000 samples were generated.

For the Normal and t2.5 error cases, four different estimators were calculated for each

simulated dataset. First, the naive estimators ignoring measurement error were obtained

by regressing the contaminated W on Y . Second, the generalized method of moments es-

timators using M = 3 moments were computed. Three different choices of weight function

were considered for the phase function estimator. Table 3.5 in the supplemental material

compares the resulting estimators. As the weight function K(t) = (1− |t|)2I(|t| ≤ 1) was

found to have consistently good performance,the corresponding results are reported here.

Finally, the disattenuated regression estimators were also calculated. For disattenuation,

54



the parameters (σ2
U , σ

2
X) were treated as known quantities, and would not be computable

in practice under the minimal model assumptions for the phase function method. For the

Cauchy error case with infinite variance, no analog for disattenuation is known. However,

even though there is no theoretical justification for doing so, the generalized method of

moments estimators were computed to compare to the phase function estimators.

Now, letting β̂
(method)
m,j denote the estimator of βj calculated for the mth sample with

the superscript “method” a placeholder for a specific method from those listed above,

define squared error SE
(method)
m,j = [β̂

(method)
m,j − βj]

2. As both the generalized method of

moments and phase function estimators are very prone to outliers in small samples, the

median square errors is used rather than mean square error, as the former is more robust

against these outliers. For the Normal and t2.5 error case, we report in Table 3.1 the ratios

of median square errors for the naive, generalized method of moments, and phase function

estimators relative to the disattenuated estimators. An entry in the table larger than 1

indicates superior performance of the disattenuated estimators, while an entry smaller

than 1 indicates superior performance of the associated method. Entries can also be

compared across methods, with a larger entry indicating worse performance of a method

for a given set of simulation specifications. The full simulation results, including the

median squared error and a robust estimate of standard error based in the interquartile

range, are given in the Section 3.8.3 of the Appendix.
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Error type True X n Naive GMM Phase

β0 β1 β0 β1 β0 β1

Normal |N(0, 1)| 500 73.0 98.7 2.35 2.81 2.15 2.42

1000 131.3 189.8 2.55 3.16 1.83 2.32

exp(1) 500 44.3 67.5 1.18 1.15 1.18 1.59

1000 89.0 129.4 1.27 1.24 1.36 1.77

Bimodal 500 100.7 118.4 10.1 11.5 5.71 6.48

1000 200.2 235.0 9.74 11.2 4.02 4.74

t2.5 |N(0, 1)| 500 5.89 6.18 0.30 0.29 0.16 0.18

1000 8.75 9.32 0.29 0.29 0.09 0.12

exp(1) 500 6.64 5.88 0.17 0.12 0.14 0.19

1000 9.09 8.75 0.16 0.11 0.10 0.12

Bimodal 500 6.29 6.10 1.26 1.21 0.27 0.24

1000 9.29 9.12 1.46 1.42 0.12 0.11

Table 3.1: Ratio of median square error of estimators relative to the disattenuated regres-
sion estimators in the univariate model simulation with model errors being Normal and
t2.5 distributions. Note GMM stands for generalized method of moments.

Considering the results in Table 3.1, we note that the naive estimator performs the

worst among all the considered estimators across all simulation configurations. This is

to be expected due to the known bias when not correcting for measurement error. For

normally distributed errors, the phase function estimator performs better than generalized

method of moments for both the cases X distributed as half-normal and as a bimodal

mixture of normals. The improvement of the phase method is especially dramatic in the

bimodal X case considered. On the other hand, for X having an exponential distribution,

generalized method of moments performs better than the phase function method.

We reach similar conclusions when considering the case of a t2.5 distribution for the

error. Overall, the phase function method has superior performance for the cases X half-

normal and X bimodal. In the case of X having an exponential distribution, generalized

method of moments does better at estimating the slope β1, while the phase function

method does better at estimating the intercept β0. We initially found the good perfor-
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mance of generalized method of moments surprising, as its implementation here makes

use of the third sample moments, whereas third moments do not exist for the error dis-

tribution used. However, generalized method of moments downweights the second and

third sample moments using the fourth through sixth sample moments. Intuitively, the

latter quantities will be really large, to some extent regulating the effect of using the

former on estimating parameters. Still, the performance of the phase function method

is generally far superior in this setting. In fact, noting that most of the median square

error ratios are much smaller than 1, the phase function method is seen to be superior to

correcting for attenuation using known error variances.

True X n GMM Phase

β0 β1 β0 β1

|N(0, 1)| 500 4.44 8.99 0.05 0.10

1000 4.42 9.00 0.02 0.04

exp(1) 500 5.43 8.99 0.03 0.05

1000 6.29 9.00 0.01 0.03

Bimodal 500 52.39 8.94 2.32 0.15

1000 53.60 8.98 1.85 0.12

Table 3.2: Median square error of the generalized method of moments estimators, denoted
GMM in the table, and the phase function estimators when the model errors are Cauchy.

Table 3.2 presents the simulation results for the generalized method of moments and the

phase function estimators when the model errors follow a Cauchy distribution. In all the

considered settings, the phase function estimator has a much smaller median square error

than the generalized method of moments. The poor performance of generalized method

of moments is expected because no moments exists for the Cauchy distribution. The

phase function method, however, still performs well as it does not rely on the existence

of error moments.

A second simulation study was done using two predictors, one measured with error and

one without. Data were simulated according to the model Yi = β0 + βXXi + βZZi + εi,

Wi = Xi + Ui, i = 1, . . . , n with parameters β0 = 0, βX = 3, and βZ = 2. Here,
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True X n Naive Phase
βX βZ βX βZ

|N(0, 1)| 1000 107.1 35.4 15.0 40.2
2000 219.1 81.2 2.19 6.47

Bimodal 1000 152.8 51.9 10.1 24.5
2000 343.3 104.7 9.02 19.9

Table 3.3: Ratio of median square error of estimators relative to the simulation-
extrapolation regression estimators in the bivariate model simulation.

X is the error-prone covariate while Z is error-free. Samples sizes n ∈ {1000, 2000}

were considered. We include here results for the two cases X half-normal and X having

the bimodal normal mixture defined at the start of this section. The covariate Z was

generated from the same distribution as X, and a normal copula with ρ = 0.5 was used to

generate X and Z to be correlated. The error distributions were taken to be normal with

noise-to-signal ratios as in the univariate simulation. For each simulation configuration,

2000 replications were run. For each run, the phase function estimators and the naive

estimators for both βX and βZ were computed. Furthermore, simulation-extrapolation

of Stefanski and Cook (1995) was also implemented using the known measurement error

variance. When the measurement error variance is unknown or not estimable, simulation-

extrapolation cannot be used. It is therefore included for comparative purposes. Table 3.3

reports again the ratio of median square error for the naive and phase function methods

relative to the simulation-extrapolation estimators. As before, see Section 3.8.3 in the

Appendix for the full simulation results.

Again, the poor performance of the naive method in Table 3.3 is not surprising. The

phase function method holds up well against simulation-extrapolation. It is clear that

the method improves (in a relative sense) as the sample size increases from 1000 to

2000. Furthermore, the phase function approach has large relative median squared errors

when (pW , pY ) = (0.25, 0.4), corresponding to large measurement error contamination.

However, these scenarios also improve, sometimes dramatically so, when the same size

increases.

Finally, we performed a simulation study to examine the performance of the (full)

bootstrap and plug-in bootstrap methods for estimating standard errors of the parame-
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ters. Data were simulated from the univariate model used to generate Table 3.1. For each

simulated sample, both bootstrap methods were used to estimate the standard errors of

the model coefficients. Reported here are the results for X half-normal and X bimodal,

and two sample sizes n ∈ {1000, 2000}. For each simulation configuration, 2000 sam-

ples were generated. For each, the phase function estimates were computed. A total of

B = 100 bootstrap samples were generated for each of the methods described in Section

3.4.2 to estimate standard errors. The true standard error was also estimated using the

1000 pairs β̂0, β̂1 estimated from the simulated data using the phase function methods.

The median of
√
n× ŝe, with ŝe denoting estimated standard error, is reported in Table

3.4 for each method.

We note in Table 3.4 that the full bootstrap generally gives estimated standard er-

rors very close to the true (Monte Carlo) values. The plug-in method has a tendency to

over-estimate the standard error, especially for sample size 1000. However, the plug-in

method is superior in terms of computation speed. These computational time compar-

isons are based on running simulations on a distributed computing system with 80 nodes

consisting of 36 cores each with 256GB memory and with an Intel Xeon E5-2695 v4 CPU.

For sample size n = 1000, the average computation time for the full bootstrap around

34 minutes, while the plug-in bootstrap had an average computation time of around 1

minute. Similarly, for sample size n = 2000 the full and plug-in average computation

times were around 49 minutes and 2 minutes, respectively. In many instances, one might

be willing to use a method that over-estimates the size of the standard error for this type

of speed-up in computation.
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True X n Monte Carlo Bootstrapfull Bootstrapplug

β0 β1 β0 β1 β0 β1

|N(0, 1)| 1000 0.48 0.56 0.48 0.55 0.56 0.71

2000 0.39 0.46 0.40 0.46 0.42 0.53

Bimodal 1000 2.82 0.75 2.95 0.79 5.27 1.36

2000 2.26 0.60 2.22 0.59 2.90 0.75

Table 3.4: True standard error (Monte Carlo) and median of estimated standard error,
scaled by the square root of the sample size, using two different bootstrap approaches.

3.6. Air Quality Data Examples

Here, we consider a dataset analyzed by De Vito et al. (2008) considering the mea-

surement of carbon monoxide (CO) levels in present in an urban environment over

time. The dataset is publicly available online at the UCI Machine Learning Repository

(https://archive.ics.uci.edu/ml/datasets.html) and is labeled Air Quality. In the experi-

ment reported, a low-cost gas multi-censor device, also known as an electronic nose, was

used to monitor atmospheric pollutants in an urban environment. Carbon monoxide was

one of the pollutants being monitored and is of primary interest in our analysis. Mea-

surements obtained by electronic noses use tin oxide as a proxy for carbon monoxide.

These devices are also subject to measurement error, especially when compared to net-

works of spatially distributed fixed stations using industrial spectromoters. The latter

are commonly used to monitor air pollution in urban environments, but use is restricted

by cost and size considerations. The sources of measurement error for electronic noses

range from known device stability issues to local atmospheric dynamics. Even so, it is

desirable to consider the proper calibration of electronic noses for supplemental use in

monitoring air pollution in urban areas. Specifically, we consider estimating the true

relationship between tin oxide (subject to measurement error) and carbon monoxide.

The experiment, which lasted 13 months, was performed at a main road with heavy

traffic in an Italian city. During this period, hourly observations were collected from both

an electronic nose (W data) and a distributed network of seven fixed stations (Y data).
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Figure 3.1: Time series plots for carbon monoxide Yt (top) and the average sensor output
Wt (bottom).

The measurements represent hourly averages of data collected at 8 second increments.

The data are denoted (Wt, Yt), t = 1, . . . , T , with T = 9357 hourly periods transpiring

during the experiment. However, 2013 of these have partially or completely missing data,

leaving 7344 complete observations for the analysis. Time series plots of the measurements

are shown in Figure 3.1. Note that the W measurements in the figure and throughout

the analysis are equal to the original data divided by 100.

To account for time-of-day effects on pollution levels, the data were de-trended. To this

end, let Ik = {t : t = k+24(j−1), j = 1, 2, . . . and t ≤ T} with k = 1, . . . , 24 denote the

collection of indices corresponding to measurements at hour k. Define observed hourly

mean µ̂k = |Ik|−1
∑

t∈Ik Wt for k = 1, . . . , 24. The expression for µ̂k makes use of a slight

abuse of notation, as the sum is only taken over indices corresponding to non-missing

observations. The de-trended data are calculated as

W̃t = Wt −
24∑
k=1

I{t ∈ Ik}µ̂k, t = 1, . . . , T.

The de-trended Ỹt are defined in an analogous manner, resulting in pairs (W̃t, Ỹt), t =

1, . . . , T . It is now assumed that Ỹt = β1Xt + εt and W̃t = Xt + Ut with Xt denoting

the true CO level at time t. Note the lack of intercept term β0 in the model. This is
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a result of de-trending the data. We assume that the error components Ut and εt are

independent, and that these error components are independent of stationary time series

Xt. All variables are assumed to have finite variance. The stationarity of Xt is important

as this ensures that the empirical phase functions still a consistent estimate ρX .

The generalized method of moments and phase function estimators of slope β1 were

calculated. To account for the correlation structure in Xt, the block bootstrap with

block length L = 192 was used to estimate the associated standard errors, see Kunsch

(1989) for details on this technique. The generalized method of moments estimator

is β̂1
(GMM)

= 0.73 with estimated standard error 0.07. The phase function estimator

is β̂1
(phase)

= 0.71 with estimated standard error 0.02. The naive estimator of slope

is 0.52, indicating the strong effect of measurement error here. Comparing the phase

function and naive estimators of slope using the known attenuation relationship suggests

the proportion of error variance is 0.36. Moreover, the generalized method of moments

and phase function estimates seemingly correct for the exogenous contamination present

in the electronic nose measurements. While the two estimators are close to one another,

the standard error of generalized method of moments is substantially larger than that of

the phase function estimator.

3.7. Conclusion

The proposed phase function methodology is a new solution to the linear errors-in-

variables problem where replicate data and/or prior knowledge of measurement error

variance are not available. Contamination of the observed features should not be ig-

nored when making an inference, but strong model requirements can make it difficult

to appropriately correct the error and leave the practitioner with a biased model. To

our knowledge, the only solution not making such strict assumptions is the generalized

method of moments. Our proposed method is seen to be competitive with generalized

method of moments, and often has much smaller median squared error. Furthermore, the

phase function-based method does not rely on the existence of an arbitrary number of

moments. Future work will consider combining the strengths of the generalized method
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of moments and phase function methods: generalized method of moments can be imple-

mented when the underlying variable has a symmetric distribution, whereas the phase

function method requires asymmetry of the underlying distribution.

3.8. Appendix

3.8.1. Expressions for the second derivative of D(b0, b1)

In Section 3.4, a plug-in bootstrap method is proposed for estimating the standard

errors of the phase function estimators. Evaluation there requires calculation of the

second derivatives of the distance metric D evaluated at the estimators β̂0 and β̂1. These

functions are reported here.

Specifically,

∂2D

∂b20
=
∑
i,j,k,l

∫ t∗

0

[
cos {t(Yi − b0 − b1Wj)} cos {t(Yl − b0 − b1Wk)}

− sin {t(Yi − b0 − b1Wj)} sin {t(Yl − b0 − b1Wk)}

]
2t2Kt∗(t)dt,

∂2D

∂b0∂b1
=
∑
i,j,k,l

∫ t∗

0

[
Wj cos {t(Yi − b0 − b1Wj)} cos {t(Yl − b0 − b1Wk)}

−Wk sin {t(Yi − b0 − b1Wj)} sin {t(Yl − b0 − b1Wk)}
]
2t2Kt∗(t)dt,

and

∂2D

∂b21
=
∑
i,j,k,l

∫ t∗

0

[
WjWk cos {t(Yi − b0 − b1Wj)} cos {t(Yl − b0 − b1Wk)}

−W 2
k sin {t(Yi − b0 − b1Wj)} sin {t(Yl − b0 − b1Wk)}

]
2t2Kt∗(t)dt.

The quadruple sums can be eliminated using some simple but tedious algebra, giving

expressions that are computationally convenient,
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∂2D

∂b20
=

∫ t∗

0

2t2Kt∗(t)

[∑
i,j

cos {t(Yi − b0 − b1Wj)}

]2
dt

−
∫ t∗

0

2t2Kt∗(t)

[∑
i,j

sin {t(Yi − b0 − b1Wj)}

]2
dt,

∂2D

∂b0∂b1
=

∫ t∗

0

2t2Kt∗(t)

[∑
i,j

cos {t(Yi − b0 − b1Wj)}

][∑
i,j

Wj cos {t(Yi − b0 − b1Wj)}

]
dt

−
∫ t∗

0

2t2Kt∗(t)

[∑
i,j

sin {t(Yi − b0 − b1Wj)}

][∑
i,j

Wj sin {t(Yi − b0 − b1Wj)}

]
dt,

and

∂2D

∂b21
=

∫ t∗

0

2t2Kt∗(t)

[∑
i,j

cos {t(Yi − b0 − b1Wj)}

]2
dt

−
∫ t∗

0

2t2Kt∗(t)

[∑
i,j

sin {t(Yi − b0 − b1Wj)}

][∑
i,j

W 2
j sin {t(Yi − b0 − b1Wj)}

]
dt.

