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An abundance of evidence suggests that most of the Universe is composed of nonluminous

matter. This “dark matter” is believed to be a new elementary particle and experiments

around the world are attempting to directly detect rare collisions with terrestrial detectors.

The properties of dark matter have yet to be identified, thus efforts are ongoing to explore

a range of possible masses and interaction cross-sections. For the latter, experiments can

increase exposure by scaling up the detector mass and operating for a longer time. To search

for dark matter with less mass than a nucleon, new technologies and analysis techniques

need to be developed to be sensitive to energy deposits less than a few keV.

SuperCDMS is a direct detection experiment that measures ionization and phonon en-

ergy in cryogenic germanium crystal detectors. A special mode of operating the SuperCDMS

detectors, called CDMSlite, amplifies the ionization signal via phonon creation. This ampli-

fication leads to a lower energy threshold, which provides sensitivity to smaller dark matter

masses.

Typically, direct detection experiments assume dark matter scatters elastically off the

nuclei in the detector. In this thesis, I will highlight the most recent CDMSlite elastic dark

vii



matter search. Then I will describe how inelastic dark matter collisions can manifest in the

detector and be useful for extending experimental sensitivity to lower dark matter masses.

Finally, I will present a re-analysis of CDMSlite data using a profile likelihood to search for

low-mass dark matter through two inelastic scattering channels: Bremsstrahlung radiation,

and the Migdal Effect.
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PREFACE

The following are some useful concepts that should aid in the understanding of this thesis.

0.1. Natural Units

I will not always be explicit throughout this thesis, so it is important to understand

the system of units that are typically used in high-energy physics. Physicists prefer to use

units of measurement that are based on fundamental constants [1]. However, to simplify

equations and avoid carrying these fundamental constants through mathematical proofs,

they are set to unitless values of 1. The trade-off of making the math easier is that units

then get confusing and everything is essentially in terms of energy. For example, a constant

particularly relevant to this thesis is the speed of light, c. If c = 1, then mass and energy

have the same unit (think of Einstein’s famous E = mc2). In order to convert back to the

more common SI units, those physical constants need to be added back in. Therefore, even

though mass is written as a unit of energy such as electron-volt (eV ), it is actually eV/c2,

whether that factor of c is explicitly written or not.

0.2. Energy Units

In SuperCDMS, there are multiple “energy equivalent” units used. They will typically

be indicated by a subscript added to the regular energy unit (in these examples I will use

keV), although best practice is not always followed and context clues are needed. The most

common unit I will use is keVee, which means “electron-equivalent” energy, or the energy

assuming the interaction is an electron recoil (ER). In other words, the electron-equivalent

1



energy is the number of charges collected times the average energy needed to produce an

electron-hole pair, which is 3 eV for germanium and 3.8 eV for silicon. If no subscript is

included then it is most likely “ee”.

0.2.1. NTL Gain

The second most common unit is keVt, which means the “total” energy collected and is

larger than the energy of the interaction. This is used when referring to the phonon energy,

which is the sum of the original recoil energy and the Neganov-Trofimov-Luke (NTL) gain,

Et = Er +NeheVb , (0.1)

where Et is the total energy measured with the gain, Er is the initial recoil energy, Neh is

the number of electron-hole pairs created given Er, e is the electron charge, and Vb is the

bias voltage across the detector. From Eq. 0.1, the unit conversion between keVee to keVt is

keVt = keVee(
∆Vb

3
+ 1) = keVee(g(Vb) + 1) , (0.2)

where g(Vb) is the NTL gain that takes advantage of the bias voltage across the crystal

to amplify the ionization signal. Physically, as the liberated electrons and holes are drifted

through the crystal by the electric field, they are quickly accelerated to their terminal velocity.

Any additional work done by the electric field is then converted to phonons where the number

of phonons created is proportional to the drifting electrons [2, 3]. A cartoon of this process

is depicted in Fig. 0.1. For stronger voltage biases, these phonons dominate the number of

phonons created in the original recoil, so this effectively converts the phonon collectors into

ionization electrodes.
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Figure 0.1: Cartoon showing a WIMP recoil creating primary phonons and electron-hole
pairs in a crystal detector. As the electrons and holes drift through the electric field,
additional (“Luke”) phonons are created. [4].
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0.2.2. Lindhard Model

In typical dark matter searches one needs to assume the interaction was a nuclear recoil

(NR), which often means converting from keVee to keVnr using

Er [keVnr] = Er [keVee]

(
1 + g(Vb)

1 + Y (Er,nr)g(Vb)

)
. (0.3)

The unknown variable Y (Er,nr) is the ionization yield. When experiments take advantage

of the NTL amplification with a higher bias voltage, they sacrifice the ionization electrodes

and the ability to measure the yield for ER and NR events. Therefore, a yield model needs

to be assumed and the most common is the Lindhard Model [5], where the yield is defined

as

Y (Er,nr) =
k × g(ε)

1 + k × g(ε)
, (0.4)

where Z is the atomic number of the detector material, ε = 11.5Enr(keV )Z−7/3, and g(ε) =

3ε0.15 + 0.7ε0.6 + ε is determined by empirically fitting neutron scattering measurements of

the relative efficiency between ER and NR events [6]. In the standard Lindhard Model,

k = 0.157 for germanium and k = 0.146 for silicon.

The prediction of this model has been measured at high energies, but as more measure-

ments are being made it appears the model overestimates the ionization yield in silicon at

energies below a few keV as shown in Fig. 0.2 [7]. A similar array of measurements exists for

germanium (Fig. 0.3), except there are no reliable measurements below 1 keV, which means

that any analysis in this range needs to extrapolate [8].

All of this introduces a systematic uncertainty because different values for k still describe

the experimental data. This uncertainty will be included as a nuisance parameter in the

likelihood function in Chapter 4. Fortunately for the analysis presented in this thesis, Chap-

ter 5 is searching for dark matter signals that manifest as ER signatures in the detector, so

this extra systematic does not need to be included.
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Figure 0.2: This plot shows the rough agreement above 4 keV between a large number of
measurements and the predicted ionization yield in silicon from the Lindhard Model. In
2016, DAMIC was able to accurately measure the ionization yield at low energy, strongly
disagreeing with the Lindhard prediction [9].

Figure 0.3: This plot shows the rough agreement between a large number of measurements
and the predicted ionization yield in germanium from the Lindhard Model [8]. However,
the data do not validate the model below a few keV where low-mass dark matter analyses
are searching.
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0.3. Cross-Section

In scattering theory, the number of events is determined from the product of luminosity

and probability of interaction. For classical interactions, this probability is determined by the

geometry of the particles, but actions-at-a-distance such as electromagnetism can complicate

this picture. Therefore, physicists broadened the definition of cross-section from a slice of an

object to be the area in which two particles must meet in order to interact. By defining the

cross-section in this way, the interaction rate is independent of the intensity and luminosity

of the incident particle sources [10].

The unit of cross-section is an area, where cm2 will be the unit commonly used in this

thesis. For a spin-independent dark matter direct detection experiment, introduced in Sec-

tion 1.4.3 and discussed throughout this thesis, the cross-section referenced most often will

define the interaction probability between a dark matter particle and a nucleon. There is

also a small discussion in Section 5.1.1 about the cross-section between a photon and an

electron in regards to the photoelectric effect.
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Chapter 1

DARK MATTER INTRODUCTION

To this day, the mystery of dark matter remains one of the great unanswered questions

of science. Understanding its nature would provide information about the formation of the

Universe, which is why thousands of scientists across the globe are dedicating their careers

to the potential identification of this elusive entity.

1.1. Missing Mass

The story of dark matter begins in 1932 when Jan Oort studied the motion of stars in

the Milky Way. He measured the redshift to determine how fast stars are moving and found

that, for the amount of luminous matter observed, there is not enough mass to keep the stars

gravitationally bound in orbit. He concluded there must be some additional nonluminous

matter, and postulated that this could be in the form of stars that are dim or hidden behind

other objects [11].

One year after Oort, Fritz Zwicky published a similar result by using the Virial Theorem

to calculate the mass of the Coma Cluster. The Virial Theorem states that the average

kinetic energy of a particle in a gravitationally-bound system is equal to negative one half

the gravitational potential of that particle,

〈K〉 = −1

2
〈V 〉 , (1.1)

where the average kinetic energy for a particle with mass mp and velocity vp is

〈K〉 = 1

2
mpv

2
p , (1.2)
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and the gravitational potential energy is

〈V 〉 = −GMtotmp

Rtot

, (1.3)

where G is the gravitational constant, Rtot is the radius of the system, and Mtot is the total

mass enclosed by Rtot. Substituting these into the Virial Theorem gives the relation

v2p =
GMtot

Rtot

. (1.4)

Zwicky measured the redshift of the galaxies in the Coma cluster to calculate their

velocities. The radius of the cluster can be calculated by measuring the angular size and

estimating the distance from the luminosity. Then Eq. 1.1 is solved to obtain the total mass

of the system. In doing this, Zwicky found that there was significantly more gravitating

mass than he predicted from the luminosity alone. He was the first to hypothesize that the

missing mass could be a new type of matter, and he is credited with coining the phrase “dark

matter,” or “dunkle materie” as he wrote in German. He proposed extending his study to

individual galaxies, but he did not have the instrumentation required to measure the redshift

at great distances [12].

Forty years later, Vera Rubin measured the rotational velocity of stars in individual

galaxies as a function of their radius. An example of a “rotation curve” is shown in Fig. 1.1.

This method did not require an assumption of the mass-to-light ratio, and was therefore

more robust than previous estimates of nonluminous mass. It is clear that the data be-

come constant as a function of radius, but the expectation for a disk of stars is that the

rotational velocity should fall as 1/
√
r according to Eq. 1.4. Adding a gas component was

not enough to account for the difference either, but the inclusion of a hypothetical spherical

halo of uniformly distributed nonluminous mass brought the models into agreement with the

data [13].
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Figure 1.1: Shown is the rotation curve for NGC 6503 [14]. The black points are the
measured velocity plotted as a function of radius. It can be seen that the disk and gas
models would not sum to match the data shape, but adding a halo of hypothetical mass to
those models results in the line that closely follows the black data points.

9



1.1.1. The Unknown Universe

Besides influencing the motion of individual galaxies or clusters, high-resolution n-body

simulations have shown that additional mass is required to explain the large-scale structure

of the Universe. In this model, shown in Fig. 1.2, the dark matter halos merge hierarchically

to form more massive systems. The gravitational self-attraction of dark matter causes it to

collect into long fibrous structures and areas of higher density are believed to initiate the

formation of stars and galaxies [15, 16].

Figure 1.2: Visualization of an n-body simulation of large-scale structure formation in the
Universe [16]. The black fibers are collections of dark matter halos, and higher densities of
dark matter initiate the formation of stars and galaxies, indicated with yellow.

From the large-scale structure, it is natural to wonder how much mass in the Universe is

actually composed of “unseen” matter. This information can be obtained from measurements

of the Cosmic Microwave Background (CMB). The CMB is radiation that was emitted shortly

after the Big Bang, when the Universe existed as a hot, dense plasma of nucleons. As the

Universe expanded, this plasma cooled and the nuclei and electrons condensed primarily

into hydrogen and helium. This is known as the epoch of recombination. During this time,
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the Universe became transparent to the radiation originally present in the plasma. This

radiation continues to travel nearly isotropically through space and can be measured to this

day.

The discovery of the CMB was actually a fortuitous accident when radio astronomers

Penzias and Wilson were working on a new type of horn antenna in 1964. In order to

make accurate measurements of the Milky Way, they were trying to account for all possible

background sources and found there was a 3 K excess they could not explain [17]. As it

turned out, this was the first measurement of the CMB that was a prediction of the Big

Bang Theory [18, 19].

To first order the CMB radiation is isotropic, but it carries information about the space

it traverses in the form of polarization, gravitational lensing, and changes in the energy

density. This manifests as small anisotropies on the level of 10−5. Taking the harmonic

transpose of these anisotropies provides a frequency power spectrum of the different sizes of

features. Since the power spectrum from a hot gas is well understood, the location of peaks

and relative amplitudes in the spectrum can be used to extract the information carried by

the radiation.

The most recent measurement of the CMB was performed in 2013 by the Planck ex-

periment. A map of the anisotropies is shown in Fig. 1.3. Analysis of the power spectrum

indicates that all of the elements of the Periodic Table, all the particles of the Standard

Model, and all known matter makes up only 4.9% of the Universe. Dark matter is deter-

mined to be five times more prevalent and compose 26.8% of the Universe. The remaining

68.3% is attributed to dark energy, which is thought to combat the attraction of gravity and

cause the Universe to expand at an accelerated rate [20, 21].
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Figure 1.3: Map of the CMB, as measured by the Planck experiment [20, 21]. The color
pattern indicates the location of anisotropic fluctuations of the energy density.
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1.2. Evidence for New Matter

There are many proposed explanations for the astronomical mass discrepancies, but they

generally fall into one of two categories. One very reasonable idea is that our current theory of

gravity is flawed at large distances [22]. This is analogous to Newtonian mechanics breaking

down at small scales, where the necessity for quantum mechanics arises. The other idea is

that there is a new type of matter, as Zwicky first proposed. The observation of the Bullet

Cluster (and other astronomical phenomena in this same category) provides a crucial piece

of evidence to break the stalemate between the categories.

In order to understand the interpretation of the Bullet Cluster, however, one needs to

understand gravitational lensing. Gravitational lensing is a phenomenon in which light is

bent around massive objects due to the warping of spacetime, which manifests as a physical

force of attraction around those objects. In the most extreme case, objects can be observed

despite being hidden directly behind another object. Figure 1.4a depicts an example of

gravitational lensing where the light from a galaxy bends around a galaxy cluster. One

effect of this is that the light gets bent around all sides, which can result in multiple images

or an annulus called an Einstein Ring as shown in Fig. 1.4b. The curvature of the ring can

be used to calculate the mass of the object responsible for the lensing. Lensing is more direct

for mapping the location of massive nonluminous objects than inferring their location from

the relative motion of nearby objects.

The Bullet Cluster shown in Fig. 1.5 provides a unique view into the behavior of dark

matter interactions [23,24]. Perhaps a misnomer, the Bullet Cluster is actually a collision of

two smaller galaxy clusters. The stars, observed as visible light, interact gravitationally and

are relatively unaffected by the collision because of the astronomical distances between them.

Most of the baryonic matter in the clusters is gaseous and interacts electromagnetically. This

stronger interaction causes the gas to slow down in the collision, as well as heat up and emit

x-rays that are shown in pink. The blue coloring is a gravitational lensing map that shows
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(a) Cartoon depicting the gravitational lensing
of light from a galaxy around a massive galaxy
cluster. The cluster distorts the fabric of
spacetime, causing the light radiating from the
galaxy to bend inwards. The red lines indicate
light that has been bent enough that it reaches
Earth on the opposite side of the cluster.
Image: NASA/ESA

(b) Optical image of an Einstein Ring. The
multiple images of the hidden light source are
curved so much they nearly form a perfect
circle. The curvature of the lensed image can
be used to calculate the mass of the massive
object responsible for the lensing. Image:
NASA/ESA

Figure 1.4: Description and example of gravitational lensing that is useful for mapping
higher concentrations of mass in the Universe.

the strongest concentration of mass. If the mass discrepancies were explained by a modified

theory of gravity then the lensing would be strongest near the baryonic matter, which is

primarily the gas. The fact that there is clear separation between the pink and blue is

extremely difficult to explain using modified gravity, which implies that dark matter is a

new type of matter that can be separated from baryonic matter. The observation of this

collision can be taken a step farther and used to calculate a limit on the rate of dark matter

interaction [23]. Other examples of colliding clusters have been observed, although the Bullet

Cluster remains the most well-known. 1

In addition to the observation of the Bullet Cluster, the power spectrum of the CMB

cannot be explained by current theories of modified gravity.

1After the discovery of the Bullet Cluster in 2006 came the Trainwreck Cluster [25] and the Musketball
Cluster [26]. Then they stopped receiving creative names.
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Figure 1.5: Composite image of the Bullet Cluster, which is actually a collision of two
clusters [24]. The pink is an x-ray image that shows radiation from the gas that heats up in
the collision. It is projected over an optical image that shows the stars in the colliding
clusters. The blue is a gravitational lensing map that shows the distribution of mass. The
separation of the pink and blue is difficult to explain with a modified theory of gravity,
suggesting that dark matter is a new type of matter.
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1.3. Weakly-Interacting Massive Particle

If dark matter is indeed a new type of particle, then it needs to have the following

properties to be considered a valid candidate.

Electrically neutral. If dark matter had significant electric charge then it would interact

electromagnetically and almost certainly would have been detected already.

Non-relativistic. “Cold” dark matter that moves much slower than the speed of light is

preferred over “hot” (relativistic) dark matter because it lends to hierarchical structure

formation where smaller objects merge into larger objects [27].

Provide the correct relic density. We know how much dark matter there is in the Uni-

verse from measurements of the CMB, so any theory needs to match that estimate.

Compatible with constraints on interaction rate. Limits have been placed on the strength

of dark matter interactions from observations of collisions such as the Bullet Cluster.

Experimentally detectable. In order to be a valid hypothesis, it needs to be experimen-

tally validated. If dark matter cannot be physically detected, then its existence cannot

be proven.

Consistent with current experimental results. Experiments have been searching for

dark matter for years and have excluded a lot of possible parameter space. The pro-

posed candidate must lie in unexplored parameter space or else it has already been

experimentally ruled out.

For many years, the leading candidate for dark matter has been the Weakly-Interacting

Massive Particle (WIMP) [28]. WIMP refers specifically to a theoretical dark matter particle

that was in equilibrium in the early Universe. As the Universe expanded and cooled, the

primordial WIMPs fell out of thermal equilibrium until they no longer self-annihilated into
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Standard Model particles, “freezing out” to the current density of dark matter. This model is

clarified in a review published by Bertone, Hooper, and Silk, “A particle species in the early

Universe has to interact sufficiently or it will fall out of local thermodynamic equilibrium.

Roughly speaking, when its interaction rate drops below the expansion rate of the Universe,

the equilibrium can no longer be maintained and the particle is said to be decoupled” [29].

Additionally, the relic density can be used to calculate the self-annihilation cross-section if

the WIMP mass is known or assumed.

An added benefit of the theorized WIMP is known as the “WIMP Miracle.” This is the

coincidence that a new particle with a mass around 100 GeV that interacts via the weak

force gives the correct relic density. Physicists appreciate when independent ideas unify, so

it would be serendipitous for weakly-interacting massive particles and weak interactions in

the Standard Model to be due to the same underlying interaction. Figure 1.6 shows the

number density of comoving space as a function of time [30], which means the number of

particles in a volume of space that increases with the expansion of the Universe. Notice that

a large range of WIMP masses does not make as big of an impact on the relic density as the

strength of the interaction.

1.4. Dark Matter Detection Methods

Since the nature of dark matter has yet to reveal itself, scientists all over the world are

taking a three-pronged approach to searching for it. Figure 1.7 is not to be interpreted

literally as a Feynman diagram, but it shows the relationship between the three methods.

Each of them are explained in further detail below.

1.4.1. Production

Among many other measurements, particle colliders such as the Large Hadron Collider

(LHC) are searching for the production of dark matter. Since dark matter interactions are
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Figure 1.6: Demonstration of the theory of WIMP freeze-out by plotting the number
density of dark matter as a function of time. [30]. Time increases to the right, which is
inversely proportional to the temperature of the expanding Universe. In the earliest times,
the density was a flat line indicating constant density. After that, the Universe expands
and WIMP annihilation occurs more than creation. The WIMP density drops until the
Universe is large enough that the WIMP self-interaction rate drops below the expansion
rate of the Universe. It is at this point that WIMPs “freeze out” and remain at relic
density.
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Figure 1.7: Production searches are based on colliding baryonic matter and looking for an
imbalance of transverse momentum. Indirect searches attempt to detect byproducts of
dark matter annihilation or decay. Direct detection experiments look for specific energy
signatures from a dark matter particle colliding with the detector.
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so rare, there is no direct signal then deposited in the experiment. Instead, the existence of

dark matter must be inferred from the appearance of missing energy and momentum from

what was known to go into the initial collision. Particles in a collider travel down a beam

pipe where all momentum is in the direction of the beam, so the transverse momentum

after the collision must sum to zero. Therefore, the transverse momentum of all leptons

and hadrons produced in the collision can be added and any imbalance indicates the di-

rection that an “invisible” particle must have carried some momentum away. However, this

method of searching for dark matter is complicated by the creation of neutrinos that will also

carry momentum away undetected and detector inefficiency. A schematic of the momentum

imbalance is depicted in Fig. 1.8 [31].

Figure 1.8: Schematic of the inferred missing momentum that is presumably carried away
from the detector by dark matter [31]. From this perspective, the beam line is
perpendicular to the page, at the center of the circle. The black arrows are transverse
momentum vectors that are visible in the detector and the red vector is the missing
momentum required to bring the sum to zero. The inset shows the graphical method of
tip-to-tail vector addition.

1.4.2. Indirect Detection

Indirect dark matter searches look for byproducts from dark matter interactions. This

could include annihilation from self-interactions, or decay of dark matter from an excited

state. Dark matter can exist in higher densities in regions of the Universe where baryonic

matter is more dense, such as the center of a galaxy. Therefore, indirect searches focus
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on these areas where dark matter has a higher probability of interacting with itself. If the

theory of freeze-out is correct, then dark matter can self-annihilate and produce a variety of

byproducts such as neutrinos, photons, or other particles in the Standard Model. Different

types of telescopes are used in an effort to observe higher concentrations of these products

to triangulate the location of the dark matter [32].

1.4.3. Direct Detection

Since the Earth is orbiting around the Sun and the Sun is orbiting around the center

of the Milky Way, the Earth is constantly passing through the hypothetical dark matter

halo that engulfs the entire Milky Way galaxy and extends far beyond its bounds. From

the reference frame of the Earth, the dark matter particles that compose this halo are

constantly passing through us; this is called the “WIMP wind.” In general since they have

such a low interaction rate, as determined from collisions like the Bullet Cluster, they should

mostly pass through the Earth without scattering. However, there is a rare chance that the

incoming particles can collide with an atom and transfer energy. Electrically neutral dark

matter and neutrons are examples of hypothetical and well-known particles, respectively,

that scatter off of the massive nucleus of the target material in what is called a nuclear recoil

(NR) event. Meanwhile, photons and electrons and most other backgrounds that couple

electromagnetically will scatter off the electron cloud, leading to an electron recoil (ER)

event. A cartoon of the two recoils is depicted in Fig. 1.9. The goal of direct detection

experiments is to build ultra-sensitive terrestrial detectors that are capable of measuring

both kinds of energy transfers.

The energy from these interactions is typically read out in three different ways. The first

is ionization due to the collection of electrons that were freed during the interaction. The

second is scintillation, which is the collection of photons emitted during the interaction. The

third type of energy is in the form of vibration or heat. This manifests as quantized packets,

21



Figure 1.9: Cartoon of the different atomic interactions, depending on the incoming
particle. Neutral dark matter is expected to collide with the larger nucleus of one of the
atoms in the target material; this is known as a nuclear recoil event. Charged particles that
interact electromagnetically will scatter off of the electron cloud; this is known as an
electron recoil event. Credit: M. Attisha.
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called phonons, that travel through matter like ripples on a pond. They propagate outward

from the point of the interaction until they are collected or reflected.

Experiments selectively choose the materials used to construct detectors because the

choice then dictates the possible signals they can read out. Most experiments measure en-

ergy in two ways because the ratio allows for particle identification, as different types of

interactions will lead to different amounts of each signal. This is a useful tool for discrim-

inating between background events and signal events, which is critical when searching for

rare phenomena such as dark matter collisions. Figure 1.10 shows the different technologies

used by direct detection experiments. For the sake of complementarity in the community, it

is also good to have a wide variety of direct detection methods [33].

Figure 1.10: Triple Venn diagram of energy signatures caused by the collision of dark
matter and the technologies that are used to measure those signals [33].

23



As can be seen in Fig. 1.10, there are two main categories of detector technologies around

the outside of the triangle: cryogenic bolometers and noble liquid detectors. Noble liquid

experiments have high scintillation and ionization yield in a large homogeneous target. This

type of detector has the advantage of comparatively easy scalability to quickly increase mass

and exposure, which allows them to search for dark matter with even smaller interaction

cross-sections. The downside of this detector is the light yield is not well understood for

small recoil energies, so the detectable energy threshold is a few keV that corresponds to a

dark matter mass minimum of roughly 10 GeV [34].

The other main category of direct detection technologies is a cryogenic bolometer, which

usually comes in the form of a solid crystal. The detector is operated at tens of mK to

reduce the thermal motion of the crystal and allow the measurement of phonons created from

small recoil energies. Semiconductor crystals have the advantage of supporting large bias

voltages to amplify small signals and provide sensitivity to dark matter masses below 10 GeV.

However, it is difficult to readily increase the mass of crystal-based experiments because this

requires fabricating more detectors, which is a complex and expensive process [35].

1.4.3.1. WIMP Rate

The expected rate of WIMP collisions in a terrestrial detector can be calculated using

information from particle, nuclear, and astrophysics [6]. The number of expected collisions

over some energy range from E1 to E2 is

N =

∫ E2

E1

dN

dE
dE =

∫ E2

E1

dR

dEr

ε(E)dEr , (1.5)
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where Er is the recoil energy, and ε is the exposure of the experiment, which is the product

of the detector mass and the livetime of operation. The differential rate is defined as

dR

dEr

= Nt
ρχ
mχ

∫ vmax

vmin

vf(v,vE)

k

dσ

dEr

d3v , (1.6)

where Nt is the number of atoms in the target mass, ρχ is the local dark matter mass density

(0.3 GeV/cm3), and mχ is the dark matter mass.

The dark matter velocity distribution f(v) is typically assumed to be the Maxwell-

Boltzmann distribution. However, dark matter physicists are using primordial stars in the

GAIA all-sky survey to trace the motion of dark matter and empirically determine the

velocity distribution [36]. The velocity distribution gets integrated from vmin to vmax, re-

spectively defined in Eq. 1.7 and Eq. 1.8. The lower velocity cutoff vmin is the velocity that

kinematically produces the smallest detectable recoil energy in the detector,

vmin =

√
mNEr

2µ2
N

, (1.7)

where mN is the mass of the nucleus, and µN is the reduced mass of the dark matter and

the target nucleus. The upper velocity cutoff vmax is the highest relative velocity of a dark

matter particle that is gravitationally bound by the galaxy,

vmax = vesc + vE , (1.8)

where vesc is the escape velocity of the Milky Way (544 km/s), and vE is the mean orbital

velocity of the Earth (232 km/s). The variable k in Eq. 1.6 is a normalization for the

truncated velocity distribution.

The differential cross-section in Eq. 1.6 is where assumptions about the dark matter

interaction are contained. This will be revisited, but for now the signal is presumed to be

25



an elastic nuclear recoil with a differential cross-section,

dσ

dER

=
mN

2µ2
Nv

2
[σSIF

2
SI(Er) + σSDF

2
SD(Er)] , (1.9)

where F is the model-dependent nuclear form factor that encodes the dependence on the

momentum transfer of interactions with the nucleus. The spin-independent cross-section σSI

is defined as

σSI = σ0

(
µN

µn

A

)2

, (1.10)

where µn is the reduced mass of the dark matter with a nucleon, A is the atomic mass, and σ0

is the cross-section of the dark matter with a nucleon that is independent of target material.

Along with the dark matter mass mχ, σ0 is the variable that direct detection experiments

are probing.

The spin-dependent cross-section σSD is not explored in this document, but the contri-

bution to the differential cross-section is proportional to the spins of the proton and neutron.

The spin dependence is defined as

σSD α (ap〈Sp〉+ an〈Sn〉)2 , (1.11)

where ap and an are model parameters for the proton and neutron interactions, respec-

tively [6].

1.5. Low-mass Dark Matter

The current state of direct detection WIMP searches is shown in Fig. 1.11, demonstrating

the sheer number of direct detection experiments around the world. Displayed are limits

where the dark matter properties above each curve have been excluded. The canonical

100 GeV WIMP from the “WIMP Miracle” has been excluded down to 10−46 cm2. Despite
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the null results, direct detection experiments continue to push to explore this parameter

space for the elusive dark matter particle.

The yellow area looming at the bottom of Fig. 1.11a is what is commonly called the

“neutrino floor.” This region is where direct detection experiments expect to detect cosmo-

genic neutrinos [37, 38]. Due to the neutral charge and small interaction rate, neutrinos are

a very difficult background source to contend with because they are expected to mimic dark

matter collisions in direct detection experiments. There are two main ideas proposed to

mitigate the neutrino background. The first idea is to use directional information to reject

events coming from known neutrino sources [39]. The other idea is to take advantage of

the complementarity of different detector materials by measuring the background with a

detector that is more sensitive, and using that to estimate the rate in a detector that is less

sensitive [40]. Neutrinos have recently been observed coherently scattering off the nucleus of

a detector, with the intention of better understanding the interaction process [41].

(a) The current state of WIMP-search limits, plotted as
DM-nucleon cross-section versus dark matter mass [40,42–53].

(b) Legend for Fig. 1.11a.

Figure 1.11: This is the current state of direct detection WIMP searches.
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A selection of projected sensitivities is shown as dashed lines in Fig. 1.12 along with the

published results that compose the current world-leading limit across the range of masses.

This shows that the noble liquid experiments plan to continue scaling up to larger expo-

sures until they eventually reach the neutrino floor. Since masses > 10 GeV are so well

constrained, other detector technologies have begun to explore smaller dark matter masses

(e.g. SuperCDMS, CRESST, NEWS-G, DAMIC, etc.). Due to the kinematics of the inter-

action, low-mass dark matter deposits very small amounts of energy in the detector, which

is a technical challenge to measure. Experimentalists are working diligently to understand

and reduce background noise in order to gain sensitivity to these small signals, but as seen

in Fig. 1.12, conventional direct detection methods are not sensitive below 100 MeV. There

is a lot of unexplored parameter space even below 1 GeV (“sub-GeV”).

(a) Figure of the world-leading limits for a range of possible
dark matter masses, and a selection of projected
sensitivities [40,46,49,53–56].

(b) Legend for Fig. 1.12a.

Figure 1.12: The current world-leading limits displayed with a selection of projected
sensitivities.
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The classical WIMP is not strongly motivated in the low-mass region, but there have

been many alternative dark matter candidates proposed [57]. A few of the more popular

sub-GeV mechanisms are summarized below.

1.5.1. Freeze-In

Section 1.3 introduced a heavy dark matter particle that self-annihilated into Standard

Model particles in the early Universe. In the case of low-mass dark matter, the opposite

can be true where the relic abundance was “frozen in” through annihilation or decay of

Standard Model particles into dark matter. Similar to the freeze-out model, and compared

in Fig. 1.13, this process of freeze-in ceases when the Universe expands faster than the rate

of interaction. Freeze-in only works for sub-GeV dark matter because energy conservation

prevents a Standard Model particle from decaying into a heavier particle. [57, 58].

1.5.2. Asymmetric Dark Matter

Instead of obtaining the correct relic abundance from a thermal freeze-out or freeze-in

process, asymmetric dark matter is the idea that the current dark matter density was set

by a primordial asymmetry. In this paradigm, the dark matter and baryon abundances

are related because they are in chemical equilibrium in the early Universe. As with the

asymmetry of baryonic matter, it is believed there was a symmetric component that was

annihilated, leaving behind the current density. While the interaction process that created

the original asymmetry may not be detectable, it is possible that the annihilation process

might be, assuming a coupling to the Standard Model. [57, 59–61].
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Figure 1.13: Plot comparing freeze-out (solid lines) with freeze-in (dashed lines) [58]. The
arrows indicate the direction of increasing strength of interaction.
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1.5.3. Hidden Sector

Since dark matter has not been detected yet through interactions with ordinary matter,

it is natural to wonder if it does not interact via the known forces in the Standard Model

at all, but perhaps only via a new force that is yet to be discovered. The hidden sector is a

hypothetical set of new particles and forces that mirrors the Standard Model and includes

dark matter. While it is possible that hidden-sector dark matter does not interact with

the Standard Model, a hypothetical portal could play a key role in determining the relic

abundance. This new force could be responsible for annihilating the symmetric component

in the asymmetric dark matter described in Section 1.5.2 or mediating the production of

dark matter from Standard Model particles as described in Section 1.5.1. [57, 62, 63].

