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Alzheimer’s disease (AD) is known for its debilitating symptoms and poor prognosis.  

Current treatments for AD focus on managing symptoms.  However, despite intense research 

into neurodegenerative diseases, there is still a dearth of therapies targeted at the underlying 

mechanisms of the disease.  Oxidative stress (OS) and inflammation are cellular phenomena 

thought to be key to the progression of the disease. Critically, peroxiredoxin 6 (Prx6), an 

antioxidant protein with multiple functions, has been identified from mammalian studies as a 

potential regulator of both OS and inflammation that may have a specific effect on AD.  This 

project seeks to elucidate the role of Prx6 in AD as well as the underlying mechanisms.  

Drosophila provide a convenient model for this investigation because they express two highly 

conserved homologs of mammalian Prx6: dPrx6005, with only peroxidase activity, and 
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dPrx2540, with both peroxidase activity and phospholipase-A2 activity which may influence 

inflammation. If this phospholipase-A2 activity promotes inflammation, dPrx2540 (and Prx6 in 

humans) could be exacerbating AD progression.  Lifespan experiments show that flies under-

expressing dPrx2540 in an AD background have significantly improved lifespan, suggesting that 

dPrx2540 may indeed exacerbate AD.   Surprisingly, however, flies over-expressing dPrx2540 

also had a small increase in lifespan, suggesting the role of dPrx2540 may be more complex.  

Further lifespan experiments, with greater expression levels of dPrx2540, are planned to tease 

apart the conundrum of beneficial results in both over- and under-expression experiments.  

Experiments measuring the expression of antimicrobial peptides as markers of inflammation 

suggest that neuronal expression of dPrx2540 alone or of Aβ42 alone do not cause inflammation 

in fly heads.  CRISPR methodology was used to generate flies with all endogenous copies of 

dPrx2540 removed (2540null) in order to more rigorously investigate the mechanisms of how 

dPrx2540 may influence AD.  These 2540null flies exhibit reduced lifespan and fertility.  Mutant 

dPrx2540 constructs with either peroxidase or phospholipase-A2 activities ablated will be 

crossed into the dPrx2540null background and further into the AD background.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Background 

Alzheimer’s Disease (AD) is the sixth leading cause of death in the United States and is 

the most common cause of dementia among older adults.  Current treatments focus on managing 

and, hopefully, retarding the symptoms of the disease.  However, the successful treatment of the 

cellular and molecular processes underlying this disease is still out of reach.  AD pathology is 

characterized by extra cellular plaques of the protein amyloid-β42 (Aβ42), Aβ42 oligomers, and 

neurofibrillary tangles of hyperphosphorylated Tau.  Such pathology tends to start in the 

hippocampus and cortex, but slowly spreads throughout the brain as the disease progresses.  The 

toxic protein aggregates impair the normal cellular processes of the affected neurons, leading to 

the characteristic neurodegeneration.  Patients develop dementia and sometimes physical 

impairments.  Death from Alzheimer’s is often a result of complications induced by increasing 

systemic dysfunction [Alzheimer's Disease Fact Sheet, 2019]. 

In the current model, extra-cellular Aβ42 plaques may actually serve a protective function 

while the Aβ42 oligomers are thought to be a cause of toxicity [Castellani et al., 2009].  Tau, 

which normally binds to microtubules, mislocalizes when hyperphosphorylated, forming tangles 

and impeding cellular transport, especially in dendritic spines [Hoover et al., 2010].  These 

misfolded and mislocalized 
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proteins bind to pattern recognition receptors on glial cells, thus triggering an innate immune 

response including the release of inflammatory factors, including tumor necrosis factor-α (TNF-

α) [Heneka et al., 2015].  Inflammation and protein aggregates lead to elevated oxidative stress 

(OS), including peroxidized lipids.  In turn, such OS can promote further Aβ42 deposition and 

hyperphosphorylation of Tau.  It is likely that these factors play a key role in driving the 

neurodegeneration associated with Alzheimer’s and similar diseases [Chen and Zhong, 2014].   

Peroxiredoxins (Prx or Prdx) are ubiquitous regulators of reactive oxygen species (ROS), 

reducing peroxides and some reactive nitrogen species via thiol groups (-SH) of highly 

conserved catalytic cysteine residues, sometimes known as peroxidatic cysteines (CP).  As Prxs 

reduce peroxides, their CP is oxidized, which contributes to regulating their structure and 

secondary functions.  Therefore, Prxs can sense and react to changes in cellular redox state to 

drive various response pathways.  Peroxiredoxins are subdivided into three general classes: (1) 

typical 2-Cys, (2) atypical 2-Cys, and (3) 1-Cys Prxs.  All have a CP, while 2-Cys Prxs also have 

a resolving cysteine (CR) residue that is responsible for reducing the CP, either in the same 

molecule (atypical), or in another Prx subunit (typical) [Ahn et al., 2018].  The CP of a 1-Cys Prx 

is typically reduced by glutathione [Fisher, 2018].   

Peroxiredoxin 6 (Prx6) is a 1-Cys Prx and localizes to both cytosol and lysosomes 

[Sorokina et al., 2009].  However, it is perhaps primarily important for its unique functions 

including, the ability to bind phospholipids, reduce phospholipid peroxides (PRX activity), 

intracellular phospholipase activity (aiPLA2), and the transfer of fatty acyl CoA into the sn-2 

position of lysophosphatidylcholine (LPCAT activity) [Fisher, 2018].  Importantly for AD, Prx6 

is upregulated in the brains of patients, concentrated primarily in astrocytes, with smaller 

increases in expression in neurons [Power et al., 2008].  While over-expression of other 
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peroxiredoxins has been linked to improved stress resistance and lifespan, probably due 

primarily to their antioxidant functions, over-expression of Prx6 has been shown to exacerbate 

AD symptoms in mice [Radyuk and Orr, 2018] [Yun et al., 2013]. 

The PLA2 activity of Prx6 hydrolyzes the sn-2 fatty acyl bond of phospholipids, releasing 

arachidonic acid, a precursor to pro-inflammatory eicosanoids, such as prostaglandins and 

leukotrienes [Dennis, 1994] [Saul et al., 2019].  The Prx6 PLA2 active site consists of a catalytic 

triad of serine, histidine, and aspartate.  Interestingly, secreted PLA2 (sPLA2) enzymes are 

important in the mammalian inflammatory response and have been found in venoms from 

several taxa, including insects, arachnids, and reptiles [Nicolas et al., 1997].  With both PRX and 

PLA2 activities, Prx6 seems to have a role in regulating inflammation in response to oxidative 

damage to lipids.  Although, PLA2 activity has been implicated in exacerbating 

neurodegenerative diseases, this has not been tested directly [Yun et al., 2013]. 

 

 

1.2 Hypothesis 

At an axis point between OS and inflammation, Prx6 may have valuable therapeutic 

potential for treating AD.  With the available information about Prx6 it may be that, in an AD 

background, the PLA2 activity drives inflammation, resulting in increased deposition of protein 

aggregates, exacerbating the AD phenotype, which further increases OS, causing upregulation of 

Prx6 and thus, more PLA2 activity.   

Drosophila melanogaster, which are being used as a model organism in this study, 

possess two distinct homologs of Prx6, dPrx2540 and dPrx6005.  dPrx2540 has the same 



 

4 
 

functions of human Prx6, while dPrx6005 lacks a PLA2 catalytic site.  Therefore, Drosophila are 

especially well equipped for testing the effects of Prx6 PLA2 activity against an AD background.  