These expressions can be used to calculate the matrix B̂ required for the bootstrap plug-in

method for standard error estimation.

3.8.2. A brief review of the Generalized Method of Moments

In this section, we provide a brief overview of the generalized method of moments

(GMM) approach to linear errors-in-variables models. GMM is a popular approach to

estimating the parameters of linear EIV models. Recall the model

Yi = β0 + β1Xi + εi and Wi = Xi + Ui,

i = 1, . . . , n. In this model, the parameters β0 and β1 are identifiable using moments

of W and Y up to order 3, provided E[(X − µX)3] 6= 0. Similarly, the parameters

are identifiable using moments up to order 4 provided the distributions of X, U , and ε

are not all Gaussian. We briefly review implementation of GMM here. Our approach is

similar to that proposed by Erickson and Whited (2002). GMM is a viable nonparametric
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alternative to the phase function approach, in that no parametric model assumptions are

required for implementation.

For GMM using sample moments up to order K, it is assumed that each of the variables

X, U , and ε has at least 2K finite moments. Furthermore, it is assumed that U and ε

have distributions symmetric about 0, E
[
U2k−1] = E

[
ε2k−1

]
= 0 for k = 1, 2, . . . , K.

Note that the use of the first K moments requires that the underlying distributions have

2K moments for the estimators derived here to be asymptotically normally distributed

with finite variance.

Let µX denote the mean of X, and let σ2
X , σ2

U , and σ2
ε denote the respective variances

of X, U , and ε. Additionally, let µX,j = E [(X − µX)j] denote the jth centered moment

of X, j = 3, . . . , 2K, with equivalent notation holding for µU,j and µε,j. Finally, for the

pair of random variables (W,Y ), let νj,k denote the joint centered moments,

νj,k = E
[
(W − µX)j (Y − β0 − β1µX)k

]
. (3.15)

Due to the independence of X, U , and ε, the joint moment νj,k can be expressed in terms

of the marginal moments of X, U , and ε up to order j + k. Making a few special cases

explicit, note that ν2,0 = σ2
X + σ2

U , ν1,1 = β1σ
2
X , and ν0,2 = β2

1σ
2
X + σ2

ε .

Now, let θ(1) = {µX , β0, β1} and θ(2) = {σ2
X , σ

2
U , σ

2
ε}, and let θ(2j−1) = {µX,2j−1} and

θ(2j) = {µX,2j, µU,2j, µε,2j}, j = 2, . . . , bK/2c, denote the higher-order moments. Finally,

let θK =
{
θ(1), . . . ,θ(K)

}
denote the collection of unknown parameters required to specify

a model up to order K. The random variables

Ajk (θ) = n−1/2
n∑
i=1

{
(Wi − µX)j (Yi − β0 − β1µX)k − νjk

}

have E [Ajk] = 0 and Cov [Ajk, Aj′,k′ ] = νj+j′,k+k′ − νjkνj′,k′ for j + j′ + k + k′ ≤ 2K. A

such, the Aj,k can be used to construct GMM estimators of the parameters. Specifically,

let AK(θK) denote the vector consisting of all terms Ajk with j, k = 0, . . . , K and 1 ≤

j + k ≤ K. Now, define ΣK to be the covariance matrix corresponding to vector AK .
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This covariance matrix can be estimated empirically by defining joint sample moments

ν̂j,k =
1

n

n∑
i=1

(
Wi − W̄

)j (
Yi − Ȳ

)k
and subsequently letting

Ĉov [Ajk, Aj′,k′ ] = ν̂j+j′,k+k′ − ν̂jkν̂j′,k′ , j + j′ + k + k′ ≤ 2K.

Let Σ̂K denote this estimated covariance matrix. The GMM parameter estimates are

then found by minimizing the quadratic form

GK(θK) = AK(θK)>Σ̂−1K AK(θK). (3.16)

Note that the implementation of the GMM approach requires the use of K ≥ 3, as the

choices K = 1, 2 result in an overidentified system in terms of the parameters in θK .

3.8.3. Additional Simulation Results for Univariate Simulation

The effect of weighting function

The simulation study in Section 5.1 (univariate EIV model) of the main paper explore

three different choice of weighting function in calculating the phase function estimator:

K1(t) = (1 − |t|)2I(|t| ≤ 1), K2(t) = (1 − |t|)I(|t| ≤ 1), K3(t) = (1 − t2)I(|t| ≤ 1).

Table 3.5 presents the median SE of phase function estimates for these three weight

function choices for a subset of simulation settings with X ∼ |N(0, 1)| or X ∼ exp(1),

and (pW , pY ) = (0.25, 0.40). The results for simulation configurations not reported in

Table 3.5 follow the same general patterns.
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True X n Error K1(t) K2(t) K3(t)

β0 β1 β0 β1 β0 β1

|N(0, 1)| 500 Normal 3.37 4.41 3.47 4.79 3.4 4.74

(0.14) (0.18) (0.14) (0.19) (0.14) (0.19)

Laplace 1.9 3.19 1.83 3.07 1.84 3.04

(0.09) (0.14) (0.08) (0.13) (0.08) (0.13)

1000 Normal 3.21 4.38 3.31 4.6 3.26 4.44

(0.14) (0.18) (0.14) (0.2) (0.14) (0.19)

Laplace 1.65 3.01 1.62 2.88 1.62 2.89

(0.08) (0.13) (0.08) (0.12) (0.08) (0.12)

exp(1) 500 Normal 4.75 4.28 5.08 5.07 4.94 4.72

(0.21) (0.2) (0.23) (0.24) (0.23) (0.23)

Laplace 2.5 3.63 2.59 3.89 2.52 3.63

(0.11) (0.16) (0.12) (0.18) (0.11) (0.17)

1000 Normal 5.55 4.97 5.92 6.04 5.86 5.49

(0.24) (0.23) (0.26) (0.27) (0.25) (0.25)

Laplace 2.62 3.2 2.56 3.68 2.56 3.29

(0.11) (0.15) (0.12) (0.17) (0.11) (0.15)

Table 3.5: n×median{SE} and the corresponding interquartile range for the phase func-
tion estimators with weighting functions K1(t), K2(t), and K3(t).

As can be seen in Table 3.5, the choice of weights function does not have a major

impact on the quality of the estimators when using medianSE as criterion. However, the

choice of weight function K1(t) = (1 − |t|)2I(|t| ≤ 1) most often results in the lowest

median square error for both β0 and β1. As such, the phase function-based estimators

are compared to the other methods of estimation for this choice of weight function.

Full Simulation Results for Univariate EIV model

In this section, we present the full results for the simulation studies in the simple EIV

setting in Section 3.5. Data were generated according to the model Yi = β0 + β1Xi + εi

and Wi = Xi + Ui, i = 1, . . . , n with true parameters (β0, β1) = (1, 3). Three asym-

metric distributions were used to simulate X, namely (1) a half-normal distribution,

X ∼ |N(0, 1)|, (2) an exponential distribution, X ∼ exp(1), and (3) a bimodal mixture

distribution, X ∼ 0.5N(5, 12) + 0.5N(2.5, 0.62). Three different distributions were con-

sidered for error components U and ε, namely the normal, t-distribution with 2.5 degrees
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n Error (pW , pY ) Naive GMM Disattenuation Phase

β0 β1 β0 β1 β0 β1 β0 β1

500 Normal (0.075,0.15) 14.16 21.94 1.17 1.58 0.5 0.53 0.95 1.27

(0.16) (0.21) (0.05) (0.07) (0.02) (0.02) (0.04) (0.05)

(0.25,0.40) 114.89 180.01 3.69 5.12 1.57 1.82 3.37 4.41

(0.73) (0.97) (0.18) (0.24) (0.07) (0.09) (0.14) (0.18)

t2.5 (0.075,0.15) 8.45 13.18 0.78 1.11 1.45 2.16 0.59 1.01

(0.16) (0.22) (0.03) (0.05) (0.06) (0.07) (0.03) (0.04)

(0.25,0.40) 71.86 112.03 3.67 5.34 12.2 18.13 1.9 3.19

(0.95) (1.39) (0.2) (0.28) (0.38) (0.55) (0.09) (0.14)

1000 Normal (0.075,0.15) 28.39 44.16 1.17 1.62 0.53 0.56 0.94 1.21

(0.24) (0.3) (0.06) (0.08) (0.02) (0.02) (0.04) (0.06)

(0.25,0.40) 229.6 358.97 4.45 5.97 1.75 1.89 3.21 4.38

(1.1) (1.39) (0.19) (0.24) (0.08) (0.08) (0.14) (0.18)

t2.5 (0.075,0.15) 18.54 29.12 0.98 1.31 2.05 3.08 0.63 0.99

(0.27) (0.39) (0.05) (0.06) (0.08) (0.1) (0.03) (0.04)

(0.25,0.40) 154.67 243.3 5.04 7.44 17.67 26.1 1.65 3.01

(1.67) (2.52) (0.3) (0.47) (0.52) (0.79) (0.08) (0.13)

Table 3.6: Median square errors of estimators and the corresponding interquartile range
(in parentheses), scaled by the sample size, in the univariate regression simulation when
the true distribution of X is half-normal.

of freedom, and the Cauchy distribution. For the Normal and t2.5 distributions, the error

components were simulated to have mean 0 and respective variances σ2
U and σ2

ε . For the

Cauchy distribution, the error components were simulated to be symmetric about 0 and

have respective interquartile range (IQR) σU and σε. The variance and IQR parameters

were chosen to achieve specific noise-to-signal ratios, pW = σ2
U/σ

2
X and pY = σ2

ε/(β1σX)2.

The noise-to-signal ratios pairs reported here are (pW , pY ) ∈ {(0.075, 0.15), (0.25, 0.40)}.

Results are reported for sample sizes n ∈ {500, 1000}. For each configuration, the median

square error of each estimator is reported with the corresponding interquartile range.
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n Error NSR Naive GMM Disattenuation Phase

β0 β1 β0 β1 β0 β1 β0 β1

500 Normal (0.075,0.15) 22.25 22.4 1.46 0.95 1.2 0.67 1.62 1.69

(0.31) (0.24) (0.07) (0.05) (0.05) (0.03) (0.07) (0.07)

(0.25,0.40) 178.85 181.39 4.77 3.08 4.04 2.69 4.75 4.28

(1.33) (1.17) (0.21) (0.15) (0.17) (0.11) (0.21) (0.2)

t2.5 (0.075,0.15) 13.19 13.39 0.95 0.58 2.57 2.3 0.88 1.07

(0.29) (0.24) (0.04) (0.03) (0.1) (0.08) (0.04) (0.05)

(0.25,0.40) 117.47 113.1 2.97 2.26 17.69 19.25 2.5 3.63

(1.69) (1.59) (0.14) (0.11) (0.65) (0.58) (0.11) (0.16)

1000 Normal (0.075,0.15) 43.83 44.13 1.55 1.07 1.16 0.67 1.74 1.72

(0.44) (0.34) (0.07) (0.05) (0.05) (0.03) (0.08) (0.07)

(0.25,0.40) 363.62 362.91 5.18 3.48 4.08 2.8 5.55 4.97

(1.99) (1.68) (0.23) (0.15) (0.19) (0.12) (0.24) (0.23)

t2.5 (0.075,0.15) 29.74 28.94 1.05 0.65 3.28 2.96 0.92 1.27

(0.47) (0.41) (0.05) (0.04) (0.13) (0.11) (0.04) (0.06)

(0.25,0.40) 249.07 242.99 4.28 3.06 27.39 27.79 2.62 3.2

(2.89) (2.67) (0.19) (0.15) (0.93) (0.86) (0.11) (0.15)

Table 3.7: Median square errors of estimators and the corresponding interquartile range
(in parentheses), scaled by the sample size, in the univariate regression simulation when
the true distribution of X is exponential.

n Error NSR Naive GMM Disattenuation Phase

β0 β1 β0 β1 β0 β1 β0 β1

500 Normal (0.075,0.15) 306.68 21.62 63.48 4.74 9.16 0.53 23.56 1.61

(3.31) (0.21) (2.52) (0.17) (0.39) (0.02) (1.14) (0.08)

(0.25,0.40) 2528.79 178.52 254.05 17.4 25.12 1.51 143.37 9.76

(13.87) (0.87) (11.5) (0.8) (1.14) (0.07) (6.73) (0.48)

t2.5 (0.075,0.15) 192.04 13.71 43.9 2.97 28.71 2.09 15.48 0.96

(3.21) (0.22) (1.45) (0.1) (1.05) (0.08) (0.71) (0.05)

(0.25,0.40) 1572.13 111.86 314.14 22.16 249.82 18.35 67.16 4.39

(20.39) (1.37) (10.69) (0.74) (7.76) (0.55) (3.43) (0.23)

1000 Normal (0.075,0.15) 616.32 43.87 71.47 4.99 9.1 0.55 20.96 1.41

(4.67) (0.3) (3.29) (0.23) (0.38) (0.02) (0.97) (0.06)

(0.25,0.40) 5047.12 361.45 245.51 17.2 25.21 1.54 101.42 7.29

(19.57) (1.24) (10.93) (0.75) (1.1) (0.07) (4.91) (0.35)

t2.5 (0.075,0.15) 403.52 28.6 77.56 5.38 44.06 3.11 14.57 0.94

(5.49) (0.39) (2.61) (0.18) (1.57) (0.11) (0.64) (0.04)

(0.25,0.40) 3474.56 246.26 546.55 38.33 373.97 27.02 45.81 3.05

(35.62) (2.5) (19.73) (1.37) (11.8) (0.82) (2.52) (0.16)

Table 3.8: Median square errors of estimators and the corresponding interquartile range
(in parentheses), scaled by the sample size,in the univariate regression simulation when
the true distribution of X is a mixture of normal distributions.
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True X n (pW , pY ) GMM Phase function

β0 β1 β0 β1

|N(0, 1)| 500 (0.075,0.15) 4.04 8.97 0.02 0.04

(0.07) (0.07) (0.00) (0.00)

(0.25,0.40) 4.44 8.99 0.05 0.1

(0.07) (0.02) (0.00) (0.00)

1000 (0.075,0.15) 4.5 9 0.01 0.02

(0.07) (0.03) (0.00) (0.00)

(0.25,0.40) 4.42 9 0.02 0.04

(0.07) (0.01) (0.00) (0.00)

exp(1) 500 (0.075,0.15) 4.09 8.92 0.01 0.02

(0.11) (0.12) (0.00) (0.00)

(0.25,0.40) 5.43 8.99 0.02 0.05

(0.12) (0.05) (0.00) (0.00)

1000 (0.075,0.15) 5.2 8.98 0 0.01

(0.12) (0.08) (0.00) (0.00)

(0.25,0.40) 6.29 9 0.01 0.02

(0.12) (0.02) (0.00) (0.00)

Bimodal 500 (0.075,0.15) 19.71 8.75 2.12 0.13

(1.8) (0.13) (0.09) (0.01)

(0.25,0.40) 52.39 8.94 2.32 0.15

(1.89) (0.07) (0.11) (0.01)

1000 (0.075,0.15) 29.02 8.93 1.34 0.08

(1.89) (0.08) (0.06) (0.00)

(0.25,0.40) 53.6 8.98 1.85 0.12

(1.89) (0.02) (0.08) (0.01)

Table 3.9: Median square error and interquartile range of the GMM and phase function
estimators in the univariate regression simulation when model errors are Cauchy

Full Simulation Results for Multiple Regression

In this section, we present the full results for the simulation study in the multiple

EIV linear model setting in the section 3.5. Data were simulated according to the model

Yi = β0 + βXXi + βZZi + εi, Wi = Xi + Ui, i = 1, . . . , n with parameters β0 = 0, βX = 3,

and βZ = 2. Here, X is the error-prone covariate while Z is error-free. Samples sizes

n ∈ {1000, 2000} were considered. We include here results for the two cases X half-

normal and X having the bimodal normal mixture defined in the simple EIV setting.