The detection of hidden-sector dark matter depends on the type of new force, and how it

couples dark matter to the Standard model, and the properties of the dark matter candidate.

Some theories introduce a new symmetry that leads to a new gauge boson known as a dark

photon. The dark photon can theoretically mix with a Standard Model photon. Therefore,

a coupling exists that could be observed in a detector [64]. The observable signature would

be a peak in the energy spectrum at the energy of the dark photon.

1.5.4. DM-electron Scattering

For a low-mass dark matter interaction, the kinetic energy is transferred much more

efficiently to an electron than to the nucleus of the target atom [65]. However, the typical

recoil energy of an electron in the outer shell of an atom is a few eV, which is currently below

the energy threshold of the direct detection experiments in Fig. 1.11. Higher energy recoils

are possible, but their rate is suppressed by the atomic form factor [57]. Therefore, new

technology will need to be developed in order to take advantage of this process [66]. Also,
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since this process probes a different type of interaction, it cannot be directly compared to the

limits in Fig. 1.11 and Fig. 1.12, where the y-axis is DM-nucleon interaction cross-section.

1.5.5. Inelastic Scattering

One of the assumptions of the canonical WIMP described in Section 1.3 is that it scatters

elastically off of the target nucleus. Assuming the dark matter particle transfers 100% of its

momentum to the target mass, then the energy of the recoiling nucleus is

Er =
|q|2

2mN

=
m2

χv
2

2mN

, (1.12)

where mN is the mass of the nucleus, mχ is the dark matter mass, v is the velocity of the

dark matter, and q = mχv is the momentum of the incoming dark matter particle.

Equation 1.12 shows that the recoil energy is proportional to the square of the dark

matter mass, so the elastic recoil energy of low-mass dark matter is extremely difficult to

detect. Until direct detection technology is able to sufficiently reduce background noise and

energy thresholds, low-mass searches can benefit from analysis techniques and theoretical

models of different dark matter interactions.

One such mechanism that has been explored recently is the inelastic scattering of dark

matter with a nucleus and how that signal would manifest in a conventional direct detection

experiment. Unlike elastic collisions, kinetic energy does not have to be conserved, which

allows for more exotic interactions. For example, an additional particle can be created in a

2→3 body scattering process where the maximum possible energy of any particle emitted is

the full energy of the system. Considering the detector to be at rest in the laboratory frame,

the energy of the system is simply the kinetic energy of the incoming dark matter particle,

Eχ =
1

2
mχv

2 . (1.13)
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Combining Eq. 1.12 and Eq. 1.13 gives

Er = Eχ
mχ

mN

. (1.14)

By making the assumption that we are limited to the low-mass dark matter regime, then

mχ << mN and therefore Er << Eχ. In other words, for a low-mass dark matter particle

with some given kinetic energy, an inelastic scatter will lead to a larger detectable energy than

an elastic scatter. This is because the elastic scatter is suppressed by the relatively large mass

of the nucleus, but the inelastic scatter avoids this via the example 2→3 body interaction.

This larger detectable energy provides the sensitivity to search for dark matter masses that

would otherwise lead to nuclear recoil energies that are below the energy threshold of the

detectors.

As indicated by the title, this thesis will describe how inelastic scattering was used to

search for low-mass dark matter in SuperCDMS data.
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Chapter 2

RADON

One of the most troublesome background sources that dark matter direct detection ex-

periments contend with is radon. Radon is a noble gas that is produced from the decay of

trace amounts of natural uranium and thorium that can be found in the Earth’s crust [67].

These parent isotopes have extremely long half-lives, on the order of a billion years, so a

constant supply of radon exists for the lifetime of the Earth or Sun. In its natural state,

radon is an inert gas that can diffuse through any barrier that is not airtight. Since it is

created in the Earth’s crust, it often seeps through cracks in the foundations of houses, hence

why it is typically found in higher concentrations in basements [67].

The most detrimental radon isotope for direct detection dark matter experiments is 222Rn,

often referred to as simply “radon.” Not only is this the most stable radon isotope, but the

decay chain in Table 2.1 is supported by the long half-life of one of the decay daughters,
210Pb. This prevents any radioactive contamination from decaying away to a stable isotope

within the lifetime of a typical experiment.

As radon decays, its progeny can plate-out (or “stick”) onto surfaces such as experimental

components and contaminate them with radioactivity. Due to momentum conservation,

decays cause the daughter to recoil in the opposite direction. In the case of high-energy

alphas, if the parent isotope was plated out, then this recoil could implant the daughter below

the surface of the material. Worse, if the recoiling atom is directed towards the detector, then

it could cause a nuclear recoil event that mimics the expected dark matter interaction. The

most problematic case of this is the 210Po alpha decay to a recoiling 206Pb because it is steadily

sourced by 210Pb. Due to effects such as surface roughness and electrostatic attraction,
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Element Atomic Mass Half-life Decay Mode Energy [MeV] Reference
Ra 226 1600 y alpha 4.784 [68]
Rn 222 3.8235 d alpha 5.489 [69]
Po 218 3.098 m alpha 6.002 [70]
Pb 214 26.8 m beta 1.019 (endpoint) [70]
Bi 214 19.9 m beta 3.27 (endpoint) [70]
Po 214 163.6 µs alpha 7.686 [71]
Pb 210 22.2 y beta 0.063 (endpoint) [71]
Bi 210 5.01 d beta 1.162 (endpoint) [71]
Po 210 138.376 d alpha 5.304 [72]
Pb 206 stable N/A N/A

Table 2.1: Details of the 222Rn decay chain beginning with its parent isotope, 226Ra, and
ending with the stable isotope, 206Pb. Notice the long half-life of 210Pb that sustains this
decay chain.

surface contamination cannot simply be wiped off; it needs to be acid-etched or machined

away [73]. Given the difficulty of removing it, the best way to minimize backgrounds from

radon is to understand and reduce the amount of initial exposure.

2.1. Radon Plate-out

The first step to limiting radon plate-out is to minimize the exposure to ambient radon in

the room. That is why most of the equipment that is vital for direct detection experiments is

fabricated and assembled in cleanrooms; even dust contains radioactive isotopes. Specialty

systems can be built that scrub radon from the air that feeds into these cleanrooms to create

low-radon environments [74, 75]. Instrumented experimental components can be stored in

purge boxes, also called purge cabinets, where boil-off nitrogen gas is flowed in to maintain

a slight overpressure and prevent regular air from entering the box. The nitrogen flowing in

is free of radon because the boiling point of nitrogen is 77 K and the melting point of radon

is 202 K, so all the radon is expected to freeze solid in the liquid nitrogen.
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2.1.1. Dead Air Model

The most simple model for describing the plate-out of radon has been called the “Dead

Air Model” 1. The basic assumption of this model is that all of the radon in a contained

space will eventually plate out onto every surface within that space. According to the Dead

Air Model, the activity of a sample is given by

Asample = CRn × Vspace × farea , (2.1)

where Vspace is the volume of the space of interest whether it is a laboratory or a purge box,

CRn is the concentration of radon in that space, and farea is the fractional surface area of the

sample with respect to the total surface area of the space. Another way of writing the Dead

Air Model is to introduce an effective plate-out height heff and surface area of the sample

Ssample:

Asample = CRn × Ssample × heff . (2.2)

In the context of the Dead Air Model, heff can be considered as the height of a column

of air over the sample that is needed to achieve the level of activity Asample if all of the

radioactive isotopes in that air plated onto the sample. This imaginary column of air is

similar to how the pressure at sea level is the weight of the atmosphere in that column

divided by the cross-sectional area of the column. Of course, this is a simplified picture that

gets more complicated with fluid dynamics, such as laminar flow and turbulence. However,

effective plate-out height is a good way of reporting plate-out results because it is independent

of the sample, concentration of radon, or choice of model.

1Richard Schnee claims he invented this name
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2.1.2. Jacobi Model

While it makes for a quick first-order approximation, there are many environmental

factors that are not accounted for in the Dead Air Model. A more complex and accurate

model is the parametric “Jacobi Model” that is used to account for the number of radon and

progeny atoms in a room. The Jacobi Model was originally devised in 1972 from a medical

physics perspective. An example of the original intention of the model is to determine the

amount of activity inhabitants are exposed to in a house, but it can also be used to calculate

an effective plate-out height [76]. This model only deals with probabilities that are averaged

for all atoms in the room; it does not track individual atoms and their interactions [77].

The model is also founded on the assumption that the original concentration is uniformly

distributed throughout the room [78]. This is a safe assumption for radon because it diffuses

much quicker than its half-life of 3.82 days.

While it is true the Jacobi Model is much more complex than the Dead Air Model, it

is important to note that this also is not a perfect model. There are still a large number

of factors not included in the model such as geometry of the space and objects within the

volume, turbulence, aerosol concentration and size, air viscosity, pressure, temperature, hu-

midity, and electrostatics. This is by no means an exhaustive list, and there are unaccounted

correlations between these parameters, making it difficult to estimate how these might effect

the model and the parameters that are included.

The following terms have very specific meanings in the Jacobi Model.

aerosol: a colloidal suspension of particles dispersed in air or another gas

attached: progeny that have adhered to an aerosol particle

unattached: progeny that are not attached to an aerosol particle (can be free floating or

clustered together)
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deposition: attachment of particles to surfaces

detachment: the ability of progeny to separate themselves from a surface or aerosol particle

(transition from attached or deposited to unattached)

The first input is the decay constant for each isotope λi, where the specifier i will identify

the progeny number after radon (i = 0). The decay constant is defined as

λi =
ln(2)

T 1
2
,i

, (2.3)

where T 1
2
,i is the known half-life. Another often-known input is the ventilation rate λv of the

space. This is typically controlled mechanically via air handlers or the volume flow rate, in

the case of a purge cabinet.

The first input that is not well-defined is the rate of attachment to aerosol particles λa.

The attachment rate is defined as the probability of progeny interacting with an aerosol

particle times the probability that they then adhere to the particle. The probability that

they meet is dependent on the aerosol concentration and the size of the particles [77]. In

this description, the attachment rates are assumed to be the same for all progeny, although

the model could be expanded by substituting λa,i for λa.

A natural progression from the attachment is to introduce the two types of detachment:

from an aerosol particle and from a surface after deposition. Within the Jacobi Model there

is a parameter that allows for an atom to detach from an aerosol particle when the attached

parent undergoes an alpha decay that has enough energy to detach the subsequent daughter.

Starting with the assumption that all 222Rn atoms are unattached means there are two alpha

decays that can lead to detachment: 218Po decaying to 214Pb and 214Po decaying to 210Pb.

The probability of detachment r commonly used is 80%, but this can depend on the aerosol

diameter, shape, and chemical structure as well as the energy of the alpha decay [77]. This
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picture complicates further when considering that aerosol particles can clump together and

trap the parent isotope inside a cluster. Somewhat surprisingly, the Jacobi Model does not

consider atoms deposited on a surface to be able to detach. The reason for this is that the

progeny have a short recoil range in air of ∼ 80 µm, thus they induce an opposite charge and

are re-attracted to the surface they just detached from [77]. Based on the direction of the

recoil, it is also possible for an atom to be driven deeper into the surface, which would further

reduce its chance to detach in subsequent decays. This process is known as “implantation”

and will be revisited at the end of this section.

The deposition rates will be discussed later, but putting everything together gives the

following system of equations [79]:

λ0C0 = (λ1 + λv + λa + λu
d)C

u
1 ,

λaC
u
1 = (λ1 + λv + λa

d)C
a
1 ,

λ1C
u
1 + rλ1C

a
1 = (λ2 + λv + λa + λu

d)C
u
2 ,

λaC
u
2 + (1− r)λ1C

a
1 = (λ2 + λv + λa

d)C
a
2 ,

λ2C
u
2 = (λ3 + λv + λa + λu

d)C
u
3 ,

λ2C
a
2 + λaC

u
3 = (λ3 + λv + λa

d)C
a
3 .

(2.4)

The best way to interpret these equations is in terms of conservation of number of atoms

where each equation is a different step in the model. The left side of each equation specifies

the concentration of a population of atoms coming into that step, and the right side of each

equation defines the processes those atoms can undergo. Figure 2.1 is a visual representation

of the model from the decay of 222Rn to the decay of 210Pb. In fact, Eq. 2.4 only goes as far

as the third isotope in this decay chain, which is 214Bi. They do not include the short-lived

daughter, 214Po, because it is assumed to decay before it has time to attach, detach, or

deposit itself. However, it has been included in the graphic for the sake of completeness.
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The model does not need to be extended beyond 210Pb because its half-life is so long that it

will eventually deposit on a surface before it has a chance to decay.

Figure 2.1: This is a visual depiction of the parametric Jacobi Model equations. Each row
of atoms corresponds to the deposited, unattached, or attached populations. The red
arrows indicate the atom depositing on a surface, and the green arrows indicate the
ventilation rate to the air filter at the top. There are two blue diagonal arrows that
represent the ability of an attached atom to detach via an alpha decay, although the 214Po
is not included in the equations. The last two columns are extensions to the long-lived
210Pb.

The deposition rate for unattached atoms is fairly well-understood. It is defined as

λu
d = vS/V , (2.5)

where S is the total surface area in the space including any objects, V is the volume of

the space, and v is the diffusion velocity of the unattached progeny [78]. There are many
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mechanisms that can drive this velocity, a few of which are: Brownian diffusion, turbulent

diffusion, gravitational settling, and turbophoresis, which is the tendency for the atoms to

migrate in the direction of decreasing turbulence [77].

The formalism described so far has been “textbook” with the particular isotopes of inter-

est substituted. However, the model can be modified to be more applicable for dark matter

detection. In this case, only plate-out in laboratory environments with excellent ventilation

and air filtration are considered, such as cleanrooms or purge cabinets. Therefore, it can

be assumed that all aerosol particles and attached atoms will be filtered away [78]. This

effectively sets λa = 0 and λa
d = 0, which greatly simplifies Eq. 2.4 down to:

λ0C0 = (λ1 + λv + λu
d)C

u
1 ,

λ1C
u
1 = (λ2 + λv + λu

d)C
u
2 ,

λ2C
u
2 = (λ3 + λv + λu

d)C
u
3 .

(2.6)

A graphic depiction of these equations is shown in Fig. 2.2.

Having simplified the model, there are a few key outputs that can be calculated. One

obvious output is the concentration of radon and each of the progeny at any given time.

However, as stated earlier, the effective plate-out height is an excellent way of reporting

normalized results that are directly comparable between experiments or models. Equa-

tion 2.7 shows how to calculate the effective plate-out height using parameters in the Jacobi

Model [78],

heff =
λd

λd + λv

Vspace

Sspace

. (2.7)

Predictably, the Jacobi Model formula for heff reduces to the Dead Air Model in the case

where there is no ventilation (λv = 0).

Another output from the Jacobi Model is that the total deposition can be found by

summing the deposited populations for each progeny. However, the model assumes that all
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Figure 2.2: Visual depiction of the simplified Jacobi Model equations under the assumption
that all aerosol particles and attached atoms have been filtered away. This is a much
simpler picture than Fig. 2.1. An additional feature that has been included is the arrow
labeled “Rn Emanation” that points to the initial population of 222Rn from the surface.
Radon emanation is described in great detail in Appendix B, but this arrow emphasizes
that the Jacobi Model is not sensitive to where the original radon population originates.
However, in a realistic picture, radon could be introduced from anything in the space.
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of the progeny are sitting on the surface, which is not fully accurate. Depending on the

direction of the decay, an atom deposited on a surface can recoil further into the material

resulting in a daughter that is implanted. An example of how the Jacobi Model could be

expanded to include implantation is illustrated in Fig. 2.3.

Figure 2.3: Visual depiction of the simplified Jacobi Model with implantation for alpha
decays that can implant atoms below the surface of the material.

There are three estimates that go into this implantation example. The first is that 85% of

the deposited atoms are 218Po, and the other 15% of atoms deposit some time later. This is

because the half-life of 222Rn is so much longer than its progeny (until 210Pb) that the atoms

have a much higher probability of depositing on a surface. Another estimate is that there is

a 50% chance that the alpha decay points down. In reality, the decay is actually isotropic,

but this assumption makes the calculation simpler. Related to that angular assumption,

it is estimated that farther down the decay chain, 214Po has a 75% chance of remaining

implanted. The 214Po alpha decay has more energy than the 218Po decay, but there is a

small range of angles back towards the surface for the implanted atom to be ejected. These
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implantation and ejection probabilities can be added to the Jacobi Model similarly to the

detachment probability parameter r. Stepping through the estimated probabilities in this

example shows how the Jacobi Model can be used to predict the ratio of implanted atoms

versus those deposited on the surface [78].

2.1.3. Plate-out Tests

In order to systematically test the Jacobi Model, a controlled radon environment was

created inside an exposure chamber at PNNL. A purge box, shown in Fig. 2.4, was modified

to have extra ports so that the flow in and out could be controlled, and a pressure gauge was

added to monitor the pressure inside the box. It was important to maintain overpressure

inside the box so that the laboratory air did not leak in and provide an unknown supply

of radon. The known supply of radon came from a calibrated flow-through radon source to

control exactly how much radon was allowed into the purge box. Unfortunately, laboratory

regulations limited the maximum activity allowed for an unsealed source to < 100 Bq, which

ultimately hindered the ability to produce consistent measurements. Since the decays inside

the source are constant, the activity obtained is inversely proportional to the flow through

the source. Therefore, in order to maximize the radon exposure, the lowest possible flow

rate was used, which was approximately 0.1 lpm. However, too little flow lead to problems

maintaining overpressure in the purge box. It also took a long time for the radon to reach

equilibrium in the modest volume of 0.151 m3 due to the low flow rate. All of this led to

huge variations in measured plate-out activities to the point it was impossible to draw any

conclusions.

Since university regulations are not as strict as the national laboratories, this experiment

could be re-created at SMU with a 35 kBq source. The stronger source allows a higher

flow rate of 4 lpm, which provides more consistent results. This controlled and reproducible

radon environment permits systematic tests of some of the Jacobi Model inputs, as well
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Figure 2.4: Photo of the modified purge box at PNNL that was used as a radon exposure
chamber. The black digital meter in the bottom center controlled the flow rate of boil-off
nitrogen into the box. The black canister with the brass ports (behind the flowmeter) is
the Pylon radon flow-through source. The digital gauge is reading the differential pressure
between the purge box and the room. Inside the box are a Dylos particle counter (left) and
a Durridge Rad7 radon monitor (right, behind pressure gauge).
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as factors that could influence those inputs. Some of the things being tested at SMU are:

flow rate, static charge, and different sample materials. A few factors that are not currently

being tested, but could be in the future, are: temperature, humidity, surface roughness, and

fractional surface area.

In order to systematically determine the effect that different environmental factors have

on the plate-out of radon and its progeny, a radon exposure system was built at SMU.

Depicted in Fig. 2.5 is the system with a custom acrylic exposure chamber in the shape

of a toroid for circulating radon-doped gas during exposures. A bevy of tests have already

been performed with this setup. For example, it was recently concluded that circulating the

air in the exposure chamber increases the number of atoms plated out on a copper sample,

yet the plate-out rate does not depend on the airspeed. The next plan is to switch the

conductive copper plate for insulating polyethylene or acrylic samples. Plastics are typically

less predictable because they can build up large amounts of static charge that could attract

or repel charge radon daughters. An electrostatic detector was purchased in an attempt to

measure this charge and determine how charge influences the plate-out rate [80].

This research will provide an understanding of different factors that influence plate-out,

ideally leading to practical solutions that can be implemented towards reducing the amount

of radon surface contamination and improving sensitivity to dark matter. This is future

work beyond the scope of this thesis.

2.2. Material Assay

In order to keep the radon background low, direct detection experiments need to be

constructed from radiopure materials, which requires ultra-sensitive measurements to choose

the purest materials. There are many techniques for assaying a sample, but they largely fall

into two categories: surface screening and bulk assays. Surface screening is conducted by

measuring the daughter particles from the decay of surface contamination of a sample placed
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Figure 2.5: Photo of the custom toroidal radon exposure chamber at SMU. The black
device to the far right is the Pylon radon flow-through source, with an analog flowmeter in
front of it to control the volume flow rate through the source. The white gauge is showing
the differential pressure in the chamber is slightly above zero. The clear acrylic chamber is
used for radon exposures, and the square copper sample can be see on the right side of the
chamber. There is a repurposed computer fan in the left side of the chamber to circulate
airflow, and an anemometer is directly in front of the sample to measure that speed. The
black box in the back is a Durridge Rad7 radon monitor. This entire setup is designed to
be easily switched over to the modified pressure cooker in the middle of the picture for
exposures inside a conducting chamber.
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in a detector. This is easiest with high-energy alpha decays because they have known energies

and appear as mono-energetic peaks above backgrounds, although surface screening can also

be done with beta or gamma decays. Measuring the radioactivity from the bulk of a material

can be done in multiple ways. Sometimes it consists of sampling a piece of the bulk and

measuring it, while sometimes it consists of waiting for the bulk activity to work its way out

of the sample to be measured.

2.2.1. Surface Screening

Materials used in the construction of an experiment can adsorb radioactive contamination

at any phase of the fabrication, shipping, handling, or assembly. That is why screening is

important for testing manufacturing and cleaning procedures. As noted above, alpha decays

are clear indicators of surface contamination, and the most sensitive alpha counter that is

commercially available is the XIA UltraLo-1800. One of these instruments is located in

the Laboratory for Ultrapure Materials and Isotope and Neutron Assessment (LUMINA) at

SMU. A full description of the XIA alpha counter and an attempt to improve it using pulse

shape discrimination can be found in Appendix A.

2.2.2. Bulk Assay

With improving technology and increased sensitivity, direct detection experiments will

require assays of ultra-low radon levels, sometimes needing to detect as few as tens of atoms

in equilibrium. Radon emanation is one of the most sensitive and robust ways of making

these measurements. While it is possible to infer radon activity from a measurement of bulk

uranium content as is done with Inductively-Coupled Plasma Mass Spectrometers (ICP-MS),

there are factors that can complicate this prediction [81]. While not an exhaustive list, some

of the factors are: uranium not being uniformly distributed in the bulk, unknown diffusion

constants, and important physics at material boundaries. It is much more straightforward to
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measure the radon itself, but cutting-edge experiments require lower bulk radon levels than

commercial devices are capable of measuring. Therefore, the need arises to build a custom

system to measure radon emanating from materials. Appendix B details the commissioning

of a new radon emanation system built at PNNL that achieves high sensitivity through

use of custom high-efficiency ultra-low-background proportional counters [82]. Initial tests

demonstrated that it is as sensitive as the best radon emanation systems across the country,

and there is a clear path for improvement with a less contaminated detector and running

underground to avoid cosmic ray backgrounds.
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Chapter 3

CRYOGENIC DARK MATTER SEARCH

The Cryogenic Dark Matter Search (CDMS) is an experimental program that is search-

ing for the direct interaction of dark matter with crystal detectors operated at cryogenic

temperatures.

The first stage (CDMS I) was located at Stanford Underground Facility (SUF) in Palo

Alto, CA. The experiment was operated in an underground tunnel that was an extension of

a beam dump in End Station III on the Stanford campus. The reason for being underground

is so that the layers of rock in the Earth can shield incoming cosmic rays. The tunnel at SUF

is 10.6 m underground, which equates to 17 mwe of overburden. Though not frequently used

outside the realm of underground science, “mwe” stands for “meters of water equivalent”.

Based on the depth of the laboratory and the composition of the Earth and rock above it,

mwe is useful for directly comparing the amount of overburden for underground laboratories

by converting to a depth of water that would provide an equivalent amount of shielding.

Operating at SUF with 17 mwe overburden is expected to reduce the cosmic muon flux by

a factor of 5. CDMS I was operated at SUF until 2002 when detectors designed for CDMS

II were tested in the existing infrastructure [83, 84]. In 2003, the CDMS II experiment was

built and began operation in Soudan, MN [85,86].
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3.1. SuperCDMS Soudan

The SuperCDMS experiment was planned as an upgrade to CDMS II in 2011 in order to

deploy a new type of detector inside the existing shielding [87]. SuperCDMS Soudan is the

most recent generation of CDMS experiments and operated until it was decommissioned in

2015.

3.1.1. Soudan Shielding

Located 2341 feet below the surface of Soudan, MN is an old iron mine that ceased op-

eration in 1962. In the 1980s, level no. 27 of that mine was converted into laboratory space

called the Soudan Underground Laboratory (SUL). The overburden at SUL is 2090 mwe,

which reduces the cosmic muon flux by a factor of 5×104. Because of the low flux, the labo-

ratory has hosted many low-background experiments, including the Main Injector Neutrino

Oscillation Search (MINOS) [88] and SuperCDMS [86].

Within SUL, the SuperCDMS experiment was wrapped in many layers of shielding, shown

in Fig. 3.1, to protect the detectors from external sources of background and noise. This

included the room that housed the whole experiment and shielded radio frequency electro-

magnetic radiation. The outermost layer of shielding was an active muon veto constructed

from scintillating panels to reject coincident events that made it though the overburden [89].

Within the muon veto was a thick layer of high-density polyethylene (HDPE) to attenuate

incoming neutrons from the cavern that can mimic a dark matter signal. Inside the HDPE

were two layers of lead shielding to block beta radiation (“betas”) and penetrating gamma

radiation. Lead has a radioisotope, 210Pb, with a 22.2 year half-life that emits its own ra-

diation as it decays, so there was a thin layer of “ancient lead” that has been shielded on

the ocean floor for several half-lives; it is used to block decays from the exterior young lead

shielding. The final layer was a thin layer of HDPE to attenuate any neutrons created by the
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ancient lead decays. There was also a mu-metal shield to block magnetic flux and a radon

purge barrier flushed with boil-off nitrogen to prevent high-radon laboratory air from leaking

into the cryostat. At the center of all the shielding was a cryostat composed of nested copper

cylinders that housed the actual detectors [90].

Figure 3.1: Side view of the shielding layers around the Soudan experiment. [90]. Green
layers are HDPE, dark gray layers are lead, and the light gray layer is ancient lead.

3.1.2. iZIP Detectors

The 15 new detectors deployed in SuperCDMS Soudan were called interleaved Z-sensitive

Ionization and Phonon detectors (iZIPs). The iZIPs were cylindrical germanium crystals

that were 1 inch tall, 3 inches in diameter (exactly the size of a regulation hockey puck), and

weighed 0.6 kg each. The detectors were arranged in copper towers that held three detectors

each, and there were five towers installed in the cryostat. The detector and the installed

configuration are shown in Fig. 3.2.

There are two interchangeable nomenclatures used for identifying the detectors. The first

is the tower address (e.g., T2Z1), composed of the tower number (1-5) and iZIP within that

tower (1-3, from top to bottom). A simpler, but less descriptive, system is to assign each
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(a) Picture of an iZIP detector in its copper
housing. The phonon sensor pattern and
partitioning can be seen on the face of the
crystal. The charge electrodes are not resolved
in this picture, but they are interleaved
between the phonon sensors.

(b) Visualization showing the arrangement and
orientation of all 15 detectors.

Figure 3.2: Details of the iZIP detectors installed in SuperCDMS Soudan.

detector a number 1-15 (e.g.iZIP 4). Table 3.1 shows the mapping between these frequently

used systems.

Det: iZIP 1 iZIP 2 iZIP 3 iZIP 4 iZIP 5 iZIP 6 iZIP 7
Add: T1Z1 T1Z2 T1Z3 T2Z1 T2Z2 T2Z3 T3Z1

iZIP 8 iZIP 9 iZIP 10 iZIP 11 iZIP 12 iZIP 13 iZIP 14 iZIP 15
T3Z2 T3Z3 T4Z1 T4Z2 T4Z3 T5Z1 T5Z2 T5Z3

Table 3.1: Naming conventions for the detectors installed in SuperCDMS Soudan.

3.1.2.1. Energy Collection

The iZIP detectors were designed to simultaneously collect ionization (charge) and phonon

energy. The ionization was collected by electrodes photolithographically fabricated on the

flat faces of the crystals. The ionization readout was segmented into a circular inner charge

channel (denoted “qi”) and an outer charge ring (denoted “qo”) for radial fiducialization.
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In order to detect vibrations in the crystal lattice, the iZIP detectors needed to be cooled

to cryogenic temperatures to reduce thermal noise. As the phonons propagate outward from

the recoil event, they eventually deposit their energy in aluminum fins that are fabricated on

the face of the crystal. This energy breaks Cooper pairs in the superconducting aluminum

into quasiparticles that are collected by a tungsten Transition-Edge Sensor (TES), causing

the TES to heat up. The change in temperature causes a change in resistance across the TES

that is detected by a Superconducting QUantum Interference Device (SQUID). This whole

sensor is called a Quasiparticle-assisted Electrothermal feedback Transition Edge Sensor

(QET) [87].

TESs are made from materials that have a critical temperature Tc below which the

material is superconducting. Above Tc, the material is non-superconducting, or “normal,”

and the TES is said to be “in transition” when near Tc. Figure 3.3 shows that the change

in resistance is quite large for a small change in temperature near the transition point.

SuperCDMS detectors use this as a way to amplify small deposits of energy by operating in

this transition regime.

The phonon sensors are segmented into 4 channels of equal area: one outer ring (pA) and

three inner wedges (pB, pC, and pD). This layout is repeated for both the top face (S1) and

bottom face (S2) of the cylindrical detector, with a relative rotation of 180 degrees between

S1 and S2. Figure 3.4 shows the alignment of all channels on the detector. This partitioning

provides rough position information for each event.

Simultaneously reading out the ionization and phonon signals allows for background

rejection and approximate particle identification in the iZIPs. For a given event energy,

electron recoils will produce approximately three times as many phonons as nuclear recoils.

Therefore, the ratio of phonon energy to charge energy, defined as yield, can be used to

discriminate between signal and background events.
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Figure 3.3: This is a cartoon of a typical TES resistance curve. Around Tc the TES is said
to be in transition between normal and superconducting. In this regime, any small increase
in temperature results in a large change in resistance that allows for detecting small energy
deposits.

Figure 3.4: Visualization of the 12 channels on each iZIP detector.
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3.1.2.2. Electric Field

The charge electrodes are biased to opposite voltage on the top and bottom face, nomi-

nally ±2 V, and the phonon sensors are grounded. The clever part of the design of the iZIPs

is that the charge electrodes and phonon TESs are interleaved to create an electric field that

is uniform in the bulk of the detector, but scalloped near the flat faces of each crystal, as

shown in Fig. 3.5.

Figure 3.5: The scalloped electric field inside the iZIP detectors. An event that occurs in
the bulk of the crystal will experience a uniform electric field, and the electrons and holes
will drift to opposite faces. An event that occurs in the scalloped field near one of the faces
will only be detected on that face.

Events that occur in the bulk of the crystal will experience the uniform electric field, and

the electrons and holes will drift to opposite faces of the detector. However, the scalloped

shape of the electric field leads to asymmetrical energy collection for events near the surfaces,

which will be dominated by non-penetrating backgrounds where energy is collected entirely

on a single face. The asymmetry allows for a clearly defined fiducial volume in the z-direction

by selecting events with a signal on both faces, as shown in Fig. 3.6. Since WIMPs have a

very small interaction cross-section, they are expected to interact uniformly throughout the
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detector. Focusing dark matter searches on the bulk of the crystal maximizes the signal-to-

background ratio [91].

Figure 3.6: Demonstration of the capability of the iZIP to reject surface events [91]. The
data points are from a 210Pb calibration source that emits beta and gamma particles. The
gammas penetrate to the bulk and are selected as blue points along the diagonal, where
betas are surface events and compose the red points that fail the symmetry cut.