Given this, our hypothesis is that when dPrx2540 (with PRX and PLA2 activity) is overexpressed 

in neurons of flies expressing human Aβ42, the AD phenotype should be exacerbated, including 

reduced lifespan, reduced activity, impaired learning and memory, and increased neuronal 

inflammation.  Under-expression of dPrx2540 in the AD fly model should somewhat alleviate 

the AD phenotype.  Over-expression of dPrx6005 (PRX activity only), or dPrx2540 with PLA2 

activity ablated, in neurons of flies expressing human Aβ42 should have a positive effect, due to 

PRX activity, compared to the AD background alone. 

  

 

1.3 Objectives 

The experiments performed for this project fall under two major objectives.  The first 

objective is to determine whether dPrx2540 or dPrx6005 have an effect on the AD phenotype in 

Drosophila.  This involves experiments to test survivorship, learning and memory, physical 

activity, and neuronal inflammation.  The AD background phenotype was generated by tissue 

specific expression of a human Aβ42 transgene in neurons. These experiments compare flies 

over-expressing or under-expressing, either dPrx2540 or dPrx6005, with and without the Aβ42 

background.  My contribution to this objective included confirmation of dPrx6 transgene levels 

by immunoblot analysis, survivorship studies, and the assessment of inflammation via qPCR. 

 The second major objective is to determine whether the PRX or PLA2 activity of 

dPrx2540 is responsible for any effect it has on the Drosophila AD model.  To this end, CRISPR 
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methodology was used to delete all endogenous copies of dPrx2540, creating a “clean slate” 

Drosophila line with no Prx6 PLA2 activity.  Three dPrx2540 mutant lines were generated 

concurrently, one with an ablated PLA2 active site, one with an ablated PRX active site, and a 

third in which both PLA2 and PRX have been ablated.  The plan from here is to cross the 

different mutant transgenes into the dPrx2540-null Aβ42 background in order to directly test the 

hypothesis that PLA2 activity exacerbates the AD phenotype. 
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CHAPTER 2 

METHODS 

 

 

2.1 The Gal4-UAS System and Experimental Crosses 

The Gal4-UAS system was adapted from yeast and provides a powerful tool for 

controlling tissue specific expression of a transgene in Drosophila.  Gal4 is a transcription factor 

that binds to UAS elements to induce transcription at the downstream start site.  A Gal4 driver 

construct consists of a Gal4 gene under control of a tissue specific promoter.  The target 

construct consists of a UAS-element upstream of the transgene we are interested in expressing 

[Chow, 2017].  The driver constructs used for this project were inserted into a Drosophila 

chromosome via P-element plasmids to make the “driver line”.  The target constructs were 

inserted in a similar manner into a separate “target line.”  Both driver and target lines have been 

generated from the same yellow-white (yw) Drosophila background line.  The transgene of 

interest, such as dPrx2540 or human Aβ42, will not be expressed until the driver line is crossed to 

the target line.  The progeny of this experimental cross will express any UAS-element transgenes 

present in its genome.  It is also important that the Gal4-UAS system is temperature sensitive, 

allowing another level of control over transgene expression.  Higher temperatures cause an 

increase in Gal4 activity [Brand et al., 1994]. 

Driver and target lines were raised separately in standard agar food bottles with 5mL/L 

tetracycline added to minimize the risk of bacterial infection being transmitted to their progeny, 
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without directly influencing the health of the experimental flies.  These flies were 

collected and females from the driver line were crossed with males from the target line.  Control 

crosses (transgene x yw and driver x yw) corresponding to each experimental cross (transgene x 

driver) were also made to account for any effects from transgene insertion.  The progeny 

generated from these crosses are the experimental flies, which are collected into fresh food vials 

with standard agar food.  All experimental crosses and offspring were raised at 28oC to enhance 

transgene expression.  Specific drivers and transgenes will be detailed for each experiment.   

 

 

2.2 Transgenic Drosophila Lines 

Table 2.1 contains a list and descriptions of the fly lines used for this project.  These fly 

lines were generated by P-element based insertion of UAS-transgenes.  Lines Aβ33773 and 

Aβ33774 were purchased from the Bloomington Drosophila Stock Center.  Line Aβ159 was 

generated at the Crowther lab at the University of Cambridge.  Lines containing constructs for 

over- or under-expression of dPrx2540 or dPrx6005 were generated previously in this lab. 
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Abbreviation Description 

yw 
Yellow-white mutant. 
This is the genetic background of the fly lines used for this project. 

ELAV 
Carries the Gal4 driver for neuronal expression. 
Located on the X chromosome. 

Aβ33773 
Carries the UAS-transgene for expression of human Aβ42 (no driver). 
Located on the 2nd chromosome. 

Aβ33774 
Carries the UAS-transgene for expression of human Aβ42 (no driver). 
Located on the 3rd chromosome. 

Aβ159 
Carries the UAS-transgene for expression of human Aβ42 (no driver). 
Located on the 2nd chromosome (different insertion from Aβ33773). 

dPrx6005 Carries the UAS-transgene for over-expression of dPrx6005 (no driver). 

RNAi-dPrx6005 Carries the UAS-transgene for RNAi knockdown of dPrx6005 (no driver). 

dPrx6005 + 
Aβ33773 

A combination line carrying two UAS-transgenes.  One for over-
expression of dPrx6005 and another for expression of Aβ42 (no driver). 

RNAi-dPrx6005 
+ Aβ33774 

A combination line carrying two UAS-transgenes.  One for under-
expression of dPrx6005 and another for expression of Aβ42 (no driver). 

dPrx2540 Carries the UAS-transgene for over-expression of dPrx2540 (no driver). 

RNAi-dPrx2540 Carries the UAS-transgene for RNAi knockdown of dPrx2540 (no driver). 

dPrx2540 + 
Aβ33773 

A combination line carrying two UAS-transgenes.  One for over-
expression of dPrx2540 and another for expression of Aβ42 (no driver). 

RNAi- dPrx2540 
+ Aβ33774 

A combination line carrying two UAS-transgenes.  One for under-
expression of dPrx2540 and another for expression of Aβ42 (no driver). 

Driver A > 
UAS-transgene 
X 

Indicates flies with both the indicated driver and indicated transgene, thus 
driving expression of the transgene.  For example, ELAV > dPrx2540 
flies are expressing the UAS-dPrx2540 transgene and should have higher 
levels of dPrx2540 protein than control flies. 

2540null 
Flies in which all three endogenous copies of dPrx2540 have been 
removed via CRISPR. 

 

Table 2.1. Genotype abbreviations and descriptions of the Drosophila lines used for this project. 
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2.3 Protein Isolation and Western Blots 

 Expression of dPrx2540 and dPrx6005 was measured by immunoblot analysis.  Flies 

were collected in 1.7mL micro-centrifuge tubes.  Protein isolation was done with either 20-30 

whole flies or 100-150 fly heads (whether whole flies or heads were used will be specified for 

individual experiments).  Fly tissue was homogenized in lysis buffer (10µL/fly, with EDTA and 

protease inhibitors) by grinding with a powered pestle in the centrifuge collection tube.  

Homogenates were centrifuged for 5 minutes at 12,000g, 4oC.  The supernatant was then 

transferred to a fresh centrifuge tube.  An equal volume of 2X β-mercaptoethanol loading dye 

was added to the supernatant and the sample was boiled for 3 minutes.  Protein concentrations 

were measured via Lowry assay on a UV-1800 Spectrophotometer (Shimadzu).  The Lowry 

assay was performed using the Bio-Rad DC Protein Assay reagents and recommended protocol. 

