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Clinical trials are experiments tested on human to compare the effect of certain inter-

vention. Any intervention has to be tested in different phases of clinical trials. In early-stage

(phase 0, I, and II) trials, fewer number of patients are enrolled to get preliminary informa-

tion on safety and efficacy. In late-stage (phase III and IV) trials, larger number of patients

are randomized to further confirm the efficacy and safety. The purpose of each phase may

change depending on the therapeutic area and patient characteristics.

In Chapter 2, we propose a family of designs for phase I oncology trials. In these trials,

oncologists assign different patients at a varying range of dose levels to find the dose that

gives the highest acceptable rate of dose-limiting toxicities, which will be the recommended

dose for phase II trials. In current practice, most such trials are rule-based designs that

determine whether to escalate the dose using data from the current dose only. The 3+3

design is the most popular rule-based design. Our proposed design, which we denote the

cohort-sequence design, addresses the deficiencies of the 3+3 design, while preserving its

simplicity. We compare the proposed design with the 3+3 using simulation studies.

Late-stage randomized clinical trials might lack external validity when there are treatment-

by-covariate interactions involving factors whose distribution in the population differ from

that in the trial. In Chapter 3, we project the results from a trial to a population using post-

stratification, and compare it with other approaches that use probabilities of trial inclusion.

We use intention-to-treat estimate of the treatment effect, which compares the difference in

average responses in assigned experimental treatment versus control groups. We demonstrate

v



this using data from Lipids Research Clinics Coronary Primary Prevention Trial.

The intention-to-treat analysis focuses on the treatment effect of randomization on the

outcome, without considering compliance. In Chapter 4, we extend the interpolation ap-

proaches using instrumental variables estimation of the complier average causal effect, which

is the treatment effect on the outcome restricted to the subset of subjects who adhere to

assigned treatment. We apply these methods to the data from Lipids Research Clinics Coro-

nary Primary Prevention Trial and New York School Choice Experiment.
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CHAPTER 1

INTRODUCTION

1.1. Background

Clinical trials are experiments tested on human beings to compare the effect and safety of

intervention against a control. Any new treatment needs to pass different phases of clinical

trials before being allowed to go into market. Phase 0 studies are proof-of-principle, studying

pharmacokinetic and pharmacodynamic of an intervention. Oncology phase I trials are for

dose-finding and getting preliminary information on safety. Phase II trials obtain further

information on efficacy and safety. Phase III trials involve a large number of patients ran-

domized to compare the experimental intervention with control, or standard-of-care. Phase

IV trials monitor safety efficacy for the post-marking product. The purpose of each phase

may vary based on the therapeutic area and diseased population.

In this dissertation, one chapter is focused on phase I dose-finding designs. The other

two chapters are aiming to project the results from a randomized clinical trial to a target

diseased population.

1.2. Flexible, rule-based dose escalation: The cohort-sequence design

Phase I oncology trials obtain preliminary information on the safety of novel treatments.

Most trials employ rule-based designs with pre-specified escalation/de-escalation rules based

on observed number of toxicities from the current dose. The objective is to identify the
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maximum tolerated dose (MTD)— the highest dose with rate of dose-limiting toxicities

below a pre-specified threshold. The 3+3 design is the most common rule-based design

largely due to its simplicity, (28) but it has several deficiencies. First, the design is inflexible

for different toxicity threshold. (22) Second, the design is not efficient, with most patients

assigned at low doses with little therapeutic benefits. Third, the number of patients treated

at the maximum tolerated dose is 6, so it will obtain limited information.

In Chapter 2, we devise a family of rule-based dose-finding design that avoids the problem

of the 3+3, while preserving its simplicity. Our design, which we called the cohort-sequence

design, involves a sequence of cohort sizes and corresponding critical values for dose-limiting

toxicities. It improves the efficiency by enrolling more patients around doses that are likely to

be the maximum tolerated dose. We use simulation studies to compare the cohort-sequence

design with the 3+3 design.

1.3. Projecting clinical trial results to a target population

In randomized trials, the results lack external validity if there are treatment-by-covariate

interactions involving factors that are represented differently from the target population. If

information on the covariates in the target population is available, and the treatment effect

is similar across subgroups in the trial and target population, then one can interpolate the

treatment effect to the target population.

One interpolation approach is post-stratification, or re-weighting of subgroup estimates

based on the covariate distribution in the target population. This approach does not require

individual level data for the target population, and works well with few number of con-

founders. We use dataset from Lipids Research Clinics Coronary Primary Prevention Trial

to demonstrate post-stratification, (30) and compare it with two other approaches using trial

inclusion probabilities. (38, 48)

2



1.4. Projecting instrumental variable results to a target population

The intention-to-treat analysis is commonly used for measuring the treatment effect.

This as-randomized analysis does not consider compliance. In Chapter 4, we extend these

interpolation analyses to instrumental variables estimation of the complier average causal

effect (CACE), which is the treatment effect on the outcome among patients who adhere to

the treatment.

We use the Lipids Research Clinics Coronary Primary Prevention Trial, measuring com-

pliance as the fraction of assigned packets taken. (30) In addition, we use data from New

York School Choice Experiment, which is a randomized encouragement to study the effect

of private school voucher on improvement in test scores. (5, 18) We use both randomization

assignment and actual attendance of private school for estimating the CACE.
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CHAPTER 2

FLEXIBLE, RULE-BASED DOSE ESCALATION: THE COHORT-SEQUENCE DESIGN

2.1. Introduction

Oncologists acquire preliminary information on the safety of a novel treatment through

the conduct of a phase I trial. Whereas statisticians commonly formulate the objective of

such a trial as the identification of the treatment’s maximum tolerated dose (MTD) — that

is, the dose that gives the highest acceptable rate of dose-limiting toxicities (DLTs). The

typical design calls for enrolling subjects in dose cohorts, starting from a low dose that is

believed to be safe and increasing after each cohort until encountering a designated level of

toxicity.

Most phase I trials employ rule-based designs that use data from only the current cohort

to decide what the next step will be. The most popular such design is the 3+3, a variant

of the up-and-down rule.(6, 13, 24, 25, 28, 54) Some alternatives to the 3+3 include the

A+B design,(54) which generalizes the cohort sizes in the 3+3; the accelerated titration

design, which starts with one-patient cohorts and reverts to the 3+3 plan once toxicities

appear;(46) and the toxicity probability interval (TPI) and modified TPI (mTPI) designs,

which use Bayesian criteria to select the next dose.(23, 24, 25) Yet despite the availability

of these and other alternative designs, many with excellent statistical properties, as recently

as 2009 nearly 97% of phase I trials used the 3+3.(28)

The 3+3 design is simple and familiar but has notable deficiencies: First, for commonly

encountered toxicity profiles, the 3+3 most often selects doses with DLT rates in the range
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20%–25%, well below the typical nominal target of 30%–35%.(22) Second, most patients

in a 3+3 trial receive doses that have low rates of both toxicity and therapeutic effect; a

more efficient design would escalate quickly past these to reach doses that are of greater

interest. Third, the maximum number of patients that a 3+3 enrolls at the final dose is

6, implying that it will obtain only limited information about toxicity and efficacy at the

purported MTD. Thus it has become common to augment the phase I trial with a dose-

expansion cohort — an additional group of patients who receive treatment at the identified

MTD. Often, the choice of sample size for this additional cohorts is arbitrary,(32) and in any

event the benefits of an expansion cohort are limited if the trial can potentially mis-estimate

the MTD.

An alternative is the model-based design, in which one assumes an underlying parametric

dose-response model and uses the accumulated data to estimate parameters and, thereby,

the MTD.(4, 6, 9, 19, 28, 39, 41, 51) Some pharmaceutical companies now use such designs

routinely, often in “bucket” trials or phase I/II designs. The large majority of phase I

cancer trials, however, continue to employ rule-based designs, primarily the 3+3.(31) This

reluctance to adopt the newer methods may reflect several factors: The substantial cost

and complexity of implementing the model-based methods; lack of familiarity with them; or

simply a conviction that “better is the enemy of good enough”. (34)

The objective in this chapter is to devise a rule-based dose-finding design that avoids the

problems of the 3+3 while preserving, to the extent possible, its simplicity. The method,

which we denote the cohort-sequence design, permits tuning of the cohort sizes and critical

values to reflect the targeted DLT rate. It improves efficiency by focusing enrollment at

doses where toxicities are likely to occur, thereby creating larger cohorts in the vicinity of

the MTD and obviating the need to append an arbitrarily sized dose-expansion cohort.
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2.2. Methods

2.2.1. Escalation plan for the cohort-sequence design

The cohort-sequence design consists of a sequence of cohort sizes n = (n1, . . . , nJ) and

corresponding DLT critical values b = (b1, . . . , bJ) that indicate whether to escalate, de-

escalate, or add more subjects at the current dose. The notion is to begin with a small cohort

size n1 and escalate through the planned series of increasing doses D = (D1, . . . , Dm), raising

the cohort size as we begin to encounter toxicities. Specifically, when enrolling subjects at

dose Di with cohort size nj, the decision to escalate, add more at the current dose, or de-

escalate hinges on whether the observed number of DLTs in the cohort falls below, equals,

or exceeds the corresponding critical value bj. If the number of DLTs at dose Di exceeds

bj, we stop treating the cohort at that dose to avoid excessive toxicities. A possible value

for the sequence of cohort sizes would be n = (1, 3, 5, 8, 10), with corresponding sequence of

critical values b = (1, 2, 3, 4, 5).

