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The truckload industry faces a serious problem of high driver shortage and turnover rate

which is typically around 100%. Among the major causes of this problem are extended

on-the-road times where drivers handle several truckload pickup and deliveries successively;

non-regular schedules and get-home rates; and low utilization of drivers dedicated time.

These are by-and-large consequences of the driver-to-load dispatching method, which is

based on point-to-point dispatching or direct shipment from origin-to-destination, commonly

employed in the industry. In this dissertation, we consider an alternative dispatching method

that necessitates careful design of an underlying network. In this scheme, a truckload on

its way to destination visits multiple relay nodes and the driver and/or tractor are switched

with a new one at these locations so that each driver stays close to their home domicile. In

this respect, we evaluate the project in three di�erent parts in which we address strategic

(long-term), tactical (medium-term) and operational (short-term) decisions to design, and

examine the proposed network.

In the �rst part of this research, we study a tactical design of a relay point network

(RP-network) that may potentially help to alleviate this problem. Some speci�c design

characteristics include the possibility of both direct and RP-network shipments, multi-route

assignments, �xed relay costs, limited route circuity, and coverage required for relay points.

We present a MILP model capturing these characteristics and a solution procedure based on

strengthened Benders decomposition framework further enhanced by e�cient heuristics. The
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solution approach is able to solve the large-scale problems, considering realistic inputs, in a

reasonable time and helps us to examine the performance of the RP-network. Computational

results demonstrate the performance of the algorithm.

In the second part, we investigate the strategic design of an RP-network under uncertainty

in demand which can be more prominent for long-term planning. We use two-stage stochastic

programming approach to model the RP-network designing problem in this situation. The

setting of our problem of interest builds on the deterministic RP-network design problem

addressed in the previous chapter. In this chapter, we extend this model by considering

uncertainty in demands. The setting of our problem of interest builds on the deterministic

RP-network design problem while we extend the model and the solution approach to address

demand uncertainty. In order to address the computational di�culties specially occurring in

this setting, we develop Progressive Hedging- Strengthened L-shaped algorithm. We show

that the suggested solution method can e�ectively solve di�erent classes of test instances

and its e�ectiveness increases by increasing the size of the instances.

In the third part, we develop framework to study and test di�erent truckload transporta-

tion concepts in an operational setting of our problem. This framework enables us to simulate

day-to-day operations in TL transportation as closely as possible from the load dispatch-

ing and networking strategy perspectives. Using this simulation environment, we compare

di�erent network strategies including point-to-point (PtP), RP-network and hybrid PtP-

RP-network and di�erent dispatching approaches comprising dispatcher-based dispatching

approach and a collaborative dispatching paradigm taking inputs from drivers as well. In this

context, we develop and embed an optimization model for dispatching into our simulation

environment.

Keywords: Relay network design, Benders decomposition, Two-stage stochastic program-

ming, L-shaped method, Progressive hedging, Simulation-optimization
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Chapter 1

Introduction

1.1 Motivation

Trucking industry generated $700 billion in revenue in 2017, that is about 79% of the

total freight revenue in the United States such that more than 70% of all domestic freight

tonnage was transported by trucks for 10.77 billion tons of freight ( [1]), and it is expected

to rise to 20.73 billion tons in 2028 ( [2]). The trucking industry employed 7.7 million people

in 2017, where 3.5 million of them were drivers ( [1]).

Two main types of truckload transportation in the United States are full-truckload (TL)

and the less-than-truckload (LTL). In TL transportation, a full truckload is shipped directly

from its origin to the destination by a single driver driving a single truck. This type of

shipment is called point-to-point (PtP) dispatching. In order to minimize empty distances

traveled, multiple loads are assigned to the driver in such a way that the �nal destination

is close to his/her home base. Given a large geographical area as the US, these consecutive

direct shipments, regardless of the di�culties of arrangement causing irregularities, usually

create extended tour lengths leading to long away-from-home times for drivers. This issue

convinces many TL drivers to quit and move to a job with a regular schedule ( [3], [4]).

This problem, called driver-turnover problem, is considered as a persistent issue for the

US TL industry. By looking at the previously reported statistics it can be found that this

industry has been dealing with this problem for a long time, as the turnover rate was reported

85%-110% in [5, 6] and 110%-120% in [7]. It still remains signi�cantly high such that the

annualized turnover rate at large truckload carriers in the �rst quarter of 2018 is about 94%

( [8]), whereas its average in the last six quarters predating mid-2015 has been reported to

be 93% ( [9]). This high driver turnover rate incurs annual cost to the TL industry with

340,000 drivers around $2.8 billion reported in [10] and $3 billion reported in [11]. [10] reveal
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that the average of turnover cost per driver is about $8234, and its range spans from $2000

to $21000. The main elements causing this cost are administrations, training, insurance,

maintenance, and loss of pro�t ( [12]). O�ering attractive wages is a common approach to

alleviate this problem, that in practice it is not really successful because of the nonmonetary

roots discussed above.

The trucking industry also faces another critical issue, which is the driver shortage that

has a tight connection with driver turnover. Based on the estimations, the driver shortage

will grow from 50,000 drivers by the end of 2017 to more than 174,000 by 2026, if the current

trends remain the same as it is reported in [13]. A discussion about di�erent �nancial strate-

gies, such as increasing wages and bonuses, to deal with the driver turnover and shortage

issues in the trucking industry can be found in [14]. The persistence of the mentioned issues

shows that these kind of approaches are not really e�ective. Given the ability of RP-network

to reduce the away-from-home times for drivers, it can be considered as a viable alternative

to PtP dispatching approach.

The rest of this dissertation is organized as follows: In Section 1.2 of this chapter, we pro-

vide a brief description of the RP-network. A review of the relevant literature is presented in

Chapter 2 in which we cover the most important studies for all the works of this dissertation.

The research objectives and approach are discussed in details in Chapter 3. In Chapter 4,

we present our �rst study on modeling and algorithms on designing a general RP-network,

and discuss our proposed solution procedure and related results. In Chapter 5, we study the

RP-network design problem under demand uncertainty. We propose a two-stage stochastic

programming model for the problem, suggest an e�ective solution approach and discuss the

results. Finally, in Chapter 6 we discuss a simulation-based scheme demonstrating the op-

erational settings of a truckload transportation network. Also, we provide a conclusion on

all the works presented in Chapter 7.

1.2 Brief System Description

Relay points �RP�s, which are the main components of an RP-network, are the places

where truckloads change drivers and/or tractors, and are di�erent than hub locations which

are intended to do sorting or consolidating of shipments. Being a domicile for a group of
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drivers and a service region - an area that can be covered by an RP - are two other functions

that the RPs are supposed to have. Also, an RP can be considered as a domicile for a group

of drivers and a service region for the area covered by it. Two types of drivers work in each

RP-network, local and lane drivers. Local drivers are responsible to transfer the loads from

the origins to region's RP (pick-ups) or from region's RP to the destination (deliveries). Lane

drivers responsibility is to transfer loads between RPs. An RP-network is designed in such a

way that driving distances, i.e., local and lane tour lengths, are controlled. In other words,

there are predetermined maximum allowable distances for local and lane drivers to drive in

each attempt. Moreover, utilizing an RP-network increases distances traveled by TLs in a

circuitous basis. The di�erence between this circuitous path passing through the RPs and

direct shipment can be restricted by utilizing percentage circuity constraints to control the

delivery time and operational costs of the TLs.

Design and application of relay networks in TL transportation were previously studied in

[15]. [16] evaluated the relay network design problem and its e�ect on the driver turnover rate

in the TL transportation industry. More recently, [9] presented relay network design problem

considering more general assumptions. [12] discussed the bene�ts of RP-networks other than

regularizing the get-home rates for drivers. Improving truck utilization, generating more

e�cient schedules for trips and maintaining trained drivers leading to decreasing in training

cost and having safer trips are among them. Also, reducing the parking space for �eets and

decreasing its cost is another bene�t of using RP-networks ( [9]).

1.3 Research Objective and Approach

Figure 1.1 shows the work�ow among di�erent parts of the project. The strategic network

design part or stochastic programming part determines the upper-level RPs locations as the

long-term designing decision for the underlying RP-network. These locations are the input

for the tactical designing or deterministic network design part. The outputs of this medium-

term decision-making section, which are RPs locations and actual routing information, are

considered as the inputs for the simulation model in RPs operations simulation part and will

be used as the basis for load assignment procedure performed in this part. The ribbon at

the left side of each part addresses the sequence of evaluating the mentioned sub-projects
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in this dissertation. First, we discuss the deterministic modeling part or P1, and then, the

stochastic programming part or P2 is presented, and �nally, we investigate the simulation

model in part 3 or P3 to study driver to load assignment as the short-term decisions.

Stochastic RP-network Designing
➢ Strategic level decisions

Deterministic RP-network Designing
➢ Tactical level decisions

RPs Operations Simulation
➢ Operational-level decisions

Upper-level RPs 
locations 

RPs locations and 
routing

Problem inputs

✓ RPs locations
✓ Actual routing 
✓ Load assignments

P2

P1

P3

Figure 1.1: Overall work�ow of the project

The main contributions of the �rst part of the project (P1), which is designing an RP-

network under generalizing assumptions and deterministic demands, can be discussed as

follows. The common assumption in all previous studies in the literature is the single assign-

ment, which lets the origin/destination nodes be assigned to only one RP. In other words,
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a node that can potentially be an origin/destination of more than one commodity should

be assigned to exactly one RP to receive or deliver associated demands. This assumption,

although facilitates �nding the solution for the problem, can increase the cost by increasing

total distance traveled and decrease the generality of the problem. In this study, we relax

this assumption in such a way that the nodes are assigned to RPs based on the requirements

of every single commodity. This assumption, that we call it multiple assignment, makes it

possible to assign a node to more than one RP. As mentioned above, using pure RP-networks

for truckload shipments, although has bene�ts, can unnecessarily increase the total cost via

introducing circuitous routes for the loads that can e�ciently be transferred via direct ship-

ment (PtP). This has been recognized before and addressed in an ad hoc fashion in [16] by

choosing direct shipments loads in either before or after network design by considering direct

distance and circuity levels, respectively. In this study, we consider both network and direct

shipment simultaneously as possible ways of shipment. In this approach, it is possible to

use PtP approach to ship those commodities for which utilizing RPs is not cost e�ective.

Implementing this system, that we call parallel shipment, has speci�c requirements discussed

later on in this study. It should be noted that using the direct shipment method causes in-

creasing the total cost of the system implicitly because of its e�ect on increasing the driver

turnover rate. We assume that this cost is embedded into the per unit direct shipment cost

parameter value. In terms of the modeling, comparing to the model presented in [16], we

introduce two new concepts, multiple assignment and parallel shipment, in the relay network

design problem, making it more general and realistic, but challenging to solve. The circuity

requirement in this new setting is another feature that we take into account in the proposed

model.

In the context of the solution approach, a tabu search algorithm is presented by [15]

to solve a relaxed version of the problem, by relaxing node imbalance and circuity con-

straints. [16] propose a Benders decomposition based approach to the problem considering

node-imbalance, while they relax the percentage circuity constraint. Later, [9] present a

Lagrangean decomposition based algorithm to solve a version of the problem considering

capacity and link-imbalance constraints. In this study, we develop a strengthened Benders

decomposition approach via a special type of disaggregated Benders cuts and two initial
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heuristics based on shortest path problem to warm start the Benders decomposition algo-

rithm. The performance of the proposed algorithm is tested extensively in three di�erent

settings: with direct shipment and without circuity, with direct shipment and with circu-

ity, and without direct shipment. We also perform a sensitivity analysis on the impact of

the input parameters on the performance of the algorithm and design speci�cations of the

proposed network.

In the second part, we investigate the strategic design of an RP-network under uncertainty

in demand. This is important since having seasonal or �uctuating demand is inevitable in

several industries and uncertainty in demand for long-term planning has to be handled

explicitly. Expanding our �nding in the �rst part of this project, we propose an exact

solution approach to solve the problem optimally for a set of demand scenarios. We use

two-stage stochastic programming approach to model the RP-network designing problem in

this situation. The setting of our problem of interest builds on the deterministic RP-network

design problem addressed in the previous chapter. In this chapter, we extend this model

by considering uncertainty in demands. The setting of our problem of interest builds on

the deterministic RP-network design problem while we extend the model and the solution

approach to address demand uncertainty. In order to address the computational di�culties

specially occurring in this setting, we develop a solution approach based on a new version

of L-shaped method bene�ting from initial information generated from a new version of

Progressive Hedging algorithm. We call this approach Progressive Hedging-Strengthened

L-shaped method and discuss its superiority in solving di�erent classes of test instances.

The third part of this project focuses on evaluating the operations in the underlying net-

work. In this part, we present a simulation framework in an operational setting of our prob-

lem to study alternative load-to-driver assignment and networking policies on our designed

environment. The resulted models can simulate day-to-day operations in TL transportation

as closely as possible from the load dispatching and networking strategy perspectives. Using

this simulation environment, we can compare di�erent network strategies including point-to-

point (PtP), RP-network and hybrid PtP-RP-network and di�erent dispatching approaches

comprising dispatcher-based dispatching approach and a collaborative dispatching paradigm

taking inputs from drivers as well. In this context, we develop and embed an optimization
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model for dispatching into our simulation environment. This optimization model tries to �nd

the best settings for the underlying network to have the best results in terms of considered

objective functions.
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Chapter 2

Related Literature

Investigation in using relay points to shorten tour lengths and its capability in alleviat-

ing high driver turnover rate in the TL industry, has been started more two decades ago,

when [17] present a simulation model to determine the design of the network and decide

about using direct shipment as an alternative shipping approach. Suggesting simulation-

based approaches were continued in [18], [19] and [20] where they evaluate the problem with

di�erent settings. [12] propose a simulation model taking percentage circuity and load im-

balance considerations into account. The common suggestion of all the mentioned works

above is using RP-networks to shorten tour lengths. They mention that well designing the

network to optimize associated costs should be considered properly.

Utilizing non-simulation techniques to solve the problem was initiated in [21]. The author

uses a shortest path based heuristic to design an RP-network where locating the RPs is not

associated with �xed cost. Considering a similar setting, [22] present another shortest path

based heuristic to design an RP-network while minimizing the number of RPs used. Math-

ematical formulation is not provided in these two studies. [15] formulate a mathematical

model to design an RP-network capturing several generalizing assumption discussed earlier.

They develop a tabu search algorithm to solve the model with relaxed load imbalance and

percentage circuity constraints. Utilizing more exact algorithm to solve the problem is pos-

sible by improving the computers capabilities. An e�cient Benders decomposition�based

algorithm for an uncapacitated RP-network design model was recently presented by [16].

This paper investigates strength a well-designed RP-network to reduce driver turnover rate.

The authors test the performance of the algorithm considering di�erent assumptions includ-

ing load imbalance and percentage circuity. Utilizing the same setting as [15] and [16], [23]

present mixed-integer quadratic programming model including turnover cost in the objec-

tive to investigate driver-turnover problem. In terms of computational results to show the
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performance of the methodology, the authors su�ce to a single node pair path results. Em-

ploying composite variables, generated by prede�ned routing pattern, [24] present an IP

model to design a mixed �eet dispatching system for TL transportation combining direct

and RP-network shipments. As the authors mention, even with a considered limitation on

the number of RPs that can be at most visited in each route (the limitation is three RPs),

the number of composite variables required for the formulation is extremely large. They

propose a heuristic utilizing CPLEX to solve the problem. More recently, [9] introduce link

capacity constraints and the concept of link imbalance in strategic relay network design, and

solve a mixed-integer programming incorporating these concepts to design an RP-network.

The network design problem with relays (NDR), a very similar problem to relay network

design problem, is �rstly introduced by [25] motivated by a telecommunication network

design project. The authors present a path-based integer programming formulation and pro-

pose a column generation approach to obtain a lower bound. In this direction, [26] present

multi-commodity �ow and cut-set formulations for NDR problems with non-simple paths.

Also, they present a branch-and-price and a branch-and-price-and-cut algorithm to solve

this problem. [27] propose a multi-commodity �ow and a tree formulation for NDR and

NDR-S (single-source network design problem with relays) problems, respectively. Having

a large number of variables associated with the arcs in their formulations, they propose

branch-and-price algorithms to solve them.

In the context of modeling, con�guration of our problem can be regarded as an extension

of the single allocation hub location problem (HLP) ( [28]). HLP tries to minimize the cost

of locating hubs and uniquely allocating non-hub nodes to located hubs. HLP has a couple

of speci�c assumptions including: each commodity should visit at least one hub in its route

through the network, the subgraph induced by the hubs is complete and the commodities

are consolidated among hub to hub shipments to reduce the total cost. Hence, a commodity

visits at most two hubs on its path form the origin to the destination. The number of hubs

(RPs) visited, in our problem, can be more than two, because of distance constraints dis-

cussed earlier. Also, considering parallel shipment, multiple assignment, percentage circuity

and tour length assumptions make the problem more di�erent than HLP. Review of the hub

location problem can be found in [29], [30] and [31]. As we discussed, the RP-network design
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problem can categorized in the same category as incomplete HLP. Other than the works we

introduced before, [32] de�ne and formulate the single allocation incomplete p-hub median

and the hub location with �xed costs network design problems and the single allocation

incomplete hub covering and p-hub center network design problems. They solve these model

via Cplex and analysis the impacts of changes in input parameters on the hub locations.

Also, [33] present an integer programming formulation for the single allocation hub covering

problem over incomplete hub networks and a tabu-based heuristic algorithm to solve it. [34]

model the incomplete hub location problem with and without hop-constraints using a Leon-

tief substitution system approach. The use Benders decomposition to the problem, while

they devise a new scheme for generating Benders feasibility cuts to speed up the algorithm.

[30] discuss several improving directions to be followed in HLP realm. The current work,

similar to previous works presented by [15], [16] and [9], address some of the most important

ones including employing incomplete network, having an overall cost perspective for multi-

level hub-covering type network designs, considering realistic assumptions like circuity and

proximity to model complexities in TL transportation. [30] also mention the limitations of

the methodological contributions in the HLP literature which are mostly based on o�-the-

shelf solvers and heuristics. The solution approach devised in this paper, similar to those

presented by [16] and [9], is able to be specialized to be utilized for an HLP.

In term of evaluating the RP-network problem in stochastic environment, this work is

the �rst work. Before than this, as we discussed above, all the studies consider solving the

problem in a deterministic environment. To review similar works, we evaluate a number

of studies in which di�erent types of network design problems are solved in the stochastic

setting.

[35] develop a two-stage stochastic programming model for capacity-expansion problem

considered in telecommunication network design setting. They suggest a L-shaped method

utilizing a number of valid inequalities to solve the problem. [36] propose a two-stage robust

optimization approach to solve network �ow and design problems under demand uncertainty.

Their computational study location-transportation problem reveals that their proposed ap-

proach suggests a trade-o� between scenario-based stochastic programming and single-stage

robust optimization which is more conservative.
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More recently, [37] present a Benders decomposition algorithm to solve multi-commodity

capacitated network design problem under demand uncertainty. They suggest a number of

improving techniques for conventional Benders decomposition including use of stronger cuts,

partial decomposition, heuristics, warm-start strategies, etc.

As we discuss later in Section 4.2.4, we propose a new Progressive Hedging (PH) al-

gorithm for SMIP problems. Hence, we cover a number of studies in this area. PH was

originally presented by [38] for linear stochastic programming models as powerful scenario

decomposition method which convergence can be proved in a �nite number of iterations.

But its convergence for stochastic programming models with discrete decision variable scan

not be proved. Hence, di�erent versions of this method, as reliable heuristics, have been

suggested to solve stochastic programming models with integer variables( [39]; [40]). [41]

suggest a number of algorithmic innovations to improve the PH algorithm in presence of

integer variables. They test their algorithm on a class of scenario-based resource allocation

problem and show that their suggestions are e�cient to improve the PH convergence and

runtime. [42] present a method to integrate PH and Dual Decomposition (DD) for stochas-

tic mixed-integer programs. Their approach bene�ts from both approaches such that the

converges of DD is accelerated by using the PH weights. A lower bounding technique for

PH, to calculate the lower bound at any iteration of this algorithm, in solving two-stage and

multi-stage stochastic mixed-integer programs is presented by [43]. They show that their

bound is as tight as possible given the duality gap of integer programs.

PH have been applied to solve the network design and optimization problems. [44] use

PH to create a solution method to solve their model for pre-disaster transportation network

protection against uncertain future disasters, presented as a stochastic mixed-integer nonlin-

ear program after a reformulation. They show that PH is e�ective in solving a broader range

of applications consisting discrete and non-convex problems. [45] propose a metaheuristic

algorithm, inspired by the progressive hedging algorithm, to solve a two-stage stochastic

programming formulation proposed for the stochastic �xed-charge capacitated multicom-

modity network design (S-CMND) problem with uncertain demand. Their solution method

outperforms a well-known commercial solver in terms of solution quality and computational

e�ort. [46] present a methodological approach to devise strategies to group the underlying
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scenarios. They evaluate the suggested strategies through analyzing the performance of a

new progressive hedging-based meta-heuristic solving subproblems, being made up of multi-

ple scenarios, in the context of stochastic network design problem formulated as a stochastic

mixed-integer program. They show that the PH-based meta-heuristic performs better when

it solves multi-scenario subproblems compared to single-scenario.

In term of proposing simulation-based solution approach, as we mentioned earlier, there

are several studies. We introduce a number of them as follows. [17] propose a simulation-

based solution framework to evaluate hub-and-spoke transportation network to be used in

truckload transportation operations. They develop a knowledge-based simulation model as

a evaluation tool for their methodology. This work can be considered as the �rst work

in the context of designing hub-and-spoke networks for truckload trucking. [47] present a

simulation-based software system to evaluate Hub-and-Spoke transportation networks. They

prepare a complete description of the software system, known as HUBNET including the mo-

tivating problem environment of truckload trucking, the overall simulation solution structure

and the main aspects of the HUBNET system. [12] examine the use of multi-zone dispatching

framework in truckload trucking using simulation methods and historical data. They sug-

gest a new dispatching method o�ering compromise between the needs of the customer, the

carrier, and the driver. This is the �rst study suggesting the use of multi-zone dispatching

methods for truckload trucking.
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Chapter 3

Relay Network Design with Direct Shipment and Multi-Relay Assignment (P1)

In this chapter we de�ne the problem of designing an RP-network in the deterministic

setting in detail, develop a mathematical model and propose a solution approach for the

problem in a deterministic environment. The solution of the mentioned model provides the

location of the RP nodes, assignment the origin/destination nodes to the RP nodes and

actual routs to transport the loads. We present and discuss the computational results to

show the validity of the model and performance of the solution algorithm.