 For the Western Blot assays, equal amounts of total protein for each sample were run 

through 13% polyacrylamide gels before being transferred to a nitrocellulose membrane.  Next, 

the membranes were washed in a blocking solution of PBS-T and reconstituted milk.  After 

blocking, the membranes were washed again in the same blocking solution with primary 

antibodies for either dPrx2540 or dPrx6005, as well as primary antibodies for actin.  After 

treatment with primary antibodies, the membranes were washed in PBS-T, then washed again 

with blocking solution and horse radish peroxidase conjugated secondary antibodies.  Excess 

antibodies were washed off with PBS-T and the membranes incubated with ECL Western Blot 

Prime Detection reagents (GeneSee Scientific) to generate the chemiluminescent reaction.  The 

chemiluminescence was viewed and photographed with the Bio-Rad ChemiDoc Touch Imaging 

System.  Protein band intensity was quantified with Bio-Rad Image Lab v5.2.1.  Microsoft Excel 

was used to compare protein volumes given by the Bio-Rad software, normalizing to actin and 
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control samples.  Primary antibodies used: mouse anti-actin C4 (1:2,500), rabbit anti-dPrx2540 

(1:5,000), rabbit anti-dPrx6005 (1:2,500).  Secondary antibodies used: HRP-conjugated anti-

mouse (1:20,000) and HRP-conjugated anti-rabbit (1:20,000). 

 Before protein or RNA isolation procedures, fly heads were collected from experimental 

cohorts of 100-200 flies.  Typically, 100 heads are enough for protein samples, but for RNA 

isolation, starting with 200 flies is useful for isolation of much more concentrated samples.  The 

sample flies were collected and transferred to a 15mL graduated plastic tube which was then 

dipped in liquid nitrogen and shaken to separate heads, wings and legs, and thoraces/abdomens.  

After several successive freeze/shake cycles, the fly pieces are sifted through a three-part sieve.  

The top level (0.71mm) held thoraces/abdomens, the middle level (0.5mm) caught the heads, and 

the waste collection bowl at the bottom caught the wings and legs.  The heads were transferred 

from the middle 0.5mm sieve to a 1.7mL microcentrifuge tube for later processing.  The liquid 

nitrogen was also used to keep the flies, sieve, and sample tubes as cold as possible through this 

process to prevent condensation from causing fly heads to stick in the sieve and also to minimize 

sample degradation. 

 

 

2.4 RNA Isolation and qPCR 

RNA was isolated from fly heads using the TRIzol Reagent protocol (Ambion, Inc.), 

200µL TRIzol/150 fly heads.  RNA samples were assayed for concentration with a UV-1800 

Spectrophotometer (Shimadzu).  These samples were reverse transcribed (RT) using the 

ThermoFisher Maxima H Minus cDNA Synthesis Master Mix and its recommended protocol.  
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All RT samples in a given experiment started with a uniform amount of RNA, usually 4-

6µg/30µL RT reaction, depending on the sample with lowest concentration.  DNase treatment 

(optional with ThermoFisher’s Master Mix) was done on the first set of samples.  However, such 

DNase treatment was suspended because optimization tests revealed that, when performed 

carefully, the above protocols did not introduce significant DNA contamination and qPCR was 

more efficient without the optional treatment.  Each qPCR run includes a negative RT control 

using Maxima H Minus no RT Master Mix (included with the kit from ThermoFisher) for each 

cDNA sample to ensure that there was no significant DNA contamination. 

qPCR was performed with the GoTaq qPCR Master Mix (Promega) and primers specific 

to each AMP.  Primers specific for RP49 were used to provide a positive reaction control from 

which to normalize total mRNA.  For each cDNA-primer combination, experimental reactions 

were prepared as three 18µL technical replicates.  qPCR reactions were run on a Rotor-Gene 

3000 thermal cycler (Corbett Research).  The cycling program heated the samples to 95oC for 30 

seconds, down to 50oC for 30 seconds, and up to 72oC for 30 seconds, repeated for 39 cycles. 

 

 

2.5 DNA Isolation, PCR, and Electrophoresis 

 DNA was isolated from samples of 5-30 whole flies, depending on how many were 

available from a given cross or experiment.  Protocols and materials were from either the Quick-

DNA Universal kit (Zymo Research) or QuickDNA MiniPrep Plus kit (Zymo Research).  DNA 

concentration was measure with a UV-1800 spectrophotometer (Shimadzu) to ensure an 

adequate concentration before proceeding to PCR. 
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 Analytical PCR reaction mixes contained 5µL GoTaq Hot Start Master Mix (Promega), 

0.5µL each of 10mM forward and reverse primers, 1-2µL of DNA template, and filled to 10µL 

total volume with nuclease-free water.  A Mastercycler Personal (Eppendorf) thermal cycler was 

used for the PCR run with 31 cycles.  Annealing temperatures were adjusted for optimal primer 

conditions and extensions times adjusted to account for expected product length. 

 Electrophoresis gels were made with 0.5X TAE buffer, 1.4% agarose, and ethidium 

bromide.  The TAE buffer was diluted from a 10X stock made with 48.4g Tris base, 11.4mL 

glacial acetic acid, 3.7g of EDTA, then filled to 1L with MilliQ water.  The RunOne 

Electrophoresis Cell (EmbiTec) was filled with 0.5X TAE buffer and about 1µL of extra 

ethidium bromide to ensure that DNA bands would be easily visible.  A DNA molecular weight 

ladder was run beside samples to measure band sizes.  Either ECON RCR DNA Ladder (Apex) 

or the 1kb DNA Ladder (GibcoBRL) were used for the ladder.  The electrophoresis was 

generally run at 100 volts and a ChemiDoc Touch Imaging System (Bio-Rad) was used to 

acquire images of the results. 

 

 

2.6 Lifespan Experiments 

 For all lifespan analyses, experimental flies were raised at 28oC and collected into food 

vials (25 flies/vial) under CO2-induced anesthesia.  Each experimental condition and 

corresponding controls started with a total of 125 flies in 5 vials.  Throughout the experiment the 

28oC temperature and 12h light/12h dark (08:00 to 20:00) cycle was maintained.  Flies were 

transferred to fresh food vials every day.  Each day during the vial transfer, the number of dead 
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flies was recorded, and the dead flies were removed.  Mortality tracking data was entered into 

Prism 5.0c or Prism 8 (GraphPad Software, Inc.) to generate survivorship curves and statistical 

analysis.  

 

 

2.7 Fertility Assay 

The fertility assay was performed by pair mating age-matched virgin flies.  yw males 

were mated to yw females and similarly, 2540null males mated to 2540null females.  Each 

replicate consisted of one male and one female placed into a standard food vial.  Twenty 

replicates of each condition were generated and kept at 25oC with a 12h light/12h dark (08:00 to 

20:00) cycle.  Every day, each mated pair was transferred to a fresh food vial to help prevent 

overcrowding of offspring.  As they began eclosing, the offspring of each mated pair were 

counted and removed from the vials.  Data was analyzed and graphed with Prism 8 (GraphPad 

Software, Inc.). 

 

 

2.8 CRISPR 

 The plasmid pCFD3 (Figure 2.1, top) was used to insert the gRNA for deletion of 

dPrx2540-1 and dPrx2540-3.  dPrx2540-3 is located just downstream of dPrx2540-1, running in 

the opposite direction.  The single gRNA (sequence: ATCAAACAGCAAGATGCGTTTGG) 

targets the first exon of dPrx2540-1 and the first exon of dPrx2540-3.  The gRNA 
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oligonucleotide was ligated into pCFD3 between the dU6-3 promoter and the gRNA scaffold.  