The covariate Z was generated from the same distribution as X, and a normal copula
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n Error (pW , pY ) Naive Phase function SIMEX

βX βZ βX βZ βX βZ

1000 Normal (0.075,0.15) 715.69 167.7 7.34 9.96 4.19 2.78

(1.92) (1.01) (0.32) (0.46) (0.18) (0.13)

(0.25,0.40) 2349.55 540.65 328.67 613.13 21.94 15.26

(4.31) (2.57) (148.75) (71.23) (0.97) (0.66)

Laplace (0.075,0.15) 705.18 164.94 7.75 12.76 5.79 3.75

(2.15) (1.05) (0.38) (0.58) (0.27) (0.16)

(0.25,0.40) 2329.48 539.89 331.13 658.7 32.09 16.73

(4.73) (2.55) (148.71) (71.53) (1.48) (0.74)

2000 Normal (0.075,0.15) 1417.18 326.47 7.13 9.26 4.19 3.1

(2.73) (1.44) (0.3) (0.43) (0.19) (0.15)

(0.25,0.40) 4691.1 1089.42 46.83 86.77 21.41 13.41

(5.95) (3.82) (2.86) (5.69) (0.96) (0.61)

Laplace (0.075,0.15) 1419.04 326.72 8.34 12.18 6.12 3.32

(3.48) (1.55) (0.36) (0.57) (0.27) (0.16)

(0.25,0.40) 4679.33 1073.46 51.75 109.01 36.64 17.17

(7.36) (3.86) (3.22) (7.79) (1.51) (0.8)

Table 3.10: Median square error and interquartile range (in parentheses), scaled by the
sample size for the estimators in the multivariate regression simulation when X and Z
are half-normal and correlated with correlation ρ = .5.

with ρ = 0.5 was used to generate X and Z to be correlated. The error distributions

were taken to be normal and Laplace with noise-to-signal ratios as in the simple EIV

model. For each simulation configuration, 2000 replications were run. Table 3.3 and 3.11

presents the median square error for the naive, phase function, and SIMEX estimator

with their corresponding interquartile ranges.

3.8.4. Additional Data Examples

Abrasiveness Index Data

The data analyzed here was originally considered by Lombard (2005) in the context

of estimating a quantile comparison function from paired data. Observations are pairs

(Wj, Yj), j = 1, . . . , 98, where both Wj and Yj represent measures of the abrasiveness

index (AI) of a batch of coal. The AI is considered a proxy for the quality of coal, and

is used to determine the price of a batch of coal. The Yj measurements were obtained
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n Error (pW , pY ) Naive Phase function SIMEX

βX βZ βX βZ βX βZ

1000 Normal (0.075,0.15) 241.69 56.84 13.44 18.65 1.55 1.29

(0.83) (0.45) (0.56) (0.85) (0.07) (0.06)

(0.25,0.40) 1056.68 249.27 69.64 117.72 6.91 4.81

(2.22) (1.47) (5.55) (9.45) (0.29) (0.23)

Laplace (0.075,0.15) 239.77 56.15 14.74 24.13 2.04 1.62

(0.96) (0.47) (0.74) (1.23) (0.09) (0.07)

(0.25,0.40) 1056.6 248.34 149.4 250.81 9.49 5.65

(2.86) (1.45) (19.69) (65.43) (0.46) (0.26)

2000 Normal (0.075,0.15) 483.2 113.82 10.74 14.71 1.77 1.5

(1.13) (0.63) (0.46) (0.71) (0.07) (0.06)

(0.25,0.40) 2127.88 498.96 55.95 94.55 6.2 4.77

(3.16) (2.02) (2.87) (4.63) (0.26) (0.22)

Laplace (0.075,0.15) 486.34 113.48 11.72 21.03 2.13 1.59

(1.4) (0.66) (0.62) (0.93) (0.1) (0.07)

(0.25,0.40) 2125.8 499.99 80.09 144.17 9.69 5.44

(4.18) (2.11) (4.47) (7.74) (0.45) (0.25)

Table 3.11: Median square error and interquartile range (in parentheses), scaled by the
sample size, for the estimators in the multivariate regression simulation when X and Z
are mixtures of normal distribution and correlated with correlation ρ = .5.

using the YGP method, see Yancey et al. (1951). This method is widely used, but is

costly to implement. The Wj measurements were obtained using a similar method that

is less involved and cheaper to implement. Contracts are typically written in terms of the

YGP measurements, and it is of interest to determine the relationship between the new

method and the YGP method. Here, we treat both the Wj and Yj data as contaminated

versions of the true quality of a batch of coal, denoted Xj. Assume that the linear

errors-in-variables structure holds, i.e. Wj = Xj + Uj and Yj = β0 + β1Xj + εj.

In Figure 3.2, we show kernel density estimates using normal reference plug-in band-

widths for both W and Y . Bandwidths selected using unbiased cross-validation were

also considered, but did not alter the estimates in a visually discernible way. For the

given data, the naive regression estimators, GMM estimators, and phase function-based

estimators were calculated; the results are reported in Table 3.12. Also reported are

the estimated variance components based on the second sample moments. Specifically,
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σ̂2
X = sWY /β̂1, σ̂

2
U = max{0, s2W − σ̂2

X}, and σ̂2
ε = max{0, s2Y − β̂2

1 σ̂
2
X}, where sWY denotes

the sample covariance, and s2W and s2Y denote the sample variances.

Method β̂0 β̂1 σ̂2
X σ̂2

U σ̂2
ε

Naive 94.959 0.511 709.478 0 242.123
GMM 14.619 0.895 398.862 279.289 0
Phase -40.776 1.157 313.066 396.411 0

Table 3.12: Naive, GMM, and phase function-based estimators of the linear errors-in-
variables for the abrasiveness index data.

The results in Table 3.12 are striking. As one would expect, the naive estimator of

slope is shrunk towards 0 when compared to the GMM and phase function estimators of

slope. Both GMM and the phase function approach suggest that, as seen by the estimates

of σ2
U , the new method introduces a large amount of measurement error. On the other

hand, the established YGP method has estimated measurement error 0. Due to the small

sample size, we are hesitant to conclude that the YGP method is error free. However,

the results do suggest that if the YGP method does introduce measurement error, it is

small relative to the measurement error introduced by the new method. Any company

considering adoption of the new method for measuring the abrasiveness index should

whether the increased measurement error is worth the cost savings of the new method.

To assess the variability of the computed estimators, pairwise bootstrap resampling

was used. A total of B = 2000 bootstrap samples were taken. Both GMM and the phase

function method is prone to outliers in small samples. Subsequently, the interquartile

ranges (IQR) of the respective bootstrap distributions were used as robust measures of

spread. For GMM, IQR∗(β0) = 71.167 and IQR∗(β1) = 0.335. For the phase function

method, IQR∗(β0) = 56.031 and IQR∗(β1) = 0.271. While this suggests that the phase

function method gives less variable results, we should note that it is possible to choose

a different measure of spread that contradicts this conclusion. Specifically, the difference

between the 10th and 90th percentiles of the bootstrap distributions gives estimated

spread 0.450 and 0.624 for the slope estimators using GMM and the phase function

method respectively. Ultimately, for the data at hand, it is not possible to conclude that

one method is superior to the other.
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Figure 3.2: Kernel Density Estimators for W (new method) and Y (YGP method) data

Analysis of OPEN study

In this section, the relationships between true dietary intakes and various measure-

ments like biomarkers, diary, and self-report instruments are studied. In the National

Cancer’s Institute OPEN study, two indicators of dietary intakes of interest include

protein intake and energy intake. For each indicator, each intake was measured by a

food frequency questionnaire (FFQ), a 24-hour recall interview, and a biomarker. Each

measurement is replicated twice. The dataset is used to illustrate several examples of

measurement error modeling in Carroll et al. (2006). The data made available on the

website of the cited monograph is not the actual data from the OPEN Study, but has been

simulated to have similar properties to the true data. These are n = 223 observations in

this dataset.

For each indicator, the fitted model is of the form Yi = β0 +β1X1i+β2X2i+β3X3i+εi,

and Wjik = Xjik +Ujik, j = 1, 2, 3, i = 1, . . . , n, k = 1, 2 , where Yi is the true amount of

the indicator, X1i, X2i and X3i represent the (unobserved) amount of the indicator from

biomarker measurement, FFQ, and interview of the ith subject respectively. If there is

no measurement error exists, all the values X1i, X2i and X3i would be equal to the value

of Yi. However, the observed data Wjik are all different from Yi, showing measurement

error exists in all of the measurements.
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The estimators that are computed include the naive estimator, the simulation - ex-

trapolation (SIMEX) estimator, and the phase function estimator. All the estimators

are computed based on Yi and Wji =
1

2
(Wji1 + Wji2). Note that the SIMEX estimator

requires knowledge of the variance of the measurement errors, which is possible to esti-

mate in this situation because replication data for each measurement is available. The

variance of measurement error associated with Wji was computed as

σ̂2
j =

1

2n(n− 1)

n∑
i=1

(Wji1 −Wji2)
2.

The phase function estimator was computed by minimizing the statistic

D =

∫ t∗

0

(
n∑
i=1

n∑
j=1

sin [t (Yj −W1iβ1i −W2iβ2i −W3iβ3i)]

)2

Kt∗(t)dt.

with K(t) = (1 − |t|)2 and t∗ being the smallest t > 0 such that |φ̂Y (t)| ≤ n−1/4.

This minimization problem is nonconvex, so the numerical algorithm was started at

numerous points around the naive estimate. The estimates and its estimated standard

error (in parentheses) for both protein and energy intake were given in the Table 3.13.

The standard error for the phase function and the SIMEX estimates was computed to

be the interquartile range (IQR) of the corresponding estimates from B = 100 bootstrap

samples, while the standard error for the naive was computed using the traditional Fisher

information matrix.

Measurement Naive SIMEX Phase Function

Protein FFQ 0.041 (0.022) 0.194 (0.068) -0.072 (0.306)

24-hour recall 0.041 (0.022) 0.051 (0.036) 0.127 (0.243)

Biomarker 0.587 (0.037) 1.018 (0.138) 0.836 (0.400)

Energy FFQ 0.006 (0.008) 0.003 (0.022) 0.133 (0.148)

24-hour recall 0.006 (0.010) 0.007 (0.037) 0.226 (0.256)

Biomarker 0.932 (0.017) 0.986 (0.028) 0.859 (0.268)

Table 3.13: Analysis of different measurements in the OPEN study

The results from Table 3.13 show that for both protein and energy intake, only

biomarker measurements have significant effect on the true amount. In the case of pro-
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tein intake, the naive estimates attentuates the effect of the biomarker considerably, while

the SIMEX and phase function estimates are able to correct it. In the case of energy

intake, the phase function estimate reduces the magnitude of the relationship between

biomarker measurement and the true amount. Compared to the SIMEX estimate, the

phase function estimator has a much higher standard error. This is expected because the

SIMEX estimator uses knowledge of the measurement error variances, while the phase

function estimator does not.
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Chapter 4

Simulation-Selection-Extrapolation: Estimation in High-Dimensional
Errors-in-Variables Model

4.1. Overview

Errors-in-variables models in a high-dimensional setting pose two challenges that need

to be addressed. Firstly, the number of observed covariates is larger than the sample

size, and only a small number of covariates are true predictors. Secondly, the presence

of measurement error can result in severely biased parameter estimates, and also affects

the ability of penalized methods such as the lasso to recover the true sparsity pattern.

A new estimation procedure called SIMSELEX (SIMulation-SELection-EXtrapolation)

is proposed. This procedure makes double use of lasso methodology. Firstly, the lasso is

used to estimate sparse solutions in the simulation step, after which a variable selection

step based on the group lasso is implemented. The SIMSELEX estimator is shown to

perform well in variable selection, and has significantly lower estimation error than naive

estimators that ignore measurement error. SIMSELEX can be applied in a variety of

errors-in-variables settings, including linear models, generalized linear models, and Cox

survival models. It is furthermore shown how SIMSELEX can be applied to spline-based

regression models. A simulation study is conducted to compare the SIMSELEX estima-

tors to existing methods in the linear and logistic model settings. Finally, the method

is used to analyze a microarray dataset that contains gene expression measurements of

favorable histology Wilms tumors.

4.2. Introduction

Errors-in-variables models arise in settings where some covariates cannot be measured

with great accuracy. As such, the observed covariates tend to have larger variance than
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the true underlying variables, obscuring the relationship between true covariates and

outcome. We consider the problem in the classic additive measurement error framework.

The work is motivated by microarray studies in which measurements are taken for a large

number of genes, and it is of interest to identify genes related to some outcome of inter-

est. Analysis after applying a log-transformation to the strictly positive gene expression

measurements makes the assumption of additive measurement error more realistic. Mi-

croarray studies tend to have both noisy measurements and small sample sizes (relative

to the number of genes measured). Biological variation in the data is usually of primary

interest to investigators, but is obscured by technical variation resulting from sources such

as sample preparation, labeling, and hybridization, see Zakharkin et al. (2005). As such,

methodology dealing with measurement error in a large-dimensional setting is needed to

identify genes related to the outcome of interest. Assuming that only a small number of

genes are related to the outcome of interest further requires sparsity of the solution. One

example of such a dataset is the favorable histology Wilms tumors analyzed by Sørensen

et al. (2015). In this study, Affymetric microarray gene expression measurements are

used to identify genes associated with relapse within three years of successful treatment.

Formalizing the problem, let a response variable Y ∈ R be related to a function of

covariatesX ∈ Rp. However, the observed sample consists of measurements (W1, Y1), . . .,

(Wn, Yn), with Wi = Xi + Ui, i = 1, . . . , n where the measurement error components

Ui ∈ Rp are i.i.d. Gaussian with mean zero and covariance matrix Σu. The Ui are

assumed independent of the true covariates Xi, and the matrix Σu is assumed known

or estimable from auxiliary data. This paper will consider models that specify (at least

partially) a distribution for Y conditional on X involving unknown parameters θ. Such

models include generalized linear models, Cox survival models, and spline-based regres-

sion models. Not accounting for measurement error when fitting these models can result

in biased parameter estimates as well as a loss of power when detecting relationships be-

tween variables, see Carroll et al. (2006). The effects of measurement error have mostly

been studied in the low-dimensional setting where the sample size n is larger than the

number of covariates p, see Armstrong (1985) for generalized linear models and Prentice
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(1982) for Cox survival models. Ma and Li (2010) also studied variable selection in the

measurement error context using penalized estimating equations.

We consider these models in the high-dimensional setting where p can be much larger

than n. The true θ is assumed sparse, having only d < min(n, p) non-zero components.

Of interest is both recovery of the true sparsity pattern as well as estimating the non-zero

components of θ. When the covariates X are observed without error, the lasso and its

generalizations as proposed by Tibshirani (1996) can be employed for estimating a sparse

θ. The lasso adds an `1 constraints on θ to a loss function L(θ;Y,X). The estimator θ̂

is defined to be

θ̂ = argmin
θ

[L(θ;Y,X) + ξ1 ‖θ‖1] (4.1)

where ξ1 is a tuning parameter and ‖θ‖1 =
∑p

j=1 |θj| is the `1 norm, with θj being the

jth component of θ. For the generalized linear model, L(θ;Y,X) is often chosen as

the negative log-likelihood function, while for the Cox survival model, L(θ;Y,X) is the

negative log of the partial likelihood function, see Hastie et al. (2015) for details.

In high dimensional settings, the presence of measurement error can have severe con-

sequences on the lasso estimator: the number of non-zero estimates can be inflated,

sometimes dramatically, and as such the true sparsity pattern is not recovered Rosen-

baum et al. (2010); see Appendix 4.8.1 for an illustration. To correct for measurement

error in the high-dimensional setting, Rosenbaum et al. (2010) proposed a matrix uncer-

tainty selector (MU) for linear models. Rosenbaum et al. (2013) proposed an improved

version of the MU selector, while Belloni et al. (2017) proved its near-optimal minimax

properties and developed a conic programming estimator that can achieve the minimax

bound. The conic estimators require selection of three tuning parameters, a difficult task

in practice. Another approach for handling measurement error is to modify the loss and

conditional score functions used with the lasso, see Loh and Wainwright (2011), Sørensen

et al. (2015) and Datta et al. (2017). Additionally, Sørensen et al. (2018) developed the

generalized matrix uncertainty selector (GMUS) for generalized linear models. Both the

conditional score approach and GMUS require subjective choices of tuning parameters.

This chapter proposes a new method of estimation called Simulation - Selection -
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Extrapolation (SIMSELEX). This method is based on the SIMEX procedure of Cook and

Stefanski (1994) which has been well-studied for correcting Normal measurement error

in low-dimensional models, see for example Stefanski and Cook (1995), Küchenhoff et al.

(2006) and Apanasovich et al. (2009). A SIMEX procedure for Laplace measurement error

was studied by Koul et al. (2014) who considered a single covariate measured with error.

Yi et al. (2015) combined SIMEX with a generalized estimating equation approach for

variable selection on longitudinal data with covariate measurement error. Their variable

selection step is carried out after the extrapolation step and requires a weight matrix to

be prespecified.

