Block preconditioning of stiff implicit models for radiative ionization in the early universe

Daniel R. Reynolds
Southern Methodist University, reynolds@smu.edu

Robert Harkness
San Diego Supercomputer Center

Geoffrey So
U.C. San Diego

Michael L. Norman
U.C. San Diego

Follow this and additional works at: https://scholar.smu.edu/hum_sci_mathematics_research

Part of the Cosmology, Relativity, and Gravity Commons, Numerical Analysis and Computation Commons, and the Numerical Analysis and Scientific Computing Commons

Recommended Citation
Reynolds, Daniel R.; Harkness, Robert; So, Geoffrey; and Norman, Michael L., "Block preconditioning of stiff implicit models for radiative ionization in the early universe" (2012). Mathematics Research. 5.
https://scholar.smu.edu/hum_sci_mathematics_research/5

This document is brought to you for free and open access by the Mathematics at SMU Scholar. It has been accepted for inclusion in Mathematics Research by an authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu.
Block preconditioning of stiff implicit models for radiative ionization in the early universe

Daniel R. Reynolds1, Robert Harkness2, Geoffrey So3 and Michael L. Norman2,3

1Department of Mathematics, Southern Methodist University
2San Diego Supercomputer Center, UC San Diego
3Department of Physics, UC San Diego

SIAM Parallel Processing for Scientific Computing
February 17, 2012
Outline

1. Science
 - Reionization
 - Model

2. Solution Approach
 - Framework
 - Implicit Subsystem
 - Solvers

3. Numerical Results
 - Verification and Scaling
 - Reionization Simulations

4. Conclusion
Outline

1. Science
 - Reionization
 - Model

2. Solution Approach
 - Framework
 - Implicit Subsystem
 - Solvers

3. Numerical Results
 - Verification and Scaling
 - Reionization Simulations

4. Conclusion
Cosmic Reionization – The Origins of the Universe

- Dark Energy
- Accelerated Expansion
- Development of Galaxies, Planets, etc.
- Afterglow Light Pattern
 380,000 yrs.
- Dark Ages
- Inflation
- Quantum Fluctuations
- 1st Stars
 about 400 million yrs.

Big Bang Expansion
13.7 billion years
Cosmic Reionization – The Origins of the Universe

- What were the dominant physical processes governing star and cluster formation in the early universe?

- Can modern physics models predict the processes of formation and cosmological reionization?

- Optical telescopes can only look back to the Epoch of Reionization, due to optically-thick neutral gases following the Big Bang.

- New WMAP telescope (infra-red) enables further studies, allowing first-ever validation/repudiation of reionization theories.
We study these questions using the *Enzo* code, modeling gravity, gas dynamics, chemical ionization and radiation transport in an expanding universe:

\[
\nabla^2 \phi = \frac{4\pi G}{a} (\rho_b + \rho_{dm} - \rho_0),
\]

\[
\partial_t \rho_b + \frac{1}{a} \mathbf{v}_b \cdot \nabla \rho_b = -\frac{1}{a} \rho_b \nabla \cdot \mathbf{v}_b,
\]

\[
\partial_t \mathbf{v}_b + \frac{1}{a} (\mathbf{v}_b \cdot \nabla) \mathbf{v}_b = -\frac{\dot{a}}{a} \mathbf{v}_b - \frac{1}{a \rho_b} \nabla p - \frac{1}{a} \nabla \phi,
\]

\[
\partial_t e + \frac{1}{a} \mathbf{v}_b \cdot \nabla e = -\frac{2\dot{a}}{a} e - \frac{1}{a \rho_b} \nabla \cdot (p \mathbf{v}_b) - \frac{1}{a} \mathbf{v}_b \cdot \nabla \phi + G - \Lambda,
\]

\[
\partial_t n_i + \frac{1}{a} \nabla \cdot (n_i \mathbf{v}_b) = -n_i \Gamma_i^{ph} + \alpha_{i,j} n_e n_j, \quad i, j = 1, \ldots, N_{chem},
\]

\[
\partial_t E + \frac{1}{a} \nabla \cdot (E \mathbf{v}_b) = \nabla \cdot (D \nabla E) - \frac{\dot{a}}{a} E - c\kappa E + 4\pi \eta,
\]

Along with a Lagrangian model for dark matter particle dynamics.

Here, \(\Delta t_{n_i} < \Delta t_E \ll \Delta t_{\text{hydro}}\).