Figure 2.1 displays the flow chart for our design. Suppose that the current dose level is

Di and that our current cohort size is nj with corresponding critical value bj. We enroll up

to nj subjects at this dose and observe the number of DLTs as Xi. If Xi < bj, we deem the

current dose to be safe, and we escalate and enroll the next cohort at dose Di+1 with the

same cohort size nj and critical value bj. If Xi > bj, we deem the current dose unsafe, and

we enroll the next cohort at the next lower dose Di−1 with the terminal cohort size nJ and

corresponding critical value bJ . If Xi = bj, we deem the current dose as potentially, but not

certainly, toxic, and we increase the cohort size to nj+1 and the corresponding critical value

to bj+1, enrolling additional subjects at this dose until the cohort is filled and we can again

evaluate the safety data. The escalation/de-escalation continues in this way until a safe dose

is achieved (Xi < bJ) after a de-escalation, or the trial de-escalates to the lowest dose. If we
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escalate to the highest dose Dm with cohort size nj, and observe Xm < bj, then we increase

the cohort size to nJ and the critical value to bJ . We estimate the MTD as the highest safe

dose evaluated. Alternatively, one can specify a total number of patients and stop when all

have received treatment, again identifying the highest safe dose as the MTD.

Figure 2.1. Flow chart for the cohort-sequence design.

2.2.2. Identification of the critical value for a designated cohort size

We select the pairs (nj, bj), j = 1, . . . , J to represent a comparable level of certainty

about the DLT rate at the given dose. That is, for each nj, the selected bj is one that

identifies the current dose as safe, unsafe, or indeterminate, by a criterion that is common

across cohort sizes. To accomplish this, we first select a safety threshold, denoted θ ∈ (0, 1).

The principle is that if we are reasonably sure that the DLT rate at dose Di is below θ,

we escalate; if we are reasonably sure that the DLT rate at Di exceeds θ, we de-escalate;

otherwise, we collect more data at Di. Having chosen θ, we can either compute the critical

value bj from a selected cohort size nj, or vice versa.
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We first demonstrate the computation of bj from nj. We evaluate uncertainty about the

toxicity level using Bayesian posterior probabilities. At dose level Di, the number of DLTs

Xi is binomial with parameters (Ni, τi), where Ni and τi = τ(Di) represent the cohort size

and toxicity probability, respectively. We assume a Beta(1,4) prior for τi, which updates to

Beta(1 +Xi, 4 +Ni−Xi) after Xi DLTs in Ni trials. We use this prior because it represents

the situation where there are X = 0 events in a previous N = 3 patients starting from a

uniform prior, which approximates the level of uncertainty that one would express before

examining an untested dose level. As in the TPI and mTPI designs,(23, 24, 25) we use the

same prior for all dose levels because we have essentially no prior data at any dose level.

Starting from a fixed nj, to determine the critical level bj we compute the posterior

probability that τi exceeds the safety threshold θ, which we denote

f(Xi, Ni, θ) ≡ Pr[τi > θ|Xi, Ni].

We fix a threshold of 10% for this posterior probability. For example, if f(Xi, Ni, θ) is below

10%, then we deem the dose level safe for escalation. If f(Xi, Ni, θ) is well above 10%, we de-

escalate. If f(Xi, Ni, θ) is above 10% but f(Xi−1, Ni, θ) is below 10%, we collect more data

at the current dose. We select bj by identifying the value of Xi such that f(Xi, Ni, θ) > 10%

and f(Xi − 1, Ni, θ) ≤ 10%.

2.2.3. Identification of the cohort size for a designated critical value

Alternatively, one can select a sequence of bj values and then calculate the corresponding

cohort sizes nj. To avoid ambiguities, the bj values should constitute an increasing sequence;

b = (1, 2, . . . , J) is a natural choice. We start by computing f(bj − 1, x, θ) for x ≥ bj, which

decreases as x increases. Then nj is the smallest x such that f(bj − 1, x, θ) ≤ 10%, and

f(bj, x, θ) > 10%. Figure 2.2 illustrates the process of identifying the cohort size.
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Figure 2.2. Flow chart for determining the cohort size based on specified DLTs (X), under

safety threshold θ.

2.2.4. Selection of the number of cohort sizes

The final element of the design is the number of cohort sizes, which we denote J . As

a rule, for a fixed bj, the smaller the value of θ, the larger will be the corresponding nj.

Therefore, for small values of θ it is preferable to choose a smaller J ; otherwise, the total

sample size of the cohort may be excessive. In the next subsection we demonstrate some

feasible choices of θ and J .

2.2.5. Example designs

Flexibility of the design derives from the safety threshold θ. We note that one should

think of θ as a tuning parameter and not a target DLT rate; in simulations (see Section 2.3

below), we show that θ typically exceeds the modal DLT rate by 10%–20%. For example,

θ = 0.25 leads to a low maximum DLT rate; θ = 0.35 to a moderate rate; and θ = 0.50 to a

high rate. Thus a strategy for identifying a design is to simulate frequency properties under
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a likely dose-response curve for a range of values of θ and J , selecting the pair that gives the

desired target DLT rate with a feasible sample size.

We use the notation CS(100θ;n1, . . . , nJ) to denote a cohort-sequence design using θ as

the toxicity threshold and n1, . . . , nJ as the sequence of cohort sizes, assuming by default

that b = (1, 2, . . . , J). For cohort-sequence designs with high maximum acceptable DLT

rate we set J = 5 and θ = 0.5, which leads to cohort sizes n = (1, 3, 5, 8, 10). We denote

this design CS(50;1,3,5,8,10), or henceforth CS(50). For moderate maximum acceptable

DLT rate, we set J = 2 and θ = 0.35 and derive n = (2, 6), designated CS(35;2,6). For

low maximum acceptable DLT rate, we set θ = 0.25 and J = 2 and compute n = (5, 11),

designated CS(25;5,11). Alternatively, letting θ = 0.4 and b = (1, 2, 3), the cohort sizes are

n = (3, 6, 9), which is similar to the 3+3 with an expansion cohort of size 3; we designate

this design CS(40;3,6,9). We present these n, b combinations in Table 2.1.

Table 2.1. Decision rules for cohort-sequence designs used in the simulation.

Sequence of cohort sizes (n)

DLT limit (bj) CS(25;5,11) CS(35;2,6) CS(40;3,6,9) CS(50)

1 5 2 3 1

2 11 6 6 3

3 9 5

4 8

5 10

With J > 5 or θ < 0.3, the possible total number of subjects in the study can exceed the

sample sizes that are typical for phase I trials. On the other hand, with J < 5, one may not

achieve the numbers of subjects at the candidate MTD that we typically observe in practice

when θ is large. With J = 5, the cohort size at the identified MTD is similar to the sizes of

typical dose-expansion cohorts, making it unnecessary to enroll additional patients at those

doses.
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We have implemented the cohort-sequence design in the R package cohortsequence, which

computes f(Xi, Ni, θ) and can calculate bj from nj and vice versa. The package also provides

a function to simulate the performance of a cohort-sequence design for a designated dose-

response scenario.

2.3. Simulation

2.3.1. Design

Ahn conducted simulations to compare the 3+3 with variants of the model-based contin-

ual reassessment method (CRM) design. (2) We used the same dose/toxicity scenarios as in

his paper, comparing cohort-sequence designs for θ ∈ {0.25, 0.35, 0.4, 0.5}. Our simulations

terminated cohorts as soon as the number of DLTs was high enough to signal toxicity, a

practice that improves efficiency and eliminates inadmissible toxicity.

We compared the performance of seven dose-escalation designs:

1. The traditional 3+3.

2. The 3+3 with an expansion cohort of size 3, with the stopping bound for safety in the

expansion cohort set to 2;(32) we denote this design as 3+3@9,2. With this design, we

de-escalate from an unsafe expansion cohort and enroll another until the final dose is

safe.

3. CS(40;3,6,9): A cohort-sequence design that is similar to the 3+3@9,2.

4. CS(25;5,11): Suitable for a low target DLT rate.

5. CS(35;2,6): Suitable for a moderate target DLT rate.

6. CS(50;1,3,5): Suitable for a higher target DLT rate with fewer patients.
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7. CS(50): Suitable for a higher target DLT and including a built-in expansion cohort.

We repeated the simulation 5000 times. When the lowest dose was rejected as toxic,

the estimated MTD was designated as dose level 0. In this case, the number of patients

treated at the estimated MTD is 0, and we do not enroll an expansion cohort. We used

various frequency measures to compare performance: The proportion of times each dose was

recommended as the MTD, the fraction of patients treated at each dose, the average number

of patients enrolled, and the average proportion of patients experiencing a DLT.

2.3.2. Results

Tables 2.2–2.5 display simulated frequency properties of the designs applied to Ahn’s

scenarios. When the target toxicity is ≤ 10%, the CS(25;5,11) design gives the correct

estimate most frequently. When the target toxicity is between 10% and 25%, the prediction

accuracy for CS(35) is higher. When the target toxicity exceeds 25%, designs with θ = 0.5

lead to correct estimates most often. Cohort-sequence designs generally treat lower fractions

of subjects at low, safe doses. An exception is the CS(40;3,6,9), which closely mimics the

behavior of 3+3.

