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The objective of this dissertation is to introduce a novel single-fed circularly 

polarized (CP) microstrip antenna and extend such a single-feed (SF) scheme to an array 

structure based on the standing-wave array concept for high-gain applications. 

Many practical applications require CP antennas due to their unique characteristics.  

Compared to linearly polarized radio frequency (RF) waves, CP waves are more resistant 

to signal degradation due to inclement weather conditions (e.g., rain and snow).  In general, 

obstructions and reflections cannot be avoided in RF communication.  Since CP waves are 

transmitted along all planes, in contrast to the single plane of linearly polarized waves, 

circular polarization performs better when propagating through obstructions and suffers 

lower signal strength loss upon reflection.  Another important characteristic of CP waves 

is that a reflected CP wave will travel in the opposite orientation of the incident CP wave, 

meaning that a right-hand circularly polarized (RHCP) wave will become a left-hand 

circularly polarized wave (LHCP) after reflection.  This specific feature is noteworthy for 

its use in solving multipath and phasing interference issues.  CP antennas are widely used 

in new 802.11ac 5.8 GHz Wi-Fi systems and unmanned aerial vehicle (UAV) systems; 
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indeed, an increasing number of companies and institutes are exploring the use of CP 

antennas with millimeter waves. 

 Conventionally designed CP antennas require two feeding ports with equal 

magnitudes but phases 90° apart.  Such a two-feed mechanism results in a bulky and 

expensive structure.  Recently, a number of SF options for CP antennas have been proposed.  

In the Southern Methodist University (SMU) antenna lab, we have created a unique 

structure for SF CP antennas that shows excellent antenna performance compared to other 

published results.  Due to the square outline and diagonal feeding strategy in this proposed 

CP patch antenna design, it is feasible to implement the patch in a standing-wave array for 

high-gain applications requiring a simple, low-profile structure.  The standing-wave array 

antenna developed at SMU has a relatively simple planar structure, is easy to fabricate, and 

involves low-cost processing. 

This dissertation reviews current designs of SF CP microstrip patch antennas and 

proposes a novel design with improved performance.  The structure is similar to a regular 

microstrip antenna and the design procedure is relatively simple.  The basic operational 

mechanism for CP radiation is based on small apertures in the top radiating patch.  Proper 

arrangement of the aperture holes allows production of two orthogonal degenerate modes, 

with phases 90 apart from each other but equal magnitudes, resulting in excellent CP 

radiation.  By extending this SF scheme to an array structure based on the standing-wave 

array concept, a novel circular polarized array antenna can be realized by using one CP 

patch with standing-wave feeding networks.  The standing-wave array antenna developed 

at SMU has a low-profile planar configuration and a simple feeding network structure and 

thus can be fabricated easily and cheaply with relatively high gain. 
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CHAPTER 1 

 

INTRODUCTION TO WAVE POLARIZATION AND MICROSTRIP PATCH 

ANTENNAS 

 

 

Recent studies in the field of antenna design have shown that there is a high demand 

for circular polarized antennas with a small size, simple structure, and low fabrication cost 

that can nonetheless maintain good efficiency and performance and have the potential for 

integration into arrays for beam-forming.  A CP microstrip antenna with a single feed can 

satisfy the above requirements.  Before describing this antenna’s design, some basic 

concepts and definitions that are critical for understanding this dissertation are introduced 

in Chapter 1.   

1.1 Plane Wave 

The plane wave model is important and widely used in the electromagnetic 

engineering field.  For example, the RF waves received by an antenna at a sufficiently large 

distance are usually considered to approximate plane waves.  By definition, a plane wave 

is a wave for which both the electric field and the magnetic field lie in its propagation 

wave-front (the transverse plane), with the normal in the direction of propagation.  
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Furthermore, both fields in a transverse plane are perpendicular and have a constant 

magnitude and phase, as shown in Figure 1.1.  For this reason, plane waves are usually 

called transverse electromagnetic (TEM) waves [1-2]. 

 

Figure 1.1 Diagram of a plane wave. 

1.2 Wave Polarization 

1.2.1 Linear Polarization 

Wave polarization is the main identifying feature of a plane wave and describes its 

propagation characteristics.  A plane wave is said to be linearly polarized when the 

direction of the electric field does not change during propagation.  For example, consider 

a plane wave with the following E-field: 

𝑬 = 𝐸0 ∙ 𝑒−𝑗𝑘𝑧 ∙ 𝑒𝑗𝜔𝑡 ∙ 𝒚̂           (1.1) 



 

 

 

3 

 

The above equation indicates that the wave is propagating in the +z-direction.  

Moreover, its E-field is oriented in the +y-direction, so the E-field vector is oscillating in 

the y-direction at angular frequency ω, as shown in Figure 1.2. 

 

Figure 1.2 Normalized 3D view of the E-field of the plane wave from equation (1.1). 

Considering the E-field observed on the wave-front of this plane wave as a function 

of time, the magnitude of the E-field always oscillates back and forth along the y-axis.  

Because the oscillation path stays in a single line, this field is linearly polarized [1], as 

shown in Figure 1.3. 
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Figure 1.3 Diagram of an E-field along a wave-front at different times. 

Linear polarization does not have to occur along the x- or y-axis.  For example, 

consider the plane wave with the following E-field: 

𝑬 =
√2

2
𝐸0 ∙ 𝑒−𝑗𝑘𝑧 ∙ 𝑒𝑗𝜔𝑡 ∙ (𝒙̂ + 𝒚̂)          (1.2) 

Because the two components of the E-field are in phase—i.e., they have the same 

frequency and the same initial phase—their combination in the form of the total E-field 

would also be linearly polarized, as shown in Figure 1.5(a). 

1.2.2 Circular Polarization 

If the y component of the E-field given in equation (1.2) had a 90° phase difference 

with the x component, the resulting E-field would be as follows: 

𝑬 =
√2

2
𝐸0 ∙ 𝑒−𝑗𝑘𝑧 ∙ 𝑒𝑗𝜔𝑡 ∙ (𝒙̂ + 𝒆−𝒋

𝝅

𝟐 ∙ 𝒚̂)         (1.3) 
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A plane wave with the E-field shown in equation (1.3) would have a CP identity, 

or circular polarization (Figure 1.4).  In a CP E-field, the magnitude of the electric field 

remains the same but the direction changes such that the tip of the electric field forms a 

circular shape along its wave-front [3].  Depending on the circulation direction, CP 

radiation can be either RHCP or LHCP.  In practice, the polarization shape is not circular 

but elliptical.  The CP quality is characterized by the axial ratio (AR), which is the ratio of 

the major to minor E-field magnitude.  Thus, the AR of a CP wave should be equal to 1 

(linear) or 0 (dB) [2]. 

 

 (a)                                                                                 (b) 

Figure 1.4 (a) Normalized 3D view of the E-field of the plane wave from equation (1.3). 

(b) Diagram of the E-field on a wave-front at different times. 

From equation (1.3), three criteria could be concluded to form circular polarization. 

i. The E-field must have two orthogonal components; 

ii. The two components must have equal magnitude; 

iii. The two components must be 90 degrees out of phase. 
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Put right thumb pointing to wave travelling direction, if the other four fingers 

follow the rotating direction of E field, the wave is said to be right hand circularly polarized 

(RHCP); otherwise, the wave would be left hand circularly polarized (LHCP). 

1.2.3 Elliptical Polarization 

If a wave can satisfy NO. i and NO. iii requirements in the above three criteria for 

circular polarization but the magnitude of two components are not equal, it will end up an 

elliptical shape on the travelling wave front [3], as shown in Figure 1.5(c). 

 

Figure 1.5 3D view of the E-field of the plane wave in: (a) linear; (b) RHCP; (c) RHEP 

Finally, in practice, circularly polarized wave is difficult to produce, thus usually it 

would be slightly elliptical polarized, and in the same way, linearly polarized wave would 

be elliptical polarized with huge AR value. 
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1.3 Polarization of Antennas 

The antenna polarization is determined by the polarization of the radiated fields it 

transmits, evaluated in the far field.  Thus, antennas are classified as linearly polarized or 

CP.  If an antenna has two polarizations, it is often referred to as “dual-polarized.” 

The concept of polarization is important for wireless communication due to 

polarization mismatch.  Based on reciprocity, an antenna adopts the same polarization 

when transmitting and receiving.  Thus, for example, an antenna with horizontal 

polarization (linear polarization parallel to the ground) would not communicate with an 

antenna with vertical polarization (linear polarization perpendicular to the ground).   

Therefore, in an RF communication system, the receiving antenna should have the same 

polarization as the transmitting antenna for the best reception. 

The polarization loss factor (PLF) is used to evaluate the power loss due to 

polarization mismatch [4].  For two linearly polarized antennas, the angle φ represents the 

acute angle between their polarization directions, and the PLF is defined as follows: 

𝑃𝐿𝐹 =  𝑐𝑜𝑠2(𝜑)            (1.4) 

If φ is equal to zero, both antennas will have the same polarization, and there will 

be no power loss due to polarization mismatch.  If φ is equal to 90 degrees, the polarizations 

of the transmitting and receiving antennas will be perpendicular; no communication will 

exist between these two antennas, because they cannot receive power from each other. 

Hence, one advantage of a CP antenna is that if both antennas have the same circular 

polarization, the signals transmitted between them will not suffer power loss caused by 
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polarization mismatch.  In addition, according to the reciprocity theorem, an RHCP antenna 

cannot receive a signal from an LHCP antenna.  This represents another advantage of 

circular polarization, because an RHCP wave will turn into an LHCP wave after 

experiencing reflection, and the reflected wave would not interfere with the desired 

incoming wave.  Thus, CP antennas have some immunity to the multipath effect. 

1.4 Introduction to Microstrip Patch Antennas 

The concept of the microstrip antenna was originally developed by Deschamps in 

the 1950s.  However, it was not until the 1970s that the first microstrip antenna was 

fabricated, thanks to new techniques in substrate manufacturing.  Since then, the microstrip 

antenna has been used in a vast array of applications.  Because of their light profiles, low 

cost, small size and compatibility with highly integrated devices, microstrip antennas have 

become one of the most commonly used antennas in modern wireless communication 

systems [5].   

1.4.1 Structure of Microstrip Patch Antennas 

In general, a microstrip antenna consists of a ground plane, a substrate layer, and a 

radiating patch, which are combined to form a sandwich structure, as shown in Figure 1.6.  

A feeding structure transmits energy into the patch to produce radiation. 

In Figure 1.6, L and W represent the length and width of the radiating patch, and h 

is the thickness of the dielectric substrate with relative permittivity εr, also known as 

dielectric constant.  In practice, a higher dielectric constant is associated with a smaller 

antenna patch, but either the efficiency or the bandwidth decreases as a trade-off.  The 
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patch and ground plane are made of a highly conductive metal (typically copper) with 

thickness t. 

