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In this thesis, we investigate sample size calculation for three kinds of clinical trials:

(1). Randomized controlled trials (RCTs) with longitudinal count outcomes; (2). Cluster

randomized trials (CRTs) with count outcomes; (3). CRTs with multiple binary co-primary

endpoints.

Statistical inference based on RCTs with longitudinal count measurements are fre-

quently performed in biomedical studies. Most of existing sample size calculation meth-

ods for count outcomes are developed under the Poisson model. Deviation from the

Poisson assumption (equality of mean and variance) has been widely documented in

practice, which makes it more desirable to have sample size methods with more realis-

tic assumptions to ensure valid experimental design. In this thesis we investigate sam-

ple size calculation for clinical trials with longitudinal count measurements based on the

negative binomial distribution. This approach is flexible to accommodate over-dispersion

and unequal measurement intervals, as well as arbitrary randomization ratios, missing

data patterns, and correlation structures. In addition, the derived sample size formulas

have closed forms for the comparison of both slopes and time-averaged responses, which

greatly reduces the burden of implementation in practice.

Pragmatic clinical trials are designed to test intervention in real-world health system

practice in order to maximize the applicability and generalizability [45]. One common fea-

ture of pragmatic clinical trials is the use of clustered randomization, where clusters of

patients (formed by physicians or clinics, for example) are the units of randomization to
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avoid “contamination” between intervention and control participants. For example, in stud-

ies of dietary change, participants in the control group might learn about the experimental

diet and adopt to the experimental diet themselves. For CRTs with count outcomes, we

propose to directly incorporate pragmatic issues (e.g., over-dispersion, variability of clus-

ter sizes, etc.) into sample size calculation. The proposed method is developed based on

the GEE approach and it is advantageous in that the sample size formula has a closed

form, which facilitates its implementation in pragmatic CRTs. We also show in theory that

ignoring these pragmatic features will under-estimate the sample size, which leads to an

under-powered trial.

Recently, with increasing complexity of medical therapies and technological advances

in monitoring multiple outcomes, many clinical trials attempt to evaluate multiple co-

primary endpoints. In this study we also present a sample size calculation method for

CRTs with K ≥ 2 binary co-primary endpoints. Three types of correlation structures are

considered: inter-subject correlation within endpoint, intra-subject correlation across end-

points, and inter-subject correlation across endpoints. A closed-form joint distribution of

the K test statistics is derived, which facilitates the evaluation of power and type I error

for arbitrarily constructed hypotheses. We further present a theorem that characterizes

the relationship between the correlation structures and testing power.

Extensive simulations are conducted to demonstrate that the proposed methods can

maintain the nominal levels of power and type I error over a wide range of design configu-

rations. We also illustrate the applications of the proposed approaches using real clinical

trials.
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CHAPTER 1

INTRODUCTION

At the design stage of a clinical trial, one of the key considerations is sample size 

calculation. On one hand, insufficient sample size will lead to under-powered clinical 

trials to detect a difference between experiment groups. On the other hand, redundant 

sample size will introduce unnecessary expenditure of resources or expose participants 

to possible clinical risks. In this thesis, we investigate sample size calculation for three 

kinds of clinical trials: (1). Randomized controlled trials (RCTs) with longitudinal count 

outcomes; (2). Cluster randomized trials (CRTs) with count outcomes; (3). CRTs with 

multiple binary co-primary endpoints. The rest of this chapter is organized as follows. In 

Sections 1.1 - 1.3, we provide the literature review on sample size calculation for each of 

the three kinds of clinical trials, respectively. The limitations of current methods are also 

discussed. In Section 1.4, we give an overview on our proposed work.

1.1. Sample Size Calculation for RCTs with Longitudinal Count Outcomes

Statistical inference based on longitudinal count measurements are frequently con-

ducted in biomedical studies [2]. For example, in oncology trials the number of adverse 

events are closely monitored throughout the follow-up period [56], while in epilepsy trials 

the number of seizure episodes are periodically recorded from each patient [19]. The 

goal in such longitudinal studies is to determine whether the slopes (i.e., rates of change) 

are significantly different between the control and treatment groups. On the other hand, 

researchers may measure the response multiple times, hoping that the time-averaged re-

sponses (TAR) can be more accurate than a single measurement [34]. Most of existing 

sample size calculation methods for count outcomes are developed under the Poisson
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model. Ogungbenro & Aarons [42] and Amatya et al. [3] employed mixed-effects Pois-

son models to compute sample sizes for repeated count outcomes. Note that under the

mixed-effects model approach, the various correlation structures (specified through ran-

dom effects) are assumed at the level of the latent log-link function, not at the level of

observed counts. Alternatively, the generalized estimating equation (GEE) approach [33]

has been employed in sample size calculation, where correlation is directly modeled in

the distribution of count measurements. Patel & Rowe [44] developed a GEE sample size

formula for comparing two linear curves of longitudinal count outcomes under the Poisson

model, which requires complete observations from every patient. Lou et al. [35] pro-

posed a more flexible sample size method based on GEE that accommodates arbitrary

missing data patterns and correlation structures under the Poisson assumption. All the

aforementioned sample size methods are derived for the comparison of slopes between

two experiment groups. Sample size calculation for the comparison of TAR has received

relatively less attention. In the context of continuous and binary outcomes, sample size

calculation for the comparison of TAR has been investigated by Liu & Wu [34] and Zhang

& Ahn [62]. In terms of count outcomes, Asendorf et al. [5] proposed a sample size

approach for longitudinal count data based on a binomial thinning model. This approach

accommodates marginal Poisson or negative binomial (NB) distribution, but it only con-

siders the first order autoregressive correlation structure.

One limitation of the Poisson model stems from its underlying assumption that the

mean and variance of the count outcome are equal. In practice this assumption might be

too restrictive. Deviation from this assumption has been widely reported in biomedical re-

search [11, 12]. Specifically, researchers have frequently encountered the phenomenon

of over-dispersion where the variance of a count variable is greater than the mean. Im-

posing a Poisson model on over-dispersed data will result in under-estimated variance

and incorrect conclusion. As an alternative to the Poisson model, the NB model is gaining

popularity due to its flexibility to accommodate over-dispersion. Zhu & Lakkis [63] devel-

oped sample size calculation methods to compare the rates of two NB distributions. Tang
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[54] investigated sample size methods for comparing NB rates in noninferiority and equiv-

alence trials with unequal follow-up times. These two methods, however, only consider

independent NB measurements. They are not applicable to clinical trials where longitudi-

nal design is employed.

1.2. Sample Size Calculation for CRTs with Count Outcomes

Pragmatic clinical trials are designed to test intervention in the full spectrum of real-

istic clinical settings in order to maximize the applicability and generalizability [45]. The

research question of interest is whether an intervention actually works in real-world health

system practice. One common feature of pragmatic clinical trials is the use of clustered

randomization, where clusters of patients (formed by physicians or clinics, for example)

are the units of randomization to avoid “contamination” and to allow the intervention to

be applied as it would be in real-world practice [48]. One example of contamination is

that when a physician simultaneously provides care to patients enrolled in different arms,

leakage of treatments might occur between two arms, resulting in an observed interven-

tion effect that is diluted and biased toward the null. Thus in CRTs, an individual physician

would only provide care to patients in one treatment arm.

When conducted in pragmatic settings, CRTs create unique design and analytic chal-

lenges to biostatisticians. A well recognized statistical issue in CRTs is that responses

tend to be more similar within clusters than those across clusters. This within-cluster

similarity is quantified by the intraclass correlation coefficient (ICC) [39], and there has

been extensive investigation in design methods for CRTs to properly account for ICC.

See for example, Roberts & Roberts [50] and Eldridge et al. [15]. Amatya et al. [3] pro-

posed a sample size calculation method for CRTs with a count outcome. It was developed

based on the Poisson regression model under the assumption that the number of patients

(cluster size) is equal across all clusters. Such an assumption might be too restrictive,

especially for pragmatic CRTs conducted in realistic clinical settings. The clusters are

3



usually formed naturally with different cluster size due to practice scale, patient base, and

logistics, etc. Many researchers have shown that ignoring cluster size variability in sample

size calculation can lead to under-powered studies [1, 20]. Wang et al. [60] proposed to

incorporate cluster size variability into sample size calculation for CRTs with count out-

comes, where a correction term defined based on the coefficient of variation in cluster

size is included [37].

It is noteworthy that the methods in Amatya et al. [3] and Wang et al. [60] were both

developed under the Poisson model, which by definition imposes the restriction that the

mean and variance of the count outcome are equal [17]. In practice, however, the phe-

nomenon over-dispersion has been widely reported in biomedical research [11, 12]. In its

presence, employing a mis-specified Poisson model will lead to under-estimated sample

sizes. One common approach to account for over-dispersion is to model the count data

using the quasi Poisson distribution [61], which assumes the variance is a linear function

of the mean, with a slope greater than one to accommodate over-dispersion. Alternatively,

methods based on the negative binomial (NB) model, which assume the variance follows

a quadratic function of the mean [21], are gaining popularity.

Finally, both Amatya et al. [3] and Wang et al.[60] assume that all patients contribute

an equal length of follow-up, during which the counts of a certain event are measured.

In pragmatic trials, patients may experience treatment discontinuation or dropouts, leads

to different length of follow-up periods. For example, in a phase III trial [9] of a novel

phosphodiesterase 4 (PDE4) inhibitor for chronic obstructive pulmonary disease (COPD)

treatment, the primary endpoint was the incidence count of moderate or severe COPD

exacerbation. The enrolled patients were initially scheduled have a follow-up period of 52

weeks. However, roughly 30% of them withdrew early from the studies. As a result, the

incidence counts are measured over different lengths of follow-up across patients. In the

context of individual randomization trials, there has been some development in sample

size methods for count outcomes measured over different follow-up periods [31, 54]. To

the best of our knowledge, there is no such development for CRTs.
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1.3. Sample Size Calculation for CRTs with Multiple Binary Co-Primary Endpoints

Extensive research on power/sample size calculation has been conducted for CRTs

with a single primary outcome. For example, Lake et al. [28] investigated sample size

re-estimation for CRTs; Manatunga et al. [37] and Wang et al. [59] explored the impact

of random variability in cluster size on sample size requirement; Raudenbush [49] stud-

ied the optimal allocation of resources within and between clusters. More comprehensive

reviews can be found in Gao et al. [18] and Murray et al. [40].

Recently, the increasing complexity of medical therapies and technological advances

in obtaining a wider variety of measurements from study subjects have made multiple

endpoints and multiple testing increasingly important in clinical trials [8]. Sample size

calculation for RCTs with multiple co-primary endpoints have been studied by many re-

searchers. For example, Sozu et al. [52, 53] investigated sample size calculation ap-

proaches for RCTs with multiple binary endpoints or a mixture of continuous and binary

endpoints. Lafaye de Micheaux et al. [27] considered the case where multiple continu-

ous correlated endpoints are of primary interest. However, to the best of our knowledge,

there has been very limited research on investigating sample size calculation for CRTs

when multiple co-primary endpoints are evaluated. The challenge lies in the fact that

when co-primary endpoints are measured in a CRT, it gives rise to multiple types of de-

pendence. For example, the measurements of two endpoints from the same subject are

dependent in a way different from that of two measurements of the same endpoint from

two subjects within the same cluster. Therefore, an exchangeable correlation structure

which only accounts for the ICC becomes inadequate to model the correlation structure

in CRTs involving multiple endpoints. The multiple layers of the correlation structure re-

quests proper accomodation in data analysis and experimental design.
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1.4. The Proposed Work

The thesis contains three parts, which are respectively presented in Chapter 2-4.

In Chapter 2, we investigate sample size calculation for RCTs with longitudinal count

measurements based on the NB distribution under the GEE approach framework. Our

proposed approach is flexible to accommodate over-dispersion and unequal measure-

ment intervals, as well as arbitrary randomization ratios, missing data patterns, and corre-

lation structures. The derived sample size formulas have closed forms for the comparison

of both slopes and time-averaged responses, which greatly reduces the burden of imple-

mentation in practice. We have conducted extensive simulation study to demonstrate that

the proposed method can maintain the nominal levels of power and type I error over a

wide range of design configurations. We illustrate the application of this approach using

a real epileptic trial.

In Chapter 3, we consider the problem of sample size calculation for CRTs with a

count outcome. Particularly, we propose to directly incorporate pragmatic issues (e.g.,

over-dispersion, varying cluster sizes, etc.) into the calculation. The proposed method is

developed based on the GEE approach and it is advantageous in that the sample size

formula has a closed form, which facilitates its implementation in pragmatic CRTs. We

also show in theory that ignoring these pragmatic features will under-estimate the sample

size, which leads to an under-powered trial. We assess the performance of the proposed

sample size method through extensive simulation studies. An application example based

on a real clinical trial is presented.

In Chapter 4, we present a sample size calculation method for CRTs with K ≥ 2 binary

co-primary endpoints. It is developed based on the GEE approach, where three types of

correlation was considered: inter-subject correlation within an endpoint, intra-subject cor-

relation across endpoints, and inter-subject correlation across endpoints. A closed-form

joint distribution of the K test statistics was derived, which can be used to evaluate power

and type I error for arbitrarily constructed hypotheses. We further present a theorem that
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characterizes the relationship between the correlation structures and testing power. We

assess the performance of our proposed method based on extensive simulation studies,

finished with application to a real clinical trial is presented.

Finally, some discussion and concluding remarks are presented in Chapter 5.

7



CHAPTER 2
SAMPLE SIZE CALCULATION FOR CLINICAL TRIALS WITH LONGITUDINAL COUNT 

MEASUREMENTS BASED ON THE NEGATIVE BINOMIAL DISTRIBUTION

In this chapter, we investigate sample size calculation for clinical trials with longitu-

dinal count measurements based on the negative binomial distribution. This approach is 

flexible to accommodate over-dispersion and unequal measurement intervals, as well as 

arbitrary randomization ratios, missing data patterns, and correlation structures.

2.1. Statistical Model and Sample Size Approach for Comparing TAR

Suppose in a clinical trial patients are randomized to the treatment and control groups. 

Let t = (t1, · · · , tm) be the time of patient visits. For the ith (i = 1, · · · , n) subject, the 

primary outcome, denoted by yij , is the count of a certain event (eg., epilepsy episode 

or adverse drug reaction) during an interval of length Tj . Here n is the total sample 

size, m is the number of measurements observed from each subject, and the lengths 

of measurement intervals (Tj ’s) can be unequal. We model yij by a negative binomial

distribution,

P (yij) =
Γ(yij + v−1)

yij! Γ(v−1)

(
vµij

1 + vµij

)yij ( 1

1 + vµij

)v−1

, (2.1)

where µij and v are model parameters and Γ(·) is the gamma function. Under this specifi-

cation, we have E(yij) = µij and V ar(yij) = µij+vµ
2
ij. Parameter v controls how much the

variance deviates from the mean, which is called the dispersion parameter. It has been

shown that the Poisson model is a limiting case of a NB model with v → 0 [46]. When

making inference about TAR, we assume that the mean of yij to be constant over time,

8



and model µij by

log(µij) = log(Tj) + β1 + β2ri,

where ri = 1/0 indicates that subject i is assigned to the treatment/control group, log(Tj)

is the offset to account for potentially non-equal measurement intervals across visits, β1

is the rate of the control group on the log scale, and β2 models the ratio between the

treatment and control groups, representing the treatment effect. Define Zij = (1, ri)
′ = Zi

and β = (β1, β2)′, we have

µij(β) = Tj exp(Z ′ijβ) = Tj exp(Z ′iβ).

