
Southern Methodist University Southern Methodist University 

SMU Scholar SMU Scholar 

Computer Science and Engineering Theses and 
Dissertations Computer Science and Engineering 

Fall 12-14-2018 

Black Networks in Smart Cities Black Networks in Smart Cities 

Shaibal Chakrabarty 
Southern Methodist University, shaibalc@smu.edu 

Follow this and additional works at: https://scholar.smu.edu/engineering_compsci_etds 

 Part of the Information Security Commons 

Recommended Citation Recommended Citation 
Chakrabarty, Shaibal, "Black Networks in Smart Cities" (2018). Computer Science and Engineering Theses 
and Dissertations. 8. 
https://scholar.smu.edu/engineering_compsci_etds/8 

This Dissertation is brought to you for free and open access by the Computer Science and Engineering at SMU 
Scholar. It has been accepted for inclusion in Computer Science and Engineering Theses and Dissertations by an 
authorized administrator of SMU Scholar. For more information, please visit http://digitalrepository.smu.edu. 

https://scholar.smu.edu/
https://scholar.smu.edu/engineering_compsci_etds
https://scholar.smu.edu/engineering_compsci_etds
https://scholar.smu.edu/engineering_compsci
https://scholar.smu.edu/engineering_compsci_etds?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/engineering_compsci_etds/8?utm_source=scholar.smu.edu%2Fengineering_compsci_etds%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/


BLACK NETWORKS IN SMART CITIES

Approved by:

Dr. Sukumaran VS Nair
(Computer Science and Engineering)
Dissertation Committee Chairperson

Dr. Daniel W. Engels
(Office of the Provost, SMU)

Dr. Jennifer Dworak
(Computer Science and Engineering)

Dr. Eric Larson
(Computer Science and Engineering)

Dr. Jeff Tian
(Computer Science and Engineering)

Dr. Glenn Ricart
(Chief Technology Officer, US-Ignite)



BLACK NETWORKS IN SMART CITIES

A Dissertation Presented to the Graduate Faculty of the

Lyle School of Engineering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Computer Science

by

Shaibal Chakrabarty

M.S., Computer Engineering, Southern Methodist University
B.S., Computer Engineering, University of Houston-Clear Lake

December 15th, 2018



Copyright (2018)

Shaibal Chakrabarty

All Rights Reserved



ACKNOWLEDGMENTS

Many people contributed to this work, by encouraging me to return to academics full-

time for a PhD. After joining the PhD program, full-time, many have nurtured me through

this process. Sumita Chakrabarty, a completely non-technical person, and Dr. Glenn Ricart,

an acclaimed technologist and mentor, were the two people who pushed me to start the PhD.

To help me jump in, it was Dr. Suku Nair, whose signature also adorns my masters thesis,

and Mr. George Brody who asked me to consider SMU, after I started auditing classes at

another university. Since 2014 it has been the patience and tenacity of Dr. Daniel Engels,

in guiding my research and publications. Dr. Sukumaran VS Nair, Dr. Glenn Ricart, Dr.

Jennifer Dworak, Dr. Eric Larson and Dr. Jeff Tian have taken my dissertation over the

finish line, despite my distractions and my excuses.

A big Thank You! to all.

iv



Chakrabarty, Shaibal M.S., Computer Engineering, SMU, 1996
B.S., Computer Engineering, University of Houston-Clear Lake, 1990

BLACK NETWORKS IN SMART CITIES

Advisor: Dr. Daniel W. Engels

Committee Chair: Dr. Sukumaran V.S. Nair

Doctor of Philosophy conferred December 15th, 2018

Dissertation completed December 15th, 2018

In this dissertation, we present the Black Networks solution to protect both the data

and the metadata for mobile ad-hoc Internet of Things (IoT) networks in Smart Cities. IoT

networks are gaining popularity with billions of deployed nodes, and increasingly carrying

mission-critical data, whose compromise can lead to catastrophic consequences. IoT nodes

are resource-constrained and often exist within insecure environments, making them vulner-

able to a broad range of active and passive attacks. Black IoT networks are designed to

mitigate multiple communication-based attacks by encrypting the data and the metadata,

within a communication frame or packet, while remaining compatible with the existing IoT

protocol.

A network of IoT nodes communicating using Black packets is called a Black Network.

We transform IoT communications protocol packets into Black packets. This mechanism

secures (encrypts using an authenticating cipher like Grain-128a or AES in the EAX mode)

the metadata for an IoT communications protocol, in fixed-length packets (maximum al-

lowed packet size by the protocol in use), while remaining compatible with the existing IoT

protocol in use. We demonstrate Black packet design for IEEE 802.15.4, ZigBee, 6LoWPAN,

Bluetooth Low Energy (BLE) and IPv6 (broadband, non-IoT communications).

We extend Black IoT packets to simple nodal communications (point to point). Simple

Black network communications are inefficient, and either don’t reach their destination (IoT

nodes sleep a majority of the time to save power) or have high communications overhead,
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rendering them impractical for deployment. We present a practical, gateway-based, star

network topology, towards a Black network solution to overcome the inefficient broadcast

and flooding IoT communications. We simulate simple Black communications for Flood-

ing, Broadcast and Black Gateway and demonstrate the practicality and efficiency of Black

gateway communications, compared to Shortest Path routing.

We evolve the Black IoT communication mechanisms to mesh networks which require

routing. Securing the metadata (encrypted headers) creates significant challenges in routing

Black packets, using traditional routing mechanisms. We present Black SDN, a Software

Defined Networking (SDN) architecture for a secure Internet of Things (IoT) networking

and communications. SDN architectures were developed to provide improved routing and

networking performance for broadband networks by separating the control plane from the

data plane. This basic SDN concept is applicable to broadband networks. However, the

common SDN implementations designed for wired networks are not directly amenable to

the distributed, ad hoc, low-power, mesh networks commonly found in IoT systems. SDN

promises to improve the overall lifespan and performance of IoT networks. However, the

SDN architecture changes the IoT network’s communication patterns, allowing new types

of attacks, and necessitating a new approach to securing the IoT network. Black SDN is

a novel SDN-based secure networking architecture that secures both the metadata and the

payload within each layer of an IoT communication packet while utilizing the SDN centralized

controller as a trusted third party for secure routing, key management and optimized system

performance management. We demonstrate the feasibility of Black SDN in IoT networks

where nodes are asleep most of their lives, and specifically examine a Black SDN IoT network

based upon the IEEE 802.15.4 LR WPAN (Low Rate - Wireless Personal Area Network)

protocol, through simulations.

We extend the Black SDNs to route Black packets in a mesh network, called Black rout-

ing. This novel approach uses an SDN-based architecture for routing fixed-length, metadata-

secured, Black packets from source to destination, using a ciphertext-based forwarding algo-
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rithm. Both data and control Black packets hide all information on communicating parties

and communication type. Fixed length packets prevent the packet-length based attacks

(and prevent inference of the type of communications). Black routing configurations are

extensively simulated to prove feasibility and measure the efficiency compared to traditional

Shortest Path routing.

Completely secured metadata is insufficient to hide the communicating parties from sus-

tained traffic analysis, when nodal transmission and receptions are observed. We present

Node Obscuring, using tokens and a subway-model, where empty tokens traverse the net-

work, on fixed routes, and pick up and drop off data between source and destination. Since

the tokens originate at a node different from the source, and continue to traverse the net-

work after passing thru the destination node, an external observer is unable to determine the

source and the destination. This is akin to a subway picking up and dropping off passengers

(data) between two stations (source and destination), while the subway (token) originates

and terminates at fixed locations. We present Black routing and node obscuring algorithms,

for various configurations as a part of our research. Our simulations reveal that Black routing

and Node Obscuring are feasible, and can provide for much higher levels of confidentiality

and privacy, resistance to a range of attacks, with a cost trade-off in overhead traffic, travel

and wait times with an increase in the number of nodes.

We conclude this dissertation by applying Black networks to the Smart Cities domain,

enabling secure smart cities. Smart Cities have IoT-enabled critical infrastructure (such

as energy, transportation and environmental monitoring), that have already been subject

to cyber attacks. Our dissertation proposes a secure IoT framework for Smart Cities that

includes Black Networks, SDN Control, Key Management and Unified Registry. We further

improve availability and privacy of Secure Smart City services by offering key management

and mobile node authentication using distributed ledger technologies.
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Chapter 1

INTRODUCTION

The Internet of Things (IoT) includes networks of smart energy-efficient devices, for mon-

itoring and control, communicating via ad-hoc, wireless networks. IoT networks are growing

rapidly in healthcare, buildings, industrial control systems, energy, transportation and en-

vironmental monitoring. IoT communications protocols often run on resource-constrained

devices and are vulnerable to multiple attacks, including metadata attacks. Many popular

IoT protocols are based on the IEEE 802.15.4 LR-WPAN, and have well-known security

vulnerabilities [10]. As billions of IoT devices are deployed, the resulting IoT networks are

increasingly carrying vulnerable mission-critical data, whose compromise can result in data

theft and catastrophic consequences [11]. Given resource restrictions in IoT nodes and net-

works, in many cases, security is either not a priority or implemented with an IT approach

which makes IoT solutions economically infeasible and insecure for a range of attacks. For

example, 6LoWPAN suggests an IPsec approach to security, which is not mandated. IPsec is

unviable for resource-restricted IoT nodes that generally use symmetric key cryptography as

opposed to public key cryptography. Key management in WirelessHART is not well-defined

in the standard and can lead to improper and insecure implementations [12]. In many cases,

security is just not a priority for low-power, low duty cycle resource-restricted IoT solutions.

In every case, metadata is not secured in IoT protocols. Metadata is sent in the clear and can

be traffic analyzed, manipulated and/or might be used to decipher the payload. Table 1.1

shows the security vulnerabilities of IoT communication protocols and the lack of metadata

security.

IoT communication protocols, and networks, must provide security and privacy per-hop

and end-to-end, and protect the metadata. Black Networks achieve this by encrypting the

metadata AND the data of a frame/packet, at each layer of the communications protocol,

using a stream-based cipher such as Grain-128a or AES in the EAX mode [13]. The re-
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Table 1.1: IoT Communication Protocol Security Mechanisms and Threats

IoT Communication Security Mechanisms and Threats
Protocol Security Services Security Mechanisms Security Vulnerabilities
IEEE
802.15.4

Confidentiality Encryption (AES-
CCM* mode)

Acknowledgements are unen-
crypted and can be exploited.
Default security is NULL. NO
timed frame counters.

Integrity MIC Weak integrity at 16 bits
Replay Frame Counter Frame counters in the clear and

can be exploited
Privacy None Subject to metadata attacks

ZigBee Confidentiality Encryption Trust Center is vulnerable. Net-
work Keys can be extracted

Traffic Analysis None Subject to metadata attacks
6LoWPAN Confidentiality Encryption IPsec/IKE unsuitable for IoT

Integrity MIC IPsec unsuitable for IoT networks
Authentication Node Authentication Subject to device-based attacks
Privacy None Subject to metadata attacks
IP services None IP attacks (HELLO flood, sink-

hole and selective-forwarding)
WirelessHART Confidentiality Encryption Default security always ON.

Integrity MIC
Availability Channel Hopping,

Channel Blacklisting
Jamming

Exhaustion 10ms time slot execu-
tion

Limits resource exhaustion, but
does not eliminate

Privacy None Possible metadata attacks
BLE Confidentiality Encryption Key stolen during key exchange

Integrity CRC CRC seed can be recovered
Availability Channel Hopping Channels tracked via Access Ad-

dress
Privacy None Subject to metadata attacks

sulting frame/packet is then routed using a trusted third party (TTP) SDN controller [14].

Obscuring the source and destination nodes further anonymizes the network and mitigates

sustained traffic analysis attacks.

The IEEE 802.15.4 which defines the PHY and MAC sublayer, forms the basis for multiple

higher layer protocols - ZigBee, 6LoWPAN and WirelessHART - being the most widely-
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used. IoT communication protocol vulnerabilities of IEEE 802.15.4, ZigBee, 6LoWPAN,

WirelessHART and Bluetooth Low Energy (BLE) have been exhaustively researched [14] [15].

A survey of the literature related to IoT networks present a range of security issues that have

not been completely evaluated or solved with the mechanisms presented in the literature

(such as node obscuring). Black networks mitigate internal and external threats, a range

of active and passive attacks, and secure the communications per-hop and end-to-end. To

prevent inference attacks, and packet-length attacks, Black networks communicate using

fixed length packets (the maximum size allowed by the IEEE 802.15.4 protocol). Securing the

metadata leads to routing challenges for the network. An SDN Controller, functioning as a

TTP (Trusted Third Party), for IoT networks, provides guaranteed node reachability [14], by

forwarding the encrypted packets to their destination, without intermediate packets having

any knowledge of the source or destination. However, sustained external traffic analysis

can determine the source and destination of packets, thereby identifying the communicating

parties. The objective of Black Networks is to hide all information between source and

destination, including the source and destination. Obscuring the source and destination

during communications mitigates this threat.

Table 1.2: Comparison of Anonymity Protocols

Routing Protocol ARMR [16] MASK [17] DASR [18] AnonDSR [19]

Identity
Anonymity

Yes No Yes Yes

Location
Anonymity

Yes Yes Yes No

Route
Anonymity

Yes Yes Yes No

Several anonymous routing protocols such as AASR, ODAR, OLAR and USOR have

been developed for mobile ad hoc networks but they are not suitable for sensor networks

due to resource limitations and also the incapability to totally obscure the identity of the

communication nodes (see Table 1.2) [20] [21] [22] [23] [24] [18] [16]. Onion Routing (Tor) is
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the de-facto standard for anonymity and privacy in web-based applications [25]. A fixed route

is selected by the Tor client. Intermediate nodes (called onion routers) have no knowledge

of other nodes in the network, except for the node before, and the node after it. Tor uses

public key cryptography for transmission. The source negotiates a session key with the

every successive hop. Once this hop is completed, the key is destroyed, thereby mitigating

replay attacks. Tor cannot be directly applied to IoT networks that use symmetric keys and

are resource-constrained. We propose mechanisms for sender node obscuring, receiver node

obscuring, and path obscuring, for IoT networks, using existing protocol compliance and

symmetric keys.

In the following sections, we will introduce the core research components of the disserta-

tion: Black packets, Black networks, Black SDN, Black routing, node obscuring and secure

smart cities. Section 1.1 outlines a high-level Black packet design with a specific example of

the ZigBee PDU (Packet Data Unit). In Section 1.2, we introduce Black Networks, along

with existing work of privacy-preserving and anonymous protocols. We demonstrate how

Black networks provide metadata security, anonymity and compatibility with the existing

IoT protocol in use, for simple communications with a Black Gateway. We present Black

SDN network architecture in Section 1.3 to facilitate routing for Black packets in mesh net-

works, beyond the simple point-to-point communication. The Black SDN functions as a

TTP and performs the key management function. In Section 1.4 we present Black Routing

between IoT nodes, using a Black SDN Controller. The two configurations analyzed are: a)

the Black SDN controller has a direct communication path to ALL IoT nodes; b) the Black

SDN controller has a direct signalling path to only SOME of the IoT nodes. We introduce

further mechanisms to obscure communicating nodes and the communicating route for Black

Routing in Section 1.5. Lastly, we apply Black networks to a use case of IoT-enabled Smart

Cities in Section 1.6. With authentication, key management, SDN networking and Black

networks, we propose Secure Smart Cities - safe from cyberterror and cyberattacks. Sec-

tion 1.7 introduces each chapter of the dissertation and its main contributions, concluding

with a final contribution summary.
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1.1 Black Packets

The PHY and MAC sublayer of ZigBee is defined by the IEEE 802.15.4, the Network and

Application layers are defined by the ZigBee specification. Security for the NWK (network)

and APL (application) layers are provided by the Security Services Provider. A 14-byte

Auxiliary Header is included to provide security specific information, such as frame counters

for replay attacks, security levels and nonce fields. A secured ZigBee NWK packet is not

always encrypted, as IEEE 802.15.4 contains security options of NO security and integrity

protection only [26]. Figure 1.1 shows the transformation of a secure ZigBee Data PDU into

a Black ZigBee packet.

Figure 1.1: Encryption to Black packet

The Link layer transformation, from standard 802.15.4 to Black 802.15.4, is outlined

in [14] [27]. The ZigBee network layer packet header contains 16 bits of frame control

information. The first subfield in the frame control field is - Frame Type (data, control or

command) is maintained for the Black ZigBee packet. The Frame Type reserved bits 11 are

used to indicate a Black ZigBee packet. Except the first 2 bits, the rest of the packet is
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encrypted using the AES-EAX cipher, as in Figure 1.1. Since packet forwarding is done via

an IoT SDN Controller (a TTP), many of the addressing and routing sub-fields in the ZigBee

network packet are no longer necessary. The recommended 80-bit Initialization Vector (IV) is

included with each packet. AES-EAX is an authenticating cipher mode where the ciphertext

is equal to the message length, with a flexible IV size, allowing for better payload efficiency

in small frame sizes like the IEEE 802.15.4. This is a Black packet design that will form the

basis of a Black IoT network of ZigBee nodes.

1.2 Black Networks

A Black Network is a network that secures each layer of the communication stack by

encrypting all of the metadata contained within the communication (including the source

and the destination addresses), in addition to the payload. We introduce Black Networks

to mitigate traffic analysis and data gathering attacks. With encrypted source and destina-

tion addresses, only simple communications are possible in Black networks - Flooding and

Broadcast routing. Our extensive simulations examine the impact of the routing perfor-

mance of the Black network, in comparison to Shortest Path routing. The inefficiency and

high overheads in Black networks with simple communications identify the need of a Trusted

Third Party (TTP) in order to maintain efficient communications. A star network with a

Black Gateway as the TTP is proposed. A majority of deployed IoT networks have star

configurations (including public IoT networks discussed in Chapter 2) [28] [29]. Our pro-

posed architecture using a Black Gateway is simple, practical and easily deployed to provide

end-to-end confidentiality, integrity and privacy with Black networks.

Figure 1.2 shows a Black Gateway configuration with nodes communicating with each

other using Black packets. The Black Gateway acts as a TTP and performs the key manage-

ment function. If Node A wants to send a packet with Node D, then Node A encrypts the

packet with KA (unique key of Node A) and sends it to the Black Gateway. The Black Gate-

way decrypts and re-encrypts the packet with key KD and forwards the packet to Node D.

The Black Gateway is not an IoT node and our assumption is that it does not have compute,

memory and capacity constraints. Our simulations show the Black Gateway performance to

be equivalent or better than Shortest Path routing, while providing much higher levels of
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Figure 1.2: Black Gateway Star Network Configuration

metadata, traffic analysis and insider threat security.

1.3 Black SDN

The Black Gateway configuration in Section 1.2 allows for simple, efficient and practical

point-to-point deployments for Black Networks. To go further, a routing mechanism for

Black networks is needed, for mesh networks. How does a system route a packet with
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Figure 1.3: Black SDN in IoT Networks

encrypted headers? We propose a Software Defined Networks (SDN) approach to routing

Black packets. All control messaging to and from the Black SDN Controller (BSDNC,

used interchangeably with TTP) with the nodes is done using Black packets. The data

packets being forwarded by the Black SDN are also Black packets. We employ a ciphertext-

based forwarding mechanism to efficiently route Black packets from source to destination.

Chapter 5 discusses the network architecture, requirements, messaging and security of Black
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SDN. Two Black SDN configurations are evaluated - Star Control and Mesh Control. The

Star Control Black SDN configuration is one in which the BSDNC/TTP can talk to all

network nodes directly. The Mesh Control Black SDN configuration can talk to some of the

nodes directly, and to other nodes indirectly. The Mesh Control is a more complex scenario,

albeit a practical one. While the dissertation focuses on IoT networks overall, starting in

this chapter we begin to introduce concepts beyond IoT networking and indicate that the

security mechanisms described in this dissertation are applicable to ANY communications

protocol. The concept of a Black SDN for an IoT network is shown in Figure 1.3

1.4 Black Routing

To present Black Routing, we apply the concepts of Software Defined Networks (SDN) [30],

a new routing paradigm, to an IoT mesh network. Existing IoT protocols like ZigBee, 6Low-

PAN andWirelessHART, utilize nodal routing mechanisms (where nodes designated as FFDs

(Full Function Devices) are capable of routing IoT packets. A PAN co-ordinator, which is

necessarily an FFD, co-ordinates the join, remove, and neighbor lists of nodes). An SDN

Controller performs the routing functionality, by downloading forwarding tables to the IoT

nodes. This simplified routing architecture (by separating the control plane and the data

plane) allows for multi-protocol support, and less routing functionality (i.e. more com-

pute and memory) within the forwarding nodes. Specifically SDN Controllers use protocols

(OpenStack, OpenFlow and OpenDaylight) that are currently applicable to broadband net-

works and are changing the way traditional routing is done within data centers, enterprise

networks and the Internet. An SDN architecture applied to IoT networks requires a sim-

plified controller protocol and interfaces [7] [31]. The security of IoT networks, using an

SDN-based architecture is a recent field of study [14] [32].

The primary objective of Black Networks is to secure all data, including the metadata,

associated with each frame or packet. This security is achieved by encrypting all information

contained in a frame that may be used by an adversary as shown in 1.1. Routing becomes

challenging when packet headers are encrypted. Black packets use an SDN architecture to

achieve routing from Point A to Point B in a mesh network. The SDN controller, routing

Black packets, in an IoT network is called a Trusted Third Party (TTP). The shared secret
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(symmetric key) used between the TTP and Node n is called a node key. Each node has

a different node key, and is designated by KN for Node n. Black packets, Black SDNs and

their routing challenges are introduced in [14]. We consider two network topologies for Black

Routing:

• The TTP is 1 hop away from all nodes

• The TTP is more than 1 hop away from nodes

1.4.1 Some Black Routing Requirements

Routing the Black ZigBee packet from source to destination requires:

• Destination Address : The final destination address must be included in the Black

Packet (16 bits For ZigBee networks).

• Initialization Vector (IV): The 128-bit unique IV must be included in each Black

packet, to synchronize the cryptographic engines on both sides.

• Frame and Sequence Counters : Frame counters are needed for mitigating replay at-

tacks. Sequence counters are needed for re-assembly of multiple data packets.

In this dissertation, we focus on a IoT network packet transformation to a Black packet,

and the subsequent routing of the Black packet from source to destination within the network.

We assume NO ACKs, NO obfuscation (source, destination or path), NO node authentication

and with zero sleep time for ALL nodes.

1.5 Node Obscuring (Sender and Receiver)

Despite link layer encryption being applied to Black networks, the identities of the com-

municating parties is put to risk. An intruder performing sustained traffic analysis on a

network can find the origin and destination of a Black packet. Black networks are vulnera-

ble to revealing the identity of the communicating nodes.

We present security mechanisms to obscure the sender, the receiver, and the path of the

communication in IoT networks, thereby securing their identities. We obscure the sender by

generating tokens from a random node (which is a random number of hops before the sender)
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to the sender, and along the path between the sender and the receiver. Black network tokens

are empty, fixed length (127-byte) packets. The token is sent along the precalculated path

until the sending node receives the token. It adds the payload to the packet and resends it

along the same path, thereby obscuring the identity of the sender. To obscure the receiver,

we resend the Black packet beyond the receiving node, for a random number of hops. When

the receiver gets the packet, it processes the content intended for it and re-sends the packet

for a random number of hops to a random node, obscuring the receiver.

1.6 Secure Smart Cities

Smart Cities are increasingly IoT-dependent, with critical-infrastructure data and con-

trol messaging being exchanged over vulnerable IoT networks. Black networks enable Secure

Smart Cities. Secure Smart Cities have Black networks to secure the critical-infrastructure

communications; a Unified Registry to authenticate and certify the IoT devices in its net-

work; an SDN architecture to enable Black networks and streamline its broadband commu-

nications infrastructure; and an external key management system to mitigate the vulnerable

key management systems of IoT protocols. The centralized security and services architec-

ture of smart cities today are vulnerable to targeted cyberattacks or natural disasters. A

distributed Secure Smart City services model is suggested for key management and IoT

mobile node authentication.

1.7 Dissertation Organization

The dissertation is organized in three parts, based on the phases of our research. Part

I consists of three chapters: Chapter 2 is an overview of IoT systems - from devices, to

a review of popular public IoT networks, a comprehensive survey and security analysis of

IoT communications protocols and advanced networking technologies (Software Defined Net-

works - SDN) for IoT, enabling global sensor networks for Smart Cities; Chapter 3 presents

the design of Black packets for each of the popular IoT communication protocols discussed

in this dissertation - Bluetooth Low Energy (BLE), IEEE 802.15.4, ZigBee, 6LoWPAN and

IPv6 (non-IoT protocol) and their compatibility with existing IoT communications proto-

cols; Chapter 4 presents Black communications. We evaluate the security and performance

of simple Black communications in comparison to Broadcast and Flooding in IoT networks.
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Our results are based on extensive simulations of Black networks of increasing scale (up to

1000 nodes) in different configurations. The outcome allows us to propose a practical Black

gateway solution for an IoT network that allows for much better performance, simple imple-

mentation, yet maintains a high resistance to a broad range of active and passive attacks,

and some level of node obscurity. The three chapters of Part II are: Chapter 5 describes

the network architectures enabling Black communications, introducing an SDN-based archi-

tecture for routing Black packets in mesh networks. We evaluate and analyze the security

and performance of a Black SDN architecture for different configurations of Black networks;

Chapter 6 introduces Black Routing, using an SDN architecture and comprehensively simu-

lates the performance of Black routing to Shortest Path routing, for networks of increasing

scale, and for various SDN configurations. We provide algorithms for Black routing and

methods for improving the performance. Chapter 7 evolves the security of Black routing

using Node Obscuring of source and destination communicating nodes, and the communica-

tions path. The final three chapters of Part III are: Chapter 8 provides an introduction to

Smart Cities and their security framework. Chapter 9 presents Secure Smart Cities using a

Black networks architecture. Chapter 10 proposes a distributed architecture for key manage-

ment and mobile IoT nodes for secure smart cities. Chapter 11 draws relevant conclusions

and suggests new areas of research.

Part I - Black IoT Networks: Chapter 1, Chapter 2 and Chapter 3

1.7.1 Chapter 2: An Overview of The Internet of Things (IoT)

This chapter provides an overview of the IoT ecosystem and its role in forming complex,

aggregate systems that enable smart cities. The IoT ecosystem is huge - IoT standards, IoT

chipsets, IoT nodes, public IoT networks, low power and energy harvesting IoT modules, IoT

gateways and IoT security, to name a few. We overview IoT devices (nodes) and popular

public IoT networks (Sigfox, Ingenu, LoRa/LoRaWAN), including the recently deployed

cellular public IoT networks (LTE-M and NB-IoT). We evaluate popular IoT communications

protocols based on IEEE 802.15.4 (ZigBee, 6LoWPAN, WirelessHART) and BLE to provide

an exhaustive security analysis for wireless IoT communications protocols. We introduce
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Software Defined Networks (SDNs), and propose a simplified SDN architecture for use in

wireless IoT networks, as a trusted third party (TTP) or gateway, to route packets between

nodes in an IoT network. The main contributions of this chapter are: an evaluation and

comparison of public IoT networks - Sigfox, Ingenu, LoRa, NB-IoT and LTE-M; a comparison

and security analysis of popular IoT communications protocols - IEEE 802.15.4, ZigBee,

6LoWPAN, WirelessHART and BLE; and the introduction of SDN architectures for IoT

and the evaluation of payload effciency, failure recovery and routing in such an architecture.

1.7.2 Chapter 3: Black IoT Communications Protocols

In this chapter, we evaluate and compare the security capabilities and vulnerabilities of

three popular Internet of Things (IoT) protocols: 6LowPAN, ZigBee andWirelessHART. The

IoT is exploding in its deployments across a broad range of objects, devices, environments

and applications [33]. Wireless communications are the primary means by which many of the

objects and devices are connected [34], and the IEEE 802.15.4 standard for low-rate wireless

personal area networks is a commonly used foundation for IoT communication protocols. The

IEEE 802.15.4 standard defines the PHY and Link layers in the communication stack while

6LowPAN, ZigBee and WirelessHART define the Network, Transport and portions of the

Application layers. Security is a primary concern for many IoT applications, particularly

for 6LowPAN, ZigBee and WirelessHART, due to the personal, financial and automated

operational control nature of the applications that use these protocols. In our analysis, we

find that WirelessHART has the greatest array of security mechanisms available to secure

its communications and basic operations from traditional attacks such as eavesdropping,

message modification and message injection. However, all three protocols are vulnerable to

an array of more sophisticated attacks including node capture and resource exhaustion.