 

Figure 1.6 A typical microstrip patch antenna. 

Generally, the thickness of the metal is not as important as the thickness of the 

substrate.  The substrate thickness is typically much smaller than the free-space wavelength 

of the desired operational frequency (h << λ0), but to maintain the antenna’s efficiency, it 

will not be less than 1/40th of a wavelength.  In addition, increasing the substrate thickness 

with air is a common technique for ultra-wide-band microstrip antenna design [6-9]. 

1.4.2 Feeding of Microstrip Patch Antennas 

The feed method is the most important part of antenna design.  A proper feed 

method not only considers antenna performance but also satisfies the physical limitations 

of real application.  The methods for feeding microstrip antennas can be divided into two 

main categories: contacting and non-contacting methods [6]. 
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In the contacting method, as the name implies, the RF signal is fed directly to the 

radiating patch by a conductive element such as a probe (coaxial feed) or a microstrip line 

(inset feed or quarter-wavelength transmission line feed).  In the non-contacting method, 

RF power is transferred to the radiating patch through electromagnetic coupling.  The 

coupling can directly connect the patch and the microstrip line (i.e., a proximity-coupled 

feed) or it can use an aperture slot (i.e., an aperture-coupled feed). 

The simplest method is the coaxial (or probe) feed shown in Figure 1.7(a).  The 

inner conductor (pin) of a coaxial connector pierces through the ground plane and substrate 

layer and is soldered onto the radiating patch, while the outer conductor is connected to the 

ground plane.  The advantage of a coaxial feed is its simplicity in fabrication and the ease 

with which it accomplishes impedance matching.  The major disadvantage of a coaxial 

feed is that it provides limited bandwidth and requires a bulky structure.  The feeding 

location can be calculated according to previously published formulas [6], [9]. 

In the quarter-wavelength transmission line feed (also called the direct feed), as the 

name implies, the RF power is fed directly into the edge of patch through a quarter-

wavelength transmission line element between the patch and the microstrip line for 

impedance matching, as shown in Figure 1.7(b).  This occurs because the characteristic 

impedance of a microstrip line is 50 Ω, but the impedance on the edge of the patch is 

typically very large, ranging from 300 to 400 Ω.  The advantage of a direct feed is its low 

profile, low cost, easy fabrication, and ease of impedance matching; its major 

disadvantages are limited bandwidth and extra space requirements due to the quarter-
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wavelength transformer.  The design process of a quarter-wavelength transformer has been 

described in previous work [10]. 

 

Figure 1.7 (a) Coaxial feed. (b) Quarter-wavelength transmission line feed. (c) Inset feed. 

(d) Proximity feed. (e) Aperture-coupled feed. 

In the inset feed method, the microstrip line is embedded into the radiating patch, 

approaching the point at which it has the same impedance as the microstrip line, as shown 

in Figure 1.7(c).  Compared to the quarter-wavelength transmission line feed, a major 
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advantage of the inset feed is the compact size of its feeding structure, which is suitable for 

microstrip array antennas. 

Proximity-coupled feeds are widely used in modern RF systems because they 

provide very high bandwidth, up to 15 percent.  Another advantage of proximity-coupled 

feeds is that they add an extra degree of freedom to the design, which is very helpful when 

designing array antennas at higher frequencies [6].  The structure is shown in Figure 1.7(d).  

The microstrip line is enclosed in two substrate layers, terminating under the patch after a 

certain length.  The RF power is transferred to the patch through electromagnetic coupling 

between the patch and the microstrip line.  The dielectric constants of the two substrate 

layers can be different to enhance antenna performance [11-13].  

Aperture feeds represent another commonly used non-contacting feeding method 

with advantages such as highly integration, lower interference, and higher bandwidth.  The 

major difference relative to a proximity feed is that a ground plane with an aperture slot is 

located between the microstrip line and the radiating patch.  The RF power is coupled from 

the transmission line into the patch through the aperture slot, which can be designed with 

any size or shape for enhanced antenna performance [6].  Because the patch and 

transmission feed line are separated by the ground plane, the patch substrate (upper 

substrate) can be made using a lower dielectric constant material to yield better radiation.  

The feed substrate (lower substrate) can be independently chosen to have a high-dielectric 

constant material, thus producing tightly coupled fields that do not transmit spurious 

radiation [14-15].  The major disadvantage of an aperture feed is the complexity of its 

fabrication, due to its multilayer structure, as shown in Figure 1.7(e).  
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1.4.3 Half-Wavelength Rectangular/Square Patch Antenna 

The half-wavelength rectangular patch antenna is often used to explain the design 

process of a microstrip antenna.  Three critical parameters are involved in the design of a 

rectangular patch: width W, length L and effective dielectric constant εr_eff.  The patch 

width is usually chosen to achieve high antenna efficiency [6], [9] and defined as follows: 

W =
𝑐

2𝑓
(

2

𝜀𝑟+1
)
1

2⁄

            (1.5) 

Next, the effective dielectric constant of the substrate is given as follows: 

𝜀𝑟_𝑒𝑓𝑓 =
𝜀𝑟+1

2
+

𝜀𝑟−1

2
(1 +

10ℎ

𝑊
)
−1/2

          (1.6) 

With an effective dielectric constant and patch width, the length of the fringing field 

can be calculated using the following formula: 

ΔL = 0.412 ⋅ h ⋅
(𝜀𝑟_𝑒𝑓𝑓+0.3)(0.264+

𝑊

ℎ
)

(𝜀𝑟_𝑒𝑓𝑓−0.258)(0.8+
𝑊

ℎ
)
          (1.7) 

 

Figure 1.8 Diagram of cutaway view of the patch antenna with E-field. 
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Fringing field is the extension of electric field out of patch, as shown in figure 1.8.  

Inside the patch, the electric field resonates in a straightforward manner between the patch 

and the ground, but at the edge of the patch, the fringing effect makes the electric field 

closely parallel to the patch, forming the fringing field.  Hence, the actual electrical length 

of the patch is slightly larger than the physical length L.  The half-wavelength refers to the 

electrical length of the patch; thus, the physical length L is given as follows: 

𝐿 =
𝜆0

2
⋅

1

√𝜀𝑟𝑒𝑓𝑓
⋅𝜇𝑟𝑒𝑓𝑓

− 2Δ𝐿                                                                               (1.8) 

where λ0 is free-space wavelength at resonant frequency. 

As introduced in the previous section, the simplest method of exciting a patch 

antenna involves using a coaxial (probe) feed.  The input impedance can be changed by 

adjusting the location of the feed.  Δfed represents the distance from the edge to probe, and 

the antenna input impedance decreases as the Δfed increases.  For half-wavelength 

rectangular patches, the value of Δfed is given as follows: 

𝑍𝐴(Δfed) = 𝑍𝐴(Δfed = 0) ∙ cos2(𝜋 ∙ Δfed
𝐿⁄ ), where 𝑍𝐴 = 90

𝜀𝑟
2

𝜀𝑟−1
(

𝐿

𝑊
)
2

     (1.9) 

1.4.4 Cavity Model of Microstrip Patch Antennas 

There are several methods for analyzing microstrip antennas.  The most popular 

one is the transmission line model, which assumes that the patch is a transmission line or 

a part of a transmission line.  The transmission line model is the simplest way to analyze 

microstrip antennas and relies on physical insight.  However, it is not suitable for a patch 
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due to the patch’s nonuniform shape, as well as the model’s low accuracy and difficulty 

with simulating coupling. 

The cavity model assumes that the patch is a dielectric-loaded cavity with a perfect 

electric conductor (PEC) at the top and bottom and a perfect magnetic conductor (PMC) in 

the substrate around the patch.  Compared to the transmission line model, the cavity model 

is more complex, but provides more accurate results and makes greater physical sense [16].  

In this section, a microstrip half-wavelength rectangular patch antenna is analyzed using 

the cavity model.   

Once a rectangular patch is excited, the input source is generally a certain 

modulated sinusoidal voltage signal, creating an oscillation in the electric field between the 

patch and the ground panel along with the length of the patch (with length L being the half-

wavelength in the substrate).  As a result, a positive charge is concentrated on one side of 

the patch, while a negative charge is concentrated on the other side.  This charge 

distribution induces two forces in the cavity.  As shown in Figure 1.9, the first is the 

attractive force between the opposite charges on the bottom of the patch and the ground 

plane surface. 
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Figure 1.9 A 3D view of rectangular patch antenna. 

This attraction force concentrates the patch charge at the bottom of the patch.  The 

second force introduce is the repulsive force between like charges on the bottom of the 

patch.  This force pushes some of the charges around the edge of the patch to the top surface.  

If the dielectric substrate is very thin, the second force is negligible, and the first force is 

dominant.  Thus, most of the current flow on the bottom side of the patch and on the top 

and sides of the patch is close to zero.  Therefore, the tangential component of the magnetic 

field is nearly zero close to the edge of the patch.  Based on this result, because the height 

of the substrate h is much smaller than the wavelength, the wall between the patch edge 

and ground plane can be assumed to be a PMC.  Therefore, only transverse magnetic (TM) 

modes inside the cavity are considered [17-18]. 

Considering the microstrip rectangular patch antenna shown in Figure 1.10, the 

center of the patch can place at the origin of a rectangular coordinate system, assuming that 
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the antenna is propagating in the z direction, and feeding point locates on y-axis.  Based on 

the cavity model, the dominant mode of this rectangular patch antenna is TM10.   

 

Figure 1.10 Diagram of cavity model in a probe feed rectangular patch antenna. 

Because the cavity model assumes that the field distribution under the patch 

antenna is the same as that in a cavity, the radiated power can be considered as leakage 

energy from the cavity's sidewalls.  The field theorem indicates that the magnetic current 

(theoretically, although this may not exist in practice) is a contribution of the electric field. 