Let the within-subject correlation be Corr(yij, yij′) = ρjj′ with ρjj′ = 1 for j = j′.

Observations from different subjects are assumed to be independent. We are interested

in testing H0 : β2 = 0 versus H1 : β2 6= 0. In clinical trials researchers are frequently faced

with the problem of missing data due to missed clinic visits or patient dropout, etc. We

directly incorporate missing data into sample size calculation. First we define indicator

∆ij, which takes value 1 if the jth outcome of the ith subject is observed, and value 0 if it

is missing. Then δj = E(∆ij) is the probability of the jth outcome being observed, which

is assumed to be equal across all subjects. It’s also reasonable to assume δ1 ≥ δ2 ≥ · · · ≥

δm. Furthermore, δjj′ = E(∆ij∆ij′) is the joint probability that a subject has observations

at both times tj and tj′. Note that δjj = δj. The introduction of δj and δjj′ allows us to

accommodate a wide range of missing patterns. For example, under the independent

missing pattern (IM), missing data occur independently over time, so we have δjj′ = δjδj′

(j 6= j′). Under the monotone missing pattern (MM), a subject missing the observation at

tj misses all subsequent observations, hence δjj′ = δmax{j,j′}. The following derivations

are presented under the missing completely at random (MCAR) assumption.

9



estimator β̂ = (β̂1, β̂2) is solved from the following estimating equation,

Sn(β) = n−
1
2

n∑
i=1

m∑
j=1

∆ij
1

1 + vµij(β)
[yij − µij(β)]Zi = 0, (2.2)

which, with the introduction of ∆ij, can accommodate missing data. Equation (2.2) is

generally solved through the Newton-Raphson algorithm. At the lth iteration,

β̂(l) = β̂(l−1) + n−
1
2A−1

n (β̂(l−1))Sn(β̂(l−1)), (2.3)

where

An(β̂) = n−1

n∑
i=1

m∑
j=1

∆ijZiZ
′
i

µij(β̂)

1 + vµij(β̂)
. (2.4)

Under the special case of equal measurement intervals, T1 = ... = Tm = T , β̂ can be

solved analytically,

β̂1 = log

(∑n
i=1(1− ri)

∑m
j=1 ∆ijyij

T
∑n

i=1(1− ri)
∑m

j=1 ∆ij

)
, (2.5)

β̂2 = log

(∑n
i=n ri

∑m
j=1 ∆ijyij∑n

i=n1 ri
∑m

j=1 ∆ij

)
− log

(∑n
i=1(1− ri)

∑m
j=1 ∆ijyij∑n

i=1(1− ri)
∑m

j=1 ∆ij

)
.

Derivation of Equation (2.5) is presented in Appendix A.1.

Note that
√
n(β̂ − β) approximately follows a normal distribution with mean 0 and

variance Σn = A−1
n VnA

−1
n [33], where

Vn(β̂) = n−1

n∑
i=1

m∑
j=1

m∑
j′=1

∆ij∆ij′ ε̂ij ε̂ij′
1

[1 + vµij(β̂)]2
ZiZ

′
i.

Here, ε̂ij = yij − exp(β̂′Zi). Let σ̂2
2 be the (2,2)th element of Σn. We reject H0 : β2 = 0 if

|
√
nβ̂2
σ̂2
| is greater than z1−α/2, where z1−α/2 is the 100(1− α/2)th percentile of the standard

10
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normal distribution. Let A and V denote the limits of An and Vn as n→∞, it follows that

Σn converges to Σ = A−1V A−1. Let σ2
2 denotes the (2,2)th element of Σ. Then given

the true treatment effect β2 = β20, the sample size to achieve power 1 − γ at two-sided

significance level α can be calculated by

n =
σ2

2(z1−α/2 + z1−γ)
2

β2
20

.

Here we show that a closed-form expression of σ2
2 can be derived, which results in a

closed-form sample size formula. Specifically, as n→∞, we have

A = E

 m∑
j=1

∆ij
µij(β)

1 + vµij(β)

 1 ri

ri r2
i




= (1− r̄)
m∑
j=1

δj
Tjµ1

1 + vTjµ1

 1 0

0 0

+ r̄
m∑
j=1

δj
Tjµ2

1 + vTjµ2

 1 1

1 1



=

 (1− r̄)
∑m

j=1 δj
Tjµ1

1+vTjµ1
+ r̄

∑m
j=1 δj

Tjµ2
1+vTjµ2

r̄
∑m

j=1 δj
Tjµ2

1+vTjµ2

r̄
∑m

j=1 δj
Tjµ2

1+vTjµ2
r̄
∑m

j=1 δj
Tjµ2

1+vTjµ2

 ,

where µ1 = exp(β1) and µ2 = exp(β1 + β2). Similarly,

V = E

 m∑
j=1

m∑
j′=1

∆ij∆ij′εijεij′
1

[1 + vµij(β)]2

 1 rj′

rj rjrj′


 (2.6)

= (1− r̄)
m∑
j=1

m∑
j′=1

δjj′ρjj′µ1

√
TjTj′√

(1 + vTjµ1)(1 + vTj′µ1)

 1 0

0 0

+ r̄
m∑
j=1

m∑
j′=1

δjj′ρjj′µ2

√
TjTj′√

(1 + vTjµ2)(1 + vTj′µ2)

 1 1

1 1

 .
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Here we use the fact that E(εijεij′) = ρjj′
√

(1 + vTjµi)(1 + vTj′µi). Because A and V are

2× 2 matrices, it is easy to show that

σ2
2 =

∑m
j=1

∑m
j′=1

δjj′ρjj′µ1
√
TjTj′√

(1+vTjµ1)(1+vTj′µ1)

(1− r̄)(
∑m

j=1 δj
Tjµ1

1+vTjµ1
)2

+

∑m
j=1

∑m
j′=1

δjj′ρjj′µ2
√
TjTj′√

(1+vTjµ2)(1+vTj′µ2)

r̄(
∑m

j=1 δj
Tjµ2

1+vTjµ2
)2

. (2.7)

It follows that the closed-form sample size formula for the comparison of TAR is:


∑m

j=1

∑m
j′=1

δjj′ρjj′µ1
√
TjTj′√

(1+vTjµ1)(1+vTj′µ1)

(1− r̄)(
∑m

j=1 δj
Tjµ1

1+vTjµ1
)2

+

∑m
j=1

∑m
j′=1

δjj′ρjj′µ2
√
TjTj′√

(1+vTjµ2)(1+vTj′µ2)

r̄(
∑m

j=1 δj
Tjµ2

1+vTjµ2
)2

 (z1−α/2 + z1−γ)
2

β2
20

.

(2.8)

When T1 = ... = Tm = T , Formula (2.8) can be simplified to

n =
[(1− r̄)Tµ1 + r̄Tµ2 + vT 2µ1µ2](

∑m
j=1

∑m
j′=1 δjj′ρjj′)(z1−α/2 + z1−γ)

2

(1− r̄)r̄T 2µ1µ2β2
20(
∑m

j=1 δj)
2

. (2.9)

Formula (2.9) explicitly shows that the sample size is an increasing function of the

dispersion parameter v. Here are some useful facts about the sample size formulas (2.8)

and (2.9):

• Longitudinal observations are usually positively correlated. In such scenarios, stronger

correlation (larger ρjj′) is associated with larger sample size requirement for the

comparison of TAR.

• When within-subject correlation is non-negative (ρjj′ ≥ 0), given the same set of

marginal observation probabilities δ = (δ1, · · · , δm), missing data pattern MM is as-

sociated with a larger sample size than IM, because when j = j′ we have δ
(IM)
jj =

δ
(MM)
jj = δj, and for j 6= j′

δ
(MM)
jj′ = δmax{j,j′} ≥ δ

(IM)
jj = δjδj′ .
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For sample size calculation, we assume that the dispersion parameter v is known. In

practice, we need to obtain an estimate of v which we denote as v̂. Note that E(ε2ij) =

E[(yij − µij)2] = V ar(yij) = µij + vµ2
ij, resulting in E(ε2ij − µij − vµ2

ij) = 0. We follow the

approach of Kong et al. [25], which finds v̂ by minimizing

n∑
i=1

m∑
j=1

∆ij(ε̂
2
ij − µij(β̂)− µij(β̂)2v)2,

given β̂. It is easy to verify that

v̂ =

∑n
i=1

∑m
j=1 ∆ij[ε̂

2
ij − µij(β̂)]µij(β̂)2∑n

i=1

∑m
j=1 ∆ijµij(β̂)4

. (2.10)

A complete estimation procedure for (β, v)′ is listed as follows:

1. Initial values of β̂ and v̂ can be obtained through the maximum likelihood estimation

by treating all observations as independent. We denote the initial values as β̂(0) and

v̂(0).

2. Plug β̂(0) and v̂(0) into Equations (2.3)-(2.4) to update β̂ which we denote as β̂(1).

Given β̂(1), we use Equation (2.10) to update v̂, denoted as v̂(1).

3. Repeat Step 2 until β̂ and v̂ converge.

2.2. Statistical Model and Sample Size Approach for Comparing Slopes

For comparing the slopes between two experimental groups, we assume that

log(µij) = log(Tj) + β1 + β2ri + β3tj + β4ritj.

Note that β4 is the difference in slope between the control and treatment groups, repre-

senting the treatment effect. We are interested in testing H0 : β4 = 0 vs H1 : β4 6= 0. Let
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Zij = (1, ri, tj, ritj)
′ and β = (β1, β2, β3, β4)′, hence,

µij(β) = Tj exp(β′Zij).

The GEE estimator β̂ = (β̂1, β̂2, β̂3, β̂4)′ is solved from

Sn(β) = n−
1
2

n∑
i=1

m∑
j=1

∆ij
1

1 + vµij(β)
[yij − µij(β)]Zij = 0, (2.11)

similarly based on the Newton-Raphson algorithm as described in Section 2.1.
√
n(β̂ −

β) approximately follows a normal distribution with mean 0 and variance matrix Σn =

A−1
n VnA

−1
n , where

An(β̂) = n−1

n∑
i=1

m∑
j=1

∆ijZijZ
′
ij

µij(β̂)

1 + vµij(β̂)
,

and

Vn(β̂) = n−1

n∑
i=1

m∑
j=1

m∑
j′=1

∆ij∆ij′ ε̂ij ε̂ij′
1

1 + vµij(β̂)

1

1 + vµij′(β̂)
ZijZ

′
ij′ .

Let σ̂2
4 be the (4,4)th element of Σn. We reject H0 : β4 = 0 if |

√
nβ̂4
σ̂4
| is greater than

z1−α/2. Let σ2
4 denote the (4,4)th element of Σ. Under the true treatment effect β4 = β40,

with a predetermined type I error α and power 1− γ, the required sample size is

n =
σ2

4(z1−α/2 + z1−γ)
2

β2
40

. (2.12)

In order to calculate the sample size, we need to derive the expression of A and V . As

n→∞, we have
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A = E


m∑
j=1

∆ij
µij(β)

1 + vµij(β)



1 ri tj ritj

ri r2
i ritj r2

i tj

tj ritj t2j rit
2
j

ritj r2
i tj rit

2
j r2

i t
2
j





= (1− r̄)
m∑
j=1

δj
Tjξ1j

1 + vTjξ1j



1 0 tj 0

0 0 0 0

tj 0 t2j 0

0 0 0 0


+ r̄

m∑
j=1

δj
Tjξ2j

1 + vTjξ2j



1 1 tj tj

1 1 tj tj

tj tj t2j t2j

tj tj t2j t2j


,

where ξ1j = exp(β1 + β3tj) and ξ2j = exp[β1 + β2 + (β3 + β4)tj] are the time-specific rates

in the control and treatment groups, respectively. Similarly we have

V = E


m∑
j=1

m∑
j′=1

∆ij∆ij′εijεij′
1

1 + vµij(β)

1

1 + vµij′(β)



1 ri tj′ ritj′

ri r2
i ritj′ r2

i tj′

tj ritj tjtj′ ritjtj′

ritj r2
i tj ritjtj′ r2

i tjtj′




.
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It follows that, V = (1− r̄)V1 + r̄V2, where

V1 =
m∑
j=1

m∑
j′=1

δjj′ρjj′

√
TjTj′ξ1jξ1j′√

(1 + vTjξ1j)(1 + vTj′ξ1j′)



1 0 tj′ 0

0 0 0 0

tj 0 tjtj′ 0

0 0 0 0


and

V2 =
m∑
j=1

m∑
j′=1

δjj′ρjj′

√
TjTj′ξ2jξ2j′√

(1 + vTjξ2j)(1 + vTj′ξ2j′)



1 1 tj′ tj′

1 1 tj′ tj′

tj tj tjtj′ tjtj′

tj tj tjtj′ tjtj′


.

With some algebra, we can show that

σ2
4 =

∑m
j=1

∑m
j′=1 δjj′ρjj′η1jη1j′(tj − t̄1)(tj′ − t̄1)

(1− r̄)[
∑m

j=1 δjη
2
1j(tj − t̄1)2]2

+

∑m
j=1

∑m
j′=1 δjj′ρjj′η2jη2j′(tj − t̄2)(tj′ − t̄2)

r̄[
∑m

j=1 δjη
2
2j(tj − t̄2)2]2

,

(2.13)

where η1j =

√
Tjξ1j√

1+vTjξ1j
, η2j =

√
Tjξ2j√

1+vTjξ2j
, t̄1 =

∑m
j=1 δjη

2
1jtj∑m

j=1 δjη
2
1j

, and t̄2 =
∑m

j=1 δjη
2
2jtj∑m

j=1 δjη
2
2j

. Therefore,

the closed-form sample size formula for comparing slopes is

n =

[∑m
j=1

∑m
j′=1 δjj′ρjj′η1jη1j′ (tj−t̄1)(tj′−t̄1)

(1−r̄)(
∑m

j=1 δjη
2
1j(tj−t̄1)2)2

+
∑m

j=1

∑m
j′=1 δjj′ρjj′η2jη2j′ (tj−t̄2)(tj′−t̄2)

r̄(
∑m

j=1 δjη
2
2j(tj−t̄2)2)2

]
(z1−α/2 + z1−γ)2

β2
40

.

(2.14)

The derivation of Equation (2.13) is presented in Appendix A.2.