The 3+3@9,2 and CS(40;3,6,9) designs require 4 to 6 more patients than the traditional

3+3, with the extra patients constituting a built-in dose-expansion cohort. For cohort-

sequence designs with θ = 0.5, the average number of patients with J = 3 is smaller than

with J = 5, although other frequency properties are similar. The CS(50;1,3,5) in particular

requires fewer patients than the 3+3. CS(35;2,6) performs similarly to 3+3 in terms of MTD

recommendation and patient allocation, but it requires 3 fewer patients in toxicity scenario

4 and 1 fewer patient in the other scenarios.

With a higher value of the tuning parameter θ, the realized toxicity fraction is typically

higher. Yet even for the CS(50) designs, which deliberately target higher toxicity rates,
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the fractions of subjects experiencing toxicity are less than 35% under all 4 scenarios. The

toxicity percentages for the traditional 3+3 design are similar to those for CS(35;2,6) and

CS(40;3,6,9).

CS(50) designs, with their greater tolerance for DLTs, assign more patients at higher

dose levels. Nevertheless, they effectively avoid extremely toxic doses, as subjects rarely

reach dose levels with DLT rates in excess of 50%. The CS(25;5,11) design enrolls subjects

at these highly toxic doses only in scenarios 3 and 4, where there is a steep jump from 25%

DLTs to 80% DLTs in one dose elevation. Even so, it enrolls fewer subjects at those levels

than the 3+3 and 3+3-like cohort-sequence designs.

2.4. Application

It is generally impossible to compare designs on a “live” data set, because any real data

would have arisen under a design that dictated a sequence of dose assignments that another

design would not replicate. To attempt a realistic comparison of designs, we generated

DLT responses using a probit model estimated from the data of Simon et al.(46) The model

assumes Yi = log(di) + εi with εi ∼ N(0, σ2), and registers a DLT if Yi > K. We estimated

the parameters to be σ = 1.092 and K = 8.78, which lead to DLT probabilities of 1%,

5%, 14%, 32%, and 56% at doses 11, 13, 15, 17, and 19, respectively. For each subject, we

generated a normal error εi and created a corresponding latent outcome under each dose di.

In this way we created an ensemble of correlated data sets, one for each design.

Results appear in Table 2.6. All the methods estimate the MTD as either dose 15

(DLT rate 14%) or dose 17 (DLT rate 32%). The 3+3 with no expansion cohort yields a

moderate sample size, a small fraction of DLTs, and the lowest proportion of subjects at or

near the ultimate MTD. The 3+3@9,2 and the similar CS(40;3,6,9) give identical results;

compared to the 3+3, they have larger sample sizes, comparable fractions of DLTs, and

larger proportions of subjects treated at or near the MTD. CS(35;2,6) and CS(50) give equal
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or larger proportions of DLTs than the 3+3-type designs, but also treat more patients at or

near the estimated MTD. Notably, both CS(50) and CS(50;1,3,5) enroll fewer subjects and

estimate the MTD as dose 17. CS(40;3,6,9) has a low DLT proportion comparable to that

of the 3+3 design, but treats a larger fraction of subjects near the estimated MTD. These

advantages come at the expense of a larger sample size.

2.5. DISCUSSION

We have proposed a family of rule-based phase I designs that retains the simplicity of

the 3+3 while addressing its inflexibility and inefficiency.

We note that we have examined our design only in conventional scenarios where toxicity

rates increase — sometimes slowly, sometimes quickly — with increasing doses. Some con-

temporary cancer treatments, such as immunotherapies, have toxicity curves that are not

strictly monotonic. In such a case, one may wish to use a method that aims to optimize

response subject to a maximum acceptable toxicity. From the standpoint of a statistician

tasked with designing a trial whose main objective is to study safety, the key consideration

must be to identify, and pull back from, toxic doses. We therefore believe that there is a

continuing role for traditional designs that operate on this principle, even in trials where

there is a strong prior expectation of a non-monotone toxicity curve.

Unlike the 3+3, which targets DLT rates in the range 20%–25%, with our approach

one can select a design to reflect any targeted DLT rate by means of the tuning parameter

θ. Simulations suggest that choosing θ to be 10%–20% higher than the target toxicity

probability gives the best chance of having the target dose be the modal dose, although this

varies by scenario. The choice of J , the maximum number of cohort sizes, largely controls

the total number of patients enrolled. If the sample size available for the trial is comparable

to those typically in use with 3+3 designs, then J = 2 works well for lower target toxicity

rates, whereas J ∈ {3, 4, 5} works well for target toxicity rates of 25% or higher. When
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the target toxicity is between 10% and 25%, CS(35;2,6) is a practical choice. When the

target toxicity exceeds 25%, we recommend CS(50;1,3,5) for a smaller total sample size or

CS(50;1,3,5,8,10) when more patients are available. Using a large final cohort increases

sample size requirements but eliminates the need for an add-on dose-expansion cohort.

Our cohort-sequence design improves efficiency by escalating rapidly through the lower,

safer doses and increasing cohort sizes adaptively when one begins to encounter toxicities.

Consequently, it generally enrolls more patients in the vicinity of the estimated MTD and

incurs higher overall DLT rates. This is an advantage of the cohort-sequence approach, which

avoids the wasteful assignment of subjects to doses that are likely to be safe and ineffective.

In this way the cohort-sequence design paints a clearer picture of the drug’s toxicity profile

and increases the chance of clinical responses.

Our design effectively generalizes the 3+3; the CS(40;3,6,9) version is comparable to

the 3+3@9,2, which is a 3+3 with added dose-expansion cohort. Unsurprisingly, these two

designs and the 3+3 perform comparably on most metrics, except that the 3+3 enrolls fewer

patients because it lacks a built-in expansion cohort. The CS(35;2,6) also performs similarly

to the 3+3, with slightly fewer patients.

Although the critical values of the cohort-sequence design reflect Bayesian notions of

parameter uncertainty, unlike the model-based designs it estimates the MTD based only on

information from patients treated at the identified MTD. An alternative, hybrid approach

that uses all the data would be to run the study with a rule-based design and then estimate a

model (such as the logistic) for the dose-response data, designating as MTD the dose whose

predicted DLT rate is closest to, but does not exceed, the target rate.

Model-based designs such as the CRM aim to identify the dose that delivers a targeted

DLT rate. (39) By assuming an underlying dose-response model, all the data come into play

at every decision point. These designs are both accurate and efficient, provided only that

the assumed model is roughly correct. Their shortcomings are twofold: First, there is the
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need to specify a model based on little or no prior data, and therefore some dependence

on the assumed model and the prior distribution is inevitable. Second, the conduct of such

studies requires substantial attention, potentially a complete reanalysis of the data and re-

evaluation of the dosing scheme at the time of enrollment of each new patient. (34) This

activity requires more statistician and clinician time than many institutions can afford to

allocate. This appears to be the primary reason that these designs have not come into wide

use, in spite of their well-documented excellent statistical properties.
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CHAPTER 3

PROJECTING CLINICAL TRIAL RESULTS TO A TARGET POPULATION

3.1. Introduction

A clinical trial lacks external validity if the sample in which it takes place differs in impor-

tant ways from the target patient population in which one intends to apply its findings.(7,

33, 52) Of particular concern is the estimated treatment effect, which describes the potency

of a new treatment and predicts the consequences of its widespread adoption. A trial whose

estimated treatment effect differs from its value in the target population may misinform

clinical practice, leading to sub-optimal therapy of future patients.

If one possesses data on the distribution of predictors of outcome in the target population,

and one expects treatments to have similar effects in relevant subsets of the trial and target

populations, then it is in principle possible to project treatment effects to this population.(27,

40, 53) We denote this process interpolation, because we assume that all relevant subsets

occur in both the trial sample and the target population.

In the traditional interpolation method of post-stratification, we partition the trial par-

ticipants into strata defined by a set of covariates that exhibit interaction with treatment

effects. We compute treatment effects within these strata, and average the effects weighted

by the fractions of subjects in the population that lie within the relevant strata. The method

is model-independent, and is known to work well when the list of confounders is short.(48)
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Contemporary approaches to interpolation rely on variants of propensity score analysis,

in which one estimates the probability of trial inclusion for each subject in the trial. One can

then use the inverse inclusion probabilities as weights in constructing a corrected population

treatment effect estimate.(10, 49) Stuart et al. applied such a method to data on a school-

based cluster trial that was conducted in Maryland, using a list that contained relevant

demographic data for all eligible schools in that state.(48)

Alternatively, one can estimate the population treatment effect by creating strata based

on the inclusion probabilities, analogous to a stratified propensity score analysis. One then

constructs stratum-specific treatment effect estimates and averages them to obtain an overall

estimate that represents the target population. This approach avoids the problem of exces-

sively variable weights and therefore can be numerically more stable.(38) Matching groups

using trial inclusion probabilities is similar to dividing the subjects into subgroups when the

two methods use the same classification variables.(49, 50)

Inclusion probability methods are rarely applicable in medical trials, because the neces-

sary population data set — a census of trial-eligible patients with all relevant confounders

recorded — seldom exists. Potential exceptions include rare diseases with comprehensive reg-

istries, or diseases that are recorded in national health databases, as some European countries

maintain. More commonly, the best population information would come from health sur-

veys such as the US National Health & Nutrition Examination Survey (NHANES). (8) But

although NHANES collects extensive demographic, behavioral, and health history data, its

disease variables are largely self-reported and therefore potentially imprecise. One may be

able to use NHANES as a reliable basis of population data for trials of common, non-specific

conditions like hypertension and hypercholesterolemia, but it is less useful for conditions

whose diagnosis depends on elaborate or expensive tests or procedures.