The pCFD4 plasmid (Figure 2.1, bottom) was used to insert the two gRNAs targeting sequences 

upstream and downstream of dPrx2540-2 (upstream: AACGTGATCGACGTAAATAG) 

(downstream: GAATGGATCACAAATGGGGAA).  The first gRNA oligonucleotide was 

ligated into pCFD4 between the dU6-1 promoter and the corresponding gRNA scaffold.  The 

second gRNA oligonucleotide was ligated into pCFD4 between the dU6-3 promoter and 

corresponding gRNA scaffold.  Plasmids were sent to Retrogen, Inc. for sequencing to confirm 

insertion of the gRNAs, then sent to BestGene, Inc. for injection into Drosophila embryos.  Flies 

expressing the gRNAs were crossed with flies expressing a Cas9 transgene under the control of 

the nanos promoter for germline specific expression.
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Figure 2.1.   Maps of the pCFD3 and pCFD4 plasmids used to insert gRNA transgenes.  
[Addgene, 2019]
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2.9 Molecular Cloning 

 The DNA fragment to be used for cloning, such as dPrx2540, was amplified via PCR 

using the Q5 High-Fidelity 2X Master Mix (New England Biolabs).  The amplified fragment was 

isolated from a sterilized agarose gel and purified using the QIAquick Gel Extraction Kit 

(Qiagen).  Restriction digestion of the pUAST plasmid (Figure 2.2) was done with FastDigest 

BglII and FastDigest XhoI in 10X FastDigest Buffer (ThermoFisher) using the recommended 

protocol from ThermoFisher.  The desired plasmid fragments were then extracted from agarose 

gels as mentioned above.  Ligation of DNA fragment into the plasmid was done with T4 DNA 

Ligase, 10X T4 DNA Ligase Buffer, and T4 polynucleotide kinase from New England Biolabs 

using their recommended protocol [New England Biolabs, 2019].  Plasmids were then 

transformed into DH5α E. coli via heat shock at 42oC for 30 seconds to encourage plasmid 

uptake.  Afterwards, the E. coli were incubated in SOC media and plated onto ampicillin 

(100mg/mL) LB agar.  Transformed colonies were selected for ampicillin resistance, then re-

streaked on ampicillin LB agar.  Clonal colonies were tested by PCR for the presence of the 

plasmid containing the desired transgene construct.  Large scale cultures for plasmid 

preparations were grown in LB liquid media.  Plasmids were sent to GeneWiz for sequencing to 

confirm the presence of the transgene construct, then sent to Best Gene, Inc. for injection into 

Drosophila embryos.
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Figure 2.2.  Map of the pUASTattB plasmid used as the insertion vector for UAS-dPrx2540, 
UAS-dPrx6005, and UAS-dPrx2540 mutant transgenes.  cDNA for the desired gene was ligated 

into the plasmid between the BglII and XhoI restriction sites. [Addgene, 2019] 
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CHAPTER 3 

RESULTS 

 

 

3.1 CRISPR Deletion of Endogenous dPrx2540 

 Drosophila have three copies of dPrx2540 (dPrx2540-1, -2, -3) clustered together on 

chromosome 2.  However, there are two putative genes located between dPrx2540-2 and 

dPrx2540-1/3, so all three copies could not be removed at once [Thurmond et al. 2019].  Instead, 

the deletion was done in two stages.  First, dPrx2540-2 was deleted by crossing flies expressing 

nos-Cas9 (germline expression) with flies expressing gRNAs flanking dPrx2540-2 (Figure 3.1).   

Germline expression of Cas9 causes the target locus to be deleted only in the germline of 

the F1 generation, then the F2 generation carries the deletion in all cells.  Pair mating was used to 

cross the F1 generation with glazed/CyO mutant flies for screening and tracking of the deletion.  

300 pair matings were done for the deletion of dPrx2540-2 due to the expectation of low 

efficiency.  5 of these 300 pair matings produced offspring carrying the deletion (hereafter 

Δ2540-2).  Second, nos-Cas9 expressing flies were crossed with flies expressing gRNAs (in the 

Δ2540-2 background) flanking both dPrx2540-1 and dPrx2540-3 (Figure 3.1). 
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Figure 3.1.  FlyBase map of the region of Drosophila chromosome 2 containing the three copies 
of dPrx2540 [Thurmond et al. 2019].  The blue box and blue arrows indicate gRNA target sites 
for deletion of dPrx2540-2.  The red box and red arrows indicate gRNA target sites for deletion 

of dPrx2540-1/3. 
 

For the second deletion, a total of 600 pair matings produced two lines carrying the 

Δ2540-1/-3 deletion.  The deletions were screened with PCR (Figure 3.2) and confirmed by 

sequencing performed by GeneWiz (not shown).  The deletion of all 3 copies of dPrx2540 

(hereafter 2540null) was further confirmed by western blot to ensure no endogenous production 

of dPrx2540 protein (Figure 3.3).  
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Figure 3.2.  PCR confirmation of deletion of all three copies of dPrx2540.  No amplification is 
seen from any of the three primer sets for the 2540null-269B cohort.  A relatively strong band 

appears with both sets of dPrx2540-1/3 primers in the 269A cohort, indicating contamination in 
the population.  The deletions in 269B were further confirmed by sequencing (not shown). 

 

 

 

                          

Figure 3.3.  Western blot confirmation of the deletion of all endogenous dPrx2540 genes.  The 
image shows dPrx2540 expression in yw (genetic background) and 2540null flies. 
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To characterize the 2540null phenotype, lifespan and fertility assays are being performed, 

comparing 2540null flies to the yw background from which they were generated.  Though, still in 

progress, the fertility assay reveals a significant reduction in offspring produced by 2540null flies 

compared to the yw background (Figure 3.4).  Ongoing survivorship experiments show a 

significant reduction in the lifespan of 2540null flies compared to yw for both males and females 

(Figure 3.5).  It is somewhat expected that 2540null flies would have impaired health given the 

reported function for Prx6 in peroxidized membrane repair [Fisher, 2017].  Lipid peroxidation 

and activity assays are also planned to further characterize the 2540null flies. 

 

 

 

Figure 3.4.  Fertility assay comparing 2540null and yw flies.   Each point indicates the average 
offspring produced on a particular day across all replicates.  Error bars indicate standard 

deviation between replicates.  Black = yw control.  Red = 2540null.  P values were calculated 
with the unpaired two-tailed t test.  
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  Survival of 2540null Flies 
 

Males 
 

Females 

  
 

Figure 3.5.  Survivorship graphs of 2540null flies compared to the yw background.  Red = 
2540null.  Black= yw.  P values were calculated using the log-rank (Mantel-Cox) test. 

 

 

Interestingly, Drosophila may have a compensatory mechanism for expression of dPrx6.  

Between the three copies of dprx2540, dPrx2540-2 has the highest reported expression 

[Thurmond et al., 2019].  Yet, flies with dPrx2540-2 deleted from their genome, showed no 

significant difference in expression of dPrx2540 protein compared to yw flies (Figure 3.6). 
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Expression of dPrx2540 in Flies with Deletion of dPrx2540-2 
 

 
 

Figure 3.6.  Possible compensation of dPrx2540 protein expression in Δ2540-2 flies.  The graph 
shows the quantification of two western blots testing expression of dPrx2540 in three Drosophila 
lines in which dPrx2540-2 was successfully removed via CRISPR.  There is no significant and 

consistent change in dPrx2540 expression due to the deletion.  Error bars indicate standard 
deviation between two experiments. 
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3.2 Lifespan Analysis of Flies Expressing dPrx6 in an AD Background 

 As discussed in Chapter 1.3, AD causes several symptoms in humans that can be 

measured in a Drosophila model of AD.  Flies expressing transgenic constructs of human 

“arctic” Aβ42 experience neurodegeneration and early death, reducing their average lifespan by 

half or more [Crowther et al., 2005].  If PLA2 activity exacerbates AD symptoms as expected, 

overexpressing dPrx2540 (with PLA2 activity) in flies also expressing Aβ42 (the AD background) 

should result in a further decrease in lifespan.  Conversely, under-expressing dPrx2540 in the AD 

background flies should have an opposite effect, extending their lifespan.  Over-expression of 

dPrx6005 (without PLA2 activity) should have little effect on the AD background or possibly 

even a beneficial effect from the PRX activity reducing OS. 