𝑴𝒔
⃑⃑ ⃑⃑  ⃑ = 𝑬̂ x 𝒏̂, where n is the direction normal to the sidewall.                                     (1.10) 

thus, 

 𝑴𝒚
⃑⃑⃑⃑⃑⃑ = 𝐸𝑧 ∙ ±𝒛̂  ×  𝒙̂   

 = ±𝐸0 ∙ cos(
𝑛𝜋𝑦

𝐿⁄ )𝒚̂    𝑓𝑜𝑟 𝑥 = ±
𝑤

2
, −𝒛̂ 𝑖𝑓 𝑦 > 0; +𝒛̂ 𝑖𝑓 𝑦 < 0          (1.11) 
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𝑴𝒙
⃑⃑⃑⃑⃑⃑ = ±𝐸𝑧 ∙ 𝒛̂  ×  ±𝒚̂  

= 𝐸0 ∙ cos(𝑚𝜋𝑥
𝑊⁄ )𝒙̂    𝑓𝑜𝑟 𝑦 =  ±𝐿/2                                                                (1.12) 

Because the electric field is sinusoidally distributed between the patch and the 

ground along the y-axis, the positive and negative portions of the magnetic current on edge 

x (x = +W/2) cancel, and the same situation occurs for edge x = -W/2.  Thus, the total 

magnetic current in the y direction 𝑴𝒚
⃑⃑⃑⃑⃑⃑  is zero.  On edge y = ±L/2, because the electrical 

field distribution and the normal direction of the sidewalls are always opposite, the 

magnetic current is always the same.  The magnetic current is given as follows: 

𝑴𝒙
⃑⃑⃑⃑⃑⃑ = 𝑬̂ x 𝒏̂ = 𝐸𝑧 ∙ 𝒙,                                (1.13)  

which indicates the source of the radiated energy.  Because the magnetic current is 

conceptual, it does not physically exist.   

The ψ function for wave equation is given as follows: 

𝜓𝑚𝑛 =
𝜒𝑚𝑛

√𝑊𝐿
cos(𝑘𝑚𝑥) cos(𝑘𝑛𝑦), with  𝜒𝑒 = {

1,      𝑚 = 0 𝑎𝑛𝑑 𝑛 = 0;

√2,    𝑚 = 0 𝑜𝑟 𝑛 = 0;
2,     𝑚 ≠ 0 𝑎𝑛𝑑 𝑛 ≠ 0;

   (1.14) 

thus, 

𝐸𝑧 = 𝜓01 = √
2

𝑊𝐿
∙ cos (

𝜋

𝐿
𝑦)           (1.15) 

The electrical vector potential 𝑭⃑⃑  can be derived from magnetic current as follows: 

𝑭⃑⃑ (𝒓⃑ ) = ∭𝑴⃑⃑⃑ (𝑟′) 𝑒𝑗𝒌⃑⃑ 𝒓′⃑⃑  ⃑𝑑𝑣′ , where 𝑟′ indicates the source.     (1.16) 
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thus, at edge y = L/2,  

𝑭⃑⃑ (𝒓⃑ ) = √
2

𝑊𝐿
∫ 𝑒𝑗𝑘𝑥𝑥′ 𝑒𝑗𝑘𝑦

𝐿

2𝑑𝑥′
+

𝑊

2

−
𝑊

2

                                                                                (1.17) 

𝑭⃑⃑ (𝒓⃑ ) = √
2

𝑊𝐿
 𝑒𝑗𝑘𝑦

𝐿

2  
1

𝑗𝑘𝑥
(  𝑒𝑗𝑘𝑥

𝑊

2
 −   𝑒−𝑗𝑘𝑥

𝑊

2
 )                                                             (1.18) 

𝑭⃑⃑ (𝒓⃑ ) = 2√
2

𝑊𝐿
 𝑒𝑗𝑘𝑦

𝐿

2  
sin(𝑘𝑥

𝑊

2
)

𝑘𝑥
                                                                                      (1.19) 

Assuming that, ϕx = kx
W

2
 and  ϕy = ky

L

2
, 𝑭⃑⃑ (𝒓⃑ ) can be simplified as follows: 

𝑭⃑⃑ (𝒓⃑ ) = 2√
2𝑊

𝐿

 sin(𝜙𝑥)

𝜙𝑥
𝑒𝑗𝑘𝑦

𝐿

2                                                                  (1.20) 

Similarly, at edge y = -L/2, 

𝑭⃑⃑ (𝒓⃑ ) = 2√
2𝑊

𝐿

 sin(𝜙𝑥)

𝜙𝑥
𝑒−𝑗𝑘𝑦

𝐿

2                                                                  (1.21) 

thus, the total 𝑭⃑⃑ (𝒓⃑ ) is as follows: 

𝑭⃑⃑ (𝒓⃑ ) = 2√
2𝑊

𝐿

 sin(𝜙𝑥)

𝜙𝑥
𝑒𝑗𝑘𝑦

𝐿

2 + 2√
2𝑊

𝐿

 sin(𝜙𝑥)

𝜙𝑥
𝑒−𝑗𝑘𝑦

𝐿

2 = 4√
2𝑊

𝐿

 sin(𝜙𝑥)

𝜙𝑥
cos(𝜙𝑦)             

              (1.22) 

With vector potential 𝑭⃑⃑ (𝒓⃑ ) ,  𝐸𝜃  and 𝐸𝜙  can be derived from the solution of 

Maxwell’s equations as follows: 

𝑬⃑⃑ = −∇ × 𝑭⃑⃑ +
1

𝑗𝜔𝜀
(∇ × ∇ × 𝑨⃑⃑ − 𝑱 ), where 𝑨⃑⃑  and 𝑱  are zero                         (1.23) 
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𝐸𝜃 = −𝑗𝑘𝜂𝑨𝜽
⃑⃑ ⃑⃑  − 𝑗𝑘𝑭𝝓

⃑⃑⃑⃑  ⃑ = −𝑗𝑘𝑭𝝓
⃑⃑⃑⃑  ⃑                                                                   (1.24) 

𝐸𝜙 = −𝑗𝑘𝜂𝑨𝝓
⃑⃑ ⃑⃑  ⃑ + 𝑗𝑘𝑭𝜽

⃑⃑ ⃑⃑  = 𝑗𝑘𝑭𝜽
⃑⃑ ⃑⃑                                                       (1.25) 

and far-field proximation yields the following expressions: 

𝐸𝜃 =
𝑒−𝑗𝑘𝑟

4𝜋𝑟
𝑗𝑘ℎ (𝐹𝑥 sin𝜙 − 𝐹𝑦 cos𝜙)        (1.26) 

𝐸𝜙 = −
𝑒−𝑗𝑘𝑟

4𝜋𝑟
𝑗𝑘ℎ (𝐹𝑥 cos𝜙 + 𝐹𝑦 sin𝜙) cos 𝜃                                (1.27) 

When the rectangular patch antenna is fed by a coaxial cable, many waves are 

excited, which results in several possible field representations inside the cavity.  The 

electric field inside the patch cavity can be expressed in various models of the cavity as 

follows: 

𝐸𝑧 = ∑ ∑ 𝐴𝑚𝑛 𝜓𝑚𝑛(𝑥, 𝑦)𝑛𝑚                                                                (1.28) 

where Amn is the amplitude coefficient corresponding to the electrical field mode vector 

or eigenfunction ψmn .  The eigenfunction ψmn  must satisfy the homogeneous wave 

equation, boundary conditions and normalization conditions as follows: 

𝜕𝜓𝑚𝑛

𝜕𝑥
|
𝑥=0

=
𝜕𝜓𝑚𝑛

𝜕𝑥
|
𝑥=𝐿

= 0                                                                              (1.29) 

𝜕𝜓𝑚𝑛

𝜕𝑦
|
𝑦=0

=
𝜕𝜓𝑚𝑛

𝜕𝑦
|
𝑦=𝑊

= 0                                                                            (1.30) 

(∇2 + k𝑚𝑛
2 ) 𝜓𝑚 = 0                                                                                       (1.31) 

(
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 + k𝑚𝑛
2 ) 𝜓𝑚𝑛 = 0                                                                         (1.32) 
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separation of variable, ψm can be expressed as follows: 

𝜓𝑚 = [𝐴1 cos(𝑘𝑥𝑥) + 𝐵1 sin(𝑘𝑥𝑥)][𝐴2 cos(𝑘𝑦𝑦) + 𝐵2 sin(𝑘𝑦𝑦)][𝐴3 cos(𝑘𝑧𝑧) +

𝐵3 sin(𝑘𝑧𝑧)]                                  (1.33) 

where 𝑘𝑥, 𝑘𝑦 and 𝑘𝑧 are the wavenumbers along the 𝑥, 𝑦, and 𝑧 directions. 

The electrical and magnetic fields within the cavity are related to the vector 

potential, which can be given as follows: 

𝐸𝑥 = −𝑗
1

𝜔𝜇𝜖
(
𝜕2𝜓𝑚

𝜕𝑥𝜕𝑧
) , 𝐻𝑥 = −

1

𝜇

𝜕𝜓𝑚

𝜕𝑦
         (1.34) 

𝐸𝑦 = −𝑗
1

𝜔𝜇𝜖
(
𝜕2𝜓𝑚

𝜕𝑥𝜕𝑦
) , 𝐻𝑦 =

1

𝜇

𝜕𝜓𝑚

𝜕𝑧
                                                                                (1.35) 

𝐸𝑧 = −𝑗
1

𝜔𝜇𝜖
(

𝜕2

𝜕𝑧2 + 𝑘2)𝜓𝑚                                                                                         (1.36) 

according to the following boundary conditions: 

𝐸𝑦(0 ≤ 𝑥′ ≤ 𝑊, 0 ≤ 𝑦′ ≤ 𝐿, 𝑧′ = 0) = 𝐸𝑦(0 ≤ 𝑥′ ≤ 𝑊, 0 ≤ 𝑦′ ≤ 𝐿, 𝑧′ = ℎ) = 0 

(1.37) 

𝐻𝑦(𝑥
′ = 0, 0 ≤ 𝑦′ ≤ 𝐿, 0 ≤ 𝑧′ ≤ ℎ) = 𝐻𝑦(𝑥

′ = 𝑊, 0 ≤ 𝑦′ ≤ 𝐿, 0 ≤ 𝑧′ ≤ ℎ) = 0 

(1.38) 

𝐻𝑧(0 ≤ 𝑥′ ≤ 𝑊, 𝑦′ =  0,≤ 𝑧′ ≤ ℎ) = 𝐻𝑧(0 ≤ 𝑥′ ≤ 𝑊, 𝑦′ = 𝐿, 0 ≤ 𝑧′ ≤ ℎ) = 0 

(1.39) 
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The primed coordinates  𝑥′, 𝑦′ 𝑎𝑛𝑑 𝑧′ represent the fields inside the cavity.  By 

applying the boundary condition 𝐵1 = 𝐵2 = 𝐵3 = 0, and the following parameters: 

𝑘𝑥 =
𝑚𝜋

𝑊
 , 𝑚 = 0,1,2, ….                                                                                                            (1.40) 

𝑘𝑦 =
𝑛𝜋

𝐿
 , 𝑛 = 0,1,2, ….                                                                                                              (1.41) 

𝑘𝑧 =
𝑝𝜋

ℎ
 , ℎ = 0,1,2, ….                                                                                                              (1.42) 

Therefore, the final form of the vector potential within the cavity is: 

𝜓𝑚 = 𝐴𝑚𝑛 cos(𝑘𝑥𝑥
′) cos(𝑘𝑦𝑦

′) cos(𝑘𝑧𝑧
′),       (1.43) 

where 𝐴𝑚𝑛 represents the amplitude coefficients of each mode.  