3.1 Problem De�nition and Formulation

In our formulation, we consider three sets with the following de�nitions: Set N represents

the set of TL origin/destination nodes; Set R represents the set of potential RP locations;

and set Q includes the commodities where a commodity [i, j] is de�ned for a pair of nodes

i, j ∈ N having a certain amount of demand (TLs) to be transported from origin i to

destination j. Two methods of shipping commodities (truckloads) are possible. In the �rst

one, a TL follows a path of comprised of only RPs and it can visit any RP in the �rst leg

(as opposed to the uniquely determined RP that the origin node is assigned to as in [16]).

Similarly, it can reach to its destination node in the last leg from any RP visited last in

the path. That is, multiple assignments (as opposed to single assignments in which non-RP

nodes are uniquely assigned to RP nodes) are possible for non-RP nodes. Alternatively, in

the second one, a commodity can be shipped directly from its origin to its destination without

using the RP-network. We call the �rst way of shipment �network shipment�, the latter way,

�direct shipment� and the overall system, �parallel shipment�. Transportation between any

two RPs is possible if the distance between them is not greater than ∆2. Similarly, non-RP

nodes can only send/receive TLs to/from the RPs within a distance of ∆1. It should be

noted that ∆1 is typically less than ∆2.
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Figure 3.1: A Schematic View of an RP-Network

Figure 3.1 shows the operational characteristic of RP-network proposed in this study.

Non-RP and RP nodes are represented by circles and squares, respectively. The bigger

dashed circles represent the regions that RPs de�ne. The radiuses of these circles are equal to

allowable distance for local travels. Also, the distance between two squares is not greater than

the allowable distance for lane transportation. Figure 3.1 also illustrates the assignments and

possible routes to ship two di�erent commodities associated with node i having destinations

j and j′. The direct shipments choices are depicted by solid lines and network ones by dashed

lines. As it is visible in this �gure the node i is assigned to two di�erent RPs to serve two

di�erent demands.

Using network shipment to ship the TLs associated with a commodity causes traveling

a longer distance compared to direct shipment. In this study, we also employ percentage

circuity constraints limiting additional distance traveled by trucks on a percentage basis for

a commodity. The reason of using these constraints is that sometimes additional distances
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are not negligible and transportation companies prefer to limit them, although minimizing

the transportation costs implicitly helps to optimize these additional distances.

The optimal solution of this problem determines the optimal location of the RPs, the

assignment of non-RP nodes to RPs on an origin-destination node pair basis, and the optimal

route for each commodity. The total objective function of the problem includes local and lane

transportation costs of optimal routes associated with all commodities and �xed RP costs.

The proposed model for this problem in Section 3.1.1 includes all these factors simultaneously.

3.1.1 Mathematical Model

We present the below notation followed by a formulation of our problem [MnP]:

Sets:

N set of commodity origin/destination nodes, i, j ∈ N

R set of potential RP nodes, k, l ∈ R

Q set of commodities, [i, j] ∈ Q

Parameters:

wij total demand for commodity [i, j]

dkl distance between node k and node l

t1 transportation cost between RPs and non-RP nodes per-unit demand per-unit distance

t2 transportation cost between two RPs per-unit demand per-unit distance

t3 transportation cost between two non-RPs per-unit demand per-unit distance

fk �xed cost of locating an RP at node k ∈ N

∆1 allowable distance between a non-RP node and an RP

∆2 allowable distance between two RP nodes

Ω percentage circuity coe�cient for allowable level of percentage circuity, Ω ≥ 0

Decision Variables:

xklij 1 if node i is assigned to the RP at node k and node j is assigned to the RP at node l
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to ship commodity [i, j] ∈ Q using the RP network, i, j ∈ N and k, l ∈ R

yklij 1 if commodity [i, j] ∈ Q uses the arc (k, l), i, j ∈ N and k, l ∈ R,

zij 1 if commodity [i, j] ∈ Q shipped directly from node i to node j, i, j ∈ N

hk 1 if RP k, k ∈ R is used, 0 otherwise

[MnP] Min
∑
k

fkhk+
∑
i

∑
j

∑
k

∑
l

t1(dik + djl)wijx
kl
ij

+
∑
i

∑
j

∑
k

∑
l

t2dklwijy
kl
ij +

∑
i

∑
j

t3dijwijzij (3.1)

subject to∑
m∈R
m6=k

ymkij +
∑
m∈R
m 6=k

xkmij =
∑
m∈R
m 6=k

ykmij +
∑
m∈R
m6=k

xmkij ∀ [i, j] ∈ Q, k ∈ R (3.2)

zij +
∑
k∈R

∑
l∈R

xklij = 1 ∀ [i, j] ∈ Q (3.3)

xklij ≤ hk ∀ [i, j] ∈ Q, ∀ k, l ∈ R (3.4)

yklij ≤ hl ∀ [i, j] ∈ Q, ∀ k, l ∈ R, k 6= l (3.5)∑
k∈R

∑
l∈R

(dik + dlj)x
kl
ij +

∑
k∈R

∑
l∈R
l 6=k

dkly
kl
ij − dij ≤ Ω dij ∀ [i, j] ∈ Q (3.6)

xklij ∈ {0, 1} ∀ [i, j] ∈ Q, ∀ k, l ∈ R (3.7)

yklij ∈ {0, 1} ∀ [i, j] ∈ Q, ∀ k, l ∈ R, k 6= l (3.8)

zij ∈ {0, 1} ∀ [i, j] ∈ Q (3.9)

hk ∈ {0, 1} ∀ k ∈ R (3.10)

The �rst part of the objective function measures the total �xed costs associated with lo-

cating the RPs. The second term represents the cost of total transportation between the

origin/destination locations and RPs and the third one represents the total transportation

cost between RPs, and �nally, the fourth term is for direct shipment costs. Constraints
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(3.2) are the �ow conservation constraints for each node and commodity (TL). Constraints

set (3.3) ensure that the demand should be sent through the relay network and/or direct

shipment. Constraints set (3.4) and (3.5) regard locating the RPs. Constraints (3.6) are

the percentage circuity constraints that control the weighted average of the additional travel

distance incurred by using the RP network as opposed to direct shipment. The percentage

of the weighted average extra travel distance must not be greater than 100 ∗Ω. Constraints

(3.7) to (3.9) enforce the x, y, and z to be binary. The model has the integrality property

as we do not consider any capacity limitation on the links and RPs of the network and all

the coe�cients of the model are integral, these variables intrinsically only take values 0 or 1.

Therefore, the three variables can also be stated as bounded continuous variables. In other

words, the model can be solved as a mixed-integer program (MIP) instead of a pure integer

program (IP). Constraints (3.10) are the binary requirements of the RP location variables

h.

3.2 Solution Methodology - Strengthened Benders Decomposition

Benders decomposition (BD) method decomposes the overall MIP formulation into a

master problem and a subproblem, and solves them iteratively while exchanging their solu-

tions. The master problem includes all the integer variables of the problem and associated

constraints. Also, it contains an auxiliary continuous variable facilitating the interaction be-

tween the master and subproblem. The subproblem, on the other hand, is a linear program

containing all the continuous variables of the MIP and associated constraints incorporating

the integer variables as �xed values coming from the solution of the master problem. The

master problem provides a lower bound for a minimization problem and an upper bound is

attained by solving the (dual of the) subproblem. The bounds are updated in each iteration

and the procedure is terminated as the di�erence between these two bounds is less than a

predetermined negligible value. The Benders cuts are generated and added to the master

problem during the implementation of the algorithm until it reaches the stopping criterion.

We next discuss the details of the overall approach and the speci�c tools that we suggest for

enhancing its performance.
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3.2.1 Benders Subproblem (PBSP) and its Dual

As we discussed above, the model has integrality property, hence we formulate the PBSP

as a linear program. For the given �xed RP locations ĥk, k ∈ R, we can write PBSP as the

following linear program.

[PBSP] Min
∑
i

∑
j

∑
k

∑
l

t1(dik + djl)wijx
kl
ij +

∑
i

∑
j

∑
k

∑
l

t2dklwijy
kl
ij

+
∑
i

∑
j

t3dijwijzij (3.11)

subject to∑
m∈R
m 6=k

ymkij +
∑
m∈R
m6=k

xkmij =
∑
m∈R
m6=k

ykmij +
∑
m∈R
m 6=k

xmkij ∀ [i, j] ∈ Q, k ∈ R (3.12)

zij +
∑
k∈R

∑
l∈R

xklij = 1 ∀ [i, j] ∈ Q (3.13)

xklij ≤ ĥk ∀ [i, j] ∈ Q,∀ k, l ∈ R (3.14)

yklij ≤ ĥl ∀ [i, j] ∈ Q,∀ k, l ∈ R, k 6= l (3.15)∑
k∈R

∑
l∈R

(dik + dlj)x
kl
ij +

∑
k∈R

∑
l∈R
l 6=k

dkly
kl
ij − dij ≤ Ω dij ∀ [i, j] ∈ Q (3.16)

xklij ≥ 0 ∀ [i, j] ∈ Q, ∀ k, l ∈ R (3.17)

yklij ≥ 0 ∀ [i, j] ∈ Q, ∀ k, l ∈ R, k 6= l (3.18)

zij ≥ 0 ∀ [i, j] ∈ Q (3.19)

Note that the upper bounds for the variables of PBSP (which are 1 for all of them) are

implicitly enforced by the Constraint (3.12) and (3.13). To obtain the dual of the PBSP,

the variables q1kij, q2ij, q3
kl
ij , q4

kl
ij , and q5ij are de�ned as the duals of the constraints (3.12),
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(3.13), (3.14), (3.15), and (3.16), respectively. Then, we have

[DBSP] Max
∑
i∈N

∑
j∈N

∑
k∈R

∑
l∈R

(ĥkq3
kl
ij + ĥlq4

kl
ij ) +

∑
i∈N

∑
j∈N

(q2ij + (1 + Ω)dijq5ij) (3.20)

subject to

q1
k
ij − q1lij + q2ij + q3

kl
ij + (dik + dlj)q5ij

≤ t1(dik + dlj)wij ∀ [i, j] ∈ Q, ∀ k, l ∈ R (3.21)

q1
l
ij − q1kij + q4

kl
ij + dklq5ij ≤ t2dklwij ∀ [i, j] ∈ Q, ∀ k, l ∈ R, k 6= l (3.22)

q2ij ≤ t3dijwij ∀ [i, j] ∈ Q (3.23)

q3
kl
ij , q5ij ≤ 0 ∀ [i, j] ∈ Q, ∀ k, l ∈ R (3.24)

q4
kl
ij ≤ 0, ∀ [i, j] ∈ Q, ∀ k, l ∈ R, k 6= l. (3.25)

Let E denote the set of all extreme points of the DBSP polyhedron given by (3.21)-(3.25)

and q2ij
e, q3

kl
ij
e
, q4

kl
ij
e
, q5ij

e and ηe denote the associated dual variables and objective function

value with extreme point e ∈ E . Letting η∗ be the optimal objective value for the portion of

original MIP's objective value employed in PBSP, we must have η∗ ≥ ηe, ∀e ∈ E , and, thus,

DBSP can be restated as minη≥0{η : ηe ≤ η, ∀e ∈ E} where

ηe =
∑
i

∑
j

∑
k

∑
l

(ĥkq3
kl
ij

e
+ ĥlq4

kl
ij

e
) +

∑
i

∑
j

(q2ij
e + (1 + Ω)dijq5ij

e) (3.26)
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3.2.2 Reformulation and the Benders Master Problem (BMP)

Utilizing the above representation of the DBSP that is based on the extreme points of

its polyhedron, we can reformulate our model MnP as

Min
∑
k

fkhk + η (3.27)

subject to

η ≥
∑
i

∑
j

∑
k

∑
l

(hkq3
kl
ij

e
+ hlq4

kl
ij

e
) +

∑
i

∑
j

(q2ij
e + (1 + Ω)dijq5ij

e) ∀ e ∈ E (3.28)

hk ∈ {0, 1} ∀ k ∈ R. (3.29)

It should be noted that, in the BD solution framework, optimality cuts (3.28) are generated

iteratively since all the constraints in (3.28) are not binding in the optimality. Hence, the

reformulation containing only a subset of these constraints at any iteration t is a relaxation

for BMP and its optimal solution provides a lower bound on the MnP. We can also include

(3.30), called feasibility cut,

∑
i

∑
j

∑
k

∑
l

(hkq3
kl
ij

e′
+ hlq4

kl
ij

e′
) +

∑
i

∑
j

q2ij
e′ ≤ 0 ∀e′ ∈ E ′ (3.30)

to this reformulation to avoid the extreme rays of the DBSP feasible region when a solution

of BMP cannot guarantee feasibility of the BPSP. The cuts (3.30) may essentially be needed

in the case that the direct shipment is not allowed and the network shipment is the only way

of shipping the truckloads. We discuss this case, as one of the cases evaluated in this study,

in Section 3.2.6. Note that the feasibility cut (3.30) does not contain the term (1+Ω)dijq5ij
e′

since the circuity constraint is not addressed in this case.

3.2.3 Strengthening the Benders' Cuts

Notice that the subproblem has network �ow problem structure dealing with potential

degeneracy. Therefore, the DBSP may have multiple optimal solutions, each of which pro-

vides a di�erent cut with di�erent strength in terms of cutting o� the BMP feasible area.

This is important since by picking a proper optimal solution of DBSP in each iteration of
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Benders' decomposition algorithm, we can generate stronger Benders' cut and accelerate the

algorithm. For an optimization problem Miny∈Y,z∈R{z : f(u) + y g(u) ≤ z, ∀u ∈ U}, [48]

de�ne the concept of strongness of a cut as follows. The cut f(u0) + y g(u0) ≤ z is stronger

than the cut f(u1) + y g(u1) ≤ z if f(u0) + y g(u0) ≥ f(u1) + y g(u1) ∀y ∈ Y with a strict

inequality for at least one y ∈ Y . In order to generate a strengthened Benders cut, we use a

technique similar to the two-phase approach presented by [49] and also adapted by [50]. For

our problem, we observe that, at an iteration of the algorithm, the dual values associated

with ĥk with a zero value do not have any contribution in the optimal objective value of

DBSP. Hence, it is possible to modify the coe�cient of a ĥk = 0 (ĥl = 0), that is q3klij (q4
kl
ij ),

without any e�ect on the DBSP objective function value. To do so, we �rst solve the reduced

DBSP to attain the dual variable values (q3
kl
ij and q4

kl
ij ) associated with open RPs (ĥk = 1

and ĥl = 1), and the optimal values for q1kij, q2ij, q2ij and q5ij ∀ [i, j] ∈ Q, ∀ k ∈ R as well.

To generate this problem, we de�ne G as the set of open RPs at an iteration. Afterwards,

we can have the mentioned values by solving the following problem. Speci�cally, we have

[Reduced DBSP] Max
∑
i∈N

∑
j∈N

∑
k∈G

∑
l∈G

(ĥkq3
kl
ij + ĥlq4

kl
ij )

+
∑
i∈N

∑
j∈N

(q2ij + (1 + Ω)dijq5ij) (3.31)

subject to

q1
k
ij − q1lij + q2ij + q3

kl
ij + (dik + dlj)q5ij

≤ t1(dik + dlj)wij ∀ [i, j] ∈ Q, ∀ k, l ∈ G (3.32)

q1
l
ij − q1kij + q4

kl
ij + dklq5ij ≤ t2dklwij, ∀ [i, j] ∈ Q, ∀ k, l ∈ G, k 6= l (3.33)

q2ij + (1 + Ω)dijq5ij ≤ t3dijwij, ∀ [i, j] ∈ Q (3.34)

q3
kl
ij , q5ij ≤ 0 ∀ [i, j] ∈ Q, ∀ k, l ∈ R (3.35)

q4
kl
ij ,≤ 0, ∀ [i, j] ∈ Q, ∀ k, l ∈ G, k 6= l. (3.36)
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and letting G ′ = R\G, we solve the following model for a set of dual variable values, that

are associated with ĥk = 0, ĥl = 0 ∀k, l ∈ G ′, to generate a strengthened Benders cut.

Max
∑
i∈N

∑
j∈N

∑
k∈G′

∑
l∈G′

(q3
kl
ij + q4

kl
ij ) (3.37)

subject to

q̂1
k
ij − q̂1lij + q̂2ij + q3

kl
ij + (dik + dlj)q̂5ij

≤ t1(dik + dlj)wij ∀ [i, j] ∈ Q, ∀ k, l ∈ G ′ (3.38)

q̂1
l
ij − q̂1kij + q4

kl
ij + dklq̂5ij ≤ t2dklwij, ∀ [i, j] ∈ Q, ∀ k, l ∈ G ′, k 6= l (3.39)

q3
kl
ij ≤ 0, ∀ [i, j] ∈ Q, ∀ k, l ∈ G ′, k 6= l (3.40)

q4
kl
ij ≤ 0, ∀ [i, j] ∈ Q, ∀ k, l ∈ G ′, k 6= l. (3.41)

The optimal solution of the (3.37)-(3.41) is attainable using the following approach without

actually solving a linear program. We can rewrite (3.38) as q3klij ≤ δklij where δklij = t1(dik +

dlj)wij − (q̂1
k
ij − q̂1lij + q̂2ij + (dik + dlj)q̂5ij), ∀ [i, j] ∈ Q, ∀ k, l ∈ G ′. Thus, the optimal

value of q3klij can found using the following equation

q3
kl
ij =

 δklij if δklij < 0

0 otherwise
∀ [i, j] ∈ Q, ∀ k, l ∈ G ′.

The optimal value of q4klij is obtained similarly by utilizing (3.39).

3.2.4 Surrogate Constraints for BMP

When the direct shipment is not an option in the problem, the feasibility of the PBSP

for each solution of BMP cannot be guaranteed. Therefore, the feasibility cuts based on

extreme rays of BDSP are required. Having several feasibility cuts can hinder the e�ciency

of the approach as the runtime to solve the BMP becomes excessive. To avoid this issue, we

introduce a set of surrogate constraints in the master problem in an attempt to decrease the

number of feasibility cuts required dramatically. These cuts can also assist to improve the
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lower bound of the problem by creating an e�ective network structure as BMP solution. To

this end, we �rst de�ne an auxiliary integer variable as

vkl amount of �ow of all the commodities on the arc (k, l), k, l ∈ N ∪R

Notice that, we do not distinguish commodities that make up the �ow on arc (k, l), we state

vkl as the aggregate �ow amount. This is because we really do not need these �ow values as

an output of the BMP, but rather need them to help with setting up RPs in good locations

to facilitate feasibility of the PBSP. Utilizing vkl, we de�ne the following valid, surrogate

constraints to be added to the master problem. These constraints help to establish relay

point locations (item 3 below) in such a way that the subproblem has a feasible solution and

optimality cuts are generated based on the solution of its dual problem DBSP.

1. Constraint sets (3.42) and (3.43) ensure that at least one arc is open to send and receive

the �ow of commodities for each origin and destination node, respectively.

∑
j∈ND

wij ≤
∑
l∈R

vil ∀ i ∈ NO (3.42)

∑
i∈NO

wij ≤
∑
k∈R

vkj ∀ j ∈ ND (3.43)

where NO and ND are the sets of origin and destination nodes, respectively. The

validity of the constraint (3.42) follows from the fact that some arcs connecting a

source node to some relay node(s) must be used for all TLs to get on the RP-induced

network; Similarly by (3.43) for all the TLs to arrive in their destinations.

2. Constraint sets (3.44) and (3.45) are essentially the �ow conservation constraints ex-

pressed as two inequalities for each RP location.

∑
k∈R∪NO

vkl ≤
∑

m∈R∪ND

vlm ∀ l ∈ R (3.44)

∑
m∈R∪ND

vlm ≤
∑

k∈R∪NO

vkl ∀ l ∈ R (3.45)

3. Finally, constraint set (3.46) contains a set of linking constraints for activating RP
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candidates as open locations.

vkl ≤M hl ∀ k ∈ N ∪R, ∀ l ∈ R (3.46)

Having an open arc originates from or destines to an RP, we should have that RP active.

These constraints enforce opening required RPs and are valid. To ensure having a tight

and model, we should consider the M value properly. Since this value can be at most

the total demand in the system,
∑

i∈NO

∑
j∈ND

wij can be regarded as a reliable value

for M .

The proposed surrogate constraints perform very well in terms of recreating the network

structure for the master problem. Although they can not guarantee the feasibility of the sub-

problem, they can keep the number of required feasibility cuts small and decrease the runtime

dramatically. We discuss the performance of these surrogate constraint in Section 3.3.3.3.

We discuss another set of surrogate constraints, called shortest path cuts, later in Section

3.2.7 where we introduce two initializing heuristics for the Bender Decomposition algorithm

3.2.5 Cut Disaggregation Schemes

Observe that the subproblem PBSP is separable for each commodity [i, j] giving |Q|

independent routing problems over the network including origin and destination nodes in

addtion to the RP nodes established by the BMP solution. Based on this observation, we

introduce four di�erent cut disaggregation schemes that can help to improve the performance

of conventional single Benders cut (3.47) of the form (3.28).

η ≥
∑
i

∑
j

∑
k

∑
l

(hkq3
kl
ij + hlq4

kl
ij ) +

∑
i

∑
j

(q2ij + (1 + Ω)dijq5ij) (3.47)

Note that all alternative Benders cuts below also follow the same form which is based on

DBSP objective function (3.20).

OD Cut The Benders cut can be separated based on every single commodity so that one

cut is added for each commodity. Thus, in each iteration |Q| cuts would be added to
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the BMP. These cuts are

ηij ≥
∑
k∈R

∑
l∈R

(hkq3
kl
ij + hlq4

kl
ij ) + q2ij + (1 + Ω)dijq5ij ∀ [i, j] ∈ Q.

O Cut The second cut type addresses disaggregation based on commodities' origin nodes

such that we add one Benders cut for each node which is origin of at least one commod-

ity. Thus, Benders cuts for all commodities originated at the same node are aggregated

into one cut and there exists one such cut for each origin node. De�ning set QO as the

set of origin nodes, these cuts are

ηi ≥
∑

{j|[i,j]∈Q}

∑
k∈R

∑
l∈R

(hkq3
kl
ij + hlq4

kl
ij ) +

∑
{j|[i,j]∈Q}

(q2ij + (1 + Ω)dijq5ij) ∀ i ∈ QO.

It should be noted that the performance of this cut and disaggregation based on com-

modities' destinations is almost same and that this type of cut disaggregation was �rst

suggested by [16].