 For the lifespan experiments, combination AD + dPrx2540 lines with the highest (over-

expressor) or lowest (under-expressor) dPrx2540 expression were selected for the experimental 

crosses.  Transgenic line UAS-Aβ33773, over.2540 B1 (hereafter shown as dPrx2540 + 

Aβ33773) was chosen for over-expression in the AD background and line UAS-Aβ33774, 

RNAi-2540-8ds A1 (hereafter shown as RNAi-dPrx2540 + Aβ33774) was chosen for under-

expression in the AD background.  ELAV-Gal4 (hereafter shown as ELAV) was chosen as the 

driver because it drives transgene expression specifically in neurons.  Transgenic lines were 

crossed to ELAV lines to generate experimental flies (ELAV > dPrx2540 + Aβ33773 or ELAV > 

RNAi-dPrx2540 + Aβ33774) or crossed to yw to generate control lines.  Transgenic lines 

expressing only Aβ33773 or Aβ33774 (ELAV > Aβ33773 or ELAV > Aβ33774), were also 

generated to create the AD background for comparison.  Two separate lifespan experiments have 

been performed to examine the effect of dPrx2540 expression against an AD background.  In the 

same manner, a single experiment has been conducted to test the effect of dPrx6005 expression 
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against an AD background.  The relative expression of dPrx6005 in experimental and control 

lines is shown in Figure 3.7. and relative expression of dPrx2540 is shown in Figure 3.8.   

 

 

 

Figure 3.7.  Western blot quantification of dPrx6005 expression in fly heads. These fly lines 
were used for the lifespan assay to determine the effect of dPrx6005 expression on the AD 

background.  Expression is shown relative to ELAV (driver only) and normalized to actin.  Grey 
bars = control lines.  Black bar = ELAV control. Red bars = dPrx6005 over-expression lines.  

Blue bars = dPrx6005 under-expression lines. 
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Figure 3.8.  Western blot quantification of dPrx2540 expression in fly heads. These fly lines 
were used for the lifespan assay to determine the effect of dPrx2540 expression on the AD 

background.  Expression is shown relative to ELAV (driver only) and normalized to actin.  Grey 
bars = control lines.  Black bar = ELAV control. Red bars = dPrx2540 over-expression lines.  

Blue bars = dPrx2540 under-expression lines. 
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Male flies overexpressing dprx6005 in the AD background (ELAV > dPrx6005 + 

Aβ33773) showed no significant change in lifespan compared to the AD background alone 

(ELAV > Aβ33773).  Somewhat unexpectedly, males under-expressing dPrx6005 in the AD 

background (ELAV > RNAi-dPrx6005 + Aβ33774) showed a significant increase in lifespan 

compared to the AD background alone (ELAV > Aβ33774) (Figure 3.9, top panels and Table 

3.1).  Female flies overexpressing dPrx6005 in the AD background show a significant increase in 

lifespan compared to the AD background (Figure 3.9, bottom panels and Table 3.1).  Female 

flies under-expressing dPrx6005 in the AD background also showed a significant increase in 

lifespan compared to the AD background.  Interestingly, the increase in lifespan due to under-

expression of dPrx6005 appears to be larger than that resulting from over-expression of 

dPrx6005, though both comparisons to the AD background share the same p-value (Figure 3.9, 

bottom panels and Table 3.1).  ELAV > dPrx6005 median lifespan was similar to the yw genetic 

background and greater than ELAV alone, thus over-expression of dPrx6005 alone seems to 

have little to no effect on fly lifespan (data not shown).  ELAV > RNAi-dPrx6005 median 

lifespan was greater than all other experimental and control lines for males and females (data not 

shown).  Suppressing expression of dPrx6005 had a beneficial effect with and without Aβ42 

expression.  PRX activity in some other peroxiredoxins is known to be beneficial, extending 

lifespan and enhancing oxidative stress resistance [Radyuk and Orr, 2018], so it is puzzling that a 

reduction in dPrx6005, with PRX activity only, would have a beneficial effect. 
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Figure 3.9.  Survivorship graphs of flies comparing the effects of dPrx6005 expression in the 
AD background.  Top panels show data from males.  Bottom panels show data from females.  

After experimental crosses, all flies had a single copy of the ELAV driver and a single copy of 
each UAS-transgene.  Asterisks indicate significant differences (see Table 3.1). 

  

In the first lifespan experiment to analyze the effects of dPrx2540 expression (Figure 

3.10, top panels and Table 3.2), male flies overexpressing dPrx2540 in the AD background 

(ELAV > dPrx2540 + Aβ33773) did not display a significant change in lifespan compared to 

flies expressing Aβ42 alone (ELAV > Aβ33773).  This seems to be contrary to the working 

hypothesis that dPrx2540 should exacerbate the AD phenotype.  However, males under-

expressing dPrx2540 in the AD background (ELAV > RNAi-dPrx2540 + Aβ33774) showed an 

increase in median lifespan as well as a large increase in maximum lifespan compared to flies 

expressing Aβ42 alone (ELAV > Aβ33774).  Males under-expressing dPrx2540 alone, without 

Aβ33774 (ELAV > RNAi-dPrx2540), had a reduced median lifespan compared to the control.
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Survival of Flies Over-Expressing dPrx6005 in an AD Background 
 
Males 

 

 
Genotype 

Median 
Lifespan 

 
P Value (effect) 

 
Compared to 

ELAV > Aβ33773 12   
ELAV > dPrx6005 + Aβ33773 11 0.2 (ND) ELAV > Aβ33773 
Control 41   
ELAV > dPrx6005 37 0.0371 (decrease) Control 
    
Females  
 
Genotype 

Median 
Lifespan 

 
P Value (effect) 

 
Compared to 

ELAV > Aβ33773 22   
ELAV > dPrx6005 + Aβ33773 24 0.0001 (increase) ELAV > Aβ33773 
Control 41   
ELAV > dPrx6005 45 0.0003 (increase) Control 
    
Survival of Flies Under-Expressing dPrx6005 in an AD Background 
 
Males 

 

 
Genotype 

Median 
Lifespan 

 
P Value (effect) 

 
Compared to 

ELAV > Aβ33774 17   
ELAV > RNAi-dPrx6005 + 
Aβ33774 

18 0.0001 (increase) ELAV > Aβ33774 

Control 36   
ELAV > RNAi-dPrx6005 43 0.0001 (increase) Control 
  
Females    
 
Genotype 

Median 
Lifespan 

 
P Value (effect) 

 
Compared to 

ELAV > Aβ33774 26   
ELAV > RNAi-dPrx6005 + 
Aβ33774 

32 0.0001 (increase) ELAV > Aβ33774 

Control 44   
ELAV > RNAi-dPrx6005 52 0.0001 (increase) Control 
  

 

Table 3.1. Comparison of survivorship curves for flies expressing dPrx6005 in an AD 
background.  P values were calculated using the log-rank (Mantel-Cox) test.  Effects listed in 

parentheses are interpretations based on median lifespans and visual analysis of the survivorship 
curves. 
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The second experiment with dPrx2540 yielded slightly different results (Figure 3.10, 

bottom panels and Table 3.2).  Males overexpressing dPrx2540 in the AD background showed a 

significant increase in median lifespan compared to the AD background line, which was not 

consistent with the first experiment.  As in the first experiment, ELAV > RNAi-dPrx2540 + 

Aβ33774 produced a beneficial effect on median lifespan compared to ELAV > Aβ33774.  