For a rectangular patch, 𝑘𝑧 = 0 and the vector potential is given as follows: 

𝜓𝑚(𝑥, 𝑦) = √
𝜖𝑚𝜖𝑛

𝐿𝑊
cos (

𝑚𝜋

𝑊
𝑥) cos (

𝑛𝜋

𝐿
𝑦)                                                       (1.44) 

and 

𝑘𝑚𝑛 = √(
𝑚𝜋

𝑊
)
2

+ (
𝑛𝜋

𝐿
)
2

                                                                                  (1.45) 

The amplitude coefficients Amn are determined by substituting equation (2.42) into 

equation (2.37).  Next, both sides of equation (2.37) are multiplied by ψm
∗
 and integrated 

over the area of the patch.  Therefore, Amn can be expressed as follows: 

𝐴𝑚𝑛 =
𝑗𝜔𝜇𝑜

𝑘𝐴
2−𝑘𝑚𝑛

2 ∬𝐽𝑧 𝜓𝑚
∗𝑑𝑥𝑑𝑦                                                               (1.46) 
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Next, the coaxial probe feed can be modeled using Huygen’s principle, which 

involves current flowing along the center conductor from the bottom to the top.  The probe 

has a diameter 𝑑 where the conductor pin passes through it and is connected to the patch 

[19]. 

𝐴𝑚𝑛 =
𝑗𝜔𝜇𝑜𝐼𝑜

𝑘𝐴
2−𝑘𝑚𝑛

2 √
𝜖𝑚𝜖𝑛

𝐿𝑊
𝑐𝑜𝑠 (

𝑚𝜋

𝑊
𝑥𝑜) 𝑐𝑜𝑠 (

𝑛𝜋

𝐿
𝑦𝑜)𝐺𝑚𝑛                                        (1.47) 

𝐺𝑚𝑛 = 𝑠𝑖𝑛𝑐 (
𝑛𝜋𝑑

2𝐿
)                                                                                          (1.48) 

Thus, equation (1.46) can be written as follows: 

𝐴𝑚𝑛 =
𝑗𝜔𝜇𝑜𝐼𝑜

𝑘𝐴
2−𝑘𝑚𝑛

2 √
𝜖𝑚𝜖𝑛

𝐿𝑊
𝑐𝑜𝑠 (

𝑚𝜋

𝑊
𝑥𝑜) 𝑐𝑜𝑠 (

𝑛𝜋

𝐿
𝑦𝑜) 𝑠𝑖𝑛𝑐 (

𝑛𝜋𝑑

2𝑊
)                              (1.49) 

Therefore, 𝐸𝑧 can be expressed as follows: 

𝐸𝑧(𝑥, 𝑦) = 𝑗𝜔𝜇𝑜𝐼𝑜 ∑ ∑
𝜓𝑚(𝑥,𝑦)𝜓𝑚(𝑥𝑜,𝑦𝑜)

𝑘𝐴
2−𝑘𝑚𝑛

2𝑛𝑚 𝑠𝑖𝑛𝑐 (
𝑛𝜋𝑑

2𝑊
)                                  (1.50) 

Because the input impedance inside the cavity is defined as follows: 

𝑍𝑖𝑛 =
𝑉𝑖𝑛

𝐼𝑜
          (1.51) 

where  𝑉𝑖𝑛 = −𝐸𝑧(𝑥𝑜, 𝑦𝑜) ∗ ℎ at the feed point, and 𝑉𝑖𝑛 can be written as: 

𝑉𝑖𝑛 = −𝑗𝜔𝜇𝑜ℎ𝐼𝑜 ∑ ∑
𝜓𝑚

2(𝑥𝑜,𝑦𝑜)

𝑘𝐴
2−𝑘𝑚𝑛

2𝑛𝑚 𝑠𝑖𝑛𝑐 (
𝑛𝜋𝑑

2𝑊
)                                                (1.52) 

Equation (1.50) can be rewritten from equation (1.51) as follows: 
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𝑍𝑖𝑛 = −𝑗𝜔𝜇
𝑜
ℎ∑ ∑

𝜓𝑚
2(𝑥𝑜,𝑦𝑜)

𝑘𝐴
2−𝑘𝑚𝑛

2𝑛𝑚 𝑠𝑖𝑛𝑐 (
𝑛𝜋𝑑

2𝑊
)                                           (1.53) 

Assume that   𝑠𝑖𝑛𝑐 (
𝑛𝜋𝑑

2𝑊
) =

sin(
𝑚𝜋𝑑

2𝑊
)

(
𝑚𝜋𝑑

2𝑊
)

= 1 ; thus, from equation (1.52), the input 

impedance is as follows: 

𝑍𝑖𝑛 = −𝑗𝜔𝜇𝑜ℎ∑ ∑
𝜓𝑚

2(𝑥𝑜,𝑦𝑜)

𝑘𝐴
2−𝑘𝑚𝑛

2𝑛𝑚                                                                       (1.54) 

For a coaxial probe feed microstrip antenna, the feed is modeled separately, and its 

reactance is calculated and added to the input impedance of the patch antenna.  The coaxial 

feeding structure is modeled as a thin strip of finite width with a uniformly distributed 

electric current flowing vertically from the ground plan to the patch.  The probe reactance 

can be expressed as an inductance with no resonant models of the cavity.  For a rectangular 

patch antenna, the probe reactance can be expressed as follows: 

𝑋𝑝 = −
𝜂𝑘ℎ

2𝜋
[𝑙𝑛 (

𝑘𝑑

4
) + 0.577]                                                                         (1.55) 

where 

𝑘𝐴
2 = 𝑘𝑜

2𝜖𝑟𝑒𝑓𝑓 (1 −
𝑗

𝑄𝑡
)                                                                                   (1.56) 

𝑘𝑚𝑛
2 = (

𝑚𝜋

𝑊
)
2

+ (
𝑛𝜋

𝐿
)
2

                                                                                    (1.57) 

𝜂 = 𝜂𝑜√
𝜇𝑟

𝜖𝑟
                                                                                                       (1.58) 

𝑘 =
𝜔√𝜖𝑟𝜇𝑟

𝑐
                                                                                                       (1.59) 
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CHAPTER 2 

 

CIRCULARLY POLARIZED MICROSTRIP PATCH ANTENNAS 

 

 

There are multiple types of antennas with circular polarization.  The helix and 

cloverleaf are the most famous circularly polarized (CP) wire antennas (see Figure 2.1(a) 

and (b)).  The helix antenna, also called the helical antenna, is a spirally shaped wire 

antenna with a large ground panel.  It provides high gain (approximately 10-15 dB) with 

an endfire radiation pattern.  The cloverleaf antenna has a donut-shaped radiation pattern 

similar to a dipole antenna with circular polarization [20-21].  The helix antenna has good 

circular polarization with a directional radiation pattern, whereas the cloverleaf antenna 

has fairly good circular polarization with an almost omni-directional radiation pattern.  

However, the bulky structure of these antennas makes them inappropriate for compact 

mobile devices and is difficult to implement in an array. 
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Figure 2.1 (a) A 5.8 GHz helix antenna. (b) A 5.8 GHz cloverleaf antenna. 

Hence, CP microstrip antennas represent an attractive solution that combines high 

performance and compact size.  As described in Chapter 1, to produce a wave in circular 

polarization, an antenna should generate two orthogonal electrical field components with 

equal magnitudes and a 90° phase difference. 

2.1 Circularly Polarized Microstrip Patch Antennas 

2.1.1 Dual feed CP microstrip antennas 

In conventional design, a CP microstrip antenna requires two inputs to excite two 

orthogonal patch modes with quadrature phasing and equal magnitude.  The two feed 

locations used to excite the two orthogonal patch modes are shown in Figure 2.2.  Usually, 

the two ports are fed physically from two sources that have equal magnitude and are 90º 

out of phase, or from the help of an external polarizer, such as a quadrature hybrid T-

junction power divider.  Such a two-feed mechanism results in a bulky and expensive 

structure.  Additionally, it is difficult to ensure that the magnitude of the two feeding ports 

is exactly the same, which impacts the overall performance of the AR [22-24]. 
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Figure 2.2 (a) Typical dual-fed circularly polarized patch antennas. (b) Typical dual-fed 

circularly polarized patch antennas from a single port. 

2.1.2 Single-feed CP microstrip antennas 

One simple choice is to construct a two-feed structure with a single microstrip line, 

as shown in Figure 2.2(b).  Because of feeding mismatch, a typical antenna with this 

structure has a 6-dB AR bandwidth of approximately 3% with a minimum AR of 1 dB [24].  

However, such an antenna will not perform adequately in some applications. 

Other SF CP microstrip antennas have been proposed to improve antenna 

performance.  Truncated corner, square patch with a diagonal slot, and diagonal-fed nearly 

square antennas are common configurations in the industry due to their simple structures 

[25-30], [35-37]. 

Using these three configurations, a 0.2 dB minimum AR can easily be achieved.  

However, their 6-dB AR bandwidths are reduced to nearly 0.9-1%.  Nevertheless, SF CP 
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microstrip antennas are widely used for global positioning systems (GPSs), since they 

feature easy fabrication, low cost, and wide beamwidth. 

Compared to dual feed circularly polarized patch antennas, SF CP patch antennas 

have a narrow AR bandwidth [31-34].  However, in recent decades, several bandwidth-

enhancement techniques have been successfully implemented for SF CP antennas.  

Because of these improvements in bandwidth, SF CP patch antennas are more competitive, 

especially in array applications. 

The performances of the antennas discussed above are summarized in Table 2.1. 

 

Figure 2.3 Three typical topologies of single fed circularly polarized patch antennas: a. 

diagonal-fed nearly square patch antenna; b. truncated corners square patch antenna; c. 

diagonal slot squa1re patch antenna. 

Table 2.1 Summary of AR performance of circular polarized microstrip patch antennas. 

 
Microstrip 

dual-feeds 

Diagonal-fed 

nearly square 

Truncated-

corners 
Diagonal slot 

Minimum AR 1 dB 0.25 dB 0 dB 0.2 dB 

6-dB AR bandwidth >3% 0.67% 0.92% 1.2% 
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2.2 Proposed Single-Feed Circularly Polarized Patch Antenna 

2.2.1 Design methodology 

In this study, we introduce a new configuration of a compact CP microstrip antenna 

with a single feed.  The structure is similar to a regular microstrip antenna and the design 

procedure is relatively simple.  The basic operational mechanism for CP radiation is based 

on a small aperture in the top radiating patch [38-39].  Proper arrangement of the aperture 

holes will produce two orthogonal degenerate modes, with phases separated by 90 but 

equal magnitudes, resulting in excellent CP radiation.  In this case, the feed location 

determines not only the input impedance but also the relative magnitudes of the two normal 

modes. 