ODReg Cut In addition to commodity (origin-destination nodes) based disaggregation as

in OD Cut above, disaggregation can also be done based on a regional basis for origin-

destination pairs.

To achieve this, we divide the geographical area by a number of equally sized rectangles

(regions) and generate one cut for commodities originating in and destined to the same

regions. In other words, we aggregate the cuts of commodities based on their origin and

destination regions. Figure 3.2 illustrates this cut generation approach. For the sake of

easier illustration, commodities are represented by a single commodity number (rather

than origin-destination nodes) and their origin and destination nodes are depicted

explicitly in the �gure.

In this example, we generate one cut by aggregating the individual cuts of the two

commodities originated in region 1 and destined to region 5 (commodities 4 and 5);

and one cut for the three commodities originated in region 8 and destined to region 3

(commodities 1, 2, and 3).
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We de�ne REGOD as the set of all region pairs O and D that at least one commodity

originates in O and destined to D, rOD ∈ REGOD. In our example, REGOD =

{(1, 5), (8, 3)}. Also, let COD be the set of commodities associated with region pairs O

and D. Then, for our example, C15 = {4, 5} and C83 = {1, 2, 3}. These cuts are given

as

ηrOD
≥

∑
[i,j]∈COD

∑
k∈R

∑
l∈R

(hkq3
kl
ij + hlq4

kl
ij ) +

∑
[i,j]∈COD

(q2ij + (1 + Ω)dijq5ij) ∀ rOD ∈ REGOD.

In our computational study, we show that the performance of this cut is impressive,

and can manage both run time and memory usage very e�ciently.

Figure 3.2: An illustration for ODReg cut disaggregation scheme

OReg Cut We use the structure of the previous cut type and de�ne REGO as the set of

all regions that are the origins of at least one commodity, rO ∈ REGO, i.e., in our
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example, REGO = {1, 8}. Then, the OReg cuts are

ηrO ≥
∑
i∈rO

∑
{j|[i,j]∈Q}

∑
k

∑
l

(hkq3
kl
ij + hlq4

kl
ij )

+
∑
i∈rO

∑
{j|[i,j]∈Q}

(q2ij + (1 + Ω)dijq5ij) ∀ rO ∈ REGO.

In general, adding multiple cuts can provide tighter bounds for the overall problem, how-

ever, too many cuts added to BMP can hamper its e�ciency. The above ODReg and OReg

cuts are motivated to provide less number, yet e�ective, Benders cuts but combining com-

modities which present similarities geographically in terms of the proximity of their origin

and destination nodes. The e�ectiveness of these cut disaggregations is explicitly studied

later in Section 3.3.2. It should be noted to implement the cut disaggregation scheme dis-

cussed the term η in Equation (3.27) is replaced by
∑

[i,j]∈Q ηij,
∑

i∈QO
ηi,
∑

rOD∈REGOD
ηrOD

and
∑

rO∈REGO
ηrO for OD Cut, O Cut, ODReg Cut and OReg Cut, respectively.

3.2.6 Early Termination of BMP

In the conventional Benders decomposition implementation, the BMP is solved until

reaching to optimality or a negligible gap between its upper and lower bound from in all

iterations of the algorithm. Sometimes reaching to a negligible value of optimality for BMP is

time-consuming due to diminishing improvements in optimality gap as branching progresses.

In this study, for initial iterations of the algorithm, instead of solving the BMP until reaching

to optimality, we terminate the BMP solving process upon reaching a predetermined higher

level for optimality gap and consider the BMP's lower bound upon termination as the lower

bound for MnP at that iteration. On the other hand, we use the last incumbent solution upon

termination of BMP as input to the DBSP. After solving the BDSP, the summation of the

objective function value of BDSP and the value of the integer part of BMP objective function

(regarding the mentioned incumbent solution) provide an upper bound for the problem.

This technique increases the speed of the overall algorithm dramatically, although it

may generate weaker lower bounds and Benders optimality cuts in the initial iterations of

the algorithm. Speci�cally, we perform a stepwise BMP early termination optimality gap

reduction. Based on our experiments, starting with 10% gap for the initial four iterations,
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then reducing to 4% for the next two iterations, and �nally a 3% gap (which is acceptable

gap% level for our overall algorithm) for the remaining iterations give the best results. This

approach allows the initial cuts to be added quickly to reduce the set of feasible solutions to

the master problem sooner.

3.2.7 Initial Bound Heuristics

A heuristic can be used to obtain a good initial upper bound as well as to add initial

cuts to BMP to tighten the lower bound of the problem. For this purpose, we devise two

heuristics built on the observation that the BPSP is the shortest path problem for each

commodity when the RP locations are �xed.

SPH1 In the �rst heuristic, Shortest Path Heuristic 1 (SPH1) given in Algorithm 1, we solve

the BPSP by using the Dijkstra's algorithm. To do so, we �rst assume that all the

potential RP locations are open and �nd the shortest paths (in origin-RPs-destination

sequence) for commodities' �ows. We set the network such that the length of each arc

is equal to its actual unit shipment cost which is determined based on the arc type

(network or direct shipment arc type).

Once we �nd the cost-based shortest path for each commodity (which may be utilizing

RPs or a direct shipment method), we check each shortest path distance to verify that

the circuity constraint is not violated. If it is, then we remove the resulted solution

and start the algorithm over to �nally �nd the next shortest path solution until we

�nd one cost-based shortest path whose corresponding distance does not violate the

circuity constraint.

Finding shortest paths enables us to add one or a set of additional cuts to the BMP

to strengthen the lower bounds and reduce its runtime. Again using the fact that the

objective function of the BPSP is separable for each commodity [i, j] ∈ Q and it is

equivalent to the cost-based shortest path problem for a �xed set of RPs, analogous

to disaggregation schema for Benders cuts, we have the following shortest path cuts
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for our problem.

ηij ≥ SPCostij ∀ [i, j] ∈ Q (3.48)

ηi ≥
∑

{j|[i,j]∈Q}

SPCostij ∀ i ∈ QO (3.49)

ηrOD
≥

∑
[i,j]∈COD

SPCostij ∀ rOD ∈ REGOD (3.50)

ηrO ≥
∑
i∈rO

∑
{j|[i,j]∈Q}

SPCostij ∀ rO ∈ REGO (3.51)

where SPCcostij represents the cost-based shortest path for commodity [i, j] ∈ Q when

all RPs are available. Clearly, SPCostij is the absolute least cost path for [i, j] and thus,

it is a lower bound on the optimal transportation cost for that commodity. Constraints

(3.48), (3.49), (3.50), and (3.51) are formed similarly to the OD, O, ODRegt, and OReg

Cuts in �3.2.5, respectively. These cuts are added to BMP in line 3 in SPH1.

In the next step, we create an array of size |R|, namely �RP-UsageArray�, which

contains the number of times that each RP is used in the shortest paths obtained.

Using this array, we �rst calculate an upper bound for the problem by adding the

total activation cost of the RPs which are used at least once (having positive values in

RP-UsageArray) to the total shortest paths' cost obtained. Afterward, we solve DBSP

by �xing a group of RPs, having RP-UsageArray value greater than a predetermined

threshold, namely �RP-UsageThreshold,� as the open RPs (set A, and add Benders

optimality cuts to the initial BMP using the corresponding solution.
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Algorithm 1 Shortest Path Heuristic 1 (SPH1)

1: Initialize set A = ∅ and RP-UsageThreshold value

2: Solve BPSP using Dijkstra's algorithm with all RPs are avail-

able

3: Add shortest path cuts to the BMP

4: Create RP-UsageArray

5: Calculate UB

6: for k ∈ R do

7: if RP-UsageArrayk ≥ RP-UsageThreshold then

8: A = A ∪RPk
9: end if

10: end for

11: Solve DBSP considering the set A as the open RPs

12: Add Benders optimality cuts to BMP

SPH2 The second heuristic, called Shortest Path Heuristic 2 or SPH2, is given in Algorithm

2. We use this algorithm when the direct shipment is not allowed, i.e., TL shipments

are allowed only on the RP network.

This algorithm is slightly di�erent than Algorithm 1 in such a way that, after solving

BPSP by Dijkstra's algorithm (�nding the cost-based shortest paths) and updating

the upper bound by considering the RPs used, we add cuts of the form hk = 1 to

BMP for those RPs that have shortest path usage value greater than the threshold

RP-UsageThreshold. Then, we also add the surrogate constraints (�3.2.4) to the BMP

and solve BMP to obtain the ĥ· values which provides a collective set of open RPs.

Moreover, shortest path cuts (3.48)-(3.51) are added to BMP as shown on line 3.
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Algorithm 2 Shortest Path Heuristic 2 (SPH2)

1: Initialize RP-UsageThreshold value

2: Solve BPSP using Dijkstra's algorithm with all RPs available

3: Add shortest path cuts to the BMP

4: Create RP-UsageArray

5: Calculate UB and

6: for k ∈ R do

7: if RP-UsageArrayk ≥ RP-UsageThreshold then

8: Add cut hk = 1 to the BMP

9: end if

10: end for

11: Add surrogate constraints

12: Solve the BMP and update ĥ· values

13: Remove the recently added cuts to the BMP at Step 8

Note that this solution to BMP does not provide a lower bound as it forces some RPs

to be open. In later iterations, we remove the cuts added in line 8 from the BMP while

we keep the surrogate constraints and the shortest path cuts. The attained ĥ· values

are used as the initial open RP locations to start Algorithm 3, line 3. It should be

noted that circuity constraint consideration step in this algorithm can be done similar

to that of SPH1.

3.2.8 Overall BD Implementation

Algorithm 3 presents the overall steps of the strengthened Benders decomposition. After

initializing the algorithm's parameters and constants, the heuristics are utilized in line 2 to

add initial cuts to BMP and tighten the bounds before starting the main algorithm's loop.

In line 3, we establish the starting values for RP locations as dictated by the initial heuristic

employed.

The main loop of the algorithm is started in line 4 for which two criteria, optimality gap

and runtime - whichever is reached �rst, are employed to terminate the algorithm. By �xing

all open RPs (or none, in the case of direct shipments allowed), we solve the DBSP in line
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5 and update the current upper bound (UB) if necessary. The cut strengthening procedure,

discussed in Section 3.2.3, is performed in line 6. Afterward, disaggregated Benders cut,

presented in Section 3.2.5, using strengthened DBSP variable values are generated and added

to BMP. The BMP, also including surrogate constraints (in case of no direct shipment)and

the shortest path cuts added in heuristics along with Benders cuts, is solved to obtain a new

set of ĥ values and a new lower bound (LB). The iterations are continued in this fashion

until a termination criterion is met. The terminating criteria are checked again in line 8 and

if they are not met, the values of ĥ are replaced by the recently achieved ones and we go to

line 4. After termination of the algorithm, �nal routing decisions are made with the current

open RPs in place by solving BPSP.

Algorithm 3 Strengthened BD Implementation
1: initialize ε = 0.03, optgap = 1.0, Runtime=0, Stoptime=7200

2: Employ SPH1 or SPH2 if direct shipments are not allowed

3: If SPH1 is used in 2, set ĥk = 0 ∀k ∈ R;
Otherwise, ĥ· values are as provided by Algorithm 2 (SPH2)

4: while (Runtime ≤ Stoptime and optgap > ε) do

5: Solve DBSP and calculate UB and update if necessary

6: Update the DBSP variables for strengthened Benders cuts

7: Generate disaggregated strong Benders cuts and add it to BMP

8: Solve BMP and update the LB

9: Record Runtime and optgap (= (1− LB/UB)

10: Update the ĥ· by using the results of the recently solved BMP

11: end while

12: return ĥk, ∀k ∈ R, solve BPSP and determine �nal routings.

3.3 Computational Study

In this section, we �rst describe our approach to generate experimental testbeds to be

used to evaluate various aspects of our model and solution methodology. To this end, we

assess the following three cases in our computational study:

With-direct-shipment-No-circuity DS-NC (Base case)

We consider this case as the base case of our experiments. The base case contains
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solving the MnP model without Constraint (3.6) which is the circuity constraint. To

solve this model, we initialize Algorithm 3 by SPH1 (Algorithm 1) in its second step.

With-direct-shipment-With-Circuity-case DS-C

Considering the circuity constraint into the base case (DS-NC) yields DS-C case re-

ferring to the problem whose model is MnP. Solution procedure of this case is similar

to DS-NC as given in Algorithm 3 with SPH1, but a circuity parameter Ω should be

speci�ed in line 1.

No-Direct-Shipment-No-Circuity-case NDS-NC

We consider this case to evaluate the e�ectiveness of our solution procedure when the

direct shipment is not the option. We also disregard the circuity constraint, because our

�ndings from two previous cases about including this constraint type are extendable

over this case. To this end, if we remove the variable z from the MnP model in the

base case that does not include circuity constraints, we obtain a new model in which

the shipment is possible just through the network, i.e., no direct shipments allowed.

In this situation, solution of BMP cannot guarantee the feasibility of BPSP, thus, the

feasibility cuts are required. To reduce the negative e�ects of excessive feasibility cuts,

we consider the new surrogate constraints proposed in Section 3.2.4 through using

SPH2, Algorithm 2, in step 2 of Algorithm 3 to improve the lower bound attained and

to facilitate generation the feasible solutions to BPSP.

After presenting experimental input data generation process, we �rst examine the e�ects

of enhancements on the algorithmic performance using the �rst case above, and then, provide

an analysis of results for varying input values for each case separately.

In the experiments presented in this section, we adopt the same stopping criteria, which

include an optimality gap of 3% and a time limit of 7200 seconds, for our algorithm as well

as the B&C implementation (as provided by CPLEX). We solve �ve test instances for each

class described below and report the average values over these instances for the cases. In

the tables below, the �Gap%� column reports the �nal gap percentage achieved and it is

calculated as [(UB − LB)/UB] ∗ 100 and the column �T(s)� refers the runtime in seconds
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and, since the algorithms check the gap discretely, it may happen that the time stopping

criterion is met in a slightly larger value than 7200 seconds.

To solve all the presented models, we use CPLEX 12.6.1, and all of the experiments are

conducted using C++ on machines with an Intel Core i7-4790 CPU at 3.6 GHz, 32 GB RAM

running 64-bit OS.

3.3.1 Data Generation

We generate our random test problem such that sensitivity analysis can be done on the

di�erent parameters of the problem. As a geographical region , we consider a rectangular

region with dimension 150× 100 (width × height). To represent TL origin and destination

nodes, we randomly generate |N | clustered point coordinates and, to represent potential RP

locations, |R| uniformly distributed point coordinates in the same region.

To have the clustered point locations, where each cluster can represent an area of dense

population such as a city or metropolitan area, we divide the whole area by 25 sub-rectangles

(each is 20×25) and generate 75% of the origin and destination nodes in �ve of them picked

randomly and the remaining 25% uniformly all over the main area to keep diversity between

points. Potential RP locations are also generated uniformly in the main area. We consider

|N | values of 160, 180, 200 and 220, and |R| values of 25, 30, and 35. Therefore, eight

distinct problem classes, Class 1 (C1) to Class 8 (C8), are speci�ed by (N ,R) as (160, 25),

(160, 30), (180, 25), (100, 30), (200, 30), (200, 35), (220, 30), (220, 35), respectively.

We assume D percent of the pairs of the commodity nodes requires a commodity �ow.

The basic value for this density measure is 30%, but we also consider 35% for further analyses.

Then, the total number of commodities |Q| is given by |N |(|N |−1)D.

To have more realistic test problems, we categorize the commodities into three groups

based on the direct shipment distance between their origin and destinations as long, medium,

and short range commodities. Based on the geographical region scales considered, the dis-

tance values 30 and 60 are employed as the threshold levels between short-to-medium and

medium-to-long distance commodities, respectively. To obtain these three sets, the node

pairs are �rst sorted in descending order of their Euclidean distance and the list is equally

divided into three groups using the threshold values. Letting the triplet (L,M, S) repre-
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sent the share of commodities selected from the long-, medium-, and short-range commodity

groups on a percentage basis, we then generate the commodity set Q by randomly select-

ing L%|Q|, M%|Q|, and S%|Q| di�erent commodities from the long, medium, and short

range groups, respectively. In our numerical study, we mainly consider (L,M, S) values of

(80, 10, 10), but also examine (60, 20, 20) to do a sensitivity analysis.

The demand wij (in TLs) for each commodity is randomly determined using uniform

distribution U[10, 20]. In terms of the cost parameters, the �xed cost of locating an RP is

assumed to be 150,000 for C1 and C2, 225,000 for C3 and C4, 300,000 for C5 and C6 and

375,000 for C7 and C8; i.e., the �xed cost is increased with increasing number of commodities

(|N | ) served to re�ect the fact that more expensive facilities are required to be able to serve

a higher number of TLs. Furthermore, all of the instances utilize the values 1, 2 and 3 for

unit transportation costs t1, t2, and t3, respectively. Finally, for local and lane tour length

distance constraints, we consider (∆1,∆2) values of (20, 40) mainly and (25, 50) for further

analysis.

Table 3.2 summarizes our test problem classes and their characteristics. We note that

the location of the nodes in classes C1, C3, C5, C7 are kept the same in C2, C4, C6, C8,

instance-by-instance, respectively, while the required number of potential RP locations are

added to the problem randomly to increase the size as needed for the latter classes.

Table 3.2: The test instances classes ((L,M,S) = (80, 10, 10); (∆1, ∆2) = (20, 40); D% = 30)

Class |N | |R| f |Q|

C1 160 25 150000 7632
C2 160 30 150000 7632
C3 180 25 225000 9666
C4 180 30 225000 9666
C5 200 30 300000 11940
C6 200 35 300000 11940
C7 220 30 375000 14454
C8 220 35 375000 14454
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3.3.2 Numerical Results on Algorithmic Performance

In this subsection, we present computational results to examine the enhancement com-

ponents of our algorithm for improved performance.

• First, to show the e�ectiveness of the strengthening Benders cuts as described in Sec-

tion 3.2.3, we run the BD-ODReg (BD in Algorithm 3 with OD-Reg cuts) with and

without strengthened cuts and compare the runtimes and the number of optimality

cuts required utilizing four larger classes of test instances. Table 3.3 reports the results

of this experiment. The left part of the table reports the results of using strengthened

cuts instead of regular ones in the BD-ODReg algorithm and right part shows the

results of the having regular Benders cuts. In addition to runtimes, we also report

the average number of optimality cuts required, �No. of opt. cuts req.,� to solve the

instances.

As it can be seen, adding strengthened Benders cuts can decrease the numbers of

optimality cuts required at least by one cut on average. In terms of runtimes, the

algorithm with strengthened cuts can perform faster by about 11% on average. The

e�ectiveness of including the strengthened cuts can be more emphasized by mentioning

that by adding them instead regular ones, 45% of the test instances of the Table 3.3 can

be solved faster, while only 15% of them are being solved faster with regular Benders

cuts, and for 40% both have the same performance. Based on these observations, we

recommend using strengthened cuts and use them in all experiments in this study.

Table 3.3: E�ectiveness of Strengthened Benders Cuts

Class

Str. Benders Cuts Reg. Benders Cuts

T(s)
No. of opt.

T(s)
No. of opt.

cuts req. cuts req.

C5 619 10 722 11
C6 1424 15 1506 16
C7 1241 11 1384 12
C8 3598 19 4157 20
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• Second, to demonstrate the e�ectiveness of SPH1, we conduct an experiment using

classes C5 and C6 solved by using BD-ODReg algorithm with and without the this

heuristic employed in its initial stage. Table 3.4 shows the results of this experiment.

SPH1 seems very e�ective since it can decrease the runtime by 42% on average. The

parameter RP-UsageThreshold is set to 0.5 since this value provided the most desir-

able results (this may require testing di�erent values for other instances). Another

interesting result of using SPH1 is that after implementing this heuristic, the initial

gap of the main BD algorithm was less than 20% for all test instances and, for most

of them, it was less than 10%.

Table 3.4: E�ectiveness of SPH1

Class

BD-ODReg BD-ODReg
(with SPH1) (w/o SPH1)

Gap% T(s) Gap% T(s)

C5 2.72 619 2.66 1105
C6 2.56 1424 2.78 2339

• Third, to evaluate the performance of cut disaggregation schema presented in Section

3.2.5, we solve the instances of four test classes using the BD algorithm by naming it

as BD-ODReg, BD-OD, BD-OReg, and BD-O to refer to the cut type employed. Table

3.5 summarizes the results of this experiment.

BD-ODReg clearly has the best performance in runtimes and the optimality gaps in

general. Among the other three algorithms, BD-OD has the best performance while

its runtime is about 150% worse than BD-ODReg over all test classes. This ratio for

BD-OReg and BD-O are 490% and 420%, respectively.

In terms of the number of adding cuts in each iteration, this amount for BD-ODReg

is about 38% of that of BD-OD for C3 and C4 and 33% for C5 and C6. Also, by
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increasing the size of the problem from C4 to C6 (C3 to C5) the number of adding

cuts grow by 24% for BD-OD, whereas this value for BD-ODReg is only 8%.

Based on these two important points mentioned above, we can say that the memory

management of BD-ODReg is signi�cantly better, especially for large-sized instances.

Although BD-Oreg and BD-O algorithms have higher runtimes than BD-ODReg, they

can improve the performance over conventional BD dramatically with relatively small

number of extra Benders cuts added in each iteration. In terms of runtime, BD-O is

faster than BD-OReg by about 13% on average, but it is adding 123% more cuts than

BD-OReg on average in each iteration.

Table 3.5: Comparing di�erent Benders cuts performance

Class

BD-ODReg BD-OD BD-Oreg BD-O

No. of
Gap% T(s)

No. of
Gap% T(s)

No. of
Gap% T(s)

No. of
Gap% T(s)Cuts Cuts Cuts Cuts

C3 3672 2.48 236 9666 2.48 377 78.4 2.80 1193 168.2 2.76 1021
C4 3672 2.54 500 9666 2.34 1671 78.4 3.58 4588 168.2 2.98 3563
C5 3959 2.72 619 11940 2.18 1685 77.2 3.22 4765 178.6 2.82 3825
C6 3959 2.56 1424 11940 2.54 3138 77.2 4.72 5908 178.6 4.12 5915

• Finally, to �nd a reasonable number of partitions that we can use to generate cuts in

BD-ODReg, we test various number of partitions using the classes C5 and C6. For this

purpose, we divide each side of the geographical area by 10, 20, and 30 resulting in 100

10×10 regions, 400 20×20 regions, and 900 30×30 regions, respectively. We compare

the performance of BD-ODReg using these di�erent number of regions in Table 3.6.