Again, knocking down dPrx2540 in the absence of Aβ33774 actually reduced median lifespan 

compared to the control, which may be important given the nascent results in the lifespan assay 

with the 2540null flies (Figure 3.5). There seemed to be a trend towards an increase in maximum 

lifespan in males under-expressing dPrx2540 in the AD background compared to the AD 

background alone, though this was reversed in the last surviving 10% due to a few strangely 

long-lived flies despite expression of Aβ42.  It is notable that under-expression of dPrx2540 or 

dPrx6005 produced a larger increase in lifespan in males. 

Interestingly, despite strong positive effects on lifespan from over- and under-expression 

of dPr6005, female flies showed much weaker effects from over- and under-expression of 

dPrx2540 in the AD background compared to the results with male flies (Figure 3.11 and Table 

3.3).  In the first experiment analyzing the effects of dPrx2540 expression, female flies of ELAV 

> dPrx2540 + Aβ33773 showed no change in lifespan compared to the ELAV > Aβ33773.  

Female flies of ELAV > RNAi-dPrx2540 + Aβ33774 had a large increase in median lifespan and 

maximum lifespan when compared to ELAV > Aβ33774.  For female flies, the repeat of this 

experiment gave less consistent results than those seen with males.  ELAV > dPrx2540 + 

Aβ33773 showed a mild, but significant, increase in median lifespan, while ELAV > RNAi-

dPrx2540 + Aβ33774 showed no change compared to the AD background alone.  
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Figure 3.10.  Survivorship graphs of male flies comparing the effects of dPrx2540 expression in 
the AD background.  Data from two separate experiments are shown: (top) the 1st lifespan 
experiment testing the effects of dPrx2540 expression, and (bottom) repeat of the lifespan 

experiment testing the effects of dPrx2540 expression.  After experimental crosses, all flies had a 
single copy of the ELAV driver and a single copy of each UAS-transgene.  Asterisks indicate 

significant differences (see Table 3.2). 
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Survival of Male Flies Over-Expressing dPrx2540 in an AD Background 
 
1st Experiment 

 

 
Genotype 

Median 
Lifespan 

 
P Value (effect) 

 
Compared to 

ELAV > Aβ33773 14   
ELAV > dPrx2540 + Aβ33773 15 0.0091 (ND) ELAV > Aβ33773 
Control 40   
ELAV > dPrx2540 41 0.4106 (ND) Control 
    
2nd Experiment  
 
Genotype 

Median 
Lifespan 

 
P Value (effect) 

 
Compared to 

ELAV > Aβ33773 15   
ELAV > dPrx2540 + Aβ33773 16 0.0019 (increase) ELAV > Aβ33773 
Control 44.5   
ELAV > dPrx2540 47 0.2138 (ND) Control 
    
Survival of Male Flies Under-Expressing dPrx2540 in an AD Background 
 
1st Experiment 

 

 
Genotype 

Median 
Lifespan 

 
P Value (effect) 

 
Compared to 

ELAV > Aβ33774 17   
ELAV > RNAi-dPrx2540 + 
Aβ33774 

20 0.0001 (increase) ELAV > Aβ33774 

Control 40   
ELAV > RNAi-dPrx2540 37 0.3895 (decrease) Control 
  
2nd Experiment    
 
Genotype 

Median 
Lifespan 

 
P Value (effect) 

 
Compared to 

ELAV > Aβ33774 17   
ELAV > RNAi-dPrx2540 + 
Aβ33774 

21.5 0.0001 (increase) ELAV > Aβ33774 

Control 44.5   
ELAV > RNAi-dPrx2540 39 0.1111 (decrease) Control 
  

 

Table 3.2. Comparison of survivorship curves for male flies expressing dPrx2540 in an AD 
background.  P values were calculated using the log-rank (Mantel-Cox) test.  Effects listed in 

parentheses are interpretations based on median lifespans and visual analysis of the survivorship 
curves.
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Figure 3.11.  Survivorship graphs of female flies comparing the effects of dPrx2540 expression 
in the AD background.  Data from two separate experiments are shown: (top) the 1st lifespan 

experiment testing the effects of dPrx2540 expression, and (bottom) repeat of the lifespan 
experiment testing the effects of dPrx2540 expression.  After experimental crosses, all flies had a 

single copy of the ELAV driver and a single copy of each UAS-transgene.  Asterisks indicate 
significant differences (see Table 3.3). 
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Survival of Female Flies Over-Expressing dPrx2540 in an AD Background 
 
1st Experiment 

 

 
Genotype 

Median 
Lifespan 

 
P Value (effect) 

 
Compared to 

ELAV > Aβ33773 27   
ELAV > dPrx2540 + Aβ33773 25.5 0.1873 (ND) ELAV > Aβ33773 
Control 47   
ELAV > dPrx2540 49 0.005 (increase) Control 
    
2nd Experiment  
 
Genotype 

Median 
Lifespan 

 
P Value (effect) 

 
Compared to 

ELAV > Aβ33773 33   
ELAV > dPrx2540 + Aβ33773 31 0.0367 (ND) ELAV > Aβ33773 
Control 52   
ELAV > dPrx2540 48 0.0001 (decrease) Control 
    
Survival of Female Flies Under-Expressing dPrx2540 in an AD Background 
 
1st Experiment 

 

 
Genotype 

Median 
Lifespan 

 
P Value (effect) 

 
Compared to 

ELAV > Aβ33774 28   
ELAV > RNAi-dPrx2540 + 
Aβ33774 

36 0.0001 (increase) ELAV > Aβ33774 

Control 47   
ELAV > RNAi-dPrx2540 52 0.0001 (increase) Control 
  
2nd Experiment    
 
Genotype 

Median 
Lifespan 

 
P Value (effect) 

 
Compared to 

ELAV > Aβ33774 29   
ELAV > RNAi-dPrx2540 + 
Aβ33774 

30 0.9403 (ND) ELAV > Aβ33774 

Control 52   
ELAV > RNAi-dPrx2540 53 0.0298 (ND) Control 
  

 

Table 3.3. Comparison of survivorship curves for female flies expressing dPrx2540 in an AD 
background.  P values were calculated using the log-rank (Mantel-Cox) test.  Effects listed in 

parentheses are interpretations based on median lifespans and visual analysis of the survivorship 
curves.
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The increase in lifespan due to over-expression of dPrx2540 could be explained by 

beneficial effects from the PRX activity, while the increase in lifespan due to under-expression 

of dPrx2540 could be explained by reduced PLA2 activity as predicted by the hypothesis.  