In this article we discuss these methods and illustrate their application in pharmaceutical

research. We begin by describing a clinical trial that manifests a need for interpolation.
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3.2. Example: The LRC-CPPT

The Lipids Research Clinics Coronary Primary Prevention Trial (LRC-CPPT) was a ran-

domized, double-masked, placebo-controlled study of the effect of cholestyramine on long-

term cholesterol reduction and incidence of coronary heart disease.(30) Briefly, the study

randomized over 3,700 men within strata defined by cardiovascular risk. Investigators di-

rected participants to consume six packets a day of the assigned treatment — either active

cholestyramine or a placebo. Follow-up visits took place two weeks after randomization and

at 2-month intervals for an average of 7.4 years. The outcome variable is the difference be-

tween average cholesterol measurements taken after randomization and a weighted average

of baseline measurements.(14)

Several measured covariates in the LRC-CPPT trial have different distributions in other

populations where one might wish to treat for hypercholesterolemia. For example, the pro-

portion of ever-smokers in the study, conducted between 1973 and 1983, was 76%, whereas

in the US population currently it is 45%.(8) If smoking moderates cholestyramine effects, an

estimated treatment effect derived only from trial data may be misleading.

3.3. Methods

3.3.1. Estimating the treatment effect in the trial

Let Yi(Zi) be the potential outcome for subject i when randomized to treatment Zi (1 =

experimental, 0 = control). The causal effect of randomization for subject i is the difference

between its experimental and control potential outcomes: Yi(1)− Yi(0). The causal effect in

the trial population is the expectation of the average difference in individual causal effects
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in the trial

Υ = ER
[∑n

i=1 Yi(1)− Yi(0)

n

]
,

where n is the trial sample size and ER refers to the sampling of subjects into the trial.(21)

Because we can observe a subject’s outcome only under the assigned treatment, we denote

the observed outcome Yi = ZiYi(1) + (1−Zi)Yi(0). Under assumptions of random treatment

assignment and no interference between units (the stable unit treatment value assumption),

one can compute an unbiased estimate of the causal effect of Z on Y as

Υ̂ =

∑
i ZiYi∑
i Zi

−
∑

i(1− Zi)Yi∑
i(1− Zi)

, (3.1)

also known as the intention-to-treat (ITT) estimate of the treatment effect. Its standard

error (SE) is

SE(Υ̂) =

√
s2Y,1∑
i Zi

+
s2Y,0∑

i(1− Zi)
,

where s2Y,0, s
2
Y,1 are the sample variances of Y in the groups randomized to control and ex-

perimental treatment, respectively. Alternatively, one can estimate Υ via a linear regression

model on Y with an intercept, a slope on Z, and normal residuals E:

Y = α + ZΥ + E. (3.2)

This approach gives the same result as estimating the ITT effect of Z on Y in Equation

(3.1), with the difference that the SE is based on a pooled variance estimate.

Another analysis — denoted an analysis of covariance — would estimate the treatment

effect with model-based adjustment for baseline covariates X:

Y = α +Xβ + ZΥ + E. (3.3)
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In a randomized trial, the estimate of Υ from Model (3.3) will differ from that from Model

(3.2) due to variation in the distribution of X, but their expectation is the same. To de-

tect whether there is heterogeneity of the treatment effect — defined here as meaning that

the treatment effect varies across subgroups defined by the covariates — one can create a

regression model that includes the randomization indicator, covariates, and interactions:

Y = α† +Xβ† + ZΥ† + ZXγ† + E. (3.4)

We refer to the estimand here as Υ†, because it is not in general the same parameter as Υ,

which represents a treatment effect averaged over the distribution of covariates in the trial.

We call a covariate that manifests a significant interaction with the randomization variable

a moderator of the treatment effect. Note that the error variances estimated from Models

(3.2), (3.3), and (3.4) differ in expectation, generally decreasing as one adds terms to the

model.

3.3.2. Interpolation with post-stratification

3.3.2.1. Post-stratification with a discrete stratifier

The objective of our analysis is to project a standard clinical trial treatment effect esti-

mate to its likely value in the ultimate target population. For notational convenience, we

recode the moderator X variables into a single stratifier S that takes values sj, j = 1, . . . , J .

In medical trials the stratifiers would typically be some combination of demographic vari-

ables, pre-treatment risk factors such as smoking status, indicators of disease type or severity,

and biomarkers. We assume that we know the distribution of S in the target population.

Let fT (s) and fP(s) represent the probability mass functions of the stratifier in the

trial and target population, respectively. Letting Υ̂j be the estimated treatment effect from
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stratum j, then the raw clinical trial estimate Υ̂ from Equation (3.1) is approximately

Υ̂ ≈ Υ̂T =
J∑

j=1

fT (sj)Υ̂j.

The two estimates are only approximately equal because slight imbalances will arise in the

randomization within strata in finite samples.

To create an estimated treatment effect Υ̂P that reflects the distribution of the stratifier

in the target population, one simply re-weights the stratum-specific estimates:

Υ̂P =
J∑

j=1

fP(sj)Υ̂j. (3.5)

By independence across strata, the standard error of (3.5) is

SE(Υ̂P) =

√√√√ J∑
j=1

[fP(sj)]
2 SE2

(
Υ̂j

)
. (3.6)

This is the classical post-stratification estimate and variance.

It is elementary to show that if E[Υ̂T ] 6= E[Υ̂P ], then i) there is a treatment-by-stratum

interaction; i.e., ∃ j 6= k such that E[Υ̂j] 6= E[Υ̂k] ; and ii) the trial and population weights

differ; i.e., ∃ j : fP(sj) 6= fT (sj). Clearly, if treatment effects do not vary across strata,

then the weighting scheme cannot alter the expectation of the weighted estimate. Moreover,

unless the trial and population stratum proportions differ, again reweighting can have no

effect. Although these conditions are not sufficient, a trial in which both are satisfied presents

a prima facie case for interpolation.

One can implement post-stratification using the ESTIMATE statement in SAS PROC GLM.

For example, if smoking is the sole stratifier, one can estimate the effect among smokers

using “ESTIMATE Z 1 -1 Z*smoke 1 0 -1 0/E;” and the effect among non-smokers using

“ESTIMATE Z 1 -1 Z*smoke 0 1 0 -1/E;”. To post-stratify by smoking, where the pro-
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portion of smokers in the population is, say, 80%, one can use “ESTIMATE Z 1 -1 Z*smoke

0.8 0.2 -0.8 -0.2/E”.

3.3.2.2. Post-stratification with a continuous stratifier

When S is so fine as to be effectively continuous, each stratum may contain only one or

a few observations, and thus estimates can be undefined within strata. Instead, we use a

smoothing approach. For each sj (assuming sorted values), create the moving window set

σj = {max(sj − d,min(S)), . . . ,min(sj + d,max(S))}. (3.7)

and replace Υ̂j in (3.5) by the corresponding treatment effects estimated on σj. An alterna-

tive smoother computes stratum treatment effects using the k nearest neighbors. That is,

for each sj, include in σj the k subjects whose S values are closest to it.

When multiple subjects share the same S value, the resulting subset can have more

than k subjects. In LRC-CPPT we implemented this method, interpolating on age with

k ≈ 5N/J . To avoid over-smoothing on the boundaries, we set k ≈ 3N/J when j = 1 or

j = J ; in our applications, this gave similar results to a window size of d = 2. Estimates on

the boundaries are typically smoother with the nearest-neighbors approach. With multiple

continuous stratifiers, one can define a multivariate measure for distance, then extract the k

nearest neighbors.

For continuous S, we generally do not have independence across strata, and therefore we

cannot use Equation (3.6) to compute standard errors. Instead, we compute a bootstrap SE

under strategy (3.7), resampling (Zi, Yi) within strata.

When there are multiple stratifiers, all of them continuous, one can select discrete pseudo-

strata for each point based on nearest neighbors according to some multivariate distance

measure. When there are both continuous and discrete stratifiers, it is preferable to first
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select pseudo-strata by continuous predictors, and then stratify within those based on discrete

stratifiers. This avoids the problem of empty strata, as occurs in LRC-CPPT, where there

are, for example, no non-smokers aged 34.