We observe that the 20 × 20 case gives the best results in terms of runtime. The

10×10 case, although gives a higher runtime by 9%, the number of cuts added in each

iteration is signi�cantly less than that of 20× 20 and 30× 30 cases. In the rest of this

study, we adopt the 20×20 case as the default case, but one can use 10×10 or another

less granular setting to manage memory more e�ciently. The 30× 30 case runtime is
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higher than two other cases due to BMP solution time since it adds a higher number

of cuts each iteration.

Table 3.6: Evaluating the e�ect of the number of regions on the performance of BD-ODReg

Class

100 10× 10 regions 400 20× 20 regions 900 30× 30 regions

Gap% T(s)
No. of

Gap% T(s)
No. of

Gap% T(s)
No. of

Cuts Cuts Cuts

C5 2.64 673 517 2.72 619 3959 2.46 1025 6927
C6 2.76 1561 517 2.56 1424 3959 2.42 2377 6927

3.3.3 Analysis on Input Parameters

In this subsection, we summarize analysis results for the three cases outlined in the

beginning of this section.

In the tables presented in this section, we use the following notation to report the results.

The number of RPs used in the �nal solution is presented in the �No. of open RPs� column.

The average �xed cost percentage of total cost for activation the RPs are given in the �Fixed

cost%� column. The �Drct. ship. cost %� and �Drct. ship. %� present direct shipment cost

percentage of total cost and the number of directly shipped commodities as a percentage of

total shipments, respectively. The �Ave. Cir. %� column shows average circuity over all TL

shipments in the �nal solution.

3.3.3.1 Regular Case - Direct Shipment without Circuity

In this base case, we consider the RP network design with direct shipments without taking

the circuity control e�ects into account. Table 3.7 shows the results of the BD algorithm

when we use ODReg cut type and B&C implemented by Cplex for di�erent test problem.

As before, �ve test instances of each class are solved and the average results are presented

for each measure.

The BD-ODReg algorithm can e�ciently solve all the instances under the stopping cri-
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teria employed, while the B&C cannot achieve this for one of the test instances in C5, four

in C6, three of Class 7 and four of Class 8. There is a signi�cant di�erence between runtime

of BD-ODReg and B&C in all test classes. Although the average gap in classes with smaller

size instances is smaller with B&C, this changes quickly and signi�cantly for large size in-

stances. For the instances that can be solved using both approaches, the average runtime

for BD-ODReg is about 15% of that of B&C, and none of these test instances can be solved

faster than BD-ODReg using B&C.

We observe that the number of RPs used in the �nal solution does not increase by

increasing number of commodities. We can conclude that for a geographical region as that

one we consider, having so many RP possible locations are not necessarily required, and

we can easily manage all the demands using a relatively small number of open RPs. The

average �xed cost percentage of the total cost is about 14% of total cost. This value is

reasonable given that the RP locations are not expected to provide services such as load

splitting, sorting, loading, etc.

The other two important measures reported are the average of direct shipment cost

percentage of total cost, and the average of the number of commodities demands satis�ed

using direct shipment. The �rst one has a value of 5.5% over all classes, and the second

one is 6.4%. Average circuity, for those commodities that use network shipment, is around

20% for all the test classes. This value shows that to implement a relay network setting to

satisfy all the demands, we only need to travel 20% more than the sum of all point to point

distances. This additional distance seems reasonable and expected in terms of transportation

companies point of view.

Table 3.8 presents more detailed routing information regarding four classes of test in-

stances, C3, C4, C5 and C6. The �rst section of this table namely "Ave. No. of RP used%"

reports the average percentage of the number of RPs visited by shipments for those com-

modities using the network to be shipped. We observe that about 40% of the commodities

utilize 3 RPs on their route to the destination. In other words, for the majority of shipments

we only need to utilize four drivers, one per leg. Also, 26% of the commodities use 4 RPs

and 8%, 14% and 10% of them use 1, 2 and 5 RPs, respectively, on average. Only less than

3% of all commodities visit more than 5 RPs while they are shipped to their destination.
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Table 3.7: Results of BD-ODreg and B&C for di�erent classes of test problems

B&C BD-ODReg

Class Gap% T(s) Gap% T(s)
No. of Fixed Drct. ship. Drct. Ave.

open RPs cost % cost% ship.% Cir.%

C1 0.96 510 2.60 142 14 11.6 7.2 8.0 24.2
C2 1.28 1398 2.46 235 14 12.0 3.8 5.2 22.0
C3 0.30 1088 2.48 236 14 14.6 4.8 5.0 17.8
C4 0.26 3471 2.54 500 14 15.0 2.4 3.6 17.4
C5 2.49 5075 2.72 619 12 13.4 7.2 8.2 22.8
C6 9.81 6634 2.56 1424 12 13.2 3.0 3.8 19.0
C7 5.38 6686 2.72 1241 14 15.8 6.8 8.8 21.0
C8 13.20 7998 2.50 3598 13.2 15.8 8.4 8.6 19.2

Table 3.8: Detailed routing information

Class
Ave. No. of RP Used % Rat. Drct. Ship.% Drct. Ship. %

1 2 3 4 5 >5 L M S L M S

C3 8.2 15.2 42.4 24.0 9.4 0.8 2.8 5.4 22.6 37.6 10.4 52.0
C4 8.2 16.0 42.8 23.2 9.0 0.2 1.2 3.4 23.2 19.2 9.6 71.2
C5 8.0 12.4 30.2 29.0 13.4 7.0 5.2 15.0 25.0 40.4 21.6 38.0
C6 8.0 12.4 39.6 27.2 9.8 2.6 1.6 8.2 20.8 22.2 23.2 54.6

The column labelled as �Rat. Drct. Ship.%� reports the average rational percentage

of each type of commodity based on distances shipped using direct shipment method. On

average, only less than 3% of long-distance commodities are shipped directly, whereas about

23% of short distance and 8% of medium distance commodities are shipped in this way.

We can conclude that direct shipment is a better choice for short distance commodities and

embedding this option to the model gives this �exibility to the model to decide not to use

network shipment whenever it is not bene�cial. We can explain this result by the relatively

low cost of direct shipment for short distance, as opposed to following a longer route via

the RPs. The column "Drct. Ship.%" shows the average percentage of di�erent types of

commodities (L,M, and S) in total directly shipped ones. On average over test classes, of all

the direct shipments, about 30%, 16% and 54% are from long, medium and short distance

commodities, respectively. This con�rms that the interest of the system in transporting
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short distance shipments directly is higher than that of long-distance ones.

In order to perform a sensitivity analysis on our BD algorithm, we change the parameters

of the test problems, one input parameter at a time, and solve them again. These changes

are done in three directions. In the S1 case, we increase the (∆1, ∆2) values to (25, 50).

Increasing these parameters will increase the size of the problem dramatically with the

increasing number of possible routes to deliver the demands. The second case, S2, is about

increasing the density D to 35%and thus increasing the number of commodities. Having a

higher number of commodities to be delivered will also increase the size of the instances.

Finally, in S3, we change the values for triplet (L,M, S) as (60, 20, 20), while maintaining all

the nodes locations of the instances the same as the original ones. This change would vary

the nature of the commodities and optimal routes and consequently change RP locations.

Table 3.9 presents the results of this analyses.

In S1, the runtime increases for C5 by 19% and C6 by 113% when we use BD-ODReg

to solve the problems. All the test instances of these two classes are solved and the average

gap is similar to the DS-NC case. The S1 case in�uences B&C more; only one of the test

instances is solvable in C5 and none of the instances in C6 is solvable using B&C. The main

reason for this is that increasing the ∆ values increases the potential routes through the RPs

dramatically. That's why the e�ect of this change is more pronounced for C6.

Similarly, in S2 case, increasing density increases the size of the problem and conse-

quently, the runtimes. The runtime of BD-ODReg increases by 18% and 61% for C5 and C6,

respectively. All the test instances in these two class can be e�ciently solved by BD-ODReg,

but one of them in C5 and two in C6 cannot be solved using B&C.

The results for S3 are interesting because the runtime decreases for C5 by 22% and

increases for C6 by 62%. Generally, we can say that changing the grouping of commodities

can change the runtime specially when we increase the number of potential RP locations. We

can see the same behavior when we use B&C to solve these problems. All the test problems

can be solved by BD-ODReg, but two of C5 and four of C6 are not solvable by B&C.
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Table 3.9: Results of sensitivity analysis for the DS-NC case

Class

S1: (∆1, ∆2)=(25,50) S2: D=35% S3: (L,M,S)=(60,20,20)

BD-ODReg B&C BD-ODReg B&C BD-ODReg B&C

Gap T(s) Gap% T(s) Gap T(s) Gap% T(s) Gap T(s) Gap% T(s)

C5 2.26 735 16.58 6724 2.66 734 1.9 5025 2.38 485 2.54 4774
C6 2.56 3036 27.38 7821 2.54 2294 7.44 6711 2.58 2309 13.86 6658

3.3.3.2 Direct Shipments with Circuity Case

In this subsection, we examine the performance of our BD-ODReg algorithm by also

considering the circuity constraint (3.6). We vary the circuity parameter Ω to investigate

its e�ect on the runtimes and optimal solution characteristics. Speci�cally, we tighten the

associated constraint by changing Ω values as 1, 0.5 and 0.25 with results reported in Table

3.10 for two classes, C5 and C6, of test problems solved with BD-ODReg and B&C.

Table 3.10: Results of solving the model considering the circuity constraint

Class Ω

B&C BD-ODReg

Gap% T(s) Gap% T(s)
No. of Fixed Drct. ship. Drct. Ave.

open RPs cost % cost % ship. % Cir.%

C5
1.00

4.00 5284 2.46 498 11.2 11.8 7.6 9.2 21.4
C6 13.04 6784 2.58 1336 12.0 13.2 3.4 5.6 18.4

C5
0.50

6.88 5213 2.64 543 10.8 11.2 15.0 16.6 18.8
C6 9.94 6735 2.10 1445 11.4 12.4 6.6 8.8 15.6

C5
0.25

3.45 6262 2.36 1052 12.2 12.2 40.8 36.6 11.6
C6 12.75 7243 2.88 2902 11.2 11.8 33.2 30.0 10.8

Tightening the Ω does not have a signi�cant e�ect on the runtime of the BD-ODReg

when Ω is changed from 1 or 0.5 for our problem instances in general. However, once Ω is

set to 0.25, we see a notable e�ect in runtime which increases by 87% on average. Other

impacts of this change include changes in direct shipment percentage and direct shipment

cost percentage that are signi�cantly higher than the Ω = 1 case due to more TLS being
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transferred as direct shipment under limiting circuity allowance.

This can be explained by observing that, in Table 3.7, the average circuity for all the

test instances in C5 and C6 is about 20% while it contains commodities that may follow

signi�cantly circuitous routes to avoid costly direct shipments. Setting the Ω level (worst-

case circuity level) to a level close or less than the basic average circuity changes routings of

TLs in a way that more commodities are shipped directly which, in turn, lead to decreased

number of RPs used and lower average circuity for network shipped commodities. In terms

of the runtimes, B&C runtime is a�ected more negatively than BD-ODReg by the reduced

changing the Ω level, especially for C6.

To further investigate the impact of Ω on the algorithmic performance under varying

input parameters, we present a sensitivity analysis on a number of parameters similar to

what we did in the DS-NC case with parameter groups S1, S2, and S3 as reported in Table

3.9. The results presented in Table 3.11 de�nitely align with the interpretations previously

discussed in Table 3.9.

Table 3.11: The results of sensitivity analysis on the model with circuity constraint (DS-C
case)

Class Ω

S1: (∆1, ∆2)=(25,50) S2: D=35% S3: (L,M,S)=(60,20,20)

BD-ODReg B&C BD-ODReg B&C BD-ODReg B&C

Gap% T(s) Gap% T(s) Gap% T(s) Gap% T(s) Gap% T(s) Gap% T(s)

C5
1.00

2.52 1026 21.24 6773 2.45 611 3.06 5007 2.10 577 2.56 4883
C6 2.66 2308 27.34 7972 2.46 1682 8.60 6932 2.38 1795 13.84 6790

C5
0.50

2.50 1226 20.60 7088 2.30 611 6.78 5383 2.66 616 6.56 5378
C6 2.64 2801 27.26 7783 2.50 1906 9.58 7660 2.68 2329 11.50 7292

C5
0.25

2.52 2347 19.86 6993 2.32 759 4.04 5385 2.32 1135 6.32 6327
C6 3.00 5091 25.58 7670 2.80 3413 9.12 7644 2.84 3419 13.94 7586

44



3.3.3.3 No Direct Shipment, No Circuity Case

To evaluate the performance of the proposed BD-ODReg, when the direct shipment is

not allowed, we design a di�erent experiment. To do so, we implement the proposed BD-

RDReg on four classes of test problems. In Step 2 of Algorithm 3, we utilize SPH2. Having

surrogate constraint may increase the memory usage, thus we pick four smallest classes of

test instances. Table 3.12 demonstrate the results of our implementation when we do not

have direct shipment possibility.

Table 3.12: Results of solving the model without direct shipment

Class

B&C BD-ODReg BD-ODReg (without SPH2)

Gap% T(s) Gap% T(s)
No. of No. of Fixed

Gap% T(s)
No. of

Feas Cuts open RPs cost % Feas Cuts

C1 0.94 907 2.64 160 0.2 11.6 11.2 2.68 313 2.0
C2 0.88 1303 2.40 393 0.8 14.0 12.0 2.06 644 2.6
C3 1.33 1350 2.72 359 0.2 13.6 14.4 2.11 483 1.4
C4 1.50 2089 2.60 641 0.2 13.6 14.4 2.33 1720 1.8

First, we compare the results of BD-ODReg and B&C implemented by Cplex. Consid-

ering the stopping criteria, BD-ODReg can solve all the tested instances in an interestingly

shorter time. The runtime of BD-ODReg is about 27% of the runtime of B&C. In the column

"No. of Feas. Cuts" we show the average of feasibility cuts used to solve the problem. As

can be seen, on average we only need 0.35 feasibility cuts to solve a test instance implying

we do not need so many feasibility cuts to solve such problems. This happens because of

the surrogate constraint used. We can conclude that the proposed surrogate constraints, not

only are easy to use but also they can almost guarantee the feasibility of BPSP. The runtime

of the algorithm without surrogates is high, because of having so many feasibility cuts, so

we do not report it. The number of open RPs and �xed cost percentage in the �nal solution

are almost similar to what we reported in Table 3.7. Also, to evaluate the performance of

SPH2 we compare the result of BD-ODReg with and without this heuristic (but with the

surrogate constraints). As it is obvious, SPH2 performs well in terms of reducing the runtime
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and decreasing the number of required feasibility cuts to solve the instances. On average,

the runtime of the algorithm with SPH2 is about 49% of its runtime without this heuristic.

Also, the number of needed feasibility cuts decrease from 1.95 to 0.35 when we use SPH2,

which is helpful to solve the instances in a shorter time.

3.4 Conclusion

In this study, we suggest utilizing the relay points through designing a well-structured

relay network to alleviate the high driver turn over rate issue in the truckload transporta-

tion industry properly. To do so, we consider the design of a relay network having two

new assumptions, parallel shipment and multiple assignments generalizing the problem and

decreasing the overall cost. Giving the chance of using direct shipment method to a number

of commodities, which shipping them through the network impose an extremely higher cost

to the system, would decrease the �nal cost of transportation. Also, considering direct and

network shipment options, concurrently, increase the �exibility of the system in terms of

meeting the promise dates and managing the overall traveled distances. On the other hand,

allocating the non-RPs to RPs on a commodity-based system can decrease the total cost by

optimizing the total traveling distances, and results in a well-structured network.

We propose a mixed-integer programming formulation for the problem and devise an

e�cient solution approach based on Benders decomposition. Because of ine�ciencies in

the conventional Benders' decomposition to solve the proposed model, we employ several

algorithmic improvements. In this regard, we propose an e�ective cut disaggregation scheme

(ODReg), incorporate strengthened Benders' cuts, suggest a number of surrogate constraints

bene�ting the integrality property and stepwise early termination of Benders master problem,

and devise a shortest path based heuristic to embed a number of initial cuts and tighten

starting bounds. Our computational studies show that the performance of the proposed

approach is very good for di�erent sizes of instances such that on average its runtime is less

than that of B&C, implemented by Cplex, by about 85% for those test instances which are

solvable by both Cplex and proposed algorithm. It should be noted that more than 70% of

large size instances are not solvable by Cplex. Also, our algorithm's memory management

is e�ective such that it can manage the memory to solve the large size instances properly.
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We assess the problem and the algorithm in three di�erent cases, the DS-NC case de-

picting the situation that we disregard the circuity constraint, the DS-C case considering

the problem with circuity constraint, and NDS-NC case representing the problem without

direct shipment option to ship the commodities. We also examine various problem and

algorithm parameters on the algorithmic performance and solution characteristics for dif-

ferent cases. The inputs including local and lane tour lengths, distance distribution of the

commodities by di�erentiating the mix of long-medium-short coe�cients, the density of the

positive demands, also for �with circuity� case, the circuity allowable level.

In the context of network characteristics, we show that we can easily satisfy all the

demands using a relatively small number of open RPs. The other two important measures

reported are the average of direct shipment cost percentage of total cost and the average of

the number of commodities demands satis�ed using direct shipment. The average of the �rst

index for all classes is 5.5% and for the second one is 6.4%. These two values demonstrate that

although the direct shipment method can be used to facilitate the �nal routes of satisfying

the demands, the model tries to meet the demands through the network shipment as much as

possible to have a lower �nal cost. Using the direct shipment method causes increasing the

total cost of the system implicitly because of its e�ect on increasing the driver turnover rate

(we quantify and embed it to the per-unit direct shipment cost parameter). In this regard,

we show that the majority of the commodities shipped using direct shipment approach are a

type of short-distance commodities. Average circuity, for those commodities that use network

shipment, is around 20% for all the test classes. This value shows that to implement a relay

network setting to satisfy all the demands, on average, we only need to travel 20% more

than the sum of all point to point distances. In this respect, we show that the majority of

these commodities only visit three RPs to reach to their destinations. In other words, for

the majority of shipments, we only need to utilize four di�erent drivers. It should be noted

that a relatively small group of commodities visit more than �ve RPs on their way to the

destination.
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Chapter 4

A Progressive Hedging-Strengthened L-Shaped Method for Relay Network Design Problem

Under Uncertainty (P2)

In the truckload transportation industry, having uncertainty in the network's demands

is inevitable. To address this situation, we should investigate designing the RP-network

under uncertainty in commodities' demand. We use the two-stage stochastic programming

approach to model the RP-network designing problem in this situation. The setting of our

problem of interest builds on the deterministic RP-network design problem addressed in

the previous chapter. In this chapter, we extend this model by considering uncertainty in

commodities' demands. We build a two-stage stochastic programming model in which the

�rst stage corresponds to design decisions which are optimal locations of the RPs and the

second stage addresses �nding the optimal solutions for a set of commodity routing problems

each corresponding to a scenario generated to capture the uncertainty in demand. In other

words, in our two-stage stochastic program, we address design decisions, which should be

made here and now, in the �rst stage, and the decisions after realization of uncertainties, in

the second stage. Also, we suggest an exact solution approach to solve the problem e�ciently,

specially for large size instances.

4.1 Problem De�nition and the Model

The underlying setting of the problem follows from the one introduced in the previous

chapter. Thus, below we discuss uncertainty representation for out problem in more detail

building on the existing setting.

4.1.1 Uncertainty Representation

The decisions about the locations of the RPs are typically made at a point in time when

the commodities' demands are not known with certainty. We consider this context in the

problem formulation presented in Section 4.1.2 by letting each demand to be a random
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variable. On the other hand, the routing and assigning decisions can be made after real-

izing the actual demands. To have the described environment called two-stage stochastic

programming (2-SP) we consider the following assumptions about the random variable ω̃,

representing the random demand.

ASSUMPTION 1. The random variable ω̃ has a discrete distribution (with a �nite support),

say {ω1, ..., ωS}, with probabilities Pr(ω̃ = ω1) = p1, ... , Pr(ω̃ = ωS) = pS.

There is a realization of random demand w(ωs) corresponding to each scenario ωs. To

have this, we consider a set of random demand scenarios, each of which represents a special

behaviour of the system. For the sake of simplicity, we show w(ωs) by ws.

4.1.2 Mathematical Model

Before developing a 2-SP for the problem, we �rst introduce the notation and the decision

variables.

Sets:

N set of commodity origin/destination nodes, i, j ∈ N

R set of potential RP nodes, k, l ∈ R

Q set of commodities, [i, j] ∈ Q

S set of scenarios, s ∈ S

Parameters:

w̃ij random variable for total demand for commodity [i, j]

wsij total demand for commodity [i, j] for scenario s, a realization of w̃ij

ps probability of occurrence of scenario s

dkl distance between node k and node l

t1 transportation cost between RPs and non-RP nodes per-unit demand per-unit distance

t2 transportation cost between two RPs per-unit demand per-unit distance

t3 transportation cost between two non-RPs per-unit demand per-unit distance

fk �xed cost of locating an RP at node k ∈ N
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∆1 allowable distance between a non-RP node and an RP

∆2 allowable distance between two RP nodes

Decision Variables:

xklsij 1 if node i is assigned to the RP at node k and node j is assigned to the RP at node l

to ship commodity [i, j] ∈ Q using the RP network, for scenario s; i, j ∈ N

yklsij 1 if commodity [i, j] ∈ Q uses the arc (k, l); k, l ∈ R, for scenario s; i, j ∈ N

zsij 1 if commodity [i, j] ∈ Q shipped directly from node i to node j, for scenario s; i, j ∈ N

hk 1 if RP k, k ∈ R is used, 0 otherwise

In our 2-SP, the �rst-stage or here-and-now decisions, which to be made before realiz-

ing the uncertainty, address the design characteristics of network and the second-stage or

wait-and-see decisions, which to be made after resolving the uncertainty through realization

of a certain scenario, determine the origins/destinations-to-RPs assignments and routing

information. The 2-SP aims to �nd a �rst stage solution which has the best performance

over average of all scenarios. This is achieved by minimizing the total cost containing the

RPs �xed cost and expected cost of transportation. First, we show the overall model in a

deterministic equivalent form as follows.