3.1.3. Data and Features

There were three types of data collected with SuperCDMS: barium calibration data,

californium calibration data, and “low-bg” data. There are a number of energy features

within these datasets that are useful for calibrating the energy scale, calculating cut efficiency,

and measuring energy resolution.
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3.1.3.1. Barium Data

Barium calibration data was collected while a 133Ba calibration source was deployed inside

the layers of lead shielding; the source locations are indicated by the red dots in Fig. 3.1. This

source is a high-rate gamma-emitter that was used to understand the detector response to

electron recoils. Data were collected at regular intervals to make sure the detector response

was not changing throughout the run.

The 133Ba spectrum is dominated by a distinct peak at 356 keV, seen as the high-energy

spike in the uncalibrated blue spectrum in Fig. 4.1. Additionally, there are much smaller

peaks at 276 keV, 303 keV, 383 keV, as well as a dull “hump” from backscattering that rises

above a continuum of events that have lost energy via Compton scattering. High-energy

gammas from the 133Ba source are useful for energy calibration because they have enough

energy to penetrate the inner layers of shielding and deposit energy throughout the crystals.

They can also penetrate the crystal, so events are uniformly distributed throughout the bulk.

3.1.3.2. Californium Data

Californium calibration data was periodically collected while a 252Cf neutron calibration

source was deployed inside the cryostat. This neutron source served as a proxy for dark

matter nuclear recoils.

When exposed to 252Cf source, the stable 70Ge in the crystal atoms can capture neutrons

and form heavier germanium isotopes. These heavier isotopes are unstable and decay through

various channels. For example, 73Ge decays via a prompt 66.7 keV gamma ray [92]. Due

to the prompt emission, this peak can be found in the californium calibration data and was

used to measure the iZIP resolution discussed in Appendix C.

58



Another mechanism for the decay of unstable germanium isotopes is through electron

capture. When 71Ge captures an electron, a cascade of energy in the form of gammas and

auger electrons is emitted, where the energy from the decay is determined by the binding

energy of the shell that captured the electron. The inner K-shell has the highest probability

of capture and results in the emission of 10.37 keV. Each successive shell has a lower

probability and emits less energy: the L-shell emits 1.3 keV, the M-shell emits 160 eV,

etc. [93]. The activated germanium has a half-life of approximately 11 days, so the data

collected immediately after a 252Cf exposure will give the strongest electron capture peaks.

This process of activating the germanium is a convenient trick to essentially turn the

detectors into their own calibration sources. These electron capture peaks will prove to be

important in Chapter 4, Appendix C, and Appendix D.

3.1.3.3. Low-background Data

Low-background (low-bg) data is essentially the rest of the data collected by the exper-

iment where there are no calibration sources present. This is the data that ultimately gets

used for dark matter searches, although the calibration datasets are often used for defining

cuts, calibrating the energy scale, etc.

3.1.3.4. Data Processing

SuperCDMS uses an optimal filter (OF) to extract useful information from the raw pulses

collected. The OF requires a template to be input that it then shifts and stretches to fit the

pulse to extract information such as the energy of the pulse. There is also a version called

the non-stationary optimal filter (NF) that allows the fitter to shift the template in time to

find the delay between the global trigger and the start of the pulse. Different templates can
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also be fed in for different event classes and the change in χ2 from the goodness of fit for

each template can be used to classify the event type [94].

Here is a quick introduction to the nomenclature used for identifying energy quantities

in the data:

S1: side one, top of the detector

S2: side two, bottom of the detector

qi: charge pulse in the inner electrode

qo: charge pulse in the outer electrode

pA: phonon pulse in the outer ring channel

pB: phonon pulse in the inner wedge channel

pC: phonon pulse in the inner wedge channel

pD: phonon pulse in the inner wedge channel

OF: optimal filter, used to extract information from the raw pulse

NF: non-stationary optimal filter, same as OF but allowed to shift in time

For example, the variable ptNF is the energy extracted by the NF from the total phonon

pulse of all channels co-added,

ptNF = NF (pt) = NF (pA+ pB + pC + pD) . (3.1)

This is not to be confused with psumNF that is the sum of the individual pulse energies

extracted by the NF,

psumNF = NF (pA) +NF (pB) +NF (pC) +NF (pD) . (3.2)
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3.1.3.5. Energy Resolution

A critical part of understanding the behavior and response of each detector is to measure

its charge and phonon energy resolution, and to measure how that resolution changes with

energy. Appendix C describes a detailed study that finds the charge and phonon resolution

for all fifteen of the Soudan iZIPs.

3.2. SuperCDMS SNOLAB

SuperCDMS was chosen as one of three second generation dark matter experiments to

be supported by the United States Department of Energy. SuperCDMS was charged with

searching for low-mass dark matter (<10 GeV), LZ was charged with searching for high-mass

dark matter (>10 GeV), and ADMX was charged with searching for axions.

Construction has already started on the next generation of SuperCDMS, commissioning

will begin in 2020, and the first science run with the full complement of detectors will begin

in 2021.

3.2.1. Shielding and Infrastructure

SNOLAB was chosen to be the location of the next stage of SuperCDMS because of the

reduced environmental background levels. The laboratory is located in a nickel mine 2 km

below Sudbury, Ontario. This converts to 6090 mwe, which reduces the cosmic muon flux

by a factor of > 5× 107. The entire underground SNOLAB facility also operates as a class

2000 cleanroom to prevent dust contamination that carries radioactive isotopes, especially

from the radon chain [95, 96].

Most of the shielding around SuperCDMS SNOLAB will be similar to the layers that

were used at Soudan, except that the outer neutron shield will be made from water tanks

instead of HDPE. The other major change for the SNOLAB experiment is that the whole
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Figure 3.7: Plotting muon intensity versus depth shows that the laboratory under Sudbury
has > 2.5 orders of magnitude fewer cosmic muons than the laboratory under Soudan. [97].

experiment will be constructed on a seismic platform to isolate it from laboratory vibrations;

this is because parts of the mine are still active. Figure 3.8 shows the planned SuperCDMS

shielding.

Figure 3.8: Side view of the layers of shielding planned for SuperCDMS [98]. The new
additions from the Soudan shielding is an outer water tank and a seismic platform.

Inside the many layers of shielding are nested copper “cans” that make up the cryostat

(also known as the “SNOBOX”), which is larger than the one at Soudan. The SNOBOX

is capable of holding 31 towers, which was calculated to be the mass necessary for reaching
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the neutrino floor. However, for the first stage there will only be four towers installed, with

six detectors in each. Depending on science goals and funding, more towers can be added in

future upgrades [98].

3.2.2. Detectors

There will be two types of detectors deployed at SNOLAB, and there will be germanium

and silicon versions of each, for a total of four detector variations. The SNOLAB detectors

will be bigger than the Soudan iZIPs for increased exposure. The new detectors will be

100 mm in diameter, 33.3 mm thick, and 1.39(0.61) kg for germanium (silicon) [98].

3.2.2.1. iZIP

Following the success of the iZIPs at Soudan, a new version of iZIP has been developed.

The detector will still function the same way as the Soudan iZIPs with an electric field

that is uniform in the bulk of the crystal and scalloped near the faces. The SNOLAB

iZIPs will also still collect charge and phonon energy, meaning they will maintain the ability

to discriminate between electron recoils and nuclear recoils. This discrimination will be

necessary for understanding the background rates in the SNOLAB experiment and creating

models for the high voltage detectors. There will still be an inner and outer charge channel

per face, but there will now be six phonon channels per face. Figure 3.9 shows a picture of

the new 100 mm iZIP and the phonon channel mask.

There will be 10 germanium iZIPs installed in the first stage, which is the most of any

detector variation. This is because the collaboration has demonstrated a strong ability to

understand this type of detector and produce interesting science results from operation at

Soudan. The plan is to bias them with 6 V, which will lead to an ionization resolution of

100 eV and a phonon resolution of 50 eV [98].
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(a) Photo of a SNOLAB iZIP detector in its
copper housing. There will be germanium and
silicon versions of this detector.

(b) Visualization of the channel layout for the
SNOLAB iZIP [98].

Figure 3.9: View of the new iZIP designed for operation at SNOLAB.

There will also be 2 silicon iZIPs installed because the lighter nucleus is more sensitive

to low-mass dark matter. This low mass reach is not expected to be better than the HV

detectors described below, which is why there are only 2 detectors to begin with. The plan

is to bias them with 8 V, which will lead to an ionization resolution of 110 eV and a phonon

resolution of 25 eV [98].

3.2.2.2. High Voltage

A new type of high voltage (HV) detector has been developed for SNOLAB that is

billed as the successor of the world-leading CDMSlite program. Since the charge electrodes

were not used in CDMSlite, these new HV detectors will not have any charge electrodes

patterned on the face. Instead, they will have a much higher coverage of TESs that will

significantly improve the phonon collection efficiency. As with the redesigned iZIPs, there

will be six phonon channels per face. Figure 3.10 shows a picture of the new HV detector

and the phonon channel mask. An extra ring was added around the outside to provide better

position information for high-radius events [99].

A significant improvement over the CDMSlite operation is that the HV detectors will

have their own electronics that are capable of biasing both faces. This will shrink the region
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(a) Photo of a SNOLAB HV detector in its
copper housing. The face of the detector looks
different than the iZIP detectors because there
are no charge electrodes interleaved between
the phonon TESs. There will be germanium
and silicon versions of this detector.

(b) Visualization of the channel layout for the
SNOLAB HV detector [98].

Figure 3.10: View of the new HV detector designed for operation at SNOLAB.

at high-radius where events do not experience the full NTL amplification and increase the

fiducial volume.

There will be 8 germanium HV detectors installed in the first stage. The plan is to bias

them with 100 V, which will lead to a phonon resolution of 10 eV. There will also be 4 silicon

HV detectors installed. The plan is to bias them with 100 V, which will lead to a phonon

resolution of 5 eV [98].

By combining the lighter silicon nucleus with the HV operation, the silicon HV detectors

will have the lowest energy threshold of the four new detector types and therefore be able

to search for the lowest dark matter masses. However, calibrating the energy scale will be

a serious challenge because silicon does not have activation lines like germanium. Since

low-energy sources cannot penetrate the many layers of shielding, only high-energy sources

can be used for external calibration. However, the high energy events will saturate the HV

detectors. Appendix D describes an algorithm designed to extract the energy of saturated

events so that high energy sources can be used to calibrate the energy scale.
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3.2.3. Projected Sensitivity

Projected sensitivities have been calculated for each of the SuperCDMS SNOLAB de-

tector variations and are shown in Fig. 3.11. The curves assume 5 years of operation, and

the energy threshold is conservatively defined to be 7σp where σp is the phonon energy

resolution [98].

Figure 3.11: Projected sensitivity for each of the detector types in SuperCDMS SNOLAB
compared to the current status of dark matter direct detection experiments [98]. The solid
lines are the current world-leading exclusion limits except SuperCDMS LT was included for
a low-mass comparison. The dashed lines are the projected SuperCDMS SNOLAB
sensitivities, and the yellow band at the bottom is the neutrino floor where experiments
expect to detect cosmogenic neutrino backgrounds.
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Chapter 4

CDMSLITE

In order to push the iZIP sensitivity to lower thresholds and correspondingly lower dark

matter masses, a new mode of operation was devised called the “low ionization threshold

experiment,” or CDMSlite for short [100]. In this mode, a significantly higher voltage bias was

applied across the crystal to take advantage of the NTL gain described in ?? . The existing

electronics were repurposed to apply the new high voltage, but they were not capable of

providing a high voltage bias to both sides of the detector, so one side was grounded and the

other was biased to high voltage. There were two downsides to this choice. One is that only

collecting data on one side negates the advantage of the electric field shape in the iZIP and

the symmetric readout, described in Section 3.1.2.2. This makes it very difficult to define a

fiducial volume. The other disadvantage is that it led to a distorted electric field with a large

region at high radius where events do not experience the full NTL gain, shown in Fig. 4.1.

Figure 4.1: Electric field configuration for the one-sided bias of CDMSlite [93]. Events that
occur in the red region will experience the full NTL gain, whereas events that occur in the
green region will experience some diminished gain from a weaker electric field. These
reduced gain events create low-energy tails that can leak down into the signal region.
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While the CDMSlite mode of operation results in excellent resolution and a low energy

threshold, it is relegated to being a phonon-only analysis. The electronics can still read out

the charge electrodes, but the NTL gain amplifies the ionization signal by creating more

phonons. Therefore, the un-amplified charge signals for a low-mass dark matter interaction

were too small to distinguish from the electronic noise. This means that the CDMSlite anal-

yses contend with higher background rates because they cannot calculate the yield quantity

used for particle identification.

There have now been three runs in CDMSlite mode, which will be referred to as CDMSlite

R1, R2, and R3.

4.1. The First CDMSlite Run

The first run was largely a proof of concept to modify the existing hardware and bias an

iZIP to the highest possible voltage. Each detector was determined to have an upper limit to

the voltage that can be applied before dark current began to leak across the semiconductor

crystal and dominate the signal. Detector T5Z2 was chosen for the first run because it had

one of the best baseline noise resolutions, a low background rate, and a lower affinity for

leakage current [100]. Figure 4.2 shows that the signal-to-noise ratio begins dropping around

70 V [101] for this detector. That detector also had the advantage of not having any known

shorts on the phonon channels; the list of shorted channels on all detectors can be found in

Appendix C.

The detector collected an exposure of 6.2 kg-d and an analysis threshold of 170 eVee

resulted in the final exclusion curve shown in Fig. 4.3. At the time, this was a world-leading

limit for WIMP masses below 6 GeV [100,101].
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Figure 4.2: A plot of the signal-to-noise ratio running an iZIP in CDMSlite mode [101].
Here the ratio is calculated between the energy resolution of a pulse from barium
calibration data and a randomly sampled noise trace. Because of the NTL gain, a higher
bias was preferred until the voltage got high enough to make current leak across the
semiconductor crystal. The optimum voltage was found to be 60− 70 V.

CDMSlite (This result)

σ
S

I [
c
m

2
]

m
χ
 [GeV/c

2
]

3 4 5 6 8 10 12 18
10

−41

10
−40

Figure 4.3: The black curve is the CDMSlite R1 WIMP exclusion limit [100]. The shaded
blobs are contours where experiments saw an excess of events above expected backgrounds.
These regions could be interpreted as WIMP signals, but there is clear tension with other
results that have excluded that parameter space. The other curves are grouped by
technology: blue are germanium bolometers, purple are point-contact germanium
detectors, red is liquid xenon, and magenta are other technologies.
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4.2. The Second CDMSlite Run

With a successful first run that led to a world-leading limit below 6 GeV/cm2, the goal

of the second CDMSlite run (R2) was to learn more about the behavior of the detector

operating with a high voltage bias and publish the strongest possible result. CDMSlite R2

used the same detector (T5Z2) as R1 since its response to high voltage was better understood.

However, R2 ran much longer for a total exposure of 70.10 kg-d.

4.2.1. Data Reduction

By definition, all of the SuperCDMS cuts on the data are named by what they return,

hence cGoodEv returns good events. In order to get the opposite, one simply has to negate

the cut (e.g. !cGoodEv_v53). The cut names are also appended with processing tags, such

as “_v53,” “_133,” and “_CDMSliteR2.”

List of cuts used to remove undesired classes of events:

cHighVoltage_CDMSliteR2: ensures the power supply was set to the correct bias voltage

cPMultTight_blind_v53: removes multiple scatter events because dark matter interacts

so rarely that it is not expected to scatter more than once

cNuMI_CDMSliteR2: removes time blocks when the Neutrino at the Main Injector

(NuMI) beam from Fermilab is on

cVTStrict_133: removes coincident events with the external muon veto

cRandom_133: selects randomly triggered events to monitor noise environment
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List of quality cuts used to clean up the data:

cGlitch_trig_CDMSliteR2: remove electronic misfirings, aka “glitches,” whose pulses

are un-physically fast and occur in multiple detectors

cPstd_CDMSliteR2: standard deviation cut on the prepulse noise checks that the phonon

pulses start from baseline noise levels

cQChiSq_CDMSliteR2: charge chi-squared cut removes glitch triggers that occur in all

detectors without issuing a charge trigger

cBadSeries_CDMSliteR2: removes bad series that experienced large trigger bursts, se-

ries that did not experience the correct biasing scheme, or series with abnormal chi-

squared behavior

cBadGPStime_CDMSliteR2: time cut to remove events where timestamps did not agree

with GPS time

cBadTempCurrentFit_CDMSliteR2: removes events whose energy cannot be corrected

because they do not have correct base temperature, current through the HV power

supply, or bad template fits in the OF

List of cuts based on phonon chi-squared values:

cPChiSq_CDMSliteR2: removes pile-up events where there are multiple pulses in the

pulse window

cLFnoise_CDMSliteR2: removes low-frequency noise (LFN) events that can mimic a

low-mass dark matter pulse by using pulse shape discrimination (PSD)

cGlitch_chisq_CDMSliteR2: removes some glitches that get past the previous glitch

cuts by using PSD
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List of physics cuts:

cRad2T_CDMSliteR2: uses ratio of 2-template OF (fast and slow) to remove high-radius

events that do not experience the full NTL amplification due to reduced electric field

Fiducialization was a significant improvement for R2 over the R1 analysis. A 2-template

OF was developed that fits a typical “slow” template to the pulse to get information from

the homogeneously distributed phonon energy. The residual pulse from subtracting the slow

template from the pulse is fit again with a “fast” template that is strongest for the phonon

channel nearest to the event location. The ratio of the amplitudes from the fast and slow

template fits is used to define a radial parameter that can be cut [4].

Arguably the most impactful lesson from R1 was that low frequency noise limited the

threshold. It was believed that this noise was caused by the mechanical action of the cry-

ocooler pump, so an accelerometer was installed in order to detect the motion and reject

coinciding events. CDMSlite R2 was naturally split into two data-taking periods (R2a and

R2b) by cryocooler maintenance. The trigger threshold was lowered between the two periods

and the addition of the noise monitor allowed for the analysis thresholds to be lowered from

75 eVee for R2a to 56 eVee for R2b [4].

4.2.2. Optimal Interval

The R2 limit, as well as R1, was calculated using the Optimum Interval (OI) method

developed by Steve Yellin [102, 103]. The only pieces required for setting a limit were the

final spectrum of events after all cuts, the shape of the expected signal multiplied by the

efficiency of those cuts, and the total exposure of the final dataset. The OI is not equipped

to handle multiple datasets, so R2a and R2b were combined. Some of the analysis pieces

were developed for the full dataset, such as the resolution model.
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The strength of the OI technique is setting a limit in the presence of unknown back-

grounds. However, the OI is incapable of being used to discover dark matter; it can only be

used to calculate an exclusion limit.

4.2.3. Published Limit

The published exclusion limit from the R2 WIMP search is shown in Fig. 4.4, which

was a world-leading limit for WIMP masses between 1.6 GeV/cm2 and 5.5 GeV/cm2 when

submitted for publication [4, 93]. An exploration of the systematic effects throughout the

analysis and assumptions in the WIMP model has been published for both R1 and R2 [104].

Figure 4.4: The black curve is the CDMSlite R2 WIMP exclusion limit, with the
uncertainty band shown in orange [4]. The solid red line is the previous CDMSlite result,
which had been surpassed by the CRESST results in pink and the DAMIC results in
purple. The limits with an asterisk, dotted CRESST and dot-dashed EDELWEISS, were
published around the same time as this result and were still under review when this plot
was produced. The shaded contours are where experiments saw an excess of events above
expected backgrounds, which were originally interpreted as WIMP signals and have since
been excluded.
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4.2.4. Likelihood Analysis with R2 Data

The OI method used for R1 and R2 is a very useful tool for quickly calculating an exclu-

sion limit, especially if the dataset is not fully understood. However, if all of the backgrounds

are understood and can be modeled, then more powerful limit setting techniques can be used

to discriminate between backgrounds and the desired signal (often mistakenly referred to as

“background subtraction”). An unbinned profile likelihood ratio is the technique chosen for

the inelastic dark matter search in this thesis because it has the potential to claim a signal

discovery. Even if there is no excess of events to claim a discovery, a likelihood exclusion

limit will be stronger than an OI limit because of the background discrimination.

Since the R2 analysis was optimized for an OI limit, a significant amount of work was

needed to create the R2 models for use in a likelihood analysis.

4.2.5. Background Modeling

The first pieces needed for calculating an unbinned profile likelihood limit are probability

density functions (PDFs) that model the spectral shape for each source of undesired events in

the experiment, called backgrounds, that can mask or mimic the desired dark matter signal.

The backgrounds modeled for this analysis are neutron activation by the 252Cf calibration

source, cosmogenic activation of the crystal, Compton scattering from radioactive materials

in the experiment, and 210Pb contamination on or near the detectors.

The most dominant background source is comes from activation of the germanium crystal

via the neutron calibration source. When stable 70Ge in the crystal captures a neutron, it

becomes unstable 71Ge that decays via electron capture. The electron capture creates a

cascade of energy in the form of gammas and Auger electrons, where the energy emitted

from the decay is equal to the binding energy of the shell that captured the electron. The

outer K-shell has the highest probability of capturing an electron at 87.57% and results
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in the emission of 10.37 keV. Each successive shell has a lower probability and emits less

energy: the L-shell captures an electron 10.53% of the time and emits 1.3 keV, the M-shell

captures an electron 1.78% of the time and emits 160 eV, etc. [93]. This intrinsic background

dominates all other background rates by an order of magnitude. However, the distinct peaks

have such high event counts that they actually become useful when calibrating the energy

scale of the detectors, calculating the efficiency of cuts, and measuring the energy resolution

of the detectors. This background is modeled with a Gaussian distribution for each electron

shell peak. The amplitudes of these peaks are set relative to the K-shell peak as determined

by the probabilities of each shell capturing an electron. There is one overall normalization

parameter in the likelihood function for the 71Ge background.

Before the detectors are brought underground where the overburden shields them from

cosmic rays, the crystals are fabricated on the surface of the Earth and transported to

the mine. During this time, the interaction of cosmic rays can knock nucleons from the

germanium atoms in the crystal and create radioisotopes. Because of the way they are

created, these isotopes are called “cosmogenics.” One of the more problematic cosmogenics

that can be ejected is 3H, commonly known as tritium, which provides a constant source of

betas in the detectors because of its long half-life of 12.32 years. The tritium background can

be modeled with a standard beta emission spectrum with an endpoint energy of 18.6 keV [105,

106].

Tritium is the dominant source of cosmogenic background in the CDMSlite data, but

other cosmogenic isotopes are created as well. As cosmic rays eject nucleons, unstable

residual nuclei can remain. Those residual nuclei are considered as backgrounds if they have

a half-life that is long enough that they will not decay away before data taking begins,

but also short enough that the activity is comparable to other backgrounds. The isotopes

modeled in this analysis are 68Ga, 65Zn, and 55Fe [105]. Other isotopes considered were
57Co, 54Mn, and 49Vn, but fits to the R2 spectrum showed that they contributed less than
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one expected event and could be neglected. Each of the modeled isotopes decay via electron

capture in the same way as the activated germanium. As with 71Ge, they all have K-,

L-, and M-shells that dictate the energy of the decay. Contributions from each of these

peaks are modeled with a Gaussian distribution with fixed relative amplitudes with a single

normalization parameter in the likelihood.

In addition to cosmogenic backgrounds, there are also “radiogenic” backgrounds created

by the decay of radioisotopes near the detector, such as the radon contamination described

in Chapter 2. Typically decays have higher energy and would not be considered in the low

energy analysis region, but high energy photons can lead to a Compton scatter where a

fraction of the incoming energy is deposited in the detector. To first order, this creates a flat

background throughout the analysis region. On closer inspection, there are “steps” at low

energy where the scattered photon has enough energy to overcome the binding energy of an

electron shell and there is a small jump in rate. This Compton background is modeled as a

flat contribution with an error function for each shell to model the steps [107].

The shape of the background models is what eventually determined the energy range of

the analysis. The challenge is breaking the degeneracy in the likelihood fit between models

that are flat or nearly flat in the energy spectrum. Without external measurements to

constrain the backgrounds, the easiest way of breaking this degeneracy was to extend the

fit to higher energy. The idea was to extend the analysis range above the endpoint energy

of the tritium spectrum, where the only background is the Compton model. This sets the

Compton normalization parameter across all energies. Similarly, tritium is the only other

background model above the 71Ge K-shell, so the normalization parameter was determined

by this part of the spectrum. The other backgrounds described in this section were Gaussian

peaks located at specific energies, so there was no degeneracy to worry about with them.

Therefore, the final analysis range used was 0− 25 keV.
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4.2.5.1. Surface Background Models

All of the activation and cosmogenic background models described above are distributed

nearly uniformly throughout the detector volume, so the efficiency of the physics cuts that

were developed for a uniform WIMP signal can also be applied to those models. This allows

for the backgrounds to be modeled by analytic functions. However, another background

class exists for radon plate-out on the crystal detectors or the surrounding copper housing.

Although these events can be implanted below the surface of the crystal, they are predomi-

nantly classified as surface events. To understand how these surface events manifest in the

detectors, a simulation of a detector tower was contaminated with 214Pb from the 222Rn

decay chain. By contaminating with 214Pb, subsequent alpha decays in the simulation can

implant the long-lived 210Pb, mimicking the physical contamination [107].

A simulated map of the voltage inside the detector was used to model the detector

response to the simulated events. It was determined that there were two main systematics

to account for: variability in the map and uncertainty in the location of a voltage-based

cut [107]. The output from the simulation was a binned model that can potentially introduce

a lot of discontinuities in an otherwise unbinned likelihood; this can cause issues when

maximizing the likelihood function.

A Kernel Density Estimator (KDE) was used to smooth the binned models by assigning

a non-negative function, or “kernel,” to each discrete data point and summing the kernels

to get the continuous distribution [108, 109]. Because the kernels are typically summed up

to the boundary, KDEs typically struggle to maintain correct boundary conditions. The

most robust way to avoid this side effect is to mirror the data at the boundary and then

truncate the model after smoothing. This process was repeated for both the median models

and the calculated systematics. Then the systematic errors were added in quadrature with

the statistical error on the median to obtain a single smooth uncertainty band.
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The key to using a KDE is choosing an appropriate bandwidth because a bandwidth

that is too small will create artificial features from statistical fluctuations and a bandwidth

that is too large will mask the structure of the data. This effect is demonstrated in Fig. 4.5,

where the blue curve is the resulting model from different choices of bandwidth [110].

Figure 4.5: Demonstration of the importance of choosing an appropriate bandwidth when
using a Kernel Density Estimator [110]. The green data points are the same in each plot,
with a red kernel drawn for each point. The blue curve is the sum of the red kernels. The
only difference between the four plots is the bandwidth of the red Gaussian kernels, which
illustrates how different bandwidths can lead to drastically different distributions.

The problem with smoothing a simulated spectrum is that it can be difficult to determine

which features are fluctuations that should be smoothed and which are real features that

should be preserved. The first method used to estimate an appropriate bandwidth is known

as Scott’s Rule of Thumb,

w = n−1/(d+4) , (4.1)

where n is the number of data points and d is the number of dimensions [111]. However,

this approach produced a bandwidth that was too small and the features were too sharply

resolved. In the end, an adaptive bandwidth was used that did a better job of smoothing flat
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sections of the model but preserved the shape where the model changed more sharply [112].

The smoothed models and systematic errors are shown in Fig. 4.6.

(a) There is a blue curve under the upper
green curve because the green error completely
dominates the orange error and the black error
in the quadrature sum.

(b) Preserving the large spike at low energy
was an area of focus because KDEs typically
struggle to preserve sharp changes at the
boundaries.

Figure 4.6: This figure contains the smoothed surface background models from the KDE
for (a) the copper housing and (b) the germanium crystal. The orange curves represent the
systematic error on the voltage map used in the simulation and the green lines represent
the systematic error of the voltage cut location. The black median curve has been scaled to
a pdf with unit area and is shown with statistical error bars. The green and orange lines
have been scaled to maintain the ratio with the black curve, and the blue curves are the
quadrature sum of the statistical and systematic errors.

The results of the simulation were normalized using an independent measurement of

the rate of alpha events in each of the iZIP detectors [113]. The iZIP data contains more

information about the position of an event than CDMSlite mode. Thus, the measured alphas

could be attributed to the simulated source. For example, the measured rate of alphas on

the top surface of the detector are divided by two to normalize the simulated alphas on the

germanium. The factor of two comes from the CDMSlite R2 detector being in the middle

of the tower. As such, its face is directly adjacent to the bottom face of the detector in

the top of the tower. Then the germanium rate is scaled by the ratio of the area between

the face and the sidewall to determine the number of sidewall events that originated from
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the germanium. Subtracting this from the total measured sidewall rate gives the number of

events from the copper housing that faces the sidewall [107].

For the 0 − 25 keV energy range of this analysis, the normalization procedure results

in NSH = 12.1 ± 1.0 events from the sidewall housing (SH), and NGZ = 10.9 ± 1.7 events

from the germanium iZIP (GZ), with a correlation coefficient of ρSH,GZ = −0.38 between

them. Correcting those numbers for the efficiency of the cuts used in the simulation gives

the predicted number of counts to be NSH = 24.0 ± 2.0 and NGZ = 21.6 ± 3.4 events.

The uncertainty on these normalizations can be multiplied through the correlation matrix

between the sources to give the covariance matrix:

 4.00 −2.584

−2.584 11.56

 (4.2)

4.2.5.2. Morphing the Surface Backgrounds

As seen in Fig. 4.6, the uncertainty band does not have the same shape as the median

curve. Thus, the likelihood needs to account for a shifting shape that is correlated with the

normalization uncertainty regarding these surface backgrounds. In order to implement this

correlated shift in the likelihood, a fit parameter was added to “morph” the model up or

down and correspondingly change the shape. A significant benefit of this approach is that

only one parameter is needed in the likelihood for each surface background source. The

morphed background model can be calculated as

ρ(E,m) =


ρmed(E) +m× (ρupper(E)− ρmed(E)) m > 0

ρmed(E) +m× (ρmed(E)− ρlower(E)) m < 0

, (4.3)
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where m is the morphing parameter that is allowed to float in the likelihood. The PDFs

in Fig. 4.6 have been scaled to be event densities by multiplying them by the predicted

normalization: ρmed is the median curve, ρupper is the upper bound of the 1σ uncertainty

band, and ρlower is the lower bound of the 1σ uncertainty band. Equation 4.3 effectively

defines the morphing parameter in sigma-space, where m = 0 will reproduce ρmed, m =

−1 will reproduce ρlower, and m = 1 will reproduce ρupper. Figure 4.7 demonstrates the

performance of the morphing parameters by linearly sampling m from -1 to 1.

(a) Event density model of surface events from
the sidewall housing.

(b) Event density model of surface events from
the germanium.

Figure 4.7: Linear sampling of the morphing parameter that controls the model for surface
evens from (a) the sidewall housing and (b) the germanium crystal. There are 500 sampled
lines on each of these plots with purple curves corresponding to m = −1 and yellow curves
corresponding to m = 1.

The sampling in Fig. 4.7 was linearly varied, but the morphing parameters will be con-

strained with a Gaussian distribution with mean µ = 0 and width σ = 1. This will force

the likelihood to preferentially fit the median curve or pay a statistical penalty to push the

morphing parameter away from the median. In order to calculate the relationship between

the Gaussian constraint and the normalization, a one-dimensional Gaussian is randomly

sampled. For each sampling, the model is morphed according to the morphing parameter in

Eq. 4.3 and the number of events is calculated using Eq. 4.4. Histograms of the number of
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events from each morphed model are shown in Fig. 4.8.

Nx =

∫
ρx(E)dE . (4.4)

(a) The Gaussian sampling for the sidewall
housing produces an asymmetric distribution
because the median curve is not equidistant
from the upper and lower uncertainty. Said
another way, the sampled curves in Fig. 4.7 are
much closer together below the median.