To compute a sample size using Formulas (2.8) or (2.14), we need to specify the

number of measurements m, the visit times t, the measurement intervals T , the random-

ization scheme r̄, the parameter vector β, the overdispersion parameter v, the correlation

structure and the correlation parameter ρ, the observational probability vector δ and the

missing pattern, and pre-determined levels of type I error α and power 1− γ.
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2.3. Simulation

We conduct the following simulation study to evaluate the performance of the pro-

posed sample size methods. First we assume that each patient is scheduled to con-

tribute m=5 measurements with visit times t = (1, ..., 5). Without loss of generality, we

explore two types of measurement intervals: equal-length T = (1, 1, 1, 1, 1), and unequal-

length T = (0.8, 1, 1, 1, 1.2). The nominal levels of type I error and power are set at

α = 0.05 and 1 − γ = 0.8, respectively. The marginal observation probabilities are set

at δ = (1, 0.95, 0.9, 0.85, 0.8). That is, we assume no missing data at the initial measure-

ment, and an additional 5% missing at each of the subsequent visits. We set r̄ = 0.5, i.e.,

a balanced randomization. We consider two missing data patterns (IM and MM), and two

correlation structures, compound symmetry (CS) and AR(1). Under CS, within-subject

correlation is constant regardless of time, ρjj′ = ρ for j 6= j′. Under AR(1), the correlation

is assumed to decay over time, ρjj′ = ρ|j
′−j|. Three values of the correlation parameter

are evaluated: ρ = 0.1, 0.3, 0.5. For the comparison of TAR between two groups, we set

intercept at β1 = 0.2 and explore two levels of true treatment effects β20= 0.25 and 0.3.

For the comparison of slopes, we set (β1, β2, β3) = (0.1, 0, 0.1) and explore two treatment

effects β40 = 0.1 and 0.15. Finally, we consider two values of the dispersion parameter,

v = 0.5 and 1. For each combination of design parameters, we compute sample size, and

then conduct simulation to evaluate the empirical power and type I error. The simulation

algorithm for a particular design configuration is described as follows:

1. For the comparison of TAR, we calculate sample size n by plugging the set of design

parameters into Equation (2.8). For the comparison of slopes, we calculate sample

size n by Equation (2.14).

2. We run 5000 iterations. For each iteration:

(a) Generate a dataset of size n under the the alternative hypothesis (β2 = β20 or

β4 = β40). Every patient has a vector of correlated count outcomes, (yi1, · · · , yim).
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Each outcome marginally follows a negative binomial distribution with parame-

ters (µij, v), while jointly they are correlated with assumed correlation structure

and ρ. The correlated negative binomial data are generated using the R pack-

age "corcounts" [16].

(b) For each subject, we generate missing indicators (∆i1, · · · ,∆im) based on the

specified marginal observation probabilities and missing pattern.

(c) For comparing the TAR between groups, we obtain β̂2 and σ̂2; for comparing

the slopes between groups, we obtain β̂4 and σ̂4.

3. The empirical power is estimated as the proportion of iterations that reject the null

hypothesis. That is, the proportion of iterations |
√
n β̂2
σ̂2
|> z1−0.05/2 for comparing the

TAR, and |
√
n β̂4
σ̂4
|> z1−0.05/2 for comparing the slopes.

4. We repeat Steps 2-3 to assess the empirical type I error by setting the value of β2

or β4 to 0 in Step 2(a).

Tables 2.1−2.2 present the sample size, empirical type I error, and empirical power un-

der different combinations of design parameters for comparing TAR, while Tables 2.3−2.4

are for comparing slopes. Under the combinations of design parameters considered, the

sample sizes range from 111 to 691. The empirical powers and type I errors are gen-

erally close to the nominal levels, which indicates good performance of the proposed

sample size method. Tables 2.1− 2.2 confirm the theoretical properties of sample size for

comparing TAR, that the sample size increases as v increases, a stronger correlation is

associated with a larger sample size, and that the sample size under MM is greater than

that under IM. For comparing slopes, Tables 2.3 − 2.4 help us empirically assess the im-

pact of different design parameters. We observe that a larger v is associated with a larger

sample size requirement, and that the MM missing pattern results in a larger sample size

than IM. It can be analytically shown that under the CS correlation structure, there is a

linear relationship between sample size and parameter ρ. The relationship is less clear

under the AR(1) structure. In Figure 2.1 we graphically explore the association between
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sample size and correlation parameter (ρ). It shows that under the CS correlation struc-

ture, the sample size always decreases as ρ increases. Note that the sample size for TAR

has an opposite direction of association with ρ. Under the AR(1) correlation structure, the

association between sample size and ρ is no longer monotone. As ρ increases, the sam-

ple size first increases and then decreases, following a
⋂

shape. The above observation

suggests that at the design stage, it is important to have a good understanding about the

correlation structure and the strength of correlation, which could be learned from prior

experiments.

2.4. Application

We apply the proposed sample size method to an epileptic study [55]. A total of 59

epileptic patients were enrolled, among which 31 patients received the anti-epileptic drug

(treatment) and the other 28 patients received the placebo (control). The outcome is the

number of epileptic seizure episodes recorded at four time points over two-week intervals.

Suppose researchers want to design a new randomized trial where the design parameters

are based on the data generated from this study. The research question is to compare

the slopes between the treatment versus control group.

We code the visit times as t = (1, 2, 3, 4) with T = (1, 1, 1, 1). Using the GEE ap-

proach, the regression coefficients are estimated as β̂ = (2.257, 0.006,−0.043,−0.033)′

and dispersion parameter v̂ = 2.07. The difference in slope (β̂4) is not significantly dif-

ferent from 0, with a p-value of 0.617. Based on the QIC criteria [43], we determine that

the CS structure provides a better fit and the correlation parameter (ρ) is estimated to be

0.8059.

Suppose for the new study, the treatment is considered clinically meaningful if the

magnitude of β4 is at least 0.2. Therefore, we assume β′ = (2.257, 0.006,−0.043,−0.2)′

and v = 2.07 for sample size calculation. The correlation structure is assumed to be CS

with ρ = 0.8059. Other design parameters are specified as r̄ = 0.5 (a balanced random-
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ization), two-sided type I error α = 0.05, power 0.8, and marginal observation probabilities

δ = (1, 0.95, 0.9, 0.85). The corresponding sample sizes are 98, 103, 69 under IM, MM,

and complete data, respectively.
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Figure 2.1: Association between sample size and correlation parameter ρ with IM missing
pattern, β = (0.1, 0, 0.1, 0.1), t = (0, 1, 2, 3, 4, 5), T = (1, 1, 1, 1, 1), v = 0.5
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Table 2.1: Sample size (empirical type I error, empirical power) for comparing TAR with
v = 0.5, T1 = (1, 1, 1, 1, 1), and T2 = (0.8, 1, 1, 1, 1.2)

β2 ρ = 0.1 ρ = 0.3 ρ = 0.5

Complete 0.25 173(0.053,0.797) 272(0.057,0.804) 371(0.057,0.806)

0.3 119(0.054,0.812) 187(0.056,0.800) 254(0.049,0.799)

CS IM 0.25 187(0.053,0.806) 285(0.058,0.806) 384(0.058,0.799)

0.3 128(0.054,0.799) 196(0.050,0.801) 263(0.057,0.797)

MM 0.25 189(0.055,0.803) 293(0.051,0.803) 397(0.057,0.803)

T1 0.3 130(0.054,0.803) 201(0.057,0.801) 272(0.053,0.800)

Complete 0.25 145(0.053,0.806) 200(0.052,0.802) 275(0.059,0.803)

0.3 100(0.056,0.803) 137(0.054,0.810) 189(0.054,0.805)

AR(1) IM 0.25 159(0.053,0.801) 213(0.054,0.797) 289(0.060,0.808)

0.3 109(0.054,0.817) 146(0.054,0.815) 198(0.052,0.807)

MM 0.25 161(0.054,0.822) 219(0.052,0.809) 299(0.055,0.797)

0.3 110(0.059,0.813) 150(0.053,0.809) 205(0.055,0.802)

Complete 0.25 174(0.053,0.809) 273(0.058,0.804) 372(0.052,0.800)

0.3 119(0.060,0.806) 187(0.056,0.792) 255(0.060,0.792)

CS IM 0.25 189(0.052,0.806) 288(0.053,0.808) 387(0.056,0.799)

0.3 129(0.054,0.799) 198(0.050,0.806) 266(0.053,0.790)

MM 0.25 191(0.059,0.808) 296(0.052,0.796) 401(0.051,0.783)

T2 0.3 131(0.051,0.814) 203(0.057,0.805) 275(0.051,0.797)

Complete 0.25 146(0.052,0.811) 200(0.055,0.795) 276(0.055,0.795)

0.3 100(0.060,0.813) 137(0.053,0.803) 189(0.057,0.814)

AR(1) IM 0.25 160(0.054,0.800) 215(0.053,0.807) 292(0.051,0.802)

0.3 110(0.054,0.804) 148(0.053,0.807) 200(0.051,0.803)

MM 0.25 162(0.052,0.804) 221(0.050,0.806) 302(0.051,0.805)

0.3 111(0.055,0.809) 152(0.055,0.807) 207(0.058,0.811)
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Table 2.2: Sample size (empirical type I error, empirical power) for comparing TAR with
v = 1, T1 = (1, 1, 1, 1, 1), and T2 = (0.8, 1, 1, 1, 1.2)

β2 ρ = 0.1 ρ = 0.3 ρ = 0.5

Complete 0.25 244(0.048,0.811) 382(0.052,0.785) 521(0.057,0.790)

0.3 168(0.056,0.804) 263(0.060,0.798) 359(0.048,0.791)

CS IM 0.25 263(0.052,0.793) 401(0.053,0.816) 540(0.059,0.799)

0.3 181(0.053,0.801) 276(0.055,0.790) 372(0.051,0.804)

MM 0.25 266(0.057,0.799) 412(0.054,0.797) 558(0.055,0.792)

T1 0.3 183(0.052,0.805) 284(0.052,0.803) 384(0.054,0.804)

Complete 0.25 204(0.055,0.808) 281(0.058,0.807) 387(0.056,0.806)

0.3 141(0.058,0.813) 193(0.060,0.808) 266(0.057,0.795)

AR(1) IM 0.25 224(0.055,0.807) 300(0.055,0.807) 406(0.051,0.812)

0.3 154(0.053,0.807) 207(0.053,0.814) 280(0.054,0.813)

MM 0.25 226(0.052,0.811) 307(0.054,0.814) 420(0.055,0.799)

0.3 156(0.058,0.809) 212(0.054,0.806) 289(0.055,0.800)

Complete 0.25 244(0.051,0.808) 384(0.055,0.785) 523(0.062,0.793)

0.3 168(0.052,0.813) 264(0.052,0.796) 360(0.057,0.799)

CS IM 0.25 265(0.053,0.809) 405(0.056,0.795) 544(0.057,0.797)

0.3 182(0.054,0.810) 279(0.058,0.794) 375(0.053,0.799)

MM 0.25 268(0.056,0.800) 416(0.062,0.800) 563(0.057,0.792)

T2 0.3 185(0.058,0.805) 286(0.050,0.797) 387(0.057,0.792)

Complete 0.25 205(0.052,0.805) 282(0.053,0.818) 388(0.055,0.810)

0.3 141(0.055,0.813) 194(0.053,0.805) 267(0.054,0.801)

AR(1) IM 0.25 225(0.063,0.805) 302(0.055,0.807) 410(0.054,0.809)

0.3 155(0.059,0.813) 208(0.053,0.809) 282(0.054,0.812)

MM 0.25 228(0.056,0.803) 310(0.051,0.808) 424(0.055,0.820)

0.3 157(0.055,0.804) 214(0.055,0.820) 292(0.057,0.796)
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Table 2.3: Sample size (empirical type I error, empirical power) for comparing slopes with
v = 0.5, T1 = (1, 1, 1, 1, 1), and T2 = (0.8, 1, 1, 1, 1.2)

β4 ρ = 0.1 ρ = 0.3 ρ = 0.5

Complete 0.1 311(0.053,0.801) 243(0.053,0.804) 175(0.059,0.800)

0.15 135(0.057,0.805) 105(0.057,0.802) 76(0.062,0.803)

CS IM 0.1 350(0.046,0.804) 282(0.058,0.808) 214(0.059,0.808)

0.15 152(0.054,0.807) 122(0.056,0.810) 93(0.062,0.799)

MM 0.1 351(0.056,0.806) 285(0.055,0.799) 219(0.059,0.794)

T1 0.15 152(0.054,0.803) 124(0.061,0.799) 95(0.059,0.799)

Complete 0.1 371(0.046,0.818) 412(0.050,0.808) 415(0.052,0.803)

0.15 161(0.050,0.806) 178(0.051,0.818) 180(0.056,0.817)

AR(1) IM 0.1 411(0.053,0.811) 452(0.054,0.803) 455(0.054,0.808)

0.15 178(0.054,0.814) 196(0.054,0.813) 197(0.049,0.815)

MM 0.1 413(0.056,0.806) 458(0.047,0.807) 464(0.052,0.813)

0.15 179(0.056,0.799) 198(0.058,0.799) 201(0.057,0.809)

Complete 0.1 319(0.050,0.808) 251(0.051,0.800) 183(0.060,0.799)

0.15 138(0.053,0.809) 109(0.059,0.811) 80(0.062,0.800)

CS IM 0.1 359(0.051,0.805) 291(0.053,0.794) 223(0.060,0.804)

0.15 156(0.061,0.814) 126(0.064,0.812) 97(0.058,0.814)

MM 0.1 360(0.050,0.794) 293(0.052,0.801) 226(0.055,0.793)

T2 0.15 156(0.058,0.795) 127(0.059,0.802) 98(0.058,0.808)

Complete 0.1 380(0.054,0.803) 423(0.052,0.809) 426(0.053,0.795)

0.15 165(0.053,0.806) 183(0.060,0.802) 185(0.057,0.808)

AR(1) IM 0.1 421(0.049,0.806) 464(0.054,0.808) 468(0.052,0.806)

0.15 183(0.053,0.798) 201(0.056,0.813) 203(0.056,0.806)

MM 0.1 423(0.050,0.804) 469(0.052,0.807) 476(0.050,0.802)

0.15 183(0.059,0.815) 203(0.055,0.809) 206(0.058,0.809)
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Table 2.4: Sample size (empirical type I error, empirical power) for comparing slopes with
v = 1, T1 = (1, 1, 1, 1, 1), and T2 = (0.8, 1, 1, 1, 1.2)

β4 ρ = 0.1 ρ = 0.3 ρ = 0.5

Complete 0.1 453(0.051,0.805) 353(0.061,0.802) 253(0.060,0.799)

0.15 198(0.056,0.804) 154(0.059,0.805) 111(0.061,0.800)

CS IM 0.1 511(0.052,0.801) 411(0.056,0.793) 311(0.061,0.799)

0.15 223(0.049,0.805) 180(0.055,0.808) 136(0.064,0.810)

MM 0.1 513(0.051,0.814) 416(0.056,0.802) 319(0.058,0.791)

T1 0.15 224(0.051,0.798) 182(0.056,0.803) 140(0.054,0.791)

Complete 0.1 542(0.052,0.810) 601(0.046,0.809) 604(0.053,0.792)

0.15 237(0.051,0.809) 262(0.048,0.805) 264(0.054,0.811)

AR(1) IM 0.1 600(0.049,0.815) 659(0.055,0.811) 662(0.051,0.802)

0.15 262(0.053,0.808) 288(0.052,0.804) 289(0.051,0.802)

MM 0.1 603(0.052,0.805) 668(0.055,0.810) 676(0.048,0.804)

0.15 263(0.052,0.807) 292(0.049,0.806) 295(0.055,0.800)

Complete 0.1 462(0.054,0.814) 362(0.056,0.795) 261(0.056,0.799)

0.15 202(0.055,0.816) 158(0.059,0.809) 114(0.063,0.802)

CS IM 0.1 522(0.052,0.809) 421(0.052,0.799) 320(0.067,0.800)

0.15 228(0.057,0.803) 184(0.061,0.806) 140(0.065,0.804)

MM 0.1 523(0.058,0.797) 425(0.055,0.807) 326(0.054,0.807)

T2 0.15 229(0.054,0.808) 186(0.057,0.799) 143(0.056,0.808)

Complete 0.1 553(0.052,0.800) 614(0.050,0.804) 618(0.055,0.801)

0.15 242(0.058,0.800) 268(0.055,0.804) 270(0.055,0.813)

AR(1) IM 0.1 613(0.049,0.810) 674(0.052,0.805) 678(0.050,0.803)

0.15 268(0.055,0.810) 295(0.053,0.819) 297(0.050,0.811)

MM 0.1 616(0.054,0.801) 683(0.053,0.804) 691(0.052,0.804)

0.15 269(0.058,0.808) 298(0.056,0.813) 302(0.053,0.806)
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CHAPTER 3
INCORPORATING PRAGMATIC FEATURES INTO SAMPLE SIZE CALCULATION FOR 

CLUSTERED RANDOMIZATION TRIALS WITH A COUNT OUTCOME

In this chapter, we propose a sample size calculation method for CRT with a count 

outcome, which is capable of handling pragmatic issues such as over-dispersion and 

varying cluster size.