3.3.3. Interpolation with inverse inclusion probability weighting

Stuart et al. (48) proposed computing for each subject the probability of being selected

into the trial, then using the inverse of the inclusion probability, W IIPW
i , as a weight in

estimating causal effects. The estimate of the effect of Z on Y using inverse inclusion

probability weighting (IIPW) is

Υ̂P,IIPW =

∑
i ZiYiW

IIPW
i∑

i ZiW IIPW
i

−
∑

i(1− Zi)YiW
IIPW
i∑

i(1− Zi)W IIPW
i

. (3.8)

When the stratification is categorical and includes all covariates, the trial inclusion score for

subject i in stratum j is pij =
nj

Nj
, leading to a weight (now indexed by stratum and subject)

W IIPW
ij =

1

pij
=
Nj

nj

,

where nj and Nj represent the total numbers of subjects in stratum j in the trial and target

populations, respectively. In the Appendix, we show that the individual inverse inclusion

probability weights approximate the weights implied in the post-stratification scheme using

the same set of stratifiers. The two approaches are equivalent when randomization fractions

are equal in all strata, as would occur in large samples.

3.3.4. Interpolation with inclusion probability stratification

One can also use the trial inclusion probabilities in an alternative post-stratification

approach, we denote this as inclusion probability stratification (IPS). Specifically, one re-
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defines S by creating pseudo-strata that group together the trial observations based on

their trial inclusion scores. One then computes treatment effects within the strata and use

Equation (3.5) to reweight them based on the distribution of S in the target population. As

with propensity score analysis, dividing into five strata of equal size appears to be sufficient

to reduce the bias to negligible levels.(42) Moreover, stratification with a modest value of J

leads to an estimate that is more numerically stable than Υ̂P,IIPW.

3.3.5. Computing standard errors with inclusion probabilities

3.3.5.1. The standard error of the IIPW estimate

One can compute the IIPW estimate either directly using Equation (3.8) or through a

weighted regression. Setting U = [1 Z] and defining W to be a square matrix with the

weights Wi on the diagonal, one obtains

δ̂P,IIPW = (UTWU)−1UTWY (3.9)

where δ̂P,IIPW = [α̂P,IIPW, Υ̂P,IIPW]. The estimated variance is

V(δ̂P,IIPW) = (UTWU)−1UTWσ̂2IWU(UTWU), (3.10)

where σ̂2 is the sample variance of the residuals, divided by W . Although Υ̂P,IIPW is consis-

tent for the population treatment effect ΥP , its nominal residual variance may greatly exceed

that created from classical post-stratification. This is because the latter is based implicitly

on a model that includes all relevant predictors of outcome (as in Model (3.4)), whereas the

former includes only Z (as in Model (3.2)). To correctly estimate the residual variance and

treatment effect variance, one should substitute the estimated residual variance from Model
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(3.4) into Equation (3.10).

3.3.5.2. The standard error of the IPS estimate

Similarly, the IPS approach gives an inflated SE if there is substantial heterogeneity in

treatment effects. Here we use the post-stratification approach with an SE computed within

each stratum:

SE(Υ̂j) = σ̂

√
1

nj1

+
1

nj0

, (3.11)

with nj1 and nj0 equal to the number of patients in stratum j in the experimental and control

arms, respectively. We apply Equation (3.6) with fP(sj) to get the correct SE. Again, one

should substitute the residual standard deviation from Model (3.4) into Equation (3.11).

By contrast, if in the conventional post-stratified analysis we assume a common value of

the within-stratum variance σ2, then this equals the variance under Model (3.4), and there

is no need to further adjust the standard errors.

3.4. Simulation study

We conducted a one-replicate simulation study to illustrate the potential bias from omit-

ting important covariates in projecting a population treatment effect estimate. We created a

synthetic population consisting of six copies of the LRC-CPPT trial dataset (randomization

and covariates only). Next we generated an outcome for which education, smoking, and age

group exhibit no, moderate, and strong interaction, respectively, with treatment assignment:
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Y = −2 + 20× Z − 2× smoke + 3× agegroup

+0.5× education− 0.25× Z × smoke

+12× Z × agegroup + E,

where E is a vector of independent N(0, 32) deviates. The variable agegroup is coded as

equally spaced groups representing three age levels: < 44, 44–50, and ≥ 51. We also divided

education into three groups — less than high school, high school graduate, and some college

and above. Because there are substantial interactions, the population treatment effect,

representing an average of treatment effects across strata, need not equal 20, the coefficient

of the randomization indicator Z in the mean model. Finally, we selected a sample of subjects

to constitute the trial population via the logistic model

logit(p) = −2.5− 0.5× smoke + 0.28× age group + 0.6× education;

here p is the probability of being selected into the trial. From the resulting synthetic popu-

lation of 22,704 subjects we sampled 3,786 to become the synthetic trial dataset.

Table 3.1 displays estimated treatment effects from the synthetic population, the syn-

thetic trial, IIPW using the true and estimated trial inclusion scores, IPS on inclusion scores,

and post-stratification using all possible combinations of the three stratifiers. Our ground

truth, from the synthetic target population, is ΥP = 32.11; compare this to Υ̂T = 33.58

(SE=0.30) from the synthetic trial. Estimates from IIPW matched the target population

values well, regardless of whether we used true or (correctly) estimated probabilities. The

treatment effect from the stratified inclusion score analysis gave Υ̂P = 31.42 (SE =0.25), and

therefore was off target by almost 3 standard errors; moreover its estimated standard error

was twice that from a weighted analysis. Using the corrected residual variance estimate from
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Model (3.4) — including treatment, strata, and interactions — we obtained an SE of 0.11.

The correlation between the post-stratification and the true trial inclusion score weights

for our simulated data was 0.95; the relationship was not perfectly linear due to a slight lack

of balance. Estimates by post-stratification were close to the truth and precise provided that

age, the variable with the strongest interaction with treatment, appeared as a stratifier.

Table 3.1. Estimated treatment effect (SE) on drop in cholesterol (mg/dL) from simulated

LRC-CPPT data. Selection into the trial was based on age group, smoking status, and

education.

Method Υ̂T

Synthetic trial (N = 3,786) 33.58 (0.30)

ΥP

Synthetic population (N = 22,704) 32.11

Trial inclusion score analysis Υ̂P

IIPW with true score 32.22 (0.30)

IIPW with true score weighting, corrected variance 32.22 (0.10)

IIPW with estimated score 32.15 (0.30)

IIPW with estimated score, corrected variance 32.15 (0.10)

IPS analysis, corrected variance 31.42 (0.11)

Post-stratification Υ̂P

Education 34.01 (0.30)

Smoking 33.54 (0.30)

Age group 32.23 (0.11)

Education+smoking 33.92 (0.31)

Education+age group 32.27 (0.11)

Smoking+age group 32.20 (0.10)

Education+smoking+age group 32.23 (0.11)
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3.5. Analysis of the LRC-CPPT Data

A stepwise variable selection found age and smoking status to have significant interactions

with treatment assignment (Table 3.2). Estimated treatment effects by smoking status and

by race for LRC-CPPT appear in Table 3.3. The proportion of smokers in LRC-CPPT

was 76%, compared to current estimates from NHANES that 45% of Americans are ever-

smokers.(8) Applying Equation (3.5) with the distribution of smokers from NHANES we

obtain Υ̂P = 28.02 (SE=0.90), compared to Υ̂T = 26.91 (SE=0.80) in the trial. Although

the treatment effect appears to differ by race (Table 3.3), only 3.4% of trial subjects identified

as black, and the race-treatment interaction was not significant (P = 0.51). Therefore, we

excluded race as a stratifier in further analyses.

Table 3.2. Estimated coefficients (SE) from stepwise selection.

Intercept Treatment Age Smoke Treatment × Age Treatment × Smoke

−9.30 (4.23) 7.11 (5.95) 0.35 (0.08) 0.24 (1.31) 0.51 (0.12) −5.52 (1.84)

Table 3.3. Intention-to-treat estimates (SE) by stratum from LRC-CPPT; outcome is the

drop in cholesterol (mg/dL).

Smoking Race

Non-smoker Smoker Non-black Black

(N = 904) (N = 2880) (N = 3655) (N = 129)

Υ̂ 30.96 (1.66) 25.62 (0.91) 26.81 (0.81) 29.70 (4.63)

The age-by-randomization interaction was significant at P < 0.0001. As age is effectively

continuous, we created interpolated estimates using moving windows of size d = 2 from ages

34 to 60. Figure 3.1 shows that the treatment effect increases dramatically with increasing

age.

To obtain a population that better reflects disease status, we abstracted information from

NHANES, which collects serum cholesterol values and therefore can identify subjects who
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Figure 3.1. Estimates of average cholesterol drop by age.
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would be eligible for treatment with a cholesterol-lowering drug. We combined data from

1999 to 2016, restricting attention to males aged 34–60.(8) Retaining only those who meet

the LRC-CPPT hypercholesterolemia criteria, we ended up with 120 subjects. Expanding to

the contemporary definition (total cholesterol ≥ 200 mg/dL; LDL cholesterol ≥ 100 mg/dL;

triglycerides ≤ 300 mg/dL) yielded 2,118 subjects. From these data, we interpolated causal

estimates by smoking and age, computing SE by the bootstrap. The interpolation led to

a two mg/dL increase in the estimated treatment effect, representing approximately 2.5

standard errors; see Table 3.4.