(b) The Gaussian sampling for the germanium
produces the expected Gaussian shape because
the median is roughly centered in the
uncertainty band.

Figure 4.8: Histograms of the number of events from Gaussian sampling of morphing
parameters.

Randomly sampling the Gaussian distribution provides an estimate of the uncertainty

on the number of events for each surface background source. The covariance matrix due to

the morphing parameter uncertainty is:

11494.07 1506.58

1506.58 226.47

 (4.5)
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The matrix in Eq. 4.2 can now be added to the matrix in Eq. 4.5 to give the total

covariance on the number of surface background events for each source:

V =

11498.07 1503.99

1503.99 238.03

 . (4.6)

The final step is to translate the correlated uncertainty from the number of surface

background events to uncertainty on the morphing parameters so that it can be added to

the likelihood function as a multivariate Gaussian constraint. This is done by plotting the

relationship between morphing parameter and number of events as defined in Eq. 4.4. Fig-

ure 4.9 shows this relationship using the data from the linearly sampled morphing parameter

in Fig. 4.7.

(a) The sharp angle at mSH = 0 is related to
the asymmetry of the histogram in Fig. 4.8a.
This is showing that changing the morphing
parameter from -1 to 0 does not result in a
large change of number of events.

(b) The dependence on number of events
versus morphing parameter has a kink at
m = 0 that is barely perceptible. This is
because of the equidistance of the median from
either bound of the uncertainty band.

Figure 4.9: The relationship between morphing parameter and resulting number of events
is shown for each surface background source. The independent variable is plotted on the
y-axis for these plots to show to the slopes needed in Eq. 4.7.
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Following standard error propagation rules, the covariance on the morphing parameters

can be calculated according to

Mij =
2∑
k,l

∂mi

∂Nk

∂mj

∂Nl

|x=µ×Vkl , (4.7)

where m1 = mSH , m2 = mGZ , N1 = NSH , and N2 = NGZ . The resulting matrix in Eq. 4.8

is the covariance matrix between the morphing parameters that will go into the Gaussian

constraint in the likelihood to constrain the surface backgrounds:

M =

11498.07 1503.99

1503.99 238.03

 . (4.8)

A demonstration of the Gaussian constraint is shown in Fig. 4.10, where the blue lines

are drawn by randomly sampling the covariance matrix in Eq. 4.8.

(a) Randomly sampled surface background
model for the sidewall housing in R2.

(b) Randomly sampled surface background
model for the germanium iZIP in R2.

Figure 4.10: The black curve is the mean model, and the red curves are the 1σ uncertainty
band. The blue curves are created by randomly sampling the covariance matrix in the
multivariate Gaussian constraint.
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4.2.6. Efficiency Model

In order to match the data, all of the models are multiplied by the efficiency of the cuts

used to obtain the final data spectrum. Descriptions of these cuts can be found in the long

paper about CDMSlite R1 and R2 [104]. The resulting efficiency curve for CDMSlite R2

is shown in Fig. 4.11. The lowest energy portion of the efficiency curve is best described

by an error function, however, the R2a and R2b had different threshold energies. When

the efficiency from each sub-run is added, it creates the “double-hump” feature seen near

0.1 keV. In order to extend the efficiency curve above 2 keV, the 10.37 keV k-shell peak was

used to calculate the efficiency of the cuts and the curve was linearly interpolated between

the two measurements. It was originally assumed that the efficiency would be flat above

the k-shell, but saturation effects were observed at energies above 17 keV. Thus, the barium

calibration data was used to calculate a linear correction in this high-energy regime [105].

Figure 4.11: Annotated plot of the combined CDMSlite R2 efficiency curve. The solid blue
line is the median efficiency curve and the dashed blue lines indicate the 1σ uncertainty on
the efficiency. The region labeled c0 is the expected shape for the low energy efficiency, and
region c1 is the “double-hump” from adding the efficiency from R2a and R2b. Region c2 is
the linear interpolation between the 2 keV analysis range and the 10.37 keV k-shell peak,
and c3 is the presumed flat efficiency. Region c4 is where saturation was observed and the
efficiency was linearly corrected by comparing to barium calibration data.
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Due to the inherent uncertainty, the efficiency curve was included in the likelihood func-

tion as nuisance parameters. In order to do that, the data-driven curve needed to be modeled

so the likelihood can control the parameters of that model; this is known as “parameteriza-

tion.”

The first attempt at modeling the efficiency curve used a piecewise function according to

the different efficiency regions described in Fig. 4.11. The difficulty was finding a function

that closely matched the shape in region c1, which ultimately was an exponential function.

When parameterizing a model, one needs to be aware of the number of parameters being

added to the likelihood function because more parameters will make it more difficult for the

fit to converge on the global minimum. By forcing the piecewise function in Eq. 4.9 to be

continuous and avoid any discontinuities, the fewest free parameters needed to accurately

describe the curve was eight, colored in orange. The piecewise function was defined as

Eff R2(E) =



f0 = Erf (E, µ, σ,A1) E < E0

f1 = A2(1− exp(−E−E0

τ
) + f0(E0) E0 ≤ E < E1

f2 = m1(E − E1) + f1(E1) E1 ≤ E < E2

f3 = m2(E − E2) + f2(E2) E2 ≤ E < E3

f4 = m3(E − E3) + f3(E3) E3 ≤ E

. (4.9)

Besides the large number of parameters, another drawback of this piecewise approach was

the addition of a Gaussian constraint to the likelihood function that required a covariance

matrix to encode the uncertainty and correlations between the parameters. The off-diagonal

correlations between different functional pieces mixed units and did not make physical sense.

Instead, the efficiency curve was handled in the same way as the surface backgrounds, with

a single morphing parameter as defined in Eq. 4.3. The resulting morphed efficiency curve

86



is shown in Fig. 4.12, where the morphing parameter is linearly sampled between m = −1

and m = 1.

Figure 4.12: Linearly sampled morphing parameter. The purple lines correspond to
m = −1, the yellow lines correspond to m = 1, and m = 0 will return the median black
curve.

Since there is just one morphing parameter for R2, a one-dimensional Gaussian distri-

bution is used to constrain the efficiency model in the likelihood. This creates a penalty

for moving further away from the median, yet the parameter is not constrained to |m|≤ 1.

Figure 4.13a shows the distribution from sampling this constraint many times. A strange

side-effect of the morphing procedure shows up in the blue curves near 17 keV. A zoomed

view of this region in Fig. 4.13b shows that the upper (lower) uncertainty band actually has

a very small bump (dip) before the efficiency drops, but the morphing parameter exaggerates

all features in the data for values of |m|≥ 1.

Although the morphing parameter allows for shape and normalization uncertainties, the

normalization of the efficiency curve is not a significant factor in the likelihood minimization

because all of the derived models except for the signal are converted to PDFs by normalizing
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(a) Randomly sampled efficiency model for R2. (b) Zoomed view of the efficiency curve for R2
shows a small bump near 17 keV. The
morphing parameter exaggerates this feature
for values of |m|≥ 1, which creates the sharp
feature seen in Fig. 4.13a.

Figure 4.13: Exploring the Gaussian constraint for the morphed R2 efficiency model.

them to unit-area after they have been multiplied by the efficiency. Therefore, the likeli-

hood function developed to model the data has these shapes constrained by independent

measurements and the normalization of the efficiency.

4.2.7. Resolution Model

The background models and signal model are then smeared by the resolution of the

detector to match the data. Thus, a parameterized model of the resolution was included

in the likelihood function as nuisance parameters. Parameterizing the resolution was more

straightforward than the efficiency because the functional form of the detector resolution

as a function of energy has been well established by the SuperCDMS collaboration. A full

description of the resolution model can be found in Appendix C, in particular the function

in Eq. 3.1.

As part of the R2 analysis, the resolution of the baseline noise at 0 keV and the germanium

activation peaks at 160 eV, 1.3 keV, and 10.37 keV were measured to span the analysis energy
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region of interest. Fitting the resolution model to those measurements provided the best-fit

parameters, uncertainty on those parameters, and the correlations between them. Those fits

are shown in Fig. 4.14 and the results are summarized in Table 4.1 [4].

Figure 4.14: The blue points are the measured resolutions of the baseline noise and
germanium activation peaks. The black curve is the best fit of the resolution model in
Eq. 3.1, and the orange band is the uncertainty of that fit. The top plot shows the
measured peaks up to 11 keV, while the lower plot is zoomed in below 1.5 keV.

From these results, it is straightforward to write down the correlation matrix and multiply

it through by the uncertainties of each of the model parameters. The resulting covariance

matrix is in Eq. 4.10 and will be used to constrain the resolution model in the likelihood

function:

R =


1.21× 10−8 −2.29× 10−10 1.73× 10−9

−2.29× 10−10 1.21× 10−8 −1.02× 10−7

1.73× 10−9 −1.02× 10−7 8.84× 10−7 .


(4.10)

A demonstration of the Gaussian constraint is shown in Fig. 4.15, where the blue lines

are drawn by randomly sampling the covariance matrix in Eq. 4.10.
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Peak Energy [keVee] Resolution [eVee] Res. Err. [eVee]
Baseline 0 9.25 0.11
M-shell 0.16 18.6 4.2
L-shell 1.3 31 2
K-shell 10.37 101 1

Run A [eV] B [eV] C
R2 9.26± 0.11 0.64± 0.11 (5.68± 0.94)× 10−3

Run ρAB ρBC ρCA

R2 -0.0189 -0.984 0.0167

Table 4.1: Table showing the measured resolutions of known features in the data (top),
resolution model parameters from fitting to the measured widths (middle), and correlations
between the model parameters (bottom).

Figure 4.15: Demonstration of Gaussian constraints for the R2 resolution model. The black
curve is the mean model, and the red curves are the 1σ uncertainty band. The blue curves
are created by randomly sampling the covariance matrix in the multivariate Gaussian
constraint. The blue curves account for correlations between the resolution parameters,
which is why they do not fully sample the uncertainty band between the red curves.
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4.3. The Third CDMSlite Run

After R2, the goal of the third CDMSlite run (R3) was to expand the CDMSlite pro-

gram and develop analysis tools that could be used when the next generation experiment

at SNOLAB starts taking data. Searching for low-mass dark matter is the explicit design

goal of SuperCDMS compared to other experiments, so it has been important to extend

our knowledge and experience during the CDMSlite program to ensure the success of the

SuperCDMS SNOLAB HV program.

The first challenge was to prove that another detector could successfully be operated in

CDMSlite mode, so the R3 data was collected with T2Z1 [54]. In addition to demonstrating

the ability to yet again adapt the electronics, this provided an opportunity to compare the

different detectors and learn more about their behavior in high voltage mode.

As with R2, the R3 dataset was split into R3a and R3b due to a changing noise envi-

ronment that prompted different cut efficiencies and resolutions for each of the designated

periods. The two periods were kept separate in the analysis, but the signal and background

models were normalized for the combined dataset. The livetime after all cuts was 31.50 days

for R3a and 29.39 days for R3b, with a combined total exposure of 36.92 kg-d and an energy

threshold of 70 eV.

4.3.1. Data Reduction

Each CDMSlite analysis builds upon its predecessor. As such, all of the cuts developed

for R2 were adapted to the R3 data. The following list contains cuts that were developed in

addition to those in Section 4.2.1.
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List of cuts not applied to R2:

cIsSquarePulse_CDMSliteR3: square glitch events are removed with a delta chi-squared

cut that compares the fit of a normal template to a glitch template in the OF

cIsLFnoisedX2_CDMSliteR3: another delta chi-squared cut that compares the fit of a

normal pulse to a LFN template in the OF

bifurcated LFN: cut assisted by a boosted decision tree (BDT) to ensure negligible LFN

leakage events

The radial cut was changed from strictly empirical data to use simulated pulses in an

attempt to more accurately track the true radius of observed events. The fluctuations seen

in the efficiency curve in Section 4.3.5 are caused by the limited statistics of those simulated

events when placing a cut on the calculated radial parameter [54].

In order to perform a likelihood analysis, all backgrounds in the data need to be modeled.

As a corollary, if a model is not known for a particular background source, then a strict cut

needs to be defined such that <1 event is expected in the final data spectrum. That is

why a strict BDT-based bifurcated analysis cut was developed to remove LFN from the R3

data [94]. In order to trust the R2 data in a likelihood analysis, a similar BDT cut will likely

need to be developed.

4.3.2. Analysis Improvements

CDMSlite R3 was the first CDMSlite analysis to be performed on blinded data. Previous

SuperCDMS analyses with the iZIPs used a “black box” blinding scheme that removed

all events within a certain range of recoil energy and yield where the dark matter signal

was expected to be. However, as mentioned in Section 3.1, there was no yield quantity in

CDMSlite to hide the nuclear recoil events so a new scheme was needed. It was determined
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that adding an unknown number of fake signal events to the data was the best approach,

which is a process called “salting.” The entire analysis region, 0 − 2 keV for R3, needed to

be salted but salt was not added above 5 keV. This allowed for a background-only fit to the

spectrum above 5 keV to determine the rates for each background. Those rates were then

extrapolated to predict the number of each background source in the analysis region, which

was necessary prior to unblinding the data.

CDMSlite R3 was also the first CDMSlite analysis to use a profile likelihood instead of

the OI. In fact, most of the pieces described in Section 4.2 were originally developed by

the R3 analysis team. In addition to the background models, the likelihood function also

included nuisance parameters for the efficiency, resolution, and Lindhard uncertainty [5,94].

4.3.3. Published Limit

There was no excess of events observed above the expected background, so the profile like-

lihood was used to calculate an exclusion limit [94]. The published limit from the R3 WIMP

search is shown in Fig. 4.16, and the accompanying paper contains a detailed description of

the complete analysis [54].

Most of the models and other likelihood components were developed as part of the R3

WIMP search analysis, but the inelastic dark matter analysis in this thesis used a different

energy range so all of the models had to be reevaluated. The rest of this section will mirror

the corresponding subsections in Section 4.2 to obtain the likelihood function components

based on the R3 data.

4.3.4. Background Modeling

All of the R2 background models described in Section 4.2.5 were also included in the

R3 analysis. Those backgrounds are neutron captures from the 252Cf calibration source that
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Figure 4.16: The black curve is the CDMSlite R3 WIMP exclusion limit, with 1σ and 2σ
uncertainty bands shown in green and yellow, respectively [54]. The solid red line is the
previous CDMSlite result, which had been surpassed by the R3 limit and the Darkside-50
limit in magenta [114]. Although R3 is about half the exposure of R2, the profile likelihood
method sets a stronger limit than the OI method because it uses information about the
backgrounds such as shape and normalization constraints.

activate the germanium crystal, cosmogenic activation of the crystal, Compton scattering

from high energy photons produced by radioactive decays, and 210Pb contamination on or

near the detectors [54, 107].

4.3.4.1. Surface Background Models

This section follows exactly the same procedure as detailed in Section 4.2.5.1 for obtaining

the surface background models. The only difference is that T2Z1 was the top detector in

the tower, so there was a significant background contribution from the top lid of the copper

housing that had a direct line of sight to the top face of the detector. In fact, this was the

dominant source of surface background events.

First, the binned models from the surface background simulation were smoothed with an

adaptive bandwidth KDE and are shown in Fig. 4.17, Fig. 4.18, and Fig. 4.19.
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(a) The smoothed surface backgrounds from
the copper top lid for R3a.

(b) The smoothed surface backgrounds from
the copper top lid for R3b.

Figure 4.17: The orange curves represent the systematic error on the voltage map used in
the simulation and the green lines represent the systematic error of the voltage cut
location. The black median curve has been scaled to a pdf with unit area and is shown
with statistical error bars. The green and orange lines have been scaled to maintain the
ratio with the black curve, and the blue curves are the quadrature sum of the statistical
and systematic errors.

(a) The smoothed surface backgrounds from
the copper sidewall housing for R3a.

(b) The smoothed surface backgrounds from
the copper sidewall housing for R3b.

Figure 4.18: The orange curves represent the systematic error on the voltage map used in
the simulation and the green lines represent the systematic error of the voltage cut
location. The black median curve has been scaled to a pdf with unit area and is shown
with statistical error bars. The green and orange lines have been scaled to maintain the
ratio with the black curve, and the blue curves are the quadrature sum of the statistical
and systematic errors.
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(a) The smoothed surface backgrounds from
the germanium crystal for R3a.

(b) The smoothed surface backgrounds from
the germanium crystal for R3b.

Figure 4.19: The orange curves represent the systematic error on the voltage map used in
the simulation and the green lines represent the systematic error of the voltage cut
location. The black median curve has been scaled to a pdf with unit area and is shown
with statistical error bars. The green and orange lines have been scaled to maintain the
ratio with the black curve, and the blue curves are the quadrature sum of the statistical
and systematic errors.

For the 0− 25 keV energy range of this analysis, the normalization from the independent

measurement of alpha rates gives NTL = 93.6 ± 9.8 events from the top lid (TL), NSH =

13.2 ± 0.8 events from the sidewall housing (SH), and NGZ = 13.9 ± 3.5 events from the

germanium iZIP (GZ), with correlation coefficients of ρTL,SH = −0.225, ρSH,GZ = −0.3395,

and ρGZ,TL = −0.18. Correcting those numbers for the efficiency of the cuts used in the

simulation gives predicted counts of NTL = 158.4 ± 16.6, NSH = 22.3 ± 1.4, and NGZ =

23.5 ± 5.9 events. The uncertainty on these normalizations can be multiplied through the

correlation matrix between the sources to give the covariance matrix:


274.96 −5.05 −17.68

−5.05 1.83 −2.72

−17.68 −2.72 35.07


(4.11)
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4.3.4.2. Morphing the Surface Backgrounds

Following the procedure laid out in Section 4.2.5.2, a single morphing parameter was

defined for each of the three surface backgrounds to encode the shape and normalization

uncertainty. Figure 4.20, Fig. 4.21, and Fig. 4.22 show the resulting curves from sampling

each morphing parameter linearly between m = −1 and m = 1.

(a) Morphing the event density model of
surface events from the copper top lid for R3a.

(b) Morphing the event density model of
surface events from the copper top lid for R3b.

Figure 4.20: Linear sampling of the morphing parameter. There are 500 sampled lines on
each of these plots with purple curves corresponding to m = −1 and yellow curves
corresponding to m = 1.

The linear sampling demonstrates the behavior of the morphing parameters, but in the

likelihood function they were constrained with a Gaussian distribution with mean µ = 0

and width σ = 1. This forced the likelihood to preferentially fit the median curve or pay a

statistical penalty to push the morphing parameter away from the median. In order to relate

this constraint to the normalization, a one-dimensional Gaussian was randomly sampled. For

each sampling, the model was morphed according to the morphing parameter in Eq. 4.3 and

the number of events was calculated using Eq. 4.4. Histograms of the number of events from

each morphed model are shown in Fig. 4.23.

Randomly sampling the Gaussian distribution provides an estimate of the uncertainty

on the number of events for each surface background source. The covariance matrix due to

97



(a) Morphing the event density model of
surface events from the sidewall housing for
R3a.

(b) Morphing the event density model of
surface events from the sidewall housing for
R3b.

Figure 4.21: Linear sampling of the morphing parameter. There are 500 sampled lines on
each of these plots with purple curves corresponding to m = −1 and yellow curves
corresponding to m = 1.

(a) Morphing the event density model of
surface events from the germanium crystal for
R3a.

(b) Morphing the event density model of
surface events from the germanium crystal for
R3b.

Figure 4.22: Linear sampling of the morphing parameter. There are 500 sampled lines on
each of these plots with purple curves corresponding to m = −1 and yellow curves
corresponding to m = 1.
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(a) Histograms of the
number of events from
Gaussian sampling of the top
lid morphing parameter. The
sampled curves in Fig. 4.20
are much closer together
above the median.

(b) Histograms of the
number of events from
Gaussian sampling of the
sidewall housing morphing
parameter. The sampled
curves in Fig. 4.21 are much
closer together below the
median.

(c) Histograms of the
number of events from
Gaussian sampling of the
germanium morphing
parameter. The median
curve in Fig. 4.22 is close to
the center of the uncertainty
band, but the sample curves
are slightly closer together
above the median.

Figure 4.23: The Gaussian sampling for each of the surface background sources produces
an asymmetric distribution because the median curve is not equidistant from the upper
and lower uncertainty.

the morphing parameter uncertainty is:


3402.79 2044.55 621.58

2044.55 1870.56 413.80

621.58 413.80 116.35


(4.12)

Adding the matrix in Eq. 4.11 to the matrix in Eq. 4.12 gives the total covariance on the

number of surface background events for each source:

V =


3677.75 2039.50 603.91

2039.50 1872.39 411.08

603.91 411.08 151.42


. (4.13)
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The final step was to translate the correlated uncertainty from the number of surface

background events to uncertainty on the morphing parameters so that it can be added to

the likelihood function as a multivariate Gaussian constraint. This was done by plotting the

relationship between morphing parameter and number of events as defined in Eq. 4.4. Fig-

ure 4.24 shows this relationship using the data from the linearly sampled morphing parameter

in Fig. 4.20, Fig. 4.21, and Fig. 4.22.

(a) The sharp angle at
mTL = 0 is related to the
asymmetry of the histogram
in Fig. 4.23a. This is
showing that changing the
morphing parameter from 0
to 1 does not result in a large
change of number of events.

(b) The sharp angle at
mSH = 0 is related to the
asymmetry of the histogram
in Fig. 4.23b. This is
showing that changing the
morphing parameter from -1
to 0 does not result in a large
change of number of events.

(c) The sharp angle at
mGZ = 0 is related to the
asymmetry of the histogram
in Fig. 4.23c. This is showing
that changing the morphing
parameter from 0 to 1 does
not result in a large change
of number of events.

Figure 4.24: The relationship between morphing parameter and resulting number of events
is shown for each surface background source. The red line is for R3a and the blue line is for
R3b. The independent variable is plotted on the y-axis for these plots to show to the slopes
needed in Eq. 4.7.

The covariance on the morphing parameters can be calculated according to Eq. 4.7 where

m1 = mTL, m2 = mSH , m3 = mGZ , N1 = NTL, N2 = NSH , and N3 = NGZ . The resulting

matrix shown in Eq. 4.14 is the covariance matrix between the R3 morphing parameters that

went into the Gaussian constraint in the likelihood to constrain the surface backgrounds:

M =


1.08 0.86 0.92

0.86 1.15 0.90

0.92 0.90 1.19


. (4.14)
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A demonstration of the Gaussian constraint is shown in Fig. 4.25, Fig. 4.26, and Fig. 4.27,

where the blue lines are drawn by randomly sampling the covariance matrix in Eq. 4.14.

(a) Randomly sampled surface background
model for the housing top lid in R3a.

(b) Randomly sampled surface background
model for the housing top lid in R3b.

Figure 4.25: Demonstration of Gaussian constraint for morphing the R3 surface
background housing top lid models. The black curve is the mean model, and the red curves
are the 1σ uncertainty band. The blue curves are created by randomly sampling the
covariance matrix in the multivariate Gaussian constraint.

4.3.5. Efficiency Model

The efficiency curves for R3a and R3b are similar to the R2 curve described in Sec-

tion 4.2.6, but there are a few differences. Below 2 keV, the R3 efficiencies have sizable

fluctuations from one of the cuts being defined differently. There is also no “double-hump”

feature present because the R3a and R3b efficiencies were not added together. Finally, there

was no evidence of high energy saturation in R3, so no linear correction above 10.37 keV was

needed. For these reasons, R3a and R3b efficiencies could each be described by 5-parameter

piecewise functions, shown in Eq. 4.15 with the free parameters highlighted in orange. The
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(a) Randomly sampled surface background
model for the sidewall housing in R3a.

(b) Randomly sampled surface background
model for the sidewall housing in R3b.

Figure 4.26: Demonstration of Gaussian constraint for morphing the R3 sidewall housing
surface background models. The black curve is the mean model, and the red curves are the
1σ uncertainty band. The blue curves are created by randomly sampling the covariance
matrix in the multivariate Gaussian constraint.

(a) Randomly sampled surface background
model for the germanium iZIP in R3a.

(b) Randomly sampled surface background
model for the germanium iZIP in R3b.

Figure 4.27: Demonstration of Gaussian constraint for morphing the R3 germanium iZIP
surface background models. The black curve is the mean model, and the red curves are the
1σ uncertainty band. The blue curves are created by randomly sampling the covariance
matrix in the multivariate Gaussian constraint.
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piecewise function was defined as

Eff R3(E) =


f0 = Erf (E, µ, σ,A1) E < E0

f1 = m1(E − E0) + f0(E0) E0 ≤ E < E1

f2 = m2(E − E1) + f1(E1) E1 ≤ E

. (4.15)

For the same reasons laid out in Section 4.2.6, it was determined that the morphing

procedure was preferable to the piecewise function, so the efficiency of each sub-run was

controlled by a single morphing parameter. A demonstration of those parameters are shown

in Fig. 4.28 by linearly sampling the morphing parameters between m = −1 and m = 1.

(a) Demonstration of morphing parameter for
R3a efficiency.

(b) Demonstration of morphing parameter for
R3b efficiency.

Figure 4.28: Linearly sampled morphing parameters. The purple lines correspond to
m = −1, the yellow lines correspond to m = 1, and m = 0 returns the median black curve.

Since there was just one morphing parameter for each sub-run, a one-dimensional Gaus-

sian distribution was used to constrain the efficiency models in the likelihood. This creates

a penalty for moving further away from the median, yet the parameter was not constrained

to |m|≤ 1. Figure 4.29 shows the distribution from sampling this constraint many times.
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(a) Randomly sampled efficiency model for
R3a.

(b) Randomly sampled efficiency model for
R3b.

Figure 4.29: Demonstrating the Gaussian constraint for the morphed R3 efficiency models.

The fluctuations in the efficiency change the shape of the models when they are fit to the

data, but the changes are small enough that they do not cause any problems in the likelihood

convergence.

4.3.6. Resolution Model

The resolution model for R3 was determined using the same method as defined in Sec-

tion 4.2.7 for R2. In order to fit the resolution function in Eq. 3.1, the baseline noise at 0 keV

and the germanium activation peaks at 10.37 keV, 1.3 keV, and 160 eV were measured. The

resulting model fits are shown in Fig. 4.30 and the results are summarized in Table 4.2 [54].

From these results, it is straightforward to write down the correlation matrix and multiply

each row and column by the uncertainties of each of the model parameters. The resulting

covariance matrices for R3a and R3b are shown in Eq. 4.16 and Eq. 4.17, respectively, and
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(a) Resolution function fit to measured
features in R3a.

(b) Resolution function fit to measured
features in R3b.

Figure 4.30: The blue points are the measured resolutions of the baseline noise and
germanium activation peaks. The black curve is the best fit of the resolution model, and
the orange band is the uncertainty of that fit. The top plot shows the measured peaks up
to 11 keV, while the lower plot is zoomed in below 1.5 keV.

Peak Energy [keVee] Resolution [eVee] Res. Err. [eVee]
R3a Baseline 0 9.87 0.04
R3b Baseline 0 12.67 0.04

M-shell 0.16 13.9 2
L-shell 1.3 36.3 2
K-shell 10.37 108 2

Run A [eV] B [eV] C
R3a 9.87± 0.04 0.87± 0.12 (4.94± 1.27)× 10−3

R3b 12.7± 0.04 0.80± 0.12 (5.49± 1.15)× 10−3

Run ρAB ρBC ρCA

R3a -0.0071 -0.9474 0.0060
R3b -0.0087 -0.9474 0.0074

Table 4.2: Table showing the measured resolutions of known features in the data (top),
resolution model parameters from fitting to the measured widths (middle), and correlations
between the model parameters (bottom).
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was used to constrain the resolution model in the likelihood function:

R =


1.60× 10−9 −3.428× 10−11 3.066× 10−10

−3.428× 10−11 1.475× 10−8 −1.467× 10−7

3.066× 10−10 −1.467× 10−7 1.625× 10−6


. (4.16)

R =


1.60× 10−9 −4.233× 10−11 3.393× 10−10

−4.233× 10−11 1.473× 10−8 −1.319× 10−7

3.393× 10−10 −1.319× 10−7 1.316× 10−6


. (4.17)

A demonstration of the Gaussian constraint is shown in Fig. 4.31, where the blue lines

are drawn by randomly sampling the covariance matrices in Eq. 4.16 and Eq. 4.17.

(a) Randomly sampled efficiency model for
R3a.

(b) Randomly sampled efficiency model for
R3b.

Figure 4.31: Demonstration of Gaussian constraints for the R3 resolution models. The
black curve is the mean model, and the red curves are the 1σ uncertainty band. The blue
curves are created by randomly sampling the covariance matrix in the multivariate
Gaussian constraint. The blue curves account for correlations between the resolution
parameters, which is why they do not fully sample the uncertainty band between the red
curves.
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4.4. Summary

At the time of publication, each of the three CDMSlite WIMP search analyses produced

world-leading limits. This is a testament to the success of the SuperCDMS high voltage

program, and provides high quality data that is prime for re-analyzing in the low-mass

regime.

With all of the likelihood components constructed in this chapter, it is now possible to

perform a likelihood analysis from 0−25 keV using the CDMSlite R2 data, R3 data, or both.

The last piece that is needed is the dark matter signal model of interest. In this thesis, there

are two signal models discussed in the next chapter that are based on the inelastic scattering

of low-mass dark matter.
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Chapter 5

INELASTIC DARK MATTER

Historically, noble liquid experiments have had difficulty lowering their energy thresholds

to be sensitive to dark matter masses below ∼ 10 GeV; this range has been almost exclusively

probed by solid state detectors. That is why the Large Underground Xenon (LUX) experi-

ment caught the attention of the direct detection community in 2018 when they published

limits showing sensitivity down to 0.4 GeV (Fig. 5.1) [115]. They did this by using a new

interpretation of their data utilizing inelastic, rather than elastic, dark matter scattering

hypotheses.

Figure 5.1: Inelastic dark matter upper limits published by LUX in 2018 [115]. The green
and yellow uncertainty bands correspond to the 1σ and 2σ uncertainty from
background-only trials and the black curves are the median limits. This result
demonstrated shocking low-mass sensitivity for a noble liquid experiment.
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The success of the LUX analysis shows the power of this approach to gain sensitivity to

low-mass dark matter signals that would otherwise not be detectable. Since the CDMSlite

experiment has already demonstrated a low energy threshold and sensitivity to 1 GeV dark

matter mass, it is logical to believe searching for inelastically scattering dark matter in

this data will permit exploration of sub-GeV parameter space. I have led this effort in the

SuperCDMS collaboration.

This chapter will discuss the reinterpretation of CDMSlite data for two inelastic scattering

scenarios: Bremsstrahlung and Migdal dark matter models. Both of these channels are

predicated on a nuclear recoil event, thus the resulting limits can be directly compared to

the traditional elastic limits.

5.1. Bremsstrahlung Radiation

Bremsstrahlung radiation is the process of emitting a photon from a charged particle as

it is deflected by another charged particle. Since the target atoms in a germanium crystal

are not isolated, a similar process could happen for the recoiling nucleus after a dark matter

collision. The idea of searching for dark matter employing Bremsstrahlung radiation was

proposed by Kouvaris and Pradler [116]. A diagram of photon emission from a nuclear recoil

is shown in Fig. 5.2. Conceptually, it is easier to think of this as a two-step process but it

should really be treated as a 2→3 body interaction as portrayed in Eq. 5.1,

χ+ n → χ+ n+ γ . (5.1)

Figure 5.2: Diagrams of Bremsstrahlung radiation from a nuclear recoil [116]. The
diagrams are interpreted from left to right, indicated by the initial i and final f states of
the nucleus. Both diagrams result in χ+ n+ γ and are therefore indistinguishable.