The main contributions of this paper are: the presentation of a novel security framework

that may be used to assess the security of all IEEE 802.15.4-based protocols; using our frame-

work to perform an analysis and comparison from the security standpoint of the 6LowPAN,

ZigBee and WirelessHART protocols; and a brief analysis of the security provided within

IEEE 802.15.4-2011.
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1.7.3 Chapter 4: Black IoT Communications

In this chapter, we present Black Networks for secure communications in the Internet of

Things (IoT). IoT networks have billions of deployed nodes that are communicating mission-

critical data and control messages. The compromise of a node, the data, or the control

messages can lead to catastrophic consequences. And, in many cases, the compromise of

the metadata associated with these communications can reveal compromising information

to an attacker. Black Networks are designed to mitigate multiple communications-based

attacks by securing both the data and the metadata within a communication frame or

packet, while remaining compatible with the existing communication protocol in use. We

focus on the Black Network approach for Black ZigBee and Black BLE (Bluetooth Low

Energy). The metadata is protected, in part, by encryption and by using maximum sized

packets for all communications. Our simulation results for Flooding, Broadcast and Gateway

communications, demonstrates the viability of Black Networks in wireless IoT networks and

complex topology wired networks.

The main contributions in this chapter are the presentation of Black Zigbee and Black

BLE packet designs and the simulation and characterization of two simple communication

mechanisms (Flooding and Broadcast) for a mesh network and a Black Gateway star net-

work using Black packets.

Part II - Black Routing: Chapter 5, Chapter 6 and Chapter 7

1.7.4 Chapter 5: Network Architectures

In this chapter, we present Black SDN, a Software Defined Networking (SDN) architecture

for secure Internet of Things (IoT) networking and communications. SDN architectures were

developed to provide improved routing and networking performance for broadband networks

by separating the control plain from the data plain. This basic SDN concept is amenable

to IoT networks; however, the common SDN implementations designed for wired networks

are not directly amenable to the distributed, ad hoc, low-power, mesh networks commonly

found in IoT systems. SDN promises to improve the overall lifespan and performance of

IoT networks. However, the SDN architecture changes the IoT network’s communication
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patterns, allowing new types of attacks, and necessitating a new approach to securing the

IoT network. Black SDN is a novel SDN-based secure networking architecture that secures

both the metadata and the payload within each layer of an IoT communication packet

while utilizing the SDN centralized controller as a trusted third party for secure routing and

optimized system performance management.

We demonstrate through simulation the feasibility of Black SDN in networks where nodes

are asleep most of their lives, and specifically examine a Black SDN IoT network based upon

the IEEE 802.15.4 LR WPAN (Low Rate - Wireless Personal Area Network) protocol.

The major contributions of this chapter are: the concept of Black Networks and Black

Routing with an SDN-based architecture.

1.7.5 Chapter 6: Black Routing

In this chapter, we present Black Routing solutions, the routing of fully encrypted, fixed

length packets, called Black packets, through a network. Black packets secure both the data

payload and the packet metadata from an eavesdropper. Networks that utilize black packets

(Black networks) mitigate a wide variety of passive, active, insider, and metadata-based at-

tacks. Standard network routing protocols do not work with encrypted metadata, and they

reveal both the source and destination nodes to attackers. Thus, Black packets traditionally

require the use of expensive broadcast routing or flooding to communicate a single packet

from source to destination. We present source and destination obscuring Black Routing

algorithms that provide efficient routing of Black packets utilizing a Software-Defined Net-

work (SDN) architecture to achieve both high performance and secure communications. We

simulated our algorithms on a range of network topologies and found that Black Routing

with node obscuring can achieve performance within 50% of traditional shortest path routing

while providing node anonymity and resistance to attacks including traffic analysis.

The main results of this chapter are: Black routing algorithms with an SDN architecture

in the star control and mesh control configurations and Black routing performance simula-

tions, based on 6LoWPAN and IPv6 Black packets.
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1.7.6 Chapter 7: Node Obscuring

In this chapter we present Node obscuring mechansims. Despite link and network layer

encryption in Black networks, the identities of communicating parties can be determined via

sustained traffic analysis on an IoT network. We present security mechanisms to obscure

the source and the destination in IoT networks. We obscure the source by generating tokens

from a random node along the path connecting the source and the destination, before the

source. Black network tokens are empty, fixed-length packets. The token is sent along the

pre-calculated path until the source node receives the token. It adds the payload to the

packet and resends it along the same path, thereby obscuring the source identity. When the

destination receives the token, it processes the content intended for it and re-sends the packet

for a random number of hops, beyond the destination, obscuring the destination. During

the communication session, we establish a pre-defined path to obscure the source and the

destination from an adversary. The term subway communications is used to describe this

algorithm, where a token travels along a pre-determined path, picks up and drops off data,

obscuring the source and destination points.

Analysis of Node obscuring shows messaging and compute proportional to the number of

nodes in the path, with better payload efficiency significantly higher security than existing

IoT protocols.

The chapter contributions are: the node obscuring algorithms (node obscuring linear

(NO-l) and grid (NO-g)); security and performance analysis of node obscuring mechanisms.

Part III - Black Networks in Secure Smart Cities: Chapter 8, Chapter 9 and

Chapter 10

1.7.7 Chapter 8: Introduction to Smart Cities

Half of the world’s population resides in urban areas [35]. This drive towards urbanization

is caused by many factors including a search for better opportunities, healthcare and citizen

services that are not widely available in rural areas. As cities grow due to this trend, there is

increasing stress on them to continue providing the necessary citizen services like emergency

response and improve quality of life (air, water and food quality), and make the delivery

of these services seamless and efficient to deal with a growing urban population [36]. City

16



managers have turned to ICT (internet and communications technologies) to deliver these

services to citizens for Smart Cities. Smart cities are increasingly IoT-enabled and providing

ever more sophisticated services of emergency response and management of critical infras-

tructure. They are also a growing target for cyberterror and cyberwarfare, by exploiting IoT

vulnerabilities [37]. An adversary could cripple a city, by shutting off critical infrastructure,

being managed by IoT networks - without being physically present. This dissertation focuses

on this aspect, and presents an introduction to Smart Cities, before presenting Secure Smart

Cities in Chapter 9.

1.7.8 Chapter 9: Secure Smart Cities

In this chapter, we introduce a secure Internet of Things (IoT) architecture for Smart

Cities. Smart cities are increasingly deploying IoT networks for improved city management

such as critical infrastructure monitoring, energy management and environment monitor-

ing. Mission-critical Smart City data carried over IoT networks must be secured to prevent

cyber attacks that might cripple city functions, steal personal data and inflict catastrophic

harm. The security of Smart Cities is based on the security provided by IoT networks. We

propose four architectural blocks needed to secure an IoT-enabled Smart City against ad-

vanced attacks – Black Networks, Trusted Third Party (TTP), Unified Registry and Key

Management System. The resulting design provides identity, authentication, authorization,

confidentiality, integrity, availability and privacy. We propose that this security architecture

can be replicated across multiple city functions, for a holistic approach to securing Smart

Cities.

The main contribution of this chapter is a secure IoT architecture for Smart Cities. The

framework consists of Black Networks, SDN Controller as TTP, Unified Registry and Key

Management. The security services extend beyond the basic security provided by IoT proto-

cols to confidentiality, integrity, availability, privacy, identity management, authentication,

authorization, and accounting - across heterogeneous IoT networks, across multiple device

types, and for multiple Smart City functions. The security services provided mitigate the

vulnerabilities of basic IoT networks, for mission-critical data, at the Link and Network

layers.
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1.7.9 Chapter 10: Secure Smart City Services with Distributed Ledgers

In this chapter, we present a distributed model for delivering Secure Smart City services

using distributed ledger technologies (DLTs). A centralized management model for Smart

Cities is the norm - Network Operations Centers (NOCs) monitor smart cities, respond to

emergencies and deliver citizen services. The data collected for smart city services, such

as parking, lighting, environment and/or citizen records are stored in a centralized data

center, or cloud. Such a centralized architecture is vulnerable to sustained malicious attacks,

breaches, and natural catastrophe. With smart cities becoming increasingly IoT enabled,

we propose a distributed architecture to deliver two IoT services: key management and

node mobility, using DLTs, to mitigate attacks on a centralized architecture. The main

contributions of this paper are: a pooled, distributed model for Key Management in smart

cities, and decentralized mobile node authentication for IoT networks in smart cities.
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Table 1.3: Main contributions of the dissertation by chapter

Table of Contributions

Major Contribution Minor Contributions Notes

IoT Security Survey Security Analysis of IEEE 802.15.4 Chapter 2

Security Analysis of ZigBee Thesis Motivation: Metadata Security

Security Analysis of 6LoWPAN Comparitive Security Analysis of all

Security Analysis of WirelessHART protocols

Security Analysis of Bluetooth Low Energy

Black Packets Black IEEE 802.15.4 Chapter 3

Black ZigBee Black packet design; Security analysis

"Best Paper" Award: Black 6LoWPAN and payload efficiency of Black packet

"Black Networks for BLE" Black BLE vs. corresponding IoT protocol.

Published in IEEE ICCE Black IPv6 non-IoT Black packet

Black Communications Black networks Flooding simulation Chapter 4

"Black Networks" Black networks Broadcast simulations Performance Analysis

Submitted: IEEE IoT Journal Black Gateway architecture Security and Compute Analysis

Black SDN Applying SDN architecture to IoT Chapter 5

"Black SDN for IoT" Applying SDN architecture to wireless Node reachability for

Published in IEEE MASS SDN control messaging using Black packets Star and Mesh Black SDN networks

SDN used for communications security

Black Routing Black routing algorithm with Star SDN config Chapter 6

"Black Routing" Black routing algorithm with Mesh SDN config Security and Performance analysis

Submitted: IEEE IoT Journal Black routing simulations in 4 configurations vs Shortest Path

Node Obscuring Linear Node Obscuring Algorithm Chapter 7

Included in:"Black Routing" Grid Node Obscuring Algorithm Security and Performance analysis

Secure Smart Cities Framework for a Secure Smart City Chapter 9

"Secure IoT Architecture Black Networks, SDN Networking IoT-enabled Secure Smart City

for Smart Cities Key Management, Unified Registry

Published in IEEE CCNC

Secure Smart City Services Key Management Under submission IEEE IoT Journal

with Distributed Ledgers Mobile IoT node Authentication or IEEE Smart Cities Journal
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Part I

Black IoT Networks
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Chapter 2

AN OVERVIEW OF THE INTERNET OF THINGS (IoT)

In this chapter we review the technologies related to, and the current work on the Internet

of Things (IoT). The IoT ecosystem encompasses semiconductors and devices, networks

and communication protocols. As billions of IoT devices are deployed, the business of IoT

grows exponentially [33]. And just like normal businesses, they can be disrupted due to

vulnerabilities.

2.1 Introduction

IoT deployments present a huge and easy attack surface to adversaries, given their re-

source constraints, small form factor and low cost. All of these factors have caused the

IoT ecosystem to be vulnerable to accidental or intentional attacks [15]. We present IoT

devices in Section 2.2. We introduce public IoT networks - SigFox, LoRa and Ingenu, as

well as cellular IoT networks based on NB-IoT and LTE-M in Secton 2.3. In Section 2.4,

we introduce the popular IoT communications protocols of IEEE 802.15.4, ZigBee, 6LoW-

PAN, WirelessHART and Bluetooth Low Energy (BLE), and provide an exhaustive security

analysis of these protocols. Lastly, In Section 2.5 we introduce Software Defined Networks

(SDNs), and present an SDN architecture for managing an IoT network, evaluating routing,

payload size and failure recovery.

2.2 IoT Devices

At the most basic level, IoT devices are primarily embedded systems, that collect and

transmit data. Many are implemented as SoCs (System on a Chip) - an IC with a collection

of sensors (such as temperature, pressure, gyroscope, etc) [38]. We encounter the Internet of

Things (IoT) regularly in our daily lives - in homes, manufacturing automation, smart meters,

supply chain management, automated tolling and healthcare. IoT systems are becoming

pervasive across a broad range of applications and in a diverse set of environments. This
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expansive adoption is fueled by reduced costs and improved performance of IoT devices. It is

estimated that 50 billion devices will be connected by 2020 [33], leading to the formation of

networks that will continuously monitor (sense), and transmit data as shown in Figure 2.1.

IoT integration, both in our surroundings and on our persons, combined with the mission-

critical nature of many of these systems in automated control, personal monitoring and

financial transactions, mandates strong security mechanisms within IoT devices to protect

us from intentional and accidental harm. IoT devices are often small, resource-constrained

devices that may be either mobile or mounted to a fixed location. Many IoT devices are

powered by batteries that must power the device for several years. They may form low-

power, ad-hoc, low data rate, wireless networks. The devices conserve power by utilizing

intermittent ‘sleep’ functionality where the device is neither transmitting nor receiving in

order to maximize the lifetime of the limited battery source.

Given the size of these nodes, they have computational, memory, range of operation

and energy constraints and must run efficient software protocols. A collection of these IoT

nodes form ad-hoc IoT networks, and communicate by means of an energy-efficient, wireless,

personal area network, protocols. A widely used base protocol for IoT is IEEE 802.15.4

LR-WPAN (Low Rate Wireless Personal Area Networks) [39]. 802.15.4 defines the Physical

layer and the MAC-sublayer of the Link layer of the communications protocol. The network,

transport and application layers are defined by protocols that are built on top of 802.15.4

such as 6LoWPAN [40], ZigBee [3] and WirelessHART [9]. Another commonly used high

rate IoT protocol is Bluetooth Low Energy based on IEEE 802.15.1 WPAN [41]. Figure 2.2,

shows the Texas Instruments CC2250 IoT microcontroller.

These chipsets, along with sensors, are used in IoT nodes connected by gateways to

form wide-area networks (WANs) of nodes using the above wireless protocols. The lim-

ited resources and power constraints impact the security capabilities of IoT devices. IoT

protocols have well-known vulnerabilities [15]. In addition, practical attacks, such as node

capture (where the node is physically accessed) and resource exhaustion, and metadata at-

tacks (where the meta-data is modified, or used for inference and traffic analysis attacks)

are all specific to IoT nodes and networks.
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Figure 2.1: The Internet of Things Networks [1]

2.3 IoT Networks

A majority of wireless IoT devices are manufactured to operate in the ISM (Industrial

Scientific and Medical) radio frequency band of 2.4GHz [34]. While IEEE 802.15.4, ZigBee,

6LoWPAN and WirelessHART form private LPWAN self-organizing networks, the explosion

of the IoT business has spawned IoT service providers. These may include public IoT-

specific networks, or cellular providers llocating a portion of their spectrum for IoT devices

to communicate directly using the same 3G, 4G and 5G spectrum used by cellphones. In this

section we will overview popular public IoT service providers, and the mobile operators IoT

networks. In addition, new business models and protocols have evolved to support public
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Figure 2.2: Example of an IoT node. Source: Texas Instruments

WANs over different frequencies, with different technologies, with companies managing these

networks - networks such as SigFox, LoRA and Ingenu [42].

2.3.1 Sigfox

Sigfox is the largest and first company to offer public IoT services. Sigfox partners with

mobile operators around the world (present in 45 countries) to co-locate equipment and

share towers. The network operates in the ultra-narrowband frequency (UNB), in the 868

MHz (European) or 915 MHz (US) bands, using D-BPSK modulation. The uplink bitrates
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are 100bps and 600bps respectively. The protocol uses a non-standard PDU with different

uplink and sizes. The uplink (29-byte total) frame format contains a 12-byte payload, a

10-byte header and a 7-byte footer. The downlink contains an 8-byte payload, a 17-byte

header and a 3-byte footer [43]. 4-byte global device ID are included in the headers and keys

are pre-shared. The service is well adapted for very low and infrequent data rates (300bps

average, 12-byte max and limited to 140 messages a day). Specialized low-cost IoT nodes and

modules are required to support the service and are available through a hardware partner

network comprising of TI, Silicon Labs, Avnet Silica and many others.

2.3.2 Ingenu

Ingenu offers an IoT public network for monitoring oil, gas, and critical infrastructure, and

other applications. The service operates on a 2.4GHz-based Random Phase Multiple Access

(RPMA) proprietary protocol on the uplink, and CDMA protocol (Code Division Multiple

Access) on the downlink. The network is well suited for operating in harsh environments

with a higher power, a smaller coverage and higher throughput, than its peers [44] [29]. More

recently, Ingenu is the founding member of the IEEE 802.15.4k-2013 [45] body to standardize

the protocol and outsource the development and manufacture of its custom hardware. The

frame format is unknown given the proprietary nature of the protocol, but the standardized

version of the protocol follows the frame structure of IEEE 802.15.4-2011, with support

for alternate PHYs - LECIM DSSS (Low Energy Critical Infrastructure Monitoring Direct

Sequence Spread Spectrum) for the uplink and LECIM FSK (Frequency Shift Keying) for the

downlink. The IEEE 802.15.4-2011 MAC sublayer is described in Section 2.4.2. The protocol

uses higher power for increasing range, throughput, signal strength and supporting great

numbers of endpoints. Other features include 2 downlink channels for a BCH (broadcast

channel) and dedicated (DCH)

2.3.3 LoRa

LoRa (for Long Range) is a proprietary PHY layer technology using Chirp Spread Spec-

trum (CSS - in the 868MHz, 915MHz and 433MHz (Asia) bands), for transmission in IoT

networks [46]. The end-to-end architecture of the wide area network comprising of base

stations, devices, gateways and applications is termed LoRaWAN. The LoRa PHY layer is
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developed by Semtech (patented technology and makes the chipset). LoRaWAN refers to the

MAC layer, an open standard developed by Actily, Microchip and IBM. The network compo-

nents are provided, and used, by a large global ecosystem called the LoRaWAN AllianceTM .

LoRa provides a long range operation for IoT devices, but trades off with fixed, lower band-

width, IoT communications. A study performed by [47] provides an overview of LoraWAN

performance characteristics. The stated throughput is between 0.3kbps to 27kbps, depending

on many factors (spreading factor - SF, modulation technique - Chirp vs. FSK). The MAC

frame payload is variable depending on the modulation rate and the operational frequency

(eg. EU: 52-223 bytes, US: 12-243). Typical operation ranges are between 3-5km in urban

areas and >10km in rural areas. Bidirectional, encrypted communications are supported

across three devices classes. Devices are connected to LoRaWAN gateways which further

connected to application servers or the cloud. Class A devices are the most power efficient

and mostly used for monitoring (downlink is only possible after uplink transmission occurs,

using simple ALOHA protocol). Class B devices are synchronized via beacons and can have

additional scheduled downlink, without prior uplink. Class C devices can downlink any-

time unless they are transmitting. Power requirements for each device class are successively

higher [48] [34].

2.3.4 Narrowband for the Internet of Things (NB-IoT) and LTE-M (Long Term Evolution-
Machine)

NB-IoT and LTE-M are LPWAN services offered by cellular operators for IoT. The spec-

ifications are defined by the 3GPP (3rd Generation Partnership Project) Release 13. Both of

these technologies offer different capabilities and have seen global deployments [49], and both

operate in licensed cellular operator bands, and tend to have lower interference, compared to

unlicensed bands. The objective is to reuse spectrum and maximize spectrum utilization and

cellular infrastructure (such as antennae, base stations, towers and data centers). NB-IoT is

a new specification (meaning new 3GPP devices) operating in 180KHz bands for both uplink

and downlink. The bandwidth can fit into a 200KHz GSM carrier (stand-alone), and can also

be deployed within the LTE carrier as a Physical resource block, or within the guard bands

of the LTE carrier. The operating frequency is in the licensed 700-900MHz. The downlink

transmission is OFDMA-based (Orthogonal Frequency Division Multiple Access). The up-
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link can be either be a single tone transmission or two-tone transmission using SC-FDMA

(Single Carrier-Frequency Division Multiple Access). Expected coverage area is upto 15km,

with data rates ranging from 20-65kbps, and support for 52,000 end-points per cell [50].

LTE-M is a higher power, faster throughput technology that works for both fixed and

mobile IoT nodes, that support higher bandwidth capabilities. LTE-M is also referred to

as eMTC, Category-M1 or Cat-M1. Data rates can go up to 375kbps, which is the highest

bandwidth among LPWAN technologies. LTE-M operates with a 1.4MHz shared bandwidth

and uses specialized algorithms for power management (Power Saving Mode - PSM and

extended Discontinuous Reception - eDRx). LTE-M is compatible with existing cellular de-

ployments and can be deployed without additional infrastructure, operating in the licensed

700-900MHz band with uplink using SC-FDMA and downlink using OFDMA with 16 QAM

(Quadrature Amplitude Modulation) and coverage upto 10km [51]. LTE-M has better cov-

erage and signal acquisition in dense urban areas and within buildings. In the best case

scenarios, LTE-M has been estimated to support about 106 IoT nodes per cell sector [52].

Table 2.1 displays the key characteristics of the above-mentioned public IoT networks.

Table 2.1: A Comparison of Widely Deployed Public IoT Networks

[34] [29] [53]
Features of Public IoT Communication Networks

Network Frequency Throughput Range Other

Sigfox 868 (EU), 915(US)

MHz

UL: upto 300bps, DL:

8bps

Urban: 3-10km, Rural:

10-50km

upto 106 devices/-

cell; star topology

Ingenu 2.4GHz UL:78-624 kbps, DL:

19-156 kbps

Rural: 5-15km, Urban:

1-3km

106 devices/cell,

star and tree

topology

LoRA 433/868 (EU), 915

(US), 430 (Asia) MHz

UL/DL: 0.3-50 kbps Rural: upto 15km, Ur-

ban: 2-5km

gateway depen-

dent, star of stars

topology

NB-IoT 600, 700, 850, 1700

(US); 800, 900, 1800

(EU) MHz

UL:204.8 kbps,

DL:234.7 kbps

Rural: upto 35km, Ur-

ban:

upto 55k devices/-

cell, star topology

The public IoT networks mentioned in this section are the most well-known deployments.
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Other alliances that have deployments are Weightless, Dash7, QOWISIO and Telensa [29].

In Section 2.4 we present and analyze the communication protocols commonly used by IoT

nodes for ad-hoc, mesh, wireless sensor networks that are localized.

2.4 IoT Communication Protocols

We encounter the Internet of Things (IoT) regularly in our daily lives including in finan-

cial transactions such as automated tolling, home and manufacturing automation and supply

chain management. The significant and measurable benefits provided by networked smart

things, combined with the continued improvements in device performance and longevity and

reductions in device cost, will ensure the continued deployment of new IoT systems across

a broad range of applications and in a diverse set of environments. The pervasiveness of

the Internet of Things, both in our surrounding environments and on our persons, combined

with our reliance upon many of these systems for automated control, personal monitoring

and financial transactions, necessitates a strong integration of security mechanisms within

all IoT devices to protect us from intentional and accidental harm.

A number of standardized communication protocols that include security mechanisms

have been developed for, and adopted by, IoT enabled applications. Three popular protocols

are 6LowPAN, ZigBee and WirelessHart. Each of these protocols is designed to operate on

top of the IEEE 802.15.4 Low Rate Wireless Personal Area Network (LR-WPAN) protocol.

IEEE 802.15.4 defines the Physical (PHY) layer (how bits are sent over the air) and the

Data Link (Link) layer (how data is sent directly from one node to another node) of the

communication stack. Routing, network management and applications are the responsibility

of the protocols built on top of IEEE 802.15.4 [41].

IEEE 802.15.4-based IoT devices are typically small, resource constrained devices that

may be either mobile or mounted to a fixed location. Additionally, these devices are typically

powered by a single, small non-rechargeable battery that must power the device for several

years. This often results in the devices utilizing intermittent ‘sleep’ functionality where the

device is neither transmitting nor receiving in order to maximize the lifetime of the limited

battery source. The limited resources and power constraints impact the security capabilities

of these devices [45].
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The 6LowPAN, ZigBee, and WirelessHART protocols were designed to operate within

the resource limitations of a typical IEEE 802.15.4 based IoT device. Consequently, their

standard security mechanisms have limitations that may prevent their usability in a range

of new applications that are integrating smart objects. In the rest of this chapter, we

evaluate the capabilities of the standard security mechanisms of the 6LowPAN, ZigBee and

WirelessHART protocols. Our evaluation focuses on the ability of these mechanisms to

prevent or mitigate a range of attacks that are expected to arise in a ubiquitous Internet

of Things world. While these protocols have an array of defined mechanisms that may be

used to thwart basic attacks such as eavesdropping and message modification, we find that

additional practical attacks, such as node capture and resource exhaustion, necessitate the

inclusion of security mechanisms beyond what is defined in these protocols. In addition, we

compare the defined security mechanisms of these three protocols to one another, and we

find that WirelessHART has a set of security mechanisms that mitigates the broadest array

of potential attacks on IoT smart objects.

2.4.1 Security Overview

There are several fundamental security services that should be provided by even a simple

IoT communication protocol: access control, message integrity, message confidentiality, and

replay protection. These security services provide a basic level of protection and, ideally, are

provided at each layer in the communication protocol stack. Higher layer protocols should

provide additional security services, such as routing integrity and routing assurance which

should be provided at the Network layer.

Access control services limit the impact of communications from unauthorized devices.

At the link layer, access control services should prevent an authorized device from responding

to communications from or communicating with unauthorized devices. Access control at the

Link layer is the first, and lowest cost, layer of defense preventing unauthorized devices from

accessing the network. Access control at the Network and higher layers prevents a device

from accessing or using a resource for which it is not authorized. Access control at the

Network and higher layers can be costly to implement but may protect individual resources

and functions contained within a smart object or within the network itself.
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A message integrity code (MIC)1 may be included with each message sent in order to

provide both message authentication and message integrity. A MIC is a cryptographically

secure digest of the message, or a portion thereof, that is typically computed using a secure

hash function such as SHA-256 or SHA-3. Computing a MIC requires both the sender and

the receiver to share a secret key that is used in computing the digest. Consequently, if an

adversary alters a message from an authorized sender or injects an unauthorized message,

the adversary will not be able to generate a correct MIC without knowledge of the secret key.

A MIC may be used to protect the integrity of a complete message that is communicated

using multiple packets and at each level of encapsulation within a packet. In addition to

providing for message integrity, a MIC is perhaps the simplest approach to providing access

control at the link layer.

Message confidentiality services assure that the transmitted message is disclosed to the

intended recipient(s) only. Message confidentiality is typically achieved by encrypting the

data portion of a packet. Within a communication layer, such as the Link layer or Net-

work layer, any source and destination addresses for that layer typically are not encrypted.

Symmetric key ciphers, such as AES, are used most often for message confidentiality. This

requires that both the sender and the receiver share a secret key that is used in encrypting

and decrypting the message. However, a shared secret requires symmetric key management

services to be provided by the higher layers of the communication stack even though message

confidentiality is best provided at least at the Link layer.

Replay protection (also known as sequential freshness) services ensure that duplicate

messages between authenticated parties are detected and dropped. A replay attack is simply

the intentional retransmission of valid packets in an attempt to either gain access to a

resource or deny that resource to others. One of the difficulties in detecting replay attacks is

that repeated messages may arrive at a receiving node through normal operation due to the

manner in which packets are routed through a network. A simple mechanism that can be

used for replay protection is an incrementing packet counter. The monotonically increasing

nature of the counter ensures that messages with lower packet counter values than the next
1The IEEE 802.15.4 specification refers to a message authentication code as a MIC to differentiate it

from media access control. In this chapter, we follow the IEEE 802.15.4 convention of referring to a message
authentication code as a message integrity code.
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expected packet counter value are rejected, thus limiting the effects of repeated messages

and of replay attacks [39].

These four basic security services mitigate a range of fundamental attacks including

eavesdropping, packet replay, packet injection, packet modification and simple resource ex-

haustion attacks. Advanced attacks, such as jamming, node capture and advanced resource

exhaustion attacks, and higher layer attacks, such as selective forwarding, flooding and

desynchronization attacks, are not completely mitigated by these basic security services.