Outline

1 Science
 - Reionization
 - Model

2 Solution Approach
 - Framework
 - Implicit Subsystem
 - Solvers

3 Numerical Results
 - Verification and Scaling
 - Reionization Simulations

4 Conclusion
Simulation Framework

We approximate solutions with a method of lines operator-split approach:

- Domain $\Omega = [0, L]^3$ ($L \gtrsim 10$ comoving Mpc, or $\gtrsim 10^{20}$ km) discretized using finite volumes via uniform grids or block-structured AMR1.

- Long-time evolution (z from $100 \rightarrow 5$), approximately 2 Gyr.

- Explicit hydrodynamic evolution and passive advection via PPM1.

- Advect dark matter particles via Particle-Mesh method2.

- FFT or MG-based solve for the gravitational potential ϕ.

- Implicit evolution of stiff radiation & chemistry with gas energy feedback.

This talk focuses on the stiff subsystem coupling the grey radiation energy density E, primordial chemical abundances n_i, and gas energy correction e_c:

$$\partial_t e_c = -2\frac{\dot{a}}{a} e_c + G - \Lambda,$$
$$\partial_t n_i = -n_i \Gamma_{i}^{ph} + \alpha_{i,j} n_e n_j, \quad i, j = \{\text{HI, HeI, HeII}\},$$
$$\partial_t E = \nabla \cdot (D \nabla E) - \frac{\dot{a}}{a} E - c\kappa E + 4\pi\eta.$$

- $G(n_i, E)$ and $\Lambda(e, n_i)$ provide photo-heating and thermal cooling.
- $\Gamma_{i}^{ph}(E)$ is photo-ionization, and $\alpha_{i,j}(e, n_i)$ are reaction rates.
- $\kappa(n_i)$ is the opacity, $D(\kappa, E)$ a flux limiter, and η an emissivity source.

Due to these strong interconnections, we solve this as a coupled implicit system to help ensure stability/accuracy.
Implicit Time Discretization

We consider a θ-scheme for implicit integration of the RT subsystem:

\[e^n_c + \theta \Delta t \mathcal{L}_e (e^n_c, n^n_i, E^n) = g^{n-1}_e, \]
\[n^n_i + \theta \Delta t \mathcal{L}_n (e^n_c, n^n_i, E^n) = g^{n-1}_{n_i}, \]
\[E^n + \theta \Delta t [\mathcal{D}_E (E^n) + \mathcal{L}_E (e^n_c, n^n_i, E^n)] = g^{n-1}_E. \]

where g^{n-1}_* provide data from the previous time step.

Denoting our unknowns as $U = [e_c, n_i, E]^T$, we define a nonlinear residual, $f(U)$, over the time step $t^{n-1} \rightarrow t^n$ as

\[f(U) = U + \theta \Delta t \begin{bmatrix} \mathcal{L}_e \\ \mathcal{L}_n \\ \mathcal{D}_E + \mathcal{L}_E \end{bmatrix} - g^{n-1}. \]
Nonlinear Solver: $f(U) = 0$

We solve $f(U) = 0$ for U^n using a *globalized inexact Newton method*:

$$J(U_k) S_k = -f(U_k), \quad U_{k+1} = U_k + \lambda_k S_k, \quad k = 0, 1, \ldots$$

Details:

- Iterate until $\|f(U_k)\| < \varepsilon$, $0 < \varepsilon \ll 1$.
- S_k is solved inexact, $\|J_k S_k + f_k\| < \delta$, $0 < \delta \ll 1$.
- $\lambda_k \in (0, 1]$ is the *line search* parameter.
- $\|\cdot\|$ is a L-2 norm weighted by relative magnitudes of U^{n-1}.
- Rapid, resolution-independent convergence for many PDE systems.
- Efficiency rests on a fast/scalable solver for the linear Newton systems.

We note that these Jacobian matrices have the form

$$J(U) = I + \theta \Delta t \begin{bmatrix} \partial_e \mathcal{L}_e & \partial_n \mathcal{L}_e & \partial_E \mathcal{L}_e \\ \partial_e \mathcal{L}_n & \partial_n \mathcal{L}_n & \partial_E \mathcal{L}_n \\ \partial_e \mathcal{L}_E & \partial_n \mathcal{L}_E & \partial_E(\mathcal{L}_E + \mathcal{D}_E) \end{bmatrix}.$$

[see Dembo et al., 1982; Brown & Saad, 1990; Allgower et al., 1986; Weiser et al., 2005]
Schur-Krylov-MG Linear Solver: \(J_s = -f \)