109



Kouvaris and Pradler calculated the differential cross-section of this process as a function

of emitted photon energy ω:

dσ

dω
=

4α|f(ω)|2

3πω

µ2
Nv

2σSI
0

m2
N

√
1− 2ω

µNv2

(
1− ω

µNv2

)
, (5.2)

where α is the fine structure constant, f is the atomic scattering function, µN is the DM-

nucleus reduced mass, v is the dark matter velocity, and mN is the mass of the nucleus.

Portions of Eq. 5.2 should look familiar from Section 1.4.3.1 where σSI
0 is the spin-independent

cross-section shown in Eq. 1.10. The terms on the end of Eq. 5.2 are kinematic terms for

the emission of the photon.

The differential rate can be obtained by integrating the differential cross-section over

velocity
dR

dω
=

Na

A

ρχ
mχ

∫
dφ

∫
d(cosθ)

∫
v3(

1

πv20
)
3
2 e

(
v2+v2E+2vvecosθ

v0
)2 dσ

dω
dv , (5.3)

where Na is the number of target atoms, A is the atomic mass, ρχ is the local dark matter

mass density, mχ is the dark matter mass, v0 is the most probable galactic WIMP velocity

(220 km/s), and vE is the mean orbital velocity of Earth. As in Section 1.4.3.1, the velocity

distribution is assumed to be Maxwell-Boltzmann.

Figure 5.3 shows the differential rate plotted for target materials that are commonly

used in direct detection experiments. For comparison, the traditional elastic nuclear WIMP

models are shown as dashed lines. With the exception of Si, the inelastic Bremsstrahlung

model extends to higher energy by more than an order of magnitude over the elastic scatter.

However, this comes at the expense of a drastically reduced rate by approximately ten orders

of magnitude because of the emission of a photon in addition to the nuclear recoil.
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Figure 5.3: Comparison of elastic nuclear recoil (dashed lines) and the Bremsstrahlung
model (solid lines) for silicon (blue), germanium (red), and xenon (green). The shapes of
the Bremsstrahlung models are mostly driven by the atomic scattering function. It can be
seen that the Bremsstrahlung signal extends to higher energies, but at the cost of a
significantly decreased rate.
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5.1.1. Photoelectric Cross-Section Uncertainty

As seen in Eq. 5.2, the differential cross-section depends on the atomic scattering function

f , which is defined as

|f |2= |f1 + if2|2= f 2
1 + f 2

2 . (5.4)

The real part of the atomic scattering function f1 is given by the dispersion relation

f1 = Z +
1

πrehc

∫ inf

0

ε2σe(ε)dε

ω2 − ε2
(5.5)

and the imaginary part of the atomic scattering function f2 is

f2 =
σe

2reλ
, (5.6)

where Z is the atomic number, re is the electron radius, h is Planck’s constant, c is the speed

of light, ε is the dispersion parameter that gets integrated out, and σe is the photoelectric

cross-section [117].

An exhaustive search of experimental measurements and theoretical calculations was

performed to find the photoelectric cross-section at low energies [118]. This search provided

a nominal, or “reference,” photoelectric cross-section as well as upper and lower bounds.

Each of these were used to calculate the atomic scattering factors in Fig. 5.4 and Fig. 5.5.

These plots also include data provided by the Henke paper that is most commonly referenced

in calculations involving the photoelectric cross-section [119].

Calculating the full atomic scattering function from f1 and f2 shows in Fig. 5.6 that

there is no consistent trend with energy as far as which curve gives the most aggressive

or conservative results. In order to see the full impact of the photoelectric cross-section

uncertainty, an envelope was calculated around the atomic scattering functions by taking

the minimum or maximum curve for every energy. Figure 5.7 shows the derivation of that
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Figure 5.4: The real part of the atomic scattering function for given photoelectric
cross-section models. Due to the dispersion relation, the lower bound on photoelectric
cross-section leads to the upper bound on f1.

Figure 5.5: The imaginary part of the atomic scattering function for given photoelectric
cross-section models. There is no inversion of upper and lower bounds because of the direct
relationship between the photoelectric cross-section and f2.
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envelope, labeled as lowf and highf. Calculating the extreme bounds in this way means that

the bottom (top) of the envelope will always give the most conservative (aggressive) result,

regardless of the analysis or signal model.

Figure 5.6: The atomic scattering function that goes into the calculation of the
Bremsstrahlung signal model.

It was determined that the effect of the photoelectric cross-section uncertainty on the

dark matter search results was < 25% between the most aggressive and conservative atomic

scattering functions. On the scale of the limit plots, that is approximately the width of the

line used to draw the limits and was therefore considered negligible. This analysis used the

conservative bottom of the envelope to calculate the final results.

5.2. The Migdal Effect

The second inelastic dark matter signal considered is based on a theoretically motivated,

yet experimentally unverified effect known as the Migdal Approximation [120]. The basis for

this phenomenon is that the electron cloud does not immediately follow the nucleus when it

is displaced. This is used to search for dark matter collisions that cause the nucleus to recoil

and be displaced from the center of the electron cloud, which is equivalent to a simultaneous

Lorentz boost for all of the orbital electrons. When the excited electron cloud relaxes, there
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Figure 5.7: The dashed lines are the ratio of each atomic scattering function with respect
to the reference model. An envelope was formed around these curves to calculate the most
aggressive (highf) and conservative (lowf) final results, as indicated by the solid lines.
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is a probability that one or more electrons are ejected. A diagram of this process is shown

in Fig. 5.8. The idea to use this effect to search for dark matter was proposed by Ibe,

Nakano, Shoji, and Suzuki who calculated the probability that a nuclear recoil would emit

an electron [121]. With their paper they included tables of probabilities for a variety of

common target materials.

Figure 5.8: Diagram showing a low energy DM-nucleus interaction that pushes the nucleus
out of the center of the atom [122]. As the electrostatics cause the electrons to “catch up”
to the nucleus, there is a probability that one of them gets ejected from the atom.

Following the formalism of Ibe et al., Dolan, Kahlhoefer, and McCabe laid the ground-

work for interpreting data from a dark matter experiment [122]. Through personal corre-

spondence, it was revealed that Dolan et al. assumed isotropic scattering, which makes

the integration simpler. The inelastic analysis described in this thesis subscribes to a more

complex treatment of angular dependence that excludes non-physical velocity space [104].

Since parameter space is removed, the anisotropic approach leads to a lower expected rate

and a more conservative result than the isotropic assumption. Therefore, the isotropic sim-

plification was only used to check our work against others but was not used for the final

calculation.

Since the Migdal effect is based on a nuclear recoil, the first step in calculating the signal

model is to rewrite Eq. 1.6 as a differential rate over velocity [122],

d2Rnr

dERdv
=

ρχσN

2µ2
Nmχ

f(v)

v
. (5.7)
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Then the ionization differential rate in Eq. 5.8 can be written by combining the formalism

of the Ibe et al. and Dolan et al. papers,

d3Rion

dERdEedv
=

d2Rnr

dERdv
×
∑
nl

1

2π

(
me

√
2ER/mN

vrefme

)
dpcvref (nl → Ee)

dEe

, (5.8)

where n is the principal quantum number, l is the azimuthal quantum number, vref is a

reference velocity that was used to calculate the transition probabilities (300 km/s), pcv is

the probability of emitting an electron from state nl with energy Ee that is provided by Ibe

et al.

The observed energy is more than just the energy of the emitted electron Ee because the

binding energy Enl is released too, so the energy observed in the detector is actually

EEM = Ee + Enl . (5.9)

In order to obtain the differential rate as a function of the observable energy, the ionization

differential rate needs to be integrated over nuclear recoil energy, velocity, and angular space.

As with the WIMP and Bremsstrahlung models, a truncated Maxwell-Boltzmann velocity

distribution is assumed with a normalization parameter k. The upper limit of the velocity

integral is the same as before, the sum of vesc and vE. However, the lower bound of the

velocity integral vmin needs to be modified to include the binding energy of the shell that

emitted the electron [122],

vmin =

√
mNER

2µ2
+

EEM√
2mNER

. (5.10)

117



Equation 5.11 shows the differential rate with all the pieces assembled

dRion

dEEM

=
ρχσN

2µ2
Nmχk

1

2π
×
∑
nl

dpcvref (nl → EEM − Enl)

dEEM − Enl

×

∫ 2π

0

dφ

∫ ER,max

0

dER

∫ vmax

vmin(ER)

dv

∫ cosθmax(v,ER)

−1

dcosθ

√
2ER

mNv2ref
v × e

−(v2+2vvEcosθ+v2E)

v20 .

(5.11)

Shown in Fig. 5.9 through Fig. 5.11 are the Migdal signal models showing the contribution

of each electron shell.

Figure 5.9: Plot of the contributions of each electron shell to the Migdal model for
germanium. The dashed lines assume isotropic scattering and the solid lines are
anisotropic. The solid black line shows the elastic nuclear recoil spectrum for comparing
the rate and energy reach.

As with the Bremsstrahlung model, the Migdal model extends higher in energy than an

elastic nuclear recoil from the same incoming particle. The extent of that reach is mostly

driven by the inner electron shells that have a higher binding energy that gets released with

the electron. However, the Migdal model does not exhibit as much of a decrease in rate as
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Figure 5.10: Plot of the contributions of each electron shell to the Migdal model for xenon.
The dashed lines assume isotropic scattering and the solid lines are anisotropic. The solid
black line shows the elastic nuclear recoil spectrum for comparing the rate and energy
reach.

Figure 5.11: Plot of the contributions of each electron shell to the Migdal model for argon.
The dashed lines assume isotropic scattering and the solid lines are anisotropic. There is no
line showing the elastic nuclear recoil spectrum because it requires making assumptions
about the detector response of an argon detector to convert to keVee.
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the Bremsstrahlung model because the electrons already exist in the atom and there is no

additional penalty of creating them.

5.2.1. The Isolated Atom Assumption

The biggest uncertainty in the Migdal signal model stems from an assumption made

by Ibe et al. while calculating the quantum transition probabilities. In order to do the

calculation, they assumed the atom is isolated and ignored potentials from surrounding

atoms in the crystal lattice. Ibe et al. specifically address this in a figure caption in their

paper, “Since we apply the estimations for the isolated atoms, the ionization spectrum from

the valence electrons are not reliable” [121]. In this statement, Ibe et al. is alluding to

the fact that the valence electrons in the outermost shell are most likely to feel the effects

of surrounding atoms. This analysis adopts the same approach as other published Migdal

analyses and excludes the valence shell the signal model is only summed over the remaining

inner shells [115, 122, 123].

For the case of the germanium CDMSlite detector used in this analysis, excluding the

valence shell has a negligible effect on the signal mode. As shown in Fig. 5.12, the energy

cutoff created by excluding the valence shell where the next shell contribution falls sharply

is around 35 eV. This is below the energy threshold of the detector, which is 70 eV, so

excluding the valence shell does not impact the final results.

Figure 5.13 compiles the limits from Fig. 5.9 through Fig. 5.11 by summing over all

non-valence shells.

5.3. Dark Matter Shielding

Given the success of direct detection experiments improving the limits of detector capa-

bilities, DM-nucleon cross-sections on the order of 1×10−30 cm2 are now considered “strong.”
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Figure 5.12: Plotting the effect of excluding the valence shell from the Migdal model for a
germanium detector. The magenta curve includes the valence shell (n = 4 for germanium),
and the green line excludes the valence shell from the model. The energy cutoff created by
excluding the valence shell is around 35 eV, which is below the 70 eV energy threshold of
the detector, so the final results are unaffected by this modification.

Figure 5.13: Plot comparing the Migdal signal model for common direct detection target
materials. The dashed lines assume isotropic scattering, the solid lines are anisotropic, and
the dotted lines are the elastic nuclear recoil spectra for germanium and xenon.
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For dark matter with stronger cross-sections, there is an increased chance that it will scatter

before it reaches the detector. This is especially true for experiments located deep under-

ground to shield from cosmic rays, meaning there is a ceiling to the experimental sensitivity

that has largely been neglected.

The concept of a ceiling was popularized in 2018 in a paper by Emken and Kouvaris

where they highlight the shortcomings of existing analytic approaches to account for dark

matter shielding and proposed a Monte Carlo-based solution, all of which are depicted in

Fig. 5.14. The first analytic method calculates the critical cross-section where the experiment

no longer has any sensitivity because the overburden completely stops the dark matter. This

is the easiest method to calculate, but is not realistic because the dark matter could scatter

and lose some energy, but still reach the detector. The second analytic method incorporates

a damping factor into the velocity distribution to account for dark matter particles that

scatter and lose some energy but are not completely stopped [124]. A modified version of

the second analytic method is adopted in this analysis because the Monte Carlo method still

included some outstanding issues and was more difficult to modify.

Figure 5.14: Comparison of three different approaches to account for dark matter
shielding [124]. The red line has no shielding, the yellow line is the critical cross-section,
the blue line uses a damped velocity distribution, and the green points are simulated from a
Monte Carlo. All curves assume the dark matter particles are coming directly from above.
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The first step was to calculate the damping factor D. Equation 5.12 comes from solving

Eq. 9 of Emken and Kouvaris and changing some of the variable names for clarity:

D =
σn

mχµ2
n

(∑
i

fiµ
4
iA

2
i

m2
i

)
ρd , (5.12)

where σn, mχ, and µn are the same variables from previous variations of differential rates.

The new term is the summation that accounts for the fractional contribution of each element

i composing the overburden where fi is the mass fraction, µi is the reduced mass with the

dark matter, Ai is the mass number, mi is the mass, ρ is the mass density of the medium,

and d is the depth.

The second step is to dampen the velocity distribution, according to Eq. 10 of Emken

and Kouvaris [124],

fD(v
fin
χ ) = exp [2D] f(exp [D] vfinχ ) . (5.13)

Incorporating the damped velocity distribution gives the modified differential rate in

Eq. 5.14 that was taken from Eq. 8 of Emken and Kouvaris [124],

dRi

dER

= nT
ρχ
mχ

∫
v>vmin(ER)

dv vfD(v)
dσχi

dER

(ER, v) . (5.14)

Accounting for the layers of the atmosphere, the composition of the rock in the Earth,

and the shielding around the experiment results in the damped velocity distributions shown

in Fig. 5.15 for different cross-section strengths. Increasing the interaction strength increases

the amount of attenuation experienced by the incoming dark matter and pushes the distri-

bution to lower velocities.

One of the shortcomings of the various damping methods that Emken and Kouvaris

pointed out was they all assume the dark matter is approaching the experiment from above,
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Figure 5.15: Damped velocity distributions for different dark matter cross-sections, with
the undamped velocity distribution shown as a black dashed curve. The darker colors
indicate stronger interactions, which push the distribution to lower velocities. All of these
curves are calculated with a zenith angle of zero.

similar to Fig. 5.15. To first order, this is a reasonable assumption because it is the least

amount of Earth shielding and the dark matter is more likely to scatter from any other

angle. The assumption of unidirectional scattering simplifies the calculation by identifying

the depth of each layer and summing each contribution. However, in the pursuit of a more

realistic model, this analysis has included the angular dependence on the damping factor.

Adopting the coordinate system introduced by Kavanagh reveals the following angular

dependence where θ = 0 are events reaching the detector from the opposite side of the Earth

and θ = π corresponds to an incident angle normal to the surface [125]. As expected, the

velocity distribution is attenuated more strongly when the dark matter has to pass through

more of the Earth.
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Figure 5.16: Damped velocity distribution for 10−34 cm2 for different incident angles.
Darker colors correspond to smaller angles (θ = 0 is from directly below), and therefore
experience more shielding than events from directly above (θ = π).

Putting the angular dependence together with the spherically layered models of the at-

mosphere and Earth gives the final damped velocity distributions, shown in Fig. 5.17 for a

1 GeV dark matter particle.

Despite the effort to include realistic effects, there were still a few simplifying assumptions

made in the analysis in this thesis. The experimental shielding, Earth, and atmosphere

models were all assumed to be spherical. The relationship between the laboratory location

and the direction of the Earth’s trajectory through the dark matter halo was ignored. Finally,

particles were assumed to have straight trajectories so any scattering was considered a loss

of energy but not a change in direction.

5.4. Likelihood Function

Both the Bremsstrahlung and Migdal inelastic channels are limited by a reduced rate

because of the 3-body final state. The most straightforward way to combat this effect is
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Figure 5.17: Lower half of some damped velocity distributions with angular dependence
incorporated. The damping effect turns on very quickly, so smaller cross-sections will
closely follow the black dashed undamped model. A bimodal distribution begins to form
for stronger cross-sections (darker curves) where events from directly above are not
attenuated as much as events originating from the other side of the Earth.
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to increase the exposure of the experiment whether that means more mass, longer time

operating, or both. Since SuperCDMS is not currently collecting new data, the goal of this

analysis was to include both CDMSlite R2 and R3 data. However, as stated in Section 4.2.2,

the R2 analysis was optimized for an optimum interval calculation. As such, there are

potentially unmodeled backgrounds in the R2 data that need to be addressed before that

data can be incorporated into a likelihood framework that requires all backgrounds in the

data to be understood and modeled. For example, Fig. 5.18 shows that there is an excess of

events in the lowest energy bins that do not fit the summed background model.

Figure 5.18: Zoomed view of the lowest energy bins of a background-only best-fit of all
models summed in the black curve to the blue histogram R2 spectrum. While it is
technically possible this excess of events over the summed background model is dark
matter, it is incomparably more likely to be an unknown source of background.

The R2 pieces described in Section 4.2 are included in this chapter for completeness.

However, only the R3 data described in Section 4.3 was used to calculate these results. The

exposure of R2 is 70.1 kg-d and the exposure of R3 is 36.92 kg-d, so combining the datasets

and rerunning this analysis is naively expected to give a result that is approximately
√
3

times better than the results presented in this thesis.
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Table 5.1 contains a list of the variables used to define the likelihood function.

Variable Definition
N number of events in data
i iterator over N data events
Ei energy of event i

νχ number of signal events
fχ signal PDF
b iterator over non-surface backgrounds: 71Ge, 68Ga, 65Zn, 55Fe, Compton, 3H
νb number of events in background b

fb PDF of background b

sb iterator over surface backgrounds:
sidewall housing (SH), germanium iZIP (GZ), housing top lid (TL is R3 only)

νsb number of events in surface background sb

ρsb event density of surface background sb

k iterator over systematic nuisance parameters
xk value of parameter k

µk expected value of parameter k

σk uncertainty of parameter k

V variance matrix, also known as (σk)
2

d dimension of Gaussian constraint
sk surface background morphing parameter
S covariance matrix constraining morphing of surface backgrounds
rk resolution parameter
R covariance matrix constraining resolution model
e efficiency morphing parameter (one parameter, no iterator)

Table 5.1: Variables used in the likelihood function.

The likelihood function is composed of three different terms. The first term uses a Poisson

distribution to constrain the total number of events in the models as compared to the dataset,

Lpoiss =
[
νχ +

∑
b

νb

]N
×

exp
[
−
(
νχ +

∑
b

νb

)]
N !

. (5.15)
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There are separate Poisson terms for R2 and R3.

The second term is the core of the likelihood that uses the signal and background PDFs

to determine the most likely model for each event in the dataset,

Lχ,b =
N∏
i=1

[
fχ(Ei) +

∑
b

fb(Ei)

]
. (5.16)

The model PDFs are unique for R2, R3a, and R3b as each sub-run has different efficiencies

and resolutions.

The third term, called the “constraint term”, controls the nuisance parameters from aux-

iliary measurements. There were three categories of constraint terms used in this analysis:

morphing the surface backgrounds, efficiency, and resolution. All three categories were con-

strained by either univariate or multivariate Gaussian distributions [126]. Since the inelastic

processes considered produce either a photon or an electron, the signal will appear as an

electron recoil event in the detector. This means there is no need to introduce additional

systematic uncertainty from assuming a Lindhard model to convert to keVnr. The general

constraint Gaussian term takes the form

Lconstr. =
1√
2πσ2

k

×exp
(
−(xk − µk)

2

2σ2
k

)
=

1

(2π)d/2|V |1/2
×exp

(
−1

2
(xk − µk)

TV −1(xk − µk)

)
.

(5.17)

There were two terms to control the morphing of the surface backgrounds (R2 and R3),

three to control the efficiency models (R2, R3a, and R3b), and three to control the resolution

models (R2, R3a, R3b).

A likelihood analysis requires fitting the likelihood function to the data in order to find

the combination of parameters that maximizes the value of the function. As most algorithms

available find the minimum of a function, the maximum likelihood is found by minimizing

the negative of the likelihood. Also, since the likelihood is a product of many probabilities
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less than one, it tends to be a very small number and is more convenient to take the natural

logarithm of the function. Finally, any constant terms can be dropped to simplify the

minimization because only the change in likelihood is relevant. This analysis made use of

the MINUIT algorithm [127] via the iminuit [128] Python interface to minimize the negative

logarithm of the likelihood.

Combining the first two likelihood terms after taking the logarithm and dropping the

constant terms gives

[
ln(LR2

poiss) + ln(LR2
χ,b,sb)

]
+
[
ln(LR3

poiss) + ln(LR3a
χ,b,sb) + ln(LR3b

χ,b,sb)
]
=

−(νR2
χ +

∑
b

νR2
b +

∑
sb

νR2
sb )− (νR3

χ +
∑
b

νR3
b +

∑
sb

νR3
sb )

+
NR2∑
i=1

ln

[
νR2
χ fR2

χ (Ei) +
∑
b

νR2
b fR2

b (Ei) +
∑
sb

ρR2
sb (Ei)

]

+
NR3a∑
i=1

ln

[
νR3
χ fR3a

χ (Ei) +
∑
b

νR3
b fR3a

b (Ei) +
∑
sb

ρR3a
sb (Ei)

]

+
NR3b∑
i=1

ln

[
νR3
χ fR3b

χ (Ei) +
∑
b

νR3
b fR3b

b (Ei) +
∑
sb

ρR3b
sb (Ei)

]
.

(5.18)

Equation 5.19 shows all of the constraint terms after taking the logarithm,

ln(LR2
surf ) + ln(LR2

eff ) + ln(LR2
res) + ln(LR3

surf ) + ln(LR3a
eff ) + ln(LR3b

eff ) + ln(LR3a
res ) + ln(LR3b

res ) =

−1

2

2∑
k=1

[
(sR2

k − µR2
k )TS−1

R2(s
R2
k − µR2

k )
]
− (eR2 − µR2)

2

2(σR2)2
− 1

2

3∑
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(rR2

k − µR2
k )TR−1

R2(r
R2
k − µR2

k )
]

−1

2

3∑
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R3(s
R3
k − µR3
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2
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2
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R3b
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]
.

(5.19)
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The full framework has included R2 and R3 components thus far, but now the R2 pieces

are dropped to focus solely on R3. Equation 5.20 is the full likelihood function that was

used for calculating the inelastic search results,

[
ln(LR3

poiss) + ln(LR3a
χ,b,sb) + ln(LR3b

χ,b,sb)
]
+ ln(LR3

surf ) + ln(LR3a
eff ) + ln(LR3b

eff ) + ln(LR3a
res ) + ln(LR3b

res ) =

−(νR3
χ +

∑
b

νR3
b +

∑
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νR3
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+
NR3a∑
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χ fR3a
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∑
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∑
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]
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(5.20)

5.5. Limit Calculation

Typically, with a profile likelihood calculation, a parameter of interest (usually σ for

dark matter searches) is scanned and a test statistic is calculated for each hypothesis. A

standard definition for this test statistic q is shown in Eq. 5.21 that is the negative logarithm

of the ratio of the likelihood for each test hypothesis divided by the unconstrained best-fit

likelihood,

q(σ) = −2 ln

(
L(σ, ˆ̂θ)
L(σ̂, θ̂)

)
. (5.21)

In practice, since the minimizer outputs the negative logarithm of the likelihood, a logarithm

identity can be used to rewrite this formula as the difference between the two logarithms.

The upper and lower limits of the parameter of interest are obtained by finding where a

scan of the test statistic crosses a threshold determined using Wilks’ Theorem [129]. Stated
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another way, the signal model that corresponds to the extreme parameter values outside of

the upper or lower limit are said to be inconsistent with the data at the given confidence level

and that disagreement will only get worse further from the best-fit parameter. A cartoon

of this process is shown in Fig. 5.19 with a characteristic parabolic shape and an arbitrary

confidence level.

Figure 5.19: Cartoon demonstrating a typical approach of using a likelihood ratio to set
limits on a parameter of interest. The red point is the unconditional best-fit that
corresponds to the likelihood in the denominator of the test statistic. The hypothesis in the
numerator changes and q is plotted as the blue line. The green line is some arbitrary 90%
confidence level, so the lower (upper) limit is the parameter value where the blue curve
crosses the green line below (above) the best-fit parameter.

This standard approach, however, is not adequate for this analysis due to the velocity

damping discussed in Section 5.3. With an unattenuated signal, the number of signal events

will increase linearly with increasing cross-section, but the attenuation of the signal causes

the number of signal events to decrease. This turnover effect is depicted in Fig. 5.20 where

the number of signal events is plotted as a function of cross-section for a given dark matter

mass. In other words, two different cross-sections can provide the same number of signal

events in the data.
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Figure 5.20: Plot of number of signal events found by integrating the model created from
cross-section. The number of events increases linearly with increasing cross-section until
the attenuation turns on and sharply decreases the number of events. This creates the
unusual case where different cross-sections result in the same number of signal events.

The turnover of the signal is also reflected in the likelihood scan, which causes a secondary

minimum as shown in Fig. 5.21. Instead of excluding all values above the upper limit, the

exclusion region lies between the two minimums where the cross-sections give the strongest

signal.

Even more strange is the case where the two minimums have different likelihood values.

The left plot of Fig. 5.22 shows an example of this. The region between the minimums,

indicated by the orange band, still corresponds to large signals that the experiment should

be sensitive to. However, the standard algorithm is not able to find the upper limit if the

likelihood scan does not cross the confidence threshold. Plotting the signal model with the

cross-section for each minimum provides insight into the different likelihood values, shown

in the right plot of Fig. 5.22. Despite integrating to roughly the same number of events,

the larger cross-section experiences stronger Earth shielding that attenuates the dark matter

signal and pushes more events to low energy. In other words, the cross-section does not just
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Figure 5.21: Profile likelihood scan that demonstrates the likelihood turning over similar to
Fig. 5.20 and leading to a secondary minimum. The orange band roughly highlights the
expected region of sensitivity between the minimums where the signal is the strongest. The
“bounce” back up at extreme values of cross-section can be ignored. This plot included R2
data and the exclusion of zero signal was the first indicator that the R2 data might have
unmodeled backgrounds effecting the likelihood.

control the number of signal events, but also the shape of the signal model. It is apparent

that the likelihood found a better fit for the larger cross-section, meaning that the data

prefers more low-energy events in the models.

A new method of limit setting had to be devised to handle the attenuated signal. The

method decided upon is brute force and computationally intensive, but it is designed to

individually treat every dark matter mass and cross-section as a new test hypothesis. For

every combination of mass and cross-section in the entire dark matter parameter space,

there is a specific signal model shape and expected number of events. The question to ask is

whether this signal is consistent with the data. Instead of using cross-section as the parameter

of interest in the likelihood scan, the new method scans the number of signal events, which is

done by manually setting the normalization of the signal model to different values. By setting

the number of signal events, the correlation between shape and normalization is broken and

the scan no longer has a double minimum. As with the standard method, the upper limit is

determined to be where this scan crosses the predetermined confidence level.
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Figure 5.22: The left plot shows a likelihood scan that resulted in two minimums with
different likelihoods, and the secondary minimum did not cross back over the confidence
threshold. The orange band indicates the expected region of sensitivity, but the traditional
algorithm would fail to find this. The plot on the right illuminates the difference in
likelihoods. Despite having the same number of signal events, the blue model is a better fit
to the data after the attenuation pushed more events to low energy.

5.5.1. Expected Sensitivity

In order to estimate the expected sensitivity in the absence of a dark matter signal, the

standard practice is to create numerous background-only Monte Carlo datasets from the

background models. Then the full analysis framework is run on the pseudo data to see

the effect of the randomly thrown spectra. If there is a significant signal present, then any

exclusion results would be worse than the calculated sensitivities.

As mentioned above, the new limit setting method was computationally very intensive.

It would have been ideal to run this test with over 100 pseudo datasets, but instead only

a handful could be performed in a timely manner. The results of this test are shown in

Fig. 5.23.

There are not enough tests to make statistical claims about the probability of seeing the

results from the real data, but Fig. 5.23b qualitatively shows that the results in this thesis

are consistent with a background-only Monte Carlo pseudo dataset.
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(a) Histogram of the total number of events in
each pseudo dataset. The vertical lines
indicate the number of events in the real
dataset (black) as well as the pseudo datasets
used to estimate the sensitivity (colors). The
total number of events does not directly
correlate to the limit, but datasets were
selected from the two extremes and around the
real number of events.

(b) Exclusion bands calculated from the
pseudo datasets indicated in Fig. 5.23a. The
black curve from the real data is one of the
more conservative limits. However, the result
was replicated from background-only data
with the closest being the green curve. The
gold band is the result of injecting a large
signal into the Monte Carlo data, clearly
resulting in a worse limit.

Figure 5.23: Results of the sensitivity estimate. This qualitatively proves that the final
results in this chapter are consistent with background-only exclusion limits.
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5.5.2. Exclusion Limit

Since this analysis did not see an excess of events, an exclusion was calculated and only

the upper limit was needed. To simplify the algorithm that finds the points of intersection,

the test statistic was explicitly set to zero below the best-fit global minimum as defined in

q(νχ) =


−2 ln

(
L(νχ,

ˆ
θ̂|m,σ)

L(ν̂χ,θ̂|m,σ)

)
νχ > Nfit

0 νχ < Nfit

. (5.22)

Then the expected number of signal events is compared to the upper limit calculated.

There are two possible outcomes: if the expected number of events is smaller than the

upper limit then that mass and cross-section is consistent with the data, and if the expected

number of events is larger than the upper limit then that mass and cross-section are excluded.

Figure 5.24 and Fig. 5.25 portray the two cases where the signal is consistent with data or

excluded, respectively.

The procedure described above is repeated over the entire parameter space and any point

that resulted in an excluded model was collected. In practice, every single likelihood fit could

be performed independently whether it was an unconditional fit with all parameters in the

likelihood free to float, or the signal model was clamped to a particular test hypothesis.

This allows the problem to be massively parallelized to take full advantage of ManeFrame

II, the high-performance computer cluster at SMU. To calculate the final exclusion bands

with high granularity, there were approximately 25,000 (45,000) jobs run in parallel for the

Bremsstrahlung (Migdal) signal model.

5.6. Exclusion Band Results

The result of the new limit setting method is a band of points where it can be stated with

90% confidence that, given the CDMSlite R3 data, a dark matter signal was not observed.
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Figure 5.24: Example of a likelihood scan over number of signal events using the new limit
setting method. The red square is the best-fit and all of the blue test hypotheses are set to
zero to the left of this point. The vertical gray line is the upper limit where the
interpolated blue points are determined to cross the green 90% confidence level threshold.
The expected number of events for the dark matter mass and cross-section in the title is
indicated by the purple triangle. Since the expected number is smaller than the upper
limit, this particular signal model cannot be excluded.
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Figure 5.25: Similar plot to Fig. 5.24 where the red square is the best-fit parameter, the
blue circles are the test hypotheses, the green line is the 90% confidence level, the gray line
is the upper limit on number of events, and the purple triangle is the expected number of
events for the signal. In this case, the expected number of signal events is larger than the
upper limit, so the signal model for this dark matter mass and cross-section is not
consistent with the data. The mass and cross-section in the plot title become a point in the
final exclusion band.
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The Bremsstrahlung band is shown in Fig. 5.26 and the Migdal band is shown in Fig. 5.27.

The bottom edge of each band is the exclusion limit that is historically reported, but the

top edge of each band also shows the limit of sensitivity due to the consideration of dark

matter shielding.

Figure 5.26: Bremsstrahlung exclusion band created with the new limit setting method.
The floor and ceiling of the experimental sensitivity are naturally created by the limit
setting. Despite the persistence of some small fluctuations around the edges, the parameter
space was sampled with a high granularity.