3.1. Statistical Model and Sample Size Approach

Suppose in a CRT, N clusters are randomized to a control or a treatment arm. In the 

following, we use C and T to denote the set of clusters assigned to the control and 

treatment arm, respectively. We further use mi (i = 1, ..., N) to denote the cluster size and 

mi is assumed to independently follow a certain discrete distribution P rob(mi = m) = g(m) 

with outcome space M. We further define mean ηm = E(mi) and variance τ2
 = V ar(mi). 

The primary outcome, denoted by yij , is the count of a certain event (e.g. infections, 

exacerbation episodes, hospital visits, etc.) for the jth patient in the ith cluster during a 

follow-up period of length tij . We assume that there is a common planned follow-up time 

(denoted by t∗) for every patient. However, each patient has a probability to drop out from 

the study. The time to drop out from the study, which we denote as dij , is independent 

and identically distributed with a certain continuous distribution. Hence the true follow-up 

time is tij = min(t∗, dij ), with f(tij ) as the density function. We model yij by a quasi 

Poisson distribution [61], where the first two moments are defined by E(yij ) = µij and V 

ar(yij ) = θµij . Here θ ≥ 1 is the over-dispersion parameter. The mean parameter µij is 

modeled by

log(µij) = log(tij) + β1 + β2ri. (3.1)
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In the model, ri = 1/0 indicates that cluster i is assigned to the treatment/control arm,

log(tij) is the offset to account for variable lengths of follow-up, β1 is the event rate under

control on the log scale, and β2 models the difference between the treatment and control

arms, representing the treatment effect. A cluster is assigned to the treatment arm with

probability r̄ = E(ri). Intraclass correlation (ICC) is denoted by ρ = Corr(yij, yij′) for j 6= j′

and observations are assumed to be independent across clusters. The primary interest

is to test H0 : β2 = 0 vs H1 : β2 6= 0. Let Zij = (1, ri)
′ = Zi and β = (β1, β2)′, we have

µij(β) = tij exp(Z ′ijβ) = tij exp(Z ′iβ).

Let yi = (yi1, · · · , yimi
)′ be the response vector of the ith cluster and similarly define

µi(β) = (µi1(β), · · · , µimi
(β))′. Utilizing an independent working correlation structure, the

GEE estimator β̂ = (β̂1, β̂2)′ is obtained from

SN(β) = N−
1
2

N∑
i=1

D′iW
−1
i [yi − µi(β)] = 0, (3.2)

where Di is a mi× 2 gradient matrix defined as Di =
∂µi(β)

∂β
and Wi = θS0.5

i Imi
S0.5
i . Here

Si = diag[µi(β)] is a mi ×mi diagonal matrix and Imi
is the mi ×mi identity matrix. With

some algebra, we can simplify (3.2) to

SN(β) = N−
1
2 θ−1

n∑
i=1

m∑
j=1

[yij − µij(β)]Zi = 0. (3.3)

Solving Equation (3.3), we obtain the GEE estimator:

β̂1 = log

(∑
i∈C
∑mi

j=1 yij∑
i∈C
∑mi

j=1 tij

)
, (3.4)

β̂2 = log

(∑
i∈T
∑mi

j=1 yij∑
i∈T
∑mi

j=1 tij

)
− log

(∑
i∈C
∑mi

j=1 yij∑
i∈C
∑mi

j=1 tij

)
.
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√
N(β̂ − β) approximately follows a normal distribution with 0 mean, and the variance

matrix can be estimated by Σn = A−1
n VnA

−1
n , with

AN(β̂) = N−1θ−1

N∑
i=1

mi∑
j=1

µij(β̂)ZiZ
′
i,

and

VN(β̂) = N−1θ−2

N∑
i=1

mi∑
j=1

mi∑
j′=1

ε̂ij ε̂ij′ZiZ
′
i.

where ε̂ij = yij − µij(β̂) denotes the residual. It is easy to show that the over-dispersion

parameter θ inAn(β̂) and Vn(β̂) are cancelled when calculating Σn, hence we can rewrite

An(β̂) and Vn(β̂) as

AN(β̂) = n−1

n∑
i=1

m∑
j=1

µij(β̂)ZiZ
′
i, (3.5)

VN(β̂) = n−1

n∑
i=1

m∑
j=1

m∑
j′=1

ε̂ij ε̂ij′ZiZ
′
i′ .

Let σ̂2
2 be the (2,2)th element of Σn. With straightforward matrix algebra, it can be shown

that

σ̂2
2 =

∑
i∈C
∑mi

j=1

∑mi

j′=1 ε̂ij ε̂ij′

[
∑

i∈C
∑mi

j=1 µij(β̂)]2
+

∑
i∈T
∑mi

j=1

∑mi

j′=1 ε̂ij ε̂ij′

[
∑

i∈T
∑mi

j=1 µij(β̂)]2
. (3.6)

Furthermore, define yi. =
∑mi

j=1 yij, ti. =
∑mi

j=1 tij and µi.(β̂) =
∑mi

j=1 µij(β̂) as the cluster-

level aggregated data, then estimators (3.4) and (3.6) can be re-written as

β̂1 = log

(∑
i∈C yi.∑
i∈C ti.

)
, (3.7)

β̂2 = log

(∑
i∈T yi.∑
i∈T ti.

)
− log

(∑
i∈C yi.∑
i∈C ti.

)
,
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and

σ̂2
2 =

∑
i∈C[yi. − µi.(β̂)]2

[
∑

i∈C µi.(β̂)]2
+

∑
i∈T [yi. − µi.(β̂)]2

[
∑

i∈T µi.(β̂)]2
. (3.8)

It is noteworthy that Equations (3.4)-(3.8) do not include the over-dispersion parameter θ

or the correlation parameter ρ. Furthermore, Equations (3.7)-(3.8) suggest that although

the model (3.1) is specified at the patient level, the treatment effect estimate β̂2 and its

variance σ̂2
2 can be obtained using cluster-level aggregated data.

We reject H0 : β2 = 0 if |
√
Nβ̂2
σ̂2
| is greater than z1−α/2, where z1−α/2 is the 100(1−α/2)th

percentile of the standard normal distribution.

To derive the sample size formula, first we define A and V to be the limits of AN and

VN as N →∞, then ΣN converges to Σ = A−1V A−1. Let σ2
2 denote the (2,2)th element

of Σ. Then, given H1 : β2 = β20, with specified two-sided type I error α and power 1 − γ,

the required number of clusters is calculated by

N =
σ2

2(z1−α/2 + z1−γ)
2

β2
20

. (3.9)

In the following, we show that a closed-form expression of σ2
2 can be derived, even after we

take into account pragmatic features of over-dispersion, unbalance randomization, as well

as random variability in cluster size and length of follow-up. To facilitate the derivation, we

denote γt = E(tij), ε2t = V ar(tij), and κt = E(t
1/2
ij ) as the mean, variance, and expected

value of square root under the density function f(tij) assumed for length of follow-up. First

we have

AN(β̂) = N−1

N∑
i=1

mi∑
j=1

µij(β)

 1 ri

ri r2
i

+ op(1).

As N →∞, AN(β̂) approaches
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A = E

 mi∑
j=1

µij(β)

 1 ri

ri r2
i


 (3.10)

= (1− r̄)
∑
m∈M

µ1γtmg(m)

 1 0

0 0

+ r̄
∑
m∈M

µ2γtmg(m)

 1 1

1 1



= (1− r̄)µ1γtηm

 1 0

0 0

+ r̄µ2γtηm

 1 1

1 1



=

 (1− r̄)µ1γtηm + r̄µ2γtηm r̄µ2γtηm

r̄µ2γtηm r̄µ2γtηm

 ,

where µ1 = exp(β1) and µ2 = exp(β1 + β2). For VN(β̂), we have

Vn(β̂) = N−1

N∑
i=1

mi∑
j=1

mi∑
j′=1

[yij − µij(β)][yij′ − µij′(β)]

 1 ri

ri r2
i

+ op(1).

As N →∞, VN(β̂) approaches

V = E

 mi∑
j=1

mi∑
j′=1

(yij − µij(β))(yij′ − µij′(β))

 1 ri

ri r2
i


 . (3.11)

= (1− r̄)V1 + r̄V2,
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where

V1 =

 1 0

0 0

 [ηm(θµ1γt + µ2
1ε

2
t ) + (τ 2

m + η2
m − ηm)ρθµ1κ

2
t ], (3.12)

and

V2 =

 1 1

1 1

 [ηm(θµ2γt + µ2
1ε

2
t ) + (τ 2

m + η2
m − ηm)ρθµ2κ

2
t ]. (3.13)

More details of the derivation for V1 and V2 can be found in Appendix B.1.

Using matrix algebra, we can obtain the (2,2)th element of Σ = A−1V A−1:

σ2
2 =

ηmθγt[(1− r̄)µ1 + r̄µ2] + ηmε
2
tµ1µ2 + (τ 2

m + η2
m − ηm)ρθκ2

t [(1− r̄)µ1 + r̄µ2]

(1− r̄)r̄µ1µ2η2
mγ

2
t

. (3.14)

Plug (3.14) into Equation (3.9) and we obtain the closed-form sample size formula

N =
{ηmθγt[(1− r̄)µ1 + r̄µ2] + ηmε

2
tµ1µ2 + (τ2m + η2m − ηm)ρθκ2t [(1− r̄)µ1 + r̄µ2]}(z1−α/2 + z1−γ)2

(1− r̄)r̄µ1µ2η2mγ
2
t β

2
20

.

(3.15)

The pragmatic features accommodated by sample size formula (3.15) include: unbal-

anced randomization (through parameter r̄), over dispersion (θ), varying cluster size (ηm

and τ 2
m), and varying length of follow-up (γt, ε2t , κt). To account for random cluster size

only the first two moments are required, while to account for random length of follow-up

in addition the expected value of
√
tij is needed. In practice, it would be easier to supply

such information based on prior data than fully specifying the distributions of cluster size
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and length of follow-up.

In the following, we summarize the impact of different design parameters on sample

size (3.15):

• The sample size is an increasing linear function of ICC ρ (because m ≥ 1 and µ1 > 0

and µ2 > 0).

• In practice we usually have ICC ρ > 0, and the sample size is an increasing linear

function of over-dispersion θ.

• Given the same averaged cluster size (ηm), larger variability (measured by variance

τ 2
m) is associated with a larger sample size.

• Given the same averaged length of follow-up (γt), larger values of ε2t and κ2
t are

associated with a larger sample size.

• For individual randomized trial where ρ = 0, varying lengths of follow-up affect sam-

ple size through the first two moments: γt and ε2t .

If there is no variability in cluster size (i.e., τ 2
m = 0 and mi = ηm), the sample size

formula (3.15) can be simplified to

Nm =
{ηmθγt[(1− r̄)µ1 + r̄µ2] + ηmε

2
tµ1µ2 + (η2

m − ηm)ρθκ2
t [(1− r̄)µ1 + r̄µ2]}(z1−α/2 + z1−γ)2

(1− r̄)r̄µ1µ2η2
mγ

2
t β

2
20

.

(3.16)

It is obvious that N > Nm for τ 2
m > 0. That is, the variability in cluster size leads to larger

sample size. The magnitude of increase, however, is jointly determined by all the other

design parameters.

On the other hand, if we ignore drop-out (i.e., tij = t∗ ∀ i, j), then ε2t = 0 and κ2
t = t∗,

and the sample size is simplified to

Nt =
θ[(1− r̄)µ1 + r̄µ2](z1−α/2 + z1−γ)

2

(1− r̄)r̄µ1µ2t∗β2
20

·
{

1− ρ
ηm

+

(
1 +

τ 2
m

η2
m

)
ρ

}
. (3.17)
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Nt is proportional to 1/t∗ and θ, and it can be shown that Nt < N (see Appendix B.2).

Furthermore, the second term is identical to the correction term derived by Manatunga

et al. [37] for conventional cluster randomization trials with varying cluster sizes where

τm/ηm is the coefficient of variation.

Finally, if there is no variability in cluster size or length of follow-up, the sample size

can be further simplified to

Nmt =
θ[1 + (ηm − 1)ρ][(1− r̄)µ1 + r̄µ2](z1−α/2 + z1−γ)

2

(1− r̄)r̄µ1µ2ηmt∗β2
20

. (3.18)

It is easy to verify that Nmt < Nm < N and Nmt < Nt < N .

In CRTs, the number of clusters is usually limited. For example, Ivers et al. [23] re-

viewed a random selection of 285 CRTs and reported that the median number of clusters

was 21. When N is small, the sandwich-type variance estimator (3.8) is known to be bi-

ased downwards, leading to an inflated type I error [32]. Alternatively, σ2
2 can be estimated

using re-sampling based methods [14]. Sherman & Cessie [51] showed that for clustered

data, confidence intervals of the parameters built based on the bootstrap method are su-

perior to the normal confidence intervals built upon the sandwich estimator of variances.

In the context of stepped-wedge trials, a special case of CRT, Hussey & Hughes [22]

showed that a jackknife estimate of the variance helps to control the size of the test when

the number of clusters is limited. Define σ̂2(Jack)
2 to be the Jackknife estimate of σ2

2,

σ̂
2(Jack)
2 =

N − 1

N

N∑
i=1

(β̂
(−i)
2 − β̂2)2.