[DEF]

Min
∑
k

fkhk +
∑
s

ps(
∑
i

∑
j

∑
k

∑
l

t1(dik + djl)w
s
ijx

kls
ij +

∑
i

∑
j

∑
k

∑
l

t2dklw
s
ijy

kls
ij

+
∑
i

∑
j

t3dijw
s
ijz

s
ij) (4.1)
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subject to∑
m∈R
m 6=k

ymksij +
∑
m∈R
m6=k

xkmsij =
∑
m∈R
m6=k

ykmsij +
∑
m∈R
m 6=k

xmksij ∀ [i, j] ∈ Q, k ∈ R, s ∈ S (4.2)

zsij +
∑
k∈R

∑
l∈R

xklsij = 1 ∀ [i, j] ∈ Q, s ∈ S (4.3)

xklsij ≤ hk ∀ [i, j] ∈ Q, ∀ k, l ∈ R, s ∈ S (4.4)

yklsij ≤ hl ∀[i, j] ∈ Q, ∀ k, l ∈ R, k 6= l, s ∈ S (4.5)

xklsij ≥ 0 ∀ [i, j] ∈ Q, ∀ k, l ∈ R, s ∈ S (4.6)

yklsij ≥ 0 ∀ [i, j] ∈ Q,∀ k, l ∈ R, k 6= l, s ∈ S (4.7)

zsij ≥ 0 ∀ [i, j] ∈ Q, s ∈ S (4.8)

hk ∈ {0, 1} ∀ k ∈ R (4.9)

The �rst term of the objective function measures the total �xed costs associated with

locating the RPs. The second part represents the expected value of all transportation costs of

all the scenarios in which the �rst part is for transportation between origin/destination nodes

and RPs, the second term for between RPs transportation and the last one for direct shipment

costs. Constraints (4.2) are the �ow conservation constraints for each node, commodity and

scenario. Constraints (4.3) guarantee that the TLs are sent through the relay network or

direct shipment to satisfy the demands. Constraint sets (4.4) and (4.5) are the linking

constraints and ensure activating the required RPs. Constraints (4.6) to (4.8) originally

enforce the x, y, and z to be binary. However, as we discussed in Section 3.1.1, the model

has the integrality property since we do not consider any capacity limitation on the links of

the network, hence these variables will be integral with values 0 or 1, and the model can be

solved as a mixed-integer program (MIP). Constraints (4.9) consider the binary requirement

of the variable h. Also, we present the proposed model in a two-stage stochastic program

separated form, which we call SMnP, as follows.
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[SMnP] Min
∑
k

(fkhk) + E[Q(h, w̃)] (4.10)

subject to

hk ∈ {0, 1} ∀ k ∈ R. (4.11)

where recourse Q(h,ws) for a particular realization s ∈ S is the optimal solution of the

following linear program:

Q(h,ws) = Min
∑

[i,j]∈Q

∑
k

∑
l

t1(dik + djl)w
s
ijx

kls
ij +

∑
[i,j]∈Q

∑
k

∑
l

t2dklw
s
ijy

kls
ij

+
∑

[i,j]∈Q

t3dijw
s
ijz

s
ij (4.12)

subject to

∑
m∈R
m6=k

ymksij +
∑
m∈R
m 6=k

xkmsij =
∑
m∈R
m 6=k

ykmsij +
∑
m∈R
m6=k

xmksij ∀ [i, j] ∈ Q, k ∈ R (4.13)

zsij +
∑
k∈R

∑
l∈R

xklsij = 1 ∀ [i, j] ∈ Q (4.14)

xklsij ≤ hk ∀ [i, j] ∈ Q, ∀ k, l ∈ R (4.15)

yklsij ≤ hl ∀ [i, j] ∈ Q, ∀ k, l ∈ R, k 6= l (4.16)

xklsij ≥ 0 ∀ [i, j] ∈ Q, ∀ k, l ∈ R (4.17)

yklsij ≥ 0 ∀ [i, j] ∈ Q, ∀k, l ∈ R, k 6= l (4.18)

zsij ≥ 0 ∀ [i, j] ∈ Q (4.19)

and E[Q(h, w̃)] which also can be shown by Q(h) is the expected value function o�ering the

expectation of recourse with respect to random demand. The proposed recourse function

satisfy the �xed and complete recourse assumptions.
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4.2 Solution Approach

To solve the proposed model(SMnP), we devise an exact solution method based on BD

algorithm widely known as the L-shaped method ( [51]) in the context of stochastic pro-

gramming. The BD algorithm decomposes the overall model into a master problem and a

subproblem which are solved iteratively. In the stochastic programming context the master

problem is considered as the �rst-stage problem (FSP) and subproblem as the second-stage

problem (SSP). Although the BD is an e�ective solution method to solve MILP problems, it

can not guarantee runtime e�ciency to solve the problem. To address this issue, we suggest

a number of enhancing schemes that can improve the performance of the BD. Among the

reasons of runtime ine�ciency, we can say that the BD does not have a procedure to solve

the tie in selecting the best cut among a set of cuts generated in each iteration to be added

to the master problem. In this study, we discuss and employ cut an strengthening technique

to decrease the number of required BD optimalily cuts and solution time. Also, we o�er

two di�erent types of disaggregation techniques to improve the bounds of algorithm faster.

We suggest using the Progressive Hedging algorithm to generate initial information for L-

shaped method, which as we show, is very e�ective approach. The mentioned methods with

a number of unique enhancing techniques such as considering mean-value lower bounding

and shortest path cuts are discussed in the current section. First, we explain the L-shaped

method's main concepts.

4.2.1 L-shaped Primal/Dual Subproblem (PLSSP/DLSSP)

The L-shaped is a scenario decomposition technique which means it solves several smaller

subproblem (for each scenario) and combines their results, instead of solving one huge sub-

problem for all scenarios. Given the locations of RPs, we can write the primal L-shaped

subproblem or second stage primal problem for any s ∈ S as the model below.

Min
∑

[i,j]∈Q

∑
k

∑
l

t1(dik + djl)w
s
ijx

kls
ij +

∑
[i,j]∈Q

∑
k

∑
l

t2dklw
s
ijy

kls
ij +

∑
[i,j]∈Q

t3dijw
s
ijz

s
ij (4.20)
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subject to

(4.13), (4.14), (4.17), (4.18), and (4.19)

xklsij ≤ ĥk ∀ [i, j] ∈ Q, ∀ k, l ∈ R (4.21)

yklsij ≤ ĥl ∀ [i, j] ∈ Q, ∀ k, l ∈ R, k 6= l (4.22)

where ĥk is the �rst stage variable value for any k ∈ R. De�ning the dual variables

q1
k
ij, q2ij, q3

kl
ij , and q4

kl
ij for constraints (4.13), (4.14), (4.21), and (4.22), respectively, we

formulate the L-shaped dual subproblem or second stage dual problem for any s ∈ S as the

following model.

Max
∑
i∈N

∑
j∈N

∑
k∈R

∑
l∈R

(ĥkq3
kls
ij + ĥlq4

kls
ij ) +

∑
i∈N

∑
j∈N

q2
s
ij (4.23)

subject to

q1
ks
ij − q1lsij + q2

s
ij + q3

kls
ij ≤ t1(dik + dlj)w

s
ij ∀ [i, j] ∈ Q, ∀ k, l ∈ R (4.24)

q1
ls
ij − q1ksij + q4

kls
ij ≤ t2dklw

s
ij ∀ [i, j] ∈ Q, ∀ k, l ∈ R, k 6= l (4.25)

q2
s
ij ≤ t3dijw

s
ij ∀ [i, j] ∈ Q (4.26)

q3
kls
ij ≤ 0 ∀ [i, j] ∈ Q, ∀ k, l ∈ R (4.27)

q4
kls
ij ≤ 0, ∀ [i, j] ∈ Q, ∀ k, l ∈ R, k 6= l. (4.28)
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4.2.2 L-shaped Master Problem (LSMP)

We formulate the master problem LSMPm for any iteration m of the L-shaped method

as the following model

[LSMP] Min
∑
k

fkhk + η̃ (4.29)

subject to

BCutSet(η̃)m ∀ m ∈ Om (4.30)

(4.11),

where the η̃ is a general term used to represent the auxiliary variable or a combination

of auxiliary variables de�ned to facilitate the communication between L-shaped master and

subproblem/s. Also the BCutSet(η̃)m represents the Benders cut or cut set added at iteration

m and Om is the set of all L-shaped iterations from 1 to m. As it is obvious, the number

and format of the optimality cut or cut set are the functions of η̃. We discuss the di�erent

versions of η̃ creating di�erent versions of L-shaped method in Section 4.2.3.3.

4.2.3 Enhancing the L-shaped method

The L-shaped method is e�cient in decomposing the overall problem into a set of smaller

problems, solved e�ectively, but it cannot guarantee having a reasonable runtime for di�erent

problems. To have a desired runtime for our problem we suggest and implement a number of

improving approaches which we show that they can enhance the performance of the L-shaped

and reduce its runtime dramatically.

4.2.3.1 Strengthening the Benders' cuts

As we mentioned before, the subproblem, for any scenario, has network �ow problem

structure having degeneracy. Therefore, the DLSSP for any scenario has multiple optimal

solutions, each of which provides a di�erent cut with di�erent strength in terms of cutting

o� the LSMP feasible area. This is important since by picking a proper optimal solution

of DLSSP for any scenario in each iteration of the algorithm, we can generate stronger

Benders' cut and accelerate the algorithm. As we stated earlier, for an optimization problem
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Miny∈Y,z∈R{z : f(u) + yg(u) ≤ z, ∀u ∈ U}, [48] introduce the concept of strongness of a

cut as follows. The cut f(u0) + yg(u0) ≤ z is stronger than the cut f(u1) + yg(u1) ≤ z if

f(u0) + yg(u0) ≥ f(u1) + yg(u1) ∀y ∈ Y with a strict inequality for at least one y ∈ Y .

Similar to our �rst work, but in a stochastic setting, to build a strengthened Benders cut,

we use a technique similar to the two-phase approach presented by [49] and utilized by [50].

For any scenario of our problem, we can observe that the dual values associated with ĥk with

a zero value, in an iteration of the algorithm, do not have any contribution in the optimal

objective value of DLSSP for any scenario of the problem. Hence, it is possible to modify

the coe�cient of a ĥk = 0 (ĥl = 0), that is q3klsij (q4klsij ), without any e�ect on the DLSSPs

objective function value, for any scenario s ∈ S. To do so, �rst we solve the reduced DLSSPs

to attain the dual variable values (q3
kls
ij and q4

kls
ij ) associated with open RPs (ĥk = 1 and

ĥl = 1), and the optimal values for q1ksij and q2sij ∀ [i, j] ∈ Q, ∀ k ∈ R, and ∀ s ∈ S as well.

To generate these problems, we de�ne G as the set of open RPs in each iteration, and by

solving the following problems we can have the mentioned values.

[Reduced DLSSPs] Max
∑
i∈N

∑
j∈N

∑
k∈G

∑
l∈G

(ĥkq3
kls
ij + ĥlq4

kls
ij ) +

∑
i∈N

∑
j∈N

q2
s
ij (4.31)

subject to

q1
ks
ij − q1lsij + q2

s
ij + q3

kls
ij ≤ t1(dik + dlj)wij ∀ [i, j] ∈ Q, ∀ k, l ∈ G (4.32)

q1
ls
ij − q1ksij + q4

kls
ij ≤ t2dklwij, ∀ [i, j] ∈ Q, ∀ k, l ∈ G, k 6= l (4.33)

q2
s
ij ≤ t3dijwij, ∀ [i, j] ∈ Q (4.34)

q3
kls
ij ≤ 0 ∀ [i, j] ∈ Q, ∀ k, l ∈ R (4.35)

q4
kls
ij ,≤ 0, ∀ [i, j] ∈ Q, ∀ k, l ∈ G, k 6= l. (4.36)

Let G ′ = R\G. Then, in the second phase, solving the following model ∀s ∈ S results a

set of dual variable values (associated with ĥk = 0, ĥl = 0 ∀k, l ∈ G ′) utilized to generate

strengthened Benders cut.
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Max
∑
i∈N

∑
j∈N

∑
k∈G′

∑
l∈G′

(q3
kls
ij + q4

kls
ij ) (4.37)

subject to

q̂1
ks
ij − q̂1lsij + q̂2

s
ij + q3

kls
ij ≤ t1(dik + dlj)wij ∀ [i, j] ∈ Q, ∀ k, l ∈ G ′ (4.38)

q̂1
ls
ij − q̂1ksij + q4

kls
ij ≤ t2dklwij, ∀ [i, j] ∈ Q, ∀ k, l ∈ G ′, k 6= l (4.39)

q3
kls
ij ≤ 0, ∀ [i, j] ∈ Q, ∀ k, l ∈ G ′, k 6= l (4.40)

q4
kls
ij ≤ 0, ∀ [i, j] ∈ Q, ∀ k, l ∈ G ′, k 6= l. (4.41)

The optimal solution of the second phase problem can be attained by using the following

approach without actually solving it as a linear program. We can rewrite Constraint (4.38) as

q3
kls
ij ≤ δklsij where δklsij = t1(dik+dlj)wij−(q̂1

ks
ij − q̂1lsij+ q̂2

s
ij), ∀ [i, j] ∈ Q, ∀ k, l ∈ G ′, ∀s ∈ S.

Thus, the optimal value of q3klsij can found using the following equation

q3
kls
ij =

 δklsij if δklsij < 0

0 otherwise
, ∀ [i, j] ∈ Q, ∀ k, l ∈ G ′.

The optimal value of q4klsij is achievable in a similar way described above utilizing Constraint

(4.39).

4.2.3.2 Problem-based cut disaggregation

The subproblem is separable and we can separate the model to |Q| independent shortest

path problems. This property enables us to generate more than one cut considered in each

iteration of the L-shaped for each scenario. In this study, we use the ODReg cut disaggrega-

tion method introduced in previous chapter for RP-network design problem in deterministic

environment, modi�ed to be used in stochastic setting. We disaggregate Benders optimal-

ity cut based on origin and destination regions of the commodities. This disaggregation

technique performs well in solving uncapacitated network problems.
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ODReg cut disaggregation method works based on clustering the commodities regarding

their origin and destination regions. To have this, we separate the geographical area into a

number of equal-sized rectangles (regions) and generate one cut for commodities originating

in and destined to the same regions(i.e., we generate one cut for all commodities originating

in Region O and destined to Regions D). By de�ning REGOD as the set of all region pair

O and D that at least one commodity originates in O and destined to D, and COD as the

set of commodities associated with region pair O and D. These cuts for single scenario for

s ∈ S can be written as

ηsrOD
≥

∑
[i,j]∈COD

∑
k∈R

∑
l∈R

(hkq3
kls
ij + hlq4

kls
ij ) +

∑
[i,j]∈COD

q2
s
ij ∀ rOD ∈ REGOD. (4.42)

4.2.3.3 Scenario decomposition-based cut generation

The L-shaped method is one of the scenario decomposition methods which can decompose

the second-stage problem to a set of smaller problem of size |S|. Utilizing this property of L-

shaped, we can generate di�erent versions of it with di�erent characteristics. In this section,

we �rst introduce two basic versions of L-shaped method. Afterwards, we propose a scenario

categorization scheme which can be used to build a new version of L-shaped.

The conventional single-cut version of L-shaped method suggests adding one cut in each

iteration of the algorithm generated using a combination of all a�ne functions suggested by

recourse function for each scenario. These a�ne functions are the same as the optimalily cut

in the deterministic Benders decomposition framework. The form of this cut is as follows

ηrOD
≥
∑
s∈S

ps(
∑

[i,j]∈COD

∑
k

∑
l

hkq̂3
kls
ij + hlq̂4

kls
ij +

∑
[i,j]∈COD

q̂2
s
ij) ∀ rOD ∈ REGOD (4.43)

which by replacing it by constraint set (4.29) in LSMP we can have the single-cut L-shaped

method. In this case, the term η̃ in Function (4.29) should be replaced by
∑

rOD∈REGOD
ηrOD

.

Having a unique a�ne function or optimality cut for each scenarios gives the opportunity

of adding all of them to the master problem in each iteration. Doing so, we build the multi-

cut version of L-shaped method. In this case, we should substitute the following constraint
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for Set (4.30).

ηsrOD
≥

∑
[i,j]∈COD

∑
k

∑
l

hkq̂3
kls
ij + hlq̂4

kls
ij +

∑
[i,j]∈COD

q̂2
s
ij ∀ rOD ∈ REGOD,∀s ∈ S (4.44)

Also, the term η̃ in the SMP objective function should be changed to
∑

rOD∈REGOD

∑
s∈S p

sηsrOD
.

These two approaches have e�ciencies and de�ciencies. The multi-cut version by adding

a large number of cuts in each iteration generate a tighter bound for the overall problem,

because it has more information about the recourse problem. But adding |S| per iteration

implies that the master problem size grows faster. This is more critical when a large number

of scenarios should be considered. Hence, using this approach, in spite of having a lower

number of iterations, we may have a longer runtime. On the other hand, adding one cut

in each iteration although does not increase the size of master problem tremendously, the

underlying master problem cannot generate strong lower bound in the initial iterations of the

algorithm, and it typically needs more iterations than multi-cut version. A good trade-o�

between these two approaches can decrease the overall runtime.

In this study, we suggest a scenario categorization scheme which can be utilized to add

more than one cut in each iteration to address the trade-o� mentioned. In this approach

we cluster the scenarios into three or more categories based on the their demand values. It

can be done by de�ning three or more non-overlapping intervals and assign all the scenarios

to them. It is possible to add one cut for each scenario category. We modify the master

problem by de�ning SC as the set of scenarios categories and replacing the constraint set

(4.30) by

ηcrOD
≥
∑
sc∈c

psc(
∑

[i,j]∈COD

∑
k

∑
l

hkq̂3
klsc
ij + hlq̂4

klsc
ij

+
∑

[i,j]∈COD

q̂2
sc
ij ) ∀ rOD ∈ REGOD,∀c ∈ SC (4.45)

and changing the term η̃ to
∑

rOD∈REGOD

∑
c∈SC p

cηcrOD
, where psc is the probability of

scenario s in the category c ∈ SC. We show that adding these scenario category-based

(SC-based) cuts can improve the performance of the L-shaped method for our problem.
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Considering this type of cut for the L-shaped method forms a new version of L-shaped which

we call it "SC-based cut L-shaped".

4.2.3.4 Mean value lower bounding cut

Based on Jensen inequality, it can be easily shown that for any convex recourse function

the mean value scenario can generate a valid lower bound for the recourse for any feasible

�rst stage solution. This concept can be used to develop a cut called mean value lower

bounding cut which can be added to the BMP in each iteration of L-shaped to tighten the

lower bound of the problem ( [52]; [53]).

Proposition 1: Suppose ĥ and Q(ĥ, ω̄) represent a feasible �rst stage solution and

corresponding recourse value for mean value scenario and ω̄c is the mean value scenario for

scenario category c, the following inequalities are valid

η ≥ Q(ĥ, ω̄), (4.46)∑
s∈S

psηs ≥ Q(ĥ, ω̄), (4.47)

ηc ≥ Q(ĥ, ω̄c), ∀c ∈ SC (4.48)

for single-cut, multi-cut and category-cut L-shaped, respectively.

Proof. Our problem has complete recourse and the recourse function Q is bounded.

According to Jensen inequality ( [54]) we can write

Q(ĥ) ≥ Q(ĥ, ω̄) (4.49)

Qc(ĥ) ≥ Q(ĥ, ω̄c) ∀c ∈ SC (4.50)

where Qc(ĥ) is expected recourse function for scenario category c. Also, regarding our dis-

cussion in Section 4.2.3.3, for any �rst-stage solution ĥ we can write the following inequalities
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(in the closed format used above)

η ≥Q(ĥ) (4.51)∑
s∈S

psηs ≥Q(ĥ) (4.52)

ηc ≥Qc(ĥ), ∀c ∈ SC. (4.53)

The Inequality (4.52) is attained by taking expectation of the both sides of the ηs ≥ Q(ĥ, ws)

over all the scenarios in S. Therefore, (4.46) follows from (4.49) and (4.51), the (4.47) follows

from (4.49) and (4.52), and (4.48) is deduced from (4.50) and (4.53). We show the e�ect of

adding these cuts to the problem for three di�erent versions of L-shaped method.

4.2.3.5 Early termination of LSMP

In the conventional L-shaped implementations, the master problem is solved to optimal-

ity for all the iterations of the algorithm. For some problems, reaching to an optimal solution

is time-consuming, since the convergence rate of the IP solution approaches gets slower by

getting closer to optimality, specially for large-size master problems. In this study, similar

to our suggestion in the previous chapter, we suggest a step-wise LSMP early termination

approach which can mitigate the long LSMP solution time issue in the L-shaped implemen-

tation. Using this approach, we terminate the LSMP solution process upon reaching to a

predetermined optimality gap level. In this case, the lower bound of the LSMP is considered

as the lower bound and the last incumbent solution found is used to calculate the upper

bound for L-shaped. This approach can expedite the overall L-shaped algorithm dramat-

ically by adding the Benders cuts faster, although the quality of these cuts may be lower

than the original ones.

We perform this approach in a step-wise manner in such a way that we consider di�erent

levels of acceptable gap percentage for di�erent iterations of LSMP. To do so, we start the

algorithm with a large value of this level and we decrease it gradually to a smaller value for the

later iterations. In this way, the optimality cuts can be added faster in the initial iterations

of the L-shaped and the lower bound is increased sooner. Based on our experiments, we

suggest this gap level percentage equal to 9% for initial iteration of L-shaped and 4%, 3%,
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2%, 1% for second, third, fourth, �fth iterations, respectively, and �nally 0.5% for sixth and

onward.

4.2.4 A New Progressive Hedging (PH) for SMIP

In this section, we present a new version of Progressive Hedging (PH) to warm-start our

L-shaped method and improve its performance. If we solve the single scenario problem for

scenario s, we will get a ĥ vector (the RP location decision vector) which is unique for this

speci�c scenario. The single scenario problem for any scenario s ∈ S can be written as

follows:

[MnPs] Min
∑
k

fkhk+
∑

[i,j]∈Q

∑
k

∑
l

t1(dik + djl)w
s
ijx

kls
ij

+
∑

[i,j]∈Q

∑
k

∑
l

t2dklw
s
ijy

kls
ij +

∑
[i,j]∈Q

t3dijw
s
ijz

s
ij (4.54)

subject to

(4.11)

(4.13) - (4.19)

We write the scenario formulation (ScP)of our problem as the follows:

[ScP] Min
∑
s∈S

ps
(∑

k

fkh
s
k+

∑
[i,j]∈Q

∑
k

∑
l

t1(dik + djl)w
s
ijx

kls
ij

+
∑

[i,j]∈Q

∑
k

∑
l

t2dklw
s
ijy

kls
ij +

∑
[i,j]∈Q

t3dijw
s
ijz

s
ij

)
(4.55)

subject to

(4.2) - (4.8)

hsk = h̄k ∀ k ∈ R,∀s ∈ S (4.56)

hsk ∈ {0, 1} ∀ k ∈ R,∀s ∈ S. (4.57)
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Let fhs and gsys represent RPs activation cost and total �ow transportation cost for scenario

s ∈ S, respectively, and the associated feasible solutions set be denoted as Xs. Hence, ScP

can alternatively be shown as the following model.