The main security challenges presented by Wireless Personal Area Networks (WPANs)

are low computational resources, small memory resources, limited physical protections and

limited power on the WPAN connected smart objects. Node capture is a practical attack in

most WPAN deployments due to direct physical access to the devices. Node capture refers

to an adversary directly accessing the device, either through physical access or electronic

access, allowing the adversary to extract keys, inject messages, operate as an authenticated

node and remove nodes from the network. As a result, security services for WPAN protocols

such as 6LowPAN, ZigBee and WirelessHART must be extremely efficient to run on nodes

that can preserve battery life for years while protecting against authorized nodes that may

be captured by an adversary. In addition, the consequences of node capture can be reduced

by enforcing certain security requirements such as erasing secure key information when the

node is disassociated from a network [54].

The limited resources of WPAN devices, particularly the limited power supply that is

common in these devices, requires the communication protocols to protect the resources.

Power depletion attacks, where a device is forced to utilize all of its available energy to

manage malicious communications or perform activities requisted by an adversary, require

explicit power management services in order to limit the consequences of the attack. Power

depletion attacks have created specific security guidelines that are normally not considered

in standard networks [55].

2.4.2 IEEE 802.15.4 Security

IEEE 802.15.4 security is provided by the MAC sublayer on incoming and outgoing frames

via services supporting [39]:
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• Data Confidentiality (transmitted information is encrypted)

• Data Authenticity (transmitted information is not modified)

• Replay protection (Sequential Freshness, transmitted information is not replayed)

The MAC PIB (PAN Information Base) maintains a device table that allows authenti-

cated devices to communicate and set the security level between them. Security is requested

by the upper layers [56] [10]. The keys and their management are provided by the high layer

protocols (6LoWPAN, ZigBee and WirelessHART), and per frame MAC layer encryption, of

varying authenticity levels may be requested (to minimize security overhead where required).

If not requested, or keys not provided, then the default is no security at the MAC layer. The

encryption scheme supported by IEEE 802.15.4 is AES-CCM* [39] [10] [57].

IEEE 802.15.4-based networks are vulnerable to node capture, power drain (resource

exhaustion), replay attacks and attacks that forge the unencrypted ACK frame. Thus, the

security architecture must establish and maintain trust relationships, which are defined at

the higher layers.

In the IEEE 802.15.4 Link layer, replay protection is provided with all security levels,

except security level 0 (no security). Frame protection uses either a link key (shared between

peer-peer devices) or a group key (shared among a group of devices). When a group key

is used for peer-to-peer communication, protection is only against outsider devices and not

against potential malicious devices in the key-sharing group [39].

2.4.3 Protocol Security

In this section, we detail the 6LoWPAN, Zigbee and WirelessHART protocols that utilize

IEEE 802.15.4. These protocols are designed for personal area networks and are well suited

for IoT applications. 6LoWPAN maps the IPv6 protocol to the IEEE 802.15.4 header.

This enables IPv6 addressing directly to each node. Zigbee and WirelessHART have been

deployed in industrial systems with specific needs for networking and small packet size.

2.4.3.1 6LoWPAN

6LoWPAN is defined in a collection of IETF standards that define the use of IPv6 for low

power WPANs (IETF RFC 4919 [40], RFC 6282 [58], RFC 6775 and RFC 6550 [59]). It uses
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the MAC and PHY sublayers of IEEE 802.15.4 (Figure 2.3). The large address space of IPv6,

and the widespread use of IP allow 6LoWPAN to make smart objects directly addressable to

an IP network. 6loWPAN has deployments in automation, control and energy sectors [60] [2].

6LoWPAN uses the IPSec security architecture. 6LoWPAN security requirements include:

Figure 2.3: Comparison of the TCP/IP and the 6LoWPAN Protocol Stacks [2].

• Information Security: Confidentiality, Integrity, Authentication, sequential freshness

• Operational Security: Availability, Robustness, Resiliency, Resistance, Energy Effi-

ciency, Assurance (operate at multilevel security modes).

Park et al. [54] refer to a set of security considerations for 6LoWPAN. They include ef-

ficient adaptation of network layer security for 6LoWPAN including authentication and key

management. However, the threats to the IP network remain the same, or increase e.g., phys-

ical access to smaller devices is easier, and effective defence against node capture attack is

minimal. IPv6 network layer security (IPSec) is resource-intensive to small devices and can-

not be directly applied to 6LoWPAN. Internet key exchange (IKEv2) messaging (RFC5996)

has a high signaling cost for low power, low data rate devices. Efficient key management and
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distribution algorithms will have to be defined for 6LoWPAN. Standard IP network threats

remain for 6LoWPAN such as DoS, intrusion, sinkhole, replay and insecure routing attacks.

To mitigate IPSec vulnerabilities, a combination of Application Level Security SSL, with link

layer security IEEE 802.15.4 MAC is recommended. IPSec is not mandated for the network

layer.

Network Layer attacks necessitate the following security requirements for 6LoWPAN:

• End-to-end security (use AES-CCM* IEEE 802.15.4 security profile)

• Node Authentication (node joining a network)

• Key establishment, initial key transfer (using out-of-band methods) and key revocation

schemes. The ZigBee key management scheme is recommended for 6LoWPAN. Nodes

in active state must have their key information. Nodes in passive state (sleep mode)

should not have their key information. Key must be re-instated once in active state.

The above security mechanisms are not effective measures against node capture and

resource exhaustion attacks.

2.4.3.2 ZigBee

Zigbee is a set of application protocols, based on the IEEE 802.15.4 PHY and MAC

sublayer. ZigBee application profiles form energy-efficient, low data-rate and self-configuring

mesh networks of up to 216 devices, using Zigbee devices which are RFD (Reduced Function

Devices) or FFD (Full Function Devices). The Zigbee alliance hosts the multiple Zigbee

specifications, standards, member companies and Zigbee device certifications (http://www.

zigbee.org). ZigBee has been deployed in a wide variety of consumer electronics, industrial,

control, lighting, home, telecom, healthcare and energy segments. The ZigBee-2007 standard

has two feature sets: ZigBee and ZigBee PRO. ZigBee PRO has larger node support and

additional security (supports high security mode and master key) [26]. A newer version

of Zigbee, known as Zigbee IP is based on 6LoWPAN, and associated IETF protocols.

Security is provided by TLS1.2 protocol, with support for public key infrastructure using

standard X.509 v3 certificates and ECC-256 cipher suite. Zigbee Smart Energy Profile 2 is

the application profile supported by Zigbee IP.
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The security architecture of ZigBee has certain architectural guidelines, sublayer inter-

faces, key definitions and usage models. The security services for the ZigBee protocol is

provided by the Security Service Provider, and specified in the Security Services Specifica-

tion within the ZigBee standard. Services include key establishment, key transport, frame

protection and device management.

Figure 2.4: ZigBee Protocol Stack Architecture [3](www.zigbee.org)

Figure 2.4 shows the ZigBee Protocol Stack Architecture. The Security Service Provider

outlines security mechanisms for the Network Layer (NWK) and the Application Support

Sublayer (APS). The ZigBee Device Object (ZDO) manages the security configuration and

security policies of a device. The security architecture defines security functionalities based

on an Open Trust Model which assumes: symmetric keys are safe; applications on a device

are trusted; APS, NWK and MAC sublayers are accessible to applications and are trusted.

ZigBee outlines architectural design choices that provide for operational security - pre-

venting a malicious device from utilizing the network. The ZigBee standard specifies:
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• The layer that originates the frame is responsible for initially securing it.

• If protection from theft of service is required, then NWK layer security shall be used

for all frames.

• Security can be based on the reuse of keys by each layer.

• End-to-end security is enabled, based on a shared key between only two devices.

• The security level used by all devices in a given network, and by all layers of a device

shall be the same.

Finally, the ZigBee standard outlines the security keys, the Trust Center (TC) design

and the APS sublayer and NWK layer security.

Security keys defined by the ZigBee standard are AES-128-CCM (or AES-CCM*, derived

from IEEE 802.15.4) symmetric encryption keys of three types - Master key (MK), the Link

key (LK), and Network keys (NK). MK is required to join the network. MK is used to

generate the LK. LK provides the highest level of end-to-end unicast encryption between

two ZigBee peer devices (APL layer for key transport, authentication, in High Security (HS)

Mode). The network key is shared between all devices, encrypting all network broadcast

communications (authentication, frame security in Standard Security (SS)mode). Keys can

be factory set or be distributed via the trust center (residing in the network coordinator).

The NK is used by MAC, NWK and APL sublayers. The MK and the LK are used only by

the APS sublayer. Key acquisition is via

• Key Transport: Key distributed to the device by the Trust Center

• Key Establishment: pairwise LK distribution between two devices. A pre-shared MK

is required in both devices

• Pre-Installation: Key provided to device before joining network (usually MK, but all

key types can be pre-installed, but are vulnerable to attack)

The Trust Center is an application in a secure ZigBee network (typically within the

ZigBee Network Coordinator) that distributes keys for the purpose of network and end-to-

end application configuration management. The Trust Center is trusted by all devices in the
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network. There is only one TC per network. Each device is associated with only one TC.

TC operates in a commercial High Security (HS) mode and a Residential Standard Security

(SS) mode. In the HS mode, the TC maintains a centralized repository for NKs, LKs and

MKs. The TC establishes and maintains the list of all devices, associated keys and freshness

counters. TC also enforces NK renewal and network access control policies. In the SS mode,

the TC maintains the device list and associated MK, LK. TC maintains the NK and network

access control policies [61]. The functions provided by the TC are:

• Trust Manager: Identity Management, Authentication of a device sending a network

join request.

• Network Manager: Maintain and distribute NKs to the network devices

• Configuration Manager: Establish peer-to-peer, end-to-end, security between network

devices.

ZigBee Network Layer Security ensures the network frame is secured, and appropriately

interfaces to the APL Layer. The ZigBee APS Sublayer Security provides Key Establish-

ment, Key Transport, Device Update, Device Remove, Request Key, Switch Key, Entity

Authentication and Permission Configuration Table services [26].

2.4.3.3 WirelessHART

WirelessHART is a robust, time synchronized, self-organizing, self-healing, mesh net-

working protocol, using the IEEE 802.15.4 PHY layer. The TDMA-based MAC sublayer

is defined in the WirelessHART standard using TSMP (time synchronized mesh protocol)

technology. WirelessHART is primarily used for process control and measurement envi-

ronments, because of its backward compatibility to the widely-deployed, industrial HART

protocol. Industrial control environments require deterministic timing and often have harsh

radio interference. WirelessHART is the IEC 62591 standard, and operates on the 2.4GHz

ISM band, with 16 channels.

The WirelessHART peer-peer mesh network consists of devices, a Network Manager

(NM) and a Security Manager (SM). Devices are of four types and ALL are required to have

routing capabilities. [62]
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Figure 2.5: WirelessHART, HART Protocol Stack [4]

• Field Devices: connected to sensors and actuators

• Router Devices: for communications

• Handheld Devices: for operations and maintainence

• Adapter Devices: for legacy HART or non-wireless devices to be connected to the mesh

network

The Gateway Device is 1+1 redundant, and connects the network of devices to the plant

automation system. The Network Manager generates optimized routes and communication

schedules. The Security Manager (not mandated or defined by the standard), provides

security keys generation and management (storage, renewal, revocation).
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Physical layer security on the radio layer consists of Frequency Hopping Spread Spec-

trum (FHSS) across 16 channels (logical channels 11-26). Clear Channel Assessment (CCA)

is optional to determine channel efficiency and configure transmit power levels. Channel

Blacklisting is a mechanism to disallow the use of rogue channels (channels with interfer-

ence). Active Channel lists are maintained by each device to ensure the network understands

which channels are in use.

WirelessHART security services are provided by the MAC sublayer and the network layer.

The WirelessHART mesh network provides Graph routing and Source routing mecha-

nisms to bypass link failure, interference and inoperative devices - any or all of which could

be a result of a malicious attack. Each device is a router and connects to two other devices

for path diversity.

Data integrity, frame encryption and message authentication are provided by AES-128-

CCM [57] and used by both receiver and sender. For end-to-end, per-hop and peer-to-peer

communications, the network layer and the data link layer uses various key types [4] [63].

Security keys are not well-defined in the WirelessHART standard. Eight different keys

can be used for payload encryption/decryption and MIC generation over the Network and

Link layer PDUs [12]:

• The Network Key computes the MIC over the link layer payload, and is used for device

authentication.

• The Join Key secures network frame payload when the device joins a network, and

computes the MIC. It is used by the NM to renew unicast session keys.

• The Unicast-Gateway Key is used to encrypt network layer payload between the Gate-

way and devices. It is used to compute the MIC at the network layer.

• The Unicast-NM Key is used to secure the session between Network Manager and

devices. It is also used for renewing the Join Key, post device authentication.

• The Broadcast-Gateway Key is used to secure broadcast messages between Gateway

and field devices.
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• The Broadcast-NM Key is used to secure Network Manager broadcasts to the Gateway

and to field devices. It is also used for renewing the Network Key.

• The Handheld Key is used for a secure session between a field device and a handheld

device. The key is provided by the Network Manager to both devices after the Handheld

device has been authenticated.

• The Well-known Key is a pre-assigned (factory flashed) network key used to authenti-

cate new devices joining the network (always 0x 777 772E 6861 7274 636F 6D6D 2E6F

7267).

WirelessHART is designed to be a robust, reliable protocol providing greater than 99.73%

availability, but there are limitations with the security architecture. The Security Manager

specifications and architecture are not defined in the WirelessHART standard. For example,

the interface and messaging between the Network Manager and the Security Manager is

not defined. Along with that, key management definitions are incomplete (only key distri-

bution by the Network Manager is defined). This may lead to a compliant, but insecure,

implementation. Public key cryptography remains unsupported. Therefore the standard

provides Confidentiality, Integrity, Authentication and Availability, but no Authorization,

Non-repudiation and Access Control. This may prevent containment of a malicious node

within effective limits. Secure multicast between field devices is not supported, but secure

multicast between Gateway to all field devices, and Network Manager to all field devices is

defined.

There is an exhaustive threat analysis for WirelessHART by [12]. Threats such as inter-

ference, jamming, Sybil, Traffic Analysis, Denial of Service, De-synchronization, Wormhole,

Tampering, Eavesdropping, Selective Forwarding Attack, Resource Exhaustion, Spooling

and Collisions. The more sophisticated threats such as wormhole, de-synchronization, traf-

fic analysis, spoofing, resource exhaustion and jamming require additional security criteria.

To mitigate node capture threats, it is suggested that the field device reformat memory

contents when it disassociates from the network. Resource exhaustion may occur by fre-

quent link scheduling and routing. The 10ms active time slot in WirelessHART limits any

continuous resource drain.
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2.4.3.4 Bluetooth Low Energy (BLE)

In this section we discuss the security architecture and features of Bluetooth Specifi-

cation Version 4.2 [64]. The security components of BLE in relation to the BLE protocol

stack is shown in Fig 2.6. BLE has two primary components, the Controller (PHY and

Link), and the Host (upper layers) Security services are provided at both the Host and

the Controller [65]. In the Host part, security services are provided by the Generic Access

Profile (GAP) and the Security Manager (SM) via a dedicated channel using the Security

Management Protocol (SMP).

Host

GAP
LE Security Module 1

Level 1: No Security

Level 2: UNAUTH pairing + ENC

Level 3: AUTH pairing + ENC

Level 4: AUTH LE SC pairing + ENC

LE Security Module 2
Level 1: UNAUTH pairing + DS

Level 2: AUTH pairing + DS

SM
Security Keys

IRK (privacy), CSRK(DS), LTK

(encryption): 128 bit

EDIV, RAND: LTK identifier, 16/64 bit

TK, STK: Pairing, Temp Keys, 128 bit

Pairing
Just Works, Numeric Comparison

Passkey Entry, Out-of-Band

Controller Link
AES-CCM encryption with 13 byte nonce

PHY

Figure 2.6: Bluetooth Low Energy Security Stack

The BLE protocol security is based on five standard security services: device authenti-

cation, encryption, message integrity, pairing and bonding.

Authentication is a method to prove that an entity is who they say they are. Authenti-

cation is performed between devices, for service requests and for messages. Authentication

between two devices in BLE is performed after a connection is established (LE Security Mode

1).

Amessage integrity code (MIC) may be included with each frame to provide both message

authentication and message integrity. Using a MIC requires both the sender and the receiver

41



to share a secret key that is used in computing the MIC.

Message confidentiality services assure that the transmitted message is disclosed only to

the intended recipient(s). Message confidentiality is typically achieved by encrypting the

payload portion of a frame. The header information is not encrypted. At the Controller,

Link layer security in BLE provides confidentiality and integrity via AES-CCM. Link layer

connections are of two types: encrypted and authenticated or unencrypted and unauthenti-

cated. In the former, Data Channel PDUs are authenticated with a 4-byte MIC (the MIC

is computed over the payload and first byte of the header). The encryption is done over the

Data Channel PDU payload and the MIC. Advertising Channel PDUs are not encrypted or

authenticated and this provides opportunities for a range of attacks like inference attacks,

eavesdropping, message modification and packet injection with incorrect control sequences.

Data signing is used for transferring authenticated data over an unencrypted connected used

for fast data transfers and fast connections.

Pairing and Bonding are related to key management. Pairing is the generation of a

shared secret between two entities through association models. Bonding is the storage and

subsequent use of the keys generated during pairing. Key generation for BLE is done in

the Host, per device, for ease of upgrades. Prior non-LE Bluetooth versions generated

the key in the Controller, which required a Controller upgrade for a change in the key

generation algorithm. BLE uses the following keys: LTK (Long Term Key) for encryption;

IRK (Identity Resolving Key); CSRK (Connection Signature Resolving Key) for data signing;

EDIV (Encrypted Diversifier) and RAND (Random Number) for identifying the LTK during

pairing.

BLE uses four association models for pairing: Just Works, Numeric Comparison, Out of

Band and Passkey Entry. Association models are deployed based on the IO capability of the

device. BLE Just works and Passkey Entry do not provide passive eavesdropping protection.

BLE pairing uses the following two keys: TK (Temporary Key) and STK (Short Term Key).

The TK is used to generate the STK, which is used to encrypt the connection after device

pairing is complete.

In addition, BLE also provides replay protection and privacy services. Replay protec-

tion services ensure that duplicate messages between authenticated parties are detected and
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dropped. A replay attack is simply the intentional retransmission of valid packets in an at-

tempt to either gain access to a resource or deny that resource to others. Replay protection

is provided via the SignCounter field for authenticated data over an unencrypted channel. It

is also provided during the pairing procedure of Numeric Comparison, Just Works and LE

Secure Connections. The BLE privacy feature can be activated after a node has joined the

network. The privacy feature changes the BLE device address (BD_ADDR) frequently to

avoid being tracked. That random address is generated and resolved using the IRK, and is

mapped to a lookup table of private addresses.

2.4.4 Security Analysis

We have reviewed the security analysis for IEEE 802.15.4, 6LoWPAN, ZigBee and Wire-

lessHART. We now discuss the threats applicable to each protocol and possible mitigation

with suggestions.

Starting with IEEE 802.15.4-2011, we note that the standard has a separate security

section. The main threats to this protocol are NO encrypted ACK frames, NO timed frame

counters and NULL security level. When the ACK frame is NOT encrypted, an intruder can

intercept a MAC frame, forge an ACK frame with a sequence number, resulting in frame loss

with no retransmission. Replay attacks send a large number of intercepted frames, with large

counters. Valid frames with smaller counters are then rejected by the security mechanisms

which do not evaluate based on time-stamps. Unless defined by the application there is no

security set up by default for IEEE 802.15.4. This could result in insecure and compromised

systems using IEEE 802.15.4

6LoWPAN is an IETF standard, but its adaptation to IEEE 802.15.4 WPANs currently

includes IPv6 protocols that are ill-suited for WPANs. For example, IPSec provides network

layer security. IKEv2, within IPSec, used for key management results in heavy computational

and extra packets that reduce the efficacy of end nodes operating in a low-data-rate, low-

power environment. Additionally key revocation and secure node joining authentication

methods are undefined and currently insecure.

ZigBee is a well-defined protocol that addresses secure per-hop, end-to-end and peer-

to-peer communications (can encrypt at three layers - MAC, NWK and APS layers). The
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centralized ZigBee Trust Center (TC) that generates and updates keys for all devices within

the network is a vulnerability. Additionally, when a node disassociates from the network, it

still contains the network key (NK), and creates a vulnerability.

WirelessHART is the most reliable of the above protocols because of direct channel

access to the node, based on a TDMA MAC. WirelessHART does not support public key

cryptography. The Security Manager specifications are undefined in the standard and are

susceptible to insecure implementation.

In all of the above protocols, node capture is a vulnerability. Node authentication and

access control are security mechanisms to ensure malicious or "zombie" nodes (defined as

good nodes captured and turned bad) do not join, or are revoked, within a network. Security

mechanisms such as node memory formatting (erasing key information), after node capture,

should be considered.

2.5 Software Defined Networks and IoT

Software Defined Networking (SDN) is a new paradigm in computer networks. The

Internet has become the backbone of our information society. The Internet is managed all

over the world and large portions of it are managed by Service Providers. As millions of

users have subscribed to this universal service, the demands on Service Provider networks

have grown exponentially with data, video and mobile traffic. Networks are scaling poorly.

Service provider capital expenditure and operating expenses are rising. To add to this, over

the years networking standards have been open, but implementations have been proprietary.

Line speeds for routers and switches have increased, but signaling (control) and media (data)

have been on the same physical equipment. The complexity of traffic and networks has

given rise to ’middleboxes’ for targeted applications such as firewalls, load-balancing, xml

processing. The network complexity and architecture to carry data traffic, along with the

thousands of standards and protocols being introduced is creating an Internet traffic jam [66].

A confluence of factors have come together to create a paradigm shift - cloud computing

(the ability for a user to rent compute, storage and applications on-demand without phys-

ically acquiring the assets), Data Center evolution (for a more streamlined architecture),

Mobile Content Access (universal mobility and data access globally) and Big Data (analyt-
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ics for decision support and control) are driving Internet traffic. The search for a scalable,

efficient, simpler network architecture has become essential.

Figure 2.7: SDN Architecture and OpenFlow V1.0 Flow Table [5] [6]
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One way to scale large networks and make them cost effective via is via SDN. SDN

separates the control plane (signaling) from the data plane (media). This results in an

architecture that is scalable and very cost effective, as the routers (now called forwarding

elements or switches) have minimal logic to forward data (and can be very simple computing

elements, without complex, expensive logic). The forwarding decisions are based on simple

Flow Tables that are downloaded to the switches by a centralized controller, which has a

global view of the network. The controller communicates with the switches using a open,

industry-defined, open-source protocol called OpenFlow. For the purposes of this paper, we

will need to know the architecture of SDN and the format of communications of OpenFlow

1.0 (OF V1.0, later versions have followed). An example of this architecture, and OpenFlow

1.0 format is shown in Fig. 2.7. For the rest of this paper we need to understand the SDN

architecture and the Flow Table format, which we will use on IoT networks in Section 2.5.1

for better efficiencies and reliability [6]. Further information about SDN in general, including

a description of OpenFlow, can be found in [66].

2.5.1 SDN applied to IoT

Now that we have established the basics of SDN and wireless sensor networks in the

Internet of Things, how exactly do we bridge the gap? While we can translate the components

of IoT networks to the SDN paradigm rather simply, as in Fig. 2.8, this does not come for

free. As with most issues regarding IoT, the main problem comes down to scale: how exactly

do we take SDN and reduce it to a scale that can perform well on these tiny devices? While

a formal protocol recommendation or proposal is officially a topic for future research, we will

highlight a few of the potential solutions from Sensor OpenFlow, an SDN-for-IoT protocol

based on the OpenFlow standard, described in [7].

The basic architecture of Sensor OpenFlow is shown in Fig. 2.9, and is very similar to

that of OpenFlow except with the flow tables rewritten to better support addressing schemes

of wireless sensor networks. In particular, it utilizes two ”classes” of addressing schemes:

• Class-1 defines an addressing scheme for ’compact network-unique addresses’, e.g. tag-

based unique identifiers. It is implemented via OpenFlow’s OXM (OpenFlow Extensi-

ble Match) fields to introduce a number of customized match fields as depicted in Fig.

46



Figure 2.8: IoT deployment with 6LoWPAN [2]

2.10.

• Class-2 addresses are content-based addresses employing a new ”concatenated attribute-

value pairs (CAV)” match paradigm. This is a full extension to OpenFlow’s 12-tuple

match structure that allows packets to define a parameter, operator, and match value

(e.g. ”temperature <12”) that allows one to route packets to destinations based on the

actual content of the packet. This allows for some very basic ”deep packet inspection,”

to a degree, supported natively as part of the SDN protocol.

2.5.1.1 Payload Size

The first notable benefit we get with SDN-based routing is payload size. Networking

bandwidth is easily taken for granted these days, but such concerns become paramount when

discussing the Internet of Things, as devices’ memory and bandwidth limits are incredibly

small. Of particular note is the fact that 802.15.4 devices have a maximum payload size
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Figure 2.9: Sensor OpenFlow architecture [7]

(MTU) of 127 bytes [39], which is small enough that packet header size can become an issue.

In order to reduce header size, we need to define an efficient addressing scheme for packets.

The current standard, IPv6, is problematic as the headers take up more space than the actual

payload, as is depicted in Fig. 2.11. In fact, the principal technology behind 6LoWPAN is

that of header compression, which is what enables IPv6 to be usable on such small devices

in the first place. However, this compression comes at a cost, as the devices themselves must

spend significant processing time (on a very small chip) to reduce the headers to a usable

state.
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Figure 2.10: Sensor OpenFlow flow tables, illustrating OXM and CAV extensions [7]

While 6LoWPAN does a good job at compressing the headers, we can do better with

SDN. Based on the fact that wireless sensor networks are typically a relatively small number

of nodes communicating with some sort of central gateway or data store (in our case, an

SDN controller), we make the following observations and optimizations:

• Firstly, we propose using a simple tag-based addressing scheme, limited to 4 bytes.

This may be a 4-byte destination address, a 2-byte source destination combination,

or an MPLS-like chain of forwarding addresses; in fact, any tag assignment scheme is

possible given the fact that the networking application on the controller is completely

configurable, so given some customization ability of the wireless nodes themselves, we

can determine the best system for the network and reduce the size of the tag field to

49



Figure 2.11: Packet sizes for IPV6 networks, 6LoWPAN networks, and SDN-based net-
works [2]. Note the significant loss of payload size for the traditional IPv6 protocol.

whatever seems most applicable. This addressing method maps well to Sensor Open-

Flow’s ”Class-1” addressing schemes, making it a viable choice should we implement

this protocol [7].

• With SDN, we gain complete control of the transport protocol, meaning there is no

explicit need to implement the UDP protocol. Because of this, we can exclude the

UDP header and save a few more bytes of space.

• As a final ”trick,” if we keep the size of each packet across all nodes fixed such that the

controller knows the packet structure exactly, we avoid having to store a ”length” field

(L) in the packet. This gives us a couple more bytes, which can add up in the long

run. These optimizations plus the fact that devices no longer need to spend CPU cycles

shrinking headers mean that we can achieve better ”goodput” (non-header throughput)

using the SDN paradigm.
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2.5.1.2 Routing

Traditional wireless sensor architecture tends to rely on a node-initiated network building

approach, which naturally includes some limitations. As an example, we will consider 6LoW-

PAN’s RPL, Routing Protocol for Low-Power and Lossy Networks, depicted in Fig. 2.12.

This protocol uses destination-advertisement broadcasting to allow the individual nodes to

form a routing network without outside input [60].

Figure 2.12: DODAG Routing Method in 6LoWPAN [8]

In 6LoWPAN RPL, the routing network is formed by building a Destination-Oriented

Directed Acyclic Graph, or DODAG. In general terms, a DODAG is a tree-like directed

graph in which all nodes point upward to a common ”root” node, typically a data sink.

Without diving into the mechanics of forming a DODAG, the essence of this scheme is that

the formation of such networks can be done in a purely-distributed manner. Nodes broadcast

their existence, and neighbors that discover these nodes can build the necessary routing links
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to establish itself as part of the DODAG [60].