To achieve model sparsity, the SIMSELEX approach augments SIMEX with a variable

selection step (based on the group lasso) performed after the simulation step and before

the extrapolation step. This means that lasso-type methodology is applied twice in

SIMSELEX, once to obtain a sparse solution in the simulation step, and then again in

the variable selection step. The procedure inherits the flexibility of SIMEX and can be

applied to a variety of different high-dimensional errors-in-variables models.

The remainder of this paper is organized as follows. In Section 4.3, the SIMSELEX

procedure for the high-dimensional setting is developed. In Section 4.4, application of

SIMSELEX is illustrated for linear, logistic, and Cox regression models. Section 4.5

demonstrates the application of SIMSELEX in spline nonparametric regression. In Sec-

tion 4.6, the methodology is illustrated with the favorable histology Wilms tumor data.

Section 4.7 contains concluding remarks.

4.3. The SIMSELEX Estimator

Let Xi denote a vector of covariates, let Wi = Xi +Ui denote the covariates contami-

nated by measurement error Ui independent of Xi, and let Yi denote an outcome variable

depending on Xi in a known way through parameter vector θ. The measurement error

Ui is assumed to be multivariate Gaussian with mean zero and known covariance matrix

Σu. The observed data are pairs (Wi, Yi), i = 1, . . . , n. While the outcomes Yi depend

on the true covariates Xi, only the observed Wi are available for model estimation. Now,
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let S denote a method for estimating θ. If the uncontaminated Xi had been observed,

we could calculate the true estimator θ̂true = S({Xi, Yi}i=1,...,n). The naive estimator of

θ based on the observed sample is θ̂naive = S({Wi, Yi}i=1,...,n) and treats the Wi as if

no measurement error is present. Generally, the naive estimator is neither consistent nor

unbiased for θ.

A SIMEX estimator of θ was proposed by Stefanski and Cook (1995). In the simulation

step, a grid of values 0 < λ1 < . . . < λM is chosen. For each λm, B sets of pseudodata are

generated by adding simulated random noise, W
(b)
i (λm) = Wi+λ

1/2
m U

(b)
i , b = 1, . . . , B,

with U (b) having the same multivariate Gaussian distribution as U . For each set of pseu-

dodata, the naive estimator is calculated, θ̂(b)(λm) = S({W (b)
i (λm), Yi}i=1,...,n). These

naive estimators are then averaged, θ̂(λm) = B−1
∑B

b=1 θ̂
(b)(λm). In the extrapolation

step θ̂(λ) is modeled as a function of λ using a suitable function and extrapolated to

λ = −1, which corresponds to the error-free case and gives estimator θ̂simex.

Unfortunately SIMEX as described above cannot be applied to the high-dimensional

setting without some adjustments. Even if method S enforces sparsity of θ̂(b)(λm) for

a given set of pseudodata, this does not guarantee sparsity of the average θ̂(λm), or a

consistent sparsity pattern across values of λm. Let (λm, θ̂j(λm)), m = 1, . . . ,M , de-

note the solution path for the θj, the jth component of θ, and assume θj = 0. If

θ̂j(λi) 6= 0 for even a single λi, it will result in an extrapolated value θ̂j(−1) 6= 0. In this

way, many components of the extrapolated solution could be non-zero. The SIMSELEX

(SIMulation-SELection-EXtrapolation) algorithm, presented below, addresses solution

sparsity. Fundamental to the SIMSELEX approach is a double-use of the lasso: it is used

for parameter estimation in the simulation step to ensure solution sparsity for a given set

of pseudodata, and in the selection step to determine which covariates to include in the

model.

4.3.1. Simulation step

The simulation step of SIMSELEX is identical to the simulation step of SIMEX. How-

ever, the criterion function being minimized for each set of pseudodata now incorporates

81



a lasso-type penalty on the model parameters. For given value of λ and corresponding

pseudodata (W
(b)
i (λ), Yi), i = 1, . . . , n, the estimator θ̂(b)(λ) is calculated according to a

criterion of the form in (4.1) with the tuning parameter ξ
(λ,b)
1 . Note that cross-validation

is implemented separately for each set of pseudodata. Two popular choices for the tun-

ing parameter are ξmin, the value that minimizes the estimated prediction risk, and ξ1se,

the value that makes the estimated prediction risk fall within one standard error of the

minimum (one-se-rule), see Friedman et al. (2001). The simulation step results in pairs

(λm, θ̂(λm)), m = 1, . . . ,M , which are then used in the selection and extrapolation steps

described next.

4.3.2. Selection step

Variable selection is performed by applying a version of the group lasso of Yuan and

Lin (2006) to the pairs (λm, θ̂(λm)). It is assumed that the quadratic function serves as

a good approximation to this relationship. Now, letting θ̂mj = θ̂j(λm), it follows that

θ̂mj = γ0j + γ1jλm + γ2jλ
2
m + emj, m = 1, . . . ,M, j = 1, . . . , p, (4.2)

with emj denoting zero-mean error terms. To achieve model sparsity, it is desirable to

shrink (as a group) the parameters (γ0j, γ1j, γ2j) to the vector (0, 0, 0) for many of the

components θj. Extrapolation will then only be applied to the variables with non-zero

solutions (γ̂0j, γ̂1j, γ̂2j), with all other coefficients being set equal to 0. If the true model

is sparse, many of the solutions (γ̂0j, γ̂1j, γ̂2j) will be shrunk to the zero vector.

The p equations in (4.2) can be written in matrix form, Θ = ΛΓ +E, where

Λ =


1 λ1 λ21
...

...
...

1 λM λ2M

 , Θ =


θ̂11 . . . θ̂1p
...

...

θ̂M1 . . . θ̂Mp

 ,
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Γ =


γ01 . . . γ0p

γ11 . . . γ1p

γ21 . . . γ2p

 and E =


e11 . . . e1p
...

...

eM1 . . . eMp.

 .

When the kth column of the estimated matrix Γ̂ is a zero vector, the corresponding kth

column of Θ̂ = ΛΓ̂ will also be a zero vector and the kth variable is not selected for

inclusion in the model. In the present context, the group lasso penalized discrepancy

function

D(Γ) =
1

2

M∑
m=1

p∑
j=1

(
θ̂mj − γ0j − γ1jλm − γ2jλ2m

)2
+ ξ2

(
p∑
j=1

√
γ20j + γ21j + γ22j

)

is used with ξ2 a tuning parameter. This function can be written in matrix form,

D(Γ) =
1

2

p∑
j=1

(
‖Θj −ΛΓj‖22 + ξ2 ‖Γj‖2

)
(4.3)

where Θj and Γj denote the jth columns of Θ and Γ respectively, and ‖.‖2 denotes the

`2 norm.

Group lasso variable selection is illustrated in the left plot of Figure 4.1 where each

path represents the `2 norm of a column of Γ̂ as a function of ξ2 in the Wilms tumor data

example. Note that only eight of 2074 paths are shown. A larger value of ξ2 sets more

coefficients to zero. The cross-validation (one-se rule) value of ξ2 is also shown.

To find Γ̂ that minimizes D, standard numerical subgradient methods can be used.

As equation (4.3) is block-separable and convex, subgradient methods will converge to

the global minimum. The subgradient equations (Hastie et al., 2015, Section 5.2.2) are

−ΛT
(
Θj −ΛΓ̂j

)
+ ξ2ŝj = 0, j = 1, . . . , p, (4.4)

where ŝj ∈ R3 is an element of the subdifferential of the norm
∥∥∥Γ̂j

∥∥∥
2
. As a result, if

Γ̂j 6= 0, then ŝj = Γ̂j/
∥∥∥Γ̂j

∥∥∥
2
. On the other hand, if Γ̂j = 0, then ŝj is any vector with
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‖ŝj‖2 ≤ 1. Therefore, Γ̂j must satisfy

Γ̂j =


0 if

∥∥Λ>Θj

∥∥
2
≤ ξ2Λ>Λ +

ξ2∥∥∥Γ̂j

∥∥∥
2

I

−1 Λ>Θj otherwise.
(4.5)

The first equation of (4.5) gives a simple rule for when to set the all elements of a specific

column of Γ̂ equal to 0 for a specific value of ξ2. Therefore Γ̂ can be computed using

proximal gradient descent (Hastie et al., 2015, Section 5.3). At the kth iteration, each

column of Γ̂j can be updated by first calculating ω
(k)
j = Γ̂

(k−1)
j + νΛ>(Θj −ΛΓ̂

(k−1)
j ) and

then using this quantity to update

Γ̂
(k)
j =

1− νξ2∥∥∥ω(k)
j

∥∥∥
2


+

ω
(k)
j

for all j = 1, . . . , p. Here, ν is the step size that needs to be specified for the algorithm

and (z)+ = max(z, 0). The convergence of the algorithm is guaranteed if the step size

ν ∈ (0, 1/L), where L is the maximum eigenvalue of the matrix ΛTΛ/M . The parameter

ξ2 can be chosen using cross-validation. The algorithm stops when the distance between

the current estimate Γ̂(k) and the previous estimate Γ̂(k−1) is smaller than some tolerance

level, say 10−4.

Variable selection here assumes a quadratic approximation holds in (4.2). The method

as described could also be used assuming a linear relationship. However, the nonlinear

means function often used in SIMEX is unsuitable for selection as described here as would

result in a non-convex loss function which would be very expensive computationally when

paired with a lasso-type penalty.

4.3.3. Extrapolation step

The extrapolation step of SIMSELEX is identical to that of SIMEX, but with extrap-

olation only applied to the selected variables. Thus, if the jth variable has been selected

for inclusion in the model, an extrapolation function Γex(λ) is fit to the simulation-step

84



pairs (λm, θ̂j(λm)). Let Γ̂ex,j(λ) denote the extrapolation function fit obtained for the

coefficient path of variable j. The SIMSELEX estimate is then given by θ̂j = Γ̂ex,j(−1).

Two common extrapolation functions are the quadratic and nonlinear means models,

respectively Γquad(λ) = γ0 + γ1λ + γ2λ
2 and Γnonlin(λ) = γ0 + γ1/(γ2 + λ). Note that

the extrapolation step does not directly incorporate any model penality, but the coeffi-

cient paths being used for extrapolation did result from fitting a penalized model in the

simulation step.

The right plot in the Figure 4.1 illustrates the simulation and extrapolation steps

of SIMSELEX. For four genes selected in the Wilms tumor example, the plotted points

represents the coefficients resulting from added measurement error level λ, and the dotted

lines illustrate quadratic extrapolation to λ = −1.
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Figure 4.1: SIMSELEX illustration using microarray data (Section 5). Left figure: solid

and dashed lines represent the norms ||Γ̂j||2 of, respectively, the selected and (some)
unselected genes; the vertical dash-dot line is the one-se cross-validation tuning parame-
ter. Right figure: coefficients of selected genes are modeled quadratically in λ and then
extrapolated to λ = −1.

4.4. Model Illustration and Simulation Results

The performance of SIMSELEX in high-dimensional errors-in-variables models is dis-

cussed in this section for linear, logistic, and Cox regression models. Where applicable,

the performance of competitor estimators is also included. The results of extensive simu-

lation studies are also reported. Three performance metrics related to the recovery of the

sparsity pattern and also the estimation error associated with parameter recovery were

considered. Simulations assumed a known measurement error covariance matrix.
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4.4.1. Linear Regression

For observed data (Wi, Yi), i = 1, . . . , n let Yi = X>i θ + εi and Wi = Xi + Ui. For

this linear models with high-dimensional covariates subject to measurement error, three

solutions have been proposed in the literature. Rosenbaum et al. (2010) proposed the Ma-

trix Uncertainty Selection (MUS), which does not require knowledge of the measurement

error covariance matrix Σu. The other two approaches that do make use of Σu; Sørensen

et al. (2015) developed a corrected scores lasso, while Belloni et al. (2017) proposed a

conic programming estimator. The corrected scores lasso requires the selection of one

tuning parameter, while conic programming estimator requires three tuning parameters.

A brief overview of the latter two approaches is given in Appendix 4.8.2.

For the simulation study, data pairs (Wi, Yi) were generated from above linear model.

The true covariates Xi were generated to be i.i.d. p-variate Gaussian with mean 0

and covariance matrix Σ), the latter having entries Σij = ρ|i−j| with ρ = 0.25. The

p components of each measurement error vector Ui were generated to be either i.i.d.

Gaussian or Laplace with mean 0 and variance σ2
u, so that Ui has mean 0 and covariance

matrix Σu = σ2
uIp×p. Two values were considered for the measurement error variance,

σ2
u ∈ {0.15, 0.30}. As SIMSELEX assumes normality of the measurement error, the

Laplace distribution setting was chosen in part to evaluate model robustness. The error

components εi were simulated to be i.i.d. univariate normal, ε ∼ N(0, σ2
ε) with σ2

ε =

0.2562. The sample size was fixed at n = 300, and simulations were done for the number

of covariates p ∈ {500, 1000, 2000}. Two choice of the true θ were considered, namely

θ1 = (2, 1.75, 1.5, 1.25, 1.0, 0, . . . , 0)> and θ2 = (1, 1, 1, 1, 1, 0, . . . , 0)>. Both cases have

d = 5 non-zero coefficients. Under each simulation configuration considered, N = 500

samples were generated.

Above simulation settings correspond to noise-to-signal ratios of approximately 15%

and 30% for each individual covariate. However, in multivariate space a metric such as

the proportional increase in total variability, ∆V = (det(ΣW )− det(Σ)) / det(Σ), is more

informative. When σ2
u = 0.15, if one were to only observe the d = 5 non-zero covariates,

∆V = 1.145, while for p = 500, this metric becomes ∆V = 6.79× 1033. When σ2
u = 0.3,
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the equivalent values are ∆V = 3.132 for d = 5 and ∆V = 5.79× 1062 for p = 500. The

dramatic increase of ∆V emphasizes the severe consequences of measurement error in

high-dimensional space.

In the simulation study, five different estimators were computed: the true lasso using

the uncontaminatedX-data, the naive lasso treating theW -data as if it were uncontami-

nated, the conic estimator with tuning parameters as implemented in Belloni et al. (2017),

the corrected lasso with the tuning parameter chosen based on 10-fold cross-validation,

and SIMSELEX.

SIMSELEX used M = 5 equi-spaced λ values from 0.01 to 2. For each λ, B = 100

sets of pseudodata were generated. The tuning parameter of the lasso was chosen using

the one-se rule and 10-fold cross-validation. For group lasso selection, ν = (20L)−1

was used as step size with L the maximum eigenvalue of matrix Λ>Λ/M . The lasso

was implemented using the glmnet function in MATLAB, see Qian et al. (2013). The

group lasso was implementing using our own code, available online with this paper. Both

quadratic and nonlinear means extrapolation functions were fitted. Only the quadratic

extrapolation results are reported in this section as it has smaller `2 error that nonlinear

extrapolation. The nonlinear means extrapolation results can be found in Appendix 4.8.4.

The five estimators were compared using the average estimation error

`2 =

√√√√ p∑
j=1

(θ̂j − θj)2.