Min
∑
s

ps(fhs + gsys) (4.58)

subject to

(hs,ys) ∈ X s ∀ s ∈ S (4.59)

hs = h̄ ∀ s ∈ S. (4.60)

Constraints (4.60) ((4.56)), ensuring equality of all the �rst-stage solutions (ĥs), are called

non-anticipativity constraints. Relaxing these constraints using Lagrangian multipliers en-

ables us to decompose overall problem by scenarios. The Progressive Hedging (PH) algorithm

presented by [38] is one of the scenario decomposition algorithms which works based on this

technique and tries to satisfy the non-anticipativity constraints by �nding a feasible h̄ iter-

atively. The PH algorithm, which can be categorized as one of the augmented Lagrangian

methods, was originally proposed for stochastic linear programs (SLP) and it can be proved

that this algorithm converges to an optimal solution for these type of problems. However,

the convergence of PH for class of stochastic mixed-integer programs (SMIP) is not proved,

although a number of algorithmic enhancements have been presented for PH. Nevertheless,

the PH can be used as a strong heuristic for SMIP ( [41]; [44]; [40]; [39]). In this study, we use

this concept to build a PH-based algorithm whose solution provides a reliable initial solution

for our L-shaped algorithm. Algorithm 4.2.4 presents the overall steps of the proposed PH.
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Algorithm 4 Progressive Hedging(PH)

1: Initialize SN , σ, PHGLvl and MaxK

2: for s ∈ SN do

3: ĥsK ∈ argminhs,ys{MnPs}
4: end for

5: Calculate PHLB

6: Generate integer h̄K

7: Calculate PHUB and PHGap%

8: If PHGap% ≤ PHGLvl, terminate

9: K = K + 1

10: while (K ≤ MaxK and PHGap% > ε) do

11: λsK = λsK−1 + σ(hsK − h̄K)

12: for s ∈ SN do

13: (ĥsK, ŷ
s
K) ∈ argminh,y

{
fh + gsy+λsK(h−h̄K)+ σ

2

∥∥h− h̄K∥∥2 |(h,y) ∈ X s
}

14: end for

15: Calculate PHLB

16: Generate integer h̄K

17: Calculate PHUB and PHGap%

18: K = K + 1

19: end while

20: Return h̄K

The algorithm starts with initializing the associated parameters and constants. One of the

parameters is SN which should be determined properly.

Determining SN : The proposed PH can be used to solve the overall problem, as a

viable heuristic, if we consider SN = S. However since the convergence of the PH in a

reasonable amount of time cannot be guaranteed, we suggest solving the PH for a special set

of constructed scenarios. Using this approach we can generate interesting �rst-stage decisions

which we use them to start the L-shaped with a interestingly small initial optimality gap

percentage. As we discussed in Section 4.2.3.3, we assign each scenario to a unique scenarios

category and we have a set of scenario categories instead of a single scenario set. In this way,

it is possible to create a mean-scenario for each category by calculating the expected value

of the demand of each commodity over all the scenarios in that the category. We suggest
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using the proposed PH for a set containing these mean-scenarios and initialize the SN by

this set. In the computational results section, we show that implementing our PH having the

SN can result in a reliable h̄k (�nal �rst-stage decision vector) with a reasonable runtime.

After inializing the input parameters and constants, a single scenario problem for all

s ∈ SN is solved resulting the ĥsK (the �rst-stage solution vector for each scenario) for all

s ∈ SN at iteration K = 0. We calculate the initial lower bound of the PH in Step (5).

To do so, we solve the single scenario problems (MnPss) utilizing the strengthened Benders

decomposition method utilizing ODReg cut type. We select the ODReg cut type as the cut

disaggregation method used.

Calculating initial lower bound for PH: Let OFV s represents the objective function

value of MnPs fro any s ∈ SN , then we have:

PHLB =
∑
s

psOFV s (4.61)

where PHLB is the lower bound of PH.

Generating integer h̄K: The original PH algorithm for stochastic linear problems

suggests the

h̄K =
∑
s∈SN

ps ĥsK

for all iterations Ks, but it cannot guarantee the integrality of h̄K. In the proposed version

of the PH which can be used as a powerful heuristic to solve SMIPs, we suggest a heuristic

approach to generating an integer vector h̄K, such that, �rst we calculate the h̄K as o�ered

by original PH, then we suggest using the following correction,

h̄kK =

 1 if ĥskK = 1, ∀s ∈ SN

0 otherwise
, ∀ k ∈ R,

to make the resulted h̄K an integer vector.

Calculating upper bound for PH: We can calculate an upper bound for PH by

evaluating any integer h (or generating the expected result of implementing h) using following
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equation,

PHUB = f h̄ + E[Q(h̄, w̃)].

The validity of this upper bound can be easily shown by observing that any integer �rst-stage

decision vector can generate a valid upper bound for SMnP.

Calculating optimality gap percentage for PH: We calculate the optimality gap

percentage for PH as follows.

PHGap% =
PHUB − PHLB

PHUB

× 100

The gap percentage (PHGap%) should be used to examine the associated stopping criterion

at Step 8. It should be noted that PHLB, PHUB and PHGap% can be considered as the

global lower bound, upper bound and gap percentage for overall SMIP, respectively, if we

use the proposed PH for SN equal to S.

The PH algorithm main loop is started at Step 10 after updating the iteration index

K at Step (9). Updating the Lagrangian dual decisions is the �rst step of the main loop.

The equation presented in Step (11) is used to do so, where the σ represents the step-size.

Similar to other gradient methods, σ plays an important role in the convergence of the PH,

although its convergence cannot be guaranteed in �nite number of iterations. The main

loop is continued with solving a set of scenario problems formed by decomposing ScP into

|S| scenario problems. As we mentioned earlier, PH algorithm is in the class of augmented

Lagrangian methods which augment the Lagrangian with a proximal (regularization) term

in objective function of the problem. Hence, in any iteration K > 0 the objective function

of the mentioned scenario problems has two additional terms, a penalty term containing the

dual prices for penalizing the non-anticipativity constraint relaxation (the λsK represents the

Lagrangian multiplier vector for scenario s at iteration K) and a proximity term controlling

the di�erence between the scenario solution and h̄. Similar to initial iteration of the algorithm

we utilize the the strengthened Benders decomposition method utilizing ODReg cut type

presented in the previous chapter to solve the discussed scenario problems.

Calculating lower bound for PH: To calculate the lower bound for PH, we use
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Equation (4.61) by changing the OFV s at any iteration k as follows:

OFV s = f ĥ
s

K + gsŷsK (4.62)

where the ĥ
s

K, ŷsK are the solution of the problems solved in Step (13). [43] show that the

presented lower bound is valid at any iteration K of PH algorithm.

Steps (16) and (17) are done exactly as (6) and (8), respectively. Two stopping criteria

considered are the gap percentage and the number of iterations. The proposed PH is ter-

minated either when the gap percentage is less than ε or K is greater than MaxK. Finally,

the resulted h̄K is stored to be used as the initial solution of the L-shaped method.

4.2.5 Progressive Hedging-Strengthened L-Shaped (PH-SLS) Implementation

Algorithm 5 presents the overall steps of the proposed Progressive Hedging-Strengthened

L-Shaped (PH-SLS). We initialize the algorithm's parameters and constants in Step 1. Hav-

ing the �rst-stage decisions, we can consider the second-stage problems as a set of shortest

path problems. Hence, we solve the second-stage problem for all the scenarios by Dijkstra's

algorithm by assuming that all the RPs are available to be used (free of charge). The Dijk-

stra's algorithm, assuming the length of each arc is equal to its actual unit shipment cost,

returns the shortest paths information for all commodities' �ows and all scenarios. Note

that, as we discussed, the unit cost of the arcs are determined based on the arc type (net-

work or direct shipment arc type). The results of the Dijkstra are used in the next two steps

of the algorithm. We use the resulted shortest paths information to run the strengthened

Benders decomposition (the overall algorithm presented in the previous chapter) embedded

in the proposed PH algorithm (Algorithm 4). We add a set of shortest path cuts (SPC) to

the L-shaped master problem (LSMP). By de�ning SPCostsij as the shortest path cost of

commodity [i, j] of scenario s, ∀ [i, j] ∈ Q, ∀ s ∈ S, Equation (4.63) represents the form of

these cuts for the SC-based cut version of L-shaped method.

ηcrOD
≥
∑
sc∈c

∑
[i,j]∈COD

pscSPCostij ∀ rOD ∈ REGOD, ∀ c ∈ SC (4.63)
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Shortest path value for each commodity in each scenario is a lower bound on the transporta-

tion cost of that commodity.

An initial upper bound for the L-shaped can be calculated based on the shortest paths

information. To do so, we �rst detect the RPs that have not been used in any of shortest

paths found for all the �ows and scenarios, as the unused RPs. Hence, we set the �rst-stage

decision vector ĥ by giving zero to ĥk for which corresponding RP is a unused RP and one

to the others. Now we can calculate the recourse for each scenario and expected recourse

using the shortest paths values. Calculating the total activating cost of locating the used

RPs recently found and adding it to the expected recourse, we can have an initial upper

bond for the problem.

Algorithm 4 is employed in Step 5 and the resulted h̄K is used as initial RP location

decisions to start L-shaped main loop starting at step 6. Using these decisions, we solve the

dual L-shaped subproblem (DLSSP) for each scenario and calculate the upper bound (UB)

for the problem. Upper bound for L-shaped is calculated by using Equation (4.64) in which

the OFV s represents the DLSSP objective function value of scenario s.

UB = min{UB, f ĥ +
∑
s

psOFV s} (4.64)

The algorithm run time (runtime) and optimality gap (optgap) are updated in step (8). The

Benders' cut strengthening procedure described in Section 4.2.3.1 is performed in step 9 and

the proposed optimality cuts having SC-based, disaggregated and strengthened properties

are generated and added to the LSMP. The MVP cut set discussed in Section 4.2.3.4 is

added the LSMP in step 11. The master problem is solved in step 12. Since we consider

early termination method discussed in Section 4.2.3.5, the lower bound (LB) of LSMP is

considered as the new lower bound candidate. Similar to UB updating process, we always

keep the best LB attained as the global lower bound of the algorithm. Step 13 is done similar

to Step 8 and if the stopping criteria are not met, we update the ĥ. Finally, the RP location

decisions are reported as the �nal �rst-stage solution.
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Algorithm 5 Progressive Hedging-Strengthened L-Shaped (PH-SLS)

1: initialize ε = 0.03, Optgap = 1.0, Runtime=0, Stoptime=20000

2: Solve all the single scenario problems using Dijkstra's algorithm assuming fk =

0; ∀k ∈ R
3: Add shortest path cuts to the L-shaped MP

4: Calculate UB

5: Employ Algorithm (4)

6: while (Runtime ≤ Stoptime and optgap > ε) do

7: Solve DLSSP, ∀ s ∈ S, and calculate the Upper Bound

8: Update Runtime and optgap

9: Update the DLSSPs variables values for strengthened Benders cuts

10: Generate SC-based-disaggregated-strengthened Benders cuts and add them to

LSMP

11: Add MVP cut set

12: Solve LSMP and update the Lower Bound

13: Update Runtime and optgap

14: Update the ĥ by using the results of the recently solved LSMP

15: end while

16: return ĥ

4.3 Computational Study on Algorithmic Performance

In this section we �rst describe our approach to generate testbeds be used in evaluating

all the aspects of the proposed model and solution methodology. Afterwards, we report and

discuss a comprehensive numerical study on the test instances generated.

4.3.1 Data Generation

We generate six classes of random test instances to evaluate the performance of the pro-

posed solution method. We generate |N | clustered random point coordinates in a rectangle

resembling origin and destinations nodes and a geographical region, respectively. The di-

mension of the rectangular is 150× 100 (width × height). Also, we generate |R| uniformly

distributed point coordinates in the mentioned rectangle to consider a set of RP location

candidates. To consider the point clustering concept mentioned above, we divide the whole

rectangular by 25 sub-rectangular. Afterwards, we randomly generate 75% of the points
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in �ve of them selected randomly. Also, to maintain the diversity among the points, the

remaining 25% are generated all over the main rectangular uniformly. Similarly, we generate

the potential RP locations in the main area uniformly.

The speci�cations of the generated test classes are presented in Table 4.2.

Table 4.2: The characteristics of di�erent test problem classes

Class |N | |R| |Q| f

C1 120 25 4998 405000

C2 120 30 4998 405000

C3 140 30 6811 540000

C4 140 35 6811 540000

C5 160 35 8904 690000

C6 160 40 8904 690000

The �rst column of this table show the index of each class. The second, third and forth

columns present the number of origin/destination nodes, RP locations and commodities,

respectively. Finally, the �fth column reports the �xed-cost of activation an RP location.

The increment considered in this column is because of re�ecting this fact that to serve a

higher number of TLs we need more expensive facilities.

The number of commodities for each class |Q| is equal to |N |(|N |−1)D, where D is

the density parameter representing the percentage of node (origin/destination) pairs having

positive �ow among all the available node pairs. The default value for D is 35%.

To have more realistic test instances, we perform the following procedure. Based on

proximity, we categorize the commodities into three groups, long, medium, and short range

commodities. To specify these three category, we use the double (th1, th2) containing two

thresholds th1 and th2 to separate short-medium-long distances such that any commod-

ity having distance less than th1 is considered as short-distance, between th1 and th2 as

medium-distance and greater than th2 as long-distance commodity. Afterward, to select
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di�erent commodities we de�ne the triple (L,M, S) which its �rst, second and third element

represents the percentage of short, medium and long-distance commodities in the instances.

S%|Q|, M%|Q|, and L%|Q| di�erent commodities are randomly picked from the short,

medium, and long commodity groups, respectively. Based on the size of geographical region

considered, we set (th1, th2)=(30, 60) and (L,M, S)=(80, 10, 10) to generate all the test

instances.

To consider the uncertainty in the demand of the commodities (wij) we divide all the

scenarios into three equal-size groups, low, medium and high-demand scenarios. The de-

mands of the low-group scenarios are generated by using uniform distribution U[50, 100],

medium-group by U[125, 175] and high-group by U[200, 250] based on the number of TLs.

In this study, the number of scenarios in all scenario groups are equal.

The unit transportation cost values t1, t2 and t3 are set to 1, 2 and 3, respectively.

We variate the unit transportation cost for di�erent types of transportation, considered, to

re�ect this fact that the driving for longer distances imposes implicit costs to the system

mostly because of driver turn over issues. Finally, the default values for double (∆1,∆2) are

considered as (20, 40) for all test instances.

4.4 Numerical Results

Before solving the test instances by the proposed algorithm, we perform a number of

experiments to evaluate the performance of di�erent parts of the suggested solution method.

Note that in all the tables following "Class" shows the test instances classes, �Gap%� reports

the optimality gap percentage and �T(s)� reports the runtime in seconds attained by the

considered algorithm after meeting any of the stopping criteria. We solve �ve test instances

of each class and report the average of results.

Note that, based on practice, we set σ = 100, PHGLvl = 3% and MaxK = 2 in any

implementation of PH algorithm presented as Algorithm (4). To solve all the presented

models, we use CPLEX 12.6.1, and all of the experiments are conducted using C++ on

machines with an Intel Core i7-4790 CPU at 3.6 GHz, 32 GB RAM running 64-bit OS.
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4.4.1 Single-Multi-SC-based L-shaped Algorithm

To discuss the e�ectiveness of the SC-based cuts to solve the problem, we compare the

results of two well-known versions of L-shaped to the version that we suggest by adding

the SC-based cuts in each iteration. Table 4.3 shows the results of the three mentioned

approaches. Also, this table shows the results of these approaches considering mean-value

cut set which we discuss them later. It should be noted that to implement these methods we

use the problem-based ODReg cut disaggregation method described in Section 4.2.3.2 and

we do not include any heuristic to improve the overall performance of them to have an exact

comparison between the approaches.

Table 4.3: The results of single, multi and SC-based cut L-shaped methods with/without
MVP

Class

L-Shaped_Scut L-Shaped_SCbcut L-Shaped_Mcut

without MVP with MVP without MVP with MVP without MVP with MVP

Gap% T(s) Gap% T(s) Gap% T(s) Gap% T(s) Gap% T(s) Gap% T(s)

C3 2.28 6460.4 2.49 5665.6 1.87 6342.2 2.18 5400.8 4.616 20677.4 2.48 15709.0

C4 2.65 10992.6 2.59 10175.6 2.14 10662.8 2.48 8460.0 13.272 22663.8 6.71 23111.6

C5 2.43 14723.0 3.48 14729.8 2.52 12350.8 2.74 11763.2 14.762 24363.2 5.83 23873.3

C6 8.89 21172.2 8.74 20839.8 3.18 18217.2 3.32 16998.6 33.238 27032.6 15.36 21114.0

First, we compare the results of single and multi-cut approaches. Among these two, the

single-cut version performs better such that the average runtime of the single-cut for all test

classes is 13337.1 seconds which is about 56% of that of multi-cut version. Also, the average

gap percentage of single and multi-cut are 4.1% and 16.5%, respectively. The multi-cut

version cannot solve four of test instances of C3, four of C4, �ve of C5 and �ve of C6 upon

meeting the stopping criteria of the algorithm whereas these values for single-cut version are

zero, zero, one �ve, respectively. It is obvious that the multi-cut version does not have a good

performance and we do not suggest using it to solve the considered problem. Although the

single-cut version outperforms the multi-cut, compared to SC-based-cut version, suggested
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in this study, it performs weaker. The average runtime for SC-based-cut is 11893 which is

about 89% of that of single-cut. Also, the average of gap% is 2.7% that is 34% less that this

amount of single-cut. The SC-based-cut version cannot solve zero of test instances of C3, zero

of C4 and C5, and two of C6. These amounts show that the usefulness of using SC-based-

cut is more obvious in solving the large-size test instances, this is a favorable feature of this

method. Therefore, we use this version of L-shaped method for our further computational

studies conducted using Algorithm 5. It should be noted that in the our experiments, we

start the algorithms with all closed RP locations for the sake of simplicity.

4.4.2 Adding MVP cut to SC-based L-shaped Algorithm

Table 4.3 also includes the results of adding MVP cut set in our L-shaped algorithm.

Hence, we can evaluate the results of considering each of these cut types. Adding the MVP

cut for multi-cut version, described in Equation (4.47), can improve the average runtime

and gap% of the multi-cut L-shaped by about 12% and 54%, this is interesting, but it

cannot make the multi-cut version e�cient enough to be suggested for solving our problem.

Utilizing MVP cut for single-cut L-shaped, presented in Equation (4.46), can improve the

runtime about 4%, but cannot enhance the average gap%. Finally, adding MVP cut to

the SC-based L-shaped algorithm can improve the runtime of it by 10% in an acceptable

level of gap%(which is ≤ 3%). Furthermore, adding this cut, we can solve one of the two

test instances of C6, which are not solvable by this algorithm without using MVP cuts.

Therefore, we suggest adding MVP cut, proposed as Equation (4.48) to SC-based L-shaped

algorithm. In conclusion we consider the SC-based L-shaped method with MVP cuts having

the best overall performance among six di�erent method discussed in Table 4.3, as the main

approach to implement L-shaped method presented as Algorithm 5.

4.4.3 Adding SPC and PH into SC-based L-shaped Algorithm

Now, we show that considering both shortest path cuts and PH in the proposed solution

procedure can improve the algorithm performance. To do so, we compare four di�erent ver-

sions of the L-shaped with MVP method. As we discussed about the results, showed in Table

4.3, the SC-based cut L-shaped with MVP cut method have the best performance among

six di�erent versions of L-shaped. Hence, we select this approach to compare four di�erent
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versions of it to show how embedding both SPC and PH can improve the performance of

this algorithm. Table 4.4 presents the results of these implementations. Three of these four

algorithms built based on the SC-based cut L-shaped method, shown as LS1, LS2, attained

by adding PH, and LS3, formed by adding SPC to LS1 . Also, the forth method is PH-SLS,

which is formed by embedding both SPC and PH into LS1, presented as Algorithm 5. We

compare these four approached based on four measures, the gap%, the runtime (T(s)), the

number of iterations done by L-shaped, showed as "No. It." and the gap of �rst iteration of

L-shaped presented as "LSh. I. G%".

The average of Gap% of all four methods are less than 3% meaning that, on average, all

the methods can solve the instances in the time limit which is 20000 seconds. LS2, LS3 and

PH-SLS can solve all the instances, but one the instances of the C6 cannot be solved by LS1.

In terms of the runtime, LS2 can improve the runtime of LS1 by 14% and LS3 can do it

by 3.5%. However, adding both of them to LS1, we build PH-SLS which can improve the

runtime of LS1 by 25% which is impressive. Another important factor of our implementations

is the initial gap% of the L-shaped part of the algorithms. LS1 on average starts with 97.3%,

LS2 with 61.4%, and LS3 with 8.4%. Both SPC and PH are e�ective to decrease the initial

gap% of the LS1 by improving both initial lower and upper bound of the algorithm. In this

regard, SPC is more e�ective to improve the initial lower bound and PH is more e�ective to

lower the initial upper bound of the algorithm. Taking advantage of adding both SPC and

PH to LS1 (forming PH-SLS), we can start the L-shaped by initial gap% about 5.6%, on

average.

The number of required L-shaped iterations is another important factor playing an im-

portant role in the amount of runtime. The average number of L-shaped iterations for LS1

is equal to 7.9, which this value for LS2 and LS3 are 5.3 and 6.2. The average number of

L-shaped iterations is 3.8 which is less than half of that of LS1.

To conclude, we suggest PH-SLS to solve the problem as it can solve all the considered

test instances in the shortest runtime attained. Moreover, to have a comparison between

the results of PH-LSL and the single-cut L-shaped method, as a well-known method to solve

the 2-SMIPs whose results are showed in Table 4.3, we should say that, on average, the

PH-SLS can solve all the considered test instances (C3, C4, C5 and C6) in about 60% of
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required runtime for single-cut L-shaped method. The average gap% of PH-SLS is about

63% of single-cut L-shaped method average gap%. These di�erences are more prominent for

two larger test classes C5 and C6, such that the average runtime of the PH-SLS for these

two classes is about 53% and average gap% is about 44% of those of single-cut L-shaped

method, respectively. These results imply that the di�erence between the performances of

PH-SLS and S-cut L-shaped method increases by increasing size of the problem, making the

PH-SLS a more attractive approach to solve large-size instances.