While this method works well for wireless sensor networks because of its purely-distributed

nature, there exist significant limitations in this scheme which can be resolved by adopting

an SDN approach instead. First of all, DODAG routing is completely data-oriented; that

is, fundamentally, all routing in a DODAG leads to a singular destination node, typically

a data sink of some sort. While this is generally desirable for sensor networks, this leaves

no room for actuators or alternative destinations in the routing scheme. The one-way links

of a DODAG prevent the controller (or other nodes) from communicating ”downstream,”

meaning that any sort of action-takers must be set up on a separate network. Traffic must

be routed through the data sink back out to the network again, meaning it is not possible

to set up ”priority” routes between sensors and alternative destinations (e.g. a temperature

sensor to a fire suppression system) without making a trip through the central system first.

This can be inefficient in such cases.

As part of our SDN paradigm, we propose an alternative routing protocol, SDN-RPL,

depicted in Fig. 2.13. It uses a similar method of broadcast-discovery as 6LoWPAN RPL,

with the important distinction that the SDN controller handles assignment of flows. From

a high level, the following steps are performed:

• A new node wishing to join the network broadcasts its existence.

• Neighboring nodes that are within range of the join request will forward this toward

the SDN controller. Nodes that have already received a join request from the node

within a certain time window will ignore the request, to prevent redundant requests

from being sent (e.g. two nodes within range that send requests to a common ”parent”

node).

• SDN controller determines the best place in the network for the new node and sends

a downstream add-flow request to add the node to the network. The exact ”how” is

intentionally left black-boxed, as the global view of the SDN controller means that a

wide range of network-building algorithms may be used depending on the application.

• SDN controller may optionally deny nodes from joining the network based on some

criteria, in which it sends an add-flow request to instruct neighbors to drop packets
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from the ”new” node (to prevent flooding of excess packets from unauthorized nodes).

While security is still a to-be-researched topic in our proposal, an initial idea is to use

a pre-configured symmetric encryption key on devices in a single network; if the key

of the new nodes does not match (i.e. packets cannot be decrypted by the controller),

the request is denied.

Figure 2.13: SDN-based routing methodology

The benefits of this methodology fill in some of the gaps of the DODAG-based approach.

The controller is able to intelligently set up bi-directional traffic; that is, nodes can com-

municate ”down” and ”sideways” as well as ”up.” This may be used, for example, to create

”critical” flows directly from a sensor to an actuator. Next, the actual operation of the nodes
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is simplified, as no routing algorithms must actually run on the devices themselves. Finally,

the controller-originated scheme means that more complex network-building algorithms may

be employed to create an efficient network, a luxury which the purely-distributed DODAG

approach does not have.

A potential downside to this methodology is that building an initial network is likely to

be slower, as the nodes must field requests to and from the SDN controller, which can be

problematic en masse as the nodes are likely to be overwhelmed with packets. For this reason,

it may be desirable to still implement DODAG-based network building to create the initial

network, with the modification of creating two-way links between nodes. From here, the

SDN controller may adjust the network as needed using the above methodology. While we

do not dive into the specifics on implementing this approach, we recommend further research

into this modified DODAG network-building algorithm as part of an SDN implementation

step.

2.5.1.3 Failure Recovery

The next advantage that SDN brings is more efficient failure recovery. Systems like

WirelessHART, of which the basic architecture is depicted in Fig. 2.14, employ redundant

links for fault tolerance. In fact, WirelessHART mandates that each node has two links, and

its functionality is such that each node must be a FFD (full-function device) [63]. The key

idea is that if any link goes down, its neighboring nodes are guaranteed not to be isolated

and will quickly reconfigure themselves to establish a second connection once more, resulting

in quick recovery.

While there is nothing wrong with this type of redundancy per se, the fact that is ab-

solutely enforced as part of the architecture may pose efficiency and performance problems

for certain types of networks where 100% reliability is not absolutely required. We will show

that our SDN-based approach not only provides robust options for failure recovery, but also

provides the best of both worlds in terms of redundancy, allowing for it when it is desired

without enforcing it strictly.

Fig. 2.15 shows an alternative SDN-based scheme for failure recovery, based on the idea

of ”heartbeats.” Each node will periodically send out a ”heartbeat” signal to its neighboring
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nodes, and if a node fails to receive a heartbeat from a neighbor after a certain period of time,

it sends an ”alert” message to the controller. The controller then will attempt to contact

the non-responsive node to diagnose it as non-functional; if it is indeed offline, it can then

reconfigure the neighbors of the dead node by sending add-flow requests.

The recovery scheme described is intentionally generic, as the fact that the controller has

a global network view means that a myriad of recovery options are possible. For example, if

an entire subnet goes down but the controller knows the spatial positions of the nodes (i.e. X,

Y, and Z coordinates on some system that maps to real-world space), it can determine if any

neighbors are in physical range to a node on the missing subnet and instruct the node to re-

establish a connection to the isolated system. The actual method by which it determines the

best nodes to connect is up to the implementer to decide, and can be configured per-network.

In general, this means that our failure recovery architecture does not necessarily require

that redundant physical links be actually established as in WirelessHART; in fact, we can

implement the exact same scheme by simply having multiple nodes within range of each

other. Since the controller is able to detect the absence of a node and send the instruction

to reconnect, the nodes themselves simply have to wait for such a command and continue

processing as normal with as few links as desired.

As a side-note, the reduced functionality on the individual node side may allow the

devices to be RFDs (reduced function devices), depending on the complexity of other features

(security, etc.), which may be another point in SDN’s favor compared to WirelessHART.

As before, we do not propose a formal algorithm for determining where to add the nodes

to the network, instead opting to emphasize the fact that this exposed ”black box” allows

developers of wireless sensor networks to implement highly-customized networking functions

on the SDN controller that find the best solution for the network’s need. The SDN approach

opens the door for creative and engineering freedom in this regard, which we believe is a

huge boon for the Internet of Things.
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Figure 2.14: WirelessHART architecture, showing double-connectivity [9].
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Figure 2.15: SDN-based failure recovery. Broken nodes/links shown in red, with new flows
shown in blue.
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Chapter 3

BLACK IoT COMMUNICATIONS PROTOCOLS

In this chapter, we introduce the concept of Black packets. Black packets encrypt both

the data and the metadata, at each layer in the communications protocol. Black packets

remain compatible with the existing protocol in use. Black packets are the first step to

simple Black networks, which may use simple Black communications, or Black routing.

Black networks may then be implemented as part of an architectural framework for Secure

Smart Cities. We present Black packet designs for a variety of popular IoT protocols -

Bluetooth Low Energy (BLE), ZigBee and 6LoWPAN. Black packets may be designed for

any communications protocol. We extend Black packet design to IPv6 packets. We offer

detailed security analysis and payload efficiency (a comparison of the maximum payload

that can be carried by a Black packet vs. a regular packet of the corresponding protocol)

calculations for BLE Black packets.

3.1 Introduction

The Internet of Things (IoT) is impregnating our world, impacting our lifestyles, our

personal lives and the industries adopting IoT. The impact is so great that we are now

dependent upon the IoT in a plethora of realms - from remote medical device monitoring

to vehicle operations to automated lighting and heating, cooling and ventilation. IoT nodes

are small, often powered by a tiny battery expected to last for several months or even

several years. Typical IoT nodes communicate wirelessly forming ad-hoc networks where no

infrastructure exists. To conserve battery power, IoT nodes sleep for a majority of their life-

cycle (up to 90% of the time), �waking to sense and to communicate sporadically. Widespread

deployment of IoT systems has lead to mission-critical information communicated across IoT

networks that, therefore, need to be secured end-to-end.

While security is provided at all levels of the communications protocol, IoT nodes have
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unique security challenges that are not mitigated by its security mechanisms. Small in size

and resource-constrained, IoT nodes are susceptible to physical accessibility by malicious

actors. Cryptographic keys and data may be physically extracted from an IoT node, or a

node may be replaced by another node, under the influence of a malicious actor. Resource

draining attacks (like spurious messaging) keep IoT nodes awake and computationally active.

These and other advanced attacks are not accounted for in IoT communications protocol

security mechanisms.

Additionally, the metadata associated with IoT communications is in the clear – present-

ing eavesdropping, track and trace, packet corruption, and packet injection vulnerabilities.

Metadata includes header information, such as source address, destination address, frame

counters, frame sequence, and frame type (e.g. acknowledgements). For mission-critical

data, the protocol must build-in confidentiality, integrity, authentication and privacy for

even the metadata.

The remainder of this chapter is organized as follows: In Section 3.2 we review BLEv4.2,

present Black BLE packet designs for Advertising and Data PDUs and perform a security

analysis on Black BLE. In Section 3.3, the packet design for Black IEEE 802.15.4 frame

is presented. Section 3.4 presents the Black ZigBee packet design and Section 3.5 presents

Black 6LoWPAN, and Black IPv6 packets. All of the above Black packets are constructed

using an authenticated encryption, stream-based cipher such as the AES cipher in EAX

mode (AES-EAX) or Grain-128a.

3.2 Black Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) is a wireless Personal Area Network (PAN) protocol for

IoT commonly used in a range of consumer electronics and in medical, fitness, automotive

and home monitoring applications [64]. BLE is a low-power (1mW), synchronous, medium

range (100 meters), high-rate protocol (1 Mbps/sec). BLE operates within the ISM band

(2.4GHz-2.438GHz).

We present a Black Networks [14] approach to BLE security that encrypts both the

data (payload) and the metadata. We do this at the BLE Link Layer using AES in EAX

mode (an authenticating cipher) [67]. The resulting Link Layer Advertising and Data PDUs
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(Packet Data Units) are BLE compatible, and we evaluate them for payload efficiency. Our

Black Network increases the frame and packet overhead while securing all of the metadata

information at each layer without exceeding the maximum frame and packet size respectively.

The primary objective of Black Networks is to secure all data, including the metadata,

associated with each frame or packet [14]. This security is achieved by encrypting all in-

formation contained in a frame that may be used by an adversary. Adversaries should not

be able to determine the source, the destination, the frame sequence number or the replay

counter [27]. We generate a Black BLE Link layer frame using AES in EAX mode. EAX

mode works as an authenticating stream cipher (uses constant memory to process a data

stream), is simpler, and more efficient than CCM. EAX has flexible tag, nonce and key sizes

up to the block size. The Black BLE Link layer frame is created to keep the maximum

frame size of 39 bytes (header + payload) for an Advertising PDUs, and 257 bytes for a

Data PDU. The BLE node and the controller communicate by means of a shared secret. A

connection-oriented link does not require an IV/nonce to be sent with each packet, and the

sender/transmitter of information is always known due to the shared secret used to decrypt

and authenticate.

3.2.1 BLE Black Advertising PDU

ALL Advertising PDUs are kept at a fixed length of 39 bytes for a BLE-compatible PDU

(the payload is fixed at 37 bytes). In the header field, the first 4 bits are the PDU Type

and indicate a Black BLE Advertising PDU set at 0111 (this is the only metadata field left

unencrypted), and the last 4 bytes are the MIC, resulting from the AES-EAX encryption,

over the header and the payload. To distinguish between the different PDUs, the 4 Reserved

for Future Use (RFU) bits are used to identify the advertising payload type. The header and

payload are encrypted as a single block after the above transformations and a 32-bit MIC is

added.

Figure 3.1 shows an Advertising PDU and its transformation to a Black BLE Link layer

PDU.

The different Advertising PDUs form Black BLE Advertising PDUs as follows:

• ADV_DIRECT_IND and SCAN_REQ PDUs have payloads that are 96 bits. We
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Figure 3.1: BLE Advertising PDU encryption to Black Advertising PDU

extend the payload to 264 bits. These Advertising PDUs have adequate space for a

MIC, and the payload to be included in 37 bytes.

• ADV_IND,ADV_NONCONN_IND,ADV_SCAN_IND, SCAN_RSP PDUs have a

payload of upto 296 bits. These Advertising PDUs may not have additional space in

the payload to include the MIC, therefore some transformations have to be performed.

We use the 4 bytes of the AdvA address for our MIC, and effectively do not send an

AdvA. We encrypt over the 12 bit header (4 bits is kept to indicate the PDU Type)

and 264 bit payload (of which 16 bits are "dont care", left over from the AdvA).
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• The CONNECT_REQ PDU payload is 34 bytes. After setting our PDU Type to

Black, and setting our RFU bits for the actual PDU Type, we are left with the Length,

TxAdd, RxAdd fields which we use to get an extra 8 bits for the MIC. Now we have a

full frame of a 4 bit header, 276 bit payload and a 32 bit MIC.

3.2.2 Black BLE Data PDU

Fig 3.2 shows a BLE Data PDU and its transformation to a Black BLE Link layer Data

PDU using AES-EAX encryption. This Black BLE Data PDU transformation is relatively

simpler since a 32-bit MIC field is already provisioned.

Figure 3.2: BLE Data PDU encryption to Black Advertising PDU

We use the LLID field (2 bits) in the header to indicate a Black BLE Data PDU (LLID

= 00 is Black BLE). To indicate an LL Data PDU or an LL Control PDU, we use the 3 RFU

bits in the header. Except the LLID bits, we encrypt the remaining header (14 bits) and
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payload (upto 2008 bits) as a single block using AES-EAX. In Black BLE communications,

Symmetric Link layer keys are used for secure communications and authentication. For nodes

that are relatively close to each other, broadcast routing, which mitigates an adversary from

determining the destination, is used as the basic approach. While the encrypted source and

destination addresses protect against insider attacks, they require specialized routing, and

increase the network traffic.

We have shown the transformations required for converting a BLE Advertising PDU

and a BLE Data PDU to their corresponding Black PDUs. The resulting Black PDUs are

BLE-compatible. Once received, a Black PDU is decrypted using a shared symmetric key.

Correct decryption and authentication provided by the MIC allows the sender to be securely

identified and authenticated.

3.2.3 Security Analysis

BLE Advertising PDUs are transmitted on channels 37, 38 and 39, allowing eavesdrop-

ping and traffic analysis on specific channels. Black BLE PDUs always provide Privacy,

Confidentiality, Integrity and Authenticity by encrypting both the header and the payload

using AES-EAX. Black BLE PDUs mitigate the NO security Level 1 of Security Mode 1

and do not require the privacy feature to be implemented in the devices. However, this

Black security functionality comes at the expense of a payload increase. Table 5.1 compares

the payload efficiency of Black BLE Link layer Advertising and Data PDUs with existing

BLE PDU types. Advertising PDUs ADV_DIRECT_IND and SCAN_REQ increased by

a constant 178.6% with their Black transformations for minimum, maximum and average

PDU sizes. ADV_IND, ADV_NONCONN_IND, ADV_SCAN_IND, SCAN_RSP Black

transformations ranged from no increase to a maximum of 387.5% increase with an average

of 69.6% increase for corresponding Black PDU. CONNECT_REQ ranged from a minimum

increase of 8.3% to a maximum increase of 178.6%, and an average of 56% for the Black ver-

sion. For BLE Data PDU, the payload increase ranges from 0% to 12750%, with an average

payload increase of 97.7%. While inference attacks can be made on the variable length BLE

Advertising and Data PDUs, the Black BLE Advertising and Data PDUs mitigate payload

length-based attacks because of their fixed length. Additionally, the performance impact of
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processing maximum size PDUs can be offset by optimizing for Black PDUs of fixed length.

There are efficiencies for header encryption (associated data) for the EAX mode (done once

for same header). Finally, we note that the Access Address in the PHY layer is indicative of

a connection between two devices. We propose a nonce/key pair for each node for generating

an Access Address keystream, using AES-CTR. This keystream can be sent in clear to hide

the Access Address by acting as a secured, changing address and mitigate eavesdropping and

traffic analysis.

Table 3.1: Black PDU Payload Efficiency

PDU Type=0000,
0110, 0010, 0110 BA PDU Bytes gain % increase

Min 8 bytes 39 bytes 31 bytes 387.5%
Avg 23 bytes 39 bytes 16 bytes 69.6%
Max 39 bytes 39 bytes 0 bytes 0.0%

PDU Type=0001,
0011 BA PDU Bytes gain % increase

Min 14 bytes 39 bytes 25 bytes 178.6%
Avg 14 bytes 39 bytes 25 bytes 178.6%
Max 14 bytes 39 bytes 25 bytes 178.6%

PDU Type= 0101 BA PDU Bytes gain % increase

Min 14 bytes 39 bytes 25 bytes 178.6%
Avg 25 bytes 39 bytes 14 bytes 56.0%
Max 36 bytes 39 bytes 3 bytes 8.3%

PDU Type= Data BD PDU Bytes gain % increase

Min 2 bytes 257 bytes 255 bytes 12750.0%
Avg 130 bytes 257 bytes 127 bytes 97.7%
Max 257 bytes 257 bytes 0 bytes 0.0%

3.2.4 Conclusions and Future Work

BLE-based IoT networks are engaged in mission-critical functions in industries and in

applications such as medical devices and personal health monitoring. Securing the metadata

for BLE Advertising and Data PDUs, by encrypting both the data and the metadata, at

the Link layer and the Network layer, mitigates a range of attacks including eavesdropping,

track and trace, packet injection, and packet modification. This Black Network method of
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securing all aspects of communications within a network is done at the expense of symmetric

key management, decreased routing efficiency and reduced payload efficiency. Future areas

of research will focus on securing the Black frame by multiple methods that allow for a fine-

grain approach to securing the metadata. An additional area of critical research is developing

improved routing mechanisms, payload efficiency and extending Black Networks to non-IoT

networks for end-to-end security.

The biggest vulnerability of IoT communications is the metadata [27]. Table 4.1 demon-

strates that existing IoT communication protocols do not address metadata vulnerability.

Black networks mitigate metadata vulnerability by encrypting the entire PDU with fixed-

length packets of the maximum frame size.

3.3 Black IEEE 802.15.4

In this section, we present Black Networks for IoT devices. Black Networks secure the

metadata and the payload within each layer. We specifically examine the IEEE 802.15.4

protocol in this section. The Black Network for the 802.15.4 Link layer communications by

encrypting the metadata, and includes the cipher’s initialization vector (IV) and encrypted

metadata in the communicated frame. We similarly secure the metadata independently

within the Network layer for protocols such as 6LowPAN, ZigBee and WirelessHART. The

resulting 802.15.4 compatible frame, allows the intended recipient to correctly receive and

decode the message while all other receiving nodes are unable to decode any data, including

the sender and the receiver addresses.

With large networks of IoT nodes, routing becomes critical. We examine the impact of

broadcast routing on the performance of Black Networks.

Black Networks mitigate a broad range of both passive and active attacks, due to the

authenticated and secured communications at both the Link layer and the Network layer.

Adversaries should not be able to determine the source, the destination, the frame sequence

number or the replay counter [27].

Location information and communication patterns can be obtained from the metadata.

Prior work in this area has been done by Conti et. al. [68], in wireless sensor networks.

Source Location Privacy (SLP) allows the sender location to be hidden from adversaries. SLP
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is achieved via multiple methods: Random Walk, Geographic routing and Network Layer

Anonymity. Some secure routing mechanisms are Random Routing Scheme, Dummy Packet

Injection Scheme and Anonymous Communication Scheme (ACS) [69], Anonymous Path

Routing (APR) [70], Simple Anonymity Scheme [71], Destination Controlled Anonymous

Routing Protocol for Sensor nets (DCARPS) [72] and Hashing Based Identity Randomiza-

tion [73].

3.3.1 Black 802.15.4 Link Layer Frame

Figure 3.3 and Figure 3.4 show the IEEE 802.15.4 Link layer frame and its transforma-

tion to the Black Link Layer frame for the ZigBee and 6LoWPAN network layer packets

respectively.

Flags are used to indicate a Black Link layer frame. This is the only metadata field left

unencrypted. The Frame Control field is set to indicate a Black frame for IEEE 802.15.4.

The initialization vector (IV) is used to synchronize the cryptographic engines for Link

layer communication. Symmetric Link layer keys are used for secure communication and

authentication. The IEEE 802.15.4 Black Link layer frame can be formed by encrypting

the header and payload as a single block, using the Grain-128a authenticating cipher [74],

resulting in an IEEE 802.15.4 compatible frame. An alternative method is to replace the

header fields to be secured (all header fields except the Frame Control field) by an IV and a

keystream. the resulting frames are both 802.15.4-compatible.

3.4 Black ZigBee

The IEEE 802.15.4 protocol defines a PHY and MAC sublayer, forms the basis for multi-

ple higher layer protocols - ZigBee, 6LoWPAN and WirelessHART [9] [4] [63], being the most

widely-used. The BLE communication protocol is based on a series of iterative standards

Bluetooth 4.0 and above [13].

Our challenge, in IoT networks, is to mitigate internal and external threats, a range

of active and passive attacks, and secure the communications per-hop and end-to-end. In

this chapter, we focus on securing the IoT communications protocol, at each layer of the

protocol stack. We assume that in wireless communications, the sender is always visible to

an adversary. Our goal is to ensure that mission-critical IoT communications have built-in
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Figure 3.3: Black ZigBee packet and Black 802.15.4 frame

confidentiality, integrity, message authentication and privacy. The resulting communications,

must be compatible with existing IoT protocols. To prevent inference and packet-length

based attacks, we communicate using fixed length packets (the maximum size allowed by

the IoT protocol - eg. 127 bytes in IEEE 802.15.4). Finally, our goal is to mitigate insider

threats. A malicious node, or an intruder within the network (commonly referred to as an

insider threat), must not be capable of deciphering a message that is not intended for it.

This is achieved by allocating a unique symmetric key for each IoT node.

To achieve the above security objectives, we introduce Black Networks - where the meta-

data AND the data are encrypted for every frame/packet/segment at each layer of the

communications stack. AES in the EAX mode (or Grain-128a) is the preferred cipher (to
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maintain payload efficiency). Securing the metadata leads to routing challenges, as the

metadata contains source and destination information. Flooding and Broadcast over IoT

networks, are ineffective, when the nodes sleep a majority of the time (a common energy-

saving mechanism for IoT nodes).

The secured ZigBee NWK data PDU has an additional 112 bits of Auxiliary Header,

which reduces the payload to a 528 bits-568 bits range. The 40-bit difference is the Auxiliary

Security Header of the IEEE 802.15.4 frame. Therefore, if the 802.15.4 frame is also secured

(recommended), then the secured ZigBee NWKData PDU payload is 528 bits. If the 802.15.4

frame is not secured, then the secured ZigBee NWK Data PDU is 568 bits (Fig 3.3). Fig 3.3

also shows the transformation of an IEEE 802.15.4 frame to a Black frame [14], and the

transformation of a ZigBee network PDU into a Black ZigBee packet.

The ZigBee network layer data packet header contains 16 bits of frame control informa-

tion. The first subfield in the frame control field is Frame Type (data, control or command).

The Frame Type reserved bits b0b1 = 11 indicate a Black ZigBee packet. Excepting the

first 2 bits, the remainder of the packet is encrypted using an authenticating cipher, such

as AES-EAX [67] (or Grain-128a [74]). An 80-bit Initialization Vector (IV) is included with

each packet [75].

3.5 Black 6LoWPAN and Black IPv6

Black packets are fully encrypted, fixed length PDUs, at every layer of the communica-

tions protocol. Black packets [13] and Black networks [14] secure the metadata associated

with the communications and mitigate a range of active and passive attacks. The PDU

encryption is performed by an authenticating, stream-based cipher, such as Grain-128a [74]

or AES in the EAX mode [67]. Figure 6.1 shows the transformation of an 802.15.4 Link layer

frame, to a Black 802.15.4 frame, and a 6LoWPAN packet to a Black 6LoWPAN packet.

The authenticating cipher used is the Grain-128a, with a key of 128 bits and an initialization

vector (IV) of 128 bits. The only portion of the packet, that is not encrypted are the first

8 bits of the dispatch type and header = 11111111. This is a reserved value where b0b1 =

11 indicating a Black 6LoWPAN packet, and b2b3b4b5b6b7 = 111111, a header type of ESC,

indicating an additional dispatch byte follows. To maintain privacy and security [40], the
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Figure 3.4: Black 6LoWPAN packet and Black 802.15.4 frame

IV replaces the Source and Destination address bits and is expanded to 96 bits. The Traffic

Class bits indicate the Black Network layer packet (Black 6LoWPAN), and Grain-128a is

used to encrypt the remainder of the payload and header. A symmetric key is shared be-

tween sender and receiver before communication begins. Flow label, payload length, next

header, hop limit and destination address are encrypted along with payload and included as

the Encrypted Message.

The Link layer transformation, from standard 802.15.4 to Black 802.15.4, is outlined in

Section 3.3.

Figure 3.5 shows a similar transformation for an IEEE 802.11 frame [76] to a Black 802.11
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Figure 3.5: Black IPv6 packet and Black 802.11 frame

frame and an IPv6 packet [77] [78] [79] to a Black IPv6 packet. To demonstrate the flexibility

in creating Black packets, we used the AES cipher, in the EAX mode, with a 128-bit key,

and an IV of 80 bits (10 bytes). For an IP packet, the version field of 4-bits is either a 4

(for IPv4) or 6 (for IPv6). We use the reserved value of 1111 to denote a Black IPv6 packet.

For the 802.11 frame, the first 2 bits of the 2-byte Frame Control field denotes the protocol

version, and we use the reserved field of 11 to denote the Black 802.11 frame. In Fig. 3.4 and

Fig. 3.5, the first 2 bits identify the frame as a Black frame, and are the only unencrypted

portion of the frame metadata. The IV is in the clear, with the rest of the frame information

encrypted.
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Chapter 4

BLACK COMMUNICATIONS

In this chapter we present simple Black communications in Black networks. We present

Flooding, Broadcast routing and Black Gateway communication using Black packets. With

the metadata secured, and no additional components added to the network, Black networks

may communicate with simple communications (instead of routing, which is presented in

Chapter 6). We simulate the performance of all three communication methods and evaluate

them against Shortest Path routing, measuring Overhead Traffic, Mean Wait and Mean

Travel times. Other measures include payload efficiency and compute efficiency (payload

efficiency compares the payload overhead associated with Black packets compared to regular

packets; compute efficiency compares the encryption, decryption and MIC computations in

Black networks vs. Shortest path routing). We present a simple star topology, the Black

Gateway configuration, with performance equivalent to Shortest Path routing with much

greater levels of security.

4.1 Introduction

The Internet of Things (IoT) is a general term that refers to the broad range of limited

functionality devices and smart things that are (at least occasionally) connected to the Inter-

net. IoT connected things have been identified to include large things such as automobiles

and small things such as RFID (Radio Frequency Identification) enabled smart packages.

This broad range of IoT devices are integrated into networks designed for monitoring and

control that communicate via wireless ad-hoc communications. These monitoring and control

networks provide critical automated functionality in a broad range of industries including

healthcare (remote and personal diagnostics), building management (smart homes/offices),

industrial control systems (automation), energy management (smart grids), transportation

(smart cars), and environmental monitoring (air quality) [11].
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As billions of IoT devices are deployed across multiple industries, the resulting IoT net-

works are increasingly carrying mission-critical data and control messages and operating in

an automated fashion. The reliance upon these IoT networks for automated communica-

tions and control makes them a target for attackers that wish to monitor and disrupt, these

network communications. The communications security for IoT networks is based upon the

communication protocols used since the networks themselves often operate in uncontrolled

or semi-controlled physical environments.

All of the common IoT communication protocols, including ZigBee [3], WirelessHART [9],

6LoWPAN [40] [58] [59] and Bluetooth Low Energy (BLE) [64] [65], have well-known security

vulnerabilities, and none of them protect the metadata associated with the communication.

The metadata is vulnerable in these protocols as it can reveal sensitive information such as

the likely value of the sensor data being communicated or the particular control message to

be executed.

IoT networks are vulnerable to a broad range of attacks. They include resource ex-

haustion attacks [55] and node capture attacks [80] [81]. Possible threats to IoT nodes

include hardware trojans [82] and sensor side-channel threats [83]. Active and passive at-

tacks on the communications of IoT networks are common and relatively easy to perform.

All of the above-mentioned attacks constitute a multi-dimensional threat to IoT networks.

Table 4.1 shows vulnerabilities across commonly used IoT communication protocols such as

802.15.4 [10] [15], ZigBee [26] [84], 6LoWPAN [54] [85], WirelessHART [62] [12] and BLE [86].

IoT communication protocols must provide security and privacy per-hop and end-to-

end. The main motivation for Black Networks is metadata visibility and metadata attacks.