Here β̂
(−i)
2 denotes the estimate of β2 based on partial data where the ith cluster is ex-

cluded. We perform the re-sampling step on the cluster level instead of the patient level,

which retains the within-cluster correlation structure [51]. Using the closed-form solution
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for β̂2 in Equation (3.7), with some algebra, we are able to show that

σ̂
2(Jack)
2 =

N − 1

N

{∑
i∈C

[
log

(
1− yi.

yC

)
− log

(
1− ti.

tC

)]2
+
∑
i∈T

[
log

(
1− yi.

yT

)
− log

(
1− ti.

tT

)]2}
,

(3.19)

where yC =
∑

i∈C yi. and yT =
∑

i∈T yi.. For the rest of the paper, we denote the approach

using Equation (3.8) to estimate σ2
2 as "GEE-Naive", and the approach using Equation

(3.19) as "GEE-Jackknife". The performance of both approaches will be evaluated by

simulation study.

3.2. Simulation

In this section, we conduct simulations to assess the performance of the proposed

sample size method. Suppose N clusters are randomized with 1:1 ratio (r̄ = 0.5) to the

control and treatment arms. We consider three distributions for the cluster size mi: (1)

A truncated Poisson distribution with a mean parameter λ = 45 over a range of [20, 70].

We denote this distribution as TrunPoisson with corresponding ηm ≈ 45 and τ 2
m ≈ 44.8;

(2) A discrete uniform distribution (DU) with a lower bound 34 and an upper bound 56.

The corresponding parameters are ηm = 45 and variance τ 2
m = 44; (3) A DU distribution

with a lower bound 10 and an upper bound 80. Its corresponding mean is ηm = 45 and

variance is τ 2
m = 420. For the length of follow-up, we assume that the count outcome is

supposed to be measured over a follow-up period of length 1. During the trial, however,

patients are likely to drop out, and the potential dropout time (dij) follows an exponential

distribution with rate λd = 0.356. Hence the actual follow-up time is tij = min(1, dij). Under

the above specification, the probability of early dropout is roughly 30% with κt ≈ 0.893,

γt ≈ 0.842, and ε2t ≈ 0.084. We explore three values for the over-dispersion parameter

θ: 2, 2.5, and 3. Similarly, three values of ICC are explored: ρ = 0.02, 0.04, and 0.06,

which represent small ICCs commonly reported in CRTs [39]. The nominal levels of

type I error and power are set at α = 0.05 and 1 − γ = 0.8, respectively. We set the
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true value of regression parameter β1 = 0.6 and exploring three values of β2 under the

alternative hypothesis: β20 = −0.35,−0.38,−0.4. Given a particular combination of design

parameters, the simulation scheme is as follows:

1. Plug the design parameters into Equation (3.15) to compute sample size N .

2. For each scenario, we run L = 5000 iterations. In the lth iteration,

(a) Generate a random dataset of cluster size N under the alternative hypothe-

sis (β2 = β20). For each cluster, we first generate cluster size mi from the

corresponding TrunPoisson or DU distribution. An mi-length vector of follow-

up times ti = (ti1, ..., timi
) is generated according to the assumed mechanism

of dropout. Randomize the N cluster into control and treatment arms, which

determines the mean vector µi. An mi-length vector of correlated count re-

sponse yi = (yi1, ..., yimi
) is generated using the lognormal-Poisson approach

[36] given over-dispersion parameter θ and ICC ρ.

(b) Based on the generated dataset, we obtain β̂2 using Equation (3.7), σ̂2(Naive)
2

using Equation (3.8) and σ̂2(Jack)
2 using Equation (3.19).

3. Empirical power of the "GEE-Naive" approach is computed as the proportion of

iterations where the null hypothesis is rejected, |
√
N β̂2

σ̂
(Naive)
2

|> z1−0.05/2. The empirical

power of the "GEE-Jackknife" approach is computed similarly.

4. Empirical type I errors of the two approaches are computed by the same procedure

of Steps 2 and 3, except for setting β2 = 0 in Step 2(a).

Tables 3.1-3.3 present the number of clusters, empirical type I error, and empirical

power for the "GEE-Naive" approach and the "GEE-Jackknife" approach under different

combinations of design parameters. Across all the scenarios considered, the numbers of

clusters N range from 14 to 56. As expected, the empirical type I error and power of the

"GEE-Naive" approach tend to be larger than the nominal levels due to under-estimated
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variances. The "GEE-Jackknife" approach performs better in terms of maintaining the em-

pirical type I error and power at the nominal level under small sample sizes (e.g., N < 20).

The two approaches start to yield comparable results when the sample sizes are relatively

large (e.g., N > 45). Since in practice researchers frequently encounter relatively small

numbers of clusters in CRTs [23], the "GEE-Jackknife" approach can be very useful. In

Tables 3.1 and 3.2 we explore two different distributions of varying cluster size, one being

truncated Poisson and the other being discrete uniform distribution, but with comparable

means and variances. The two tables show similar performance in preserving the type

I error and power close to the nominal level. It shows that the proposed sample size

method is robust to accommodate randomly varying cluster sizes following different dis-

tributions. On the other hand, Tables 3.2 and 3.3 assume cluster sizes to follow the DU

distribution with the same mean but different variances, and the resulting sample sizes

are quite different.

In Tables 3.4 and 3.5 we present the sample size under the similar configurations as

in Tables 3.2 and 3.3, respectively, with certain pragmatic features ignored: Nm (ignoring

the variation in cluster size), Nt (ignoring the variation in length of follow-up), and Nmt

(ignoring the variation in both cluster size and length of follow-up). The results suggest

that ignoring such pragmatic features can lead to severe underestimation (up to 26.67%)

of sample size under the design configurations considered. We also observe that the dif-

ferences between N and Nm in Table 3.4 are smaller than that in Table 3.5, because the

variation in cluster size is smaller under DU(22,38) than that under DU(10, 80).

3.3. Application

We apply the proposed sample size approach on the CRT presented in Amatya et al.

[3], which evaluated the effectiveness of an educational intervention aiming at improving

the management of lung disease in adults attending South African primary-care clinics.

The planned follow-up time for all patients was 3 months and the primary endpoint was
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the number of clinic visits. Forty clinics were included as clusters and randomized into

treatment or control groups. For each of the clinics, the goal of enrollment was to recruit

50 patients. Without loss of generality, let us standardize the follow up time, and set

t∗ = 1. The analysis in Amatya et al. [3] reported β1 = 1.47, β2 = −0.18, and ICC ρ = 0.32.

Over-dispersion was not evaluated because a marginal poisson regression model was

employed.

Suppose we want to design a new CRT. The desired power and two-sided type I error

are set at 80% and 5%, respectively. We set β1 = 1.47 which corresponds to a mean

of exp(1.47) ≈ 4.35 clinical visits under control. Suppose researchers consider the new

intervention to be clinically meaningful if the mean is reduced by at least 30%, which

corresponds to β2 = −0.36. We further assume that the new trial adopts a balanced

design (r̄ = 0.5) and the ICC is ρ = 0.32. The mean cluster size ηm is expected to be

50. In addition, we assume each patient may withdraw from the study, and the withdraw

time follows an exponential distribution with λd = 0.356. Under the above specification, if

the variation in cluster size and the over-dispersion parameter are relatively small, say mi

following DU(40, 60) and θ = 1.5, then the required number of clusters equals to 40. If we

ignore pragmatic features like varying cluster size and patients’ dropout, the calculated

number of clusters becomes 34, resulting in a 15% under-estimation of sample size. If

the variation in cluster size and the over-dispersion parameter are relatively large, say mi

following DU(20, 80) and θ = 3, then we have N = 87. Ignoring the variation in cluster

size and patients’ early dropout leads to a sample size of 68, which is a 21.84% under-

estimation.
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Table 3.4: Sample size (N , Nm, Nt, Nmt) assuming cluster size mi follows either
DU(34,56) or DU(10,80) distributions

DU θ β2 ρ = 0.02 ρ = 0.04 ρ = 0.06

-0.35 (18,18,15,15) (25,25,22,21) (33,33,28,28)

θ = 2 -0.38 (15,15,13,13) (22,22,19,19) (29,28,25,24)

-0.4 (14,14,12,12) (20,20,17,17) (26,26,23,22)

-0.35 (22,22,18,18) (32,31,27,27) (41,41,35,35)

DU(34,56) θ = 2.5 -0.38 (19,19,16,16) (27,27,23,23) (36,35,31,30)

-0.4 (17,17,15,15) (25,25,21,21) (33,32,28,28)

-0.35 (26,26,22,22) (38,37,32,32) (49,48,42,42)

θ = 3 -0.38 (23,22,19,19) (33,32,28,28) (42,42,37,36)

-0.4 (21,21,17,17) (30,29,26,25) (39,38,34,33)

-0.35 (19,18,16,15) (28,25,24,21) (37,33,32,28)

θ = 2 -0.38 (17,15,14,13) (25,22,21,19) (32,28,28,24)

-0.4 (15,14,13,12) (22,20,19,17) (30,26,26,22)

-0.35 (24,22,20,18) (35,31,30,27) (46,41,40,35)

DU(10,80) θ = 2.5 -0.38 (21,19,17,16) (30,27,26,23) (40,35,35,30)

-0.4 (19,17,16,15) (28,25,24,21) (37,32,32,28)

-0.35 (28,26,24,22) (42,37,36,32) (56,48,48,42)

θ = 3 -0.38 (24,22,21,19) (36,32,31,28) (48,42,42,36)

-0.4 (22,21,19,17) (33,29,29,25) (44,38,38,33)
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CHAPTER 4
SAMPLE SIZE CALCULATION FOR CLUSTER RANDOMIZED TRIALS WITH 

MULTIPLE BINARY CO-PRIMARY ENDPOINTS

In this chapter, we investigate sample size calculation for CRTs with K ≥ 2 binary co-

primary points.

4.1. Statistical Model and Sample Size Approach

Suppose in a CRT, N clusters are randomized to two arms: control or experimental. 

For simplicity, we assume a common cluster size (number of subjects in each cluster) and 

denoted by m. Researchers want to evaluate K primary binary endpoints simultaneously. 

Let yijk denote the observation of the kth primary endpoint from the jth subject in the ith 

cluster. Let E(yijk) = µijk, and µijk is modeled by a logit model,

log

(
µijk

1− µijk

)
= β1k + β2kri, (4.1)

where ri = 0/1 indicates that the ith cluster is assigned to the control/experimental arm.

We define r̄ = E(ri) to be the probability of a cluster receiving the experimental interven-

tion. The parameter β1k represents the log-transformed odds for the kth endpoint under

control, while β2k denotes the log-transformed odds ratio between the experimental and

control arms, representing the intervention effect on the kth endpoint. What makes the de-

sign of CRT with multiple endpoints challenging is that within each cluster, there are mul-

tiple sources of dependence among the responses. We define: (1) ρk0 = corr(yijk, yij′k)

for j 6= j′, which is the inter-subject correlation within endpoint. It can also be consid-

ered as an endpoint-specific ICC; (2) ρkk′1 = corr(yijk, yij′k′) for j 6= j′ and k 6= k′, which
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characterizes the inter-subject correlation across endpoints. (3) ρkk′2 = corr(yijk, yijk′) for

k 6= k′, which characterizes the intra-subject correlation across endpoints. It is obvious

that ρkk′1 = ρk
′k

1 and ρkk′2 = ρk
′k

2 . In the following, we define ρkk′1 and ρkk′2 in such a way that

k < k′. Note that, ρkk1 = ρk0 and ρkk2 = 1. Hence we have three sets of correlation coeffi-

cients: ρ0 = {ρk0}, ρ1 = {ρkk′1 }, and ρ2 = {ρkk′2 }, where ρ0 is of size K and both ρ1 and ρ2

are of size K(K − 1)/2. Let Yik = (yi1k, ..., yimk)
′ be the cluster-specific response vector

for the kth endpoint, and R be the correlation matrix of Yi = (Y ′i1, ...,Y
′
iK)′, the correlation

matrix R can be expressed as



R11 R12 · · · R1K

R12 R22 · · · R2K

...
... · · · ...

R1K R2K · · · RKK


,

where

Rkk = (1− ρk0)Im + ρk0Jm,

and

Rkk′ = (ρkk
′

2 − ρkk
′

1 )Im + ρkk
′

1 Jm.

Throughout the derivation, Iu is defined as a u × u identity matrix and Ju is defined as

a u × u matrix with all elements being 1. There are constraints on the values of the

correlation parameters {ρ0,ρ1,ρ2} so that R is positive definite. To check whether R is

positive definite, it is equivalent to check whether all eigenvalues of R are greater than

0. For randomized trials with multiple endpoints, researchers [10, 26] have modeled the

dependence among endpoints assuming a common correlation ρ. This parsimonious cor-

relation structure inspires us to consider a parsimonious matrix R for CRTs with multiple

endpoints, which is ρk0 = ρ0, ρkk
′

1 = ρ1, ρkk
′

2 = ρ2, ∀ k, k′. For this special case, R can be

43



succinctly presented as

(1− ρ0 + ρ1 − ρ2)ImK + (ρ2 − ρ1)JK ⊗ Im + (ρ0 − ρ1)IK ⊗ Jm + ρ1JmK , (4.2)

where⊗ is the Kronecker product operator. Li et al. [30] showed that (4.2) has four distinct

eigenvalues,

γ1 = 1− ρ0 − ρ1 − ρ2,

γ2 = 1− ρ0 − (K − 1)(ρ1 − ρ2),

γ3 = 1 + (m− 1)(ρ0 − ρ1)− ρ2,

γ4 = 1 + (m− 1)ρ0 + (K − 1)(m− 1)ρ1 + (K − 1)ρ2.

Therefore, the condition of R being positive definite is min{γ1, γ2, γ3, γ4} > 0.

Define mean vectors E(Yik) = µik and E(Yi) = µi = (µ′i1, ...,µ
′
iK)′. Under Model

(4.1), the parameter µijk does not depend on the subscript j, hence we write µik = µik1m,

where 1m is a vector of length m with all elements being 1. Furthermore, we have µik =

θ0k = exp(β1k)
exp(β1k)+1

under control (ri = 0), and µik = θ1k = exp(β1k+β2k)
exp(β1k+β2k)+1

under experimental

intervention (ri = 1). Finally, we define variance matrix

vik = Cov(Yik) = V 0.5
ik RkkV

0.5
ik (4.3)

and covariance matrix

vikk′ = Cov(Yik,Yik′) = V 0.5
ik Rkk′V

0.5
ik′ , (4.4)
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where Vik = diag[µik(1− µik)1m] is an m×m diagonal matrix.

Let βk = (β1k, β2k)
′ and β = (β′1, ...,β

′
K)′. Based on the GEE approach, utilizing an

independent working correlation structure, the parameters β can be estimated by solving:

S(β) = N−1/2

N∑
i=1

Di(β)TV −1
i {Yi − µi(β)} = 0, (4.5)

where

Di(β) =
∂µi
∂β

=



Di1(β1) 0m×2 · · · 0m×2

0m×2 Di2(β2) · · · 0m×2

...
... · · · ...

0m×2 0m×2 · · · DiK(βK)


(4.6)

with Dik(βk) = ∂µik

∂βk
= µik(1− µik)1m[1, ri] for k = 1, · · · , K, and

Vi =



Vi1 0m×m · · · 0m×m

0m×m Vi2 · · · 0m×m

...
... · · · ...