Table 4.4: The results of embedding SPC and PH

C
lass

SC-based cut L-shaped with MVP
PH-SLS

LS1: without SPC and PH LS2: with PH without SPC LS3: with SPC without PH

Gap
T(s)

LSh. I. No. Gap
T(s)

LSh. I. No. Gap
T(s)

LSh. I. No. Gap
T(s)

LSh. I. No.

% G% It. % G% It. % G% It. % G% It.

C3 2.18 5400.8 97.28 6.6 2.30 4725.4 35.57 4.2 2.09 5969.8 7.14 6 2.57 4563.2 6.04 3.2

C4 2.48 8460.0 97.57 8.2 2.48 8081.6 60.89 5.8 2.30 9947.4 9.11 6.4 2.77 8325.6 6.18 5.0

C5 2.74 11763.2 96.69 7.8 2.53 10040.8 71.86 5.2 2.53 10368.2 8.03 5.8 2.35 8790.2 6.15 3.6

C6 3.32 16998.6 97.49 9.0 2.73 13844.8 77.18 5.8 2.71 14872.6 9.29 6.6 2.62 10383.2 4.03 3.4

4.4.4 PH-SLS overall results

Table 4.5 shows the results of solving the six test classes by PH-SLS (Algorithm 5). The

third, forth and �fth columns of this table report the average runtime of three major parts of

the PH-SLS which are L-shaped, PH and SPC, respectively. The sixth and seventh columns

present the average gap% and number of performed iteration of PH before starting the main

L-shape loop. The gap% of PH is not global and it is just used to check its associated

stopping criterion. Finally, the last column of the table shows the average number of RPs

used to solve the instances.

The average gap% resulted by PH-SLS is 2.57% and all the test instances are solvable by

this algorithm such that the average runtime attained is 6119.77 seconds. The interesting

point about PH-SLS is that the rate of increasing runtime by increasing the size of the
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Table 4.5: The results of solving six test classes by PH-SLS

Class Gap% T(s)
L-Shaped SPC PH PH PH Open

T(s) T(s) T(s) Gap% No. It. RPs

C1 2.50 1602.0 885.8 328.1 388.1 2.136 1.2 14.6

C2 2.61 3054.4 1897.6 446.7 710.1 2.544 1.4 14.6

C3 2.57 4563.2 2757.6 712.8 1092.8 2.442 1.4 15

C4 2.77 8325.6 5442.2 924.4 1959.0 3.452 1.8 16.6

C5 2.35 8790.2 5333.0 1605.0 1852.2 2.86 1.4 14.8

C6 2.62 10383.2 6157.6 2072.0 2153.6 2.44 1.2 14.2

instances is descending which means the e�ciency of this algorithm improves by increasing

the size of the problem. On average, 61% of the total runtime of PH-SLS is because of L-

shaped and 22% and 17% because of PH and SPC, respectively. Average PH gap% is 2.65%

implying that the PH result is reliable as this value is small, and, it can improve the e�ciency

of L-shaped embedded in the PH-SLS by helping L-shaped to start with a appropriate initial

solution. This procedure cause L-shaped converge faster and generates better upper bounds.

The PH results are attained by performing 1.4 iterations on average. Finally, the average

number of open RPs is about 15 RPs and we do not see notable variations between test

classes meaning that, for the considered geographical region, 15 open RPs seem enough.

4.5 Conclusion

In this study, we address the RP-network design problem under demand uncertainty. It

is very common that the demand is not deterministic in the transportation network, hence

we devise a framework to design an RP-network with uncertain or stochastic demands. Our

problem assumptions and settings are exactly the same as those of our previous work in the

previous chapter of this dissertation. We suggest a two-stage stochastic program to model

the considered problem in a stochastic setting. The proposed recourse function satisfy the

�xed and complete recourse assumptions.

We propose a new version of the L-shaped method, namely, SC-based cut L-shaped

method working based on a new scenario categorization scheme which we introduce in this

study. We show that this version of L-shaped method can outperform two well-known

versions of it, single-cut and multi-cut, to solve the proposed problem. Also, we suggest a
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number of enhancements for improving the performance of the proposed L-shaped method.

The most important one is using a new version of the progressive hedging algorithm which

we devise for SMIP to generate a reliable initial solution for L-shaped. We show that this

technique can improve the runtime, the number of iterations and the initial gap percentage of

L-shaped. Other than this, we suggest adding mean value problem-based cut (MVP) to the

L-shaped master problem and we show that it can improve the lower bound of the algorithm

properly. Also, we suggest using the shortest path cuts to improve the initial lower bound

of the algorithm and show that adding these cuts can improve the runtime of the algorithm.

Adding disaggregated cuts and early termination the L-shaped master problem are two other

enhancements we suggest to improve L-shaped performance.

In terms of computational results, we show that our overall algorithm, namely, PH-SLS,

can improve the runtime and gap% of the single-cut L-shaped method by 40% and 37%,

respectively. PH-SLS can solve all the test instances. The original versions of L-shaped

cannot solve the majority of large-size test instances while the performance of PH-SLS gets

better by increasing the size of the problem. We discuss that all the suggested improvements

play important roles in improving the performance of the L-shaped, but the PH is the most

important one. Using SC-based cuts improve the runtime of S-cut L-shaped by 11%. The

impact of adding MVP cut on runtime is about 10%. Embedding PH and shortest path cuts

can improve runtime by 14% and 3.5%, respectively while adding both of them concurrently

can enhance the runtime by 25% which is impressive. On average, about 61% of the total

runtime of PH-SLS is because of the L-shaped part of the algorithm, whereas, this value for

PH and SPC is about 22% and 17%, respectively.
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Chapter 5

Simulation-based Optimization for Operational Decisions in Truckload Transportation

Network (P3)

In this chapter, we develop a simulation framework which is able to simulate transfer

of TLs from their origins to destinations by assigning the drivers to TLs on a given net-

work. This model should be able to simulate day-to-day operations in TL transportation

as closely as possible. Using this simulation model, it is possible to compare di�erent dis-

patching approaches. We can run the model assuming that the procedure of dispatching is

PtP. Alternatively, we can consider both direct shipment and network shipment approaches

concurrently as we discussed in the �rst part of the project. This provide us the means of

evaluating the RP-network approach for TL transportation.

In our simulation, we generate the demands of commodities randomly. By considering

other practical assumptions such as load pick-up and drop-o� wait times, equipment break-

downs, etc., we make the simulated model more realistic. We conduct the simulation in a

discrete events setting in which the events occur at particular instants of time and change

the state of the system. The state of the system in our model can be the status of assigning

drivers to truckloads.

Considering di�erent assumptions and requirements about assigning the drivers to the

TLs, we can devise di�erent models. In this regard, we can embed an optimization model

to suggest the best settings to have a good dispatching results. In our framework, we imple-

ment and test di�erent networks and di�erent dispatching approaches. Also, we introduce

a new concept for dispatching the load, namely, collaborative dispatching approach. In col-

laborative dispatching, we assume that the drivers also have an access to the loads' data,

i.e., they have access to the TLs and their origins, destinations, pick-up and drop-o� times,

etc. Hence, they provide their preference about the loads. By incorporating these type of

requirements into the optimization model in addition to previous ones we build a collabora-
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tive dispatching model which will be more powerful in considering the drivers' point of views

and preference and lowering the driver turnover rate. This is important because when the

dispatcher assign the loads to the drivers without considering their preference, it is possible

that, these preferences are disregarded by the dispatcher making the overall system ine�-

cient and the drivers unsatis�ed by their job. We try to address this issue by suggesting the

mentioned collaborative approach.

Figure 5.1 presents a good overview of the current work�ow and collaborative one con-

currently. The elements in red (text boxes) are the contributions of this project. Currently,

the dispatcher based on the requirements and characteristics of the loads and drivers assign

the loads to drivers. In this project, we suggest a solution procedure considering the drivers'

point of views about the loads as well. In this regards, we include the load ranked lists

prepared by the drivers in the model. Moreover, the results of our model can be used to

build a predictive model to predict the driver turnover rate in the TL industry. By doing so,

the dispatcher can dynamically check the turnover rate and try to consider the assignments

alleviating this issue.
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Figure 5.1: Overview of the data-driven collaborative simulation model

We will conduct a test framework to validate the proposed model and measure their

e�ciency in terms of the de�ned perfomance measure which we introduce later in the related

section. These values can be used to predict the driver turn over rate. The simulation model

provide us a practical environment that can predict the behaviour of the real industrial

environment as much as possible. Using this system we can realize the industry's issues and

bottlenecks and try to eliminate them by incorporating the improving suggestions and testing

their impact and doing a extensive sensitivity analysis. Also, estimating the important

practical features of the system is possible through the simulation models.

We explain the our simulation framework and its characteristics and details in Section 5.1.

We present the design of our experiments in Section 5.2. Also, we present our experiments

aspects and details and report and discuss the results in Section 5.3.
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5.1 Simulation Method Development

We use discrete-event simulation method to model and test di�erent networking and

dispatching approaches and �nd the best ones. In discrete-event simulation we separate the

time into sequential short periods of time and model the operations of the system in these

time periods as a sequence of events.

Two major approaches to simulate the system are steady-state simulation and terminating

simulation. In the �rst approach the performance of system is evaluated in the long-run and

reaching to steady-state is a prominent requirement which should be regarded. In the second

type, the performance of the system is examined in a limited period of time. Hence, a set

of measures are de�ned. In our implementation, since we need to simulate the network for

a set of loads delivered, we use the second approach. The runtime of our models starts by

starting the simulation and �nishes upon reaching to the delivery time of last load or entity.

The important requirement regarding this type of simulation is well-de�ning the number of

replications (or repeating the experiment, under the same condition). Setting a su�cient

number for this, we can decrease the variability in experimental results and increase the

accuracy of the estimate and the con�dence level. We use box-plots (con�dence intervals)

to �nd the appropriate number of replications for our di�erent models, as we explain later

on in this chapter.

5.1.1 Networks and Their Properties

In this section, we investigate using two di�erent types of networks, explained in Chapter

3. These two are Point-to-Point (PtP) or direct shipment network and Relay Point network

(RPN) used to ship the loads. Figures 5.2 and 5.3 show this network in 2 and 3 dimensions,

respectively, and Figures 5.4 and 5.5 show these for RPN.
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Figure 5.2: PtP_2D

Figure 5.3: PtP_3D
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Figure 5.4: RPN_2D

Figure 5.5: RPN_3D
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In the PtP network each load is directly shipped from its origin to its destination. In

other word, the direct shipment is the only method of shipment. Also, all the nodes are of

type origin/destination node and can be origin or destination or both for the commodities

de�ned. In the RP network two methods of shipment are available which are direct and

network shipment. We have two types of nodes the origin/destination (O/D) nodes and RP

nodes. In the Figures 5.4 and 5.5 the RP nodes are shown by a di�erent symbol in red. It

should be noted that in both networks the number and locations and all the properties of the

O/D nodes are the same to be able to do a fair comparison. We just add a number of RPs

to the RP network and change the roads according to the de�nition of the RP network. It

should be noted that the RP-network which we consider in this chapter of this dissertation

is a basic one which means the parallel shipment and multi-assignment assumptions are not

considered in building it. The reasons for considering this type of RP-network is that adding

these two assumptions builds a generalization of the RP-network such that this general

version inherits all the performance characteristics of the basic version and usually perform

better in practice, as we discussed before. On the other hand, adding these assumptions

to the simulated model does not change the complexity of the model considerably and can

be done easily. Hence, we prefer to perform our experiments on the basic version of this

network to show the fundamental strangeness of this type of network.

We de�ne the properties of the two models de�ned above. The process of building these

networks are similar, but they have a few di�erences which we specify in the related section.

5.1.1.1 Entity Generation

The source nodes are responsible to generate the entities. The attributes of a source node

1 can be seen in Figure 5.6, as an example.
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Figure 5.6: Source Node properties

We de�ne "Data Table" to de�ne various entities for the network sources. Figure 5.7

shows the data table for source 1. The entities are mixed equally in each source node. We

add a column, namely, "Destination" to determine the destination of each entity type. Note

that the table name and entities generating fashion, which is random-mix, are speci�ed in

"Table Reference Assignment" section.

85



Figure 5.7: Source node data table

We de�ne one State Assignment to specify the destination for each entity. To do so,

we use the associated column presented in Figure 5.7. Figure 5.8 shows more detail of this

implementation.

Figure 5.8: Source node state assignment
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5.1.1.2 Routing Strategy

In order to conduct the entities to their speci�c destinations we follow the following

procedure. First, we build an add-on process for each Output@Source node which assign each

entity to another transfer node devised for each speci�c destination based on the destination-

based state assignment described above. Figure 5.9 shows an example for this add-on process

type for Source 1 in our model.

Figure 5.9: Routing add-on process

Afterward, the mentioned transfer node can be set such that it can handle the routing

of each entity. To do so, we set the "Entity Destination Type" to "Speci�c" and enter the

name of the destination in the "Node Name �eld",i.e., Input@Sink9.

In the PtP setting, the long-distance commodities usually use some intermediate nodes

to reach to their destination. We devise a transfer node for each origin/destination node

serving as intermediate node. The "Entity Destination Type" should be set to "Continue"

for these type of nodes. For RPN, we do not need these kind of nodes.

5.1.1.3 Using Vehicles to Pick-up and Deliver the Loads

We use vehicles to transport the loads. Using vehicles in Simio needs several settings

that should be considered. We de�ne a number of vehicles to be used in the network. Figure

5.10 shows the settings for Vehicle 3 in our networks.
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Figure 5.10: Vehicle properties

The �rst setting is changing the "Task Selection Strategy" which we discuss di�erent

settings for this �eld later in Section 5.1.2. We need to change "Initial Travel mode" to

"Network Only" to force the vehicles use the available paths in the network. We should
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determine the vehicles home base through "Initial Node (Home)" and we set "Park At

Home" for two �elds "Idle Action" and "O� Shift Action" to let the vehicle park at home

when they are not required during the simulation process.

One of the major assumptions of our models is the vehicles' or drivers' time-o�s. To

do so, we consider scheduling a time-o� to each driver which has delivered a predetermined

number of loads which means we force the drivers to come back home and take the time-o�,

but it is possible for them to deliver a few loads on their way to home. In order to consider

this assumption, we devise the following procedure. First, we de�ne one state variable for

each vehicle, i.e.�veh3load� for vehicle 3. This variable is considered as a counter to monitor

the number of deliveries for the vehicle between to successive time-o�s. We use this to build

an add-on process for each vehicle showed in Figure 5.11 for Vehicle 3.

Figure 5.11: Vehicle add-on process

The last module of this add-on process is for �ring an event, called Veh3, for Vehicle

3 to generate a time-o� for this vehicle. To do so, we put an auxiliary source and sink

close by the vehicle home base, and after �ring the event, we generate one auxiliary entity

which should be delivered to the mentioned destination by the vehicle. Figure 5.12 shows

the required settings for the mentioned source/sink in which CV3 is the mentioned auxiliary

entity. Also, the "TimeO�" is an Expression Property which we de�ne to control the length

of time-o� for vehicles. We use this property as the input for �eld "Transfer-in Time" of

the mentioned auxiliary sink node. In this regard we de�ne another Expression Property,

namely, "NoVisit" to control the number of deliveries before scheduling a time-o� for any
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vehicle.

Figure 5.12: Vehicle time-o� settings

5.1.2 Dispatching Strategies

In this section we describe two di�erent dispatching approaches. Implementing these two

approaches for the two models described above needs di�erent procedures. Hence, in this

section, we describe four di�erent implementations.

Dispatcher-based dispatching approach(DbD): It is usual that the dispatcher de-

cides about the assignment loads to drivers without considering the drivers' preferences in

term of selecting the loads. In this study, we call this approach "dispatcher-based" dispatch-

ing approach. The procedures of employing this approach for the two models are described.

The main assumption in this study about the preference of dispatchers in reserving a vehicle

for a load,at the time, is the one having the shortest distance from the location of the load.

Collaborative dispatching approach (CD): In this study, we introduce another ap-

proach to assign the loads to drivers. In this approach after assigning the loads to drivers

90



they will be able to select the loads based on their preference. Similar to dispatchers, the

main assumption of the models in this section is that the drivers prefer to pick a load having

the shortest distance from their location among the assigned loads.

5.1.2.1 Dispatcher-based Dispatching Approach for PtP Model

To simulate this approach, we �rst need to create a driver list. Afterward, any transfer

node devised to conduct an entity should be set as Figure 5.13 showing this setting for

TransferNode2 used for entity C19.

Figure 5.13: Load dispatching settings

The major settings in this context are, the "Ride On Transporter" should be set to

"True", the "Transporter Type" to "Select From List" and "Transporter List Name" to

the name of transporter list which is "TransporterList1". The important point is that the

"Reservation Method" should be set to "Reserve Closest". Having this setting always let
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any available load reserve the closest vehicle and force it to pick-up and deliver it. In other

words, the closest vehicle is reserved to serve the mentioned load. This behaviour simulate

the dispatcher-based dispatching approach. It should be noted that the "Task Selection

Strategy" for vehicle should be set to "First In Queue" which means each vehicle will serve

the �rst load waiting in the queue.

5.1.2.2 Dispatcher-based Dispatching Approach for RPN Model

Similar to section above, we need to use transporter list property, but not only one

list. We need to create several lists. We de�ne two types of transporter lists, one for local

transportation and one for lane one. The local lists are used by origin/destination node and

RPs, and lane type lists are used by neighbor RPs. Figure 5.14 shows the de�ned lists for

our model.

Figure 5.14: Local and Lane transporter lists for dispatcher-based approach in RP-network

92



In this �gure, the "TransporterList1" is of type local and is used by RP 1 and all covered

nodes, and "TransporterList1_3" is of type lane and is used by RPs 1 and 3. The other

settings in this model are as dispatcher-based dispatching approach for PtP model settings

described above.

5.1.2.3 Collaborating Dispatching Approach for PtP Model

To simulate this behaviour in the PtP model, we de�ne several transporter lists which all

of them contain all the vehicles, but in di�erent orders. We de�ne a list of transporters for

each node in the network. The order of a list assigned to the node is based on the distance

of vehicles' home base from that node in ascending order. Figure 5.15 shows all the lists

de�ned for this model and the order of TransporterList1 assigned to Node 1 which we �rst

put the vehicles of node 1 and then the vehicles of node 3.
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Figure 5.15: Transporter lists for collaborating dispatching approach in PtP model

The two other important settings considered in this model to simulate collaborative

approach are, �rstly, setting "Task Selection Strategy" for all the vehicles in this model to

"Smallest Distance" to let them select the closes assigned load by dispatcher, and setting the

"Reservation Method" for selecting vehicle in Transporter Logic of the origins to "Reserve

Best". The latter setting force the dispatcher to follow the assigned transporter list order to

�nd an unreserved vehicle and assign the on-hand load to it. Hence, the order/s of vehicles

in the transporter list/s is/are very important and should be set accurately.
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5.1.2.4 Collaborating Dispatching Approach for RPN Model

The settings of this model are very similar to previous one. The only di�erence is in

the type of transporter lists. In this model, the type of the transporter list are similar to

the model RPN dispatcher-based approach, but we double the lane related lists to consider

di�erent order for two neighbor RPs based on the preference. Figure 5.16 shows the trans-

portation list for this model. As it can be seen in the example shown in the �gure, for two

RPs 2 and 3 we de�ne two lists, one for when the loads start form RP 2 and one for vice

versa.

Figure 5.16: Transporter lists for collaborating dispatching approach in RND model
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5.1.3 Timer Setting

In this study, the runtime of the di�erent models are di�erent. In other words, the

simulation starts by pressing the run button and ends by delivering the last entity. To do so,

we set the "Ending Type" �eld to "Unspeci�ed(In�nite)". In this situation, to have exact

run length for the models we devise the following procedure. First, we de�ne a timer element,

namely, Timer 1. Afterward, we de�ne three state variables, "RunEndTime", "RunLength"

and "TotalDemand" to build an add-on process to capture the run length. Figure 5.17 shows

the mentioned process.

Figure 5.17: Timer add-on process

5.2 Design of Experiments and Performance Measures

In this section, we describe our procedure to design a number of scenarios to test the

performance of di�erent models and select the best setting with respect to the de�ned per-

formance measures de�ned in this section. In this regard we de�ne two variables as follows:

NoVisit the number of deliveries before scheduling a time-o� for each driver

TimeO� the length of each time-o� (m).

Changing these variables makes di�erent values for the considered measures and objectives.

Hence, we need an optimization procedure to �nd the best value for these two variables.

One way of doing optimization is performing simulation-based optimization which can be

implemented by Simio. To do so, we select two sets of values for two input values and
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create a number of scenarios. We run the simulation models for each scenario. The model

having the best average of objective value is selected as the best model. Also, the scenario

of the best resulted values among all the simulation runs is selected as the best case and the

variables values are suggested as the best solution.

To test the performance of the models, we de�ne three di�erent measures. These three

measure can take both the drivers and company points of view into account. These three

measures are as follows:

AvgGetHome average number of scheduled time-o� for the vehicles

AvgOnShift% average time percentage each vehicle is needed

AvgTimeInSystem average time each entity (TL) spends in system.

The �rst two measure are used to calculate the get-home-rate for the drivers which is an

important element to predict the driver turnover rate. The �rst measure plays an important

role in regularizing the drivers schedule in addition to the expanding length of time-o�s for

the drivers. This point is also important in term of decreasing the driver turnover rate. The

third measure is important for transportation companies, since it is directly connected to

delivery date and operational costs.

Also, in our implementation, the runtime of di�erent models are di�erent because we

consider the time of delivering the last entity of the model as the ending time. To capture

this time period we de�ne another measure as follows:

RunLength runtime of the model (time between TL generation time to its delivery time).

We also suggest a number of measures built based on the introduced measures and a per-

formance measure including all of them, as a single objective for the problem, later in this

section.
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5.3 Computational Results

To evaluate the performance of the models described above, we design a number of exper-

iments. In these experiments, we try to evaluate the main elements of the proposed models

and compare the performance of the models. To do so, we �rst explain the commodity

generation procedure in which we suggest to create a number of demands to be satis�ed. Af-

terward, we discuss the numerical results obtained in detail. Finally, we propose a procedure

to �nd the best solution or setting resulting in the best outputs.

All of the experiments are conducted using Simio 8 on machines with an Intel Core

i7-4790 CPU at 3.6 GHz, 32 GB RAM running 64-bit OS.