Black Networks encrypt the metadata and the data of a frame/packet, using a stream-based

cipher such as Grain-128a [74] or AES-EAX mode [67]. The resulting encrypted packet

data units (PDUs) are called Black frames/packets. Encrypting the metadata, presents

significant routing challenges in existing protocols. However, Flooding or Broadcast can be

effectively used to enable Black communications in an IoT network. Black communication

packets do not divulge source, destination, contents or any information that can be used

for traffic analysis. The main contributions of this chapter are a review of the Black ZigBee

and Black BLE packet design and the simulation and characterization of two communication
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Table 4.1: IoT Communication Protocol Security Mechanisms do not address Metadata
threats

Protocol Security Services Security Mechanisms Security Vulnerabilities

IEEE
802.15.4

Integrity MIC Weak integrity at 16 bits
Replay Frame Counter Frame counters in the clear and can be ex-

ploited
Privacy None Subject to metadata attacks
Confidentiality Encryption (AES-CCM* mode) Acknowledgements are unencrypted and can

be exploited. Default security is NULL. NO
timed frame counters.

ZigBee Confidentiality Encryption Trust Center is vulnerable. Network Keys
can be extracted

Traffic Analysis Subject to metadata attacks

6LoWPAN Confidentiality Encryption IPsec/IKE unsuitable for IoT
Integrity MIC IPsec unsuitable for IoT networks
Authentication Node Authentication Subject to device-based attacks
Privacy Subject to metadata attacks
IP services IP attacks (HELLO flood, sinkhole and

selective-forwarding)

WirelessHART Confidentiality Encryption Default security always ON.
Integrity MIC
Availability Channel Hopping, Channel

Blacklisting
Jamming

Exhaustion 10ms time slot execution Limits resource exhaustion, but does not
eliminate

Privacy Possible metadata attacks

BLE Confidentiality Encryption Key stolen during key exchange
Integrity CRC CRC seed can be recovered
Availability Channel Hopping Channels tracked via Access Address
Privacy Subject to metadata attacks

mechanisms (Flooding and Broadcast) for a mesh network and a Black Gateway star network

using Black packets.

The remainder of this chapter is organized as follows: In Section 4.2, we review the

security and vulnerabilities of IoT networks, and present the Black Networks approach with

Black frames and Black packets compatible with the ZigBee and the Bluetooth Low Energy

(BLE) protocols. In Section 4.3 we present Black network communications for Flooding,

Broadcast and Gateway. In Section 4.4 we present our simulation model for traffic overhead

and network delay. We analyze the security, performance impact and payload efficiency of

Black communications in IoT networks in Section 4.5. We draw relevant conclusions and

identify future areas of research in Section 4.6.
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4.2 IoT Security Review

Table 4.1 shows vulnerabilities across commonly used IoT communication protocols

802.15.4 [10] [15], ZigBee [26] [84], 6LoWPAN [54] [85], WirelessHART [62] [12] and BLE [86].

IEEE 802.15.4 security is provided by the MAC sublayer [39]. The security services pro-

vided are: Data Confidentiality, Data Authenticity, and Replay protection, and the default

is NO security [56] [57].

In ZigBee, the PHY and MAC sublayer are defined by IEEE 802.15.4 and the Net-

work and Application layers are defined by the ZigBee specification. Security for the NWK

(network) and APL (application) layers are provided by the Security Services Provider. A

secured ZigBee network PDU includes a 14-byte Auxiliary Header to provide security spe-

cific information, such as frame counters for replay attacks, security level, key identified and

nonce fields. A secured NWK packet is not always encrypted. The AES-CCM* mode has

NO security and integrity protection only options, with no payload encryption (for IEEE

802.15.4 and ZigBee).

BLE security services are provided by the Controller (PHY and Link layers) providing

AES-CCM encryption and the Host (upper layers) providing device authentication, encryp-

tion, message integrity, pairing and bonding (key management) [13].

The biggest vulnerability of IoT communications is the metadata [27]. Table 4.1 demon-

strates that existing IoT communication protocols do not address metadata vulnerability.

Black networks mitigate metadata vulnerability by encrypting the entire PDU with fixed-

length packets of the maximum frame size.

The IEEE 802.15.4 protocol defines a PHY and MAC sublayer, forms the basis for multi-

ple higher layer protocols - ZigBee, 6LoWPAN and WirelessHART [9] [4] [63], being the most

widely-used. The BLE communication protocol is based on a series of iterative standards

Bluetooth 4.0 and above [13].

Our challenge, in IoT networks, is to mitigate internal and external threats, a range

of active and passive attacks, and secure the communications per-hop and end-to-end. In

this paper, we focus on securing the IoT communications protocol, at each layer of the

protocol stack. We assume that in wireless communications, the sender is always visible to

an adversary. Our goal is to ensure that mission-critical IoT communications have built-in
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confidentiality, integrity, message authentication and privacy. The resulting communications,

must be compatible with existing IoT protocols. To prevent inference and packet-length

based attacks, we communicate using fixed length packets (the maximum size allowed by

the IoT protocol - eg. 127 bytes in IEEE 802.15.4). Finally, our goal is to mitigate insider

threats. A malicious node, or an intruder within the network (commonly referred to as an

insider threat), must not be capable of deciphering a message that is not intended for it.

This is achieved by allocating a unique symmetric key for each IoT node.

To achieve the above security objectives, we introduce Black Networks - where the meta-

data AND the data are encrypted for every frame/packet/segment at each layer of the

communications stack. AES in the EAX mode (or Grain-128a) is the preferred cipher (to

maintain payload efficiency). Securing the metadata leads to routing challenges, as the

metadata contains source and destination information. Flooding and Broadcast over IoT

networks, are ineffective, when the nodes sleep a majority of the time (a common energy-

saving mechanism for IoT nodes).

The secured ZigBee NWK data PDU has an additional 112 bits of Auxiliary Header,

which reduces the payload to a 528 bits-568 bits range. The 40-bit difference is the Auxiliary

Security Header of the IEEE 802.15.4 frame. Therefore, if the 802.15.4 frame is also secured

(recommended), then the secured ZigBee NWKData PDU payload is 528 bits. If the 802.15.4

frame is not secured, then the secured ZigBee NWK Data PDU is 568 bits (Fig 4.1). Fig 4.1

also shows the transformation of an IEEE 802.15.4 frame to a Black frame [14], and the

transformation of a ZigBee network PDU into a Black ZigBee packet.

The ZigBee network layer data packet header contains 16 bits of frame control informa-

tion. The first subfield in the frame control field is Frame Type (data, control or command).

The Frame Type reserved bits b0b1 = 11 indicate a Black ZigBee packet. Excepting the

first 2 bits, the remainder of the packet is encrypted using an authenticating cipher, such as

AES-EAX (or Grain-128a) [67] [74]. An 80-bit Initialization Vector (IV) is included with

each packet [75].

Figure 4.2 shows the transformation of a BLE Data PDU into a Black BLE Data PDU

(with the LLID = 00 to indicate a Black BLE Data PDU). Black BLE Data PDUs have a
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Figure 4.1: Black ZigBee packet and Black 802.15.4 frame

fixed size of 257 bytes with a payload of upto 251 bytes. Black BLE Advertising PDUs have

a fixed size of 39 bytes with payloads ranging from 8 bytes to 39 bytes (with the PDU Type

= 0111 to indicate a Black BLE Advertising PDU) [13].

4.3 Simple Black Network Communications

Black communications is a mechanism for delivering Black packets from source to des-

tination, in an IoT network. Simple Black communications were evaluated for - Flooding,

Broadcast and Gateway.
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Figure 4.2: BLE Data PDU encryption to Black BLE Data PDU

4.3.1 Flooding

Flooding is a basic network routing algorithm which sends an incoming, or originating,

packet to all outgoing routes, except for the one in which the packet arrived in. It means

sending an incoming packet to all its neighbors. The process repeats until the destination is

reached. For each node that gets the packet, a Message Integrity Check (MIC) determines

if the Black packet is destined for the node. If the MIC fails, Flooding continues. If the

MIC passes, the Black packet has reached its destination and that node does not continue

re-transmission, but the other nodes do, until a hop count reaches zero, or the nodes run out

of neighbors to re-transmit to.
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4.3.2 Broadcast Communications

Broadcast refers to a node communicating to every other node in a network. A source

communicates with a destination (along with every other network node) via a broadcast.

The intended destination is able to pass the MIC and decrypt the Black packet, whereas the

rest of the nodes are unable to pass the MIC and discard the packet.

Flooding and Broadcast have minimal intelligence for packet delivery in the network.

This presents a problem, if all IoT node keys are unique. How does source create a Black

packet that is readable by the destination, in large networks? Flooding and Broadcast have

minimal intelligence in transmissions, and are inefficient for IoT networks where the nodes

sleep a majority of the time (95-99%). If a packet arrives, when a node is in its sleep cycle,

the packet is lost, as the node does not receive the packet, or retransmit it.

4.3.3 Black Gateway in a Star Network

A Black Gateway (BG) in a Star network configuration is a trusted third party (TTP) -

that can process Black packets. The Black Gateway is directly connected to every network

node. A star network configuration is one of the most commonly deployed topologies for IoT

networks. The BG receives Black packets from the IoT nodes, and forwards these packets to

their final destination. The BG manages ALL the unique, symmetric node keys, where kI is

the key for Node I. ALL traffic between the BG and IoT nodes are in Black packets. Black

communications between Node S (source) and Node D (destination) occurs when Node S

creates a Black packet using key kS, and sends it to the BG. The BG does an exhaustive

search on all keys until it passes the MIC. The BG decrypts the Black packet with key kS

and re-encrypts the Black packet using the destination key kD of Node D. The BG sends the

Black packet to Node D. When Node D, receives the Black packet, the unique symmetric

node key (key kD) decrypts the Black packet. The BG has no resource restrictions (either

compute, memory or network). Even for thousands of nodes, an exhaustive search through

the BG key space can be performed with negligible performance impact.

4.4 Black Network Simulations

We simulate Flooding, Broadcast and Gateway communications, using a Barabási graph,

with a discrete-time network simulator which models Black network communications. Our
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Figure 4.3: Black packet delivery probability to IoT sleeping nodes

simulator defines discrete time intervals such that any node sends a single packet per time in-

terval. Medium access control concerns such as collisions and acknowledgments are assumed

to be handled within time slots, and are not simulated. We restrict all network communica-

tions to Black packets. Traffic is randomly generated across the simulated Barabási graph

network, and the inter-arrival times between new packets follow an exponential distribution

with

Tt = e−λ∗T(t−1) , λ = 2.0

Broadcast communications is simulated by sending all packets through a pre-computed ar-

bitrary minimal spanning tree of the network. Since routing efficiency is spanning tree
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Figure 4.4: Shortest Path Simulations for Black Networks

dependent, a set of 10 spanning trees is generated, and results are averaged across 10 simula-

tions, 1 for each potential spanning tree. Each simulation is run 10,000 times. Therefore each

datapoint in the graph is a result of 100,000 runs of our discrete event simulator. Flooding

is simulated by forwarding Black packets to all neighbors connected to the node generating

the data, until the destination is found [87]. Nodes maintain a set of packets which they

have flooded to avoid repeatedly flooding the same packet. Communications are simulated

for source-destination pairs only with no multicast. Our discrete event simulator models

a Barabási graph network with 10, 20, 50, 100, 250, 500, and 1000 nodes. In these IoT

networks of increasing scale, we measure the following:
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4.4.1 Wait time

The time interval between Black packet generation and transmission from the originating

node. It provides a measure of the traffic in the IoT network, assuming a single FIFO queue

in the originating node, that processes both the inter-nodal traffic (traffic arriving from other

nodes), as well as originating traffic.

4.4.2 Travel time

The time taken for a Black packet to travel from source to destination, via intermediate

nodes. It provides a measure of the network delay for the communication mechanism.

4.4.3 Traffic overhead

Traffic overhead constitutes of duplicate Black packets, for Flooding and Broadcast com-

munications, and control packets for all types of communications. Traffic overhead is a

performance indicator of network efficiency for each topology, communication mechanism

and network scale. It is measured as the number of Black packets generated for each source-

destination delivered Black packet.

Mean Wait Time, the Mean Travel Time and the Traffic overhead are simulated for

Flooding, Broadcast and Gateway communications. For bench-marking, we simulate perfor-

mance in a simple shortest-path routing. IoT networks have nodes that are in sleep cycles

for a majority of the time. Packets arriving during the sleep cycle, do not get processed

or re-transmitted. We simulate node reachability for Flooding in a 100-node IoT network

where the nodes go into sleep cycles.

4.4.4 Node Reachability in Black networks

Figure 4.3 shows the delivery probability of Black packets, to destination nodes, when

nodes go into sleep cycles to conserve power. Stringent power requirements often require

IoT nodes to sleep 99% of the time. Simulations show that for a 100-node Barabási IoT

network, there is a rapid decline in node reachability when the IoT node sleeps for more

than 60% of the time. IoT networks are typically non-synchronized, and nodes have random

sleep/wake cycles. If ALL IoT nodes were synchronized, to wake at the same time, then

node reachability is guaranteed for our model IoT networks. For the remaining simulations
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Figure 4.5: Flooding Simulations in Black Networks

of Flooding, Broadcast and Gateway, we assume that the nodes are awake all the time.

4.4.5 Simulations for Packet Delay and Congestion

We simulate Wait time, Travel time and Traffic overhead, for Flooding, Broadcast and

Gateway communications, for a set of Black networks of 10 to 1000 nodes.

Figure 4.4 shows the simulations for Mean Wait time and Mean Travel time for IoT

networks in Shortest Path routing , which has no duplicate packet overhead and minimal

control packet overhead. The Mean Wait Time is a constant at 1 time unit (TU), where

Black packets are generated and sent from a network of any size. For smaller networks (less

than 50 nodes), the Mean Travel Time is faster as is to be expected. As the number of nodes
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Figure 4.6: Broadcast Simulations in Black Networks

grows (from 100 to 800 nodes), there is mild congestion in the network and it takes 2 TUs

to reach the destination. As nodes increase, there is slight further increase in Shortest Path

congestion. For all practical purposes, Shortest Path Mean Wait Time is 1 TU and Mean

Travel time is 2 TUs for our control set.

Figure 4.5 shows the Mean Wait and Mean Travel times for IoT Black networks using

Flooding communications. We optimize Flooding by holding a Black packet, if it has been

previously flooded. We observe that there is exponential growth in Mean Wait time from 10

to a 100 nodes. Between 100 to 1000 nodes, the Mean Wait Time increase is linear, but stable

(from 213 TUs to 270 TUs). However, Mean Travel time continues to grow exponentially for

all simulated Black networks. Flooding generates significant overhead (duplicate packets and
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Figure 4.7: Gateway Simulations in Black Networks with Star Topology

control packets) for each delivered Black packet, leading to network congestion and delay.

Figure 4.6 shows the Mean Wait and Mean Travel times for Broadcast communica-

tions . The Mean Wait time is negligible compared to the Mean Travel time. Each node

sends the Black packet to ALL network nodes. The nodal traffic is an order of magnitude

greater than the benchmark Shortest Path. Mean Wait time for Broadcast communications

exhibits a slow linear increase as the number of nodes increases (from 14 to 34 TUs), but

the Mean Travel time grows exponentially (from 372 to 1687 TUs), as nodes generate Black

packets creating network delays for Black networks of increasing size.

Figure 4.7 displays the Mean Wait and Mean Travel times for the Black Gateway

(BG). The BG Star Network is a 2 hop configuration for ALL source and destination pairs,
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with the BG receiving and sending ALL Black packets. The Mean Wait time is a constant

1 TU. The Mean Travel time is also a constant at 2 TUs, regardless of the network size.

The BG does not have any resource constraints or congestion delays. There is no duplicate

traffic, and negligible control overhead, in Black networks of increasing size. Figure 4.8

displays the Traffic Overhead for each type of Black communications - Shortest Path,

Flooding, Broadcast and Gateway. Shortest Path and BG have no duplicate Black packets

and low control traffic. In Flooding, the traffic overhead, per delivered Black packet, is

O(n2). Broadcast communications traffic overhead is lower by a constant, but the same

order of magnitude as Flooding.

4.5 Evaluation and Analysis

Black networks provide enhanced security and privacy, while remaining compatible with

existing IoT protocols. Black networks communicate using Black packets which encrypt the

data AND the metadata. In Section 4.4, basic Black communications were simulated for

Flooding, Broadcast and a Black Gateway. We analyze the results of Black communications

in these networks.

4.5.1 How is Black Communications Different?

Black communications encrypt the entire packet (data and metadata) into a fixed length

PDU (the length is limited by the Link layer maximum packet size - 127 bytes for IEEE

802.15.4 IoT protocols) for ALL communications. While such a format mitigates metadata,

packet length, inference and insider attacks, a significant challenge exists in routing Black

packets from source to destination. For Flooding and Broadcast in Black networks, the

source node encrypts the Black packet using a symmetric key with the destination node, and

forwards the Black packet. For resource-constrained IoT networks, it implies that the source

and destination share a symmetric key. Public keys are not suitable for resource-constrained

IoT networks. For a small number of nodes, it is feasible that each IoT node has a map of

a unique key for each IoT network node. However, as the number of nodes increases, the

symmetric key list, and its update to each node becomes prohibitively expensive in resource-

constrained IoT networks. Moreover, holding keys in a resource-constrained node, has a

significant security risk of node capture and other attacks. As the Black packet traverses
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Figure 4.8: Traffic Overhead in Black Networks

through our Barabási network, there are two operations at each node: 1) A Message Integrity

Check (MIC); 2) A forward or a decrypt. If the MIC passes, then the Black packet has

reached its destination and is decrypted, else the Black packet is forwarded. Black networks

are not limited to IoT, and may be applied to ALL communication protocols [76].

4.5.2 Performance Analysis

From the simulations in Section 4.4, we note that the most optimal network performance

solution, for Black networks, is the Black Gateway (BG), in a Star configuration. The BG

manages network keys and switches all the Black traffic from source to destination. There

is a bounded path-limit of 2 hops for every source-destination path, as the BG is connected
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to every node. Regardless of the number of nodes (we simulate for up to 1000 nodes), there

is negligible overhead traffic and no duplicate packets (Fig. 4.7). The network performance

characteristics are almost equivalent to the Shortest Path benchmark used (and slightly

better because of a simpler network topology). For simple Black communications, there

is no acknowledgement handling. A Star network configuration is a very commonly used

topology for IoT networks.

The Shortest Path (SP) algorithm (our benchmark) is an optimal solution in networks

as the most efficient path from source to destination. SP is efficient in Mean Travel (costing

approximately 2 TUs from 50 to 1000 nodes) and MeanWait (1 TU with negligible congestion

and no duplicates) across multiple networks (Fig. 4.4).

Broadcast communications has the highest Mean Travel time which grows exponentially.

In Broadcast communications Black packets take the spanning tree and not the shortest path,

taking a more expensive path from source to destination. Simulations show that Broadcast

communications are an order of magnitude longer than Flooding for smaller Black networks

(≤100), and over 2 orders of magnitude longer compared to BG and SP. For Mean Wait

times, Flooding is an order of magnitude longer than Broadcast, as the number of nodes

increase (>100 nodes, Fig. 4.5, Fig. 4.6).

Overhead traffic has a significant effect on Black network performance and consists of

duplicate Black packets and control Black packets. The BG and SP configurations have

negligible overhead traffic for delivered Black packets from source to destination. Flooding

and Broadcast communications have significant traffic overhead (duplicate Black packets,

upto 3 orders of magnitude greater than BG and SP) for delivered Black packets (Fig.4.8),

which is the primary reason for exponential Mean Travel and Mean Wait times.

Table 4.2 shows a sample of actual numbers for Mean Travel, Mean Wait, and Overhead

for Flooding, Broadcast, BG and SP communications for our median 100-node Barabási

Black network simulation.

4.5.3 Security

Metadata attacks, with no mitigation mechanisms in IoT protocols (Table 4.1), are ad-

dressed with Black networks. Encrypting the metadata results in privacy between commu-
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Table 4.2: Black Networks Simulation Numbers for 100 nodes

Flooding Broadcast BG SP

Mean Wait 194 TU 22 TU 1 TU 1 TU

Mean Travel 213 TU 1192 TU 2 TU 2 TU

Overhead 8.1x105p 3.6x105p 6065p 5851p

Black PDU 1E+n*M+1D 1E+N*M+1D 1E+1D 1E+n*M+1D

Other PDU 1E+1D 1E+N*D 1E+1D 1E+1D

ZigBee Payload Black ZigBee Gain % Gain

Normal 712 b 766 b 54 b 7.6%

Secure 568 b 766 b 198 b 34.9.0%

BLE Payload Black BLE Gain % Gain

Average 130 B 257 B 255 B 97.7%

Maximum 257 B 257 B 0 B 0.0%

n = Number of hops, E = Encryption, D = Decryption, N = Total nodes, M = MIC,
p=packets, TU=time units, b=bits, B=bytes

nicating entities in Black networks, a security mechanism not implemented in IoT protocols.

Black networks provides confidentiality, authentication (AES-EAX is an authenticating ci-

pher) and privacy by default, at every level in the communications protocol. Frame counters

which can be modified for replay attacks are encrypted in Black networks. Black networks

are resilient to IP-based attacks which target 6LoWPAN networks, such as HELLO flood,

sinkhole, Sybil and selective-forwarding. Black BLE does not require random address gen-

eration, resolution and lookup tables [13] like BLEs existing privacy feature. Inference and

packet-length based attacks are mitigated in Black networks by using fixed-length Black

packets for ALL communications. Insider threats are mitigated by each node having its own

unique key. A malicious node will not have a usable key to communicate with the BG or
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other nodes for insider attacks. Broadcast communications in Black networks do not divulge

the destination, as destination addresses are secured and packets are sent to every IoT node.

4.5.4 Black Network Compute Efficiency

The Black Gateway (BG) is not resource-constrained, so we do not account for its com-

pute operations. In the BG Star Network configuration, the source performs 1 encryption

and the destination performs 1 decryption. For Flooding, Broadcast and Shortest Path,

the source performs 1 encryption, and forwards the Black packet. The intermediate nodes

perform a MIC. The destination will perform a MIC and 1 decryption (Table 4.2).

4.5.5 Black Packet Payload Efficiency

The ZigBee Secured NWK PDU has a 568 bit payload, reduced to 528 bits, with a Secure

IEEE 802.15.4 frame. A regular ZigBee payload is 712 bits. In comparison, a Black ZigBee

NWK data PDU has a 766 bit payload (see Fig 4.1). A Black ZigBee PDU carries a payload

that is between 8% to 35% greater than a ZigBee PDU, with significantly improved security.

Similarly, fixed-length Black BLE Data payloads can vary between 0-12750% larger, with

the average Black BLE being 98% greater than BLE payloads [13] (Fig. 4.2, Table 4.2).

4.6 Conclusions and Future Work

IoT networks are increasingly carrying mission-critical data, and security for the In-

ternet of Things (IoT) is of paramount importance, in the wake of multiple high-profile

attacks. Black Networks secure IoT communications, by encrypting BOTH the data AND

the metadata, in fixed-length packets, to mitigate a broad range of active, passive, packet

length-based and insider attacks. Our analysis indicates that the improved security and pri-

vacy of Black IoT networks comes at a performance and compute cost overhead for simple

Flooding and Broadcast communications, with no intelligence. With a Black Gateway in a

star network topology, Black IoT networks closely match Shortest Path routing efficiencies.

Therefore, Black Networks are a practical approach to securing metadata in IoT commu-

nications. Future research should extend to Black Routing in IoT Mesh networks and to

non-IoT protocols. Mobility, High availability, Node Authentication, Key Management and

Sleep times for IoT Black networks are open areas of research.

89



Part II

Black Routing
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Chapter 5

NETWORK ARCHITECTURES

In Chap 3, we presented Black packets and Black packet design for various IoT communi-

cation protocols. In Chapter 4, we presented simple Black communications, using the Black

packets, evaluating several measures of security and performance (overhead traffic, mean

wait times, mean travel times, payload efficiency and compute efficiency). In this chapter we

present the network support needed to enable Black routing in mesh networks. We present

an SDN-based architecture for Black IoT networks, that guarantees node reachability, even

when the nodes are asleep a majority of the time. Various configurations are presented and

the simulated results are presented.

5.1 Introduction

We present Black SDN, a secure SDN IoT network architecture that utilizes an SDN

controller as the trusted-third party in the Black Network. The primary goal of Black SDN

is to secure communications by encrypting the header and the payload at the Network layer

to mitigate a range of attacks, including traffic analysis/inference attacks. Header encryption

causes routing challenges. We propose a simple broadcast routing, and a more efficient and

secure SDN routing An SDN architecture improves IoT network security and efficiency for

Black Networks. All approaches must consider asynchronous node ’sleep’ and ’wake’ cycles.

We simulate Black SDN for IoT in star and mesh topologies and evaluate the results.

The major contributions of this chapter are: introduction of SDN-based IoT networks,

the concepts and requirements for Black broadcast routing and Black Routing with a Trusted

Third Party (TTP) and the SDN as the TTP.

The remainder of this chapter is organized as follows: We present Black SDN for IoT

networks in Section 5.3, in three common configurations of star and mesh networks, with

the SDN controller as the Trusted Third Party (TTP) for both broadcast and routing of
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Black packets. We evaluate the security of Black SDN in Section 5.4 and analyze the results

of our simulations. We draw the relevant conclusions and suggest future areas of research in

Section 5.5.

5.2 SDN Controller: The Need for a Trusted Third Party

In Chapter 1, we outlined the security challenges, and vulnerabilities for IoT communi-

cation protocols - 802.15.4, 6LoWPAN, ZigBee and WirelessHART. SDN networks and the

OpenFlow protocol [88] have similar challenges for IoT networks. We note that security

contributions in the emerging field of SDN IoT networks are limited. In this section, we

motivate and define the open problem of security for SDN IoT networks.

The general security problem we are addressing is: How does a packet get from node A

to node B without an eavesdropper knowing that the packet went to node B?

The specific problem we are attempting to solve is: How does a packet get from node A

to node B, in an IoT network, without an eavesdropper knowing that the packet went to

node B? This translates to incorporating privacy within IoT network communications.

We resolve the privacy problem through Black Networks - where the data and the meta-

data of the frame, and packet, are secured at the Link and Network layers. This, however,

presented a routing challenge in IoT networks, for peer-peer data transfer, where a packet

may not reach its destination, if the intermediate nodes were asleep a majority of the time

(which is a practical scenario).

The goal is to resolve the routing problem, with Black packets, in IoT networks. This

means getting a Black packet from Node A to Node B, with intermediate nodes on their con-

figured ’sleep’/’wake’ schedule. The solution would have the added benefit of incorporating

confidentiality, integrity and authentication for all communications. Additionally, it would

mitigate a host of inference, traffic analysis, power depletion attacks and packet length-based

attacks. As declared, it is not sufficient to receive the Black packet at its final destination,

but also necessary to ensure that the receiving node (Node B) is unknown to an external

observer.

We further outline our assumptions associated with the problem definition of routing in

Black networks. They are:
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• The operating environment is an IoT network consisting of low-power resource-constrained

nodes in a mesh configuration. Heavy-duty protocols (such as IPsec, SSL/TLS) cannot

be supported in this environment.

• When a node transmits, it is known. An adversary knows who transmitted data.

• A trusted third party (TTP) exists in the network, as an anchor, with a network

topology view.

• Nodes operate in synchronous or asynchronous modes.

• TTP and nodes communicate via shared secret key

In Section 5.3, we present a solution for our problem definition with the above assump-

tions.

5.3 Black SDN for IoT Networks

Software Defined Networking (SDN) has been proposed to streamline network architec-

ture, complexity and scalability [30]. SDN separates the control plane (signaling) from the

data plane (media) in an IP network [6] [5], resulting in a scalable and very cost effective

architecture. The routers (now called forwarding elements or switches) have minimal logic

to forward data (and can be simple compute elements, without complex, expensive routing

logic). The forwarding decisions are based on Flow Tables that are downloaded to the nodes

by a centralized SDN controller, with a global network view. The controller communicates

with the switches using an open, industry-defined, protocol called OpenFlow [89]. All other

functions - protocols, middle-box functionality and network management and configuration

reside in the SDN controller SDN security has been a major concern for potential adoptees.

SDN security vulnerabilities are assessed to be within the seven areas in the network [90].

The OpenFlow standard describes basic TLS for controller-node security, but does not man-

date it [91]. TLS, even with certificate-based authority, has well-known vulnerabilities. All of

the scenarios have been proposed for large, broadband IP networks (enterprise, data centers

and service providers).