Combining the spatially “local” variables \(s_M = [s_e, s_n] \), we rewrite

\[
Js = -f \iff \begin{bmatrix} M & U \\ L & D \end{bmatrix} \begin{bmatrix} s_M \\ s_E \end{bmatrix} = -\begin{bmatrix} f_M \\ f_E \end{bmatrix}.
\]

\(M^{-1} \) is simple to compute (block-diagonal), so we use a Schur complement formulation to solve for \(s \),

\[
M s_M + U s_E = -f_M \iff s_M = -M^{-1}(f_M + U s_E),
\]
\[
\Rightarrow (D - L M^{-1} U) s_E = L M^{-1} f_M - f_E.
\]

Details:
- \((D - L M^{-1} U) s_E = L M^{-1} f_M - f_E \) solved with a CG iteration.
- CG preconditioned using geometric multigrid [HYPRE-PFMG].
- \(s_M \) is then easily computed from \(s_E \).
MPI+OpenMP Hybrid Parallelization

- Threading needed to minimize memory footprint for Enzo data structures.
- Groups of cores are clustered into a single MPI task.
- Physics modules use threading within each MPI task.
- Newton solve needs only neighbor communication and infrequent MPI_Allreduce calls.
- Schur complement formulation is inherently processor-local.
- HYPRE allows hybrid parallelism; performance is a work in progress (version 2.7.0b at right).
- Parallel I/O uses HDF5.

The graph shows the weak scaling of ENZO RHD with 3 MPI tasks per node from June 2011.
Outline

1 Science
 - Reionization
 - Model

2 Solution Approach
 - Framework
 - Implicit Subsystem
 - Solvers

3 Numerical Results
 - Verification and Scaling
 - Reionization Simulations

4 Conclusion
Verification Tests and Weak Scaling

NW: isothermal, static I-front convergence.

NE: hydrodynamic I-front convergence.

SW: cosmological, static I-front convergence.

SE: weak scaling ($N_{src} \propto N_{CPU}$) on Kraken [NICS].

Reionization $(1024^3 \text{ grid, 4096 cores, 5.6 Mpc box})$

\[\rho \]
\[E \]
\[x_{\text{HI}} \]

- $z = 15$
- $z = 11$
- $z = 8$
- $z = 6$
Multiscale Issues – Space and Time

Many cosmological problems require spatial adaptivity:

- At high redshift, \(\rho \) is diffuse and fills the whole domain.
- As structures form the majority of the volume empties.
- AMR can reduce memory requirements at low \(z \) by orders of magnitude.

Coupled \(\Delta t \) selection is difficult:

- At star creation, emissivities jump by orders of magnitude.
- Enclosing cells ionize rapidly, with \(x_{\text{HI}} \) quickly decreasing by \(O(10^5) \).
- Naïve integrators may overshoot, resulting in negative densities.
- Production runs create \(O(10^8) \) stars, so this is not an isolated event.
- Hence, current production runs (\(\sim 47k \) cores) decouple chemistry from the radiation system, allowing subcycling to maintain physicality.
 - This splitting decreases accuracy, but increases robustness.
 - \(\Delta t \) must be reduced to produce accurate physics (e.g. \(r_I \) speed).
Current Work

Extending solvers to AMR grids:

- Implicit AMR presents new challenges:
 - matrix stencils at coarse-fine interfaces,
 - proper nesting of refined regions,
 - global time step selection balancing cell size contributions,
 - multigrid + AMR is nontrivial.

- FAC\(^1\) gravity solver already completed (James Bordner).

- FLD extension complete; in testing/optimization stages now.

New time integration methods:

- Split couplings may be improved with ARK\(^2\) or SDC\(^3\) methods.

- Predictive Δt control based on star formation.

- Chemistry model may be adapted between dynamic and steady-state solvers based on local dynamics.

\[^1\]McCormick, 1989; \(^2\)Cooper & Sayfy, 1983; \(^3\)Ascher et al., 1997; Minion, 2003; Hagstrom & Zhou, 2006\]
Acknowledgements

We gratefully acknowledge support by:

- US National Science Foundation – AAG and OCI programs
- US Department of Energy – INCITE program
- NCSA Blue Waters program

Collaborator contributions:

- UC San Diego – Michael Norman, James Bordner, Geoffrey So
- SDSC – Robert Harkness, Michael Norman, Richard Wagner
- LLNL – John Hayes (B-Division)
- Northwestern – Pascal Paschos

Open-source software:

- Enzo – http://enzo.googlecode.com
- HDF5 – http://www.hdfgroup.org
Reionization Visualization (SC 2011)