For the most direct comparison, Fig. 5.28 shows all of the inelastic results together.

The lower threshold of CDMSlite allows the Bremsstrahlung limit to extend a bit below

the 0.4 GeV reach of the LUX Bremsstrahlung analysis, but LUX has 379 times more ex-

posure that helps combat the exposure-limited Bremsstrahlung channel and reach lower

cross-sections [115].

For the Migdal channel, the first comparison is to the LUX Migdal result. In this case,

the lower threshold of CDMSlite is far more important than the larger exposure of LUX in

extending to masses an order of magnitude lower [115]. EDELWEISS has also published

a Migdal limit with a small 33.4 g germanium detector operated for 24 hours at the sur-
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Figure 5.27: Migdal exclusion band created with the new limit setting method. The floor
and ceiling of the experimental sensitivity are naturally created by the limit setting.
Despite the persistence of some small fluctuations around the edges, the parameter space
was sampled with a high granularity.

face [123]. CDMSlite R3 has more than 1000 times more exposure than the EDELWEISS

surface data, which allows this result to extend many orders of magnitude lower in cross-

section. However, it is interesting to note that the ceiling of the EDELWEISS band is much

higher than this result because it is not shielded by the Earth while operating on the surface.

And finally, Fig. 5.29 incorporates the Bremsstrahlung and Migdal results into the current

state of low-mass dark matter direct detection limits. Unfortunately, the Bremsstrahlung

limit does not exclude any new parameter space because of the drastically reduced rate

compared to the elastic nuclear recoil interaction. That is why CRESST was able to exclude

lower cross-sections by lowering their nuclear recoil threshold to 30.1 eV, which is enough to

be sensitive to sub-GeV masses [130]. The more exciting news is that the Migdal channel

results in a world-leading limit below 0.2 GeV.

5.7. Summary
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Figure 5.28: Limit plot of the current state of all the inelastic channel results.

Figure 5.29: The current state of low-mass dark matter direct detection experiments with
the new Bremsstrahlung and Migdal channel results. The Bremsstrahlung result does not
exclude any new parameter space because of the significantly decreased rate with respect to
elastic nuclear recoils. The Migdal channel results in a world leading limit below 0.2 GeV
due to the combination of having a 70 eV energy threshold and 36.92 kg-d exposure.
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This analysis was a re-interpretation of the published CDMSlite R3 dataset. One clear

improvement for a future analysis is to go back on a cut-by-cut basis and optimize the R2

data to remove possible sources of background leakage. Many of the cuts are fairly basic

and might be acceptable, but two of the more concerning cuts to investigate are the low-

frequency noise cut and the radial fiducialization cut. This will immediately give a factor

of 3 increase in exposure that has been shown to have a significant impact on the decreased

rates of the inelastic channels.

There were also a number of assumptions and simplifications that went into both signal

models and dark matter shielding model. We relied on the work done in the referenced

theory papers, but there is a lot of solid state physics and atomic physics that could make

more accurate models. For example, we admit our practice of excluding the valence shell is

a temporary patch because the remaining shells are still not in isolation. This is a problem

that the general dark matter community is aware of, yet no one seems to have figured out

how to redo the calculation.

Finally, the Migdal Effect has never been observed experimentally. While everything in

the theory seems plausible, it would be much more reassuring if this effect were physically

validated. It would lend significantly more credibility to the Migdal Effect as being a reliable

channel through which searches for low-mass dark matter can be performed.
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Chapter 6

CONCLUSION

As expressed in Ch.1, there is an abundance of observational evidence that dark mat-

ter exists, yet its constituents have evaded direct detection. There are numerous theories

proposing dark matter candidates over a wide range of possible masses and interaction cross-

sections. Experiments around the world will continue to push the boundaries of detector

technologies to explore as much of that parameter space as possible. Generally speaking,

noble liquid detectors are prime for scaling to larger detector mass in order to push to

lower cross-sections, and solid state detectors are developing new methods to reduce en-

ergy thresholds and probe low-mass dark matter. Besides improvements in hardware design,

new analysis techniques are also being developed to improve experimental sensitivity. The

Bremsstrahlung and Migdal channels for inelastically scattering dark matter provide the abil-

ity to search for low-mass dark matter interactions that would otherwise be undetectable.

This thesis has presented the results of searching for Bremsstrahlung and Migdal sig-

nals in CDMSlite R3 data. The Bremsstrahlung search resulted in a leading limit for the

Bremsstrahlung channel below 0.4 GeV, but this parameter space has already been excluded

by searches for elastically scattering WIMPs. This is because of the significantly decreased

rate with respect to traditional elastic nuclear recoils. However, the Migdal search resulted

in a world leading limit for dark masses below 0.2 GeV, at a minimum cross-section of

3 × 10−35 cm2. This result is encouraging for the utility of the Migdal channel in future

searches, and there are a couple of obvious paths for improvement.

To begin with, the theoretically-motivated Migdal effect has not been physically ob-

served. Verifying the effect with a dedicated experiment would help to alleviate most of the
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skepticism surrounding the Migdal signal. There are technical challenges to designing an

experiment capable of measuring the Migdal effect. It would have to use a neutron source to

provide a source of nuclear recoils, but the incoming neutrons need to have sub-keV energies.

Higher energy collisions will completely dislocate the neutron from the atom, whereas the

Migdal effect just needs the neutron to be perturbed from the center of the atom. The

experiment also needs to have low background rates with respect to the rate of the neutron

source to have a high signal-to-background ratio. One of the challenges is how to direct a

low energy neutron source at the detector and not have all of the neutrons thermalize in the

required shielding.

The other pressing need relates to the structure of the signal model. The assumption that

the target atom is isolated needs to be corrected to account for potentials of the surrounding

atoms. It is not clear yet if the best method is to redo the calculation from first principles,

or to determine the correction numerically with a simulation. Accounting for the crystal

dynamics could also allow the outer shell to be included in the signal model. By excluding

the valence electrons from the model, an artificial energy threshold was enforced in the

analysis, such that reducing the experimental threshold does not gain any further sensitivity

to low masses. Upgrading the calculation to include the valence shell creates the opportunity

for increased sensitivity by reducing the experimental energy threshold.

Looking toward the future of SuperCDMS, construction of the next generation experi-

ment at SNOLAB began in mid-2019. When construction concludes, a commissioning period

will commence in 2020. There will be interesting results from the data collected in the com-

missioning period, but the first dark matter search data is expected to begin in 2021.

In the initial deployment at SNOLAB, there will be 10 (2) germanium (silicon) iZIPs

and 8 (4) germanium (silicon) HV detectors. These larger detectors will have approximately

twice the mass of the Soudan iZIPs. All HV detectors will also be read out simultaneously,

whereas the electronics at Soudan could only support a single CDMSlite detector at a time.
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Looking at the germanium HV detectors as an example, this deployment scheme means there

will be 16 times more exposure than CDMSlite for the same run time. Assuming there are

no improvements with the new detectors, the increased exposure alone would naively lead

to a sensitivity that is 4 times lower in cross-section. However, SNOLAB has 3 times more

overburden than Soudan, so the reduced ceiling of experimental sensitivity will counteract

the mass increase.

I believe the SuperCDMS SNOLAB detectors best-suited to search for inelastic dark

matter scatters will be the germanium HV detectors. While the Migdal rate is not as

suppressed as the Bremsstrahlung channel, it is still a few orders of magnitude below the

elastic nuclear recoil rate. Any future inelastic dark matter search will benefit from having

more exposure than the CDMSlite detector at Soudan. The Migdal rate is also enhanced for

heavier atoms because they have more electrons, and thus a higher probability of emitting

one. This is why germanium is favored over a silicon target.

To reference the name of the dark matter summer school I attended at SLAC in 2014,

“Shining Light on Dark Matter” is more than a catchy play on words. I have met brilliant

physicists from all over the world diligently working to unravel one of the greatest unsolved

mysteries in the Universe, and I firmly believe that one day we will successfully conclude

this noble endeavor.
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Appendix A

XIA ALPHA SCREENING AT SMU

When searching for dark matter, any radioactive decays near the detectors can mimic sig-

nals and reduce the sensitivity of the experiment. Two methods of reducing this background

are to use materials of construction with inherently low bulk activity, and to develop cleaning

methods and manufacturing processes to reduce surface contamination. In either case, it is

necessary to have a sensitive counter for screening materials. There is an XIA UltraLo-1800

alpha counter in the Laboratory for Ultrapure Materials and Isotope and Neutron Assess-

ment (LUMINA) at SMU to screen the surface of samples for radon contamination. Refer

back to Chapter 2 for details about radon and surface contamination. In particular, the

SMU screening program focuses on the long-lived 210Pb that has a half-life of 22.3 years

because this is the isotope that will not decay away within the lifetime of most experiments.

A reliable way to measure the presence of 210Pb is to detect the subsequent 5.3 MeV alpha

decay of 210Po.

A.1. XIA ULTRALO-1800

The XIA UltraLo-1800 is an ionization counter that is composed of a bottom sample tray

that is grounded and a pair of positively charged electrodes at the top. The bottom tray is

made of stainless steel, but the sample tray in the SMU counter is lined with conductive teflon

because it can be easily cleaned or discarded altogether if there is any indication of surface

contamination. The teflon is also measured to have an emissivity of 1×10−3 counts/(h cm2),

whereas the steel is approximately 3×10−3 counts/(h cm2) [131]. The active volume is filled

with boil-off argon gas so an emitted alpha particle will create an ionization track that

drifts through the electric field to the electrode. Copper strips separated by resistors line
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the sidewalls of the counter and act as field shapers to prevent any fringing and ensure the

uniformity of the electric field. An integrating preamplifier is connected to the electrode

that measures the induced current of the drifting electrons, so the electrode starts recording

the pulse as soon as the ionization track is created, defined as time t0. The voltage at the

electrode is 1100 V and the height of the chamber is 15 cm, so it takes approximately 70 µs

for the free electrons to drift to the electrode [131]. When the ionization track drifts across

the active volume and first reaches the electrode, defined as time tS, the electrode begins

absorbing the electrons. The risetime is defined as being the difference between t0 and tR,

where tR is when the last electron is absorbed by the electrode. A schematic of the device is

shown in Fig. 1.1 and a cartoon of the important times associated with the pulse are shown

in Fig. 1.2.

Figure 1.1: Schematic of the XIA UltraLo-1800 alpha counter shows some of the major
components of the ionization counter as well as the electronics used to read out the
pulses [131].
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Figure 1.2: Cartoon depicting the definitions of times associated with the pulse: t0 is when
the ionization track is created, tS is when the track reaches the electrode, and tR is when
the full track has been collected by the electrode [131].

The XIA company provides proprietary software, called CounterMeasure, with each

UltraLo-1800 that controls the counter and analyzes the data. Up front, the program is

very user-friendly and only a few parameters are needed to start a run such as how long

to count for and how long to purge the detector before counting starts. There are also a

number of tunable parameters behind the scenes that control more technical aspects of the

XIA, such as the energy calibration [131].

There are two counting areas that are selected in CounterMeasure that correspond to the

desired anode area. The “full” area is the full square tray with 1800 cm2, hence the name

of the UltraLo-1800. Outside of the full anode electrode is a guard electrode that is used

to reject events originating from the sidewalls of the counter, conveniently called “sidewall

events.” The other area that can be selected is a circle in the center with 707 cm2, called the

“wafer.” When this option is selected, the anode outside of the wafer is considered part of

the guard electrode and is used to reject sidewall events.
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A.1.1. Background Rejection

Besides rejecting sidewall events when the guard electrode measures a significant amount

of energy, there are other background rejection techniques performed by CounterMeasure.

Events that originate at the electrode are called “ceiling events” and are also easy to reject

based on their extremely short time between t0 and tS. Figure 1.3 shows the possible origin

of alpha decays inside the counter.

Figure 1.3: Cartoon showing the possible origins of alpha decays and what the resulting
pulses look like in the anode (red) and guard electrode (blue) [131]. A “good” pulse from
the sample is shown as α1, while α2 is a ceiling event, and α3 and α4 would be classified as
sidewall events because of the significant pulse in the guard electrode.

The pulses shown in Fig. 1.3 all result from alpha decays from different surfaces in the

alpha counter, but there are other sources of background that do not originate from a surface.

There are a class of events that appear in the XIA that exhibit a significantly more rounded

pulse that is not consistent with the short, dense ionization track created by an alpha particle.

It is presumed that these events are created by cosmogenic particles, and they are identified

using the time difference between tS and tR. Figure 1.4 shows an example of what a “round”

pulse looks like. According to the XIA User’s Manual, the expected rate of these events at
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sea level without extra shielding is approximately 2× 10−4 counts/(h cm2) and virtually all

of them fall below 3.5 MeV, so a simple energy cut can remove them if that energy range is

not needed for screening [131].

Figure 1.4: Example of a typical round pulse with the anode shown in red and the guard
electrode in blue [131]. These events are rejected by CounterMeasure when the time
between tS (second vertical line) and tR (third vertical line) is sufficiently long.

Another class of events that are not from a surface decay are called “mid-airs” that

presumably originate from radioactive decays in the counting gas. The expected rate of

these events is 2.5 × 10−4 counts/(h cm2) and they can have a wide range of energies, so

the best rejection method is to use the drift time [131]. As stated above, a typical track

from the sample tray will take approximately 70 µs to drift across the active volume, so the

assumption is that any event with a shorter risetime must have been from a decay in the gas

above the sample tray. The risetime cut is defined when starting a run in CounterMeasure,

and is typically set to 60 µs.

Within the last year there have been abnormally high background levels in the XIA that

decay away with the half-life of 222Rn. It was originally hypothesized that radon could be

contaminating the argon gas if the liquid argon level was low and any radon that froze in

the dewar was warmed enough to boil off with the argon. However, a detailed study did
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not reveal any correlations between background levels and liquid argon level. Instead, it

was discovered that the background level spiked immediately after the argon dewar was

refilled and reconnected to the XIA. It is still not clear what introduced the radon, but

subsequent runs have shown that venting the argon dewar into the laboratory for 10− 15 s

before reconnecting the regulator is an effective procedure for preventing contamination of

the argon gas.

A.2. Pulse Shape Study

CounterMeasure already uses basic information and pulse shapes to categorize and re-

ject background events, which is what makes the XIA the most sensitive alpha counter that

is commercially available. However, direct detection experiments are constantly improving

their sensitivity by mitigating backgrounds. As a result, the materials of construction are

lower activity, and the counting time of runs must be extended up to a full month in or-

der to gather sufficient statistics. 1 However, counting for longer does not help when the

emissivity of the sample is comparable to or lower than the background of the XIA. The

target surface background rate for SuperCDMS SNOLAB is 50 nBq/cm2, which converts to

1 × 10−4 counts/(h cm2) assuming 50% efficiency of isotropic decays that leave the surface

versus those that go into the bulk of the sample. As stated above, the background of the

teflon tray liner is approximately 1 × 10−3 counts/(h cm2), so the background needs to be

reduced in order to improve the sensitivity of the alpha counter.

That is why the group at SMU has taken a more aggressive approach to decreasing the

background rate of the XIA, and the sample tray is one of the more difficult background

sources to identify due to the proximity of the sample. One idea was that the presence of

a conducting sample would distort the electric field enough to differentiate between events

that originated from the sample and those that originated from the tray. A distorted field
1The argon dewar only lasts one month before it needs to be refilled, so this is the longest the XIA can

continually run for at SMU.
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would affect the drifting of the ionization track through the argon gas as well as the Ramo-

Shockley field that induces a current in the readout electronics. Both of these effects should

be reflected as changes in the rising edge of the raw event pulses. The following study

attempts to find a difference in pulse shapes in a dedicated manner.

A.2.1. Source Locations

To test for different pulse shapes, a measurement program was designed to systematically

place a 230Th alpha source at various positions on and off a 4 inch square copper sample shown

in Fig. 1.5. As a control group, the same positions were repeated without the sample. This

approach has two added advantages: it can show whether the pulses have any positional

dependence within the counter, and also show how a conductive sample might alter the

electric field that the ionization track experiences. The latter can be extracted by comparing

pulse shapes at the same position with and without the sample present.

Figure 1.5: XIA tray shown with the square sample and round alpha source at different
locations. Notice that positions 1-3 are on the sample and 4-7 are on the tray.
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A.2.2. Data Runs

The data taken with the source at each position was saved in the folder xia_analysis/

pulse_shape_study on the XIA laptop and /data/xia/pulse_shape_study on Hertz (pre-

viously was Juno). The name of the file is created as: <date>_<time>_purge<time to

purge in minutes>_<risetime cut in µs>_<counting area in cm2>_<identifying informa-

tion>. The runs are as follows:

• 150706_1307_purge60_40_707_sample_position1

• 150707_1404_purge60_40_707_sample_position2

• 150708_1255_purge60_40_707_sample_position3

• 150709_1226_purge60_40_707_sample_position6_crashed

• 150710_1121_purge60_40_707_sample_position6

• 150713_1603_purge60_40_707_sample_position7

• 150715_1502_purge60_40_707_nosample_position7

• 150716_1337_purge60_40_707_sample_position5_crashed

• 150717_0926_purge60_40_707_sample_position5

• 150720_2038_purge60_40_707_nosample_position5

• 150722_2116_purge60_40_707_sample_position4

• 150723_2113_purge60_40_707_nosample_position4

• 150724_2120_purge60_40_707_nosample_position1

• 150726_2230_purge60_40_707_nosample_position2
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• 150727_2230_purge60_40_707_nosample_position6

• 150728_1830_purge60_40_707_nosample_position3

A.2.3. Analysis and Results

This study will focus on the rising edge of the pulses here, but parallel studies analyzed

the curvatures at the top and beginning of the pulse as well as the negative slope of the pulse

after tR.

In order to focus on the shape instead of the normalization, the baseline noise was

subtracted from each pulse. Then a straight line was drawn between the points that corre-

sponded to 20% and 90% of the pulse height [132]. The purpose of choosing these percents

was to avoid the curvature at the top and bottom of the pulse. The underlying assumption

is that a good pulse originating from the sample should be linear like Fig. 1.6, whereas a

curved pulse like Fig. 1.7 is assumed to be from the tray. Three different methods were used

to discriminate between pulses based on their shape.

A.2.3.1. Method 1: Rising Slope

The first approach was to linearly fit the pulse from 20% to 90% the pulse height and

extract the slope. The results are plotted in Fig. 1.8. However, this will not account for any

amount of curvature and would give the same result as a linear rise. In hindsight, a better

approach would be to find the slope at the 20% point; this should show a stronger deviation

for a nonlinear pulse.
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Figure 1.6: An example of linearly fitting a straight pulse from 20% to 90% the pulse
height. Also seen here is the baseline fit from 0 µs to about 80 µs. The red line is the
signal that comes from the anode electrode and the blue line is from the guard electrode.
The lack of any identifiable signal on the guard electrode indicates that this is an event
that occurred near the middle of the counter tray; in this case it is from position 1 from the
middle of the sample.

Figure 1.7: An example of linearly fitting a curved pulse from 20% to 90% the pulse height.
Also seen here is the baseline fit from 0 to about 50 µs. The red line is the signal that
comes from the anode electrode and the blue line is from the guard electrode. Seeing a
larger signal on the guard electrode indicates that this is an event that occurred at higher
radius on the counter tray; in this case it is from position 7.
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Figure 1.8: This is a smoothed histogram of the rising slope of each pulse. Each color
corresponds to a different position. Solid lines are with the sample present and dotted lines
are without the sample.
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A.2.3.2. Method 2: Anode Integral

The second approach was to integrate the pulse shape from 20% to 90% the pulse height

using a built-in function in ROOT [133]. When taking the integral of a TGraph, ROOT

will connect the first point to the last point and find the area enclosed; by definition this is

inherently a positive value. This method gives an area that approaches zero for a linear rise

and a larger integral for a larger amount of curvature. This is useful for gauging how much

curvature is in a particular pulse, but does not provide any information as to whether the

pulse is convex or concave. The results from this integration are shown in Fig. 1.9.

Figure 1.9: This is a smoothed histogram of the integral of the anode using ROOT
integration. This always returns a positive integral, which is indicative of the nonlinearity
of the pulse but not the concavity.
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A.2.3.3. Method 3: Integral Difference

The third approach was to manually calculate the area enclosed between the pulse and

the linear fit. This was done by using trapezoidal approximations to integrate under each

curve and take the difference. This should sound the same as the method above, except

that it gives negative areas if the pulse is convex. Therefore, this method has the most

discrimination power of the three. The results are shown in Fig. 1.10.

It appears that placing a cut at 0 would successfully remove most of the events from

positions 6 and 7 and some of the events from position 5. This is a promising start to

a discriminator because it keeps all of the events from positions 1-3 that originated from

the sample. However, more work is needed to refine this approach because the events from

position 4 are not from the sample yet still pass this cut. As seen in Fig. 1.5, position 4 is

closest to the sample without being on it, so it comes as no surprise that this is the most

difficult to differentiate from the sample events.

A.2.4. Conclusion

As current progress stands, it is not clear how to differentiate between a pulse that

originated from the sample and one that originated from the tray. I was hoping to see a

clear dichotomy either between the positions on the sample (1-3) versus those on the tray

(4-7), or for a position with and without the sample present.

As it turns out, there is very little discrimination power from the slopes since all of

the distributions peaked between 35 − 40 ADC/µs. Unsurprisingly, the anode integral and

integral difference distributions are similar, except for a relative absolute value between them.

It appears that the peaks of these distributions follow more of a continuum across the seven

positions instead of separating into two distinct populations. There is not a clear value in

any of the calculated quantities to place a cut. However, despite being a simple study that
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Figure 1.10: This is a smoothed histogram of the integral difference defined as the area
under the pulse minus the area under a linear fit. It is similar to the anode integral, but
accounts for both positive and negative curvature of the pulse.
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could benefit from more powerful analysis tools, there is a small glimmer of hope that a

pulse shape discriminator could eventually work, especially with Method 3.

One clear conclusion that can be drawn from this study is that there is not a significant

difference between the solid and dotted lines in each of Fig. 1.8, Fig. 1.9, and Fig. 1.10. This

means the presence of a conductive sample in the electric field is negligible. This conclusion

is verified by simulations of the electric field done in a separate study [134]. A 2-dimensional

slice of the electric field from that study can be see in Fig. 1.11.

Figure 1.11: Simulated electric field in the XIA with field lines and field density
gradient [134]. If you look very closely, you can see the vertical black lines bend slightly
inward towards the edge of the sample. This simulation confirms the minimal effect the
conductive sample has on the electric field in the alpha counter.

A.2.5. Future Work

One interesting feature in need of more exploration is that positions 6 and 7 curves show

two populations in all three calculated quantities. It would require looking at individual

pulses to see what might be causing this, but the farthest positions lose some energy to the

guard electrode so it is possible an energy cut removes this feature.

There are a few other ideas that could build upon this study.
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• As mentioned above, Method 1 should be changed to be the slope at 20% instead of

the average slope from 20% to 90%.

• Using another ROOT function, a TProfile should be made for each position. TProfiles

can be used to average all pulse shapes to smooth individual fluctuations, which will

reveal any systematic differences between the positions.

• Applying quality cuts to the data should clear up the distributions, specifically an

energy cut to select events expected from the source.

• Repeat the experiment with a different sized sample. It would be interesting to see

if the pulse shapes actually depend on whether they originated from the sample or if

they simply depend on the radius of the source location.

Here are also some ideas to improve the sensitivity of the XIA alpha counter:

• Use a tray liner with lower activity than the conductive teflon. We are currently

experimenting with ultra-low activity electroformed copper made by SuperCDMS col-

laborators at PNNL. The biggest drawback is they are thicker than the teflon and the

XIA only has 0.25 inch clearance to begin with, so the copper liners will limit the

thickness of samples that can be measured.

• Active muon veto panels around the XIA could be used to trigger incoming cosmogenic

events so they can be removed using anti-coincidence.

• Although the LUMINA laboratory at SMU is in a basement with three stories above

it, moving the XIA to operate underground would greatly reduce the cosmogenic back-

ground rate. Unfortunately, this type of space does not exist at SMU (that I know of).

Fortunately, a SuperCDMS collaborator at SNOLAB has recently acquired an XIA

UltraLo-1800 and plans to eventually move it underground, which will be beneficial

for screening samples with better sensitivity than the XIA at SMU.
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Appendix B

RADON EMANATION AT PNNL

As dark matter direct detection experiments are pushing technological limits to explore

smaller dark matter masses and cross-sections, they will require assays of ultra-low radon

levels to mitigate sources of background. Commercially available devices do not have the

requisite sensitivity, thus the need arises to build a custom system to measure radon ema-

nating from materials. This appendix will describe a new radon emanation system built and

commissioned at Pacific Northwest National Laboratory (PNNL).

B.1. Radon Emanation Systems

Radon emanation systems are designed to capture the radon that was emanated, or

emitted, from a particular sample and to then pass those radon atoms to a sensitive alpha

detector. The basic steps of operation of a typical radon emanation system are as follows:

1. Put the sample in a vacuum chamber, rinse it with low-radon gas, and evacuate to low

pressure.

2. Seal the chamber and allow the sample to emanate for ∼ 1 week, which should allow

the radon to reach equilibrium.

3. Open the chamber, use a carrier gas to transfer the radon atoms to a radon trap, and

pump away the rest of the gas from the chamber.

4. Release the radon atoms from the trap and load them into the detector.

5. Connect the detector to a data acquisition system to detect alpha decays from the

radon.
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B.1.1. The PNNL System

Figure 2.1 shows a schematic of the custom radon emanation system at PNNL. The

primary flow path begins with a cylinder of compressed helium that is used as a carrier gas.

There are two vacuum chambers of different sizes that can be connected to the system for

emanating samples: a “small chamber” (0.3 L) that can be seen in Fig. 2.2, and a “large

chamber” (35 L) that is more practical for containing assay samples. Downstream of the

emanation chamber is a silica dessicant loop to remove any water that may have outgassed

from the sample. Following the silica loop is a cryogenic radon trap made from a coil of

narrow tubing that bottlenecks the gas flow and is submerged in a liquid nitrogen dewar.

The melting point of radon is 202 K, so the 77 K liquid nitrogen is cold enough to freeze

the radon inside the tubing. A gas commonly used for proportional counters, called P-10

(10% methane, 90% argon), is used to load the radon from the trap into the detector. There

are two pumps to control the gas flow through the panel: a primary roughing pump for

evacuating larger volumes of gas, and a secondary turbomolecular pump for achieving a high

vacuum. There is also a Residual Gas Analyzer that can be used to determine if the system

is leaking and room air is seeping in.

In order to intentionally insert radon into the system, a 100 Bq calibrated Pylon flow-

through source can be connected to the panel via quick-connect fittings. The source consists

of 226Ra powder that is contained by a fine mesh. The radium decays to gaseous 222Rn,

which can be carried away by gas flowed through the 0.1 L source. Quick connect adapters

were added to both sides of the custom gas flow panel, shown in Fig. 2.2. A port on the left

side of the system allow radon to be pushed through the panel as if it had emanated from a

sample, while a port on the right side of the system provide the ability to load radon directly

into the detector. Both of these connections are important for efficiency measurements where

the amount of radon detected is compared to the initial activity.
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Figure 2.1: Schematic view of the radon emanation system at PNNL. The primary flow
path travels from left to right from the He carrier gas, to the emanation chamber, to the
silica drying loop, through the cryogenic radon trap, and into the detector.
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Figure 2.2: Picture of the front panel of the radon emanation system at PNNL. The blue
knobs on the left and right side of the panel indicate the ports for connecting the
calibrated radon source, which is the black canister in the lower right. The silver device
hanging below the monitor on the left side is the small emanation chamber. The tall silver
dewar sitting on the table is filled with liquid nitrogen and the radon trap is coiled inside.
The prototype ULBPC is the copper tube behind the keyboard. Except for the manual
blue knobs, all of the valves on the central portion of the panel are pneumatically
controlled by the computer.
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B.1.2. ULBPC

The radon emanation system at PNNL is the only such system to utilize an ultra-low-

background proportional counter (ULBPC), shown in Fig. 2.3b. The ULBPC was designed

by experts at PNNL to have a higher detection efficiency and less background than the

silicon diode detectors typically used with radon emanation systems [82]. The ULBPC was

traditionally used for detection of low-energy betas and x-rays from argon, but they proved

to be adept at detecting high-energy alphas from radon as well.

(a) Pictured is the prototype ULBPC used for
most of the measurements shown here. There
was a small leak, so the end of the tube was
dipped in TorrSeal, which led to the prototype
getting its nickname “Marshmallow.” It does
not have the block of copper shielding that
new ULBPCs are made with, so it is
essentially just an electroformed copper tube
strapped to a piece of aluminum framing.

(b) Pictured is a typical ULBPC produced at
PNNL [82]. It is quite a bit heavier than the
prototype due to the solid block of copper
shielding around the inner tube. The
rectangular shape allows it to slot right into
the lead-shielded counting array in the
underground low-background facility.

Figure 2.3: The two ULBPC detector types that were used with the radon emanation
system.

There were two ULBPCs used with the PNNL radon emanation system. The first was an

early prototype (named “2-2”) that had minimal shielding. The lack of shielding meant this
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detector had higher background rates and was not sensitive to small amounts of radon, so

there were no qualms about contaminating it with high levels of radon to perform calibration

and efficiency measurements. The second detector (named “2RO1”) was newer, had more

shielding, and could be run underground in a low-background environment [135]. All of the

data in this appendix was taken with the prototype detector, except for the final spectrum

in Fig. 2.6.

B.1.3. Data Acquisition

The data acquisition system consists of the detector, a preamplifier, an in-line attenuator,

and a digitizer that connects to a computer. In order to determine the optimal voltage at

which to operate the detector, a range of bias voltages was tested from 1665 − 2250 V.

As the voltage increased so did the gain, so the attenuation had to be increased in order

to keep the energies within an energy scale that could be detected by the Multi-Channel

Analyzer (MCA). The amount of attenuation needed was determined by placing an 241Am

gamma source on top of the detector at the beginning of every run. The attenuation was

chosen so that the 60 keV x-ray emitted from the source was peaked at channel 500 (out

of 7 × 104 channels) of the MCA. This ensured a comparable level of gain between runs,

but the increased attenuation resulted in a compressed energy range for higher voltages.

Therefore, the energy scale needed to be manually calibrated as a function of voltage using

known features in the spectra.

B.1.3.1. Energy Calibration

Calibrating the energy scale can be summarized in a few basic steps:

1. Make a histogram of the MCA channels for a particular voltage, and fit each peak in

the spectrum with a Gaussian function to find the mean. Peaks corresponding to the
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decay of 222Rn, 218Po, and 214Po were clearly visible when the detector was loaded with

radon from the source. An example of this is shown in Fig. 2.4a.

2. Plot the mean channel for each peak versus the energy it is expected to have, as shown

in Table 2.1. The 241Am peak was included to constrain the calibration at low energy.

3. Fit a line to the data and extract the slope and intercept, as shown in Fig. 2.4b. This

linear function provides the calibration for any given energy, but only for this particular

voltage. Other functional forms were tested as well, but the linear function was found

to be the most accurate model.

4. Repeat the previous steps for each bias voltage and extract all the slopes and inter-

cepts. As seen in Fig. 2.4c, the slopes and intercepts each appeared to follow quadratic

distributions as a function of voltage. By fitting this data, the slope and intercept can

be calculated for any voltage and those values provide the energy calibration.

After energy calibration was complete, it can be seen in Fig. 2.4d that the energy res-

olution degrades for higher bias voltages, so a lower voltage bias was chosen for operation.

However, the detector cannot operate below 1665 V because the 60 keV peak from 241Am

falls below the detector threshold. All of the remaining data runs shown in this paper are

collected with the prototype and new detector operating near 1665 V.