0m×m 0m×m · · · ViK


. (4.7)

Equations (4.6) and (4.7) imply that the score function (4.5) can be decomposed into

K sub-functions. That is, for each endpoint k, the parameters βk can be separately

estimated from

Sk(βk) = N−1/2

N∑
i=1

Dik(βk)
TV −1

ik [Yik − µik(βk)] = 0.

With some derivation, the solution is
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β̂1k = log

( ∑N
i=1(1− ri)

∑m
j=1 yijk

mN0 −
∑N

i=1(1− ri)
∑m

j=1 yijk

)
,

β̂2k = log

( ∑N
i=1 ri

∑m
j=1 yijk

mN1 −
∑N

i=1 ri
∑m

j=1 yijk

)
− log

( ∑N
i=1(1− ri)

∑m
j=1 yijk

mN0 −
∑N

i=1(1− ri)
∑m

j=1 yijk

)
,

where N1 =
∑N

i=1 ri and N0 = N − N1 are the number of clusters receiving the experi-

mental and control intervention, respectively.

Through Taylor expansion, Liang & Zeger [33] showed that N1/2(β̂k − βk) can be ap-

proximated by Γ−1
k Sk(βk), where

Γk = lim
N→∞

N−1

N∑
i=1

Dik(βk)
TV −1

ik Dik(βk) (4.8)

= m

 (1− r̄)ξ1k + r̄ξ2k r̄ξ2k

r̄ξ2k r̄ξ2k

 .

Here ξ1k = θ0k(1−θ0k) and ξ2k = θ1k(1−θ1k). On the other hand, as a linear combination of

Yik, it is straightforward to show that Sk(βk) asymptotically has a zero-mean multivariate

normal distribution with variance

Ωk = N−1

N∑
i=1

Dik(βk)
TV −1

ik vikV
−1
ik Dik(βk)

= [m+m(m− 1)ρk0]

 (1− r̄)ξ1k + r̄ξ2k r̄ξ2k

r̄ξ2k r̄ξ2k

 .
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The asymptotic normality of Sk(βk) implies that N1/2(β̂k − βk) also asymptotically follows

a normal distribution with zero-mean and covariance

Σk = Γ−1
k ΩkΓ

−1
k . (4.9)

Define σ2
2k to be the (2, 2)th element of Σk. We can show that

σ2
2k =

1 + (m− 1)ρk0
m(1− r̄)ξ1k

+
1 + (m− 1)ρk0

mr̄ξ2k

. (4.10)

A Wald-type test statistic for β2k can be constructed as wk = N1/2β̂2k
σ̂2k

, where σ̂2k denotes

the estimate of σ2k. In practice, σ̂2
2k can be obtained from the (2,2)th element of the robust

sandwich type estimator Σ̂k which is given by

Σ̂k = Γ̂−1
k Ω̂kΓ̂

−1
k , (4.11)

where

Γ̂k = N−1

N∑
i=1

Dik(β̂k)
T V̂ −1

ik Dik(β̂k), (4.12)

and

Ω̂k = N−1

N∑
i=1

Dik(β̂k)
T V̂ −1

ik ε̂ikε̂
T
ikV̂

−1
ik Dik(β̂k). (4.13)

In (4.13), ε̂ik = Yik − µ̂ik is the residual vector of the ith cluster on the kth endpoint.

Note that, the vector of test statistics W = (w1, ...wK)′ asymptotically follows a multi-

variate normal distribution with mean vector η =
(
N1/2β21
σ21

, ..., N
1/2β2K
σ2K

)′
and we denote the

covariance matrix by Φ. Let φkk′ be the (k, k′)th element of Φ. It is obvious that φkk = 1 for

k = 1, · · · , K. To make joint inference on the K co-primary endpoints, we need to learn

φkk′ = Cov(wk, wk′) for k 6= k′, i.e., the covariance of test statistics between endpoints.

To derive φkk′, we first derive Σkk′ = Cov[N1/2(β̂k − βk), N1/2(β̂k′ − βk′)]. Note that
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Σkk′ ≈ Cov[Γ−1
k Sk(βk),Γ

−1
k′ Sk′(βk′)]

= Γ−1
k Cov[Sk(βk),Sk′(βk′)]Γ

−1
k′

= Γ−1
k Ωkk′Γ

−1
k′ ,

where

Ωkk′ = N−1

N∑
i=1

Dik(βk)
TV −1

ik vikk′V
−1
ik′ Dik′(βk′).

Recall that vikk′ is defined in (4.4). With some simplification, we have

Ωkk′ = [mρkk
′

2 +m(m− 1)ρkk
′

1 ]

 (1− r̄)ξ1kk′ + r̄ξ2kk′ r̄ξ2kk′

r̄ξ2kk′ r̄ξ2kk′

 ,

where ξ1kk′ =
√
ξ1kξ1k′ and ξ2kk′ =

√
ξ2kξ2k′.

Recall that Γk is presented in (4.12). Then we obtain σ2
2kk′ = Cov[N1/2(β̂2k−β2k), N

1/2(β̂2k′−

β2k′)], which is the (2, 2)th element of Σkk′:

σ2
2kk′ =

[ρkk
′

2 + (m− 1)ρkk
′

1 ]ξ1kk′

m(1− r̄)ξ1kξ1k′
+

[ρkk
′

2 + (m− 1)ρkk
′

1 ]ξ2kk′

mr̄ξ2kξ2k′
.

Then the (k,k’)th element of the covariance matrix for the vector of test statistics W has

the following expression,

φkk′ =


1 k = k′,

σ2
2kk′

σ2kσ2k′
k 6= k′.
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With the distribution of W fully characterized, joint inference about the co-primary end-

points can be performed to evaluate arbitrarily constructed hypotheses. For example, the

intersection-union (IU) hypothesis has been frequently employed [10, 52, 53]

H0 : β2k = 0, for at least one k (4.14)

H1 : β2k > 0, ∀ k.

The rationale for the IU hypothesis is that, in order to avoid “cherry picking” or “by chance”

findings that may mislead the conclusion, it is appropriate to require statistical significance

on all primary endpoints [52]. The cost, however, is that achieving significance simultane-

ously becomes more difficult as the number of endpoints increases. Given the number of

clusers N , allocation ratio r̄, cluster size m, true parameters {β1, ...,βK} and correlation

{ρ0,ρ1,ρ2}, the power to detect the intervention effect can be calculated by

power = Prob

(
R =

K⋂
k=1

{wk > ck}

)
=

∫ ∞
c1

. . .

∫ ∞
cK

fW (w1, ..., wK) dw1 · · · dwK
, (4.15)

where c = {c1, · · · , cK} are endpoint-specific critical values for rejection, fW (·) denotes

the density function of a multivariate normal distribution with mean η and variance matrix

Φ, and R represents the rejection region corresponding to a particular hypothesis. In

(4.14) we assume that the desired treatment effect is represented by β2k > 0. It can easily

accommodate treatment effect in the opposite direction, such as an adverse event, by

changing the definition of the outcome. Another example is the union-intersection (UI)

hypothesis, which considers the experimental treatment to be effective if any one of the

endpoints shows statistical significance [6]. It is expressed as
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H0 : β2k = 0, ∀ k,

H1 : β2k > 0, for at least one k.

For a UI hypothesis, the rejection region is R =
(

Π−
⋂K
k=1{wk ≤ ck}

)
where Π indicates

the full space on W .

To account for the uncertainty in estimating the asymptotic variance of β̂2k, we may

alternatively assume wk to follows a t-distribution. Then the power function (4.15) can be

modified as

power = Prob

(
R =

K⋂
k=1

{wk > ck}

)
=

∫ ∞
c1

. . .

∫ ∞
cK

f ∗W (w1, ..., wK) dw1 · · · dwK
, (4.16)

where f ∗W (·) denotes the density function of a multivariate t-distribution with location pa-

rameter η, shape matrix Φ, and N − 2K degrees of freedom.

Equation (4.10) implies that as m → ∞, σ2
2k converges to ρk0

(1−r̄)ξ1k
+

ρk0
r̄ξ2k

instead of

shrinking to 0. That is, when the number of clusters (N ) is fixed, there is an upper limit of

power increase that can be achieved by enlarging the cluster size (m) to infinity. This fact

reflects an important point for the design of CRTs in practice. For CRTs, the limiting factor

for power is usually the number of clusters N instead of the cluster size m. Therefore,

an under-powered trial because of insufficient recruitment of clusters can not always be

compensated by increasing the cluster size m. Motivated by this point, in the rest of the

study, we discuss sample size calculation in terms of determining the number of clusters

N given cluster size m and other design factors.

In practice, one convenient approach to specifying the critical values is to set c1 =

· · · = cK = zα, where zα is the (1 − α)th quantile of the standard normal distribution

[52, 53]. Such an approach controls the type I error rate strictly below α over the null
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space (H0 : β2k = 0 for at least one k). The upper limit of type I error (α) is reached under

the special scenario where one endpoint shows no treatment effect and the other K − 1

endpoints show large effects. Researchers [10, 26] have proposed other methods to ob-

tain less conservative critical values c. For example, rather than controlling the type I error

rate strictly below α over the null space, [10] proposed a method to calculate a common

critical value c among all endpoints which controls the “average type I error rate" to be

less than or equal to the nominal level α over the null space. In this study we assume that

c has been specified through a certain existing approach, the implementation of which is

straightforward with η and Φ fully characterized. Given a particular sample size N , evalu-

ating the power only involves integration of a multivariate normal or t distribution through

(4.15) and (4.16). By calculating power for an increasing series of N , we can identify the

smallest sample size to achieve the desired power.

It is noteworthy that there is a monotone relationship between correlation parameters

and sample size requirement, described by the following theorem.

Theorem 4.1 With all other design parameters fixed, a larger ρk0 ∀k is always associated

with a smaller power (larger sample size); on the other hand, a larger ρkk′1 or ρkk′2 ∀k 6= k′

is always associated with a larger power (smaller sample size).

Note that Theorem 4.1 holds for power calculated based on either multivariate normal or

t distribution. The proof is presented in Appendix C.1.

In practice, the ICCs (ρk0) are usually positive, and Theorem 1 suggests that ignoring

the ICCs (i.e., setting ρk0 = 0) will lead to an under-estimated sample size and an under-

powered trial. On the other hand, the consequence of ignoring the correlations between

endpoints (i.e. setting ρ1 = ρ2 = 0) is uncertain depending on the direction and magni-

tude of the true correlation.

When the number of clusters N is small, the uncorrected robust sandwich estimator

of σ2
2k (4.11) is known to be biased downwards, leading to an inflated type I error [32].

Many researchers [24, 38] have proposed bias-corrected variance estimators to address
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this problem. To introduce these bias-corrected variance estimators, we use a general

expression of Ω̂k:

Ω̂k = N−1

N∑
i=1

Dik(β̂k)
T V̂ −1

ik Bikε̂ikε̂
T
ikB

T
ikV̂

−1
ik Dik(β̂k). (4.17)

Note that with Bik = Im, Equation (4.17) corresponds to the uncorrected sandwich es-

timator (4.11). We denote this uncorrected robust sandwich estimator as BCnaive. By

setting Bik = (Im −Hik)
−1, where Hik = Dik(β̂k)Γ̂

−1
k Dik(β̂k)

T V̂ −1
ik , we have the bias-

corrected variance estimator proposed by Mancl & DeRouen (2001) [38] which we de-

note as BCMD. Finally, with Bik = (Im −Hik)
−1/2, (4.17) becomes the bias-corrected

variance estimator proposed by Kauermann & Carroll [24] which we denote as BCKC . As

was shown in Preisser et al. [47], we have BCnaive < BCKC < BCMD. In the simula-

tion study, we will explore the performance of these three approaches in preserving the

desired power and type I error under small sample sizes.

4.2. Simulation

We conduct simulations to evaluate the performance of the proposed sample size

method. In clinical trials that evaluate multiple co-primary endpoints, most studies con-

sider less than or equal to 3 endpoints [41]. Hence we explore two scenarios: K = 2

and 3. We assume balanced randomization, i.e. r̄ = 0.5. In practice, even for K = 3,

it is difficult to specify every elements of {ρ0,ρ1,ρ2}. In this simulation we consider the

simplified case where ρk0 = ρ0, ρkk
′

1 = ρ1, ρkk
′

2 = ρ2 ∀ k, k′. For ρ0, we explore the values of

0.01, 0.05 which reflect small ICCs commonly reported in CRTs [39]. We further assume

ρ1 to be smaller than ρ0, and set ρ1 = ρ0/2. For ρ2, we consider values of 0.2 and 0.5

which represent moderate within-subject correlation. For the case of K = 2, we set b1 =

(β11, β12)′ = (0, 0.3)′. We explore two sets of treatment effects b2 = (β21, β22)′ = (0.6, 0.6)′

or (0.6, 0.7)′. For the case of K = 3, we similarly set b1 = (β11, β12, β13)′ = (0, 0.1, 0.3)′,
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and explore treatment effects b2 = (β21, β22, β23)′ = (0.6, 0.6, 0.6)′ or (0.5, 0.6, 0.7)′. We set

the critical values c1 = · · · = ck = c at the 95th percentile of the standard normal or t

distribution. For the cluster size m, we explore values of 60 and 80. For each combi-

nation of design parameters, the intersection-union hypothesis (4.14) will be evaluated.

The simulation algorithm for a particular combination of design parameters is described

as follows:

1. Numerically search forN , which is the smallest even number of clusters that achieves

power≥ 0.8. The powers calculated based on (4.15) or (4.16) are recorded as the

theoretical powers.

2. We run 5000 iterations, and for each iteration:

(a) Generate a dataset of N clusters with cluster size m and K binary endpoints.

Given the set of design parameters, every cluster has a vector of correlated

binary outcomes Yi, generated using the R package “MultiOrd” [4].

(b) For each endpoint, we calculate the test statistics wk.

3. The empirical power is computed as the proportion of iterations with I
(⋂K

k=1wk > c
)

= 1, where c = z0.95 or t0.95,N−2K .

4. The empirical type I error is evaluated by setting the last element of b2 to 0 (e.g.,

if b2 = (0.6, 0.6, 0.6)′, we set it to b2 = (0.6, 0.6, 0)′) and repeat Steps 2-3. Note

that, setting one element of b2 to 0 will lead to a theoretical type I error close to the

nominal level α. The theoretical type I error is calculated using the same settings

based on (4.15) or (4.16).

Tables 4.1-4.4 summarize the simulation results for all combinations of design param-

eters and the two power functions (Equations (4.15) and (4.16)). In terms of power, the

empirical power under the BCnaive adjustment approach is consistently larger than the

theoretical power across all scenarios, while the empirical power under the BCMD ap-

proach is consistently smaller than the theoretical power. Overall the empirical power
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under the BCKC approach is most close to the theoretical level. In terms of type I error,

the empirical type I errors under BCnaive is consistently larger than the theoretical level.