We computed trial inclusion probabilities using hypercholesterolemic male NHANES par-

ticipants to represent the target population. Eligible individuals were weighted by their

NHANES sampling weights, which reflect their representation in the US population. Trial
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subjects took weights of 1, as they represent only themselves. We estimated the inclusion

probability with a logistic model including age and smoking status. We then conducted an

analysis by inverse weighting of trial subjects’ estimated inclusion probabilities, as well as

an analysis stratified by trial inclusion probabilities. The results were similar to the inter-

polated estimates using measured stratifiers (Table 3.4) but 1 SE smaller than those from

classical post-stratification. The SE for the interpolated estimates in the stratified analysis

was similar to that using the pooled variance estimate from Model (3.4). The disparity

was not as great as in the simulation study, because the interaction between age group and

treatment was not as strong in the LRC-CPPT dataset.

Table 3.4. Interpolated treatment effect (SE) on drop in cholesterol (mg/dL) based on the

distribution of smoking status and age in NHANES.

Υ̂T

Trial 26.91 (0.80)

Analysis Υ̂P

Post-stratification 28.92 (0.79)

IIPW 28.15 (0.79)

IPS 28.01 (0.87)

3.6. Discussion

We have described and applied methods for projecting a treatment effect estimate to

a population that differs from the one in which the treatment was evaluated. Common

assumptions of the methods are that i) subjects in the trial are similar to those in the target

population, other than on a set of measured covariates, and ii) information is available on

the distribution of these covariates in the population.

The drive to create personalized treatment strategies has heightened interest in the ef-

ficient estimation of treatment effects within subgroups. Nevertheless there is a continuing
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need to estimate average treatment effects in the general population of subjects with a given

disease. For example, economic evaluation, such as cost-effectiveness analysis, relies on esti-

mated effects on survival and cost for the population. This is true whether the “treatment”

is a single drug administered to all comers or a personalized strategy that depends on phar-

macogenetic markers.

In our simulation, post-stratification on a covariate that displayed a strong interaction

with treatment gave estimates that were close to the truth and to estimates from an inverse-

probability-weighted approach that correctly used all relevant confounders. This suggests

that interpolation by post-stratification can offer a reliable sensitivity analysis in the common

situation where subject-level population data are unavailable. One can control the number

of strata in the analysis by limiting attention to covariates that have strong interactions with

treatment, as assessed from the trial data. We observed that an approach that segregates

subjects into strata based on trial inclusion scores was less successful.

When all stratifiers are discrete, post-stratification weights are comparable to those based

on inverse trial inclusion probabilities, and therefore the two methods give similar estimates.

With continuous stratifiers, methods based on trial inclusion scores are potentially more

accurate, because the scores can better reflect study inclusion probabilities. Stratum sizes

may be small, however, and validity of estimates is hostage to correct model specification.

Moreover, to obtain correct SEs with the inclusion probability approaches, one must conduct

the extra step of estimating the variance with a model for Y that includes the treatment, the

stratifiers, and treatment-stratifier interactions. When individual-level data are not available

for the target population, it is not possible to directly compute trial inclusion probabilities.

One can circumvent this problem by generating a pseudo-population using the estimated

distribution of stratifiers. Post-stratification works well without the need for this extra step;

moreover, it automatically avoids the problem of inflated SEs.

We followed the practice of the authors of the original example paper by taking the

response variable to be the difference between follow-up and baseline values of cholesterol.(14)
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This may be inefficient compared to estimation by analysis of covariance; (15, 45) in practice

it is preferable to work with baseline-adjusted treatment effects within strata.

It is often said that trial participation has a positive effect, even for patients who are

assigned to control therapy. This is because participants typically receive state-of-the-art

treatment with frequent evaluation, and may enjoy other benefits such as reduced health care

costs.(52) Patients who are likely to adhere well to treatment may also be over-represented in

clinical trials. Nevertheless there is substantial evidence that treatment effects in randomized

and observational studies are similar,(37, 40) supporting the use of interpolation as described

here.

When the target population includes strata that are absent from the trial population,

interpolation is impossible. LRC-CPPT, for example, excluded females and persons outside

the age range 34–60. We refer to the projection of treatment effects to a population in which

there are additional strata as extrapolation, because it involves averaging estimated stratum

effects that lie outside the range of the trial data. For variables like age, one can extrapolate

effect estimates using regression models, subject to the usual caveat about projecting beyond

the range of the data. For variables like sex, where an entire stratum is absent by design, one

can conduct sensitivity analyses, perhaps involving estimated treatment effects from other

trials if any are available.

A related concern is that both the post-stratification and inverse-probability weighting

assume that the clinical trial and target populations differ only with respect to the distribu-

tion of measured stratification variables. In some cases, the decision to participate in a trial

may represent the outcome of a nonignorable selection mechanism, which one can think of

as the target and trial populations differing also on unmeasured confounders. An important

future direction is to address this concern via sensitivity analysis. (35)
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CHAPTER 4

PROJECTING INSTRUMENTAL VARIABLE RESULTS TO A TARGET

POPULATION

4.1. Introduction

A randomized clinical trial assesses the efficacy of a treatment among patients who par-

ticipate in the trial, but its results may not be directly applicable to the target population

for which the treatment is intended. Such concerns typically arise when the trial sample is

not representative of the target population.(7, 33, 52) If the treatment effect differs by sub-

groups, and the subgroups are represented differently in the trial, then the treatment effect

from the trial will differ from that in the target population. Such a trial may misinform

clinical practice, leading to sub-optimal treatment of future patients.

If one can i) identify all covariates that have an interaction with treatment, ii) accurately

measure the joint distribution of those covariates in the population, and iii) safely assume

that the treatment effects in the target population match those in the trial, then it is in

principle possible to project treatment effects from the trial to the target population. We

denote this process as interpolation.

A classic method for interpolation is post-stratification, in which one reweights stratum

treatment effects from the trial to the target population.(29) This approach requires only

that one know the distribution of key covariates in the population. If individual-level data

are available in the target population, it is possible to obtain estimated probabilities of

trial inclusion for each subject in the trial. One can then obtain projections by using these
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probabilities either in a weighting scheme (10, 48) or as the basis for post-stratification,

applying a method reminiscent of propensity score analysis.(38)

The intention-to-treat (ITT) approach is the standard paradigm for clinical trial data

analysis. The essence of this approach is to include all randomized subjects and to analyze

a measured “hard” endpoint with subjects grouped according to randomization arm, even

if some did not receive the assigned treatment. The estimand is the effect of the treatment

as assigned, which is arguably more relevant to practice than its effect in a hypothetical

situation of universal perfect adherence. We have discussed interpolation of ITT estimates

previously.(29)

Alternatively, one may wish to estimate a treatment effect in compliers, or the notional

population of subjects who would adhere to assigned treatment. A problem with this ap-

proach is that we cannot generally identify compliers. For example, some subjects who

were assigned and received control therapy would also have taken control therapy if assigned

the experimental intervention, in which case they are never-takers rather than compliers.

Such considerations have led to the development of analysis methods grounded in the Ru-

bin causal model.(21, 43, 44) This framework enables estimation of the treatment effect

among compliers, the complier average causal effect (CACE), by means of instrumental

variables analysis.(3, 47) Other methods for examining treatment effects in light of compli-

ance use ad hoc approaches (14) or more elaborate applications of the concept of principal

stratification.(5, 16, 17, 26)

In this chapter we present a post-stratification approach that interpolates causal esti-

mates from a clinical trial to reflect the distributions of predictive covariates in a larger,

clinically relevant population using instrumental variable approach on CACE.(3) We com-

pare post-stratification with two other approaches using trial inclusion probabilities. We

assume that trial participants are similar — in terms of outcomes and compliance behavior

— to nonparticipants other than on measured baseline factors.
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4.2. Examples

4.2.1. LRC-CPPT

The Lipids Research Clinics Coronary Primary Prevention Trial (LRC-CPPT) was a

randomized, double-masked, placebo-controlled study of the effect of cholestyramine on long-

term cholesterol reduction and incidence of coronary heart disease.(30) Over 3,700 men were

randomized in strata grouped by cardiovascular risks. Participants took six packets of either

cholestyramine or placebo each day (24 grams per day). Follow-up visits occurred two weeks

after randomization and every two months, for an average of 7.4 years. Patients reported

the number of assigned packets consumed during each follow-up visits. We take as outcome

variable the difference between average cholesterol measurements taken after randomization

and a weighted average of baseline measurements.(14)

Because cholestyramine was unpleasant to use, nonadherence was common. For the

purposes of this analysis, we designate a complier as a patient who took at least 80% of

his assigned packets, in which case roughly half of subjects in the cholestyramine arm are

non-compliers. We seek to estimate treatment effects considering compliance.

LRC-CPPT participants differed from the contemporary population of US males both

with respect to smoking habits and the distribution of age. We will use data from the trial

and from the US National Health & Nutrition Examination Survey (NHANES) to examine

the hypothesis that these differences could affect estimates of causal treatment effects.

4.2.2. New York School Choice Experiment

In 1997, the School Choice Scholarships Foundation conducted a study of the effect of

private school vouchers on the educational achievement of children from low-income fami-
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lies in New York City.(5, 18) The Foundation chose recipients by lottery from a cohort of

applicant families. The control arm was a set of non-recipients who were pair-matched to

the recipients via a propensity-score model. Thus treatment was assigned at random, albeit

not in the conventional way. Subjects sat for the Iowa Test of Basic Skills, which evaluates

ability in reading and math, both before randomization and after the following school year.

We take as outcome the grade-normed national centile rankings on reading and math.