Furthermore, each method’s ability to recover the true sparsity pattern was evaluated

using the average number of false positive (FP) and false negative (FN) estimates per

simulated dataset. Note that the conic estimator does not set any estimates exactly equal

to 0 and cannot be used for variable selection. The simulation results for parameter vector

θ1 are presented in Table 4.1, while the results for θ2 are presented in Table 4.7.
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p Est σ2u = 0.15 σ2u = 0.30

Normal Laplace Normal Laplace

`2 FP FN `2 FP FN `2 FP FN `2 FP FN

500 True 0.09 0.98 0.00 0.09 0.81 0.00 0.09 0.82 0.00 0.09 0.83 0.00

(0.02) (2.06) (0.00) (0.02) (1.56) (0.00) (0.02) (1.86) (0.00) (0.02) (1.65) (0.00)

Naive 0.73 1.36 0.00 0.74 0.99 0.00 1.11 1.48 0.00 1.12 1.12 0.00

(0.08) (3.3) (0.00) (0.08) (2.21) (0.00) (0.1) (3.29) (0.00) (0.1) (2.24) (0.00)

SIMSELEX 0.32 0.00 0.00 0.34 0.00 0.00 0.5 0.00 0.00 0.52 0.00 0.00

(0.1) (0.00) (0.00) (0.11) (0.00) (0.00) (0.14) (0.00) (0.00) (0.16) (0.04) (0.00)

Conic 0.37 - - 0.38 - - 0.52 - - 0.53 - -

(0.07) - - (0.06) - - (0.1) - - (0.1) - -

Corrected 0.43 2.3 0.00 0.44 1.76 0.00 0.62 2.74 0.00 0.63 2.1 0.00

(0.08) (5.27) (0.00) (0.08) (3.51) (0.00) (0.11) (4.93) (0.00) (0.11) (3.88) (0.00)

1000 True 0.09 1.27 0.00 0.09 1.06 0.00 0.09 1.01 0.00 0.09 1.06 0.00

(0.02) (2.55) (0.00) (0.02) (2.18) (0.00) (0.02) (2.04) (0.00) (0.02) (2.22) (0.00)

Naive 0.75 1.69 0.00 0.76 1.18 0.00 1.14 1.38 0.00 1.15 1.39 0.00

(0.08) (3.29) (0.00) (0.08) (2.72) (0.00) (0.1) (3.03) (0.00) (0.11) (3.16) (0.00)

SIMSELEX 0.33 0.00 0.00 0.35 0.00 0.00 0.51 0.00 0.00 0.53 0.00 0.00

(0.11) (0.00) (0.00) (0.12) (0.00) (0.00) (0.15) (0.00) (0.04) (0.16) (0.00) (0.04)

Conic 0.39 - - 0.4 - - 0.55 - - 0.56 - -

(0.07) - - (0.07) - - (0.1) - - (0.1) - -

Corrected 0.44 3.48 0.00 0.46 3.11 0.00 0.63 3.57 0.00 0.65 3.14 0.00

(0.09) (6.37) (0.00) (0.08) (6.26) (0.00) (0.12) (5.97) (0.00) (0.13) (5.26) (0.00)

2000 True 0.1 1.29 0.00 0.1 1.45 0.00 0.1 1.56 0.00 0.1 1.32 0.00

(0.02) (2.68) (0.00) (0.02) (3) (0.00) (0.02) (3.41) (0.00) (0.02) (2.62) (0.00)

Naive 0.77 1.76 0.00 0.78 1.59 0.00 1.17 1.89 0.00 1.17 2.06 0.00

(0.08) (3.52) (0.00) (0.09) (5.06) (0.00) (0.1) (4.57) (0.00) (0.11) (5.72) (0.00)

SIMSELEX 0.34 0.00 0.00 0.36 0.00 0.00 0.53 0.00 0.00 0.55 0.00 0.01

(0.1) (0.00) (0.00) (0.11) (0.00) (0.00) (0.15) (0.04) (0.00) (0.17) (0.00) (0.09)

Conic 0.41 - - 0.41 - - 0.59 - - 0.59 - -

(0.07) - - (0.07) - - (0.1) - - (0.11) - -

Corrected 0.45 4.91 0.00 0.47 3.88 0.00 0.64 5.42 0.00 0.66 3.83 0.00

(0.08) (7.66) (0.00) (0.09) (7.12) (0.00) (0.12) (8.11) (0.00) (0.13) (5.99) (0.00)

Table 4.1: Comparison of estimators for linear regression with with the case of θ1 based
on `2 estimation error, average number of false positives (FP) and false negatives (FN).
Standard errors in parentheses.

As seen in Table 4.1, the naive estimator performs worst — it has `2 error often twice

that of either the conic or SIMSELEX methods. The conic estimator has comparable

performance to the SIMSELEX estimators, with SIMSELEX having slightly smaller `2

error for θ1, and the conic estimator having slightly smaller `2 error for θ2. Both the
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conic and SIMSELEX estimators have smaller `2 error than the corrected scores lasso.

Interestingly, the `2 error corresponding to the Normal and Laplace measurement error

settings is quite similar. This suggests that SIMSELEX is robust to at least moderate

departures from normality (for the simulation settings considered).

When considering the recovery of true sparsity pattern, the average number of false

negatives are negligible for all methods. For the average number of false positives, the

corrected lasso generally performs the worst, while SIMSELEX does not result in any

false positive for the parameter specifications considered. Overall, Table 4.7 demonstrates

that SIMSELEX can have performance superior to existing methods in the literature with

regards to the performance metrics considered.

4.4.2. Logistic Regression

Assume the observed data (Wi, Yi), i = 1, . . . , n are generated by Yi ∼ Bern
[
F (X>i θ)

]
and Wi = Xi +Ui. The logistic regression model follows when F (x) = logit−1(x). Two

solutions for performing logistic regression in a high-dimensional errors-in-variables set-

ting exist in the literature. The conditional scores lasso approach of Sørensen et al. (2015)

can be applied to GLMs. This method requires the covariance matrix Σu be known or

estimable. Sørensen et al. (2018) proposed a Generalized Matrix Uncertainty Selector

(GMUS) for sparse high-dimensional models with measurement error. The GMUS esti-

mator does not make use of Σu. These methods are reviewed in Appendix 4.8.2.

For the simulation study, data pairs (Wi, Yi) were generated using Yi|Xi ∼ Bern(pi)

with logit(pi) = X>i θ. The true covariates Xi, measurement error components Ui, coeffi-

cient vectors θ, and sample size were exactly as outlined for the linear model simulation,

see Section 4.4.1. The true estimator, naive estimator, conditional scores lasso, and

SIMSELEX estimator using both quadratic and nonlinear extrapolation were computed

for each simulated dataset for p ∈ {500, 1000, 2000}. The GMUS estimator was only

computed for the case p = 500; Sørensen et al. (2018) note that GMUS becomes too

computationally expensive for large p. We attempted implementation for p = 1000 using

the hdme package in R, but a run time exceeding 12 hours for one sample demonstrated
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the impracticality of this method. For the conditional scores lasso, Sørensen et al. (2015)

recommend using an elbow method to choose the tuning parameter. For the simulation

study, an adapted elbow described in Appendix 4.8.2 was used to select the tuning param-

eter. This adapted method isn’t usable in practice and does tend to give over-optimistic

results for the corrected scores approach than one is likely to otherwise obtain. The per-

formance metrics `2 error, and average number of false positives (FP) and false negatives

(FN) were calculated to compare the estimators. The results for θ1 are presented in Table

4.2, while the results for θ2 are presented in Table 4.8.
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p Est σ2u = 0.15 σ2u = 0.30

Normal Laplace Normal Laplace

`2 FP FN `2 FP FN `2 FP FN `2 FP FN

500 True 2.62 0.39 0.23 2.61 0.39 0.23 2.61 0.54 0.25 2.59 0.54 0.25

(0.21) (2.54) (0.43) (0.21) (2.54) (0.43) (0.23) (3) (0.59) (0.2) (3) (0.59)

Naive 2.83 0.59 0.57 2.83 0.59 0.57 2.99 0.42 1.08 2.99 0.42 1.08

(0.22) (3.79) (1.03) (0.22) (3.79) (1.03) (0.23) (1.59) (1.6) (0.24) (1.59) (1.6)

SIMSELEX 2.65 0.01 0.65 2.63 0.01 0.68 2.73 0.00 1.38 2.74 0.00 1.57

(0.43) (0.09) (0.58) (0.39) (0.09) (0.61) (0.46) (0.00) (1.09) (0.45) (0.06) (1.19)

Cond 2.36 7.02 1.15 2.33 7.02 1.15 2.58 5.67 1.7 2.53 5.67 1.7

(0.65) (9.77) (0.95) (0.61) (9.77) (0.95) (0.56) (7.94) (1.09) (0.57) (7.94) (1.09)

GMUS 2.67 0.21 0.21 2.87 0.21 0.21 2.75 0.66 0.22 2.74 0.66 0.22

(0.08) (0.52) (0.41) (0.07) (0.52) (0.41) (0.08) (0.98) (0.42) (0.08) (0.98) (0.42)

1000 True 2.65 0.36 0.26 2.64 0.36 0.26 2.64 0.61 0.3 2.64 0.61 0.3

(0.19) (1.38) (0.48) (0.21) (1.38) (0.48) (0.21) (3.38) (0.55) (0.21) (3.38) (0.55)

Naive 2.86 0.7 0.63 2.85 0.7 0.63 3.01 0.78 1.25 3.01 0.78 1.25

(0.22) (3.62) (1.11) (0.22) (3.62) (1.11) (0.24) (4.53) (1.74) (0.23) (4.53) (1.74)

SIMSELEX 2.67 0.00 0.72 2.65 0.00 0.71 2.76 0.00 1.59 2.77 0.00 1.61

(0.44) (0.06) (0.64) (0.41) (0.06) (0.64) (0.46) (0.00) (1.14) (0.42) (0.00) (1.21)

Cond 2.44 8.82 1.18 2.46 8.82 1.18 2.62 7.53 1.75 2.64 7.53 1.75

(0.63) (11.22) (0.99) (0.66) (11.22) (0.99) (0.59) (11.2) (1.05) (0.57) (11.2) (1.05)

2000 True 2.66 0.75 0.33 2.65 0.75 0.33 2.65 0.89 0.35 2.65 0.89 0.35

(0.22) (3.7) (0.66) (0.21) (3.7) (0.66) (0.22) (3.39) (0.6) (0.23) (3.39) (0.6)

Naive 2.88 0.56 0.68 2.87 0.56 0.68 3.02 0.84 1.23 3.03 0.84 1.23

(0.2) (2.68) (1.1) (0.22) (2.68) (1.1) (0.23) (4.63) (1.71) (0.23) (4.63) (1.71)

SIMSELEX 2.70 0.01 0.78 2.68 0.01 0.80 2.77 0.00 1.76 2.80 0.00 1.79

(0.41) (0.08) (0.67) (0.42) (0.06) (0.68) (0.44) (0.04) (1.25) (0.44) (0.00) (1.20)

Cond 2.52 12.04 1.29 2.52 12.04 1.29 2.75 10.58 1.85 2.71 10.58 1.85

(0.63) (14.4) (0.94) (0.65) (14.4) (0.94) (0.62) (15.6) (1.11) (0.61) (15.6) (1.11)

Table 4.2: Comparison of estimators for logistic regression with with the case of θ1 based
on `2 estimation error, average number of false positives (FP) and false negatives (FN).
Standard errors in parentheses.

Table 4.2 shows that in terms of `2 estimation error, the SIMSELEX estimator always

performs better than the naive estimator and in many configurations, SIMSELEX has

performance close to the true estimator. The conditional scores lasso has the smallest `2

error of the methods that control for measurement error, sometimes even outperforming

the true estimator. We believe this to be an artifact of how the tuning parameter is

selected in the simulation study, and does not correspond to “real world” performance.

Furthermore, in terms of variable selection, the conditional scores lasso has both the high-
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est average number of false positives and false negatives in all the considered settings. On

the other hand, the SIMSELEX estimator performs variable selection well. SIMSELEX

has the lowest average number of false positives in all the cases considered, and has only

slightly higher average number of false negatives than the true and naive estimator. In

the case of p = 500, GMUS has larger `2 error than SIMSELEX and the conditional

scores lasso. However, it has smallest average number of false negatives among all the

estimators and a slightly larger number of average false positive than SIMSELEX. As in

the linear model, performance of the estimators do not differ markedly for the Normal and

Laplace measurement error settings. Again, this suggests some robustness to departure

from the assumed normality of measurement error in SIMSELEX.

4.4.3. Cox Proportional Hazard Model

The Cox proportional hazard model is commonly used for the analysis of survival

data. It is assumed that the random failure time T has conditional hazard function

h(t|X) = h0(t) exp(X>θ) where h0(t) is the baseline hazard function. Survival data is

frequently subject to censoring in practice. It is therefore assumed that the observed data

are of the form (Wi, Yi, Ii), i = 1, . . . , n where Yi = min(Ti, Ci), Ci being the censoring

time for observation i, and Ii = I(Ti < Ci) being an indicator of whether failure occurred

in subject i before the censoring time.

For the simulation study, the true covariates Xi and the measurement error Ui were

simulated as in the linear model simulation (see Section 4.4.1). The survival times Ti were

simulated using the Weibull hazard as baseline, h0(t) = λTρt
ρ−1 with shape parameter ρ =

1 and scale parameter λT = 0.01. The censoring times Ci were randomly drawn from an

exponential distribution with rate λC = 0.001. Two choice of the true θ were considered,

θ1 = (1, 1, 1, 1, 1, 0, . . . , 0)> and θ2 = (2, 1.75, 1.50, 1.25, 1, 0, . . . , 0)>. For θ1, the model

configuration resulted in samples with between 20% and 25% of the observations being

censored, while for θ2, between 25% and 30% of the observations were censored. The

sample size was fixed at n = 300, and simulations were done for number of covariates

p ∈ {500, 1000, 2000}.
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σ2
u p `2 FP FN

True Naive SIM-
SELEX

True Naive SIM-
SELEX

True Naive SIM-
SELEX

0.15 500 1.36 2.25 1.8 8.59 3.66 0.00 0.00 0.00 0.03

(0.15) (0.11) (0.23) (6.34) (3.99) (0.00) (0.00) (0.00) (0.18)

1000 1.41 2.27 1.82 10.8 4.77 0.00 0.00 0.00 0.05

(0.15) (0.11) (0.23) (7.63) (5.18) (0.00) (0.00) (0.00) (0.22)

2000 1.47 2.31 1.89 12.92 5.68 0.00 0.00 0.00 0.07

(0.15) (0.12) (0.24) (8.97) (6.32) (0.00) (0.00) (0.00) (0.26)

0.30 500 1.37 2.58 2.19 8.03 2.33 0.00 0.00 0.00 0.52

(0.16) (0.1) (0.21) (6.02) (3.09) (0.00) (0.00) (0.06) (0.51)

1000 1.43 2.6 2.22 10.31 3.24 0.00 0.00 0.00 0.55

(0.15) (0.09) (0.2) (7.6) (4.1) (0.00) (0.00) (0.00) (0.53)

2000 1.46 2.63 2.26 13.71 3.84 0.00 0.00 0.00 0.7

(0.16) (0.09) (0.19) (9.5) (4.97) (0.00) (0.00) (0.04) (0.5)

Table 4.3: Comparison of estimators for Cox survival models for the case θ1 based on
`2 estimation error, average number of false positives (FP) and false negatives (FN).
Standard errors in parentheses.

For the Cox model, implementation of SIMSELEX is much more computationally

intensive than the linear and logistic models. This can be attributed to computation of the

generalized lasso for the Cox model, see (Hastie et al., 2015, Section 3.5). As such, only

B = 40 replicates were used for each λ value in the extrapolation step of the SIMSELEX

algorithm. It should further be noted that, to the best of our knowledge, the Cox model

with high-dimensional data subject to measurement error has not been considered by

any other authors. As such, there is no competitor method for use in the simulation

study. However, the model using the true covariates not subject to measurement error

can be viewed as a gold standard measure of performance. The naive model was also

implemented. The simulation results for the case of θ1 are reported in Table 4.3, while

the results for the case of θ2 are presented in Table 4.9.

Table 4.3 shows that the SIMSELEX has a significantly lower `2 error than the naive

estimator. With regards to recovery of the sparsity pattern, SIMSELEX has negligible

average number of false positives in all the considered settings, while the naive estimator

and the true estimator respectively result in the selection of more than 10 and 2 false
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positives on average. Neither of the true and the naive estimators result in false negatives,

while the SIMSELEX estimator has average number of false negatives around 0.05 for

the case of σ2
u = 0.15 and around 0.6 for the case of σ2

u = 0.3.

4.4.4. Computational Time

The nature of SIMSELEX may lead to the suspicion that it is a computationally

inefficient method that does not scale well with increasing sample size. We have investi-

gated this possibility and have compared the proposed SIMSELEX method with existing

methods for linear and logistic regression models.

For the SIMSELEX procedure, the bulk of computational time is taken up by the

simulation step, i.e. the simulation of pseudo-data and the fitting of the proposed sparse

model to each such set of data. In general, if algorithms exist for fast computation of the

naive estimator, then implementation for the pseudo-data is equally fast. Furthermore,

the generation of the psuedo-data only requires the simulation of normal random vectors,

which can also be done fast. Consider therefore the linear model as an example. Here,

in the simulation study the median time to implement the simulation step with p =

500, 1000, 2000 with 5 values of the λ and B = 100 replicates per λ was approximately

350, 480, and 760 seconds respectively. When considering the logistic regression model,

these numbers were 510, 680, and 1010 seconds. The simulation step for the Cox survival

model takes much longer time: Even with only B = 40 replicates in the case of p = 500,

the median time is approximately 5380 seconds.

The computation time for selection step in the SIMSELEX procedure only depends on

the number of λ-values and is generally fast to implement. With 5 values for λ and with

p = 2000, selection takes about 250 seconds. The extrapolation step take least amount

of time, with the median time less than 20 seconds in all the settings.