B.2. Energy Region of Interest

After calibrating the energy scale for any detector bias voltage, it is important to measure

the intrinsic background rate of the prototype detector. In order to do that, an energy region

of interest (ROI) must be defined for the analysis.
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(a) Gaussian distribution fit to each of the
radon alpha decay peaks. The plot shown is
for the lowest voltage tested (1665 V). The red
curve corresponds to the 222Rn peak, the green
curve corresponds to the 218Po peak, and the
blue curve corresponds to the 214Po peak.

(b) Linear fit correlating measured MCA
channel to expected energy for each peak. The
plot shown is for the lowest voltage tested
(1665 V).

(c) Plot of extracted calibration parameters
from the linear fit for each voltage. The blue
curve is the slope of the fit in Fig. 2.4b, and
the red curve is the intercept, from each bias
voltage.

(d) Aligned post-calibration spectra for each
bias voltage. The vertical dashed lines indicate
the expected energies for each alpha decay.

Figure 2.4: Illustration of each step of the process to calibrate the energy scale.
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B.2.1. Detector Background

Figure 2.5 shows an energy histogram of the detector background taken with the pro-

totype detector. The first analysis range considered was 1 − 8 MeV in order to avoid the

low-energy noise wall, and the background rate was measured as 10 events/day. One major

contribution to this background rate is the falling background shape from running the de-

tector above ground and being exposed to cosmogenics. Another background contribution is

the small hint of a 210Po peak that is indicative of long-lived 210Pb contamination. This peak

will grow as the detector is sometimes loaded with high levels of radon for efficiency mea-

surements. In fact, over the course of a few months of tests and data taking, the background

rate doubled in the region of the 210Po 5.3 MeV alpha.

Figure 2.5: Histogram of prototype background spectrum. The vertical orange and cyan
bars indicate the ROI bounds, while the vertical black dashed lines correspond to the
expected energy of the 222Rn, 218Po, and 214Po alpha decays, respectively.

A background of 10 events/day is much too high for proper commissioning tests, so a

cleaner part of the spectrum was considered from 6.5 − 8 MeV because it encompasses the
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214Po peak. This gives a background rate of 0.1 events/day. By avoiding the 210Po peak,

this rate also remains constant after months of loading the detector with radon.

B.2.2. Detector Efficiency

Since the analysis ROI is so restricted, it is natural to wonder how this effects the detec-

tion efficiency. In order to measure the efficiency, a detector is loaded with a known amount

of radon from the calibrated source, the event rate is calculated as a function of time, and

then the rate is extrapolated back to the beginning of the run when the radon activity was

known. In comparing efficiency of the two energy regions, the efficiency from 6.5 − 8 MeV

is about 10 times lower than 1 − 8 MeV. However, there is still enough of a signal to work

with while commissioning the emanation system.

B.3. Sensitivity

When characterizing a system such as this, it is critical to determine the sensitivity of

the system. This requires accurate measurements of the total background rate and the over-

all efficiency. There could be radon emanating from anywhere in the system, but the most

concerning sources are the chamber while emanating a sample, the panel while transferring

radon into the trap, and the detector when counting the radon alpha decays. The over-

all efficiency is also needed to calculate the sensitivity, which is the product of efficiencies

associated with each step of the assay procedure described in Appendix B.1.

B.3.1. Small Chamber Background

The background rate of the small chamber was measured by closing it and letting it

emanate, but the rate was shockingly 50 times higher than the detector background. It was

possible that this was coming from the panel during the transfer from the small chamber, so

the panel was isolated by doing a “zero-emanation” run, and background was still 30 times
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high. This number cannot be directly subtracted from the original rate to say the chamber

is 20 times higher than the detector background because of different counting times, but

there was clearly still a source somewhere on the panel. On the back of the panel is a triple

filter that is filled with beads of unknown material for filtering the helium as it flows into

the panel. After bypassing the helium filter, the silica drying loop, and the small chamber

the nominal background rate of 0.1 events/day was recovered. This was important because

it demonstrated the ability to identify and remove sources of undesired background.

It is also not obvious that the filter or silica loop are needed for assays, so the system is

still fully functional without them. However, the system does not work without an emanation

chamber, so the small chamber was reconnected and emanated for 18 days. A relatively small

rate of 0.45 events/day was measured. This was not a worrisome rate, but the 3 events in

the ROI showed suspicious timing, so there was reason to believe the actual rate might be

lower than this.

B.3.2. Large Chamber Efficiency

The large chamber is more practical for assaying samples, so the total background rate

and efficiency are needed to be measured to calculate the sensitivity of the system with the

large chamber attached. There are multiple stages throughout the emanation procedure that

affect the overall efficiency of the system. These include:

1. Transferring the radon to the trap

2. Trapping the radon

3. Loading the radon into the detector

4. Detecting the radon decays
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In order to measure the overall efficiency of the system with the large emanation chamber,

a known amount of radon was loaded into the chamber. Since the volume of the large chamber

is 350 times bigger than that of the radon source, a modified procedure was needed to load

radon into the large chamber. The pylon source was closed and allowed to build up radon for

a predetermined length of time so that the initial activity is known. Then helium is used to

push the radon from the source to the chamber, followed by the normal transfer procedure

as if the radon in the chamber had emanated from a sample. This process was repeated

twice, resulting in a livetime-weighted average efficiency of 8.08± 0.14%.

B.3.3. Large Chamber Background

The final piece needed to estimate the sensitivity is the background of the system with

the large chamber connected. The chamber was emanated for 18 days and 3 events appeared

in the ROI while counting for 5.5 days. As with the small chamber background run, these

events portrayed very suspicious timing behavior. Typically, an exponentially falling rate is

expected where most of the events are detected quickly. Instead, with this run there were

0 events for 2.4 days before the 3 events were detected in the last 3 days. It was hypothesized

that this behavior was caused by radon getting trapped inside the detector from previous

high-radon efficiency runs and diffusing out slowly during subsequent background runs. To

test this theory, the previous measurement was repeated after waiting > 1 week. This

was enough time for any carryover radon to undergo two half-lives, which is a reduction

by a factor of four. This resulted in only 1 event in the ROI with a more believable time

signature during 5.7 days of counting. Due to limited statistics, it is difficult to extract

much information from a single event, so 100% uncertainty was assumed to calculate an

upper bound. Even with this conservative uncertainty, the blank rate of the large chamber

was determined to be < 100 µBq or < 50 radon atoms in equilibrium.
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This level of sensitivity is comparable with the best radon emanation systems in the

United States [136]. It is worth emphasizing that this was achieved with the prototype

detector, operating above ground, and using a restricted energy range.

B.4. Outlook

There is reason to believe a superior sensitivity can be achieved by using the new detector

in the shallow underground laboratory low-background counting facility [135]. Figure 2.6

shows a calibration and background run taken with this setup. In order to avoid contami-

nating the new detector, the calibration sample loaded was much smaller than those loaded

into the prototype, but it was still enough to see the alpha peaks. The background spectrum

is much cleaner than the prototype since the low-energy background from running at the

surface is gone and there is no 210Po peak from long-lived contamination.

Figure 2.6: Overlaid spectra taken with the new detector in PNNL’s shallow underground
low-background counting facility. The black calibration data was from loading radon into
the new detector, and the blue data is the background of the detector. Notice how much
cleaner the blue spectrum is from 1− 6 MeV as compared to Fig. 2.5.

The broad energy range from 1− 8 MeV results in a measured background rate of 1.07±

0.27 events/day. However, the background dwindles around 2 MeV, which suggests that

2 − 8 MeV is a more optimal energy range. Considering this energy range, the background

rate is cut to 0.56± 0.21 events/day without a significant loss of efficiency.
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B.4.1. Future Plans

To begin with, the assay procedure should be optimized. It is possible that the transfer

process is not optimal and can be improved by oscillating the flow rate through the chamber

to ensure all of the radon atoms are removed. The reproducibility of results can also be

improved by automating the transfer procedure.

Once the assay process is improved, more accurate background measurements can be

taken to determine the sensitivity of the system using each chamber. A longer will be

required to bolster the low statistics of the background runs to calculate the sensitivity.

Thus far only the overall efficiency of the system has been measured, but it might be

possible to disentangle the detection efficiency of each alpha peak by using timing information

from the decay chain to remove correlations. This will lead to better understanding of the

ULBPC performance for detecting high energy alpha decays.

Finally, the PNNL radon emanation system can be used for assaying materials that rare-

event search experiments are interested in using. This is particularly relevant to wetted parts

of noble liquid experiments, such as LZ, because they are in direct contact with the active

volume of the detector [137]. It is also relevant to long-term storage of solid state detectors,

such as those used by SuperCDMS, in nitrogen purge boxes because the rubber gaskets used

to seal the purge box doors tend to emanate radon. A lot of caution is taken to avoid radon

contamination during fabrication, so storing the detector in a sealed box with a radon source

would defeat all of those precautions.
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Appendix C

SOUDAN IZIP RESOLUTION

Described in Section 3.1.2, the SuperCDMS experiment at Soudan operated 15 germa-

nium detectors that measured ionization and phonon energy deposited by incident particles.

In an effort to completely understand the response of each unique detector, it is critical to

determine the energy resolution as a function of energy. This is done by measuring the width

of known mono-energetic features in the data across a wide range of energy. Then a model

is fit to those measurements to obtain the energy resolution as a function of energy for each

detector.

Before describing the following study, I must disclose my pet peeve with respect to

resolution. When a resolution is better it is said that it increases, but the width of the features

actually decreases. Therefore, to avoid confusion, I will refrain from using terms implying

size such as increase/decrease and bigger/smaller, and will instead use terms describing

performance such as improve/degrade and better/worse. I wish that everybody would adopt

this practice.

C.1. Data Used

This study primarily used iZIP data collected between March 2012 and July 2013 (R133),

though the type of data depended on which peak was being measured. Each type of data is

defined in Section 3.1.3. The low-bg data was used to find the 0 keV, 10.37 keV, and 511 keV

peaks. Barium calibration data was used to fit the 356 keV peak. There were not enough

statistics in the R133 californium calibration data to clearly identify the 66.7 keV peak, so

R134 data (collected between July 2013 and July 2014) was added.
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The energy quantities in this study follow the nomenclature of Section 3.1.3.4:

qsummaxOF: max(qi1OF + qo1OF, qi2OF + qo2OF)

qsummaxOF0: max(qi1OF0 + qo1OF0, qi2OF0 + qo2OF0)

ptNF: phonon total pulse energy from summing the pulses in all channels and running the

summed pulse through NF

ptOF0: same as above but fixing the start time (see quote below)

From an internal note, “A brief aside on the OF0 quantities vs the OF quantity: The

OF0 quantities have a forced start time. This prevents the OF from performing a search

for the time that maximizes the OF amplitude which will have a tendency to be biased

towards a positive amplitude due to it picking up preferentially on large noise fluctuations.

By fixing the start time then we expect the OF0 quantities for random triggers to reflect a

Gaussian centered at 0 with a sigma corresponding to the resolution of the particular channel

in question.” [138, 139]

C.1.1. Cuts

A number of different cuts were used to locate the desired data features. All of the

cuts used in this study were developed by the SuperCDMS High-Threshold (HT) analysis

group [140,141]. The cut names are appended with processing tags that are not relevant for

this study, such as “_v53,” “_133,” and “_HT.” The only cut applied to all five peaks in

this study was the general quality cut, cGoodEv_v53.

The following list of cuts were used in various combinations to isolate the data features

measured in this study.
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cGoodEv_v53: umbrella quality cut to remove bad events, bad series, and poor quality

data

cRandom_133: selects randomly triggered events to sample the electronic noise (known

as “randoms”)

cGoodRandomChi2_v53_HT: uses χ2 value to remove physical pulses that accidentally

show up in random events

cQin1_v53: charge fiducial cut selects the inner charge channel on side 1 of the detector

to remove high-radius events

cQin2_v53: charge fiducial cut selects the inner charge channel on side 2 of the detector

to remove high-radius events

cPostCf_133_HT: selects the data collected within 48 hours of exposure to the 252Cf

neutron source

cQsym_v53: charge symmetry cut defined in Section 3.1.2.2 to select the bulk of the

detector

ytNF: not directly a cut, this is the yield quantity defined in Section 3.1.2.1, but a cut was

used to select gammas with high yield

Except for the 0 keV peak that will be described below in Appendix C.2.1, a few basic

quality cuts were applied to the other four peaks. Due to the shape of the electric field,

there is a region at high radius where events do not experience the full NTL gain. These

events were removed with the charge fiducial cuts cQin1_v53 and cQin2_v53 to prevent

low-gain events from creating low-energy tails for each peak and artificially widening the

resolution. Random events were also removed with !cRandom_133.

C.1.2. Detector Shorts
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Each of the crystal detectors is unique and has its own strengths and weaknesses. Without

diving into the fabrication history for all 15 detectors, it was important to know which

detectors had shorted channels and which did not. Therefore, peaks found to be asymmetric,

abnormally small, or mis-calibrated could be attributed to a known channel short. The

following lists contain all of the known shorts on charge or phonon channels; some detectors

are on both lists.

Charge Shorts:

• iZIP 2 (T1Z2): QIS1, QOS1

• iZIP 3 (T1Z3): QIS1, QOS1

• iZIP 10 (T4Z1): QIS1

• iZIP 13 (T5Z1): QIS1, QOS1

• iZIP 14 (T5Z2): QOS1

• iZIP 15 (T5Z3): QOS1

Phonon Shorts:

• iZIP 2 (T1Z2): PAS2, PCS2

• iZIP 3 (T1Z3): PAS1

• iZIP 6 (T2Z3): PBS1, PDS1

• iZIP 13 (T5Z1): PAS1

• iZIP 15 (T5Z3): PCS2

C.2. Fitting Peaks

There are too many plots to show the fits for all 15 detectors, so only iZIP 4 (T2Z1) will

be shown as an exemplar. This was one of the better-behaved detectors without shorts, and

it was the detector used for CDMSlite R3.

Each of the peaks below was expected to be Gaussian or nearly-Gaussian. Some rudi-

mentary background modeling was included to get better fits to the data in the particular

energy range of interest. However, the only parameters extracted from the fit were the mean

and width of the desired peak, with their respective uncertainties. The width is defined

as the full width at half the maximum (FWHM). Each of the following energy histograms

has a maximum value at the mean of the Gaussian, so half of that maximum corresponds
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to energies above and below the mean; the resolution is the difference between those two

energies.

As explained in Section 0.2, the energy scales for charge and phonons are different because

of the NTL gain. All of the peak energies are referred to in units of keVee, which matches the

charge energy scale. The phonon energy scale is in keVt, which is a factor of approximately

2.3 times higher for a bias of 4 V across the crystal.

C.2.1. 0 keV

The 0 keV peak is different from the other peaks because it is essentially a lack of

physical pulse, and therefore had its own set of cuts to select empty noise events. The

way SuperCDMS samples noise is by randomly issuing a trigger in the electronics without

a physical impetus; this class of events are called “randoms”. These random events were

selected using cRandom_133, and cGoodRandomChi2_v53_HT was used to remove

any events with abnormally high χ2 valuess.

This peak can be seen in zero-delay quantities from in-run random triggers. These

are sometimes referred to as “noise blobs” because they are random noise events that are

amorphously centered around zero. Zero-delay quantities (appended with 0) were used to

prevent a bias from the OF preferentially finding large noise fluctuations. However, the

“max” algorithm selects the side with the larger energy so there is still a slight positive bias

and the peaks are not centered exactly at 0 keV. This fit was a single Gaussian without

constraints on any of the parameters. Figure 3.1 demonstrates the fit for the total charge

and phonon energies on iZIP 4 (T2Z1), while Table 3.1 and Table 3.2 show the parameters

extracted from the fits.

The first thing to point out for these fits is that the data is more sharply peaked than the

Gaussian function. This is systematically true for all of the detectors, but it is not clear why
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(a) Measuring charge resolution at 0 keVee for
iZIP 4 (T2Z1).

(b) Measuring phonon resolution at 0 keVee
(also 0 keVt) for iZIP 4 (T2Z1).

Figure 3.1: The peaks appear to be more sharp than the Gaussian fit, which is
systematically true for all of the detectors. Also, there is usually a tail at low energy, high
energy, or both. It is not clear why the data does not follow a strictly Gaussian
distribution.

Det Mean [keVee] Error 1-sigma [keVee] Error χ2/NDF % Mean Inaccuracy
1 1.95e-1 3.69e-4 4.08e-1 2.95e-4 372.02 N/A
2 2.18e-1 3.27e-4 3.58e-1 2.58e-4 415.43
3 2.57e-1 4.27e-4 2.91e-1 3.59e-4 13275.65
4 3.06e-1 4.01e-4 4.55e-1 3.59e-4 726.84
5 2.44e-1 3.48e-4 3.89e-1 2.76e-4 519.03
6 2.71e-1 4.54e-4 4.14e-1 3.45e-4 333.54
7 2.00e-1 3.20e-4 3.04e-1 2.41e-4 460.04
8 1.99e-1 3.36e-4 3.45e-1 2.61e-4 1088.53
9 2.24e-1 3.34e-4 2.99e-1 2.53e-4 473.59
10 2.20e-1 4.21e-4 3.71e-1 3.58e-4 1234.33
11 2.37e-1 3.89e-4 3.57e-1 2.94e-4 602.84
12 2.56e-1 3.35e-4 3.63e-1 2.48e-4 692.93
13
14 2.53e-1 4.17e-4 4.31e-1 3.17e-4 605.22
15 2.38e-1 4.07e-4 4.31e-1 3.25e-4 972.10

Table 3.1: Parameters extracted from fitting the 0 keVee charge peak for all detectors.
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Det Mean [keVt] Error 1-sigma [keVt] Error χ2/NDF % Mean Inaccuracy
1 -1.66e-2 2.37e-4 2.61e-1 2.12e-4 1179.23 N/A
2 2.50e-2 2.62e-4 2.87e-1 2.27e-4 944.76
3 2.83e-2 2.40e-4 2.91e-1 2.04e-4 911.32
4 -7.02e-3 1.60e-4 1.81e-1 1.38e-4 890.17
5 2.74e-2 1.78e-4 2.03e-1 1.55e-4 828.67
6 1.04e-2 3.50e-4 3.29e-1 3.15e-4 691.45
7 -3.31e-3 6.04e-4 5.72e-1 5.63e-4 630.31
8 -3.38e-2 3.53e-4 3.72e-1 3.29e-4 1456.47
9 -1.34e-2 3.70e-4 3.32e-1 3.39e-4 1001.61
10 -2.87e-2 3.34e-4 3.20e-1 3.09e-4 921.04
11 -3.42e-2 2.97e-4 2.80e-1 2.82e-4 1275.79
12 -1.83e-2 1.96e-4 2.19e-1 1.77e-4 1862.76
13 -2.27e-3 7.61e-4 7.02e-1 6.91e-4 297.18
14 1.91e-2 1.71e-4 1.86e-1 1.47e-4 954.30
15 1.27e-2 1.88e-4 2.17e-1 1.54e-4 382.17

Table 3.2: Parameters extracted from fitting the 0 keVee (also 0 keVt) phonon peak for all
detectors.
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they do not follow the expected Gaussian distribution. Regardless, these are very stable fits

and the Gaussian does accurately represent the rising and falling sides of the peak. The only

consequence of the sharpness is that the widths will be slightly wider because the FWHM is

calculated at a lower height due to the lower maximum.

Regarding the tables, calculating the percent error for the mean not being located at

zero results in errors approaching infinity, so this column was left blank. Also, the χ2/NDF

values are all very large because the fits do not match the peaks of the data where bins that

disagree by thousands of events.

Despite not being shown in Fig. 3.1, other detector-specific results are:

• The charge channel on iZIP 3 has very few statistics and a large spike on the lower

energy side, which is why its χ2/NDF is so much worse. However, there is still a low

energy tail on the other side of the spike that fits the expected Gaussian distribution

so this detector isn’t excluded from the results.

• The charge channel on iZIP 13 has no statistics for qsummaxOF0 < 0, so it was

excluded altogether.

C.2.2. 10.37 keV

The 10.37 keV peak is also referred to as the germanium K-shell and its origin is described

in Section 3.1.3.2. This peak is extremely useful in many analyses and calibrations because

it is uniformly distributed throughout the crystal and has a high signal-to-background ratio.

The 10.37 keV peak can be found in the data collected immediately after exposure to a 252Cf

neutron calibration source, which was selected using cPostCf_133_HT.

To accurately fit the peak, a linear background model and an exponential background

model were included. A second Gaussian function was also included because there are
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cosmogenic x-rays around 8.98 keV and 9.66 keV that can be close enough to create a low-

energy shoulder to the K-shell [142]. For this fit, the mean and sigma of the two Gaussians

were constrained to ensure they were finding the correct peaks; the linear and exponential

background parameters were left free. Figure 3.2 demonstrates the fit for the total charge

and phonon energies on iZIP 4 (T2Z1), while Table 3.3 and Table 3.4 show the parameters

extracted from the fits.

(a) Measuring charge resolution at 10.37 keVee
for iZIP 4 (T2Z1).

(b) Measuring phonon resolution at
10.37 keVee for iZIP 4 (T2Z1).

Figure 3.2: This detector is a prime example where you can see how the NTL gain in
phonon energy actually separates the K-shell from the cosmogenic x-ray peak.

Despite not being shown in Fig. 3.2, other detector-specific results are:

• Due to a phonon short on iZIP 3, the peak appears at ∼ 2/3 the expected energy.

• Some detectors (such as iZIPs 1, 2, 4, 5, 12, and 14) have a larger phonon χ2/NDF

because there appears to be a third peak that is not accounted for in the fit (e.g. the

bump in Fig. 3.2b at 18 keVt). This is likely from the 8.98 keV cosmogenic x-ray getting

separated from the 9.66 keV x-ray by the NTL gain. Another peak could have been

added to the fit, but the important result is getting an accurate fit for the 10.37 keV

peak and this other peak is separated enough that it was not expected to improve the

K-shell fit. The other two peaks were not included in the resolution measurements

because they did not reliably show up in all detectors, and they are close to 10.37 keV
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Det Mean [keVee] Error 1-sigma [keVee] Error χ2/NDF % Mean Inaccuracy
1 10.61 0.05 0.43 0.04 1.53 2.46
2 10.53 0.05 0.45 0.04 1.17 1.66
3 10.55 0.04 0.52 0.04 1.55 1.80
4 10.71 0.06 0.33 0.01 0.69 3.42
5 10.50 0.02 0.43 0.02 0.88 1.33
6 10.29 0.21 0.79 0.14 1.17 -0.64
7 10.53 0.08 0.36 0.07 1.42 1.68
8 10.48 0.04 0.35 0.04 1.71 1.16
9 10.54 0.23 0.51 0.14 1.46 1.72
10 10.69 0.24 0.62 0.29 0.81 3.16
11 10.63 0.03 0.57 0.03 2.15 2.64
12 10.59 0.05 0.43 0.04 0.55 2.24
13 10.73 0.13 0.50 0.13 0.73 3.53
14 11.13 0.06 0.33 0.06 1.33 7.41
15 10.67 0.06 0.50 0.07 0.50 3.01

Table 3.3: Parameters extracted from fitting the 10.37 keVee charge peak for all detectors.
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Det Mean [keVt] Error 1-sigma [keVt] Error χ2/NDF % Mean Inaccuracy
1 23.98 0.05 0.67 0.05 1.59 0.64
2 24.73 0.05 0.84 0.05 1.30 3.80
3 17.55 0.06 0.55 0.07 0.93 -26.35
4 23.80 0.05 0.64 0.004 0.93 -0.13
5 23.90 0.02 0.51 0.02 3.14 0.29
6 21.71 0.43 1.78 0.33 0.65 -8.88
7 24.45 0.19 0.53 0.20 0.62 2.63
8 24.11 0.08 0.75 0.07 1.09 1.18
9 24.27 0.14 0.69 0.15 1.03 1.84
10 24.94 0.08 0.53 0.07 1.06 4.69
11 23.85 0.07 0.77 0.07 0.89 0.08
12 24.09 0.04 0.63 0.04 0.95 1.11
13 23.95 0.58 3.57 0.51 1.00 0.52
14 24.19 0.05 0.75 0.04 1.38 1.51
15 24.77 0.08 0.79 0.07 0.92 3.95

Table 3.4: Parameters extracted from fitting the 10.37 keVee phonon peak for all detectors.
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so they do not provide new information when attaining the resolution as a function of

energy.

• iZIPs 8 and 12 have a large spike of events at the lowest energy on the plot. This

changes the scale on the y-axis to make the peaks appear small, but comparing the

number of counts confirms that they contain the same level of statistics as the other

well-behaved peaks.

• The low-energy end of the fit function has a strange up-turn for iZIP 12. This is just an

artifact of the boundary and can be ignored because the 10.37 keV peak is well-fitted.

• There is no discernible peak in the phonon spectrum for iZIP 13. This detector is

consistently one of the poorest.

C.2.3. 66.7 keV

The 66.7 keV peak comes from a prompt gamma ray that is described in Section 3.1.3.2.

It is found in the californium neutron calibration data, which is only collected every few

months, so there were only four periods of data in R133: April 2012, August 2012, January

2013, and July 2013. This was not enough statistics for a clear peak to emerge, so the

data was bolstered by including the R134 californium calibration data, which also had four

periods: December 2013, February 2014, May 2014, and July 2014. The charge symmetry

cut cQsym_v53 was also used for additional fiducialization by removing events collected

near the faces of the detector. The 66.7 keV gamma events are approximately uniformly

distributed throughout the crystal, so selecting the bulk of the crystal provides a higher

signal-to-background ratio.

To accurately fit the peak, a linear background model and an exponential background

model were included. For this fit, the mean and sigma of the Gaussian were constrained

to ensure that it was finding the peak; the linear and exponential background parameters
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were left free. The data also had to be re-binned to make the peak more obvious against the

background. This was the most biased peak search in this study, but it was useful to have a

resolution measurement between the 10.37 keV and 356 keV peaks. Figure 3.3 demonstrates

the fit for the total charge and phonon energies on iZIP 4 (T2Z1), while Table 3.5 and

Table 3.6 show the parameters extracted from the fits.

(a) Measuring charge resolution at 66.7 keVee
for iZIP 4 (T2Z1).

(b) Measuring phonon resolution at 66.7 keVee
for iZIP 4 (T2Z1).

Figure 3.3: This peak is the least stable fit as even on the best detector the signal is only
tens of counts above background per bin.

In general, shorted channels seemed to have more of an impact on this peak than the

others; perhaps this is because it has the lowest signal-to-background ratio.

Despite not being shown in Fig. 3.3, other detector-specific results are:

• Due to a phonon short on iZIP 3, the peak appears at ∼ 2/3 the expected energy.

C.2.4. 356 keV

The 356 keV peak comes from the decay of 133Ba that is used as a high-rate gamma

source. It is deployed regularly, so there is plenty of data to work with as evidenced by the

number of events and finer binning in the energy histograms. In order to select the 356 keV
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Det Mean [keVee] Error 1-sigma [keVee] Error χ2/NDF % Mean Inaccuracy
1 66.49 0.23 1.22 0.29 1.35 -0.31
2 67.15 0.18 0.97 0.16 1.24 0.67
3 68.02 0.36 2.09 0.45 0.79 1.97
4 66.47 0.16 1.26 0.17 0.74 -0.34
5 66.68 0.19 1.19 0.16 1.05 -0.04
6 64.97 0.32 1.34 0.35 1.42 -2.60
7 67.64 0.15 0.85 0.16 0.82 1.41
8 67.36 0.30 1.27 0.26 1.00 0.99
9 67.13 0.22 1.22 0.22 1.15 0.64
10 68.05 0.80 2.67 0.94 0.63 2.02
11 68.09 0.15 0.36 0.33 1.31 2.09
12 67.27 0.18 1.03 0.20 0.94 0.85
13 68.24 0.65 2.56 0.96 1.19 2.32
14 67.70 0.46 1.32 0.30 0.91 1.49
15 68.58 0.32 0.81 0.26 2.20 2.82

Table 3.5: Parameters extracted from fitting the 66.7 keVee charge peak for all detectors.
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Det Mean [keVt] Error 1-sigma [keVt] Error χ2/NDF % Mean Inaccuracy
1 154.65 0.41 2.72 0.45 1.32 0.81
2 155.04 0.16 0.39 0.16 0.86 1.06
3 115.47 0.37 2.57 0.39 1.05 -24.73
4 154.87 0.36 3.20 0.43 1.05 0.95
5 153.64 0.34 3.12 0.39 0.92 0.15
6 150.00 9.03 4.75 1.85 0.73 -2.22
7 155.62 0.64 3.46 0.57 0.92 1.44
8 154.20 0.74 4.70 0.99 0.90 0.51
9 155.76 0.56 2.96 0.82 0.95 1.53
10 159.02 0.88 3.20 0.74 1.21 3.65
11 157.00 1.06 4.09 1.19 1.25 2.34
12 156.61 0.64 4.62 0.69 0.73 2.08
13 154.30 0.07 1.45 0.72 0.98 0.58
14 154.18 0.98 2.87 0.67 1.73 0.50
15 154.57 0.68 0.81 0.44 0.64 0.75

Table 3.6: Parameters extracted from fitting the 66.7 keVee phonon peak for all detectors.
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gammas and remove the lower energy Compton scatters, a yield cut (ytNF > 0.95) was

applied.

To accurately fit the peak, a linear background model and an exponential background

model were included. Before the addition of the yield cut, there was a low-energy shoul-

der that sometimes manifested as a separate peak. Therefore, the mean and sigma of the

Gaussian were constrained to ensure that the correct peak was being fit. The linear and

exponential background parameters were left free. Figure 3.4 demonstrates the fit for the

total charge and phonon energies on iZIP 4 (T2Z1), while Table 3.7 and Table 3.8 show the

parameters extracted from the fits.

(a) Measuring charge resolution at 356 keVee
for iZIP 4 (T2Z1).

(b) Measuring phonon resolution at 356 keVee
for iZIP 4 (T2Z1).

Figure 3.4: The big 356 keV peak clearly stands out with so much data taken with the
gamma calibration source. The 383 keV peak is also visible here, although that is not the
case for every detector. The resolution of the 383 keV peak could have been measured for
some detectors, but being close in energy to the 356 keV peak makes it a redundant
measurement.

Despite not being shown in Fig. 3.4, other detector-specific results are:

• iZIP 12 has at least twice as many events as any other detector (in some cases 10x

more). This exaggerates the χ2/NDF even though the fit looks alright by eye.

• Due to a phonon short on iZIP 3, the peak appears at ∼ 2/3 the expected energy.

192



Det Mean [keVee] Error 1-sigma [keVee] Error χ2/NDF % Mean Inaccuracy
1 353.53 0.05 3.59 0.05 260.85 -0.69
2 355.27 0.14 3.47 0.16 1.45 -0.21
3 355.93 0.14 5.38 0.27 3.16 -0.02
4 354.94 0.05 4.44 0.07 65.53 -0.30
5 354.95 0.06 2.90 0.06 63.80 -0.30
6 345.02 0.20 5.21 0.26 4.31 -3.09
7 356.04 0.04 4.35 0.07 23.66 0.01
8 355.28 0.04 4.19 0.07 25.84 -0.20
9 356.26 0.05 4.45 0.12 22.01 0.07
10 360.00 3.40 8.60 0.89 2.68 1.12
11 356.18 0.05 4.16 0.08 12.95 0.05
12 355.53 0.03 4.84 0.05 275.16 -0.13
13 360.00 0.50 9.10 0.34 2.51 1.12
14 359.59 0.004 8.59 0.005 1.86 1.01
15 357.75 3.22e-6 3.63 2.47e-6 3.48 0.49

Table 3.7: Parameters extracted from fitting the 356 keVee charge peak for all detectors.