Here, we assume that the substrate thickness is much smaller than the wavelength 

and that there is no field variation in the direction perpendicular to the patch.  Two small 

circular apertures are placed along the y-axis, while the feed is located near the diagonal 

line connecting two opposite corners.  The feed excites two degenerate modes, TM10 and 

TM01.  For the TM10 mode, the holes act as induced magnetic dipoles, because the small 

apertures are located where the magnetic field is at a maximum, but the electrical field is 

vanishing.  On the other hand, for the TM10 mode, the holes behave as both electrical and 

magnetic dipoles because of the presence of both electrical and magnetic fields at the hole 

locations.  As the holes move closer to the patch edges, the equivalent electric dipole 

moments at the apertures dominate the magnetic dipole moments, because the magnetic 

field decreases towards the patch edges [39].  Since the field excitation due to a magnetic 

dipole is 90 out of phase with that due to an electric dipole, the degenerate modes excited 
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by the feed have different boundary conditions.  Once the hole locations are properly 

chosen, the apertures impose boundary conditions that produce two modal excitations with 

a phase difference of 90 [25, 26]. 

Because the two degenerate modes have different boundary conditions, the feed at 

the diagonal line results in close but not exactly equal magnitudes for the two modes; it is 

necessary to adjust the relative field magnitude of one mode relative to the other by shifting 

the feed location.  For example, as the feed moves towards one edge with a fixed value of 

x, the cavity model shows that the field magnitude of TM01 will increase relative to that of 

TM10.  A relatively minor shift is required to yield two degenerate modes with equal 

magnitudes. 

The holes must be large enough for the apertures to exert a sufficient influence on 

the modal excitations, resulting in the required phase shift of 90 for CP radiation.  

However, overly large holes will not act as ideal 90 phase shifters, because the 90 phase 

shift is based on a small-hole approximation [40].  To increase the effect of the aperture 

holes while minimizing the detrimental effects of large aperture size, two holes are 

symmetrically placed, as shown in Figure 2.4.  Those two holes will influence the modal 

excitations equally 

2.2.2 HFSS simulation and optimization 

High-frequency electromagnetic field simulation (HFSS) is commonly used in 

resonant antenna simulation and was selected for the simulation work in this dissertation.  

The design work and parameters are shown in Figure 2.4.  The substrate is Rogers RO 
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4003C (design ϵr = 3.55 and dissipation factor = 0.0027) with a thickness of 60 mils (1.524 

mm).  Copper is used for the patch and ground (σ = 5.8 x 107 s/m), with a thickness of 35 

micrometers.  The initial antenna dimensions are shown in Table 2.1, as calculated by 

cavity mode analysis.  L represents the length and width of the square patch, and two 

circular slots with a radius of 3 mm are placed along the y-axis with a 10.86 mm offset to 

the center point of the patch.  The feeding location is placed on the diagonal line in the 

second quadrant, with the offset distances to the x- and y-axes represented by Uf and Vf, 

respectively. 

 

Figure 2.4 Proposed single-feed CP microstrip patch antenna. 
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Table 2.2 Final optimized design parameters of sub-2GHz single feed CP patch antenna. 

Items Parameter name Value (mm) 

Length of square patch L 40 

Radius of circle slot Ra 3 

Distance to patch center CC 10.86 

Feeding point in x-axis Uf 5.76 

Feeding point in y-axis Vf 5.76 

 

The simulation results show that this initial designed antenna does not perform well.  

As indicated in the previous section, circular polarization results from the combined effects 

of three parameters: feed location, the radius of the circular slots, and the slot offset 

distance.  HFSS supports parametric optimization analysis to determine the proper value 

for each parameter.  Figure 2.5 presents S11 on a logarithmic scale and on a Smith chart.  

The two dips in Figure 2.5 S11 and the kink near the center of the trace in the Smith chart 

indicate the presence of two nearly degenerate modes excited within the antenna cavity. 



 

 

 

33 

 

 

 

Figure 2.5 Simulated S11 return loss and Smith chart of optimized design. 

The distance between the square patch center and the coupling circular slots varies 

from 8 mm to 15 mm.  The S11 has a center frequency at 1.903 GHz with an approximately 
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-20 dB return loss and a 2.46% 10-dB bandwidth (46.8 MHz), which are similar to those 

of a normal SF linearly polarized rectangular patch antenna. 

 

Figure 2.6 The simulated axial ratio (AR) of proposed antenna. 

The performance of the designed CP can be evaluated in HPSS by checking the 

complex magnitude plot of the electrical field distribution on the patch.  HFSS defines the 

complex magnitude plot of an electric field as the result of the complex multiplication of 

conjugated values [EE*].  Hence, the plot shows the maximum amplitude of the E-field at 

each point, and this value is phase- (or time-) independent.  Because the electric field is 

sinusoidally distributed, its maximum magnitude occurs on the edges of the patch, and zero 

E-field is produced in the center of the patch.  Thus, for a linearly polarized patch, the 

complex magnitude of the E-field should be linearly distributed, with a string-shaped 

region on the patch where the amplitude is close to zero.  If the patch produces a CP wave, 
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the sinusoidally distributed E-field should rotate around the center of patch clockwise or 

counterclockwise, resulting in a low, circular electric field region relative to the linearly 

polarized patch, as shown in Figure 2.7.  The dark blue region in the center of the figure 

has a perfectly circular shape, which indicates that the antenna is producing a good circular 

polarization wave. 

 

Figure 2.7 Complex magnitude of the electric field on the antenna patch (a) Proposed 

circularly polarized patch. (b) Linearly polarized diagonal-fed patch. 

Figure 2.6 shows that the simulation has a nearly perfect AR of approximately 0.21 

dB at 1.906 GHz, yielding a 1.62% (31 MHz) 6-dB and a 0.73% (14 MHz) 3-dB AR 

bandwidth.  The feeding location is along a diagonal line with a 5.76 mm offset from the 

center of the patch.  The two coupling circular slots are placed along the centerline, with 

10.86 mm to the antenna patch’s center.  The 3D radiation pattern is shown in Figure 2.8, 

indicating a 5.83 dBic RHCP gain with a wide beam width up to 92°. 
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Figure 2.8 Simulated radiation pattern of 3D view and Phi=0º/90º cuts with LHCP. 

2.2.3 Measurement Results 

The fabrication of all proposed antennas, which was based on simulation 

parameters, occurred in the Antenna Fabrication Lab at the Lyle School of Engineering, 

SMU, using an LPKF ProtoMat M60 milling machine (Figure 2.9).  The milling machine 
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was connected to a computer and controlled by the Board Master program run on a 

Windows system, with a board file imported into the program.  In addition to Board Master, 

the board file was modified using Circuit Cam software to transfer the antenna design from 

AutoCAD into Board Master format before the milling operation. 

 

Figure 2.9 The LPKF ProtoMat M60 milling machine in antenna fabrication lab. 

Compared to the traditional chemical erosion process, using a milling machine is a 

simple, low-cost, fast, efficient, and environmentally friendly method of fabricating a 

microstrip antenna, even though using a milling machine can lower the fabricating 

accuracy, creating metal burrs and strain on the antenna patch, and over-milling into the 

substrate, making it unsuitable for multilayer structures. 

The fabricated antenna was first used to measure the impedance-matching issue.  

The antenna was connected to a calibrated professional network analyzer to measure S11, 

known as the return loss or reflective coefficient.  Figure 2.10 shows the results; the 
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measured data was not consistent with the simulation as usually seen in microstrip antennas.  

The two concave areas in the return loss plot indicate that two orthogonal modes were 

excited on different resonant frequencies.  The twisting trace in the Smith chart confirms 

this result; in general, the best AR occurs at the tip of the kink. 

 

 

Figure 2.10 Measured and simulated S11 return loss and reflective coefficient. 
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The measurement work was conducted in the SMU antenna anechoic chamber with 

an Allwave antenna measurement system (Figure 2.11); a direct test was conducted using 

a far-field scan with the right-hand polarization option selected.  The system uses the gain-

compare method to measure the antenna under test (AUT); thus, a standard gain horn (SGH) 

in the proper frequency range was selected and measured as the reference.  The software 

automatically processes the collected data and reports it to the user. 

 

Figure 2.11 SMU antenna anechoic chamber with Allwave antenna measurement system. 
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The measured max peak gain is 5.7 dB with a directivity of 6.21 dB at 1.931 GHz, 

yielding a 88.97% antenna efficiency.  Figure 2.12 shows the 2-cut co-pol/x-pol radiation 

gain pattern in a 2D polar plot with 0º and 90º phi angles.  The pattern is similar to that of 

a regular rectangular microstrip patch antenna, and its half-power beamwidth (HPBW) is 

98.20º over a 176º 3-dB AR beamwidth. 

 

Figure 2.12 Measured radiation pattern of the antenna fabricated based on the original 

design. 0º and 90º are the φ angles in the spherical coordinate measurement system; the 

co-pol is set as RHCP and thus the X-pol is LHCP. 
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Figure 2.13 shows the measured and simulated AR of the proposed antenna.  The 

minimum AR is 0.56 dB, indicating good circular polarization, with a maximum antenna 

gain appearing at 1.931 GHz.  The 3-dB and 6-dB AR bandwidths are 13 and 29 MHz, 

respectively. 

 

Figure 2.13 Measured AR of the antenna fabricated using the original design. 

2.2.4 Summary and Conclusion 

The results indicate a 1% mismatch in the center frequency between the measured 

and simulated results and a 0.35 dB mismatch in AR.  There are several possible reasons 

for these mismatches.  The most likely cause is imperfections in the fabricating process 

related to fabrication accuracy and methodology.  The proposed antenna was fabricated 

using a milling machine; thus, during the operation, a part of the substrate would be 

removed by the milling head, creating an nonuniform substrate distribution close to the 



 

 

 

42 

 

patch edges.  This nonuniformity could alter the fringe effect and cause a frequency shift.  

Additionally, the simulation assumes typical material data, though this may vary in practice. 

In general, the fabricated antenna corresponds to the simulation.  Some of its 

specifications are worse because the simulation represents an ideal case; this difference is 

acceptable and often happens during antenna fabrication.  The antenna specifications are 

shown in Table 2.3. 

Table 2.3 Comparison of simulated and fabricated antennas. 