When compared to the other methods considered, SIMSELEX scales well with the

dimension of the problem. In the linear model setting, the conic estimator takes very

long when the number of covariates is large; for p = 2000, the median time to compute

the conic estimator was around 6600 seconds. This is six times larger than the median
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computation time for SIMSELEX for the same dimension size. The corrected lasso tends

to be faster than SIMSELEX for p = 500 and p = 1000 but takes roughly the same

amount of time in the case of p = 2000.

In the logistic model setting, the conditional scores lasso takes less time to compute

than the SIMSELEX procedure; however, its tuning parameter is selected through a

subjective rule and not in a data-driven way. The GMUS estimator is generally not

scalable with the current implementation in the hdme package. Computation times for

all methods was tabulated in Table 4.12.

4.5. SIMSELEX for Spline-Based Regression

This section provides implementation of SIMSELEX in the high-dimensional nonpara-

metric regression setting and further demonstrates the flexibility of the procedure.

4.5.1. Spline Model Estimation

The proposed SIMSELEX algorithm can also be adapted for used for more flexible

models such as regression using splines. Assume that the data (Wi, Yi) are generated

by an additive model Yi =
∑p

j=1 fj(Xij) + εi with Wi = Xi +Ui and Ui having known

covariance matrix ΣU . Also assume that E[Yi] = 0, i = 1, . . . , n. In practice, this

can be achieved by centering the observed outcome variable. Furthermore, each of the

functions fj(x) is assumed sufficiently smooth so that it can be well-approximated by

an appropriately chosen set of basis functions. In this paper, the focus will be on an

approximation using cubic B-splines with K knots. This model will have p(K + 3)

regression coefficients that need to be estimated.

Now, assume that the true covariates Xi have been observed without measurement

error. Let φjk(x), j = 1, . . . , p, k = 1, . . . , K + 3 denote the resulting set of cubic B-

spline basis functions where the knots for the jth covariate have been chosen as the

(100k)/(K+ 1)th percentiles, k = 1, . . . , K, of said covariate. The model to be estimated

is then of the form Yi =
∑p

j=1

∑K+3
k=1 βjkφjk(Xij) + εi. In this setting, the jth covariate

is selected if at least one of the coefficients βjk, k = 1, . . . , K is nonzero. Therefore, it is
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natural to delineate all the coefficients βjk into p groups, each corresponding to a covariate

and containing K + 3 parameters. The model parameters are estimated by minimizing

the penalized loss function

R(β) =
n∑
i=1

[
Yi −

p∑
j=1

K+3∑
k=1

βjkφjk(Xij)

]2
+ (1− α)κ

p∑
j=1

√√√√K+3∑
k=1

β2
jk + ακ

p∑
j=1

K+3∑
k=1

‖βjk‖ .

(4.6)

This loss function has been considered in Simon et al. (2013) for the sparse group lasso

estimator. Let β̂true denote the estimated coefficients from this model. The loss function

(4.6) combines the lasso and group lasso penalties. The tuning parameter α ∈ [0, 1]

balances overall parameter sparsity and within-group sparsity. While it is expected that

only a few covariates will be selected, the nonlinear effect of each selected covariate may

require a large number of basis functions to be accurately modeled. Therefore, strong

overall sparsity but only mild within-group sparsity is expected. As per Simon et al.

(2013), α = 0.05 is used. The estimator of each function fj is f̂ true
j (x) =

∑K+3
k=1 β̂

true
jk φjk(x)

for all j = 1, . . . , p.

Now, using the contaminated data Wi, a similar procedure can be followed to ob-

tain the naive estimator. Again, evaluate the knots of the model as equally spaced

percentiles, this time of the covariates contaminated by measurement error. The corre-

sponding cubic B-spline basis functions are denoted φWjk (x). The naive estimator β̂naive

can be obtained by minimizing a function analogous to (4.6), but with true data Xij

replaced by contaminated data Wij in the loss function. The naive estimator for function

fj is f̂naive
j (x) =

∑K+3
k=1 β̂

naive
jk φWjk (x) for all j = 1, . . . , p.

To compute the SIMSELEX estimator, for each of the added noise level λm, generate B

pseudodata W̃ (b)(λm), b = 1, . . . , B as before. Note that the same set of basis functions

obtained for the naive estimate is used. Then, the estimate β̂
(b)
jk (λm) for each set of

pseudodata is obtained by minimizing a function analogous to (4.6), but with true data

Xij replaced by pseudodata W̃
(b)
ij (λm) in the loss function. The estimates β̂

(b)
jk (λm) are

averaged across B samples to obtain β̂jk(λm) for each λm in the grid.

After the simulation step of SIMSELEX, the jth covariate is associated with K + 3
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“paths”
{

(λi, β̂j1(λi)), . . . , ...(λi, β̂j,K+3(λi))
}

, each of which needs to be extrapolated to

λ = −1. This is different from the parametric model setting considered in Section 4.4,

where each covariate j is associated with only one parameter path θj(λi) that needs to be

extrapolated to λ = −1. Therefore, the selection step for spline-based regression needs

to be approached with some care. Here, two different approaches for selection step are

considered.

The first approach for selection considered applies a variation of the group lasso to

all p(K + 3) coefficients βjk. This is done using a quadratic extrapolation function.

Specifically, it is assumed that

β̂jk(λi) = Γ0jk + Γ1jkλi + Γ2jkλ
2
i + εijk, i = 1, . . . ,M, j = 1, . . . , p, k = 1, . . . , K + 3

with εijk zero-mean error terms. With this approach, the jth covariate is zeroed out if all

the parameter estimates {Γ̂ijk}i=0,1,2, k=1,...,K equal zero. Applying the group lasso, the

loss function to be minimized is

R =

p∑
j=1

(
‖Θj −ΛΓj‖22 + ξ3 ‖Γj‖2

)
(4.7)

where

Γj =


Γ0j1 . . . Γ0jK

Γ1j1 . . . Γ1jK

Γ2j1 . . . Γ2jK

 , Θj =


β̂j1(λ1) . . . β̂jK(λ1)

...
...

β̂j1(λM) . . . β̂jK(λM)

 , Λ =


1 λ1 λ21
...

...
...

1 λM λ2M

 ,

and ‖.‖2 denotes the Frobenius norm (matrix version of the `2 norm). This is a very

natural extension of the approach considered in Section 4.4. The tuning parameter ξ3 can

be chosen through cross-validation. Even though (4.7) is convex and block-separable, the

minimization is computationally very expensive due to the number of model parameters.

As such, an alternative approach intended to speed up computation was also considered.

The alternative approach considered for selection applies the group lasso not to each

individual coefficient, but to the norm of each group of coefficients βjk, k = 1, . . . , K + 3
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corresponding to the jth covariate. This is motivated by noting that the norm of a

group of coefficients will only equal 0 if all the coefficients in said group are equal to

0. More specifically, let β̂j(λi) = [β̂j1(λi), . . . , β̂jK(λi)]
>, i = 1, . . . ,M , j = 1, . . . , p, and

let η̂ij =
∥∥∥β̂j(λi)∥∥∥

q
denote the corresponding `q norm. The two scenarios considered are

q = 1 and 2. The norm is modeled quadratically as

η̂ij = Γ0j + Γ1jλi + Γ2jλ
2
i + εij, i = 1, . . . ,M,

with εij zero-mean error terms. The jth covariate is not selected if all the elements of

the estimated vector (Γ̂0j, Γ̂1j, Γ̂2j) are equal to zero. The group lasso loss function to be

minimized is

R̃ =
1

2

M∑
i=1

p∑
j=1

(
η̂ij − Γ0j − Γ1jλi − Γ2jλ

2
i

)2
+ ξ4

p∑
j=1

√
Γ2
0j + Γ2

1j + Γ2
2j. (4.8)

Equation (4.8) is convex and block-separable, and can be minimized efficiently through

proximal gradient descent methods. The tuning parameter ξ4 can be chosen through

cross-validation.

Finally, if the jth covariate is chosen in the selection step, extrapolation is per-

formed separately on each βjk to get the SIMSELEX estimate for each coefficient, de-

noted by β̂ssx
jk . Then, the SIMSELEX estimate for each function fj is computed as

f̂ sj (x) =
∑K+3

k=1 β̂
ssx
jk φ

W
jk (x).

4.5.2. Simulation

Data pairs (Wi, Yi) were generated according to the additive model Yi =
∑p

j=1 fj(Xij)+

εi, and Wi = Xi + Ui with f1(t) = 3 sin(2t) + sin(t), f2(t) = 3 cos(2π/3t) + t, f3(t) =

(1 − t)2 − 4, f4(t) = 3t, and fj(t) = 0, j = 5, . . . , p. The s = 4 non-zero functions

have all been centered at 0. The true covariates Xij were generated from a Gaussian

copula model with correlation structure Σij = 0.25|i−j|, see Xue-Kun Song (2000) for

more details. The covariates marginal were then rescaled to have a uniform distribution

on [−3, 3]. The measurement errors Ui were generated to be i.i.d. p-variate normal,
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Ui ∼ Np(0, σ
2
uIp), with Ip the p × p identity matrix. Two values of σ2

u were considered,

σ2
u = 0.15 and σ2

u = 0.3, corresponding to 5% and 10% noise-to-signal ratios for each

individual covariate. Simulations were also done for number of covariates p ∈ {100, 500}.

Although the NSR look small in each covariate, recall from Section 4.4.1 that the change

in total proportion of variability ∆V increases rapidly in multivariate space. For each

configuration, N = 500 samples were generated.

For each simulated dataset, the true, naive, and SIMSELEX estimators were com-

puted. We are unaware of any other method in the literature dealing with spline-based

regression in the high-dimensional setting when covariates are subject to measurement

error. For each covariate, the number of knots was chosen to be K = 6. As such,

each function fj is modeled by K + 3 = 9 basis functions. In the simulation step of

SIMSELEX, B = 40 sets of pseudodata are generated for each level of added measure-

ment error. The function estimators are evaluated using integrated squared error, ISE

=
∑p

j=1

∫ (
f̂ij(x)− fij(x)

)2
dx, as well as the number of false positive (FP) and false

negative (FN) covariates selected.

Table 4.4 compares the performance of the SIMSELEX estimator with alternative

methods of doing variable selection in the case of p = 100 and with σ2
u = 0.15. Firstly,

selection approach (4.7) using individual models for all the coefficients βjk was imple-

mented. Secondly, approach (4.8) was applied both for the `1 norm and for the `2 norm,

calculated based on the groups of parameters corresponding to specific variables. The ta-

ble reports the MISE, the number of false positives (FP) and false negatives, and also the

average time (in seconds), all calculated for 500 simulated samples. The average time was

recorded based on running the simulations on one node (memory 7GB) of ManeFrame

II (M2), the high-performance computing cluster of Southern Methodist University in

Dallas, TX.

Considering the results in Table 4.4, selection based on the `2 norm gives the best

result, while selection based on individually considering all the coefficients gives the worst

results. The latter also takes more than 14 times longer to compute (on average) than

the `2 approach. The `1 approach is comparable to `2 in terms of MISE and average
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Selection MISE FP FN Time (second)

All coefficients 17.32 21.50 0.00 819.00

`1 norm 17.17 10.06 0.00 59.70

`2 norm 16.76 4.62 0.00 56.68

Table 4.4: Comparison of SIMSELEX variable selection methods for spline regression
with p = 100.

σ2
u Estimator p = 100 p = 500

MISE FP FN MISE FP FN
0.15 True 15.96 3.68 0.00 18.05 12.11 0.00

(2.99) (2.75) (0.00) (3.28) (6.47) (0.00)
Naive 37.19 9.67 0.00 47.62 16 0.00

(7.17) (5.51) (0.00) (8.41) (10.16) (0.00)
SIMSELEX 16.95 5.48 0.00 21.94 6.5 0.00

(4.63) (3.14) (0.00) (6.3) (3.84) (0.00)
0.30 True 15.96 3.68 0.00 18.05 12.11 0.00

(2.99) (2.75) (0.00) (3.28) (6.47) (0.00)
Naive 69.89 9.28 0.01 87.73 13.26 0.08

(12.31) (6.42) (0.12) (13.2) (10.84) (0.28)
SIMSELEX 38.51 3.74 0.03 54.41 4.06 0.17

(11.37) (2.77) (0.18) (14.15) (3.27) (0.39)

Table 4.5: Comparison of estimators for high-dimensional spline regression model based
on estimation error (MISE), average number of false positives (FP) and false negatives
(FN). Standard errors in parentheses.

computation time, but has a much higher average number of false positive selections.

Therefore, the SIMSELEX estimator with selection using `2 norm for parameter groups

is compared with the naive estimator. The results are summarized in Table 4.5.

Table 4.5 demonstrates that SIMSELEX has a significantly lower estimation error

(MISE) than the naive estimator in all the configurations considered. Particularly, in the

case of σ2
u = 0.15, the SIMSELEX estimator has MISE close to the true estimator. In

the case of σ2
u = 0.3, compared to the naive estimator, the SIMSELEX estimator reduces

MISE significantly. For example, in the case of p = 500, the reduction in MISE resulting

from using the SIMSELEX over the naive estimator is more than 38%. Even so, it is

clear that measurement error has a significant effect on the recovery of the functions fj

for the case σ2
u = 0.3.

Regarding variable selection, the SIMSELEX estimator performs very well in the case

of σ2
u = 0.15. In this case, SIMSELEX is always able to select the true non-zero functions
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Figure 4.2: Curves Q1 ( ), Q2 ( ), Q3 ( ), and true function ( ) for
the esimated functions from the naive estimators (top) and the SIMSELEX estimators
(bottom) corresponding to p = 600 and σ2

u = 0.15. For (a),(e): f1(x) = 3 sin(2x)+sin(x);
for (b),(f): f2(x) = 3 cos(2πx/3) + x; for (c), (g): f3(x) = (1 − x)2 − 4; for (d), (h):
f4(x) = 3x.

by having false negatives equal 0 in all samples, while having only a slightly higher average

number of false positives than the true estimator with p = 100 and lowest average number

of of false positives with p = 500. In the case of σ2
u = 0.3, SIMSELEX gives considerably

fewer false positives on averages than both the true and naive estimators. SIMSELEX

does have the highest average number of false negatives for this setting, but this is still

below 0.5 in all the cases considered.

Figure 4.2 shows plots of the estimators corresponding to the first, second, and third

quantiles (Q1, Q2, and Q3) of ISE for the naive estimator and the SIMSELEX estimator

in the case of σ2
u = 0.15 and p = 500. The SIMSELEX estimator captures the shape of

the functions considerably better, especially around the peaks of f1 and f2. Particularly,

in the case of σ2
u = 0.15, the SIMSELEX estimator is able to capture the shape of all the

nonzero functions very well. Comparable figures for the case σ2
u = 0.3 and p = 500 are

given in Figure 4.3. As one would anticipate there, the increase in measurement error

variance results in poorer recovery of the underlying functions. Even so, SIMSELEX has

notably better performance than the naive approach.
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Figure 4.3: Curves Q1 ( ), Q2 ( ), Q3 ( ), and true function ( ) for
the esimated functions from the naive estimators (top) and the SIMSELEX estimators
(bottom) corresponding to p = 600 and σ2

u = 0.30. For (a),(e): f1(x) = 3 sin(2x)+sin(x);
for (b),(f): f2(x) = 3 cos(2πx/3) + x; for (c), (g): f3(x) = (1 − x)2 − 4; for (d), (h):
f4(x) = 3x.

4.6. Microarray Analysis

In this data application, we analyze an Affymetrix microarray dataset containing gene

expression measurements of 144 favorable histology Wilms tumors. The data is publicly

available on the ArrayExpress website under access number E-GEOD-10320. In these

Wilms tumors, the cancer cell’s nuclei is not very large or distorted, so a high proportion

of patients are successfully treated. However, relapse is a possibility after treatment. It is

of interest to identify any genes associated with relapse. A total of 53 patients experienced

a relapse, while 91 patients had no relapse over a three year follow-up. Replicate data is

available for each patient as multiple probes were collected per patient. This allows for

the estimation of gene-specific measurement error variances. The analysis is performing

after applying a logarithmic transformation.

To make our analysis comparable with that previously done by Sørensen et al. (2015),

data preprocessing was done as described by them. The raw data were processed using the

Bayesian Gene Expression (BGX) Bioconductor of Hein et al. (2005) creating a posterior
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distribution for the log-scale expression level of each gene in each sample. For gene j

in patient i, the posterior mean µ̂ij was then taken as an estimates of the true gene

expression level.