To avoid various complications, we focus on 715 subjects from single-child families with

children in grades 1–4 during the application period and who had complete demographic,

baseline, and follow-up data. Treatment adherence was imperfect, as some voucher recipients

declined to attend private schools, and some non-recipients attended private schools at their

own expense.

The cohort that we analyze was roughly equally divided between black and non-black

students, whereas the population of NYC at the time was 30% black, and the US population

was 14% black. As treatment effects plausibly differ between races, causal effects of the in-

tervention, were it to be applied across all of NYC or the entire US, could differ substantially

from those observed in the study.

4.3. Causal estimands and their estimates

4.3.1. The ITT estimand

Henceforth, we adopt the notation of the Rubin causal model.(3) Let Yi(Zi, Di) be the

potential outcome for subject i, i = 1, . . . , n, when randomized to treatment Zi and taking

treatment Di = Di(Zi) (1 = experimental, 0 = control). The causal effect of randomization

for subject i is the difference in outcomes that would have occurred under treatment and

control: Yi(1, Di(1)) − Yi(0, Di(0)). Under some assumptions — the stable unit treatment
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value assumption (no interference between units), and random treatment assignment — the

causal effect in the trial sample is

∑n
i=1 [Yi(1, Di(1))− Yi(0, Di(0))]

n
,

and the causal effect in the population is

ΥITT = ER
[∑n

i=1 [Yi(1, Di(1))− Yi(0, Di(0))]

n

]
,

where n is the sample size in the trial and ER refers to the sampling of subjects into the trial.

We typically think of the expectation operator ER as representing simple random sampling

from a notional population of subjects who have the disease in question and are able and

willing to participate in a trial.(21) In many medical applications, however, it is clear that

the notional population is not the same as the target population of subjects who have the

disease and would be eligible to take the experimental treatment if it were available.

We can observe a subject’s outcome only under the treatment to which he is randomized.

For example, if Zi = 1, only Yi(1, Di(1)) is available, and Yi(0, Di(0)) is an unobserved

potential outcome. For convenience, we denote the observed outcome Yi = ZiYi(1, Di(1)) +

(1− Zi)Yi(0, Di(0)). An unbiased estimate of the causal effect of randomization ΥITT is

Υ̂ITT =

∑
i ZiYi∑
i Zi

−
∑

i(1− Zi)Yi∑
i(1− Zi)

, (4.1)

also known as the intention-to-treat estimate of the treatment effect. Therefore we can also

designate ΥITT as the intention-to-treat estimand. A valid standard error (SE) of Υ̂ITT is

SE(Υ̂ITT) =

√
s2Y,0∑

i(1− Zi)
+

s2Y,1∑
i Zi

,

where s2Y,0 and s2Y,1 are the sample variances of Y in the groups randomized to control and

experimental treatment, respectively.
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4.3.2. The effect of randomization on compliance

The intention-to-treat estimand ΥITT measures the causal effect of randomization on

response, without consideration of compliance. To measure the treatment effect among

compliers, it is necessary to consider the effect of treatment assignment on compliance. We

denote this estimand as

δITT = ER [Di(1)−Di(0)] = ER
[∑n

i=1 {Di(1)−Di(0)}
n

]
.

Moreover, define π1 = ER
[∑

i ZiDi∑
i Zi

]
to be the fraction of patients in the treatment group

taking experimental treatment, and define π0 = ER
[∑

i(1−Zi)Di∑
i(1−Zi)

]
to be the fraction of patients

taking experimental treatment in the control group. The causal effect of randomization on

treatment received is then δITT = π1 − π0. Assuming no defiers (i.e., Di(1) ≥ Di(0)), this

quantity measures the proportion of compliers.

Letting π̂1 and π̂0 be the estimates of π1 and π0, respectively, from trial data, define

δ̂ITT = π̂1 − π̂0 =

∑
i ZiDi∑
i Zi

−
∑

i(1− Zi)Di∑
i(1− Zi)

,

as the ITT estimate of the effect of treatment on adherence. Its standard error is

SE(δ̂ITT) =

√
s2D,0∑

i(1− Zi)
+

s2D,1∑
i Zi

,

where s2D,0, s
2
D,1 are the sample variances of D in the control and experimental arms, respec-

tively. As Di is binary, s2D,0 = π̂0(1− π̂0), and s2D,1 = π̂1(1− π̂1). When the control arm has

no access to the experimental treatment (as in the LRC-CPPT example), Di(0) = 0 ∀i, and

therefore π̂0 = 0 and s2D,0 = 0.
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4.3.3. The complier average causal effect

To measure the treatment effect among the latent subgroup of compliers, or subjects for

whom Di(Zi) = Zi, we define the complier average causal effect (CACE)

ΥCACE = ER [Yi(1)− Yi(0)|Di(1)−Di(0) = 1] .

Under two further assumptions — the exclusion restriction (Y depends on Z only through

D), and a nonzero average causal effect on compliance (3, 21, 47) — CACE simplifies to

ΥCACE =
ER [Yi(1, Di(1))− Yi(0, Di(0))]

ER [Di(1)−Di(0)]
=

ΥITT

δITT

.

A simple estimate of CACE, known as the instrumental variables estimate, is

Υ̂CACE =
Υ̂ITT

δ̂ITT

,

with delta method variance

1

δ̂2ITT

V(Υ̂ITT) +
Υ̂2

ITT

δ̂4ITT

V(δ̂ITT)− 2
Υ̂ITT

δ̂3ITT

C(Υ̂ITT, δ̂ITT), (4.2)

where V(·) and C(·, ·) are sample variance and covariance operators.(21)

4.4. Interpolation of estimands and estimates

We here discuss methods for projecting causal estimates from a clinical trial population

to a target population that differs from it with respect to the distribution of important co-

variates.
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4.4.1. Interpolation with post-stratification

Post-stratification is a traditional projection method for that reweights treatment effects

within subsets of the trial population by weights that reflect the proportion of the subset

in the target population. Assume that we have recoded all relevant covariates X into a

single stratification variable S that takes values sj, j = 1, . . . , J . As it is necessary to have

enough data to estimate the treatment effect separately within each stratum, the presence

of continuous or finely measured covariates can complicate analysis. We circumvent the

problem of small strata by grouping together similar strata so that all have a workable

minimum size.

4.4.1.1. Post-stratification of the ITT estimand

Let fT (s), fP(s) represent the distribution of the stratification factor in the trial and

target populations, respectively. The ITT estimand in the trial population is ΥTITT =∑
j f
T (sj)ΥITT,j, where ΥITT,j is the estimand in stratum sj. Similarly, the ITT estimand

for the target population is ΥPITT =
∑

j f
P(sj)ΥITT,j.

Letting Υ̂ITT,j be the ITT estimate from stratum j in the sample, then the clinical trial

ITT estimate from Equation (4.1) is approximately

Υ̂ITT ≈ Υ̂TITT =
J∑

j=1

fT (sj)Υ̂ITT,j.

The two estimates will may differ slightly due to small imbalances of randomization within

strata. An interpolated estimate for the ITT estimand in the target population is then(29)

Υ̂PITT =
J∑

j=1

fP(sj)Υ̂ITT,j. (4.3)
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In order for there to be a difference in estimands (E[Υ̂TITT] 6= E[Υ̂PITT]), there must be an

interaction between treatment and stratum, and the trial and target distributions of S must

differ.(29)

4.4.1.2. Post-stratification estimate of CACE

Similarly, the causal effect of randomization on treatment received in the trial sample is

δTITT = ER
[∑

j f
T (sj)δITT,j

]
, which we compare to the causal effect in the target population

δPITT = ER
[∑

j f
P(sj)δITT,j

]
. Letting δ̂ITT,j be the estimated effect on compliance in stratum

j, we obtain the post-stratification projection to the target population

δ̂PITT =
J∑

j=1

fP(sj)δ̂ITT,j. (4.4)

Under the assumptions of IV estimation, for the target population we get ΥPITT = δPITT×

ΥPCACE. Therefore the IV estimand of CACE in the target population is the ratio

ΥPCACE =
ΥPITT

δPITT

=

∑J
j=1 f

P(sj)ΥITT,j∑J
j=1 f

P(sj)δITT,j

To estimate CACE in the target population, one must therefore interpolate the numerator

and denominator separately, leading to

Υ̂PCACE =
Υ̂PITT

δ̂PITT

. (4.5)

4.4.1.3. Standard errors of the interpolated estimates

By independence across strata, standard errors of Υ̂PITT and δ̂PITT are

48



SE(Υ̂PITT) =

√√√√ J∑
j=1

[fP(sj)]
2 SE2

(
Υ̂ITT,j

)
, (4.6)

SE(δ̂PITT) =

√√√√ J∑
j=1

[fP(sj)]
2 SE2

(
δ̂ITT,j

)
. (4.7)

The delta-method standard error in Equation (4.2) can be unstable. A practical alternative,

which we have implemented in our examples, is to compute the SE by the bootstrap, re-

sampling triples (Zi, Di, Yi) within strata. To make the results reproducible, we recommend

resampling at least 5,000 times.