 Measurement Simulation 

Center frequency 1.931 GHz 1.906 GHz 

Minimum AR 0.56 dB 0.21 dB 

3dB/6dB AR bandwidth 13 MHz / 29 MHz 15 MHz / 31 MHz 

3dB/6dB AR bandwidth in % 0.67% / 1.5% 0.78% /1.62% 

RL in AR bandwidth < -17 dB < -20 dB 

3dB Beamwidth 98.20˚ 92˚ 

Directivity 6.21 dB 6.42 dB 

Gain 5.7 dB 5.83 dB 

Efficiency 88.96% 88.02% 

 

Compared to other popular SF CP antennas with the same substrate thickness and 

feeding method, the proposed antenna results in a significant improvement in the AR 

bandwidth.  The change amounts to 291.2% relative to a truncated corner square patch, and 

191.4% relative to a diagonal-fed nearly square patch.  In addition, the bandwidth 

performance is very close to the CP antenna with thicker substrate, knowing that the thicker 

in substrate, the higher in bandwidth, but lower in antenna efficiency.   
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Table 2.4 Performance comparison with other common SF CP antennas. 

 This work 
Diagonal-fed 

nearly square 

Truncated 

corners 

Diagonal slot 

1/8” thickness 

of substrate 

Center frequency 1.931 GHz 3.166 GHz 3.175 GHz 3.13 GHz 

3dB / 6dB AR 

bandwidth in % 
0.67% / 1.5% 0.35% / 0.67% 0.23% / 0.92% 0.67% / 1.2% 

Minimum AR 0.15 0.25 0.15 0.2 

Beamwidth 104˚ 140˚ 138˚ 124˚ 
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CHAPTER  3 

 

CIRCULARLY POLARIZED MICROSTRIP  

STANDING-WAVE ARRAY ANTENNA 

 

 

In a phased array antenna, each radiation element is excited by an input wave with 

a specific magnitude and phase from a microstrip line feeding network.  Such a feeding 

network requires a number of quarter-wavelength transmission lines, which leads to high 

configuration complexity and extra aperture space and often produces spurious undesirable 

radiation, which lowers the antenna’s efficiency [41-42]. 

3.1 Linear Polarized Standing-Wave Array Antenna 

A standing wave, also known as a stationary wave, is a wave in which the peaks (or 

any other points on the wave) do not move spatially with time.  This type of wave was first 

characterized by Michael Faraday in 1831.  Faraday observed standing waves on the 

surface of a liquid in a vibrating container.  The amplitude of the wave may change over 

time, but its phase remains constant.  The locations at which the amplitude is always zero 

are called nodes, and the locations where the amplitude is maximized are called antinodes.  

Figure 3.1 depicts a standing wave. 
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Figure 3.1 Diagram of a standing wave over time and a linear standing-wave array 

antenna [46]. 

3.1.1 Linear standing-wave array antennas 

In a linear standing-wave array, the elements are fed and placed along a 

transmission line with half-waveguide wavelength spacing (antenna elements placed on 

both sides of transmission line) or one-waveguide wavelength spacing (all elements placed 
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on one side of the transmission line) to produce maximum radiation at the broadside [43-

46]. 

3.1.2 Two-dimensional standing-wave array antennas 

For two-dimensional standing wave arrays, the radiating elements must be arranged 

according to planar geometry.  A feeding network in which a standing wave is formed 

connects the radiating patches with equal magnitudes and equal (or opposite) phases for 

maximum directivity.  Therefore, microstrip dividers and quarter-wavelength transmission 

lines are not necessary in a simplified feeding network, and the resulting antenna has a 

relatively simple configuration and enhanced radiation efficiency [47-48]. 

The concept of standing-wave array antennas was developed at the SMU antenna 

lab [47].  In this new array structure, a high-order standing wave is excited to produce a 

focused beam.  To verify the concept in a simple manner, a five-patch microstrip array is 

considered, as shown in Figure 3.2.  The cavity model is used to illustrate the principle of 

antenna operation.  In the new structure, the cavity model for a single-patch antenna is 

extended to a five-patch array antenna, for which the antenna cavity model would be much 

higher.  As shown in Figure 3.2, the center patch is excited by a coaxial feed, and the 

surrounding elements are connected by two crisscrossing transmission lines between the 

four corners of the center patch.  Multiple reflections occur on the connecting lines to form 

a standing wave within the antenna cavity, which consists of five identical square patches 

and four connecting transmission line networks.  The data from the measured radiation 

patterns and input impedance degrees are generally consistent with the theoretical values, 

confirming the presence of a standing wave in the antenna cavity. 
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Figure 3.2 Five linearly polarized patches in a standing-wave array antenna. 

3.2 Circularly Polarized Standing-Wave Array Antenna 

3.2.1 Design and simulation 

As explained in Section 1.3, to realize a circularly polarized (CP) antenna, the 

radiating electric field from an antenna should have two orthogonal components of the 

same magnitude and a 90° phase difference.  In a conventional CP array antenna, all 

radiating elements must be designed to produce CP radiation.  However, given the unique 

properties of a standing wave antenna, a CP array can be produced by replacing only one 

element, which is typically the one located at the array’s center.  Based on this scheme, the 
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proposed array antenna has substantial advantages relative to conventional arrays in terms 

of fabrication and antenna efficiency.   

The five patches in the standing wave array developed in the SMU antenna lab are 

linearly polarized.  CP radiation would result if the center patch were replaced by the 

previously designed SF CP microstrip antenna, yielding a simple SF CP standing wave 

microstrip array antenna (SF CP SWA antenna).   

Because the center patch is extended by the standing wave transmission line to the 

surrounding parasitic patches, the feeding point needs to be refined by moving it closer to 

the corner.  In addition, the radius of the circular slots and the distance between the two 

slots also must be modified to yield a good AR. 

The design characteristics are shown in Table 3.1. 

 

Table 3.1 Design parameters of sub-2GHz single feed standing-wave array CP antenna. 

Items Parameter Name Value (mm) 

Length of square patch L 40 

Radius of circle slot Ra 3.4 

Distance to patch center CC 13 

Feeding point in x-axis Uf 8.6 

Feeding point in y-axis Vf 8.6 

Width of transmission line WTL 2 
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Figure 3.3 Proposed circularly polarized standing-wave array antenna and complex 

magnitude of the E-field of the antenna patch. 

As shown in Figure 3.3, the complex magnitude E-field distribution of the center 

patch in the standing-wave array antenna is similar to that of the single CP microstrip 

antenna described in Section 2.2.2 and shown in Figure 2.7(a).  Here, the center patch 

becomes a feed to the nearby four radiating elements connected by transmission lines, 

resulting in a relatively compact, high-gain CP antenna. 

The complex magnitude of electric field distribution in HFSS shows that the 

electric field is CP in the center patch and linearly polarized in the surrounding four patches, 

which are grouped into two orthogonal directions, thereby forming a circular polarized 

wave. 
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Figure 3.5 shows the typical radiation pattern of an array antenna with high 

directivity compared to one single-patch antenna. As expected, the simulation results 

demonstrate an excellent AR (Figure 3.4). 

 

Figure 3.4 Simulation results for the AR after an optimistic analysis. 

 

Figure 3.5 Simulated 3D realization of the RHCP gain at 1.918 GHz. 



 

 

 

51 

 

3.2.2 Measurement 

The antenna was fabricated according to the parameters established during 

simulation.  The fabricated array antenna using same substrate with single CP patch 

antenna introduced in chapter 2. Dimensions are followed the values shown in Table 3.1, 

which are the optimized results of simulation.  The feed point locates on a diagonal line of 

the central element with 8.6 mm to the element edges. The diameter of the SMA feed pin 

is p = 1.27 mm.  The size of the ground plane is 200 mm x 200 mm. The measured S11 

and Smith charts are similar to the simulated results, shown in Figure 3.6.  The two concave 

areas in the return loss plot indicate that two modes were excited on different resonant 

frequencies.  The twisting trace in the Smith chart confirms this result; in general, the best 

AR occurs at the tip of the kink. 

 

 

Figure 3.6 Measured and simulated S11 and Smith chart of proposed antenna. 
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Figures 3.7 and 3.8 show that the antenna meets the design index results, with a 

good AR and good gain.  

 

 

Figure 3.7 Measured and simulated radiation pattern of the proposed antenna; 0º and 90º 

are the φ angles in the spherical coordinate measurement system. The co-pol is set to 

RHCP and the X-pol is LHCP. 
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Figure 3.7 shows the data from the simulated and measured radiation patterns are 

generally consistent, confirming the presence of a standing wave in the antenna cavity.  

The measured minimum AR is 0.22 dB with 8.72 dB max peak gain at 1.948 GHz, yielding 

an 57.54% antenna efficiency, shown in Fig. 10. As contract, the simulated antenna has 

0.02 dB minimum AR with 9.03 dB max RHCP gain appearing at 1.918 GHz, giving an 

70.96% antenna efficiency. The measured 3-dB and 6-dB AR bandwidths are 0.47% and 

0.94%, respectively. 

The specifications are shown in Table 3.2. 

 

Figure 3.8 Measured and simulated AR of the proposed antenna. 
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3.2.3 Summary of SWA antenna 

This project realizes the concept of a CP standing wave array antenna using a novel 

circularly polarized SF microstrip patch antenna. Because the surrounding patches work 

with the center patch, it is assumed that all the radiating components are in phase, providing 

circular polarization and maximum radiation at the boresight. Such a standing wave array 

antenna provides high gain and good efficiency in a relatively compact and low-profile 

structure compared to other CP arrays [49-51]. 

Table 3.2 Specifications of measured and simulated standing-wave antenna. 

 Measurement Simulation 

Center frequency 1.948 GHz 1.918 GHz 

Minimum AR 0.22 dB 0.02 dB 

3dB/6dB AR bandwidth 8 MHz / 15 MHz 9 MHz / 18 MHz 

3dB/6dB AR bandwidth in % 0.41% / 0.77% 0.47% / 0.94% 

RL in AR bandwidth < -18 dB < -23 dB 

3dB Beamwidth 42.14˚ 50.4˚ 

Directivity 11.12 dB 10.54 dB 

Gain 8.72 dB 9.13 dB 

Efficiency 57.54% 70.96% 
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CHAPTER 4 

 

5.8GHZ SINGLE-FEED CIRCULARLY POLARIZED MICROSTRIP PATCH 

ANTENNAS 

 

 

In recent years, higher-frequency spectra have been opened in unlicensed bands for 

public usage, such as WiFi, wireless power transfer and charging, and unmanned aerial 

vehicles. Thus, in this section, a SF CP patch antenna working at 5.8 GHz is designed based 

on the same concepts described above. 

4.1 5.8GHz Single-Feed CP Single Patch Antenna 

4.1.1 Analysis and simulation 

Chapter 2 and chapter 3 illustrate the novel structure can generate a CP wave in a 

SF microstrip patch antenna working below 2 GHz. Thus, the proposed 5.8 GHz CP 

antennas would follow the same theory and design procedure. Proper dimensions were 

chosen based on the calculations in Chapter 1. Following a parameter sweep in simulation, 

the optimum design parameters are shown in Table 4.1. 
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Figure 4.1 Proposed 5.8 GHz single-feed CP antenna configuration. 