Now, let µ̂j = (µ̂1j, . . . , µ̂nj)
> denote the estimated vector of gene expression lev-

els for gene j = 1, . . . , p for the n patients. Furthermore, let µ̄j = (1/n)
∑n

j=1 µ̂ij

and σ̂2
j = (1/n)

∑n
j=1(µ̂ij − µ̄j)

2 denote the estimated mean and variance of gene j.

Standardized measurements Wi = (Wi1, . . . ,Wip), i = 1, . . . , n were then calculated as

Wij = (µ̂ij − µ̄j)/σ̂j, i = 1, . . . , n, j = 1, . . . , p. To estimate Σu, it was assumed that

the measurement error is independent of the patient and that the associated variance is

constant across patients for a given gene. Let var(µ̂ij) denote the posterior variance of

the estimated distribution of gene j in patient i. These estimates were then combined,

σ̂2
u,j = (1/n)

∑n
i=1 var(µ̂ij), and the measurement error covariance matrix associated with

W was estimated by the diagonal matrix with elements (Σ̂u)j,j = σ̂2
uj/σ̂

2
j , j = 1, . . . , p.

Only the p = 2074 genes with σ̂2
u,j < (1/2)σ̂2

j , i.e. estimated noise-to-signal ratio less

than 1, were retained for analysis.

Using the data (Wi, Yi), i = 1, . . . , n, with Yi an indicator of relapse, four different

procedures were used to fit a logistic regression model to the data. These procedures are

a naive model with lasso penalty, the conditional scores lasso of Sørensen et al. (2015),

the SIMSELEX model, and a SIMEX model without variable selection. For the naive,

SIMSELEX and SIMEX models, 10-fold cross-validations using the one-standard-error

rule was used to select the tuning parameter. For SIMEX and SIMSELEX, a grid of 16

equally spaced λ-values from 0.01 to 2 and B = 100 replicates were used in the simulation

step. The elbow method was used for tuning parameters selection in the conditional scores

lasso. SIMEX without selection identified 1699 out of 2074 genes. Though many of the

estimated coefficients are close to zero, 17 estimated coefficients exceed 0.1, and a further

41 exceed 0.01. This analysis is a far departure from the required sparse model. Results

of the other three analyses are in Table 4.6.

The naive approach identified 26 non-zero genes, while conditional scores identified

13 non-zero genes. SIMSELEX identified only 4 non-zero genes. Note that one of the
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Table 4.6: Gene symbols and estimated coefficients from the naive lasso, the conditional
scores lasso, and the SIMSELEX estimator applied to the Wilms tumors data. Genes
selected by SIMSELEX are printed in bold.

Gene Naive Conditional
scores

SIMSELEX

202016 at -0.2216 -0.0348 -0.7038
205132 at -0.1997 -0.2127 -0.6498
213089 at 0.2096 0.0575 0.6775
207761 at 0.0691 - 0.7399
209466 x at -0.0310 -0.2425
218678 at -0.1256 -0.1600

209259 s at -0.1038 -0.1599
209281 s at -0.0511 -0.1054
204710 s at -0.2004 -0.0958
202766 s at - -0.0740
208905 at - -0.0463
201194 at - -0.0448

211737 x at - -0.0279
203156 at -0.1090 -0.0128
213779 at 0.1142
201859 at -0.1087

208965 s at 0.1388
205933 at 0.0913
(11 more
non-zero
genes)

| · | < 0.06

genes chosen by SIMSELEX was not chosen by the conditional scores method (although it

was chosen by the naive estimator). However, the magnitude of the estimated coefficients

were much larger for SIMSELEX compared to the naive and conditional scores estimators.

The large number of genes selected by the naive and conditional scores approaches are

potentially a consequence of the false positive rates seen in the simulation studies. While

SIMSELEX does suffer from the occasional false negative, this rate was lower in our

simulation studies than the equivalent rate for the conditional scores lasso.

4.7. Conclusion

The chapter presents a modified SIMEX algorithm with a selection step for sparse

models estimation in high-dimensional models with covariate measurement error . This

SIMSELEX algorithm is explored in linear and logistic regression models, the Cox propor-
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tional hazards model, as well as spline-based regression. In the linear model, SIMSELEX

has performance comparable to the corrected lasso. In the logistic model, it has much

better performance than the corrected scores lasso. In the Cox model and spline-model

settings, no other estimators have been proposed in the literature. For these, it is shown

that the method leads to much better performance than a naive approach that ignores

measurement error, and compares favorably to estimators obtained using uncontaminated

data.

It was noted that SIMSELEX requires the measurement error covariance matrix be

known or estimable. In our data application, an estimation method based on the BGX

Bioconductor of Hein et al. (2005) was used. The development and comparison of other

methods for estimating measurement error covariance matrices will be explored in future

work. Further work around reducing the number of false negatives in SIMSELEX will

also be conducted. For example, the group lasso used for variable selection provides an

ordering for the inclusion/exclusion of variables in the model (see, for example, Figure

4.1). As such, a decision can be made beforehand to include an additional number of

variables, say q, after selection. Thus, if selection recommends keeping p̂ variables, then

the practitioner keeps p̂+ q variables for extrapolation. The performance of this idea was

not explored here.

4.8. Appendix

4.8.1. Illustrating SIMEX performance for a high-dimensional setting

In both Sections 4.2 and 4.3, it was mentioned that SIMEX did not perform well

when applied to high-dimensional errors-in-variables models without suitably modifying

the procedure. Specifically, standard SIMEX inflates the number of estimated nonzero

components considerably, even when combined with a procedure such as the lasso. Here,

a simulated example is illustrated.

For the example, data pairs (Wi, Yi) were generated according to the linear model

Yi = X>i θ+ εi with additive measurement error Wi = Xi +Ui. Both the true covariates

Xi and the measurement error components Ui were generated to be i.i.d. p-variate
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normal. Specifically, Xi ∼ Np(0,Σ), with Σ having entries Σij = ρ|i−j| with ρ = 0.25,

and Ui ∼ Np(0,Σu) with Σu = σ2
uIp×p with σ2

u = 0.45. The error components εi were

simulated to be i.i.d. univariate normal, ε ∼ N(0, σ2
ε) with σε = 0.128. The sample sizes

was fixed at n = 300, and the number of covariates was p = 500. The parameter vector

was taken to be θ = {1, 1, 1, 1, 1, 0, . . . , 0} with s = 5 nonzero coefficients and p−s = 495

zero coefficients.

For the simulation step of SIMEX, a grid of M = 13 equally spaced λ-values ranging

from 0.2 to 2 were used. For each value of λ, a total of B = 100 sets of pseudo-data were

generated. In applying the lasso, the tuning parameter was chosen based on the one-

standard-error rule based on 10-fold cross-validation. The lasso was implemented using

the glmnet package in R. For the extrapolation step, a quadratic function was used.

The analysis of the simulated data shows that SIMEX applied to the lasso results in

174 nonzero parameter estimates. Of the 169 false positives, 156 are fairly small (less

than 0.001 in absolute value), with 13 false positives being larger (greater than 0.001

in absolute value). Comparatively, a naive application of the lasso (not correcting for

measurement error) gives only 5 non-zero parameter estimates. Implementing SIMEX,

even when using a method such as the lasso that enforces sparsity, can result in an inflated

number of variables in the model.

4.8.2. A brief review of existing methodology

In Section 4.4, the SIMSELEX estimator is compared to several existing methods

for fitting errors-in-variables models in high-dimensional settings. For the linear model,

SIMSELEX is compared with the corrected lasso estimator of Sørensen et al. (2015)

and the conic estimator of Belloni et al. (2017). For the logistic model, the SIMSELEX

estimator is compared with the conditional scores lasso of Sørensen et al. (2015). These

approaches are briefly reviewed in this section.
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Linear Model

The corrected lasso estimator of Sørensen et al. (2015) is the solution to the optimiza-

tion problem

min
θ

L(θ) = ‖Y −Wθ‖22 − θ
>Σuθ

s.t. ‖θ‖1 ≤ R

where for p-dimensional vector x, ‖x‖1 =
∑p

j=1 |xj| and ‖x‖22 =
∑p

j=1 x
2
j . Here, R is

a tuning parameter that can be chosen based on cross-validation using an estimate of

the unbiased loss function. Specifically, if the data are partitioned into random subset

P1, . . . ,PJ , each subset having size n/J , let (W(Pj), Y(Pj)) denote the data in the jth

partition and let (W(−Pj), Y(−Pj)) denote the data excluding the jth partition. Also let

θ̂j denote the estimated parameter vector based on (W(−Pj), Y(−Pj)). Then the tuning

parameter R can be chosen using cross-validation loss function

LCV (R) =
J∑
j=1

∥∥∥YPj
−WPj

θ̂j

∥∥∥2
2
−

J∑
j=1

θ̂>j Σuθ̂j.

The optimal tuning parameter R can be chosen either to minimize LCV , or according to

the one standard error rule (see Friedman et al. (2001)). Sørensen et al. (2015) prove

that the corrected lasso performs sign-consistent covariate selection in large samples.

The conic estimator of Belloni et al. (2017) is also the solution to an optimization

problem,

min
θ,t
‖θ‖1 + λt

s.t

∥∥∥∥ 1

n
W>(Y −Wθ + Σuθ)

∥∥∥∥
∞
≤ µt+ τ, t ≥ 0, ‖θ‖2 ≤ t.

where for p-dimensional vector x, ‖x‖∞ = maxj=1,...,p |xj|. This method requires the

selection of three tuning parameters, here denoted µ, τ and λ. The optimal choices of

these tuning parameters depend on the underlying model structure, including the rate

at which the number of nonzero model coefficients increases with sample size. Belloni
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et al. (2017) do suggest tuning parameter values for application. Furthermore, these

authors also proved that under suitable sparsity conditions, their conic estimator has

smaller minimax efficiency bound than the Matrix Uncertainty Selection estimator of

Rosenbaum et al. (2010). We are not aware of any comparison, numerical or otherwise,

of the corrected lasso estimator and the conic estimator. This comparison is presented

as part of our simulation study in Section 4.4.1 .

Logistic Regression

For the logistic regression model, the SIMSELEX estimator is compared with the con-

ditional scores lasso estimator developed by Sørensen et al. (2015) and the Generalized

Matrix Uncertainty Selector (GMUS) developed by Sørensen et al. (2018). The condi-

tional scores lasso estimator is computed by solving the set of estimating equations

n∑
i=1

(
Yi − F

{
ηi −

1

2
θ>Σuθ

}) 1

Wi + YiΣuθ

 = 0 subject to ‖θ‖1 ≤ R

where ηi = µ+θ>(Wi+YiΣuθ). Note that this is a system of p+1 estimating equations.

Sørensen et al. (2015) also illustrate how the conditional scores lasso can be applied to

other GLMs. For the simulation studies in section 4.4.2, the tuning parameter R is chosen

to be 1.5
∥∥∥β̂naive∥∥∥

1
, where β̂naive denotes the naive lasso.

The GMUS estimator is defined as

β̂MU = arg min{‖β‖1 : β ∈ Θ}, where

Θ =

[
β ∈ Rp :

∥∥∥∥∥ 1

n

n∑
i=1

wij(yi − µ(w>i β))

∥∥∥∥∥
∞

≤ λ+
δ√
n
‖β‖1 ‖µ

′(Wβ)‖2

]

where µ(.) denotes the Logistic function, µ′(Wβ) = {µ′(w>1 β), . . . , µ′(w>n β)}>, with µ′(.)

denotes the first derivative of µ(.). The tuning parameter λ is chosen to be equal to the

tuning parameter when computing the naive lasso, while the tuning parameter δ was

chosen following the elbow rule. More specifically, a grid of δ-values is chosen. For each

value of δ in the grid, the GMUS is computed. Finally, the number of non-zero coefficients
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is plotted as a function of R, and the optimal R is chosen as the point at which the plot

elbows i.e. starts to become flat. Note that finding this elbow for the GMUS is somewhat

subjective and the authors do not provide an automated way of performing this selection.

For the simulation study in Section 4.4.2, the tuning parameter δ was chosen in a

manner identical to the simulation study presented in Sørensen et al. (2015). First,

N0 = 100 samples were simulated using the data generation mechanism outlined. For

the jth simulated dataset, let R = δ
∥∥∥θ̂naive∥∥∥

1
, where

∥∥∥θ̂naive∥∥∥
1

denotes the `1 norm of

the naive lasso estimator. Let (δ,NZj(δ)) denote the curve of the number of non-zero

coefficients as a function of λ. These curves were then averaged, resulting in curve

(δ,NZ(δ)) where NZ(δ) = N−10

∑
j NZj(δ). The value of δ used subsequently to evaluate

the conditional scores lasso estimators in the simulation study was the point at which the

curve NZ(δ) elbows. For each given simulation configuration, a different value of δ was

calculated.

In the simulation study in Section 4.4.2, the GMUS estimator was computed only for

the case of p = 500. The elbow plots for the settings associated with Normal measurement

error were presented below. The tuning parameters in the simulation study with Laplace

measurement error were chosen to be the same as the chosen value in the similar setting

with Normal measurement error.

4.8.3. Additional Simulation Results for Linear Regression, Logistic Regression, and Cox

Survival Model

This section presents the simulation results corresponding to the case of θ2 = (1, 1, 1, 1, 1,

0, . . . , 0). All the other simulation configurations are the same as outlined in the Section

4.4. The tabulated summaries included here for completeness.

4.8.4. Comparison of extrapolation functions for SIMSELEX

Several extrapolation functions for the SIMEX procedure have been proposed in the

literature. The quadratic function and nonlinear means function are used most frequently.

In this section, the performance of SIMSELEX when using either the quadratic or non-
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Figure 4.4: Elbow plots choosing tuning parameters in implementation of conditional
scores lasso estimator in the logistic regression simulation.
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p Est σ2u = 0.15 σ2u = 0.30
Normal Laplace Normal Laplace

`2 FP FN `2 FP FN `2 FP FN `2 FP FN

500 True 0.09 1.11 0.00 0.09 1.1 0.00 0.09 1.24 0.00 0.09 1.19 0.00
(0.02) (2.36) (0.00) (0.02) (2.55) (0.00) (0.02) (2.75) (0.00) (0.02) (2.62) (0.00)

Naive 0.48 1.38 0.00 0.73 1.35 0.00 0.48 1.1 0.00 0.73 1.36 0.00
(0.05) (2.92) (0.00) (0.07) (2.9) (0.00) (0.05) (2.3) (0.00) (0.07) (3.3) (0.00)

SIMSELEX 0.21 0.00 0.00 0.23 0.00 0.00 0.21 0.00 0.00 0.34 0.00 0.00
(0.07) (0.00) (0.00) (0.07) (0.00) (0.00) (0.07) (0.00) (0.00) (0.11) (0.00) (0.00)

Conic 0.27 - - 0.34 - - 0.27 - - 0.34 - -
(0.04) - - (0.07) - - (0.04) - - (0.07) - -

Corrected 0.29 2.48 0.00 0.4 2.19 0.00 0.29 2.55 0.00 0.4 2.32 0.00
(0.05) (4.5) (0.00) (0.08) (3.85) (0.00) (0.05) (4.18) (0.00) (0.08) (4.09) (0.00)

1000 True 0.09 1.04 0.00 0.09 1.29 0.00 0.09 1.79 0.00 0.09 1.33 0.00
(0.02) (2.36) (0.00) (0.02) (2.74) (0.00) (0.02) (4.35) (0.00) (0.02) (3.33) (0.00)

Naive 0.5 1.78 0.00 0.75 1.24 0.00 0.5 1.79 0.00 0.75 1.63 0.00
(0.06) (5.09) (0.00) (0.07) (2.75) (0.00) (0.06) (4.47) (0.00) (0.07) (3.56) (0.00)

SIMSELEX 0.23 0.00 0.00 0.24 0.00 0.00 0.23 0.00 0.00 0.35 0.00 0.00
(0.07) (0.00) (0.00) (0.07) (0.00) (0.00) (0.07) (0.00) (0.00) (0.1) (0.00) (0.00)

Conic 0.27 - - 0.37 - - 0.27 - - 0.37 - -
(0.04) - - (0.07) - - (0.04) - - (0.07) - -

Corrected 0.3 3.78 0.00 0.42 2.94 0.00 0.3 4.2 0.00 0.42 3.54 0.00
(0.06) (6.6) (0.00) (0.08) (5.53) (0.00) (0.06) (6.29) (0.00) (0.08) (5.93) (0.00)

2000 True 0.1 2.12 0.00 0.1 6.32 0.00 0.1 2.19 0.00 0.1 1.57 0.00
(0.02) (5.68) (0.00) (0.02) (10.9) (0.00) (0.02) (5.57) (0.00) (0.02) (3.61) (0.00)