193



Det Mean [keVt] Error 1-sigma [keVt] Error χ2/NDF % Mean Inaccuracy
1 802.60 0.36 18.29 0.56 3.38 -1.98
2 825.74 3.94 21.14 6.09 1.33 0.85
3 583.21 0.24 15.55 0.36 5.90 -28.77
4 806.08 0.14 12.92 0.17 7.24 -1.55
5 814.92 0.35 15.44 0.56 1.85 -0.47
6 749.43 0.49 9.11 0.47 2.74 -8.47
7 799.34 0.33 17.92 0.50 4.43 -2.38
8 799.05 0.24 18.77 0.31 2.42 -2.41
9 809.64 0.39 19.50 0.73 2.20 -1.12
10 823.75 1.31 19.23 2.50 1.37 0.60
11 790.80 0.36 14.55 0.38 2.90 -3.42
12 824.14 0.65 15.90 1.04 2.51 0.65
13 806.52 1.88 34.28 3.29 1.16 -1.50
14 790.00 0.26 14.42 0.46 1.16 -3.52
15 810.90 2.03 17.70 4.62 0.82 -0.96

Table 3.8: Parameters extracted from fitting the 356 keVee phonon peak for all detectors.
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• Despite the yield cut, a few detectors still have a low-energy shoulder in charge that

is causing high values of χ2/NDF. iZIP 1 is the worst case of this.

• Phonon shorts on iZIPs 2, 13, and 15 mean that very little peak is visible. This is why

the mean error is an order of magnitude larger than the other detectors.

C.2.5. 511 keV

The 511 keV peak is from the annihilation radiation of a positron emitted from the

activated germanium and shows up at the mass of the positron. The data immediately

following the activation period was selected using cPostCf_133_HT. However, the peak

is not as strong as the 10.37 keV, so the charge symmetry cut was needed cQsym_v53 to

select the bulk of the crystal and remove excess backgrounds.

This was a remarkably good fit across all detectors regardless of channel shorts, although

there were loose constraints on the Gaussian parameters. As with the other peaks, a linear

and an exponential background model were included with free parameters. Figure 3.5 demon-

strates the fit for the total charge and phonon energies on iZIP 4 (T2Z1), while Table 3.9

and Table 3.10 show the parameters extracted from the fits.

Despite not being shown in Fig. 3.5, other detector-specific results are:

• This was the only peak where the phonon energy on iZIP 3 was at the correct value

instead of 2/3 the expected value.

• There were a few incidents where the rising edge of the peak seemed to be steeper than

the Gaussian function. This is especially prevalent for iZIPs 3, 12, 13, and the charge

channel on iZIP 6. This is evidenced by the larger χ2/NDF for these detectors.
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(a) Measuring charge resolution at 511 keVee
for iZIP 4 (T2Z1).

(b) Measuring phonon resolution at 511 keVee
for iZIP 4 (T2Z1).

Figure 3.5: At first glance, both the phonon and charge models appear to be good fits to
the data. However, the widths of the peaks do not follow the same trend as the widths at
other energies. It is believed that this behavior is caused by saturation in the detectors, so
the 511 keV peak was excluded from the resolution model.

Det Mean [keVee] Error 1-sigma [keVee] Error χ2/NDF % Mean Inaccuracy
1 473.25 0.28 8.53 0.40 1.55 -7.39
2 473.72 0.36 12.23 0.45 1.58 -7.30
3 473.72 0.19 10.47 0.31 3.07 -7.30
4 472.20 0.34 12.00 0.51 1.43 -7.59
5 475.46 0.29 10.37 0.35 2.34 -6.95
6 474.29 0.27 10.92 0.42 2.65 -7.18
7 474.64 0.84 7.28 0.99 1.34 -7.12
8 474.47 0.30 10.37 0.44 1.66 -7.15
9 471.02 1.08 11.30 1.02 1.13 -7.82
10 474.30 0.35 9.60 0.49 1.82 -7.18
11 474.95 0.33 11.06 0.51 1.56 -7.05
12 474.36 0.21 11.82 0.34 4.19 -7.17
13 473.42 0.34 10.12 0.49 1.63 -7.35
14 473.66 0.40 12.72 0.59 1.78 -7.31
15 473.84 0.22 10.69 0.37 2.28 -7.27

Table 3.9: Parameters extracted from fitting the 511 keVee charge peak for all detectors.
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Det Mean [keVt] Error 1-sigma [keVt] Error χ2/NDF % Mean Inaccuracy
1 1137.94 0.22 6.90 0.33 1.52 -3.18
2 1138.13 0.18 9.71 0.21 1.17 -3.16
3 1133.61 0.09 6.29 0.16 4.42 -3.55
4 1137.45 0.27 8.99 0.32 1.46 -3.22
5 1137.76 0.24 9.66 0.34 1.78 -3.19
6 1137.71 0.14 8.66 0.21 2.97 -3.20
7 1129.59 7.74 11.47 4.72 1.32 -3.89
8 1138.83 0.22 7.64 0.28 1.47 -3.10
9 1130.82 0.46 13.11 0.43 1.25 -3.78
10 1139.71 0.23 7.51 0.33 1.45 -3.03
11 1139.01 0.23 8.23 0.33 1.42 -3.09
12 1138.85 0.17 9.22 0.25 2.46 -3.10
13 1136.38 0.21 9.99 0.23 1.08 -3.31
14 1138.17 0.16 8.30 0.19 1.32 -3.16
15 1138.21 0.15 8.95 0.28 2.48 -3.16

Table 3.10: Parameters extracted from fitting the 511 keVee phonon peak for all detectors.
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• The 210Pb-implanted plate above iZIP 7 has buried any 511 keV peak and led to

the large error on the Gaussian mean and sigma. A similar plate below iZIP 9 also

increased the background rate, but the 511 keV peak is still slightly present.

C.3. Summary

For each detector, all of the 1σ widths can be collected from each peak and plotted against

the energy of that peak, with their respective uncertainties. This is shown in Fig. 3.6 for

iZIP 4 (T2Z1). According to the results, the absolute resolution worsens as energy increases,

but the relative resolution improves. Stated in a more graphical way, the trend of the points

is increasing but at a slope « 1.

(a) Charge resolution as a functtion of energy
for iZIP 4 (T2Z1).

(b) Phonon resolution as a functtion of energy
for iZIP 4 (T2Z1).

Figure 3.6: Fitting the resolution model to the measured peak resolutions. As discussed in
the text, the 511 keV peak was excluded from the fit due to suspected saturation. The
green line is a linear fit because the points appear to be linear by eye; it is more obvious on
other detectors that this is not the case. The blue line is the resolution model described in
Eq. 3.1.

Based on the results of the other peaks, the width of the 511 keV peak seems to be too

large for the charge channel and too small for the phonon channel, by almost a factor of

two in both cases. This is suggestive of saturation at high energy. As evidence to support

this hypothesis, all of the histogram statistics dropped by roughly three orders of magnitude

when the charge and phonon saturation cuts (!cQsat_133 and !cPsat_133, respectively)
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were applied to the data. This indicates that those were indeed saturated events, so the

measured resolution at this energy has been excluded from the resolution function.

At first, the resolution of the remaining peaks appeared to scale linearly with energy,

which is what the green line is showing; some of the other detectors show more clearly that

this is not an accurate description of the resolution. However, a more physically motivated

model is depicted by the blue line, where the variance is defined as

σ2(E) = A+BE + CE2 , (3.1)

where σ is the resolution and the parameters A, B, and C are defined as: [143]

• A is noise that is added to every event from the readout electronics, independent of

the energy.

• B is an intrinsic variance in the energy due to the Fano factor of the material, directly

proportional to the energy.

• C is an extra term to account for the systematic mis-estimation of energy due to feeding

a fixed pulse template into the OF, variance scales with the square of the energy.

Table 3.11 and Table 3.12 show the parameters extracted from the resolution fits versus

energy.

That these results have been referenced most often by the simulations group to smear

perfect, simulated data to better match the energy resolution of data collected with the de-

tectors. The same is true for signal and background models created with analytic functions

that need to be smeared to match the performance of the detector. Another application is

accounting for the energy uncertainty when setting a threshold to be confident that fluctu-

ations are also contained.

199



Det A [keV2
ee] Error B [keVee] Error C Error

1 0.166004 0.000670044 0.00233716 0.00320014 9.52576e-05 9.52081e-06
2 0.126721 0.00069113 0.0066017 0.00305277 7.59044e-05 1.28096e-05
3 0.0802679 0.00110084 0.0171239 0.00420509 0.00018207 2.66854e-05
4 0.20685 0.000326366 7.21645e-12 3.35021e-05 0.000151331 4.83082e-06
5 0.150299 0.000462304 0.00416849 0.00166944 5.40763e-05 5.51498e-06
6 0.163645 0.00394873 0.0285656 0.014543 0.000142535 4.88897e-05
7 0.0922709 0.000718869 0.000696472 0.00441894 0.00014649 1.11985e-05
8 0.118942 0.000589952 0.000385049 0.00515324 0.000137343 9.32403e-06
9 0.0863211 0.00180246 0.0137235 0.00802272 0.00011678 2.44364e-05
10 0.130918 0.00794812 0.030449 0.0361324 0.000493483 0.0001641
11 0.12363 0.000787667 0.0160938 0.00319961 8.98899e-05 1.04657e-05
12 0.130988 0.000814785 0.00300699 0.00310211 0.000175811 9.59797e-06
13 1.4988e-11 0.755337 0.0183041 0.0127495 0.00058953 6.09428e-05
14 0.185721 0.000273228 0 0.000869786 0.000569211 6.63032e-07
15 0.187189 0.000172272 0.0158603 5.77083e-07 5.71605e-05 1.61276e-09

Table 3.11: Parameters extracted from fitting the charge resolution versus energy for all
detectors.
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Det A [keV2
t ] Error B [keVt] Error C Error

1 0.155393 0.0691325 9.60343e-11 0.00885466 0.000506287 3.0612e-05
2 0.082099 0.000138586 0.0108455 0.00183727 0 2.22402e-06
3 0.0846805 0.000118728 4.71845e-10 0.0108038 0.000702979 3.1949e-05
4 0.0328312 5.00053e-05 0.0100053 0.000280728 0.000244885 6.96688e-06
5 0.0411937 6.97124e-05 0.000549462 0.0010887 0.000361038 2.63019e-05
6 0.10674 0.000583262 0.144297 0.0521945 -4.49364e-05 7.14893e-05
7 0.327138 0.000644738 -0.0137804 0.00904437 0.000520678 3.12901e-05
8 0.0195073 6143.36 0.00802392 6145.57 0.000549911 6148.36
9 0.13223 0.206687 5.55112e-12 0.0310852 0.000572963 4.26256e-05
10 0.102399 0.000197759 0 0.00170764 0.000415507 8.16471e-05
11 0.0788837 0.000225082 0.0141565 0.00469563 0.000321161 1.91979e-05
12 0.0480589 9.00865e-05 0.00535584 0.00251146 0.000389617 5.05697e-05
13 0.492861 0.000972852 0.0238974 0.0313525 0.000810142 0.000199669
14 0.0343254 7.40223e-05 0.0141611 0.00260691 0.000314387 2.2043e-05
15 0.046846 8.63333e-05 0.0191361 0.00429152 2.90118e-05 4.67514e-05

Table 3.12: Parameters extracted from fitting the phonon resolution versus energy for all
detectors.
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C.4. Future Studies

There are a few interesting ways that this study could be developed further. The first

would be to find more features in the data and measure the width of them. Having more

data points at more energies would certainly improve the resolution function because there

is currently a model with three parameters being fit to four data points.

Another interesting question is whether the resolution changes over time. This entire

study would have to be recreated, paying close attention to the dates of the series being

analyzed. The limited statistics in some of the fits could make this difficult, especially the

66.7 keV peak since I needed to combine multiple datasets. However, there might be ample

statistics using just the 0 keV, 10.37 keV, and 356 keV peaks.

Finally, the simulations group has been working for many years to develop a detector

response simulator, called the Detector Monte Carlo (DMC). In order to trust the simulated

output, the DMC data needs to be validated against SuperCDMS data. This study would

be interesting to repeat using DMC data to see how accurately the resolution compares to

these results.
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Appendix D

TAIL-FITTING ALGORITHM

The ability to accurately calibrate the energy scale of a detector is crucial to understand-

ing and trusting the data. This is usually done with calibration sources that have features in

the data that occur at known energies. The energy can be scaled so that these features align

at the proper energies, and the scaling can then be applied to other datasets taken with the

same detector.

Since there were many layers of shielding around the SuperCDMS Soudan experiment

to mitigate external backgrounds, the calibration sources needed to be inserted close to

the detectors. However, there were limitations to how close the calibration source could

physically get. This was not a problem for the high energy part of the spectrum, because

particles such as the 356 keV photon from 133Ba could penetrate the remaining shielding.

However, the shielding becomes an issue when attempting to calibrate the low energy part of

the spectrum. This is why the electron capture peaks were so helpful because a penetrating
252Cf neutron source was used to activate the germanium and turn it into its own low-energy

calibration source.

When considering the energy calibration that will be needed for SuperCDMS SNOLAB,

a considerable issue arises. Silicon detectors will be deployed that do not have activation

lines in the same way as germanium. This means it will be difficult to calibrate the low

energy scale because calibration sources will not be able to penetrate the shielding. This

is further complicated by the NTL gain of the HV detectors, described in Section 0.2.1,

that will cause high energy sources to saturate the TESs. Hence, an algorithm was devised

that could reconstruct the energy from a saturated pulse in order to calibrate using the
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higher energy sources such as 133Ba. Of course, this only solves half of the problem, and the

calibrations group is still working on alternative methods of calibrating silicon detectors at

low energy [98].

D.1. Tail-Fitter Motivation

The problem of saturated events is more prevalent for high-voltage operation such as

CDMSlite or HV detectors, so the algorithm to extract energy is only focused on phonon

pulses since these modes do not utilize the charge signal.

The two main factors that influence the saturation of a phonon pulse are the operat-

ing temperature and the critical temperature Tc of the TES, which was described in Sec-

tion 3.1.2.1. An event that has enough energy to cause the TES to go normal will result in

a flat pulse shape until enough power has dissipated that the TES cools back below Tc and

resumes energy collection. Typically, the energy of the event is determined by the amplitude

of the pulse, but that is not available in the case of a saturated event where the top of the

pulse is not present. However, the pulse from each channel has a characteristic fall-time that

is dictated by the thermal response of the TESs. This, in principle, means that the tail of a

pulse can be used to extract the energy of that event, even if the pulse exhibits saturation.

D.2. Description of the Algorithm

An algorithm was devised to extract the energy of a pulse, regardless of whether that

pulse exhibits saturation. First it reads in a raw pulse, subtracts the pre-pulse baseline

noise, and normalizes the pulse to convert it from Analog-to-Digital Converter (ADC) units

to physical Amps. Then it fits the tail of a pulse with an exponential function where A is

the amplitude, B = −1/τ is the negative inverse fall-time of the pulse, and C is an offset.

The fit function is defined as

ffit(t) = AetB + C . (4.1)
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Parameter A is initialized to be the value of the pulse at the beginning of the tail. The tail

was hard-coded to start at 800 µs, and there is a small adjustment for the delay time of the

pulse with respect to the trigger time. As mentioned in the last section, the fall-time of each

channel has been determined, so parameter B is fixed. Parameter C is a vertical shift to

account for the end of the pulse not returning to zero in the pulse window. This parameter

is initialized by fitting the baseline of the last 50 bins of the pulse. All of these initialized

parameters are fed to a MINUIT minimizer that minimizes the χ2 between the exponential

function and the pulse.

In order to extract the energy from the fit function, the integral is taken from the start

of the tail ts to the end of the pulse te,

E =

∫ te

ts

(AetB + C)dt = (A/B)(eteB − etsB) . (4.2)

The offset parameter C accounts for the pulse not returning to the baseline within the

readout window, but it is safe to assume the pulse eventually does return to baseline at some

infinite time, meaning that limte→∞ eteB = 0. Also, the value of A is set to be the value of

the function at ts, so etsB = 1 by definition. This simplifies the energy from the algorithm

to

E = −A/B . (4.3)

This energy is calculated per channel before some minor corrections are applied. First

is the relative channel calibration so that the energy from each channel can be co-added.

Then the energy summed over all channels is scaled by a constant that relates the integral

of the tail to the amplitude of the pulse. It is important to point out that this energy is

not properly calibrated. Appendix D.3 will discuss the calibration, but for now the x-values

of the spectra shown here should be considered arbitrary units of energy. To elucidate this

point, units will not be used when referring to the extracted tail-fitter energies.
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Figure 4.1 demonstrates that the algorithm successfully reproduced the 133Ba spectrum

for the detector used in CDMSlite R3 (T2Z1/iZIP 4). However, Fig. 4.2 shows that the
133Ba spectrum does not emerge when the algorithm is applied to the CDMSlite detector

used in R2 (T5Z2/iZIP 14).

Figure 4.1: Existing status of the tail-fitter in CDMSBats applied to iZIP 4, with both axes
in arbitrary units. The red curve is the energy quantity often used from CDMSBats that is
based on the amplitude of the template in the OF algorithm described in Section 3.1.3.4.
Saturation is making the reconstructed energies pile up. The blue curve is the
reconstructed energy from the tail-fitter. There is a clear 356 keV peak visible near 4500
and even the smaller 383 keV peak is visible at 4800.

D.2.1. Replicating the Algorithm

This algorithm was written as part of CDMSBats, which is a complex framework of

scripts that processes all SuperCDMS data from the raw data pulses to the final calibrated

quantities. This is the correct place for such an algorithm to exist, but makes it difficult to
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Figure 4.2: Neither curve on this plot displays the expected 133Ba spectrum described in
Section 3.1.3.1. Both curves exhibit a large spike of events that is indicative of saturated
pulses causing the energy reconstruction to pile them up at the same energy. Detailed
investigation of the raw pulses and the behavior of the fitting routine is needed in order to
diagnose the energy reconstruction algorithm for this detector (iZIP 14).

207



test and diagnose. In order to manipulate the algorithm and implement possible fixes, a toy

replica of the fitting routine in CDMSBats was written.

The first check of the toy replica was to verify that it was exactly recreating the fit in

CDMSBats. To do this, a prime example of an unsaturated pulse and a saturated pulse were

chosen to compare the results of the replica to the fit quantities output from CDMSBats. For

the unsaturated pulse, Fig. 4.3 shows the initial parameters, Fig. 4.4 shows the results of the

replica fit, and Fig. 4.5 shows the output from CDMSBats overlaying the pulse. Table 4.1

shows a quantitative comparison of the values for this particular pulse, event number 20009

in series 01150313_1141 from iZIP 4.

Figure 4.3: The initial parameters of the tail-fitter overlaying an unsaturated raw pulse for
each channel of the detector. The dotted lines depict the fit function in Eq. 4.1 overlaying
each pulse and they are color-coded to match the channel. The plot on the right is a
zoomed version of the left plot.

For the saturated pulse, Fig. 4.6 shows the initial parameters, Fig. 4.7 shows the results of

the replica fit, and Fig. 4.8 shows the output from CDMSBats overlaying the pulse. Table 4.2

shows a quantitative comparison of the values for this particular pulse, event number 20001

in series 01150313_1141 from iZIP 4.
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Figure 4.4: Plots demonstrating the behavior of the replica fitter on an unsaturated pulse.
The goal was to recreate the fit of CDMSBats, so this figure needed to match Fig. 4.5 and
it does.

Figure 4.5: The exponential tail-fitter curve drawn using the output parameters from
CDMSBats. The curves overlay the raw pulse to show the performance of the previous
tail-fitter.
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Channel Parameter Bats Init Replica Init Replica Fit Bats Fit
A [nAmps] 602.905 602.905 589.624 589.624

A B [1/µs] -1.56495e-3 -1.56495e-3 -1.56495e-3 -1.56495e-3
C [nAmps] 6.0791 6.0791 6.91898 6.919
A [nAmps] 560.387 560.387 539.932 539.932

B B [1/µs] -1.58479e-3 -1.58479e-3 -1.58479e-3 -1.58479e-3
C [nAmps] 5.05219 5.05219 4.55861 4.55861
A [nAmps] 529.358 529.358 510.908 510.907

C B [1/µs] -1.55521e-3 -1.55521e-3 -1.55521e-3 -1.55521e-3
C [nAmps] 4.87061 4.87061 4.78894 4.78933
A [nAmps] 487.329 487.329 481.097 481.097

D B [1/µs] -1.5748e-3 -1.5748e-3 -1.5748e-3 -1.5748e-3
C [nAmps] 5.7251 5.7251 6.98992 6.98975

Table 4.1: Quantitative comparison between the initial fit parameters in CDMSBats and
the replica tail-fitter for the unsaturated pulse. The last two columns are the resulting
parameters from the fits. Parameter B is fixed in both algorithms. The differences are
< 1% and are attributed to rounding error.

Figure 4.6: Analogous plots to Fig. 4.3 showing the parameter initialization, but for a
saturated pulse from the same detector and series. The plot on the right is a zoomed view
of the left and the curves are color-matched for each channel.
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Figure 4.7: Analogous plots to Fig. 4.4 with a saturated event. This figure needed to
match Fig. 4.8 to confirm that the replica fitter mimics that of CDMSBats, and it does.

Figure 4.8: The curves are overlaying the raw pulse to show the performance of the
CDMSBats tail-fitter for a saturated event, analogous to the unsaturated pulse shown in
Fig. 4.5.
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Channel Parameter Bats Init Replica Init Replica Fit Bats Fit
A [nAmps] 4027.8 4027.8 3887.63 3887.63

A B [1/µs] -1.56495e-3 -1.56495e-3 -1.56495e-3 -1.56495e-3
C [nAmps] 41.7633 41.7633 53.1672 53.1671
A [nAmps] 3841.8 3841.8 3653.75 3653.75

B B [1/µs] -1.58479e-3 -1.58479e-3 -1.58479e-3 -1.58479e-3
C [nAmps] 34.7961 34.7961 42.045 42.045
A [nAmps] 3470.85 3470.85 3376.81 3376.81

C B [1/µs] -1.55521e-3 -1.55521e-3 -1.55521e-3 -1.55521e-3
C [nAmps] 27.2095 27.2095 28.6909 28.6908
A [nAmps] 3193.35 3193.35 3118.48 3118.48

D B [1/µs] -1.5748e-3 -1.5748e-3 -1.5748e-3 -1.5748e-3
C [nAmps] 29.4693 29.4693 35.6715 35.6714

Table 4.2: Quantitative comparison between the initial fit parameters in CDMSBats and
the replica tail-fitter for the saturated pulse. The last two columns are the resulting
parameters from the fits. Parameter B is fixed in both algorithms. The differences are
< 1% and are attributed to rounding error.

Satisfied with the accuracy of the replica fitting algorithm, the next step was to use the

replica to check the behavior of the algorithm for an event on the other detector to see why

the energy reconstruction was not working properly.

D.2.2. Fixing the Algorithm

It was immediately obvious that the initialization of the fitter on iZIP 14 was not close

to the pulse and MINUIT was unable to adjust the parameters to properly match the pulse.

The example shown here is event number 20033 in series number 01140401_0847 from iZIP

14. As before, Fig. 4.9 shows the initial parameters, Fig. 4.10 shows the results of the replica

fit, and Fig. 4.11 shows the output from CDMSBats overlaying the pulse. One positive

takeaway is that the replica fitter still matches the output of CDMSBats.
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Figure 4.9: Analogous plots to Fig. 4.6 with a saturated event on the other detector. This
is the “smoking gun” to the problem because the initial parameters are not close to the tail
of the pulse, which increases the probability that the χ2 fitter will get stuck in a local
minimum.

Figure 4.10: Analogous plots to Fig. 4.7 with a saturated event on the other detector. The
behavior of the replica fitter needed to match the output of CDMSBats in Fig. 4.11 in
order to diagnose the algorithm for this detector.
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Figure 4.11: Analogous plots to Fig. 4.8 with a saturated event. This clearly shows that the
fitter is not able to match the tail of the pulse and get an accurate energy reconstruction.

The biggest difference with the pulse shapes from iZIP 14 was that the duration of the

saturated part of the pulse was much longer than saturated pulses from iZIP 4. Also, the

saturation “plateau” is at a lower current than the pulse in Fig. 4.6, Fig. 4.7, and Fig. 4.8.

An investigation of differences between these detectors revealed that Tc was systematically

higher for iZIP 4 than iZIP 14. Each phonon channel of the detector has a different Tc that

is measured after the detector has been fabricated [99]. The values of Tc on iZIP 4 were

76 mK, 80 mK, 79 mK, and 80 mK), while the values of Tc on iZIP 14 were 63 mK, 70 mK,

68 mK, 71 mK. While TES saturation depends on a number of variables, it is likely that

this systematic difference in Tc is causing the different detector responses.

The simplest solution to fix the algorithm was to change where the start of the tail was

defined. Previously, this was hard-coded to be 800 µs in the configuration file that is input

into CDMSBats. Instead, the algorithm was modified to include a fourth fit parameter D

that allows the fit function to shift left or right,

ffit(t) = Ae(t−D)B + C . (4.4)
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In order to initialize the horizontal shift parameter D, the algorithm calculates the slope

at every point of the raw pulse and selects the time where the slope is the most negative.

Whether the pulse is saturated or not, this should be the beginning of the exponential tail

of the phonon pulse.

Using event number 20018 in series number 01140401_0847 from iZIP 14, Fig. 4.12-Fig. 4.14

shows the improved fit despite the long saturation time. Figure 4.12 shows the initial pa-

rameters that are closer to the actual pulse, Fig. 4.13 shows the results of the replica fit, and

Fig. 4.14 shows the output from CDMSBats overlaying the pulse to demonstrate how bad

the original algorithm was.

Figure 4.12: Analogous plots to Fig. 4.6 with a saturated event on the other detector. This
is the critical component of the modification because the algorithm needs to accurately
describe the shape of the pulse.
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Figure 4.13: Analogous plots to Fig. 4.7 with a saturated event on the other detector. The
fitting routine did not have to do very much to fit the pulse because the initialization did
such a good job. The difference between this and Fig. 4.12 is imperceptible.
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Figure 4.14: Analogous plots to Fig. 4.8 with a saturated event. This plot shows the results
of the original fitting algorithm for this event, which is clearly not able to match the tail of
the pulse.
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Because of the addition of the extra parameter, the integral of the pulse tail that extracts

the energy as described in Eq. 4.3 needed to be modified. When the beginning of the pulse tail

was hard-coded, the integral started from that time and was the same for all channels and all

pulses. However, allowing the exponential to shift horizontally for each channel means that

the amplitude A is defined at different times and the relative calibration between channels

changes for each event. That is why a specific time was chosen to begin all the integrals.

From an implementation standpoint, this means that instead of Eq. 4.3 the integrated energy

is

E = −ffit(ts)/B . (4.5)

The calculated energy will be calibrated later, so the choice of ts does not effect the results

as long as all fits use the same time. A start time of ts = 800 µs was chosen since that is

where the integral in the original algorithm was defined to start.

Figure 4.15 shows the resulting spectrum for the CDMSlite R3 detector (T2Z1/iZIP

4) after modifying the tail-fitting algorithm. This was the detector that the old tail-fitter

already worked for in Fig. 4.1, so it was important for the 133Ba spectrum to still be clearly

visible for this detector. Figure 4.16 shows the resulting spectrum for the CDMSlite R2

detector (T5Z2/iZIP 14) after modifying the tail-fitting algorithm. The old algorithm did

not work for this detector as shown in Fig. 4.2, so it was important for the 133Ba spectrum

to emerge for this detector.

All of the energy spectra shown above this point have an energy cut of ptNF > 100 keV

to remove low energy noise. However, Fig. 4.16 still shows a large spike of events at low

ptNF. The tail-fitter is smearing out this peak, but it still creates the large bump below 1000

on the blue histogram. The source of these events is unknown, but increasing the low energy

cut to ptNF > 200 keV (8.22 keVee) successfully removes them as shown in Fig. 4.17.

D.3. Calibration
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Figure 4.15: The red curve is the energy reconstruction often used from CDMSBats that is
based on the amplitude of the template in the OF algorithm described in Section 3.1.3.4.
The lower half of the Compton “hump” is visible, but saturation makes the reconstructed
energy pile up. The blue curve is the reconstructed energy from the tail-fitter. There is a
clear 356 keV peak visible near 4500 and even the smaller 383.8 keV peak visible at 4800.
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Figure 4.16: The blue spectrum from the tail-fitter was scaled up by a factor of 10 on the
vertical axis so that both curves could be seen, and it was scaled down by a factor of 10 on
the horizontal axis so that the energies could be plotted in the same range. This is largely
a qualitative study, so these scalings have not influenced the results.
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Figure 4.17: Same plot as Fig. 4.16, except the low energy cut was changed from
ptNF > 100 keV to ptNF > 200 keV to remove the large spike in the red distribution. This
removed the corresponding bump in the blue distribution below 1000, and leaves the higher
energies untouched, which is the more important part of the spectrum for calibration.
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Despite the existing calibration between channels and the overall energy scale, the re-

constructed energy values in Fig. 4.15, Fig. 4.16, or Fig. 4.17 are not to be trusted. This

is why energy units were avoided when referring to the reconstructed spectra. In fact, for

these three plots, the reconstructed energy on the x-axis was scaled down by a factor of 10

so that the blue histograms could be more easily compared to the red histograms.

Figure 4.18 shows the reconstructed energy for each channel, and it appears that the

relative calibration between channels needs adjustment. If the relative calibrations are off,

then the 356 keV peak gets smeared out when co-adding channels; this is why the peak is

wider in Fig. 4.16 and Fig. 4.17 than in Fig. 4.15.

The overall calibration depends on the definition of the tail integral, so any modification

to that integral means the spectrum features appear at different energies. A new calibration

constant is easy to calculate as the current calibration constant times the ratio of where the

peak should be over the energy the peak appears at. The calibration constant could also

be different for each detector. However, these calibration constants need to be defined in

a configuration file that controls CDMSBats and is typically customized by each user that

processes the data. It would be very difficult to roll out a broad change to every user that

already has a custom configuration file.

For these reasons, the tail-fitter energy calibration should be left to the user, as it will be

much easier to calibrate the spectrum after it is produced provided that any known feature is

visible, such as the 356 keV peak. Since this is the total phonon energy summed over all four

channels, then the NTL gain needs to be included when calculating the expected energy. For

example, with a bias of 70 V the 356 keV peak should be at 356 keVee(70/3+1) = 8662.6 keVt.

D.4. Future Work

Appendix D.3 outlines that it is not worth the time and effort of calibrating this algorithm

for the Soudan data that has already been processed and analyzed. However, it would
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Figure 4.18: This plot shows the histograms of the reconstructed energy for each channel
where black, red, green, and blue corresponds to channels A, B, C, and D, respectively.
These histograms already have the relative calibration applied, and it can be seen that the
356 keV peak shows up around 2800 for channels A and D, while the peak is at 3200 for
channels B and C. The magenta histogram is the sum of these (with ptNF > 200 keV cut),
and despite the different binning, it can be compared directly with the blue histogram in
Fig. 4.17. However, this plot has not been scaled down by a factor of 10 as the others,
which explains why the gray ptNF histogram is so low by comparison.
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certainly be ideal to have this algorithm reconstructing and outputting accurately calibrated

energy quantities for SNOLAB data. I recommend that the calibration is done in conjunction

with the development of the data processing, when it is less onerous to make changes to the

configuration file.

The tail-fitting algorithm can be tested and developed even before SNOLAB is oper-

ational. There are a number of test facilities taking data with SuperCDMS detectors. I

have been told they have plenty of saturated events, so this algorithm would be useful for

reconstructing otherwise unattainable event energies.

Given the original motivation of this project, a crucial test would be checking the ability

of this algorithm to calibrate data collected with a silicon detector when exposed to 133Ba.

It might also be possible to model high energy background models such as alpha decays, or

to use this algorithm as a crude energy reconstruction when monitoring the quality of data

as it is being collected.

Finally, I tried to modify this algorithm to be as smart and unrestricted as possible,

but by construction, it was developed to work specifically on the two CDMSlite detectors

tested. It would be very interesting to see how it behaves with some of the new technol-

ogy being developed by SuperCDMS such as the HVeV chip with single electron-hole pair

resolution [144].
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