Table 4.1 Design parameters of 5.8GHz single-feed CP antenna. 

Items Parameter name Value (mm) 

Length of square patch L 12.426 

Radius of circle slot Ra 1.6 

Distance to patch center CC 4.46 

Feeding point in x-axis Uf 1.74 

Feeding point in y-axis Vf 1.74 

 

Compare to the sub-2GHz SF CP single patch antenna, the size of 5.8GHz antenna 

significantly decreases from 40 mm to around 12mm, following the equation (1.8). Thus, 

all the design parameters need to be decreased and carefully modified to achieve good axial 

ratio value. HFSS provides parameter sweep which is a useful function to observe the 

variation by changing the parameter in small linear steps. 



 

 

 

57 

 

In Figure 4.2, the S11 trace and Smith charts show a well-matched voltage standing 

wave ratio at 5.8 GHz. The 10-dB RL bandwidth ranges from 5.562 to 5.971 GHz, or 

approximately 7%. 

 

Figure 4.2 Simulated S11 RL and Smith chart of the proposed 5.8GHz SF CP antenna. 
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Figure 4.3 The AR of simulated result. 

 

Figure 4.4 3D view of radiation pattern of the realized RHCP gain. 

Figure 4.3 shows that the minimum AR is 0.04 dB at 5.8 GHz with a 3.64% 6-dB 

AR bandwidth. Moreover, the antenna has a mushroom-shaped radiation pattern, with 5.9 

dB peak RHCP gain and 96° of half-power beamwidth, as shown in Figures 4.4 and 4.5. 
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Figure 4.5 Simulated far-field radiation pattern of the realized RHCP gain. 

4.1.2 Measurement 

The measured S11 trace and Smith charts are shown in Figure 4.6; a 500 MHz 10-

dB impedance bandwidth was observed with a return loss of -15 dB at 5.95 GHz. There is 

a significant kink near the desired center frequency, indicating that the two modes are 

working at two different resonant frequencies; this may have resulted in a proper AR. From 

Smith chart, the reflective coefficient indicates feed point can be modified for better 

impedance matching. 
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Figure 4.6 Measured and simulated S11 and Smith chart of the proposed 5.8 GHz SF CP 

antenna. 

Figures 4.7 shows the measured radiation patterns, which has a highly consistent 

with simulated result, and its half-power beamwidth (HPBW) is 82.74º over a 166º 3-dB 

AR beamwidth. The antenna achieved a reasonable RHCP gain of approximately 5.63 dB 
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with a minimum AR of 0.53 dB appearing at 5.95 GHz, yielding an 69.96% antenna 

efficiency, shown in Figure 4.8.  

 

Figure 4.7 Measured radiation pattern of the proposed 5.8 GHz SF CP antenna. 

 

Figure 4.8 Measured and simulated AR of the proposed 5.8 GHz SF CP antenna. 
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4.1.3 Summary of the 5.8 GHz SF CP patch antenna 

The results indicate a 1% mismatch in the center frequency between the measured 

and simulated results and a 0.5 dB mismatch in AR.  The most likely cause is imperfections 

in the milling machine fabricating process related to fabrication accuracy and methodology.  

Additionally, the simulation assumes typical material data, though this may vary in practice. 

Those differences are acceptable and often happens during antenna fabrication.  In 

general, the fabricated antenna corresponds to the simulation. 

 Table 4.2 shows the summary of 5.8GHz single-feed CP patch antenna. 

Table 4.2 Comparison of simulated and fabricated 5.8GHz single feed CP patch antennas. 

Item Measurement Simulation 

Center frequency 5.95 GHz 5.800 GHz 

Minimum AR 0.53 dB 0.04 dB 

3dB/6dB AR bandwidth 102 MHz / 208 MHz 104 MHz / 211 MHz 

3dB/6dB AR bandwidth in % 1.71% / 3.5% 1.79% / 3.64% 

RL in 6dB AR bandwidth < -20 dB < -18 dB 

3dB Beamwidth 82.74˚ 96˚ 

Directivity 7.18 dB 6.53 dB 

Gain 5.63 dB 5.903 dB 

Efficiency 69.96% 86.5% 
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4.2 5.8GHz Circularly Polarized Standing-Wave Array Antenna 

4.2.1 Simulation 

Implementing the above single patch at the center of an SWA antenna results in a 

relatively high-gain and low-profile CP antenna. The patch structure is similar to the 

antenna at 1.9 GHz but has smaller dimensions. CP radiation will result if the center patch 

is replaced by a SF CP microstrip antenna, yielding a simple SF CP standing wave 

microstrip array antenna (SF CP SWA antenna). Table 4.3 shows the design characteristics 

of this antenna. 

Table 4.3 Design parameters of 5.8GHz SF CP standing-wave array microstrip antenna. 

Item Parameter name Value (mm) 

Length of square patch L 13.12 

Radius of circle slot Ra 2.1 

Distance to patch center CC 4.18 

Feeding point in x-axis Uf 2.18 

Feeding point in y-axis Vf 2.18 

Width of transmission line WTL 1 

 

Because the center patch is extended by the transmission lines between the standing 

wave and the surrounding parasitic patches, the feeding point must be refined and moved 

closer to the corner. The radii of the circular slots and the distance between the two slots 

should also be modified to yield a good AR. 
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Figure 4.9 Antenna configuration and complex magnitude of E-Field distribution on 

patch. 

The complex magnitude of the electric field distribution in Figure 4.9 shows that 

the electric field is CP in the center patch and linearly polarized in the surrounding four 

patches; these are grouped in two orthogonal directions, thus forming a circular polarized 

wave. 

Figure 4.10 shows that the antenna has good impedance matching. Moreover, as 

shown in Figure 4.11, the simulation result demonstrates an excellent AR, as expected 

when the radius of the circle is 2.1 mm. 
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Figure 4.10 Simulated S11 return loss and Smith chart 
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Figure 4.11 Simulated axial ratios for optimized AR 

In Figure 4.12, a realized RHCP gain of up to 10.3 dB shows that the five elements 

work together to provide relatively high RHCP gain. The simulated radiation pattern is 

shown in Figure 4.13, which indicates a 46° 3-dB beamwidth with a 40-dB front-to-back 

ratio. 

 

Figure 4.12 3D view of simulated radiation pattern of the realized RHCP gain. 
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Figure 4.13 Simulated far-field radiation pattern of realized RHCP/LHCP gain. 

4.2.2 Fabrication and Measurement Result 

The proposed antenna, which was based on the simulation parameters, was 

fabricated in the Antenna Fabrication Lab at the Lyle School of Engineering, SMU, using 

an LPKF ProtoMat M60 milling machine. The measurement work was conducted at SMU's 

antenna anechoic chamber and directly tested using a far-field scan by the Allwave antenna 

measurement system. 
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Figure 4.14 Simulated and measured S11 of the proposed 5.8GHz CP SWA antenna. 
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Figure 4.15 Measured radiation pattern of proposed 5.8GHz CP SWA antenna. 

 

Figure 4.16 Simulated and measured AR of the proposed 5.8GHz CP SWA antenna. 
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The measured data shown in Figures 4.14 to 4.16 indicate that the antenna has a 

well-matched input feed, with S11 less than -20 dB.  A perfect 0.15 dB axial ratio has been 

achieved at 5.942 GHz with an 8.66 dB RHCP gain. And the 6dB AR bandwidth is close 

to 1.4%.  

4.3 Conclusion 

In this project, the concept of the CP standing wave array antenna was realized 

using a novel circularly polarized SF microstrip patch antenna. Because the surrounding 

patches work with the center patch, it was assumed that all radiating components were in 

phase to provide circular polarization and maximum radiation at the boresight. This 

standing wave array antenna provides high gain and good efficiency in a relatively compact 

and low-profile structure compared to other CP arrays [49-51]. Table 4.4 summarizes the 

characteristics of the proposed 5.8 GHz SF CP SWA microstrip patch antenna. 

Table 4.4 Spec comparison of the simulated and measured 5.8GHz CP SWA antenna. 

Item Measurement Simulation 

Center frequency 5.942 GHz 5.809 GHz 

Minimum AR 0.15 dB 0.06 dB 

3dB / 6dB AR bandwidth 40 MHz / 83 MHz 42 MHz / 86 MHz 

3dB / 6dB AR bandwidth in % 0.67% / 1.4% 0.72 % / 1.48% 

RL in 6dB AR bandwidth < -20 dB < -16 dB 

3dB beamwidth 42.2˚ 46˚ 

Directivity 10.44 dB 11.01 dB 

Gain 8.66 dB 10.31 dB 

Efficiency 66.47% 87.15% 
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CHAPTER 5 

 

DISCUSSION 

 

 

5.1 Conclusions 

This dissertation presents several SF circularly polarized (CP) microstrip patch 

antennas based on a novel configuration—a diagonal feed through a square patch with two 

circular slots. A substantial increase in CP bandwidth is demonstrated. For high-gain 

applications with compact structures, the SF CP microstrip antenna can be applied using 

the standing wave array antenna developed at SMU. For this antenna, only the center 

element is replaced with the novel CP patch. Signals are first transmitted to the CP patch 

from a subminiature version A connector, after which the patch excites surrounding 

parasitic elements—regular square patches—through a standing wave transmission 

network. Thus, the combination of the center CP patch and the parasitic regular patches 

results in a high-gain CP antenna with a single feed in a simple and compact structure. 