Naive 0.51 1.87 0.00 0.77 6.12 0.00 0.51 2.01 0.00 0.77 1.64 0.00
(0.05) (4.7) (0.00) (0.07) (10.9) (0.00) (0.05) (4.52) (0.00) (0.07) (3.39) (0.00)

SIMSELEX 0.23 0.00 0.00 0.23 0.00 0.00 0.23 0.00 0.00 0.36 0.00 0.00
(0.07) (0.00) (0.00) (0.07) (0.00) (0.00) (0.07) (0.00) (0.00) (0.11) (0.04) (0.00)

Conic 0.28 - - 0.38 - - 0.28 - - 0.38 - -
(0.04) - - (0.07) - - (0.04) - - (0.07) - -

Corrected 0.3 5.66 0.00 0.43 4.76 0.00 0.3 5.64 0.00 0.43 4.36 0.00
(0.05) (9.41) (0.00) (0.08) (9.62) (0.00) (0.05) (8.18) (0.00) (0.08) (6.5) (0.00)

Table 4.7: Comparison of estimators for linear regression with with the case of θ2 based
on `2 estimation error, average number of false positive (FP), and average number of false
negative (FN) across 500 simulations.
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p Estimator σ2u = 0.15 σ2u = 0.30
Normal Laplace Normal Laplace

`2 FP FN `2 FP FN `2 FP FN `2 FP FN

500 True 1.75 0.32 0.56 1.75 0.32 0.56 1.75 0.28 0.53 1.75 0.28 0.53
(0.21) (2.17) (1.48) (0.21) (2.17) (1.48) (0.21) (1.49) (1.42) (0.21) (1.49) (1.42)

Naive 1.87 0.48 1.13 1.98 0.48 1.13 1.87 0.36 1.64 1.98 0.36 1.64
(0.22) (2.57) (1.98) (0.21) (2.57) (1.98) (0.22) (1.63) (2.21) (0.21) (1.63) (2.21)

SIMSELEX 1.77 0.01 0.93 1.81 0.01 0.92 1.77 0.00 2.25 1.90 0.00 2.39
(0.42) (0.11) (1.27) (0.43) (0.08) (1.23) (0.42) (0.00) (1.73) (0.34) (0.04) (1.76)

Cond 2.32 3.5 1.57 2.4 3.5 1.57 2.32 3.63 2.05 2.4 3.63 2.05
(0.67) (6.52) (1.19) (0.67) (6.52) (1.19) (0.67) (6.65) (1.24) (0.67) (6.65) (1.24)

GMUS 1.61 0.91 0.02 1.77 0.91 0.02 1.61 0.41 0.1 1.77 0.41 0.1
(0.08) (1.17) (0.13) (0.07) (1.17) (0.13) (0.08) (0.73) (0.3) (0.07) (0.73) (0.3)

1000 True 1.75 0.35 0.47 1.77 0.35 0.47 1.75 0.32 0.62 1.77 0.32 0.62
(0.18) (1.71) (1.32) (0.21) (1.71) (1.32) (0.18) (1.47) (1.56) (0.21) (1.47) (1.56)

Naive 1.89 0.52 1.23 1.99 0.52 1.23 1.89 0.46 2.05 1.99 0.46 2.05
(0.21) (2.29) (2.03) (0.2) (2.29) (2.03) (0.21) (3.18) (2.34) (0.2) (3.18) (2.34)

SIMSELEX 1.8 0.01 1.06 1.81 0.01 1.08 1.8 0.00 2.79 1.92 0.00 2.80
(0.4) (0.12) (1.35) (0.41) (0.13) (1.41) (0.4) (0.04) (1.76) (0.34) (0.00) (1.80)

Cond 2.46 4.83 1.7 2.43 4.83 1.7 2.46 3.99 2.19 2.43 3.99 2.19
(0.66) (8.76) (1.19) (0.68) (8.76) (1.19) (0.66) (7.22) (1.19) (0.68) (7.22) (1.19)

2000 True 1.78 0.56 0.57 1.76 0.56 0.57 1.78 0.52 0.66 1.76 0.52 0.66
(0.19) (3.02) (1.46) (0.21) (3.02) (1.46) (0.19) (3.25) (1.56) (0.21) (3.25) (1.56)

Naive 1.91 0.84 1.36 2.02 0.84 1.36 1.91 0.48 2.08 2.02 0.48 2.08
(0.21) (4.69) (2.09) (0.19) (4.69) (2.09) (0.21) (2.08) (2.33) (0.19) (2.08) (2.33)

SIMSELEX 1.83 0.00 1.19 1.83 0.00 1.35 1.83 0.00 3.03 1.96 0.00 3.07
(0.41) (0.00) (1.34) (0.37) (0.04) (1.56) (0.41) (0.00) (1.72) (0.30) (0.04) (1.75)

Cond 2.46 5.76 1.78 2.43 5.76 1.78 2.46 5.82 2.36 2.43 5.82 2.36
(0.65) (10.1) (1.22) (0.63) (10.1) (1.22) (0.65) (10.2) (1.22) (0.63) (10.2) (1.22)

Table 4.8: Comparison of estimators for logistic regression with with the case of θ2 based
on `2 estimation error, average number of false positive (FP), and average number of false
negative (FN) across 500 simulations.
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σ2
u p `2 FP FN

True Naive SIM-
SELEX

True Naive SIM-
SELEX

True Naive SIM-
SELEX

0.15 500 0.88 1.32 1.03 3.92 2.65 0.00 0.00 0.00 0.00

(0.11) (0.09) (0.17) (3.93) (3.44) (0.00) (0.00) (0.00) (0.00)

1000 0.92 1.34 1.04 4.95 3.23 0.00 0.00 0.00 0.00

(0.11) (0.09) (0.17) (4.95) (3.76) (0.00) (0.00) (0.00) (0.00)

2000 0.95 1.37 1.08 5.23 3.63 0.00 0.00 0.00 0.00

(0.1) (0.09) (0.17) (5.15) (4.47) (0.00) (0.00) (0.00) (0.00)

0.30 500 0.89 1.54 1.22 3.64 2.03 0.00 0.00 0.00 0.08

(0.11) (0.08) (0.18) (3.89) (2.81) (0.00) (0.00) (0.00) (0.27)

1000 0.92 1.56 1.25 4.78 2.47 0.00 0.00 0.00 0.11

(0.11) (0.09) (0.19) (5.31) (3.61) (0.00) (0.00) (0.00) (0.31)

2000 0.96 1.58 1.27 5.29 3.13 0.00 0.00 0.00 0.17

(0.11) (0.08) (0.18) (5.65) (4.16) (0.00) (0.00) (0.00) (0.4)

Table 4.9: Comparison of estimators for Cox survival models for the case θ2 based on `2
estimation error, average number of false positive (FP), average number of false negative
(FN) across 500 simulations.

linear means function in the extrapolation step are compared. Table 4.10 presents the

mean and median `2 error across 500 simulations for both linear and logistic regression

— the simulation configurations are as described in Section 4.4.1 (linear regression) and

Section 4.4.2 (logistic regression).

In the case of linear regression, the nonlinear extrapolation function results in a SIM-

SELEX estimator with a smaller median `2 error, but a higher mean `2 error when

compared to the quadratic extrapolation function. Specifically, for small measurement

error variance (σ2
u = 0.15), the extrapolation methods give very consistent results as

measured by mean and median `2 error. However, for large measurement error variance

(σ2
u = 0.3), there are some instances where the mean `2 error for nonlinear extrapolation

is much larger than for quadratic extrapolation.

In the case of logistic regression, the quadratic extrapolation function consistently out-

performs the nonlinear means function regardless of whether mean or median `2 error is

used as criterion. A closer inspection of the simulation results suggest one possible expla-

nation for the superiority of quadratic extrapolation: in many of the simulated datasets,
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Model p ME type σ2
u = 0.15 σ2

u = 0.30
Mean `2 Median `2 Mean `2 Median `2

NL Quad NL Quad NL Quad NL Quad
Linear 500 Normal 0.34 0.32 0.31 0.32 0.5 0.5 0.44 0.5

Laplace 0.37 0.33 0.31 0.32 0.55 0.51 0.47 0.52
1000 Normal 0.34 0.34 0.32 0.34 1.14 0.53 0.48 0.53

Laplace 0.33 0.34 0.32 0.34 0.52 0.51 0.46 0.51
2000 Normal 0.35 0.35 0.32 0.34 0.79 0.54 0.5 0.55

Laplace 0.92 0.36 0.34 0.36 0.58 0.55 0.5 0.54
Logistic 500 Normal 3.82 2.65 2.81 2.65 21.66 2.73 3.3 2.69

Laplace 8.28 2.67 2.82 2.64 6.02 2.76 3.31 2.69
1000 Normal 7.99 2.7 2.84 2.67 7.46 2.77 3.37 2.72

Laplace 18.46 2.63 2.81 2.64 5.63 2.72 3.33 2.68
2000 Normal 5.92 2.67 2.84 2.65 5.84 2.75 3.34 2.69

Laplace 4.28 2.69 2.84 2.65 5.97 2.79 3.38 2.74

Table 4.10: Monte Carlo mean and median `2 error of SIMSELEX estimator using non-
linear means (NL) and quadratic (Quad) extrapolation function for linear and logistic
regression.

the nonlinear means function results in extrapolants very far from the true values. This

results in the large mean and median `2 error values. We attempted increasing the value

of B, the number of pseudo-datasets used for the simulation step, but this did not allevi-

ate the problem. It might be possible that an increase in both the number of λ values and

the value of B can improve performance of the nonlinear extrapolation function, but this

becomes computationally demanding and seems unnecessary given the good performance

of quadratic extrapolation.

4.8.5. Post-Selection SIMEX Estimator

When implementing SIMSELEX, a natural question is whether the performance of the

method can be improved by implementing standard SIMEX methodology after the vari-

able selection step. That is, a method of simulation–selection–simulation–extrapolation

could be implemented. The second simulation step is therefore implemented using only

the selected variables, and no penalty method is used since the number of variables in

the model has already been reduced. This estimator is referred as the post-selection

SIMEX estimator. The section compares the performance of the SIMSELEX and the

post-selection SIMEX estimator in the linear and logistic regression settings.
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The data were generated as outlined in Section 4.4.1 and Section 4.4.2. Only the

simulation configurations with Normal measurement error and the coefficients θ1 were

considered. For the post-selection SIMEX estimator, the grid of added measurement

error level λ in the simulation step consists of 5 equally spaced values from 0.01 to 2

and B = 100 sets of pseudo-data were generated for each value of λ (this corresponds

to implementation of SIMSELEX). In the extrapolation step, both the nonlinear means

function and quadratic function were considered. The estimators are compared based on

`2 estimation error. The simulation results are presented below in Table 4.11.

σ2
u p SIMSELEX Post-sel. SIMEX

Nonlin Quad Nonlin Quad
Linear 0.15 500 0.34 0.32 0.20 0.20

(0.24) (0.1) (0.07) (0.06)
1000 0.37 0.33 0.20 0.19

(0.65) (0.11) (0.07) (0.06)
2000 0.34 0.34 0.20 0.20

(0.31) (0.1) (0.07) (0.07)
0.30 500 0.50 0.50 0.30 0.28

(0.35) (0.14) (0.10) (0.09)
1000 0.55 0.51 0.30 0.28

(0.60) (0.15) (0.11) (0.10)
2000 1.14 0.53 0.3 0.28

(8.12) (0.15) (0.11) (0.10)
Logistic 0.15 500 2.64 3.20 1.05 0.90

(2.32) (0.47) (0.58) (0.39)
1000 6.42 3.20 0.99 0.88

(86.1) (0.47) (0.52) (0.38)
2000 2.61 3.21 1.07 0.95

(0.25) (0.44) (0.45) (0.36)
0.30 500 2.73 3.21 1.34 1.15

(0.42) (0.50) (1.16) (0.39)
1000 2.75 3.21 1.37 1.24

(0.28) (0.52) (0.54) (0.37)
2000 2.76 3.20 1.36 1.25

(0.22) (0.49) (0.54) (0.43)

Table 4.11: Comparison of SIMSELEX and post-selection SIMEX estimators using mean
`2 error for linear and logistic model. Nonlinear (Nonlin) and quadratic (Quad) extrap-
olation were considered.

It can be seen that the post-selection SIMEX estimator gives smaller `2 estimation

error than the SIMSELEX estimator in all the considered settings. The gain is most
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considerable in the case of logistic regression, especially when large measurement error

exists. The nonlinear and the quadratic extrapolation function have roughly the same

performance in the linear model, while the quadratic function has better performance in

the logistic model.

4.8.6. Computation Time

Table 4.12 presents the median computation times for the different estimators in the

linear and logistic models as considered in the simulation studies of Section 4.4. In the

case of the linear model, the median computation time for SIMSELEX increased by

approximately 150% when going from 500 to 2000 variables, whereas the corrected scores

lasso increased by around 1500% and the conic estimator increased by around 1800%.

For logistic regression, the median computation time for SIMSELEX increased by 120%,

while GMUS computation time increased by over 5000%. As noted in Sørensen et al.

(2018), GMUS is not feasible for implementation with a large number of variables. The

computation times for the conditional scores lasso for logistic regression are misleading

and appear overly optimistic; the computation time here is very low as there is no sample-

specific selection of tuning parameter taking place in the simulation study. In practice,

this will be done using the elbow method as discussed in Appendix 4.8.2.

Model p SIMSELEX Corrected /
Conditional

Conic GMUS

Linear 500 428 58 349 -
1000 631 264 888 -
2000 1064 1016 6597 -

Logistic 500 572 7 - 330
1000 798 15 - >4.5 hours
2000 1248 43 - >4.5 hours

Survival 500 5435 - - -
1000 7924 - - -
2000 10461 - - -

Table 4.12: Median computation time (in second) for different estimators. For the con-
ditional score lasso and GMUS it is the median time to generate a coefficient path with
25 values of the tuning parameter.
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Chapter 5

Summary and Future Directions

5.1. Summary

The thesis proposes new estimators that correct for measurement errors in the contexts

of density estimation and errors-in-variables models.

First, the phase function-based estimators are established for heteroscedastic density

deconvolution and linear errors-in-variables model. Compared to the existing estimators

in the literature, these new estimators have a primary advantage of putting minimal

assumptions on the distribution of measurement errors while still having competitive

performance. Therefore, the phase function-based estimators are useful for practitioners

in a wide range of situations when correcting for measurement errors is necessary but the

knowledge about measurement errors on the data is limited.

Additionally, the thesis proposes SIMSELEX that both achieve sparsity and accom-

modate for measurement errors in high-dimensional statistical models. As an extension

of the traditional simulation-extrapolation approach, the SIMSELEX makes double use

of lasso methodology and can be applied in many errors-in-variables settings. As a re-

sult, the SIMSELEX provides practitioners with a flexible tool to address additional

complexity caused by measurement errors to high dimensional settings.

5.2. Future Directions

5.2.1. Phase Function Method

In chapter 3, the phase function method is used to estimate the coefficients of the linear

errors-in-variables. It can be seen that the key relationship between the phase function

of the outcome and the linear combination of covariates holds even when the errors are
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heteroscedastic, i.e, the model error and measurement error for each observation may

have different variances/scale. A possible way to adjust for such heteroscedasticity is to

use the weighted empirical phase function, as defined in chapter 2, where the weights are

adaptive to the error variances.

Furthermore, chapter 3 also suggests that the phase function method can be used with

arbitrary number of error-free and error-prone covariates in the model. Hence, it can

be incorporated into more complicated linear models with additional structure on the

coefficients. In such situation, the phase function estimator can be computed by mini-

mizing a similar discrepancy function with the corresponding constraints. For example,

in high-dimensional linear regression setting, such a desirable structure is sparsity. In

this case, an `1 regularization term can be added into the discrepancy function (3.5) to

achieve sparsity.

5.2.2. Measurement errors on high-dimensional settings

There are still many open questions on the effect of measurement errors on high di-

mensional statistical models that can be explored. For example, it is often of interest to

model the conditional dependence structure among a large set of variables, such as a set

of genes regulating a biological process. Also, because the number of variables can be

much greater than the sample size, it is essential to perform dimension reduction before

conducting any analysis. Many new statistical methods have been proposed for these

tasks in the case of clean data, but not many of them account for measurement errors

that can exist in the observations. Therefore, future research will continue to develop new

correction methods for high dimensional models, so that practitioners can make proper

inference when dealing with complex and noisy data.
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