IoT networks with an SDN architecture (Figure 5.1) have to contend with additional vul-

nerabilities of resource-constrained nodes, operating in a low-power WSN environment, with
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Figure 5.1: IoT Network with an SDN Controller

all the vulnerabilities outlined in Table 1.1. SDN for IoT is an architectural approach that

incorporates an SDN controller in an IoT network. Resource-constrained IoT nodes cannot

support a full SDN implementation - reserved for large, complex, broadband, IP networks.

Adaptations of the SDN controller for IoT networks have been presented in [92] [31] [7] [93].

An architecture for SDN design to WSNs based on 802.15.4, with a simple flow table

description, duty cycle handling and in-network data aggregation has been presented in [31].

An SDN protocol for WSNs, Sensor OpenFlow, based on the OpenFlow standard is presented

by [7]. Sensor Openflow addresses some of the challenges with SDN applied to IoT such as

in-situ data aggregation, simplicity of the flow tables, control plane communication between

controller and forwarding element and minimizing the overhead of control channel traffic.
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Both of these approaches consider a simple network with a single controller. However, [93],

proposes SDN architecture for IoT networks within a complex domain (like smart cities),

which has multiple IoT networks running heterogeneous mobile technologies. The resulting

UbiFlow controller maintains partitions across multiple controllers to load-balance, guarantee

performance, manage scalability and mobility. An SDN architecture for IoT, for heterogenous

wireless networks with different classes of IoT traffic, on a single, layered IoT SDN controller

is presented in [94].

The above SDN for IoT architectures and implementations have not focused on security.

SDN for IoT security challenges are a combination of SDN, IoT and network security vul-

nerabilities. The security for SDN IoT networks are rudimentary and nascent, and highly

secure SDN IoT Networks remains an open problem as defined in Section 5.2. In this section

we present a highly secure Black SDN for IoT networks. This secure IoT network is enabled

via an SDN controller (adapted for WSNs), and results in superior network performance,

security and payload efficiency in star and mesh networks. We compare the results with

non-SDN IoT networks.

The Black SDN for IoT consists of a star, or mesh, wireless IoT network that com-

municates with an IoT-adapted SDN controller. The SDN controller and the IoT nodes

communicate via Black packets. An example of an SDN controller to IoT node control

Black packet is shown in Figure 5.2. The fields are aligned for header fields, actions and

logs/counters. Control Black packets from the IoT node to the SDN controller are identical

in format. Header match fields could be Packet ID, Node ID and/or Network ID. The stan-

dard actions to act on a Black packet would be Forward, Drop, Modify (the data within the

packet) or Sleep (for a given time period). The logs would include TTL (time-to-live) and

Random (a small random value to forward Black packets, or rebroadcast them, to obfus-

cate the receiver). The Data field would contain neighbor lists, wake/sleep times and other

parameters.

Using these minimal set of control parameters, we present and simulate three scenarios

across topology (star or mesh), synchronization (synchronous or asynchronous) and trans-

mission mode (broadcast or routing). In each case, we evaluate if the SDN controller is more

effective for routing and security.
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Figure 5.2: Black SDN for IoT Control Packet example

5.3.1 Scenario 1 - Broadcast on Star Network

Topology=Star, Sync = Y, Broadcast = Y, Controller = Y In this star topology, all nodes

sleep and awake at the same time (are in sync), based on a controller initiated sleep/wake

schedule and absolute time (clock). This is refreshed on a regular basis to eliminate timing

drifts in the system. Assuming nodes are only within radio reach of controller (and not each

other), inter-nodal communication occurs via SDN controller. Sending node broadcasts to

controller, which in turn broadcasts to all nodes, including destination node. This ensures

that the destination is obfuscated to an eavesdropper, even if the source is known (it is

assumed that the transmitting source is known to an attacker). All nodes may re-broadcast

the packet to further confuse the attacker as to whether the packet was accepted or rejected

by receiver. In this scenario, the controller acts as a gateway.

If the nodes are within radio reach of each other, then a controller is not necessary. Nodes

broadcast to each other, and then re-broadcast to mask the destination.

It must be noted that the overall system may not be secure for a small number of nodes

(which is typical in a star network), and a statistical inference can be made on source and

destination.

5.3.2 Scenario 2 - Synchronized Mesh Network

Topology=Mesh, Sync = Y, Route = Y, Controller = Y Like Scenario 1, in this mesh

network all nodes are in controller-managed sync. The originator node, requests a route from

the SDN controller, when it has to transmit. The SDN controller maps a route downloads
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flow tables to the transmitting node and intermediate nodes. When nodes are in the wake

cycle, the Black packet gets transmitted per hop.

The other option for routing the Black packet is via an onion router method [95] [25]. In

this case, the SDN controller dynamically determines the next hop for the Black packet. At

every wake cycle, the SDN controller having dynamically determined the next hop, downloads

it to the current node storing the Black packet. This method is more secure and reliable

than setting up an end-to-end path ahead of time. It also has a higher performance impact

due to the control traffic generated during every wake cycle to all nodes (again to mask

destination).

Figure 5.3 shows the simulated results of Black packet latency for Scenario 2, for a

network path with upto 10 hops. Sleep times range from 0.5 ms to 10ms (approximately

upto 95% sleep cycle).

5.3.3 Scenario 3 - Unsynchronized Mesh Networks

Topology=Mesh, Sync = N, Route = Y, Controller = Y Scenario 3 is the most chal-

lenging of all the scenarios. Sleep and wake cycles for the IoT nodes are not synchronized.

Consequently, some nodes are asleep, while others are awake, in no particular order. Black

packets transmitted to nodes that are sleeping, do not reach them. Consider Node A send-

ing a Black packet to Node B. In this case, the SDN controller, based on its network map,

downloads routes to the subset of nodes, that are adjacent to Node A and whose wake times

overlap with Node A. Node A broadcasts the Black packet to these nodes and the process

repeats until destination Node B. It is possible that NONE of Node A’s adjacent nodes are

awake during A’s wake cycle. In which case, the SDN controller instructs Node A to sleep

until the next hop awakes, and then the Black packet is transmitted. To eliminate such

conditions, during operation, IoT network configurations should be managed accordingly.

Node join requests must be initially populated with proper asymmetric cycle times, such

that adjacent nodes have adequate overlapping awake times. This IoT network configura-

tion should be done at the start when the nodes are joining the network. Figure 5.4 shows

the simulated results of Black packet latency for Scenario 3, for a network path with upto

10 hops. Sleep times range from 1ms to 10ms. (approximately upto 90% sleep cycle, for
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Figure 5.3: Scenario 2: Black SDN Packet Latency

asynchronous networks).

5.4 Evaluation and Analysis

Our motivation for presenting Black SDN for an IoT network is aimed towards enhanced

security and network performance for mission-critical networks.

5.4.1 Network Performance

In Section 5.3 we demonstrate broadcast routing for Black Networks over multiple net-

work topologies. Black Networks provide for a secure approach to communication by pro-

tecting each layer in the communication hierarchy - at at the expense of complicating the

routing through the network. Simple broadcast provides for the most secure routing ap-
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Figure 5.4: Scenario 2: Black SDN Packet Latency

proach, but it consumes significant energy across all nodes in the network. Furthermore,

the network topology has a significant impact on the success of broadcast routing. Equal

length paths between two nodes increase the likelihood of collisions, and limited numbers

of paths between two nodes makes the network susceptible to becoming disjoint with both

collisions and the use of sleep modes. Comparing with the Black SDN for IoT - we show

that network performance is markedly better, as the SDN controller maintains the state of

the network and its components. Black packet delivery - through either synchronization and

sleep, reach their final destination, with latency, when nodes sleep a majority of the time.

We note this for the star and the mesh topologies. One area of concern for Black SDN

for IoT is the generation of control traffic as a result of increased communication between
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the SDN controller and the IoT nodes. Further, the need to maintain anonymity results in

additional messages being sent to obscure the recipient of the message. There is increased

control messaging between SDN controller to IoT, for Scenario 2 (synchronous mesh), as the

nodes wake and sleep at the same time. The possibility of message storms and the capacity

handling ability of the SDN controller are areas of concern. With Scenario 3 (asynchronous

mesh), the control messaging is lower, at the cost of increased latency in packet delivery.

5.4.2 Security

Black SDN provides a higher level of security than existing 802.15.4 protocols. Black

SDN for IoT provides confidentiality, integrity, authentication and privacy. Table 5.1 com-

pares the payload efficiency of IEEE 802.15.4 Link layer frame with an implicit nonce (nonce

constructed out of header fields), to a Black frame. Black frames provide Privacy, Confiden-

tiality, Integrity and Authenticity, by encrypting the header and 93 byte payload. We note

that at higher IEEE 802.15.4 security levels (when both encryption and authentication are

applied to the payload), Black frames provide equivalent, or better, payload capacities with

a higher level of security (6% better vs. ENC-MIC-64 and 16% better vs. ENC-MIC-128).

Unlike Black frames, the IEEE 802.15.4 options of no security, authentication only, and

encryption only can lead to insecure implementations susceptible to a range of attacks as

shown in Table 4.1. While inference attacks can be made on the 802.15.4 variable payload,

the Black frame mitigates payload length-based attacks because of its fixed size.

Table 5.1: Payload efficiency of Black Frame.

Comparison of 802.15.4 Link layer with Black Frame
Security Level 802.15.4 Payload Black Payload
No Security 114 bytes 93 bytes
ENC-MIC-32 92 bytes 93 bytes
ENC-MIC-64 88 bytes 93 bytes
ENC-MIC-128 80 bytes 93 bytes
Encryption only 96 bytes 93 bytes
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5.5 Conclusions and Future Research

Black SDN for IoT enables a secure Internet of Things. The Internet of Things will

continue to grow and encompass all aspects of our lives. IEEE 802.15.4-based IoT devices

will continue to play a significant part in IoT expansion. IoT devices are engaged in mission-

critical functions in multiple industries. Current IoT protocols are vulnerable to a range

of attacks including eavesdropping and packet injection attacks based upon the plain text

metadata. Securing the communications between IoT devices, by encrypting both the data

and the metadata, at the Link and Network layers prevents an additional range of attacks

including eavesdropping, track and trace, packet injection, and packet modification attacks.

A Black Network method of securing all data, provides for high security within a network,

at the expense of symmetric key management, decreased network efficiency, and complicated

routing. As networking paradigms shift to embrace Software Defined Networking (SDN) in

enterprises and Service Providers, IoT networks will utilize the architecture to form the basis

for a secure Internet of Things.

Simple broadcast provides for the most secure routing approach, but it consumes sig-

nificant energy across all nodes in the network. Furthermore, the network topology has a

significant impact on the success of broadcast routing. Equal length paths between two

nodes increase the likelyhood of collisions, and limited numbers of paths between two nodes

makes the network susceptible to becoming disjoint with both collisions and the use of sleep

modes.

Future areas of research in Black Networks will focus on better routing mechanisms.

These include developing sleep synchronization protocols that are appropriate for Black

Networks in order to ensure packet delivery to all nodes. They also include routing for

energy-efficient IoT nodes to minimize resource usage. Obfuscating the transmitting source,

is an open problem for IoT network security. Another area of future research is to secure

the Black Link layer frame by multiple methods that would allow for a fine-grain approach

to securing the metadata such as, a) replacing the metadata fields by Grain-128a IV and a

keystream, or b) using the AES-EAX mode and c) using a pre-shared IV to allow for better

payload efficiency. Finally, extending Black Networks to non-IoT networks is needed, along

with a standards initiative for secure IoT networks.

101



Chapter 6

BLACK ROUTING

In this chapter we combine Black packets and Black SDN for routing a Black packet from

source to destination, in a mesh network. We present Black routing algorithms, for various

configurations, and provide extensive simulations for performance and security analysis. We

compare the performance of Black routing with Shortest Path routing.

6.1 Introduction

In the wake of several high profile and sophisticated network metadata attacks, there

has been an increasing need for security and privacy in communication protocols [96] [97].

Metadata is being harvested at unprecedented levels, with new methods [98], for commercial

gain and malicious intent [99], with the IoT being particularly vulnerable [100]. Specifically,

resource-constrained IoT communication protocols, devices and networks, have been identi-

fied as an extremely vulnerable domain within deployed networks [101]. IoT communication

protocol vulnerabilities are extensively documented [15]. The insecurity of the metadata

remains the Achilles heel of communications security.

The popular IoT protocol, 6LoWPAN (IPv6 over Low Power Wireless Personal Area Net-

works), has a networking layer to adapt IPv6 for small packets of low-power PANs [102] [58],

and a PHY and MAC sub-layer defined by IEEE 802.15.4 [39]. 6LoWPAN network attacks

include resource exhaustion (where spurious messaging may be used to deplete energy and

computational resources) [55], node capture (where the IoT node may be physically accessible

and its data compromised) [80] [81], hardware trojans [82] and sensor side-channel threats

(where information within the IoT node may be leaked via the sensors, or data gathered

by the sensors can be tampered with) [83]. The standards-suggested security mechanism

for 6LoWPAN, IPsec, cannot be applied to resource-constrained IoT networks due to heavy

computational demands [103]. Lightweight IPsec versions [104] and end-to-end security [105]
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for 6LoWPAN are proposed.

IPv6 (Internet Protocol version 6) is the communication protocol for the Internet. The

IPv6 network layer (RFC 8200) [77] uses the PHY layer and MAC sublayer (IEEE 802.11) [106].

IPv6 security is provided by IPsec [107] whose support is mandatory with IPv6 deployment,

but its use is not. IPv6 security vulnerabilities are a combination of: improper configuration

of the complex IPsec suite, IPv4 attacks (such as application layer attacks, rogue devices,

flooding) [108], IPv6 attacks (including auto configuration related attacks, metadata attacks

such as neighbor discovery spoofing, router advertisement spoofing and redirects and privacy

issues relating to address tracing and location inference for MobileIPv6 and insider threats

within the local network) [109], implementation errors (in dual-stack systems vulnerabilities

may be amplified with the combined use of IPv4 and IPv6), and IPsec vulnerabilities (e.g.

authentication bypass via key reuse) [110]. In both IPv6 and 6LoWPAN, the metadata is

not secured, and mechanisms proposed for securing the networking layer are incompatible

with other protocols.

Black networks were introduced to mitigate metadata attacks [14]. Black networks en-

crypt both the metadata and the payload, in fixed length packets, at each layer in the proto-

col stack, thereby securing the packet from a range of passive and active attacks, both from

outside attackers and insider attacks. The encryption of all metadata, including addressing

information, prevents traditional routing approaches from moving the packet through the

network. We present an SDN-based architecture to route Black packets from source to des-

tination. The Black SDN Controller (BSDNC) uses a ciphertext-based packet forwarding

mechanism to route the packets. The BSDNC is a trusted third party that performs the key

management function, communicating with each node using unique, symmetric keys. While

Black packets can provide confidentiality, integrity and privacy, in a communications proto-

col, an external observer can detect the communications and determine the communicating

parties. To mitigate the threat of communicating parties discovery, we provide token-based

node obscuring algorithm, hiding the source and destination communicating nodes. We

simulate Black routing and node obscuring performance for our Black SDN configurations

evaluating traffic overhead and network delay.

The main results of this chapter are: Black routing algorithms with an SDN architecture
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Figure 6.1: Black 6LoWPAN packet and Black 802.15.4 frame

in the star control and mesh control configurations and Black routing performance simula-

tions.

The rest of this paper is organized as follows: In Section 6.2, we present Black packets for

6LowPAN and IPv6. Section 6.3 we present Black routing with an SDN-based architecture,

with algorithms in a network. In Section 6.4 we present performance simulations for traffic

overhead, network delay and congestion in Black routing. We analyze the security and

performance impact of Black routing in Section 6.5, and draw relevant conclusions and

identify future areas of research in Section 6.6.
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6.2 Black Packets

Black packets are fixed length packets, that have both their payload and metadata en-

crypted at every layer of the communications protocol stack. Black packets [13] and Black

networks [14] secure the metadata associated with the communications and mitigate a range

of active and passive attacks. The encryption is performed by an authenticating, stream-

based cipher, such as Grain-128a [74] or AES in the EAX mode [67]. Figure 6.1 shows the

transformation of an 802.15.4 Link layer frame, to a Black 802.15.4 frame, and a 6LoWPAN

packet to a Black 6LoWPAN packet, using the Grain-128a cipher, with a key of 128 bits and

an initialization vector (IV) of 128 bits. The only portion of the packet, that is not encrypted

are the first 8 bits of the dispatch type and header = 11111111. This is a reserved value

where b0b1 = 11 indicating a Black 6LoWPAN packet, and b2b3b4b5b6b7 = 111111, a header

type of ESC, indicating an additional dispatch byte follows. The Link layer transformation,

from standard 802.15.4 to Black 802.15.4, is outlined in [14] [27].

Figure 6.2 shows a similar transformation for an IEEE 802.11 frame [76] to a Black 802.11

frame and an IPv6 packet [77] [78] [79] to a Black IPv6 packet. To demonstrate the flexibility

in creating Black packets, we used the AES cipher, in the EAX mode, with a 128-bit key,

and an IV of 80 bits (10 bytes). For an IP packet, the version field of 4-bits is either a 4

(for IPv4) or 6 (for IPv6). We use the reserved value of 1111 to denote a Black IPv6 packet.

For the 802.11 frame, the first 2 bits of the 2-byte Frame Control field denotes the protocol

version, and we use the reserved field of 11 to denote the Black 802.11 frame. In Fig. 6.1 and

Fig. 6.2, the first 2 bits identify the frame as a Black frame, and are the only unencrypted

portion of the frame metadata. The IV is in the clear, with the rest of the frame information

encrypted.

6.3 Black Routing

Black Routing is the routing of Black packets in a (Black) network. Existing routing

algorithms need metadata to route a packet, and that metadata is encrypted in a Black

packet. Black routing utilizes an SDN architecture. SDN is a new networking paradigm

that is catching on in enterprise networks, data centers and being evaluated in public net-

works [32], for broadband networks. SDN separates the control plane from the data plane,
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allowing for network simplification, programmable networks, scalability and projected reduc-

tion in network costs [90]. The SDN architecture contains an SDN Controller, and a network

of forwarding elements. Routing decisions, network configuration and node authentication

are done by the SDN Controller. The forwarding elements have routing tables downloaded

to them by the SDNC and forward incoming traffic accordingly. Open standards define

the protocols that communicate between the SDNC and the forwarding elements [89] [88].

We adopt the SDN architecture with a Black SDN Controller (BSDNC) and Black control

packets communicate with the network elements [14] [32] [7] [31]. Figure 6.3 shows two SDN

configurations for a Black network. The Star Control configuration, is where the BSDNC

Figure 6.2: Black IPv6 packet and Black 802.11 frame
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is connected directly to each network node. The Mesh Control configuration is where the

BSDNC is directly connected to some of the network nodes.

Figure 6.3: BSDNC configurations: Star and Mesh Control

Figure 6.3 shows two SDN configurations for a Black network. The 1-hop configuration

(on the left), where the BSDNC is connected directly to each network node. The multi-hop

configuration (right) is where the BSDNC is directly connected to some of the network nodes.

6.3.1 Star Control

In this configuration, consider Node A wants to communicate with Node D. Node A sends

a Black control packet to the BSDNC with the address of Node A, the address of Node D,

and the encrypted address of Node D. All encryption is done with the unique symmetric key
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Figure 6.4: BSDNC messaging to nodes using Black control packets

of Node A (The BSDNC has unique symmetric keys for all nodes). The BSDNC maps the

route from Node A to Node D, downloading routing entries with match fields to all nodes

along the path, including Node A and Node D. The match fields indicate the next hop in the

route, and in our case, is the string of bits corresponding to the encrypted address of Node

D (denoted by EkA[D] = De). Black data packets from Node A, check against match fields

and forward to the next hop (Node B, Node C and Node D). When the Black data packet

reaches Node D, it routes to itself, indicating that it has reached its destination. Black

control packets, for each step, and routing table entries, are shown in Fig. 6.4. We present

Algorithm 1 as a Black Routing algorithm for a BSDNC connected to every node.
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Algorithm 1: Black Routing: Star Control to BSDNC
Result: Black Routing from NodeA to NodeD

1 Initialization; Source = NodeA; Destination = NodeD
2 Node A → BSDNC: EkA[(A), (D), EkA(D)]
3 while Node IN [A..D] do
4 BSDNC → NodeA..NodeD:
5 Routing table match field = EkA(D)
6 Black packet to next hop based on match fields
7 end

6.3.2 Mesh Control

Let us consider a more complex scenario of the BSDNC connected to some of the nodes in

the network - a likely scenario for ad-hoc, wireless, IoT networks. As the network initializes,

nodes form a pre-determined paths to the BSDNC. Every node has a route to the BSDNC,

whether it directly connected to the BSDNC or via a directly connected node. For Node A

communicating with Node D, Node A sends the Black control packet EkA[(A), (D), EkA(D)].

Neither Node A nor Node D are directly connected to the BSDNC. All encryptions are done

via the unique symmetric key of Node A (KA). The pre-determined route sends the Black

control packet to the BSDNC. The BSDNC brute forces the key, since the source of the

Black control packet is unknown. In IoT network protocols, the address space is between

16 and 64 bits (Fig 6.1), and is computationally feasible. Algorithm 2 shows Black Routing

with Mesh Control. We make several assumptions for the Black networks. We assume

ALL nodal transmissions and receptions can be observed. The Black SDN architecture is a

simplified for resource-constrained IoT networks, and applied to both wireless(6LoWPAN)

and broadband(IPv6) networks. The BSDNC is not resource-constrained and is trusted.

The BSDNC performs the key management function and holds unique symmetric keys for

each node in the network. The BSDNC is capable of mapping routes upon request, as well

as creating pre-configured routes between all nodes in the network. It must be noted that

the Mesh Control configuration cannot be used for IPv6 Black networks. Brute forcing IPv6

addresses is not computationally feasible.
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Algorithm 2: Black Routing: Mesh Control to BSDNC
Result: Black Packet routes from NodeA to NodeD

1 initialization
2 Neighbor list, paths to BSDNC downloaded to NodeA
3 while Dest NOT BSDNC do
4 Forward EkA[(A), (D), EkA(D)] to Next Hop
5 if BSDNC then
6 Brute Force EkA[(A), (D), EkA(D)]
7 Download forwarding tables to
8 NodeA
9 Intermediate Nodes

10 NodeD
11 else
12 end

6.4 Black Routing & Node Obscuring Simulations

We evaluate the performance of Black Routing using a discrete event simulator. Traffic

is generated across the nodes, with Black packet inter-arrival times following an exponential

distribution

Tt = e−λ∗T(t−1) , λ = 2.0 (6.1)

Simulator discrete time intervals per node is a single packet per time unit (TU ). Colli-

sions, acknowledgments and multicast are not simulated. All communications are in Black

packets (control, data and tokens). We measure the Mean Wait Time, TMW , Mean Travel

Time, TMT and the Traffic Overhead, TMW is the time interval between Black packet gen-

eration and transmission at the source. We assume a single FIFO queue, processing both

originating and inter-nodal traffic, to measure network traffic. TMT measures network delay,

the total time taken for a Black packet to travel from source to destination via intermedi-

ate nodes. Traffic overhead measures network efficiency for each configuration, and is the

number of additional Black packets generated for each delivered Black data packet. We

benchmark against Shortest Path Routing (SPR), which does performs traditional routing

using standard IPv6 or 6LoWPAN packets.
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Figure 6.5: Black Routing performance in per-Black packet forwarding

6.4.1 Black Routing Simulations

The simulator models the 1-hop network with a BSDNC, in two configurations - syn-

chronous (SBR) and asynchronous Black Routing (ABR). For each configuration, we model

both ad-hoc and pre-defined routes (SBR-a, SBR-p, ABR-a, ABR-p in Table 4.2). In SBR,

route requests and updates occur immediately for each generated Black packet to be for-

warded from source to destination. In ABR, route requests and updates occur every 150

time units. Ad-hoc routes are requested from the BSDNC, for every Black packet, being

sent from source to destination. Pre-defined routes are pre-configured routes in the BSDNC

from source to destination for all nodes. The simulator models a Barabási graph network of

increasing scale - 10, 20, 50, 100, 250, 500 and 1000 nodes. Each simulation is averaged over

111



Figure 6.6: Black Routing performance with updates and pre-defined routes

10 random network layouts, with 1500 flows per network, for a total of 15000 data points

per node set.

In Fig. 6.5, we display TMW , TMT and overhead traffic for SBR-a. Every Black packet

from source to destination is forwarded based on the BSDNC downloading forwarding ta-

bles to all nodes the route. This straight-forward approach, of computing the route for

every Black packet introduces higher overhead traffic and TMW . Fig. 6.8 displays the per-

formance indicators for ABR-p, where the forwarding table updates on pre-defined routes in

the BSDNC occur every 150 TUs. The pre-computed approach and the sleep time, improves

Black routing performance significantly. Results of all scenarios - SBR-a, SBR-p, ABR-a

and ABR-p are listed in Table 4.2.
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Figure 6.7: Black Routing performance with timed Flow refresh

6.5 Black Routing Analysis

Black routing uses an SDN architecture to route fixed-length Black packets. Black packets

secure the communications metadata and data. They are compatible with the existing

protocol in use (such as 6LoWPAN, IEEE802.15.4, ZigBee and IPv6) to provide privacy,

confidentiality, integrity, authentication and node obscuring in network communications.

Black routing mitigates a range of active, passive and insider attacks. We present Black

Routing analysis for security and performance.
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Figure 6.8: Black Routing performance with timed Flow refresh for Pre-determined routes

6.5.1 Security Analysis

Onion Routing (Tor) is the de-facto standard for anonymity and privacy in web-based,

applications [95] [25]. A fixed route is selected by the Tor client. Intermediate nodes (called

relays) have no knowledge of other nodes in the network, except for the node before, and the

node after it. Tor uses public key cryptography and the source negotiates a session key with

every successive hop. Black networks encrypt at every layer of the communications protocol

(Tor secures TCP applications) and use symmetric keys, with no relay nodes, rendering

them applicable for use both in IoT networks and broadband networks. Black routing is

based on an SDN architecture and reaps the benefits of centralized network management,

network scaling and reduced costs. Black routing is compatible with the existing protocol in
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use and obscures the communicating nodes completely (including the exit nodes unlike Tor).

Tor has been the subject of much analysis and several attacks on it have been presented

including introduction of rogue relays [111], BGP hijacks [112] and perturbing the input

traffic to observe changes in the output traffic [113], false resource advertising [114] and

others [115]. While Tor remains the primary source of anonymous communication on the

web, its vulnerabilities cause some Tor users to be compromised.

The 6LoWPAN IoT networking protocol uses the IEEE 802.15.4 PHY layer and MAC

sublayer. IoT communications protocols are used in low-power, resource-constrained devices,

where a variety of attacks are possible - including resource exhaustion attacks [55], sensor

side channel attacks [83], hardware trojans [82], IP attacks [12] and vulnerabilities in the

protocol [103] [105] and node capture attacks [54]. 6LoWPAN suggests the use of IPsec for

network layer security, but does not mandate it. IPsec is complex, computation and resource

intensive, for IoT protocols. The key management scheme associated with IPsec is IKEv2,

and is computationally intensive for IoT systems - therefore key management for 6LoWPAN

remains an open problem, with suggestions for an ECC-based approach by Raza, et. al [116],

along with a compressed IPsec [104]. Black networks do not require additional security

implementations for 6LoWPAN (or any other IoT protocol being transformed to its Black

equivalent). Symmetric key management for Black routing is performed by the BSDNC,

using Black control packets (Fig. 6.4). Insider threats are mitigated with unique symmetric

keys at each node. Rogue nodes cannot communicate with legitimate nodes or with the

BSDNC without a shared secret key. IP attacks are mitigated with fully encrypted packets

and secured metadata. Resource exhaustion, traffic analysis and nodal attacks targeted

towards the communicating nodes are mitigated by node obscuring. Inference and packet

length-based attacks are mitigated by all Black packets being of fixed length.