Considering the relatively weak over-expression of dPrx2540 seen in the western blots (Figure 

3.8), we reasoned that in order to observe the potential negative effects of PLA2, stronger over-

expression of dPrx2540 would need to be induced.  To this end, flies with two copies of the 

ELAV driver, two copies of the dPrx2540 over-expression construct, and one copy of Aβ33773 

were generated.  Generation of flies with two copies of Aβ33773 was attempted, but this 

combination proved to be lethal.  Two copies of the ELAV driver and two copies of Aβ33773 

without dPrx2540 was also lethal.  One copy of the AB33773 transgene should be enough 

because it is well established that this causes drastically shortened lifespan when expressed.  A 

lifespan experiment with large over-expression of dPrx2540 using these double driver/double 

transgene flies is planned and should help clarify the effects of dPrx2540 in an AD background.
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3.3 Neuroinflammation in Flies Expressing Aβ or dPrx2540 

  In Drosophila, the innate immune response is primarily controlled by the NF-κB 

pathways, Toll and IMD [Govind, 2008].  Part of this inflammatory response involves 

antimicrobial peptides (AMPs), small peptides that kill invading bacteria and fungi.  Expression 

of these AMPs are induced through the Toll and IMD pathways.  The Toll pathway responds to 

infection by Gram positive bacteria and fungi by producing Drosomycin, Attacins, Cecropins, 

and Defensins.  The IMD pathway responds to infection by Gram negative bacteria by producing 

Diptericin, Attacins, and Cecropins [Imler and Bulet, 2005].  Expression of another innate 

defense factor, Turandot, is mediated by the JAK/STAT pathway in response to various stresses, 

such as infection, OS, and protein aggregates.  Critically, pattern recognition receptors (PRRs), 

including Toll-like receptors (TLRs), also respond to endogenous damage associated molecular 

patterns (DAMPs) such as the misfolded and mislocalized Aβ42 and Tau proteins that hallmark 

AD pathology [Morales et al., 2014].  Additionally, AD pathology has been reported to induce 

expression of TNF-α, a pro-inflammatory target of the NF-κB pathway, is also involved in 

activating apoptosis of damaged or infected cells [Heneka et al., 2015] [Wu and Zhou, 2010].  

The Drosophila homolog of TNF-α is known as Eiger.   

 The hypothesis states that dPrx2540 exacerbates AD by promoting neuroinflammation 

through its PLA2 activity.  To test this, expression levels of the Attacin C, Cecropin, Defensin, 

Diptericin, Drosomycin, Eiger, and Turandot were measured in fly heads, via qPCR, as markers 

of neuroinflammation.  These genes are expressed at very low levels in healthy cells, but 

expression increases dramatically with infection, loss of proteostasis, or age [Odnokoz et al., 

2017].  Experimental flies were prepared as described in Chapter 2.1 and aged for 10 or 15 days.  

Flies of 15 days old or younger were used so that age-related inflammation did not produce false 
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positive results.  Each day, the experimental flies were transferred to fresh food vials to reduce 

the risk of infection due to bacterial growth. 

To test whether dPrx2540 expression alone could induce a neuroinflammatory response, 

the expression of five AMPs, Eiger, and Turandot was examined via qPCR in the heads of 10-

day old flies with two copies (2x) of both the ELAV driver and the dPrx2540 transgene (2x 

ELAV > dPrx2540).  In these lines ELAV drives neuronal expression of dPrx2540 to very high 

levels relative to controls (Figure 3.12).  As shown in Figures 3.13 (Males) and 3.14 (Females), 

the experimental lines with 2x ELAV > dPrx2540 (2) and (3) do not show the large increase in 

expression of inflammatory markers, compared to controls, that would indicate a positive result.  

This experiment was also done with 2x ELAV > dPrx2540 lines (4) and (15) and with APPL 

driven dPrx2540 expression.  APPL is the Drosophila ortholog of human APP, precursor to Aβ 

[Prüßing et al., 2013].  These additional experiments produced similar results (data not shown).  

Therefore, dPrx2540 over-expression alone, in neurons, does not appear to cause inflammation.  

The particular Drosophila AD model used for these experiments, directly expressing 

human Aβ42 from a UAS transgene, has been shown to cause early mortality in the experimental 

fly lines (see Chapter 3.2).  However, inflammation due to Aβ42 expression has not been 

confirmed in this AD model.  Therefore, AMP expression was also tested in 10 and 15-day old 

fly heads of the Aβ42 expressing Drosophila lines being used throughout this project.  Typically, 

male flies expressing Aβ42 begin dying in large numbers at ~10-15 days old, while controls tend 

to last 45 days or more at 28oC. 
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dPrx2540 Expression in 2x ELAV > dPrx2540 Flies 
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Figure 3.12.  dPrx2540 Expression in 2x ELAV > dPrx2540 Flies.  (A) Sample western blot 
showing dPrx2540 protein.  (B) Quantification for the western blot shown in (A).    (C) 

Quantification of dPrx2540 over-expression in lines (2) and (3).  AMP expression for these flies 
is shown in figures 3.13 and 3.14.  These experiments were conducted with 10-day old flies 

raised at 28oC.  Expression was calculated relative to the corresponding driver control (ELAV or 
APPL) and normalized to actin. 
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Expression of AMPs in 2x ELAV > dPrx2540 (Males) 
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Figure 3.13.  Representative AMP expression data from 2x dPrx2540 over-expressors.  These 
graphs indicate the average fold-change in AMP expression relative to ELAV (driver only 

control) and normalized to RP49 (a housekeeping gene).  Expression was measured via qPCR. 
Error bars indicate standard deviation between three technical replicates.  The experiment was 

performed with 10-day old male flies raised at 28oC.   
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Expression of AMPs in 2x ELAV > dPrx2540 (Females) 
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Figure 3.14.  Representative AMP expression data from 2x dPrx2540 over-expressors.  These 
graphs indicate the average fold-change in AMP expression relative to ELAV (driver only 

control) and normalized to RP49 (a housekeeping gene).  Expression was measured via qPCR.  
Error bars indicate standard deviation between three technical replicates.  The experiment was 

performed with 10-day old female flies raised at 28oC.   
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The flies tested in this experiment had a single copy of the driver and transgenes, 

generated in the same manner as those used for the lifespan experiments shown in Figures 3.9 

and 3.10.  The UAS-Aβ33773 construct is located on the 2nd chromosome.  Expression of Aβ42 

from this construct did not induce the dramatic increase in AMP expression that would be 

indicative of inflammation (Figure 3.15).  The UAS-Aβ33774 construct is located on the 3rd 

chromosome and, again, expression of Aβ42 did not produce an increase in AMP expression 

(Figure 3.16).  Together, these data strongly suggest that expression of human Aβ42 alone, in 

neurons, does not induce neuroinflammation in Drosophila.   

ELAV > dPrx2540 + Aβ33773 was included to examine possible effects of dPrx2540 

over-expression on any inflammation caused by Aβ42 expression.  Without inflammation in the 

AD background, any additional effects caused by over-expression of dPrx2540 were 

indeterminate.  However, the dPrx2540 + Aβ33773 control (no driver) actually seems to induce 

expression of cecropin and diptericin.  ELAV > dPrx2540 + Aβ33773 also induces expression of 

cecropin and diptericin, but to a lesser degree (Figure 3.15).  This effect is not seen with ELAV 

alone (driver only) or Aβ33773 alone (transgene only).  These results were repeated alongside 

the experiments with ELAV > Aβ33774.  AMP expression was then tested in a different 

recombinant line, ELAV > dPrx2540 + Aβ33774, to determine if this effect was common to flies 

carrying transgenes for dPrx2540 and Aβ42 (Figure 3.17).  There was no increase in expression 

for cecropin or diptericin in the ELAV > dPrx2540 + Aβ33774 flies.  Therefore, it is possible 

that the particular recombination event that generated the dPrx2540 + Aβ33773 line disrupted 

other genes, resulting in elevated expression of cecropin and diptericin.  The lifespan of these 

flies is comparable to other controls such as yw and ELAV.  Overall, no strong inflammatory 

response was observed when dPrx2540 and/or arctic Aβ42 were expressed in neurons.
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Expression of AMPs in ELAV > Aβ33773 (Males) 
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Figure 3.15.  Representative AMP expression data from Aβ42 expressing flies.  These graphs 
indicate the average fold-change in AMP expression relative to ELAV (driver only control) and 

normalized to RP49 (a housekeeping gene).  Expression was measured via qPCR.  Error bars 
indicate standard deviation between three technical replicates.  The experiment was performed 

with 15-day old male flies raised at 28oC.
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Expression of AMPs in ELAV > Aβ33774 (Males) 
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Figure 3.16.  Representative AMP expression data from Aβ42 expressing flies.  These graphs 
indicate the average fold-change in AMP expression relative to ELAV (driver only control) and 

normalized to RP49 (a housekeeping gene). Expression was measured via qPCR.  Error bars 
indicate standard deviation between three technical replicates.  The experiment was performed 

with 10-day old male flies raised at 28oC.
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Expression of AMPs in ELAV > Aβ33774 + dPrx2540 (Males) 
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Figure 3.17.  AMP expression data from flies expressing Aβ33774 + dPrx2540.  These graphs 
indicate the average fold-change in AMP expression relative to ELAV (driver only control) and 

normalized to RP49 (a housekeeping gene). Expression was measured via qPCR.  Error bars 
indicate standard deviation between three technical replicates.  The experiment was performed 

with 10-day old male flies raised at 28oC. 
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3.4 Mutation of dPrx2540 Active Sites 