This is especially true under the normal distribution. The inflation of the type I error is

less severe under the t-distribution. Under the BCMD approach the empirical type I error

is consistently smaller than the theoretical level across all scenarios. For the BCKC esti-

mator, the empirical type I error under the normal distribution seems to be slightly larger

than the theoretical level, while under t-distribution the empirical type I error generally

agrees with the theoretical level. The simulation results suggest that overall using the

t-distribution with the BCKC adjustment approach has the best performance in terms of

maintaining both power and type I error at the nominal levels.

4.3. Application

This section illustrates the application of the proposed method to a CRT study [29]

where the research goal is to evaluate whether a cancer Screening Office System (can-

cer SOS) intervention can improve participation in cancer screening tests. This study

includes three binary endpoints, each indicating participation in one of three targeted

cancer screening tests: Papanicolaou (Pap) smears (denoted by k = 1), mammograms

(k = 2), and fecal occult blood tests (k = 3). All tests are recommended to be per-

formed annually for women of age 50 or older. Eight clinics participated in this study,

and the average number of participants in each clinic is 150. It is reported that, dur-

ing a 12-months follow-up, the estimated probabilities of taking the three screening tests

are (0.484, 0.709, 0.123) under control, and (0.624, 0.758, 0.397) under cancer SOS. The

corresponding regression parameters are β̂1 = (−0.064, 0.571), β̂2 = (0.891, 0.251), and

β̂3 = (−1.964, 1.546), respectively. The estimated intraclass correlations (ρ1
0, ρ

2
0, ρ

3
0) are

(0.069, 0.003, 0.16). However, the estimations of correlation parameters ρ1 and ρ2 are not

reported.
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Suppose researchers want to design a new CRT to evaluate the effect of a new inter-

vention on encouraging patients to take the three cancer screening tests. To test the IU

hypothesis H0 : β2k = 0 for at least one k vs H1 : β2k > 0 ∀ k with a 0.8 power at the

0.05 significance level. Based on the preliminary data obtained from the aforementioned

trial, we use the following design parameters to calculate the required sample size. We

assume a balanced design (r̄ = 0.5) with cluster size m = 150. The regression parame-

ters are specified as β1 = (−0.064, 0.683), β2 = (0.891, 1.307), and β3 = (−1.964, 0.865).

We consider a parsimonious correlation structure, that is ρk0 = ρ0, ρkk
′

1 = ρ1, ρkk
′

2 = ρ2 for

∀ k, k′. We set ρ0 = 0.069+0.003+0.16
3

= 0.077 and assume ρ1 = 0.055 and ρ2 = 0.5. Using

the power function (4.16), the required number of clusters is N = 26. Under this setting, if

the correlations among the endpoints are ignored (i.e. setting ρ1 = ρ2 = 0), the calculated

sample size becomes N = 30, which leads to a 15.38% inflation in sample size.
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Table 4.1: Simulation results. In each cell, the first row shows the number of clusters
and (theoretical power, empirical powers under BCnaive, BCMD, BCKC). The second row
shows (theoretical type I error, empirical type I errors of BCnaive, BCMD, BCKC) based on
multivariate normal distribution with K = 2.

(β21, β22) m (ρ0, ρ1) ρ2 = 0.2 ρ2 = 0.5

(0.01, 0.005) 12(0.860,0.880,0.804,0.847) 12(0.867,0.896,0.818,0.859)

60 (0.049,0.081,0.051,0.066) (0.050,0.080,0.052,0.064)

(0.05, 0.025) 26(0.810,0.820,0.781,0.802) 26(0.815,0.834,0.797,0.817)

(0.6, 0.6) (0.050,0.056,0.043,0.049) (0.050,0.067,0.053,0.061)

(0.01, 0.005) 10(0.855,0.880,0.775,0.836) 10(0.863,0.890,0.789,0.848)

80 (0.049,0.086,0.045,0.063) (0.050,0.091,0.051,0.069)

(0.05, 0.025) 24(0.803,0.821,0.779,0.802) 24(0.807,0.822,0.782,0.805)

(0.050,0.065,0.050,0.057) (0.050,0.064,0.048,0.055)

(0.01, 0.005) 10(0.839,0.870,0.762,0.820) 10(0.848,0.885,0.787,0.848)

60 (0.049,0.087,0.050,0.067) (0.050,0.095,0.052,0.075)

(0.05, 0.025) 24(0.831,0.841,0.800,0.822) 24(0.835,0.845,0.808,0.823)

(0.6, 0.7) (0.049,0.063,0.048,0.056) (0.050,0.067,0.053,0.061)

(0.01, 0.005) 8(0.818,0.864,0.723,0.806) 8(0.827,0.861,0.724,0.806)

80 (0.049,0.103,0.049,0.074) (0.050,0.107,0.055,0.081)

(0.05, 0.025) 22(0.821,0.851,0.806,0.832) 22(0.825,0.841,0.797,0.823)

(0.049,0.061,0.048,0.055) (0.050,0.072,0.052,0.062)
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Table 4.2: Simulation results. In each cell, the first row shows the number of clusters
and (theoretical power, empirical powers under BCnaive, BCMD, BCKC). The second row
shows (theoretical type I error, empirical type I errors of BCnaive, BCMD, BCKC) based on
multivariate t-distribution with K = 2.

(β21, β22) m (ρ0, ρ1) ρ2 = 0.2 ρ2 = 0.5

(0.01, 0.005) 14(0.866,0.902,0.837,0.872) 12(0.801,0.850,0.748,0.807)

60 (0.050,0.059,0.035,0.046) (0.050,0.059,0.035,0.045)

(0.05, 0.025) 28(0.819,0.842,0.803,0.821) 28(0.823,0.855,0.820,0.840)

(0.6, 0.6) (0.050,0.057,0.042,0.049) (0.050,0.064,0.051,0.056)

(0.01, 0.005) 12(0.859,0.898,0.807,0.859) 12(0.866,0.895,0.810,0.860)

80 (0.050,0.056,0.031,0.042) (0.050,0.056,0.030,0.042)

(0.05, 0.025) 26(0.812,0.829,0.781,0.808) 26(0.816,0.841,0.801,0.820)

(0.050,0.057,0.042,0.049) (0.050,0.057,0.043,0.050)

(0.01, 0.005) 12(0.843,0.882,0.787,0.842) 12(0.851,0.879,0.782,0.839)

60 (0.049,0.060,0.031,0.046) (0.050,0.062,0.033,0.047)

(0.05, 0.025) 24(0.804,0.821,0.777,0.797) 24(0.809,0.835,0.792,0.813)

(0.6, 0.7) (0.049,0.049,0.035,0.042) (0.050,0.054,0.041,0.047)

(0.01, 0.005) 10(0.814,0.863,0.733,0.809) 10(0.822,0.875,0.745,0.815)

80 (0.049,0.059,0.028,0.044) (0.050,0.048,0.037,0.043)

(0.05, 0.025) 24(0.830,0.857,0.818,0.837) 24(0.834,0.849,0.809,0.832)

(0.050,0.050,0.037,0.042) (0.050,0.055,0.041,0.046)
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Table 4.3: Simulation results. In each cell, the first row shows the number of clusters
and (theoretical power, empirical powers under BCnaive, BCMD, BCKC). The second row
shows (theoretical type I error, empirical type I errors of BCnaive, BCMD, BCKC) based on
multivariate normal distribution with K = 3.

(β21, β22, β23) m (ρ0, ρ1) ρ2 = 0.2 ρ2 = 0.5

(0.01, 0.005) 12(0.810,0.853,0.753,0.809) 12(0.827,0.845,0.750,0.802)

60 (0.049,0.077,0.044,0.058) (0.050,0.079,0.048,0.063)

(0.05, 0.025) 30(0.823,0.837,0.799,0.818) 30(0.830,0.841,0.808,0.824)

(0.6, 0.6, 0.6) (0.049,0.070,0.058,0.065) (0.050,0.062,0.052,0.056)

(0.01, 0.005) 10(0.805,0.844,0.713,0.785) 10(0.821,0.855,0.733,0.805)

80 (0.049,0.085,0.047,0.063) (0.050,0.083,0.044,0.061)

(0.05, 0.025) 28(0.821,0.828,0.796,0.814) 28(0.827,0.841,0.805,0.823)

(0.050,0.063,0.051,0.057) (0.050,0.056,0.047,0.050)

(0.01, 0.005) 14(0.840,0.863,0.790,0.830) 14(0.850,0.871,0.806,0.840)

60 (0.048,0.071,0.048,0.059) (0.050,0.082,0.054,0.067)

(0.05, 0.025) 32(0.811,0.821,0.790,0.807) 32(0.816,0.832,0.801,0.818)

(0.5, 0.6, 0.7) (0.049,0.059,0.047,0.052) (0.049,0.066,0.053,0.060)

(0.01, 0.005) 12(0.847,0.873,0.796,0.839) 12(0.856,0.883,0.788,0.844)

80 (0.049,0.082,0.046,0.060) (0.050,0.085,0.047,0.065)

(0.05, 0.025) 30(0.811,0.828,0.793,0.811) 30(0.815,0.827,0.794,0.810)

(0.049,0.062,0.052,0.058) (0.049,0.067,0.054,0.062)
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Table 4.4: Simulation results. In each cell, the first row shows the number of clusters
and (theoretical power, empirical powers under BCnaive, BCMD, BCKC). The second row
shows (theoretical type I error, empirical type I errors of BCnaive, BCMD, BCKC) based on
multivariate t-distribution with K = 3.

(β21, β22, β23) m (ρ0, ρ1) ρ2 = 0.2 ρ2 = 0.5

(0.01, 0.005) 14(0.806,0.849,0.757,0.807) 14(0.823,0.923,0.789,0.834)

60 (0.049,0.056,0.034,0.045) (0.050,0.054,0.031,0.043)

(0.05, 0.025) 32(0.830,0.867,0.816,0.832) 30(0.807,0.871,0.776,0.796)

(0.6, 0.6, 0.6) (0.050,0.059,0.045,0.050) (0.050,0.052,0.041,0.047)

(0.01, 0.005) 14(0.878,0.873,0.845,0.892) 12(0.803,0.840,0.724,0.783)

80 (0.050,0.058,0.034,0.046) (0.050,0.054,0.029,0.040)

(0.05, 0.025) 30(0.829,0.879,0.808,0.824) 28(0.802,0.879,0.775,0.799)

(0.050,0.053,0.041,0.049) (0.050,0.063,0.049,0.056)

(0.01, 0.005) 16(0.839,0.844,0.797,0.834) 16(0.849,0.861,0.814,0.841)

60 (0.049,0.058,0.038,0.047) (0.050,0.054,0.034,0.045)

(0.05, 0.025) 34(0.818,0.836,0.807,0.823) 34(0.823,0.842,0.805,0.818)

(0.5, 0.6, 0.7) (0.049,0.050,0.041,0.045) (0.050,0.055,0.047,0.050)

(0.01, 0.005) 14(0.840,0.862,0.796,0.839) 14(0.849,0.862,0.806,0.847)

80 (0.049,0.053,0.031,0.041) (0.050,0.050,0.030,0.039)

(0.05, 0.025) 32(0.818,0.834,0.807,0.824) 32(0.822,0.834,0.800,0.817)

(0.049,0.054,0.042,0.048) (0.050,0.048,0.040,0.043)
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CHAPTER 5

CONCLUSION

In this study, we investigate sample size calculation for three kinds of clinical trials: (1). 

Randomized controlled trials with longitudinal count outcomes; (2). Cluster randomized 

trials with count outcomes; (3). Cluster randomized trials with multiple binary co-primary 

endpoints.

For randomized controlled trials with longitudinal count outcomes, we have derived 

closed-from sample size formulas for both scenarios of comparison of TAR and slopes. 

Our approach is developed based on the negative binomial distribution. Compared with 

the traditional Poisson-based approaches, the proposed sample size method offers greater 

flexibility to accommodate over-dispersion in count variables, which is frequently encoun-

tered in practice. In addition to simple computation offered by the closed form formulas, 

this approach is advantageous in its capability of allowing for arbitrary missing data pat-

terns, correlation structures, and randomization ratios. By including the offset terms, the 

proposed sample size method provides additional flexibility to measure the count outcome 

over unequal measurement intervals. We would like to point out that the closed-form 

sample size formulas are derived based on the MCAR (missing completely at random) 

assumption. Under the MAR (missing at random) assumption, however, an additional 

model is needed to account for the missing data mechanism which is assumed to de-

pend on observed data. Because each particular study might have a unique missing data 

mechanism, it is difficult to derive a general sample size formula under MAR. Hence when 

there is strong evidence that the missing data is MAR, researchers need to build a model 

that describes the missing data mechanism in their research setting, and conduct simula-

tion studies to assess its impact on sample size. The proposed closed-form sample size
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formula can still be useful by providing the starting point for numerical search or serving

as a benchmark to understand the impact of different missing data mechanisms. It is

noteworthy that when over-dispersion is caused by excessive prevalence of 0’s, assum-

ing the outcome to marginally follow a NB distribution is inappropriate. In such cases,

assuming a zero-inflated Poisson or a zero-inflated NB model might be more appropriate.

For cluster randomized trials with count outcomes, we have proposed a sample size

approach, which, compared to existing methods [3, 60], is advantageous in its flexibility

to incorporate pragmatic features, including over-dispersion, varying cluster size, varying

length of follow-up, and arbitrary randomization ratio. Furthermore, the sample size for-

mula has a closed form, facilitating its implementation by practitioners. We theoretically

demonstrate that ignoring the pragmatic features will lead to under-estimated sample size.

To accommodate the pragmatic features, the proposed method requires the specification

of additional design parameters, including the first two moments of cluster size and length

of follow up and the mean of square root for length of follow up. In practice, these pa-

rameters can be conveniently estimated based on data from previous studies. To address

the concern of under-estimated variance by the GEE sandwich estimator under relatively

small number of clusters, which is frequently encountered in CRTs, we propose a closed-

form variance estimator based on the Jackknife approach. Extensive simulation studies

have been conducted to evaluate the performance of the proposed sample size formula

and the Jackknife inference procedure. The "GEE-Jackknife" approach can maintain the

empirical power and type I error at their nominal levels over a wide range of design con-

figurations.

Finally, in this dissertation, we also investigate sample size calculation for CRTs with

mutilple (K ≥ 2) binary co-primary endpoints. Within each cluster three types of correla-

tions are considered: inter-subject correlation within each endpoint, intra-subject correla-

tion across endpoints, and inter-subject correlation across endpoints. Based on the GEE

approach, we have derived a closed-form joint distribution for the K test statistics, which

can be used to evaluate power and type I error for arbitrarily constructed hypotheses. To
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the best of our knowledge, this is the first attempt to systematically investigate sample size

calculation for CTRs with multiple binary co-primary endpoints. We further present a the-

orem that characterizes the relationship between the three types of correlation and testing

power. Furthermore, a number of approaches to adjust for the underestimation bias of the

GEE variance estimator under small sample size have been compared. The simulation

results suggest that the combination of the t-distribution with the adjustment approach

proposed by Kauermann & Carroll [24] achieves the best performance in maintaining

power and type I error. One frequently employed testing strategy in clinical trials with mul-

tiple endpoints is the gatekeeping procedure [7, 13]. It arranges multiple hypotheses into

a hierarchical order (for example, primary and secondary), and the secondary hypothesis

is evaluated only when the primary hypothesis is rejected. The proposed method is differ-

ent from the gatekeeping procedure in that the multiple endpoints are considered equally

important and they are evaluated simultaneously. The proposed method is developed for

scenarios where all co-primary endpoints are binary. In future research, we will work on

its extension to other types of endpoints such as continuous, count, and event times, as

well as mixed types.
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APPENDIX A

APPENDIX OF CHAPTER 2

A.1. Derivation of Equation (2.5)

The GEE estimator β̂ = (β̂1, β̂2)′ is solved from equation

Sn(β) = n−
1
2

n∑
i=1

D′iW
−1
i [yi − µi(β)] = 0,

whereDi is am×2 gradient matrix defined asDi =
∂µi(β)

∂β
andWi = diag[µi(β)+vµi(β)2],

which is a m×m diagonal matrix. We can show that

Sn(β) = n−
1
2

n∑
i=1

m∑
j=1

1

1 + vµij(β)
[yij − µij(β)]Zi = 0.