Simulation results demonstrate the feasibility of the concept, and the measured data are 

generally consistent with the simulated results, validating the concept. 
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5.2 Future Work 

Future studies will focus on replacing the excitation method and enhancing the 

bandwidth. Probe-fed approaches have limited bandwidth and are inconvenient for 

commercialization. In addition, several bandwidth-enhancement techniques exist based on 

a microstrip line feed, such as proximity feeding and aperture feeding. Therefore, the 

excitation using a probe feed should be replaced with a microstrip line feed. Due to the 

specific structure of the novel CP prototype, many well-developed bandwidth-

enhancement techniques may not be applicable. Thus, the CP bandwidth should also be 

improved. Another interesting avenue for improvement is adaptive or active frequency 

selection, which could indirectly extend the working bandwidth of the antenna. This is 

common practice for linearly polarized microstrip antennas, but rare in CP antennas.  At 

last, a 28 GHz patch with presented concept of single-feed CP antenna would be simulated 

and fabricated for the millimeter-wave applications.   
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APPENDIX 

A. MATLAB CODE FOR SINGLE PATCH RECTANGULAR MICROSTRIP 

ANTENNA RADIATION PATTERNS 

 

%**************************************************************** 

%  Appendix A 

%  RADIATION PATTERNS FOR SINGLE PATCH RECTANGULAR MICROSTRIP 

%  ANTENNA BASED ON CAVITY MODEL 

% 

%     ** INPUT PARAMETERS 

%     1.  FREQ   = RESONANT FREQUENCY (in GHz) 

%     2.  L      = EFFECTIVE LENGTH OF THE PATCH (in mm) 

%     3.  W      = WIDTH OF THE PATCH (in mm) 

%**************************************************************** 

  

clear all; 

close all; 

warning off; 

  

% Input Parameters 

freq=[]; 

while isempty(freq), 

   freq=input('ENTER THE RESONANT FREQUENCY (in GHz) = '); 

end; 
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h=[]; 

while isempty(h), 

   h=input('ENTER THE HEIGHT OF THE SUBSTRATE (in m) = '); 

end; 

  

L=[]; 

while isempty(L), 

   L=input('ENTER THE EFFECTIVE LENGTH OF PATCH (in mm) = '); 

end; 

  

W=[]; 

while isempty(W), 

   W=input('ENTER THE WIDTH OF PATCH (in mm) = '); 

end; 

  

L = L.*1e-3; 

W = W.*1e-3; 

freq = freq.*1e9; 

lambda = 3e8/freq; 

ko = 2*pi/lambda; 

% Eth radiating & non-radiating slots 

phi1=0; phir1=phi1.*pi./180; 

th1=0:360; thr1=th1.*pi/180; 

  

X = ko.*W.*sin(thr1).*sin(phir1)/2; 

Y = ko.*L.*sin(thr1).*cos(phir1)/2; 
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Z = i.*ko.*h./pi; 

A = sqrt(2*W/L); 

B = sqrt(2*L/W); 

  

Fx1 = B.*sin(X).*Y.*cos(Y)./((pi/2).^2-(Y).^2); 

Fy1 = A.*cos(Y).*sinc(X); 

  

Eth = Z.*((Fx1.*sin(phir1))-(Fy1.*cos(phir1))); 

Eth1 = abs(Eth); 

Ethnorm = Eth1./max(Eth1); 

EthdBtotal =20.*log10(Ethnorm); 

EthdBtotal(thr1>pi/2&thr1<3*pi/2)=-60; 

EthdBtotal(EthdBtotal<=-60)=-60; 

  

% Ephi radiated & non-radiating slots 

  

phi2=90; phir2=phi2.*pi./180; 

th2=0:360; thr2=th2.*pi/180.0; 

  

X2 = ko.*W.*sin(thr2).*sin(phir2)/2; 

Y2 = ko.*L.*sin(thr2).*cos(phir2)/2; 

Fx2 = B.*sin(X2).*Y2.*cos(Y2)./((pi/2).^2-(Y2).^2); 

Fy2 = A.*cos(Y2).*sinc(X2./pi); 

  

Eph = 

Z.*((Fx2.*cos(phir2).*cos(thr2))+(Fy2.*sin(phir2).*cos(thr2))); 

Eph1 = abs(Eph); 

Ephnorm = Eph1./max(Eph1); 

EphdB = 20.*log10(Ephnorm); 

EphdB(thr1>pi/2&thr1<3*pi/2)=-60; 

EphdB(EphdB<=-60)=-60; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Co-pol & X-pol @ phi = 45 deg 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

phi3=45; phir3=phi3.*pi./180; 

th3=0:360; thr3=th3.*pi./180; 

  

X3 = ko.*W.*sin(thr3).*sin(phir3)/2; 

Y3 = ko.*L.*sin(thr3).*cos(phir3)/2; 

  

Fx3 = B.*sin(X3).*Y3.*cos(Y3)./((pi/2).^2-(Y3).^2); 

Fy3 = A.*cos(Y3).*sinc(X3); 

  

Eth45 = Z.*((Fx3.*sin(phir3))-(Fy3.*cos(phir3))); 

  

EthCo45 = abs(Eth45); 

EthCo45norm = EthCo45./max(Eth1); 

EthdB45 =20.*log10(EthCo45norm); 

EthdB45(thr1>pi/2&thr1<3*pi/2)=-60; 

EthdB45(EthdB45<=-60)=-60; 

  

phi4=45; phir4=phi4.*pi./180; 

  

X4 = ko.*W.*sin(thr3).*sin(phir4)/2; 

Y4 = ko.*L.*sin(thr3).*cos(phir4)/2; 

  

Fx4 = B.*sin(X4).*Y4.*cos(Y4)./((pi/2).^2-(Y4).^2); 

Fy4 = A.*cos(Y4).*sinc(X4); 
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Eph45=Z.*((Fx4.*cos(phir4).*cos(thr3))+(Fy4.*sin(phir4).*cos(thr3

))); 

Eph45 = abs(Eph45); 

Eph45Xpol = Eph45./max(Eth1); 

EphdB45 = 20.*log10(Eph45Xpol); 

EphdB45(thr1>pi/2&thr1<3*pi/2)=-80; 

EphdB45(EphdB45<=-60)=-60; 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Radiation Plots 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

figure 

polar_db(th1,EthdBtotal,-60,0,4,'-') 

  

figure 

polar_db(th2,EphdB,-60,0,4,'-') 

  

figure 

polar_db(th3,EthdB45,-30,0,4,'-') 

  

figure 

polar_db(th3,EphdB45,-30,0,4,'-') 
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B. MATLAB CODE FOR CALCULATING QUALITY FACTOR (Q) FOR 

SINGLE PATCH RECTANGULAR MICROSTRIP ANTENNA 

 

%**************************************************************** 

%  Appendix B 

%  QUALITY FACTOR FOR SINGLE PATCH RECTANGULAR MICROSTRIP ANTENNA 

%  BASED ON CAVITY MODEL 

% 

%**************************************************************** 

 

% Input Parameters 

eta = 377; 

eo = 8.854e-12; 

u = 4.*pi*1e-7; 

s = 5.8e7; 

freq = 4.75e9; 

ko = 2*pi*freq/3e8; 

t = 0.001575; 

erff = 3.38; 

L = 17.15e-3; 

W = 21.25e-3; 

% Integration [|Etheta|^2+|Ephi|^2]*sin(theta) 

fun=@(phir,thr)((abs((ko.*t./pi).*((sqrt(2.*L/W).*(ko.*L./2).*sin

(thr).*cos(phir).*cos((ko.*L./2).*sin(thr).*cos(phir)).*sin((ko.*W./2).

*sin(thr).*sin(phir)).*sin(phir)./((pi/2).^2-

((ko.*L./2).*sin(thr).*cos(phir)).^2))-

(sqrt(2.*W/L).*sin((ko.*W./2).*sin(thr).*sin(phir)).*cos((ko.*L./2).*si

n(thr).*cos(phir)).*cos(phir)./((ko.*W./2).*sin(thr).*sin(phir))))).^2+

(abs(ko.*t./pi).*((sqrt(2.*L/W).*(ko.*L./2).*sin(thr).*cos(phir).*cos((

ko.*L./2).*sin(thr).*cos(phir)).*sin((ko.*W./2).*sin(thr).*sin(phir)).*

cos(phir).*cos(thr)./((pi/2).^2-

((ko.*L./2).*sin(thr).*cos(phir)).^2))+(sqrt(2.*W./L).*sin((ko.*W./2).*
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sin(thr).*sin(phir)).*cos((ko.*L./2).*sin(thr).*cos(phir)).*sin(phir).*

cos(thr)./((ko.*W./2).*sin(thr).*sin(phir))))).^2).*sin(thr)); 

Int = integral2(fun,0,2*pi,0,pi/2) 

We = 0.5.*eo.*erff.*t 

% Radiation power and Qrad Calculation 

Pr = Int./(2*eta) 

Qrad = (2.*pi.*freq.*We)./(Pr) 

% Total Quality Factor Calculation 

Qc = t.*sqrt(pi.*freq.*u.*s); 

Qd = 1./0.0021; 

Qt = ((1./Qrad)+(1./Qc)+(1./Qd)).^-1 
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C. MATLAB CODE FOR CALCULATING INPUT IMPEDANCE FOR SINGLE 

PATCH RECTANGULAR MICROSTRIP ANTENNA 
%**************************************************************** 

%  Appendix C 

%  INPUT IMPEDANCE USING CAVITY MODEL 

%**************************************************************** 

  

  

f = 4:0.005:5; 

freq = f.*1e9; 

lamda = 3e8./freq; 

Q = 28.82; 

Q_eff = 28.49; 

xo = 2.925e-3; 

xo_eff = 2.925e-3; 

er = 3.38; 

ereff = 3.055; 

h = 0.0015748; 

L = 17.15e-3; 

W = 21.25e-3; 

Leff = 18.64e-3; 

eta = 377.*(1/er)^0.5; 

eta_eff = 377.*(1/ereff).^0.5; 

k1 = (2.*pi.*freq.*(er).^0.5)./3e8; 

k2 = (2.*pi.*freq.*(ereff).^0.5)./3e8; 

  

ko = 2*pi./lamda; 

x = complex(1,-1/Q); 

x_eff = complex(1,-1/Q_eff); 
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k = ko.^2.*er.*x; 

k_reff = ko.^2.*ereff.*x_eff; 

a = 2.*pi.*freq.*4.*pi.*1e-7.*h; 

ja = complex(0,-a); 

b = 2./(L.*W); 

c = 2./(Leff.*W); 

  

% Term (1,0) calculation 

  

kn = k - (pi./L).^2; 

kneff = k_reff - (pi./Leff).^2; 

U01 = b.*(sin((pi.*xo)./L)).^2; 

U01_eff = c.*(sin((pi.*xo_eff)./Leff)).^2; 

T3 = U01./kn; 

T3_reff = U01_eff./kneff; 
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% Xf calculation 

  

Xf = ((-eta.*k1.*h)./(2.*pi)).*(log(k1.*0.00127./4)+0.577); 

Xf_eff=((-eta_eff.*k2.*h)./(2.*pi)).*(log(k2.*0.00127./4)+0.577); 

jXf = complex(0,Xf); 

jXf_eff = complex(0,Xf_eff); 

  

% Zin calculation 

  

Z = (ja.*T3); 

Z_eff = (ja.*T3_reff); 

  

Zinput = Z+jXf; 

Zinput_eff = Z_eff+jXf_eff; 

  

S11 = (Zinput - 50)./(Zinput + 50); 

S11_eff = (Zinput_eff - 50)./(Zinput_eff + 50); 

S11_amp = abs(S11); 

S11_dB = 20.*log10(S11_amp); 

S11_amp_eff = abs(S11_eff); 

S11_dB_eff = 20.*log10(S11_amp_eff); 

  

figure 

plot(f,S11_dB); 

  

figure 

plot(f,S11_dB_eff); 
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