 In order to determine more directly whether PRX or PLA2 activities of dPrx2540 are 

responsible for the effects of dPrx2540 expression in the AD background, mutations were made 

in dPrx2540 to inactivate the appropriate catalytic sites.  To ablate PRX activity, the C43S 

mutation was selected because it was a simple change that leaves a preferred codon for serine.  

The primer sequence for this mutation is TTACTCCCGTCTCCACCACTGAG, where the 

underlined “C” is a nucleotide mismatch to generate the point mutation.  To ablate PLA2 activity, 

the D135A mutation was selected because the mutation would leave a preferred codon for 

alanine and because mutating either H22 or S28 (of the PLA2 catalytic triad) would reportedly 

disrupt other functions of dPrx2540 as well [Fisher, 2018].  The primer sequence for this 

mutation is CATCAGTCCGGCCCATAAGGTGC, where the underlined “C” is a nucleotide 

mismatch to generate the point mutation.  Reverse compliment primers were made, and the 

mutagenesis proceeded via primer overlap extension PCR.  A double mutant was made by 

applying the primers for the PLA2 mutation to the completed PRX mutant.  The mutant 

constructs were ligated into the pUASTattB plasmid used to create the original dPrx2540 over-

expressors as discussed in Chapter 2.9.  Injection of the mutant constructs into the yw 

background and backcrossing of these flies has been completed.  These UAS-dPrx2540(ΔPRX) 

or (ΔPLA2) or double (ΔPRX + ΔPLA2) mutant flies are now being crossed into the 2540null 

background and into the AD background. 



 

46 
 

CHAPTER 4 

DISCUSSION 

 

 

Production of arachidonic acid via PLA2 activity is part of a known pro-inflammatory 

pathway [Reuters, 2019].  Because Prx6 has PLA2 function and is upregulated in AD patient 

brains, it is surmised that this enzyme could exacerbate AD symptoms by helping to drive the 

neuronal inflammatory response.  To test this, dPrx2540 of Drosophila, a homolog of human 

Prx6, was ectopically expressed or suppressed in a Drosophila model of AD that expresses 

human Aβ42.   

Data from the initial lifespan experiments with dPrx2540 suggests that under-expression 

of dPrx2540 is beneficial to survival.  Surprisingly, over-expression was also mildly beneficial, 

but the effect was less consistent than with under-expression.  Male flies also seemed to have 

more pronounced benefits than females.  The planned lifespan experiments with homozygous 

over-expressors of dPrx2540 may produce a stronger result that would help with interpretations 

of data.  Both over- and under-expression of dPrx6005 had beneficial longevity effects in 

females.  In males, over-expression of dPrx6005 had no significant impact on longevity whereas 

under-expression elicited negative effects in terms of early death, but beneficial longevity effects 

for the remaining flies.  However, this survivorship study was only conducted once and will need 

to be replicated before any conclusions are drawn about this particular protein. 
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The expression of AMPs as markers of inflammation were measured because dPrx2540 is 

thought to activate pro-inflammatory pathways via production of arachidonic acid from its PLA2 

activity.  If PLA2 activity is responsible for causing inflammation, then a large increase in 

dPrx2540 expression would be expected to cause an upregulation in AMPs.  However, no 

significant inflammation was detected from four different dPrx2540 overexpressing lines, in 

either males or females.  With this unexpected result, the question became whether the 

Drosophila AD lines used in this project experienced neuroinflammation.  The lines Aβ33773 

and Aβ33774 are known to form Aβ42 plaques and have severely reduced lifespan, indicating 

that they have an AD phenotype.  When tested for inflammation via AMP expression, these AD 

lines also showed no detectable inflammatory response from fly heads.  In Drosophila, AMPs 

are produced in the fat bodies, including one in the head [Imler and Bulet, 2005].  However, 

Drosophila have a glial blood-brain barrier that may prevent direct activity of AMPs in neurons 

or it may be that protein aggregates, such as AB42, do not stimulate production of AMPs in 

Drosophila [Schirmeier and Klämbt, 2015].  It is possible that this particular Drosophila based 

model of AD cannot properly simulate an inflammatory response, which may be a limiting factor 

in this project, but could be valuable information for future studies of AD using Drosophila 

models.  Instead, such pathology in neurons may primarily activate glial cells to cleanup protein 

aggregates and damaged neurons.  In fact, glial activation has also been linked to inflammation 

and AD symptoms and could be measured as an alternative to inflammation in Drosophila [von 

Bernhardi, 2015].  It is also worth noting that Prx6 was found to be upregulated primarily in glial 

cells of AD patient brains, so it may be worth over-expressing dPrx2540 with a glial-specific 

driver such as REPO-Gal4 [Power et al., 2008]. 
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dPrx2540, and mammalian Prx6, may have a complex role in AD.  PLA activity could be 

driving an inflammatory response as predicted, while the PRX activity could be compensating by 

reducing OS.  In the Drosophila AD models used for this study, no significant inflammation was 

detected in fly heads.  Therefore, it is possible that dPrx2540 may not drive inflammation in this 

model.  However, this does not account for the relatively large increase in lifespan seen 

repeatedly in males in which dPrx2540 expression was reduced by RNAi.   

 The second major objective of this ongoing project should help with refining 

interpretations of current data.  Currently, most of the major tools required for the second 

objective have been gathered.  Fly lines have been created with all endogenous copies of 

dPrx2540 removed via CRISPR.  Lines have also been generated carrying constructs for the 

expression of three varieties of mutant dPrx2540: (1) PRX activity ablated, (2) PLA2 activity 

ablated, and (3) both PRX and PLA2 activities ablated.  These are currently being crossed with 

the CRISPR dPrx2540 knockout line to generate recombinant lines which only expresses the 

desired dPrx2540 mutant genes.  These tools will allow very specific testing of the separate 

effects of each individual function of dPrx2540.  If expression of dPrx2540 with PRX activity 

removed accelerates mortality in the AD background, it might be concluded that PLA2 activity 

does indeed exacerbate AD symptoms and that the previously seen beneficial effects of wild type 

dPrx2540 over-expression were probably the result of PRX activity.  If expression dPrx2540 

with ablated PRX activity still improves lifespan in the AD background, it might be concluded 

that the PLA2 activity of dPrx2540 may actually have a beneficial effect in fly brains.  This could 

be confirmed by a reduction or no change in lifespan in flies expressing only dPrx2540 with 

PLA2 activity ablated.  This second outcome, though not expected, would not be unreasonable 

given the reported role of Prx6 in peroxidized membrane repair [Fisher, 2017].   
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