With missing data, it becomes

Sn(β) = n−
1
2

n∑
i=1

m∑
j=1

∆ij
1

1 + vµij(β)
[yij − µij(β)]Zi = 0.

Without loss of generality, we assume that patients (1, · · · , I0) are assigned to the control

group, and patients (I0 + 1, · · · , n) are assigned to the treatment group.
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For the special case T1 = ... = Tm = T , from Equation (1) we have

Sn(β) = n−
1
2

n∑
i=1

m∑
j=1

∆ij
µij(β)

µij(β) + vµij(β)2
(yij − µij(β))Zi

= n−
1
2

I0∑
i=1

m∑
j=1

∆ij
T exp(β1)

T exp(β1) + vT 2 exp(β1)2
(yij − T exp(β1))

 1

0

+

n−
1
2

n∑
i=I0+1

m∑
j=1

∆ij
T exp(β1 + β2)

T exp(β1 + β2) + vT 2 exp(β1 + β2)2
(yij − T exp(β1 + β2))

 1

1

 = 0

With some algebra, we have

I0∑
i=1

m∑
j=1

∆ij
T exp(β1)

T exp(β1) + vT 2 exp(β1)2
(yij − T exp(β1)) + (A.1)

n∑
i=I0+1

m∑
j=1

∆ij
T exp(β1 + β2)

T exp(β1 + β2) + vT 2 exp(β1 + β2)2
(yij − T exp(β1 + β2)) = 0,

and

n∑
i=I0+1

m∑
j=1

∆ij
T exp(β1 + β2)

T exp(β1 + β2) + vT 2 exp(β1 + β2)2
(yij − T exp(β1 + β2)) = 0. (A.2)

Equations (A.1)-(A.2) lead to

I0∑
i=1

m∑
j=1

∆ij(yij − T exp(β1)) = 0,

which implies that

β̂1 = log

(∑I0
i=1

∑m
j=1 ∆ijyij

T
∑I0

i=1

∑m
j=1 ∆ij

)
,
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and

β̂2 = log

(∑n
i=I0+1

∑m
j=1 ∆ijyij

T
∑n

i=I0+1

∑m
j=1 ∆ij

)
− log

(∑I0
i=1

∑m
j=1 ∆ijyij

T
∑I0

i=1

∑m
j=1 ∆ij

)
.

It follows immediately that

β̂1 = log

(∑n
i=1(1− ri)

∑m
j=1 ∆ijyij

T
∑n

i=1(1− ri)
∑m

j=1 ∆ij

)
,

β̂2 = log

(∑n
i=n ri

∑m
j=1 ∆ijyij∑n

i=n1 ri
∑m

j=1 ∆ij

)
− log

(∑n
i=1(1− ri)

∑m
j=1 ∆ijyij∑n

i=1(1− ri)
∑m

j=1 ∆ij

)
.
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A.2. Derivation of Equation (2.13)

To facilitate the derivation of Equation (2.13), we first reparameterize the model as

log(µij) = log(Tj) + b1 + b2ri + b3(tij − t̄i) + b4ri(tij − t̄i).

It is clear that b4 = β4. Therefore, H0 : β4 = 0 vs H1 : β4 6= 0 is equivalent to H0 : b4 = 0 vs

H1 : b4 6= 0.

Under the reparameterization, we can show that

A = E


m∑
j=1

∆ij
µij(b)

1 + vµij(b)



1 ri tj − t̄i ri(tj − t̄i)

ri r2
i ri(tj − t̄i) r2

i (tj − t̄i)

tj − t̄i ri(tj − t̄i) (tj − t̄i)2 ri(tj − t̄i)2

ri(tj − t̄i) r2
i (tj − t̄i) ri(tj − t̄i)2 r2

i (tj − t̄i)2





= (1− r̄)
m∑
j=1

δjη
2
1j



1 0 tj − t̄1 0

0 0 0 0

tj − t̄1 0 (tj − t̄1)2 0

0 0 0 0



+ r̄
m∑
j=1

δjη
2
2j



1 1 tj − t̄2 tj − t̄2

1 1 tj − t̄2 tj − t̄2

tj − t̄2 tj − t̄2 (tj − t̄2)2 (tj − t̄2)2

tj − t̄2 tj − t̄2 (tj − t̄2)2 (tj − t̄2)2


.
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Given t̄1 =
∑m

j=1 δjη
2
1jtj∑m

j=1 δjη
2
1j

, t̄2 =
∑m

j=1 δjη
2
2jtj∑m

j=1 δjη
2
2j

, we have

A =



a1 a2 0 0

a2 a2 0 0

0 0 a3 a4

0 0 a4 a4


,

where a1 = (1− r̄)
∑m

j=1 δjη
2
1j + r̄

∑m
j=1 δjη

2
2j, a2 = r̄

∑m
j=1 δjη

2
2j, a3 = (1− r̄)

∑m
j=1 δjη

2
1j(tj −

t̄1)2 + r̄
∑m

j=1 δjη
2
2j(tj − t̄2)2, and a4 = r̄

∑m
j=1 δjη

2
2j(tj − t̄2)2.

Similarly, we have

V1 =
m∑
j=1

m∑
j′=1

δjj′ρjj′η1jη1j′



1 0 tj′ − t̄1 0

0 0 0 0

tj − t̄1 0 (tj − t̄1)(tj′ − t̄1) 0

0 0 0 0


,

and

V2 =
m∑
j=1

m∑
j′=1

δjj′ρjj′η2jη2j′



1 1 tj′ − t̄2 tj′ − t̄2

1 1 tj′ − t̄2 tj′ − t̄2

tj − t̄2 tj − t̄2 (tj − t̄2)(tj′ − t̄2) (tj − t̄2)(tj′ − t̄2)

tj − t̄2 tj − t̄2 (tj − t̄2)(tj′ − t̄2) (tj − t̄2)(tj′ − t̄2)


.
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With some matrix algebra, we can show that

σ2
4 =

∑m
j=1

∑m
j′=1 δjj′ρjj′η1jη1j′(tj − t̄1)(tj′ − t̄1)

(1− r̄)(
∑m

j=1 δjη
2
1j(tj − t̄1)2)2

+

∑m
j=1

∑m
j′=1 δjj′ρjj′η2jη2j′(tj − t̄2)(tj′ − t̄2)

r̄(
∑m

j=1 δjη
2
2j(tj − t̄2)2)2

.
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APPENDIX B

APPENDIX OF CHAPTER 3

B.1. Derivation of Equations (3.12) and (3.13)

We can write V1 and V2 as

V1 =

 1 0

0 0

 ∑
m∈M

g(m)E

[
m∑
j=1

m∑
j′=1

(yij − µij)(yij′ − µij′)

]
,

and

V2 =

 1 1

1 1

 ∑
m∈M

g(m)E

[
m∑
j=1

m∑
j′=1

(yij − µij)(yij′ − µij′)

]
.

Note that, for E
[∑m

j=1

∑m
j′=1(yij − µij)(yij′ − µij′)

]
, we have

E

[
m∑
j=1

m∑
j′=1

(yij − µij)(yij′ − µij′)

]
=

m∑
j=1

E(yij−µij)2 +2
m−1∑
j=1

m∑
j′=j+1

E [(yij − µij)(yij′ − µij′)] .
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Based on the law of total covariance [58], we have

m∑
j=1

E(yij − µij)2 =
m∑
j=1

E [V ar(yij|tij)] + V ar [E(yij|tij)] . (B.1)

For Equation (B.1), if i ∈ C,

m∑
j=1

E [V ar(yij|tij)] + V ar [E(yij|tij)] =
m∑
i=1

E(θµ1tij) + V ar(µ1tij)

= m(θµ1γt + µ2
1ε

2
t ).

Similarly, if i ∈ T ,

m∑
j=1

E [V ar(yij|tij)] + V ar [E(yij|tij)] = m(θµ2γt + µ2
2ε

2
t ).

Furthermore, for 2
∑m−1

j=1

∑m
j′=j+1 E [(yij − µij)(yij′ − µij′)], we have

2
m−1∑
j=1

m∑
j′=j+1

E [(yij − µij)(yij′ − µij′)] = 2
m−1∑
j=1

m∑
j′=j+1

E{Cov [(yij − µij), (yij′ − µij′)|tij, tij′ ]}

+ Cov [E(yij − µij|tij), E(yij′ − µij′ |tij′)] . (B.2)

Clearly, for Equation (B.2), if i ∈ C, we have

2
m−1∑
j=1

m∑
j′=j+1

E [(yij − µij)(yij′ − µij′)] = 2
m−1∑
j=1

m∑
j′=j+1

ρθµ1E(
√
tij)E(

√
tij′)

= m(m− 1)ρθµ1κ
2
t .
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For i ∈ T , we have

2
m−1∑
j=1

m∑
j′=j+1

E [(yij − µij)(yij′ − µij′)] = m(m− 1)ρθµ2κ
2
t .

Putting the pieces together, we have if i ∈ C,

E

[
m∑
j=1

m∑
j′=1

(yij − µij)(yij′ − µij′)

]
= m(θµ1γt + µ2

1ε
2
t ) +m(m− 1)ρθµ1κ

2
t ,

and for i ∈ T ,

E

[
m∑
j=1

m∑
j′=1

(yij − µij)(yij′ − µij′)

]
= m(θµ2γt + µ2

2ε
2
t ) +m(m− 1)ρθµ2κ

2
t .

B.2. Proof of Nt < N

We can reparameterize tij as tij/t∗ and multiply µ1 and µ2 by t∗ to standardize patient’s

follow-up time to be between (0, 1]. Therefore, without loss of generality, we assume that

t∗ = 1.

To show Nt < N , we first re-write Nt as

Nt =
ηmθ[(1− r̄)µ1 + r̄µ2] + (τ 2

m + η2
m − ηm)ρθ[(1− r̄)µ1 + r̄µ2]

(1− r̄)r̄µ1µ2η2
mt
∗ .

Now it is equivalent to show that

ηmθγt[(1− r̄)µ1 + r̄µ2] + ηmε
2
tµ1µ2 + (τ 2

m + η2
m − ηm)ρθκ2

t [(1− r̄)µ1 + r̄µ2]

(1− r̄)r̄µ1µ2η2
mγ

2
t

>
ηmθ[(1− r̄)µ1 + r̄µ2] + (τ 2

m + η2
m − ηm)ρθ[(1− r̄)µ1 + r̄µ2]

(1− r̄)r̄µ1µ2η2
mt
∗ . (B.3)
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Since t∗ is the upper-bound of the patient’s follow-up time, given the possibility of drop-

out, we must have γt < t∗. Based on the structure of Equation (B.3), to show Equation

(B.3), it is equivalent to show that

(τ 2
m + η2

m − ηm)ρθκ2
t [(1− r̄)µ1 + r̄µ2]

(1− r̄)r̄µ1µ2η2
mγ

2
t

>
(τ 2
m + η2

m − ηm)ρθ[(1− r̄)µ1 + r̄µ2]

(1− r̄)r̄µ1µ2η2
mt
∗ ,

which is equivalent to show that κ2t
γ2t
> 1

t∗
. Since 0 < tij ≤ 1, we must have κt > γt, which

implies that κ2t
γ2t
> 1 = 1

t∗
.
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APPENDIX C

APPENDIX OF CHAPTER 4

C.1. Proof of Theorem 4.1

The proof is based on an important theorem (Theorem 4.3.6) by Tong [57].

Theorem C.1 Let Σ denotes a L × L positive definite matrix, and assume X to have a

density function f(x) of the form

f(x) = |Σ|−1/2g(x
′
Σ−1x), (C.1)

where the function g(·) satisfies

∫ ∞
0

rL−1g(r2) dr <∞.

Let P = (pij) and T = (tij) be two L× L positive definite matrices. If pij ≥ tij holds for all

i and j, then

PΣ=P [∩Li=1{Xi ≤ ai}] ≥ PΣ=T [∩Li=1{Xi ≤ ai}] (C.2)

holds for every a = (a1, ..., aL)′. Furthermore, the inequality is strict if pij > tij holds for

some i and j and if the support of f is unbounded.

First note that, among many other distributions, the multivariate normal and multivari-

ate t-distributions are of the form (C.1).
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Without loss of generality, we give the proof for ρk0. The conclusions for ρkk′1 and ρkk
′

2 can

be shown using similar arguments.

Let k = k∗. Equation (4.10) implies that σ2
2k∗ is an increasing function of ρk∗0 , and Φ(k∗, k′) =

σ2
2k∗k′

σ2k∗σ2k′
is a decreasing function of ρk∗0 . Let η(k∗) = N1/2β2k∗

σ2k∗
denote the k∗th element of η,

which can be shown to be a decreasing function of ρk∗0 . Let τ1 and τ2 be two permissible

values for ρk∗0 , with τ1 < τ2. Let P = (pkk′) be the positive definite matrix Φ with ρk
∗

0 = τ1

and T = (tkk′) be the positive definite matrix Φ with ρk
∗

0 = τ2, with all other parameters

fixed. Then we have pk∗k′ > tk∗k′ for all k′ 6= k∗ and pkk′ = tkk′ otherwise. Also, we have

ητ1(k∗) > ητ2(k∗) and ητ1(k) = ητ2(k) for k 6= k∗.

Equation (C.2) also implies that

PΣ=P [∩Li=1{Xi ≥ ai}] ≥ PΣ=T [∩Li=1{Xi ≥ ai}], (C.3)

which can be simply shown by replacing X and a by −X and −a, respectively.

When ρk∗0 = τ1, we have

Power(Φ = P ) = ProbΦ=P (
K⋂
k=1

{wk > c})

= ProbΦ=P (
K⋂
k=1

{zk > c− ητ1(k)}),

where Z = (z1, ..., zK)′ has zero mean(location) and correlation(shape) matrix P . Equa-

tion (C.3) implies that

74



ProbΦ=P (
K⋂
k=1

{zk > c− ητ1(k)}) > ProbΦ=T (
K⋂
k=1

{zk > c− ητ1(k)})

> ProbΦ=T (
K⋂
k=1

{zk > c− ητ2(k)})

= Power(Φ = T ).
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