6.5.2 Performance Analysis

Black routing performance is compared to Shortest Path Routing (SPR). The parameters

of the simulation are described in Section 6.4. SBR-a and ABR-p are depicted graphically

in Fig. 6.5 and Fig. 6.8. These are the 2 extreme cases of the entire data set of SBR-a,

SBR-p, ABR-a, ABR-p and SPR shown in Table 6.1. SBR-a is the most expensive in terms
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Table 6.1: Performance of Black Routing, Shortest Path Routing, and Node Obscuring
(TMW , TMT (TUs), OT (packets))

# of Nodes SBR-a SBR-p ABR-a ABR-p Shortest Path NO-l NO-g
TMW TMT OT TMW TMT OT TMW TMT OT TMW TMT OT TMW TMT OT TMW TMT TMW TMT

10 390 2.0 3497 28.2 1.7 3520 84.9 1.7 2446 2.1 1.7 2387 1.1 1.7 4815 7.1 5.0 3.2 2.6
50 587 2.9 7081 44.1 2.9 6891 135.2 2.9 3997 2.6 2.6 3935 1.0 2.0 5849 34.2 25.2 29.1 14.2
100 814 3.4 8749 68.1 3.4 9012 185.8 3.3 4818 2.7 3.4 4822 1.0 2.0 5851 64.4 49.8 43.1 20.8
500 2504 4.6 16241 204.0 4.6 15778 267.1 4.7 6612 3.3 4.7 6652 1.0 2.0 6207 236.5 248.9 90.4 44.7
1000 5004 5.3 22214 411.0 5.3 21951 307.7 5.3 8721 3.7 5.4 8742 1.0 2.1 6038 487.5 501.2 132.1 63.3

of overhead traffic and network delay for Black routing. In this configuration, for every Black

packet to be sent from source to destination, there is a request to the BSDNC to set up a path

between source and destination, with forwarding tables downloaded to intermediate nodes

for each Black packet sent. As the number of nodes increases, OT increases exponentially

compared to SPR, starting at 0.73 (3520 vs. 4815) of SPR at 10 nodes, increasing to 1.5

times at a 100 nodes (~8750 vs. ~5850), to 3.7 times (22214 vs. 6038) at 1000 nodes.

Network delay (TMW ) starts at 390 TUs, increases to 814 TUs and to 5004 TUs for 10, 100

and 1000 nodes respectively. For the simulated network configurations and the traffic flow,

SPR TMW does not experience network delay and remains constant at 1. In SBR-p, the

routes are pre-defined for all source-destination pairs, and we note that TMW reduces by an

order of magnitude, compared to SBR-a (range: 390-5004 TUs vs. 28-411 TUs). For both

SBR configurations, the traffic overhead (range: ~3500 to ~22000) and TMT (range: 1.7-5.3

TUs) remain the same, for the simulated nodes. The rate of increase in TMT for SPR is lower

than Black routing (range: 1.7-2.1 TUs vs 1.7-5.4 TUs for all Black routing configurations).

Figure 6.8 shows the ABR-p performance. While TMT (range: 2-5 TUs) andOT (range:~2500-

8750 Black packets) are similar for both ad-hoc and pre-defined configs (Table 6.1), there

is an order of magnitude reduction in TMW from ad-hoc to pre-defined (range: 85-308 TUs

vs. 2-4 TUs). Compared to SPR, ABR-p has between 0.5-1.5 times the OT, between 2-4

times the TMW and between 1-2.6 times the TMT , for the simulated range of nodes. The

ABR-p configuration has the best Black routing performance characteristics of all simulated
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configurations (SBR-a, SBR-p, ABR-a, ABR-p).

Across the four Black routing configurations, pre-configured routes (SBR-p and ABR-p)

lead to a significant drop in TMW when compared to the ad-hoc configurations (SBR-a vs.

SBR-p, range: 390-5004 vs. 28-411 TUs; ABR-a vs. ABR-p, range: 85-308 vs. 2-4 TUs).

Pre-computed routes need negligible setup time. The SBR configurations have similar (high)

OT (range: 3497-22214 vs. 3520-21951 packets), based on the SBR update configuration.

The ABR configurations maintain routing tables for 150 TUs, before updating them, leading

to significantly lower OT and TMW when compared with SBR configurations. Increasing the

update time will improve the ABR-p performance characteristics when compared to SPR.

For upto 20 nodes, OT for SBR is lower than SPR, and for upto 250 nodes, OT for ABR

is lower than SPR. In comparison with SPR, we note that for upto 500 nodes, OT is better

or equivalent for Black routing; for upto 50 nodes TMT is equivalent in Black routing; and

TMW ranges between 2x and 3.7x for Black routing for the entire range (10-1000 nodes).

6.6 Conclusions and Future Research

Metadata is being collected at an unprecedented rate on users and traffic on the Internet

and on the increasingly ubiquitous edge networks. The proliferation of IoT networks and their

metadata vulnerabilities provide a huge attack surface. Black networks mitigate metadata

attacks by securing both the metadata and the data; however, they require new algorithms

to efficiently route Black packets while maintaining source and destination anonymity. We

present several Black routing algorithms that use an SDN-based network architecture to route

metadata-encrypted packets from source to destination while obscuring the communicating

parties. Our simulations show that the improved security and privacy of Black routing

comes with an overhead traffic and network delay cost that scales with the network size, but

performance is comparable to basic Shortest Path routing for networks with less than 500

nodes. Black SDN networks are practical secure networks even with their security overhead.
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Chapter 7

NODE OBSCURING

Black networks secure the metadata of networks communications. In the last 4 chapters

we have started with Black packets, demonstrated simple Black communications with a star

topology and Black Gateway, presented Black SDN and used that for Black routing. In

these incremental steps we limit visibility only to network communications (packet data at

each layer of the communications protocol). However, our assumptions include visibility

of transmissions and receptions from, and to, the network nodes. To hide sending and

receiving nodes from an external observer, we present node obscuring. We present two node

obscuring configurations, and provide algorithms for each. We simulate the node obscuring

configurations and compare to Black routing and Shortest Path routing.

7.1 Introduction

Hiding the metadata, is a necessary, but not sufficient, condition for communications

privacy within a network - specially if data transmission by a node can be observed. The

send and receive nodes must be obscured during communications [75]. We employ the

concept of subway communications, using tokens. Tokens (trains) start at a Node 1, and

traverse through ALL network nodes, to Node N. The tokens (empty Black packets) pick

up data (passengers) from a source node (station), and drop them at their destination node

(another station), and continue to the end of the line. The tokens pass through the data

origination and destination points, pick up and drop off data, but the subway journey does

not indicate the passenger pickup and drop-off points, thereby obscuring the source and

destination. Fig. 7.1 shows the nXn grid network topology for node obscuring.

The simplest case for node obscuring is a single token traversing the grid, originating at

Node 1, ending at Node N, sequentially through all the nodes (Fig. 7.1). Node P sends data

to Node Q, where Node P is before Node Q, in the sequential path. When the token arrives
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Figure 7.1: Node Obscuring in a Black Network

at Node P, the data is loaded onto the token. The token traverses the grid until it reaches

Node Q, where the data is unloaded, and the token continues, to Node N. Once the token,

reaches Node N, a new token is generated at Node 1, and it follows the same pattern. If Node

Q, wishes to send data to Node P, then the token originates at Node N (and sequentially

travels to Node 1). To further obscure the data transfer direction, tokens can travel from

both Node 1 → Node N and Node N → Node 1, simultaneously. This is termed the Node

Obscuring-Linear, NO-l. Obscurity is increased by generating more tokens. If tokens are

generated at intervals of Ti = TMW + TMT , as a token travels to NodeKi, a new token arrives

at Node Ki−1. There is a token at each node, when the first token reaches the final Node N.

Additional tokens improve obscuring and the data transfer between communicating parties

(Node P and Node Q). NO-l is simple and effective to implement, it is time-inefficient if

the communicating nodes are spread far apart. Improved efficiency and bandwidth can be

achieved by increasing the number of tokens and allocating them to sub-networks within the
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Algorithm 3: Node Obscuring-Linear Algorithm, NO-l
Data: b0=0 Empty token, b0=1 Full token
Result: Communicating Nodes are Obscured

1 Init: BSDNC forms grid topology
2 Init: BSDNC configures communicating nodes
3 Init: BSDNC pre-shares symmetric keys
4 Request: Send data Node P→ Node Q
5 Node 1: initiate token(s) ;
6 while NOT Node N do
7 if (Node P) AND (b0=0) then Load token EkQ[Data];
8 if (Node Q) AND (b0=1) then Unload token;
9 Next node

10

network. The Node Obscuring-Grid (NO-g) model generates nXn tokens for each row and

column of the Fig. 7.1 grid network. For data transfer from Node P → Node Q, Node P

loads the data into the token traversing the column of Node P (TCP ), till the row of Node

Q (RQ). The data is then transferred to Node Q, by a token that traverses the row of Node

Q (RQ). Alternatively, the data may be transferred, via row token, from the row of Node P

(RP ) to the column of Node Q (CQ), and then to Node Q via column token (TCQ) (Table 6.1).

Tokens are empty Black packets of the structure shown in Fig 6.4. The set of commu-

nicating nodes are pre-determined, their symmetric keys are pre-shared, and the transfer

points (for NO-g) are pre-set during initial network configuration, by the BSDNC. Empty

tokens are generated with the leading bit as b0=0 and traverses the nodes until it reaches

Node P. Node P checks the leading bit (0 for empty token), loads data into the token, and

encrypts the token with KQ, and sets the leading bit to b0=1 (indicating a loaded token).

At each subsequent node, a MIC (Message Integrity Code) check is done to determine if

the token is meant for that node. When the token arrives at Node Q, the MIC passes, the

token is unloaded and decrypted with KQ, and the token is forwarded to the next hop to-

wards Node N. Algorithm 3 and Algorithm 4 present NO-l and NO-g. Both node obscuring

configurations are pre-configured by the BSDNC, resulting in negligible control traffic to the

BSDNC from the nodes, and no Overhead Traffic (OT ). Tokens are generated at random or

fixed intervals, by the nodes, and travel along a specified path.
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Algorithm 4: Node Obscuring-Grid Algorithm, NO-g
1 Init: BSDNC determines communicating nodes and pre-shares keys;
2 Init: BSDNC determines, sets transfer nodes on RP , CQ ;
3 Init: tokens travel to and fro on all rows and columns;
4 Request: Send data Node P→ Node Q
5 while NOT (Row n)OR(Column n) do

6 Load TRP@ Node P→ CQ; Load to TCQ
7 Unload TCQ@ Node Q→ Token continues
8 Tokens reach end of Row/Column and return to Node 1

Tokens are empty Black packets of the structure shown in Fig. 6.1 and Fig. 6.2. The

BSDNC sends and receives Black heartbeat messages to and from all nodes, at regular

intervals. When Node P needs to send data to Node Q, the heartbeat response includes

EkP [(P ), (Q), EkP (Q)], to the BSDNC. The next heartbeat message from the BSDNC to

Node 1, Node P and Node Q includes a session key KPQ, and for Node 1 to initiate a token

using the session key. The SDN match field for nodes P and Q is EkP (Q). The action

fields for Node P and Node Q are encrypt and decrypt respectively. The token traverses the

network from Node 1 to Node N, encrypting/loading the data onto the token at Node P and

decrypting/unloading the data at Node Q. The operation is similar for both NO-l and NO-s.

7.1.1 Node Obscuring Simulations

Section 7.1 presents node obscuring using tokens and subway routes, using a 10x10 grid

network topology. We simulate two configurations for node obscuring: The node obscuring

linear (NO-l) and the node obscuring grid (NO-g) models. The results of TMW and TMT are

shown in Table 6.1. We maintain the 15000 data points per node set. For NO-l we simulate

tokens traveling sequentially through each node from Node 1 to Node N, generated at the

rate of

T = TMW + TMT (7.1)

(Fig 7.1). This indicates a token at each node behind the first token. For NO-g, we simulate

a single token starting from, and returning to, the first node in each row and column.

Fig 7.2 and Fig 7.3 graphs the performance of NO-l and NO-g. There is no overhead
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Figure 7.2: Node Obscuring-Linear (NO-l) token travel times

traffic in either case.

7.1.2 Node Obscuring Analysis

Figs. 7.2 and 7.3 display the mean wait time TMW and the mean travel time TMT for

node obscuring algorithms NO-l and NO-g. Table 6.1 presents the simulation results for

the node obscuring configurations. Since there is no communication with the BSDNC at

runtime, there is no overhead traffic, OT for NO-l and NO-g. The NO-l TMW and TMT

increase linearly with the number of nodes. This is consistent with the way the tokens

are generated and the time it takes to traverse the network as shown in Equation (7.1).

Dividing the grid network into subnets of subway routes (rows and columns) significantly

reduces the TMW and TMT for NO-g, but remains much higher compared to the other Black

routing algorithms. Further division of the network into smaller subnets will yield better

node obscuring performance results, but may not be more secure, as obscuring becomes
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Figure 7.3: Node Obscuring-Subway (NO-g) token travel times

challenging with a smaller number of nodes. In summary, we note that the high TMW and

TMT times for NO-l and NO-g are offset by no OT as compared to SPR and Black routing.

7.2 Conclusions and Future Research

Sustained traffic analysis over a localized IoT network can yield information about, and

divulge the identities of, the communicating nodes, even in a Black network. Node obscur-

ing techniques use subway communications and tokens to transmit data from origination

to destination, and obscure the communication parties. We present two node obscuring

algorithms, both of which tradeoff (higher) mean wait and mean travel times with higher

bandwidth transfer and no overhead.
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Part III

Black Networks in Secure Smart Cities
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Chapter 8

INTRODUCTION TO SMART CITIES

Black networks can be applied to any industry that deploys IoT networks. The appli-

cation domain proposed for Black networks is Smart Cities (in this dissertation). Smart

cities deploy a complex array of IoT networks to provide citizen services. Smart cities are

increasingly IoT-enabled. In this chapter, we introduce smart cities and their basic structure

and services. We provide an appreciation for smart city vulnerability based on insecure IoT

protocols.

8.1 Introduction

The Internet of Things (IoT) is growing pervasively around us. IoT refers to a system

of small, smart objects that form low power, low duty cycle, ad-hoc, wireless mesh networks

to monitor (sense) and transmit that information. IoT is found in healthcare (medical mon-

itoring devices), electrical utilities (smart meters), physical security (wearable or wireless

cameras), transportation (smart cars), industrial automation and controls and large com-

posite systems like Smart Cities. IoT nodes usually powered by a small battery that lasts

from months to a few years. This energy-efficient operation is possible as the nodes ’sleep’ a

majority of the time and ’awaken’ to transmit small amounts of information. Given the size

of these nodes, they have computational, memory, range of operation and energy constraints

and must run efficient software protocols. A widely used base protocol for IoT is IEEE

802.15.4 LR-WPAN (Low Rate Wireless Personal Area Networks) [39]. 802.15.4 defines the

Physical layer and the MAC-sublayer of the Link layer of the communications protocol. The

network, transport and application layers are defined by protocols that are built on top of

802.15.4 such as 6LoWPAN [40], ZigBee [3] and WirelessHART [9]. Another commonly used

high rate IoT protocol is Bluetooth Low Energy based on IEEE 802.15.1 WPAN.

A large scale application of such networks is in smart cities. Smart Cities incorporate
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diverse, heterogenous, IoT networks, to automate and deliver enhanced citizen services. An

example of a wide variety of smart city services, enabled by IoT devices and networks,

in multiple domains (emergency services, nuclear power plant monitoring, environmental

monitoring, healthcare, and other services) is illustrated in Fig. 8.1

Figure 8.1: An IoT-enabled smart city. Source: Libelium [1]

8.2 Smart City Basics

Smart Cities have been proposed, and constructed, globally to provide enhanced citizen

services and better city management. With over 50% of the world’s population now in cities,

with an accelerating trend, city managers proposed the use of Information and Communica-

tions Technologies (ICT) to modernize cities – creating Smart Cities [117]. Smart Cities are
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large, complex, distributed, and continuous systems - with mission-critical data that must

be secured end-to-end. The widespread use and adoption of IoT has resulted in IoT deploy-

ments within Smart Cities for critical services – such as critical infrastructure monitoring,

water supply purification, pollution monitoring, street and traffic lighting. Smart Cities are

increasingly becoming IoT-enabled and IoT dependent [118].

IoT networks can range from a single domain of multi-networks, to multi-networks across

domains. A domain is a vertical - like healthcare, physical security, and/or energy. IoT

nodes have limited computational power and memory and are carrying increasing amounts

of mission-critical information, and the basic security mechanisms implemented within the

above protocols are inadequate.

Figure 8.2: IoT Networks for various Smart City Functions
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A domain, like healthcare, may have different networks - e.g. a body-area network,

monitoring health parameters like temperature, heartbeat, oxygen levels, blood pressure for

an individual; to monitoring a hospital of multiple patients, assets, and healthcare records.

The traffic and its class of service varies widely across a domain or multiple domains. A

cluster of sensors in close proximity results in a sensor network (often wireless) performing

a single set of functions. Such networks will need a gateway to transmit the sensor data

to a storage location (typically a cloud storage). Multiple such networks, geographically

distributed, with their respective gateways, will transmit and store the data. Data analytics

can performed on this stored data set. Multiple networks will result in multiple data sets of

multiple types (ie patient data sets, to hospital data sets, in our example). Moreover, the

wireless protocols that transmit data from sensors (to the gateway), will be different from,

the protocols that will transmit the data from the gateway to the cloud storage. Networks

of sensors will relay information for storage to the cloud. It can get very complicated, very

quickly. Figure 8.2 illustrates IoT networks supporting multiple Smart City functions using

heterogeneous wireless networks.

Our primary goal of designing IoT security for a Smart City is to ensure the security

for ALL data that is in transit or at rest. At times we trade routing efficiency for higher

security. Our precept is that the data being gathered, transmitted and stored is mission-

critical. Chapter 9 presents a secure IoT framework, capable of generating, transmitting,

storing, visualizing and actioning, mission-critical traffic across multiple IoT technologies.
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Chapter 9

SECURE SMART CITIES

In this chapter we propose a secure IoT architecture for a Smart City. Secure Smart

Cities are IoT enabled, and provide secure communications, advanced networking, authen-

tication and external key management (i.e. key management outside of the IoT protocols

key management services). Secure communications are provided via Black IoT networks.

Advanced networking is via a software defined networks (SDNs), Authentication of all nodes

is done by a Unified Registry. External key management is performed at each layer of the

protocol stack.

9.1 Introduction

The security of Smart Cities is dependent upon the security of the underlying IoT pro-

tocols. These protocols have well-documented vulnerabilities, which make Smart Cities

vulnerable to a wide range of attacks with possible catastrophic consequences. The security

of IoT networks and its protocols has been examined in [12] [10] [54]. The main contribution

of this paper is a secure IoT architecture for Smart Cities. The architecture contains Black

Networks, SDN Controller as TTP, Unified Registry and Key Management. The security ser-

vices extend beyond the basic security provided by IoT protocols to confidentiality, integrity,

availability, privacy, identity management, authentication, authorization, and accounting -

across heterogeneous IoT networks, across multiple device types, and for multiple Smart City

functions. The security services provided mitigate the vulnerabilities of basic IoT networks,

for mission-critical data, at the Link and Network layers. The secure IoT architecture for

Smart Cities presented includes identity management, authentication, authorization, con-

fidentiality, integrity, availability and privacy/anonymity to ensure mission-critical data is

secured at the Link and Network layers [119].

The remainder of this chapter is organized as follows: in Section 9.2, we provide a
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Security Overview for IoT networks, needed for Smart Cities. In Section 9.3 we present the

building blocks for a secure IoT framework for a Smart City. An evaluation of the secure

IoT framework is presented in Section 9.4. We draw relevant conclusions and suggest future

areas of research in Section 9.5.

9.2 Security Overview

What security services must a Smart City IoT network provide? [120] There are several

fundamental security services that are provided by a simple IoT network [121]: access control,

message integrity, message confidentiality, and replay protection. These security services are

designed into IoT protocols (such as IEEE 802.15.4), and provide basic protection. Each

layer in the communication protocol stack should provide these security services. Additional

security services, such as routing integrity and routing assurance should be provided at the

Network layer, and application security at the Application Layer.

Access control services allows communications between authorized devices only. At the

link layer, access control services prevents communications between authorized and unau-

thorized devices. Access control at the Link layer is the first, and lowest cost, layer of defense

preventing unauthorized devices from accessing the network. Access control at the Network

and higher layers prevents a device from accessing or using a resource for which it is not

authorized. Access control at the Network and higher layers can be costly to implement but

may protect individual resources and functions contained within a smart object or within the

network itself. A message integrity code (MIC) may be included with each frame for both

authentication and integrity. A MIC is a cryptographically secure digest of the message, or a

portion thereof, that is typically computed using a secure hash function such as SHA-256 or

SHA-3. A MIC may be used to protect the integrity of a frame, and it is perhaps the simplest

approach to providing authentication at the Link layer. Message confidentiality ensures that

the intended recipient gets the message. Message confidentiality is done by encrypting the

message payload. The header information for the layer is not encrypted. The commonly

used symmetric cipher for IoT nodes is AES (Advanced Encryption Standard). Replay pro-

tection services ensure that duplicate messages between authenticated parties are detected

and dropped. A replay attack is simply the intentional retransmission of valid packets in an
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attempt to either gain access to a resource or deny that resource to others.

Jamming (denial of service at the physical layer), node capture and a variety of resource

exhaustion attacks are specific to IoT nodes because they are resource constrained and physi-

cally accessible. Power depletion attacks, where a device is forced to utilize all of its available

energy to manage malicious communications or perform activities requested by an adversary,

require explicit power management services in order to limit the consequences of the attack.

Power depletion attacks have created specific security guidelines that are normally not con-

sidered in standard networks [55]. Node capture refers to an adversary directly accessing the

device, either through physical access or electronic access, allowing the adversary to extract

keys, inject messages, operate as an authenticated node and remove nodes from the network.

Node capture can be mitigated by enforcing certain security requirements such as erasing

secure key information when the node is disassociated from a network [54].

Additionally, inference attacks, traffic analysis, dictionary attacks, eavesdropping, packet

injection and packet modification can be made based on the metadata associated with each

frame and packet. Finally, popularly deployed IoT protocols, in Smart Cities, have vulner-

abilities that risk mission-critical data. The 802.15.4 base protocol defaults to NO security

unless security modes are explicitly requested by upper layers. ACKs in this protocol are

not encrypted, leading to frame interception by an adversary, followed by a spurious ACK,

resulting in frame loss with no retransmission. 802.15.4 does not use timed replay counters.

An adversary can send a large number of intercepted frames, with large counters, thereby

causing valid frames with smaller counters to be rejected [10]. The commonly deployed Zig-

Bee protocol for IoT networks defines a single Trust Center (TC), in its security architecture,

that is trusted by all nodes. The centralized nature of the TC, and the critical functions

of key management and distributions that it performs, presents a significant vulnerability.

When a ZigBee node is removed from a network, it still contains the Network Key, and

data, that can be compromised [26]. WirelessHART protocol standards contain, but do not

define, a Security Manager, which is expected to perform critical key management functions

(generation, storage, renewal and revocation). This may lead to compliant, but insecure

implementations [12]. Another commonly deployed IoT protocol, 6LoWPAN, uses the IPsec

security architecture (for authentication and key management), which is highly resource and
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computationally intensive for IoT applications (and impractical to deploy, and not mandated

by the standard). Standard IP network threats also apply to 6LoWPAN [54] [85].

9.3 A Secure IoT Architecture for Smart Cities

What fundamental components are required to provide the security services for an IoT-

based Smart City? [122]. Figure 9.1 shows the components of a secure Smart City IoT

architecture, in the context of Smart City functions. Smart City IoT operate over hetero-

geneous networks, across multiple device types (Figure 8.2). In order to provide security

services for mission-critical data, we assume that not all security can be embedded within

the protocols, because of resource constraints. With these assumptions, we present four

fundamental building blocks to provide a secure IoT architecture for a Smart City. They

are:

• Black Networks: Data privacy, confidentiality, integrity and authentication

• SDN (Software Defined Network) Controller: Efficient and anonymous routing

across IoT nodes that sleep upto 90% of the time.

• Unified Registry: Database of devices (sensors, gateways and nodes) and their at-

tributes

• Key Management: A key management system for IoT networks.

9.3.1 Black Networks

A Black Network secures all data, including the metadata, associated with each frame

or packet in an IoT protocol. Black Networks encrypt the payload and the metadata within

an IoT protocol Link layer communications. For connectionless protocols, the cipher’s ini-

tialization vector (IV), encrypted metadata and payload are including in every frame. For

connection-oriented protocols, the IV is exchanged separately. Similarly, the metadata is

independently secured in the Network layer. Encryption can be done via stream-oriented

ciphers such as Grain128a [74], or standard AES ciphers in the EAX [67], or OFB modes.

The resulting compatible frame, allows the intended recipient to correctly receive and decode

the message, via a shared secret. Black Networks mitigate a broad range of both passive and
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active attacks, and provide confidentiality, integrity and privacy in IoT networks due to the

authenticated and secured communications at both the Link layer and the Network layer.

However, encrypting the header creates routing challenges for IoT nodes which are asleep a

majority of the time.

9.3.2 SDN (Software Defined Networking) Controller

Software Defined Networking (SDN) is a new routing paradigm that simplifies the routing

function to packet forwarding while abstracting the control to an SDN controller [30]. Using

SDN Controllers for wireless IoT networks, with a light flow-table mechanism is an emerging

field. [7]. The primary motivation for an SDN Controller is to resolve the routing challenge

presented in privacy preserving Black IoT networks. The problems to be solved: how does

Node A send a packet to Node B, in an Black IoT network, without a) an adversary knowing

the packet is destined for Node B b) traverse the IoT network where the nodes sleep a

majority of the time. We propose two general methods to resolve this. The SDN controller,

with an IoT network topology view, a sleep/wake timing view, can synchronize the nodes.

Therefore, the SDN controller can deliver any Black packet, from Node A to Node B with

flow tables, synchronizing the wake times for the intermediate nodes. Another approach is

for the SDN Controller to create a random, dynamic route for the each hop based on Onion

Routing [25]. The SDN Controller maintains a global IoT network view, manages sleep/wake

cycles, along with other network states. The centralized SDN Controller improves availability

of IoT networks and leads to a simplified network architecture.

9.3.3 Unified Registry

The concept of a Unified Registry is to consolidate the heterogenous technologies, ad-

dressing schemes and devices that make up IoT nodes. The concept can be extended to

a Visiting Unified Registry for IoT nodes that are mobile, and cross networks. This is

important from a security standpoint – a majority of IoT networks assume fixed nodes com-

municating using wireless technologies. In a Smart City environment, there are multiple

wireless technologies in use (e.g. WiFi, LTE); there are multiple protocols in use (such as

ZigBee, 6LoWPAN, WirelessHART, ISA100.11a, Bluetooth Low Energy) depending upon

the domain; there are multiple addressing schemes (e.g. IPv6 128-bit addressing, Bluetooth
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Figure 9.1: Components of a Secure IoT Architecture for Smart Cities

48-bit addressing, RFID addressing and E.164 (telephone numbering plan). All of these

identities need a unified attribute set, for identity management, authentication, authoriza-

tion and accounting. In addition, translations between wireless technologies, protocols and

addressing schemes may have to be done, and the Unified registry facilitates the conversion.

9.3.4 Key Management

Resource-constrained IoT nodes across multiple protocols communicate by means of a

shared key. Symmetric keys are used for simplicity and resource efficiency. Black Networks

assume a shared secret. Key Management is a critical part of all security architectures and

IoT nodes are vulnerable because of their limited resources. The highest vulnerability is

at the time when an IoT node joins a network. In some cases keys are pre-flashed on the

sensors – therefore the node is subject to being hijacked. In other cases, initial key exchange

results in a MITM (man-in-the-middle) attack. Public key cryptographic methods are too

resource-expensive for IoT nodes. In Section 9.2 we showed that multiple IoT protocols

had vulnerabilities with key management. We propose external key management for each
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layer of the communication protocol, instead of embedding this function in IoT protocols

that are resource-constrained. Given multiple funtions, access technologies, protocols and

node types, Smart Cities need a secure key management system for generating, distributing,

storing, revocation and retiring keys for a wide variety of applications.