5.3.1 Commodity Generation

In this section, we demonstrate the entity generation procedure which we devised to

generate commodities for all the models. In our experiments, we generate 23 di�erent entity

types. The number of entities generated of each type are as Table 5.1. Totally, 2000 TLs

are delivered in the experiments.

All the source nodes use Exponential distribution with the mean of 6 minutes to generate

the speci�ed number of entities presented in Table 5.1. Note that for the sources generating

more than one entity types, the share of the types are equal.

5.3.2 Replications Requirements

As we mentioned above, in the terminating-simulation the number of replications plays

an important role in accuracy of the results. In this study, we follow a procedure to set

the number of replications appropriately. In this approach, we start by a small number

of replications and plot the associated box-plot. Afterward, we increase the number of

replications and again check the box-plots. We continue this process to reach to a reasonable

box-plot and report the associated number of replications as the �nal number of replications.

We stop increasing the number of replications when the three associated con�dence intervals

stop overlapping. In this state we can be sure that the �nal results are reliable and accurate.

Figure 5.18 shows this process for one of our models, as an example. We tested six di�erent

numbers, 10, 20, 30, 40, 50, and 60 as the Scenario 1 to 6 for one of our measure, namely,

AveTimeInSystem.
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Table 5.1: Entities Speci�cations

Entity Name Destination Origin No. of Entities Generated

C12 Sink2

Source1 190C15 Sink5
C19 Sink9

C23 Sink3

Source2 210C28 Sink8
C212 Sink12

C34 Sink4

Source3 200C38 Sink8
C312 Sink12

C48 Sink8 Source4 210

C54 Sink4
Source5 220C56 Sink6

C65 Sink5 Source6 170

C85 Sink5

Source8 200
C89 Sink9
C810 Sink10
C811 Sink11

C95 Sink5
Source9 220C96 Sink6

C103 Sink3 Source10 190

C111 Sink1 Source11 190

C1210 Sink10
Source12 200C123 Sink3
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Figure 5.18: Box-plots to set the number of required replications

The only chart in which three con�dence intervals "Upper Percentile Con�dence Inter-

val","Mean Con�dence Interval" and "Lower Percentile Con�dence Interval" (the three boxes

showed in the �gure, from up to down) are not overlapping is the Scenario 6. Hence, 60 is a

good number for this case. Since we see this behaviour for all our models on all the consid-

ered responses, we report 60 as the �nal number of required replications and use it for our

all experiments. It should be noted that the con�dence level for all of the implementations

is set 95%.

5.3.3 Numerical Results and Discussion

In this section we present the results of implementing di�erent models. Based on the

measures above, we create a number of higher level measures reporting the performance of

the models in a better way. These new measure are as follows.

TotalT imeOff(m): reports the average of total time in (minutes) which each vehicle is
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not working.

TotalT imeOff(m) = AvgGetHome×TimeOff(m)

+ AvgOffShift%×RunLength(m) (5.1)

where, AvgOffShift% = ((100 − AvgOnShift%)/100) × RunLength(m). This equation

calculate the total time-o� for a driver consisting two major parts: the total scheduled

time-o�s, which is the total time of the scheduled time-o�s, and the total length of

another type of time-o� which is assigned to the drivers whenever they are not needed

in the system.

TotalT imeOff%: reports the average percentage of time in which each vehicle is not

working.

TotalT imeOff% =
TotalT imeOff(m)

RunLength(m)
× 100 (5.2)

AvgT imeInSystem%: reports the average percentage of time in which each TL is in the

system.

AvgT imeInSystem% =
AvgT imeInSystem(m)

RunLength(m)
× 100. (5.3)

These three measures are important since using them, we can evaluate the performance of

di�erent models properly.

In order to create a number of scenario we select two appropriate ranges for our two

input variables. These ranges are determined in accordance with other parameters ranges of

the models. We select the values for �NoVisit� from set {2, 5, 10, 20} and for �TimeO�� from

{5, 10, 15, 20}. using these values, we create sixteen di�erent scenarios for which we simulate

the models and report the results. Tables 5.2 to 5.5 shows the results of PtP with DbD,

PtP with CD, RPN with DbD and RPN with CD model, respectively, for di�erent scenarios.

We �rst discuss the behaviour of the network types, and then we discuss the performance of

di�erent dispatching approaches.
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Table 5.2: Results of PtP with DbD model

Scenario NoVisit TimeO�(m) TotalTimeO�% AveTimeInSystem% RunLength(h)

1 2 5 0.38 38.13 88.57

2 5 5 0.33 37.99 88.39

3 10 5 0.36 37.94 88.30

4 20 5 0.23 37.91 88.18

5 2 10 0.62 38.18 88.73

6 5 10 0.54 38.03 88.58

7 10 10 0.53 37.93 88.40

8 20 10 0.33 37.94 88.26

9 2 15 0.87 38.27 88.92

10 5 15 0.75 38.10 88.77

11 10 15 0.67 37.96 88.51

12 20 15 0.47 37.96 88.24

13 2 20 1.11 38.34 89.13

14 5 20 0.98 38.12 88.96

15 10 20 0.84 37.97 88.63

16 20 20 0.62 37.94 88.40

Average 9.25 12.50 0.60 38.05 88.56

Table 5.3: Results of PtP with CD model

Scenario NoVisit TimeO�(m) TotalTimeO�% AveTimeInSystem% RunLength(h)

1 2 5 2.89 23.31 59.00

2 5 5 1.95 23.45 58.02

3 10 5 1.52 23.45 57.60

4 20 5 1.18 23.42 57.29

5 2 10 5.09 23.37 60.43

6 5 10 3.41 23.58 58.89

7 10 10 2.46 23.55 58.18

8 20 10 1.76 23.49 57.65

9 2 15 7.12 23.43 61.80

10 5 15 4.67 23.67 59.74

11 10 15 3.32 23.64 58.73

12 20 15 2.38 23.54 58.04

13 2 20 8.96 23.44 63.16

14 5 20 5.91 23.76 60.58

15 10 20 4.22 23.72 59.30

16 20 20 2.94 23.60 58.40

Average 9.25 12.50 3.74 23.53 59.18
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Table 5.4: Results of RPN with DbD model

Scenario NoVisit TimeO�(m) TotalTimeO�% AveTimeInSystem% RunLength(h)

1 2 5 10.04 54.66 123.00

2 5 5 9.99 54.60 123.05

3 10 5 9.92 54.57 122.96

4 20 5 9.90 54.53 122.86

5 2 10 10.49 54.78 123.69

6 5 10 10.39 54.70 123.59

7 10 10 10.27 54.64 123.42

8 20 10 10.22 54.54 123.33

9 2 15 10.94 54.92 124.38

10 5 15 10.76 54.79 124.14

11 10 15 10.61 54.69 123.85

12 20 15 10.52 54.57 123.74

13 2 20 11.38 55.01 125.01

14 5 20 11.13 54.88 124.64

15 10 20 10.91 54.77 124.32

16 20 20 10.87 54.58 124.26

Average 9.25 12.50 10.52 54.70 123.76

Table 5.5: Results of RPN with CD model

Scenario NoVisit TimeO�(m) TotalTimeO�% AveTimeInSystem% RunLength(h)

1 2 5 18.29 33.29 95.00

2 5 5 10.15 32.65 85.14

3 10 5 6.52 32.30 81.75

4 20 5 4.14 32.06 79.69

5 2 10 29.84 34.26 110.12

6 5 10 17.45 33.55 92.38

7 10 10 11.06 32.94 85.75

8 20 10 6.83 32.41 81.96

9 2 15 38.29 34.96 124.90

10 5 15 23.66 34.14 99.94

11 10 15 15.29 33.45 89.94

12 20 15 9.40 32.79 84.03

13 2 20 44.97 35.31 139.80

14 5 20 28.84 34.76 107.00

15 10 20 19.02 33.91 94.08

16 20 20 11.74 33.15 86.32

Average 9.25 12.50 18.47 33.50 96.11
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5.3.3.1 Collaborative vs. Dispatcher-based Dispatching Approach

In this part we discuss the results of two introduced dispatching approaches on two

di�erent models. First, we compare the results of PtP approach. The average runtime of

CD is about 33% less than DbD which is impressive. Other than this CD can increase

the total per driver time-o� percentage by 522%. Also, CD can decrease the average time

in system for each entity by 38%. Hence, our discussion showed that the CD approach is

strictly better than DbD since it can decrease the overall delivery time while it increasing

the overall time-o� rate for the vehicles.

The results of testing two approaches on the RPN system reveals that CD can decrease

the average run length and the average time in system for each entity by 22% and 39%,

respectively. Also, it can increase the total per driver time-o� percentage 76%. Similar to

PtP model, using CD approach is strictly better than DbD.

The reasons why the performance measure are signi�cantly better in the CD approach

can be having less empty mileages and better assignment of loads to drivers. Considering

these two discussions, we continue our experiments by incorporating the CD approach for

our further implementations.

5.3.3.2 Point-to-Point vs. RP-Network

Having the previous section evaluations, we compare the results of RPN and PtP models

using CD approach. The run length and the average time in system for each entity of PtP

approach are about 38% and 30% less than RPN approach, but the total per driver time-o�

percentage of PtP is about 20% of the RPN model which means using RPN, we can increase

this measure by four times which is impressive.

Regarding the results above, we can verify our discussion about the impact of using RPN

networks to decrease the driver turnover rate in the TL industry. But, as we discuss the run

length of RPN is higher in the RPN networks which can have a couple of reasons such as

circuity issue, increasing the number of layovers and of course having a higher time-o� for

drivers.

To improve the runtime in RPN network, we suggest increasing the number of vehicles.

We test the impact of this increase as we show in Table 5.6 the results of increasing the
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number of vehicles at each RP by one vehicle (total four vehicles). As it can be seen the

average run length for RPN in this setting is almost similar to PtP model while we maintain

the average per vehicle time-o� percentage same as before.

Table 5.6: Result of RPN with CD having additional vehicles

Scenario NoVisit TimeO�(m) TotalTimeO�% AveTimeInSystem% RunLength(h)

1 2 5 18.67 29.55 67.41

2 5 5 10.64 28.37 60.75

3 10 5 6.89 27.76 58.30

4 20 5 4.49 27.31 56.89

5 2 10 30.35 31.19 78.51

6 5 10 18.05 29.65 66.12

7 10 10 11.47 28.63 61.21

8 20 10 7.17 27.81 58.45

9 2 15 38.84 32.36 89.12

10 5 15 24.13 30.72 71.26

11 10 15 15.58 29.42 64.09

12 20 15 9.68 28.37 59.99

13 2 20 45.35 33.15 99.66

14 5 20 29.38 31.53 76.59

15 10 20 19.40 30.13 67.16

16 20 20 12.07 28.83 61.57

Average 9.25 12.50 18.89 29.67 65.92

This �nding is interesting since can help us to conclude that using the RPN and increasing

the number of vehicles properly, we can manage both the get-home times and promise date

to the customers and satisfy both drivers and transportation company.

5.3.4 Simulation-based Optimization for the Selected Model

Determining the best model and setting, we are able to do optimization to select the best

scenario among all the de�ned scenarios. To do so we use the OptQuest module of Simio to

do optimization. The setting of OptQuest is as Figure 5.19.
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Figure 5.19: OptQuest setting for Pattern Frontier multi-objective simulation-optimization

We use OptQuest add-in to generate a number of good scenarios to �nd the best values

for two input variables. We set the range [2, 20] and [5, 20] with increment value equal to

1 for �NoVisit� and �TimeO�(m)�, respectively. Since we have two objectives, �TotalTime-

O�(h)� and �AveTimeInSystem(h)�, with di�erent behaviour, we use the �Pattern Frontier�

objective type to do multi-objective optimization. We set 100 as the maximum number of

required scenarios among all possible scenarios. Evaluating 100 scenarios, OptQuest selects

37 scenarios as the set of good and reliable scenarios. Table 5.7 shows these 37 scenarios.

In the last column of this table, we introduce and tested a performance measure to

compare di�erent scenarios. Equation (5.4) shows this measure formula.

PM =
TotalT imeOff(m)

AvgT imeInSystem(m)×RunLength(m)2
× 108 (5.4)

As it can be seen, it takes a relatively high value for the suggested scenarios by Simio. Hence,

it can be used as an objective function which its maximum value can be considered as the
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Table 5.7: Selected scenario set resulted by OptQuest

Scenario NoVisit TimeO�(m) TotalTimeO�% AveTimeInSystem% RunLength(h) PM

2 2 5 0.18 0.29 66.93 3.95

3 20 20 0.12 0.28 61.35 3.15

4 7 9 0.13 0.29 62.11 3.34

5 16 16 0.12 0.28 61.25 3.14

6 2 19 0.44 0.32 96.72 4.05

7 20 7 0.05 0.27 57.31 1.73

10 2 12 0.34 0.31 82.38 4.48

11 19 12 0.08 0.27 59.16 2.42

12 7 16 0.21 0.30 68.10 4.16

13 9 5 0.07 0.27 58.37 2.16

14 15 12 0.10 0.28 60.08 2.78

15 16 5 0.05 0.27 57.17 1.62

16 2 15 0.39 0.32 88.65 4.31

17 2 20 0.45 0.32 98.94 3.95

18 2 7 0.24 0.30 71.44 4.36

19 4 18 0.31 0.31 77.56 4.55

20 4 15 0.27 0.31 74.13 4.50

21 4 7 0.16 0.29 64.13 3.71

22 4 6 0.14 0.28 62.90 3.48

26 6 13 0.19 0.30 67.21 4.00

28 3 18 0.36 0.32 84.05 4.45

29 2 14 0.37 0.32 87.05 4.25

31 2 17 0.42 0.32 92.85 4.19

42 5 19 0.28 0.31 74.88 4.56

43 2 16 0.40 0.32 91.24 4.13

46 4 17 0.29 0.31 76.19 4.58

47 3 19 0.37 0.32 84.84 4.46

48 3 15 0.32 0.31 79.15 4.56

49 3 17 0.34 0.32 82.51 4.39

51 2 6 0.21 0.29 69.46 4.19

61 5 13 0.22 0.30 69.35 4.18

70 9 6 0.08 0.28 59.25 2.38

72 5 15 0.24 0.30 70.79 4.44

74 3 6 0.17 0.29 64.93 3.84

75 13 11 0.10 0.28 60.50 2.78

81 2 11 0.32 0.32 80.69 4.37

84 4 8 0.17 0.29 65.57 3.91

94 5 16 0.25 0.31 72.50 4.33

97 4 9 0.19 0.29 66.78 4.10

99 4 13 0.25 0.30 71.58 4.43
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best objective for the problem and its associated inputs as the best solution.

Considering this new objective function, we conduct another simulation-based optimiza-

tion procedure using both OptQuest and KN (the Simio packages for simulation-based op-

timization) to select an smaller set of solution can be considered as the best solution set.

To do so we consider the PM as the only objective function of the problem. Also, we set a

limit for "RunLength" less than or equal to 70(h), because we are interested in �nding the

best solution (with respect to the measures de�ned) having a reasonable runtime as well. In

this regard, we use OptQuest to determine a set of good scenarios. Afterward, we use KN to

�nd the best solution set. KN is a sequential procedure in Simio to select the best scenario

set from a bigger set of candidate scenarios. The setting for KN we used is as Figure 5.20.

The indi�erence zone is selected equal to 0.1 meaning all the best solution with the distance

of 0.1 with respect to PM value are presented as the best solution set. Table 5.8 shows the

results of this procedure.

Figure 5.20: KN setting to select the best scenario set

The best solution set contains only one solution which we suggest it as the best solution
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Table 5.8: The best solution

NoVisit TimeO�(m) TotalTimeO�% AveTimeInSystem% RunLength(h) PM

3 9 22.41 29.88 69.84 4.27

for the problem. Hence, we suggest scheduling a time-o� for each driver after three deliveries.

Also, for a period of 69.84 (h) we suggest the time-o� length equal to 9 (m) which is about

0.21% of total run length. In this situation, the total time-o� percentage for each driver is

about 22% and average time in system for each load is about 30% of total run length. Also,

the value for proposed performance measure is about 4.27.

5.4 Conclusion

In this work, we simulate day-today operations of the considered truckload transportation

network. We simulate two types of network which are point-to-point (PtP) and relay point

network (RPN). Also, we investigate two types dispatching approach to assign the loads

to the drivers. The method, namely, dispatcher-based dispatching approach (DbD) and a

new method which we suggest in this study and call it collaborative dispatching approach

(CD). In the latter case, the assignment decisions are made based on a collaboration between

drivers and dispatcher in spit of DbD in which the dispatcher is the only decision maker.

We design a set of experiments to examine the performance of four di�erent models

achieved by two network types and two dispatching approaches, and suggest the best setting

for the system through a simulation-based optimization. To do so, we de�ne two input

variables which are the number of load deliveries before scheduling a time-o� for drivers

and the length of time-o� for each time-o�. Also, we de�ne two important measures or

objectives which are the average total time-o� for each driver and average time in system

for each load. The �rst objective addresses the driver point of view such that the higher

values for this measures increase the satisfactory level among the drivers (by increasing the

total time-o� and regularizing work schedule) and decrease the driver turnover rate. On the

other hand, increasing the �rst objective meaninglessly can extend the total runtime and

delivery times which is not appropriate from transportation companies perspective. Hence,
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we suggest the second objective to control this characteristic of the system. Regarding these

two objectives we �nd a model which outperform the others. Afterward, to �nd the best

values for our input values, controlling both objectives in an interesting level, we devise a

simulation-optimization method based on multi-objective optimization approach. We also

suggest a comprehensive performance measure which can be used as a single objective to

optimize the design of the network.

In terms of computational results, we show that RP-network utilizing collaborative dis-

patching approach outperforms all the other models when it has an appropriate number

of vehicles. Also, the best setting for this network is attained by scheduling a time-o� for

drivers after 3 deliveries whose length is about 0.21% of total run length of the model. We

claim that using the suggested setting can decrease the driver turnover rate while make the

truckload transportation companies satis�ed.
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Chapter 6

Conclusions and Future Research

This dissertation address the problem of high driver turnover rate in the TL transporta-

tion industry. We suggest utilizing the relay points through designing a well-structured relay

network to alleviate this problem properly. RP-networks because of their structure can en-

hance the quality of life among the drivers. In this regard, we consider the design of a relay

network having two special considerations, parallel shipment and multiple assignments gen-

eralizing the problem and decreasing the overall cost. Utilizing this new network setting, we

can improve the satisfactory level for both drivers and transportation company, concurrently.

In the �rst work of this dissertation, we propose a mixed-integer programming formulation

for the problem and propose an e�cient solution approach based on Benders decomposition

algorithm. Because of ine�ciencies in the conventional Benders' decomposition to solve the

proposed model, we employ several algorithmic enhancements including initial heuristics

working based on a modi�ed version of Dijkstra algorithm, a cut disaggregation scheme dis-

cussed, Bender's cut strengthening approach, surrogate constraints, etc. Our computational

studies show that the performance of the proposed solution method is interesting for dif-

ferent classes of test instances such that on average its runtime is less than that of B&C,

implemented by Cplex, by about 85% for those test instances which are solvable by both

Cplex and proposed algorithm. More than 70% of large size instances are not solvable by

Cplex. Also, the memory management of our algorithm is e�ective in such a way that it can

manage the memory to solve the large size instances properly. We assess the problem and

the algorithm in three di�erent cases to show the performances of all parts of the solution

method, separately. We also examine various problem and algorithm parameters on the

algorithmic performance and solution characteristics for di�erent cases. Furthermore, we

present a comprehensive and in-detail report in terms of network characteristics and design

information such as the required open RP locations, the direct shipment percentage among

111



di�erent cases, average number of visited RPs for each load, etc.

In the second work of this dissertation, we address the RP-network design problem under

demand uncertainty. Uncertainties in the network's demands are inevitable in the trans-

portation industry. We devise a framework to design an RP-network with uncertain or

stochastic demands. Our problem assumptions and settings are set based on our work in the

previous chapter of this dissertation. We suggest a two-stage stochastic program to model

considered problem in a stochastic setting. To solve the problem, we propose a new version

of the L-shaped method, namely, SC-based cut L-shaped method working based on a sce-

nario categorization scheme introduced. We show that this version of L-shaped method can

outperform two well-known versions of it, single-cut and multi-cut, to solve the proposed

problem. Also, we suggest a number of enhancements for improving the performance of the

proposed L-shaped method. The most important one is using a new version of the progres-

sive hedging algorithm which we devise for SMIPs to generate a reliable initial solution for

L-shaped. We show that this technique can improve the runtime, the number of iterations

and the initial gap percentage of L-shaped. Other than this, we suggest including the mean

value problem-based cut (MVP) to the L-shaped master problem. Also, we o�er using the

shortest path cuts to improve the initial lower bound of the algorithm and show that adding

these cuts can improve the runtime of the algorithm. Adding disaggregated cuts and early

termination the L-shaped master problem are two other enhancements we discussed to im-

prove L-shaped performance. The computational results show the superiority of our solution

method. Our overall algorithm, namely, PH-SLS, can improve the runtime and gap% of the

single-cut L-shaped method by 40% and 37%, respectively.

In the third work of this dissertation, we simulate operations of the considered networks.

We model two types of the network which are point-to-point (PtP) and relay point network

(RPN). Also, we address two dispatching approach methods to assign loads to the drivers.

The dispatcher-based dispatching approach (DbD) and a new method which we introduce

in this study and call it collaborative dispatching approach (CD). In CD approach, the as-

signments are made based on a collaboration between drivers and dispatcher in spit of DbD

approach in which the dispatcher is the only decision-maker. We design a set of experiments

to examine the performance of four di�erent models built by two network types and two dis-
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patching approaches and suggest the best setting for the system through a simulation-based

optimization. We devise a simulation-optimization method based on multi-objective opti-

mization approach to optimize two di�erent objective functions considering the drivers and

the transportation company point of views, concurrently. We also suggest a comprehensive

performance measure which can be used as a single objective to optimize the design of the

network. In terms of computational results, we show that RP-network utilizing collaborative

dispatching approach outperforms all the other models when it has an appropriate number

of vehicles.

Considering capacitated relay point or arcs in the problem can be regarded as the immedi-

ate extensions of our study which can be addressed by incorporating required extensions and

modi�cations to the proposed models. On the other hand, considering arc activation cost in

the model is another direction of investigating the RR-network design problem which can be

useful for other industries such as the telecommunication industry as well as the transporta-

tion industry. Also, in term of solution methodology, devising di�erent approaches to solve

the problem in the deterministic and stochastic environment can be considered as another

opportunity to extend this work.
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