9.4 Evaluation of the Secure IoT Architecture

We evaluate our secure IoT Smart City architecture over each of the components. Table

9.1 shows the security services that each of the components adds to the basic security of IoT

protocols. Starting with Black Networks, we note that simple broadcast routing of Black

packets (where random nodes sleep between 0-90% of the time) is secure, but impractical as

node reachability is very poor. A fully synchronized IoT network using an SDN Controller

has more efficient routing for Black packets: a pre-determined route case where the Black

packet is sent through nodes that are synchronized to sleep/wake to forward the packet; a

dynamic node allocation for the next hop based on Onion Routing. The payload efficiency

of Black frames and packets versus a regular Network layer packet needs to be performed

for some popular IoT protocols. Black Networks always use the maximum length packet for

communications, regardless of the actual payload size. This prevents packet-length based

inference attacks. The performance of an IoT network with fixed length packets requires

further analysis. We consider the combination of Black Networks and SDN Controller as a

means to provide privacy and secure routing. The Unified Registry provides identity man-

agement and authentication during node join, as well as device id for key management. It

further provides identity, authentication and authorization of services, if an IoT node, within

the Smart City, is mobile. This allows for multiple device types to be monitored and authen-

ticated. During IoT node failures, pre-authenticated nodes in the Unified Registry can be

brought online to provide high-availability. A dedicated Key Management System eliminates

vulnerabilities present in weak key management definitions, such as those described in Sec-

tion 9.2. Embedding key management within the IoT protocol, provides for basic, symmetric

key security services. For mission-critical data and services, we propose key management to

be external and at each layer of the protocol stack. With these four components, we take a

modular and practical approach to Smart City security, across multiple city functions.
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Table 9.1: Secure IoT Smart City Architecture Services

IoT-based Smart City Security
Security Component Security Services
Black Networks Confidentiality, Integrity, Privacy
SDN Controller Secure Routing (Black packets), Availability
Unified Registry Identity Management, Node Authentication, Authoriza-

tion, Accounting, Availability and Mobility
Key Management External Key Management

9.5 Conclusions and Future Research

Smart City IoT networks are increasingly widespread and carrying mission-critical data as

they enable Smart Cities [123]. Smart City security is dependent on the underlying IoT pro-

tocols that have well-known vulnerabilities. Determined adversaries can launch co-ordinated

cyber attacks on Smart Cities that have the potential for catastrophic damage. Our secure

IoT Smart City architecture adds privacy (through Black Networks), identity management

and authentication (by the Unified Registry), secure routing (via the SDN Controller) and a

secure Key Management System. These four fundamental security architectural components

can be deployed across all Smart City functions. Some areas of future research are detection

of hardware Trojans in IoT nodes and extending Black Networks to Bluetooth Low Energy

and WLANs.
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Chapter 10

SECURE SMART CITY IoT SERVICES WITH DISTRIBUTED LEDGERS

The common smart city model is to have a centralized platform and physical location from

where city services can be monitored and dispatched (a city operations center) [124]. While

this centralized approach to smart cities is simple and efficient, it is risky, with minimal

fault-tolerance and resilience [125]. From a cybersecurity perspective, such a centralized

architecture, has potential for malfeasance and accidents. A centralized repository of smart

city data and services can be breached and subject to loss of personal and private citizen

data, or worse result in a catastrophic failure or shutdown of critical infrastructure. Is a

resilient, secure, anonymous, distributed approach to smart city services possible? [126]

10.1 Introduction

Half of the worlds population resides in urban areas, meaning cities. Better opportunities,

better healthcare and better facilities have contributed to the shift into urban areas [127].

City managers, having to deal with the influx of populations, a drive towards sustainable liv-

ing have turned to ICT (Internet and Communications Technologies) to make cities ’smarter’.

The proliferation of IoT (Internet of Things) devices and networks have led to IoT-enabled

smart cities [118]. These smart cities also present a huge attack surface, due to IoT vulnera-

bilities [11]. Smart Cities face a threat of cyberattack that can disable critical infrastructure

and citizen services [37].

Within a smart city context, IoT networks are heterogeneous, comprising of multiple

technologies, hosting different applications. For secure smart cities, the communications

must be secured at every layer of the communications protocol. Popular IoT communica-

tions protocols have several vulnerabilities [14], and existing standards may lack clear Key

Management System (KMS) requirements and implementation mandates. Therefore exter-

nal, automated key management is required to secure smart city IoT traffic, at every layer of
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the communications protocol. Key Management is the most complex portion of a security so-

lution, made even more vulnerable with large, heterogeneous deployments as in smart cities.

KMS in IoT-enabled smart cities are based on the IoT communications protocol in use, such

as IEEE 802.15.4 [39], ZigBee [26], 6LoWPAN [103], WirelessHART [12] and Bluetooth Low

Energy [13] among others. Cloud-based KMS are a recent trend and may also be in use by

smart cities. Public IoT networks, such as Ingenu, LoRaWAN and Sigfox will provide KMS

within their own networks. All of the existing deployments are centralized KMS.

IoT network nodes are designated as fixed and immobile. However, a growing class of

IoT devices are now mobile (such as personal health monitoring devices - that travel with

the individual, and supply chain tracking). The nodes may roam between networks in a

cluster, or between network clusters. In some cases, an IoT node may disassociate from a

network (due to no activity, or extended sleep times), and rejoin after trigger event. All of

these cases are equivalent: an IoT node is joining a network, and needs to be authenticated

and authorized for services, within a reasonable time. Current IoT protocols not do not

handle a roaming scenario, they only handle a node joining the network [128]. Again, IoT

node authentication is a centralized function, based on existing standard protocols.

We propose a distributed model for both key management and mobile node authen-

tication for smart city services using DLTs. Distributed ledger technologies (DLTs, or a

Digital Ledger - DL) have been popularized by blockchains, used in the Bitcoin (and other)

cryptocurrency. DLs are a shared, synchronized and distributed database, across a peer-to-

peer network (of computers). The DL data structures, and associated consensus protocols

remove the need for a centralized management control, by offloading that capability to net-

work nodes. With no centralized control, many IoT communications protocol vulnerabilities

are mitigated (e,g, the ZigBee protocol single Trust Center for key management in the net-

work, or the WirelessHART Security Manager for key management that is not defined in the

standards). The resulting decentralized key management and authentication services should

be automated and enable a secure and private smart city.

The remainder of this chapter is organized as follows: In Section 10.2, we present re-

lated work of KMS and mobile node authentication, for IoT networks and smart cities. In

Section 10.3 we review and distributed ledger technology (DLT). In Section 10.4 we present
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Figure 10.1: Smart City Centralized Applications

distributed KMS using DLTs for smart cities. In Section 10.5, we present the use of DLTs

for distributed mobile node authentication, for IoT networks in smart cities. We analyze the

threat models and security for DLT-based KMS and mobile node authentication for smart

cities in Section 10.6, and draw relevant conclusions and identify future areas of research in

Section 10.7.

10.2 Related Work in IoT and Smart Cities

Figure 10.1 illustrates an example of a common smart city deployment today. There

are heterogeneous IoT networks (IEEE 802.15.4, and its commonly deployed upper layer

protocols - ZigBee, 6LoWPAN, WirelessHART; WiFi - IEEE 802.11ah, and LTE-M (Long

Term Evolution-Machine) or NB-IoT (Narrowband Internet of Things)) from public wireless

providers, as examples), managed by communications protocol specific gateways. This means
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Figure 10.2: Key Management with Distributed Ledger in Smart Cities

the gateway for the LTE IoT network can handle LTE-M traffic and transfer it to the NOC

(Network Operations Center) servers.

The IoT networks shown in Fig. 10.1 are Black networks. Black networks enable secure

smart cities by securing both the data and the metadata in the communications protocol,

which remaining compatible with the existing protocol [13]. Black networks use an SDN-

based (Software Defined Networks) architecture to forward packets with encrypted meta-

data, using a ciphertext-based forwarding algorithm [14]. Black networks may also employ

node obscuring mechanisms to hide the communicating nodes, while routing in a mesh net-

work [101]. Securing the communications protocol is one way to ensure IoT-enabled secure

smart cities. A secure smart city architecture may include other components such as Key

Management, Unified registry (for authentication) and an SDN architecture (to enable Black

networks) [11].

The gateways from multiple networks aggregate collected data and send it to NOC plat-

form for storage and analysis. Smart City applications use this data and provide a broad
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range of new and existing citizen services. Typically, the smart city applications also reside

in the NOC. The applications are accessed, the data monitored and the citizen services dis-

patched, from a "smart city operations center" (SCOC). This centralized architecture is in

common use for a practical and speedy deployment of services. However, this centralized

configuration is susceptible to malicious and natural attacks. In the event of a natural dis-

aster (though SCOCs are well secured against natural disasters and co-ordinate emergency

dispatch), the access to smart city services may be lost. A sophisticated and well-funded

nation state actor may mount an attack against the SCOC and data centers to disable smart

city services and critical infrastructure [129] or generate false alarms that can lead to emer-

gency services being overwhelmed [130]. Therefore, a decentralized approach is suggested.

We look at two critical functions to decentralize for IoT-enabled secure smart cities - key

management system and mobile node authentication.

10.2.1 External Key Management

In IEEE 802.15.4, key management is provided by the upper layers of the protocol. If

keys are not provided or requested, then there is no default security or key management [10].

The KMS in ZigBee is performed by a software application called the Trust Center. The

single Trust Center per network is a vulnerability, as is the requirements specifications for

the Trust Center in the standards (which could lead to insecure implementations). The Trust

Center link key is publicly known and maybe used for encrypting the network key (key for

ALL ZigBee nodes), leading to an exploit [26]. 6LoWPAN uses IPsec for its security and

key management, but does not mandate its use in the standards. IPsec is resource intensive

(uses PKC) and impractical for use in IoT networks [103]. WirelessHART key management

is performed by the Security Manager module, which is not defined in the WirelessHART

standard, leading to compliant, but insecure implementations [12]. BLE key management is

done at the host, via pairing and bonding, for communicating a shared secret, which can lead

to meet-in-the-middle attacks, in addition to eavesdropping on advertising channels, track

and trace and packet modification [13]. Key management vulnerabilities in IoT protocols

have been extensively researched [26] [54] [12] [10], and the complexity of heterogeneous IoT

systems in smart cities increases the risk of cyberattack [131].
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Alternatively, key management may be provided by a cloud service, and offered by several

cloud vendors. For complex heterogeneous and hybrid environments like smart cities, key

management takes on additional complexity [132]. Such a service requires a secure channel

from the cloud to the communicating parties (node, gateway). Khan [133] proposes a KMS

in the cloud, as part of a security and privacy framework for smart cities. Eshenauer et.

al [134] proposes a pre-shared distribution mechanism, for sensor networks, that uses a small

set of pre-distributed keys (ring of keys), from a pre-generated pool of keys, for probabilistic

key sharing between nodes of a random graph. Re-keying, revocation and key distribution

are efficient [135]. Roman [136] extensively evaluates KMS for IoT, at both the network

and the link layer, for multiple KMS frameworks, across public key and pre-shared key

scenarios. Standards and Alliances are collaborating for a comprehensive and consistent KMS

approach for smart cities that does not solely depend on vulnerable IoT protocols [137] [119].

A unifying theme is a centralized approach to key management, as well as identification

of the limitations of public key exchange for IoT networks. IoT networks enabling smart

cities are resource-constrained, therefore standardized PKCs (Public Key Cryptosystems)

are unsuitable for IoT. Our goal is to provide a secure distributed and external KMS, for

IoT, within a secure smart city, so as to mitigate centralized and IoT vulnerabilities.

10.2.2 Mobile Node Authentication

IoT networks contain nodes that are increasingly mobile, and require to be efficiently

authenticated, when ’roaming’, in both ’serving’ networks and the mobile node’s ’home’

network (We borrow this nomenclature from mobile telephony - the home network is the

network in which the node was originally provisioned and authenticated; the serving network

is where the mobile IoT node has now joined; the IoT node is said to be ’roaming’ or ’visiting’

the serving network, since it is not originally part of that network). When joining a network

for the first time, all nodes have to be authenticated.

IoT nodes have additional characteristics of sleep/wake cycles to preserve energy (as

they are often powered by batteries). Such a combination of mobility and sleep cycles may

cause the node to dissociate from the network - either because of extended sleep cycles,

or because the node traveled to another network. In both cases the node has to be re-
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Figure 10.3: IoT mobile node roaming architecture: Intra-cluster and Inter-cluster

authenticated. With billions of nodes in deployment, and thousands within a given network,

combined with the heterogeneous nature and low cost of IoT nodes, make a centralized

authentication system cost-prohibitive and complex. Authentication mechanisms within

IoT protocols do not manage, or account for mobility. As a result, node dissociating from

ZigBee or 6LoWPAN networks contain the network key, which can be extracted and re-used

by a malicious node [81] [54].

We propose a distributed authentication mechanism, using DLTs, key management and

Black networks for secure authentication of mobile IoT nodes.

Figure 10.3 shows a network view of smart city IoT clusters, in which a mobile node is

roaming between inter-cluster heterogeneous networks, and intra-cluster networks (depicted

by arrows). Network clusters are a group of networks with similar functions, or a group of

networks in a given geography. Once the mobile network roams into IoT network cluster B

as shown in Figure 10.3, it requests to operate within a network in Cluster B, in which it

has to be authenticated. Based on the request, which includes its home information (Cluster

A), Node ID and a challenge. Cluster B, sends an authentication request to the Home A DB

(database), with all of the received information. The Home A DB in Cluster A confirms the

identity of the mobile IoT node and returns a challenge-response to the network in Cluster B
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in which the mobile IoT node wants to join. The network in Cluster B in which the mobile

node is roaming, then sends the challenge question to the mobile node, and upon receiving

the correct response, updates the Roam B DB with the visiting node information, along with

authorization of services.

Two databases (Home and Roam) are used to track mobile IoT nodes, within a cluster.

Originally provisioned IoT nodes are listed in the Home DB, whereas roaming IoT nodes are

listed in the Roam DB. These databases are centralized within a cluster, and all network

joining requests will be checked against the these servers, for node authentication, autho-

rization, accounting and privacy. Large volumes of mobile IoT nodes will cause network

performance degradation. Services will be disrupted, in the event of a database failure.

10.3 Distributed Ledger Technologies (DLTs)

Distributed Ledger technologies (DLTs, or a Distributed Ledger - DL) have been popu-

larized by Blockchain, used in the Bitcoin cryptocurrency. DLs are a shared, synchronized

and distributed database, across a peer-to-peer network (of computers). The ’database’ is

a linked list with a Merkle-tree record structure, where the individual records cannot be

changed, and the record updates, and/or new records are merely added to the linked list,

providing a change history. The updates (across the network, to all nodes) are conducted by

a consensus protocol. This flooding update approach, in a peer-to-peer network, precludes

the need for a central authority, or a centralized database, and is the basis of DLT popularity

in many industries (starting with the financial industry) [138]. There are four primary cate-

gorizations of DLTs: permissionless public, permissioned public, permissionless private and

permissioned private. The public and private refer to who can read access the DL - systems

where anyone can access the DL, are public, whereas consortiums/alliances of enterprises

that prefer a closed group to access the DL, are private. Permissioned and permissionless re-

fer to parties that can update the DL. Permissionless DLs are those in which anyone can form

a node, run a consensus protocol and update the DL, whereas permissioned DLs allow have

access control on who can update the DL. The consensus mechanism used is based on the

category of DLT (e.g. permissionless public DLT uses the PoW (proof of work)-based proto-

col; while permissioned public DLTs use proof-of-stake consensus protocol). Other consensus
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protocols include leader-based, voting-based, economy-based and virtual-voting-based [139].

IOTA is a DL platform designed specifically for the IoT, and enables machine-to-machine

micropayment transfer [140]. The directed acyclic graph for storing the transactions is called

Tangle. Markov Chain Monte Carlo algorithms are used to compute attach points for new

transactions [141]. A literature review of DLTs (referred to as blockchains) for IoT use cases

concludes that IoT networks are ill-suited for blockchains and DLTs, given resource restric-

tions in IoT networks. Therefore a specialized DLT architectures are needed to scale with

IoT [142].

10.4 Distributed Key Management with DLTs

Figure 10.2 shows a traditional, centralized key management system (KMS), that would

be commonly deployed in a smart city scenario. The SDN Controllers perform the KMS

for the IoT networks that they manage. The Key Database Servers generate and store the

keys. When keys are requested by an IoT node, the SDN controller checks if it has a pool to

distribute keys from. If not, then it requests the Key DB Server for a set of keys (depending

on the function). The Key DB may authenticate the request from the Key Authentication

server, prior to releasing the key set. The secure SDN controller has a secure execution

module within it for the keys. Any DDoS attacks on the links, the Key DB or the Key

Authentication servers will cause this centralized configuration to fail. To distribute the

risk, we put key rings (sets) [134], in a permissioned, private DL. The core functionality

(designated by the functions inside the cloud, Fig. 10.2), would be called the Core DL.

Likewise we employ the same principle to the SDN Controller layer, and call it the Edge DL.

The Core DL and the Edge DL can communicate with each other, and exchange information

and update each other. This portion of the communication can be performed using PKC

- given the resources of SDN Controller and the servers. An example of a DL record is

also shown in Fig. 10.2. The DL record has a standard format, except that a portion of

it is encrypted (the actual keys are encrypted). In the event, an adversary gets past the

system to the ledger, they would not be able to access the keys. What key is used to encrypt

the portion of the DL? Who will unlock the records when keys are needed. The consensus

protocol will allocate a timed decryption key based on agreement. With this distributed
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system, the key distribution can be performed faster and closer to the point of requirement

instead of sending all information back to the centralized servers. An example would be as

follows: An IoT node requests a session key. It sends its request to the Edge DL. The Edge

DL checks if it can satisfy the key request, by using a consensus protocol, amongst all the

SDN Controllers. If a key set is available for the IoT node, then it is sent to the node. If

a key set is not available for the IoT node, then the Edge DL communicates with the Core

DL to obtain a key for the IoT node. The Core DL runs its consensus protocol, obtain the

key set, and updates the Core DL and the Edge DL, and sends the key set to the Edge DL.

The communication between the Core DL and the Edge DL is via PKC. The communication

between the SDN Controllers, may also be PKC. However, between the SDN Controller and

the IoT node the communication is symmetric key. While a DL-based architecture is very

resilient (a DDoS attack will have to be initiated against ALL nodes of the Core and the Edge

DL), the actual DL implementation, architecture and benefits will have to be understood as

a further area of research.

10.5 Mobile Node Authentication with DLTs

Fig. 10.3 displays mobile IoT nodes roaming, within a cluster, and across clusters. A

cluster is a region with multiple heterogeneous IoT networks. Each cluster manages its

IoT networks and nodes via a Home database and a Roam database. The Home database

contains the information of all provisioned IoT devices, within that cluster. The Roam

database comprises of information of mobile IoT nodes that are roaming within that cluster

(as in Home A DB and Roam A DB). The objective is to put the Home and Roam DBs

into a DL. That way the DBs can be replicated and distributed for faster access, in the

event of an authentication request. How is a DL faster and more reliable for authentication

than a specialized central server? Firstly, the number of nodes per cluster will evolve to the

thousands. With heterogeneous networks, multiple device types will have to be provisioned.

This would be the Unified Registry conceptualized in [101]. Next there should be some

roaming agreements between clusters - meaning there has to be a way for Cluster B to

recognize a roaming IoT mobile node, and communicate with other Home and Roam DBs.

Finally, at authentication, it should be known, if an IoT node simply disassociated from the
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network or roamed to a new network. How would the network decide if a node was legitimate

or malicious?

Based on our literature survey, the DL cannot be within the IoT nodes themselves,

but must reside on the SDN Controller (SDNC/Gateway). If each SDNC manages the

devices associated with it, then we have inherently distributed the Home and Roam DBs and

provided a simplified solution. An SDNC failure limits the network outage to a small number

of nodes only connected to that SDNC. Heterogeneous networks are not easily integrated

into a single generic DB, and are difficult to manipulate subsequently. If the Home and Roam

is on a DL, a simple consensus will determine if a mobile IoT node is roaming, or network

disassociated. In the latter case, subsequent actions of removing the network key, from the

disassociated node should result. Else an adversary can extract the key and introduce a

malicious node (insider threat). Finally, a request needs to come to any one SDNC within a

cluster to authenticate a roamer. The DL residing in the SDNC will have a list (or a partial

list of all authenticated nodes). Roaming agreements are not needed, and a simple peer-

to-peer request is made for authentication. As a precautionary measure, we make this DL

permissioned and private. The DL resides on the SDNCs and provides a simple peer-to-peer

authentication for a mobile IoT node. We reiterate, that much malicious activity occurs

when there is no mutual authentication of parties - while the network authenticates the

node, the node does not authenticate the network. We highly recommend that the mobile

IoT node authenticate the network in which it is roaming. Malicious networks will draw

mobile IoT nodes in and obtain critical information to follow up with a masquerade attack,

if necessary.

10.6 Threat Models and Security Analysis

There is ongoing research on the applicability of DLTs to IoT networks. Kshetri [143]

points out the centralized nature of IoT networks, along with possible threat models, such as

IAM (Identity and Access Management), cloud availabilty and reliability and supply chain

security. The identification and authentication of IoT devices may be stored in a DL. With

billions of IoT nodes coming on-line, the centralized cloud model will lead to communication

bottlenecks. Attacks and system failures on the cloud render the entire IoT network at risk,
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and centralized cloud data store is susceptible to manipulation. The security of the supply

chain is a generic use case with DLs, and can be applied to IoT security to ensure integrity

during the history of the IoT hardware and software. These attributes may be used for

mobile IoT node authentication. In general, the threat model for key management in IoT

networks is the attack on a network/master key. In addition, an attack on an IoT node, or

on IoT communications to extract keys. If an IoT node disassociates from a network, due to

sleep cycles or the IoT node is captured, it contains the network key, which can be extracted.

Malicious nodes can join the network and request keys. The pre-shared key in this case is

standards-defined and is known to all 777 772E 6861 7274 636F 6D6D 2E6F 7267 [12].

Similarly for IoT mobile node authentication, a request to a network for joining maybe

rejected, if the node cannot be authenticated by its home network. Outside of cellular IoT

protocols, the mechanism for nodes to roam into another IoT network and request an obtain

services does not exist. A malicious node could to roam into a network and request service

giving the credentials of legitimate home network. We note that it is not sufficient for the

mobile IoT node to be authenticated in the visting IoT network. The mobile IoT node must

also authenticate the IoT network in which it is requesting services.

10.7 Conclusions and Future Research

The rapid growth of IoT-enabled smart cities have resulted in a centralized model. Smart

City data is acquired via IoT networks and fed into a central platform for analysis and action.

A central physical location serves as a Smart City Operations Center, into which data is fed

and from which services are dispatched. This Smart City model is vulnerable to attack and

accident. We propose a distributed model to deliver two Secure Smart City services - key

management and mobile IoT node authentication. Distributed ledger technology (DLT) is

used to deliver these services. IoT communication protocols have weak or unspecified key

management systems, and do not handle node mobility and authentication in a visiting

network. We propose a DLT-based architecture for key management, and to authenticate

mobile IoT nodes joining another network. Our architecture allows secure key management,

and secure roaming of IoT mobile nodes to other IoT networks.
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Chapter 11

CONCLUSIONS

This dissertation proposes a novel approach to securing the metadata in communications

protocols. The research for this approach targeted communications protocols for the Internet

of Things (IoT), and applies them to the multidimensional domain of Smart Cities. IoT is

becoming pervasive in our daily lives, across a multitude of industries, such as healthcare,

transportation, energy and manufacturing. IoT provides a huge attack surface, is begin-

ning to carry mission-critical data, and is coming to the mainstream with large-scale cyber

attacks [144] using the IoT. IoT protocols have well-researched vulnerabilities that can be

exploited (Table 1.1). A security survey of the most commonly used IoT communications

protocols (IEEE 802.15.4, ZigBee, 6LoWPAN, WirelessHART and Bluetooth Low Energy)

indicate that metadata is NOT secured for any of these IoT protocols, and is easy to exploit.

The dissertation presents Black packet designs for IoT communications protocols - for

IEEE 802.15.4, ZigBee, 6LoWPAN, BLE and IPv6 (broadband protocol). The Black packet

structure, for each communications protocol is presented and its compatibility with the

existing IoT protocol in use (for example Black ZigBee is compatible with ZigBee) is shown.

Black packets protect the metadata.

With the metadata secured, simple communications between IoT nodes in a network is

presented. A network carrying Black packets is a Black network. A majority of IoT networks

today work in the star network configuration, and we present a Black Gateway configuration,

with the Black Gateway at the center of the star network, connected to all the nodes. We

compare the Black Gateway configuration to Shortest Path routing, Broadcast routing and

Flooding. Black Gateway communication has significantly higher security, prevents a broad

range of active and passive attacks, with a performance equivalent to, or better than, Shortest

Path routing. Flooding and Broadcast communications have significantly higher overhead

traffic, Mean Wait and Mean Travel times in Black networks. Performance measurements
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with Mean Wait, Mean Travel and Overhead Traffic, is conducted via extensive simulations,

of multiple networks, with increasing number of nodes (10 to 1000 nodes, 15000 data points

per node set).

With simple Black networks communications established and simulated, we turned to

mesh networks and Black routing. How can a Black packet be routed? (i.e. How does one

route a packet whose header is encrypted?). For that, we turned to an emerging routing

paradigm - Software Defined Networks (SDN). In SDNs, a centralized open-API, SDN con-

troller downloads routing information to a network of nodes. The nodes forward a packet

according to the routing table entries and actions associated with it. We adapt a simplified

version of SDN to a wireless IoT network and present a Black SDN architecture for routing

Black packets (called Black routing). Using the Black SDN architecture, we demonstrate

the feasibility of Black routing from source to destination, with encrypted metadata. The

dissertation asserts guaranteed delivery, for IoT nodes with a sleep/wake cycle (as is common

among IoT nodes for power savings), for two configurations: Star Control and Mesh Control.

With the network architecture to support Black routing established, we present Black

routing algorithms for synchronous and asynchronous updates, with ad-hoc and pre-determined

routes, using the Mesh Control SDN architecture. The dissertation presents extensive simu-

lation results over a 1000-node Barabási network, using a simulation model with 10,000 data

points per node set (10 networks, 1000 flows per network). On comparing with Shortest

Path routing, we note that Black routing offers significant resistance to attacks, and com-

parable performance to Shortest Path routing, with trade-offs on overhead traffic, wait and

travel times. E.g. Black routing overhead traffic is better for nodes <450, and can reach a

maximum of 45% with a 1000-node network, when compared to Shortest Path routing.

We also note that securing the metadata is not sufficient to hide communicating par-

ties, from an adversary conducting sustained traffic analysis, in a network. While Black

networks hide all details of the communications, nodal transmissions and receptions can be

observed, and inferences on the traffic type and communicating parties can be made. We

present node obscuring to hide the communicating parties. We use the concept of subway

communications and tokens to obscure the sender and the receiver. We present 2 approaches

for node obscuring - a linear approach where tokens start from Node 1 and finish at Node N
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(last node), and one where the network is divided into row and column subnets, with tokens

within those subnets. We present algorithms for both node obscuring methods (called Node

Obscuring-Linear, NO-l; and Node Obscuring-Grid, NO-g). While node obscuring offers a

significant improvement in nodal communications security and privacy and incurs negligi-

ble overhead traffic, there is a tradeoff with high wait and travel times. We propose node

obscuring algorithms with the reduction of wait and travel times as an open area of research.

Finally, we apply the Black networks as a use-case to the multi-dimensional domain

of Smart Cities. Smart Cities are large, complex, diverse and non-stop systems, that are

increasingly being enabled by the IoT ecosystem. IoT networks in smart cities will carry

mission-critical data and controls. In the new era of cyberwarfare and cyberterror, adver-

saries are seeking to cripple cities by launching attacks on critical-infrastructure [37]. The

dissertation presents a secure IoT architecture for smart cities, basing all IoT communica-

tions on Black networks with a Unified Registry for authentication and IoT Key Management

to support heterogenous networks and devices. Most Smart Cities today are based in a cen-

tralized model. Data is gathered by IoT networks and sent to a central repository. The data

is analyzed and services dispatched from a central location, typically a SCOC (Smart City

Operations Center). This NOC-based centralized approach is vulnerable to accidents and

to malicious attacks. Downing the SCOC can disable a Smart City, or lead to degradation

of services. To further improve security and availability, this dissertation proposes a dis-

tributed architecture, based on distributed ledger technology (DLTs), to deliver the Secure

Smart City services of key management and mobile node authentication.
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