4.4.2. Interpolation with inverse inclusion probability weighting

Stuart et al. (48) proposed an interpolation method that mimics propensity score analy-

sis. First one computes, for each subject in the trial, the probability of being selected into the

trial; we denote the inverse of this probability as W IIPW
i , which we then use aa an analysis

weight. The inverse inclusion probability weight (IIPW) estimate of the ITT effect of Z on

Y is then

Υ̂P,IIPWITT =

∑
i ZiYiW

IIPW
i∑

i ZiW IIPW
i

−
∑

i(1− Zi)YiW
IIPW
i∑

i(1− Zi)W IIPW
i

. (4.8)

We have shown that this estimate is approximately equal to the post-stratified estimate when

using the same set of discrete stratifiers. The two approaches give identical results when we

have equal randomization in all strata.(29)

Similarly, the IIPW estimate of the causal effect of treatment on adherence is

δ̂P,IIPWITT =

∑
i ZiDiW

IIPW
i∑

i ZiW IIPW
i

−
∑

i(1− Zi)DiW
IIPW
i∑

i(1− Zi)W IIPW
i

.
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Thus, the IIPW estimate of CACE is the ratio of the two interpolated causal estimates:

Υ̂P,IIPWCACE =
Υ̂P,IIPWITT

δ̂P,IIPWITT

.

We will discuss the SE of interpolated estimates from IIPW in Section 4.4.4.

4.4.3. Interpolation with inclusion probability stratification

One can also use the trial inclusion probabilities to conduct a stratified analysis.(38) With

this approach, one creates strata based on the estimated inclusion scores, then conducts a

post-stratified analysis using these newly derived strata. An advantage of this method is

that, like propensity score analysis for observational data, it appears to work well with as

few as five created strata.(42) It also avoids issues the potential instability of the weighted

analysis, and the need to artificially combine strata to avoid small numbers.

Formally, we define an artificial stratification variable SIPS that takes values sIPSk , k =

1, . . . K, based on quantiles of the inclusion probabilities. Then we can compute an estimated

ITT effect Υ̂ITT,k in each sIPSk from the trial data, and apply Equations (4.3) based on the

distribution of SIPS in the target population, fP(sIPS):

Υ̂P,IPSITT =
K∑
k=1

fP(sIPSk )Υ̂ITT,k.

If one uses the quantiles of inclusion probabilities as observed in the trial, the number of

observations is balanced in each stratum. Alternatively, if one defines quantiles from the

target populations, we have fP(sIPSk ) = 1/K ∀ k.

One can readily extend this approach to estimate the CACE: First interpolate within-

stratum estimates of compliance δ̂ITT,k to get δ̂P,IPSITT ; then use Equation (4.5) to obtain the
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interpolated CACE:

Υ̂P,IPSCACE =
Υ̂P,IPSITT

δ̂P,IPSITT

.

We will discuss SE estimation in Section 4.4.4.

4.4.4. Implementation

4.4.4.1. Selection of stratifiers

The first step is to identify a relevant set of covariates. As a rule, one should include in

the stratification any covariate that is associated with heterogeneity of randomization effects

on either the outcome or treatment received.

To check for heterogeneity of treatment effect by covariates, one can use a model including

randomization, covariates (X), and interactions between randomization and covariates on

response: (29)

Y = α† +Xβ† + ZΥ† + ZXγ† + E, (4.9)

where E is Normally distributed with variance σ2
y. Note that the treatment effect Υ† is not

the same as ΥITT, which is the treatment effect averaged over the covariate distribution.

When control subjects have access to the experimental treatment (as in the New York

School Choice Study), we can similarly conduct a regression ofD onX, Z, and the interaction

of X and Z to identify covariates for which treatment effects are heterogeneous:

D = α†d +Xβ†d + ZΥ†d + ZXγ†d + Ed. (4.10)

Although one would usually use a generalized linear model with a logit link function in this

context, because the treatment effects on adherence are to be measured on the probability
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scale, it is preferable to use an identity link for this model. (1) Moreover, we use the estimated

residual variance from this model, call it σ̂2
d, in subsequent SE calculations.

When subjects in the control group have no access to the experimental treatment (as

in LRC-CPPT), any covariate that is associated with D in the experimental arm has an a

fortiori interaction with randomization. Therefore in this case we evaluate covariate effects

from a reduced model that excludes interactions, using data on the experimental arm only.

4.4.4.2. Standard errors for the IIPW estimates

We have observed that one can compute the IIPW estimate of the effect of randomiza-

tion on Y via a weighted regression of Y on Z using the inverse inclusion probabilities as

the weights. Unfortunately, the default SE from this approach may be many overestimate

variability, as it does not account for heterogeneity of effects across values of X. Instead, one

can rewrite the estimate as a linear function of the Yi values, Υ̂P,IIPWITT =
∑

iAiYi with ap-

propriately chosen Ai values. An efficient SE is then SE(Υ̂P,IIPWITT ) = σ̂y
√∑

iA
2
i , where σ̂2

y is

the estimated variance from Equation (4.9). This renders the SE from this approach roughly

equal to the SE from post-stratification with an equivalent set of included covariates. To

compute the SE for δ̂P,IIPWITT one uses a similar approach, but substituting σ̂d from the linear

regression of D in the model for heterogeneity.(1) Because the delta method variance for the

ratio of treatment effects can be inaccurate and unstable, in particular if the denominator

effect is modest, it is preferable to compute SEs by the bootstrap.

4.4.4.3. Standard errors for the inverse probability stratification estimates

To compute the SE of Υ̂P,IPSITT , one simply computes the SE using the post-stratification

approach, but substituting σ̂y from Model (4.9) as the standard deviation term.(29) Similarly,

to estimate the SE of δ̂P,IPSITT one substitutes σ̂d from Model (4.10) as the standard deviation
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term. In computing the SE of Υ̂P,IPSCACE it is generally preferable to use the bootstrap, for

reasons described above.

4.5. Simulation study

We conducted a simulation study to i) compare interpolated causal estimates from post-

stratification and two approaches using inclusion probabilities; and ii) demonstrate how

selection of covariates for post-stratification affects the results. We created a synthetic target

population by making six copies of the LRC-CPPT trial dataset (randomization, compliance,

and covariates only).

To generate a variable for actual treatment received, we first created a continuous variable

C so that compliance depend on randomization, smoking status, and age:

E(C) = 1.8× Z − 0.05× smoke + 0.05× age.

In the trial, we assumed patients assigned to take placebo did not have access to the treat-

ment, so we did not include interaction terms between randomization and covariates on

compliance. We added independent N(0, 0.362) deviates to C and set D = 1 if C > 4.1, so

that all the patients in the control group have D = 0, and the fraction of compliers was close

to 52% in the synthetic target population, as observed in the actual clinical trial dataset.

Next we generated an outcome for which education, smoking, and age exhibit no, mod-

erate, and strong interaction, respectively, with actual treatment received:

Y = −12.2 + 11×D − 2× smoke + 0.3× age + 0.5× education

−0.2× Z × smoke + 0.5× Z × age + E,
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where E represented independent N(0, 32) deviates. We divided education into three groups

— less than high school, high school graduate, and some college and above. We randomly

selected participants for the synthetic trial population with the logistic model

logit(p) = −4.59− 0.5× smoke + 0.05× age + 0.6× education;

where p is the trial inclusion probability. From the resulting synthetic population of 22,704

subjects we sampled 3,792 to become the synthetic trial dataset. We used continuous age for

trial inclusion score analysis, but we divided age into three categories for post-stratification:

< 44, 44–50, and ≥ 51.

Table 4.1 shows the estimated causal effects from the synthetic trial, the synthetic target

population, inverse inclusion probability weighting with true and estimated trial inclusion

probabilities, inclusion probability stratification, and post-stratification with all possible

combinations of education, smoking and age group. The ground truth in the synthetic

population is δ̂PITT = 0.52, Υ̂PITT = 29.02, and Υ̂PCACE = 56.11. These estimates differed from

the results using the synthetic trial data directly. δ̂PITT from all approaches using inclusion

probabilities were close to the ground truth. Interpolated estimates using both the true trial

inclusion scores and estimated trial inclusion scores were within 1 SE of the ground truth.

Post-stratification including age group, the covariate with the strongest interaction with

treatment, returned causal estimates that were closest to the ground truth. Yet even these

estimates were off by 2 to 3 SE. Presumably this is a consequence of having to arbitrarily

group the age variable to render it categorical, as the inclusion probability methods did not

exhibit this bias. Besides, the simulated treatment effects show a strong interaction with

age group with relatively small SEs, discretization of age causes further issues.
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4.6. Real-data applications

4.6.1. LRC-CPPT

We conducted stepwise variable selection in two models: A regression of cholesterol

drop (Y ) on randomization, covariates, and their interaction in the entire data set; and

a regression of treatment received (D) on randomization and covariates in the subgroup

randomized to cholestyramine (Z = 1). Both analyses identified age and smoking status

as important covariates; therefore we use these variables in all subsequent interpolations.

We also included race, whose interaction with treatment for Y is large but not statistically

significant. In all analyses, we defined compliance to mean taking at least 80% of prescribed

packets, leading to 52% compliance in the cholestyramine arm.

Estimated causal effects by smoking status appear in Table 4.2. The proportion of

smokers in LRC-CPPT was 76%, whereas NHANES estimated that 45% of American males

with hypercholesterolemia are ever-smokers.(8) Applying Equations (4.3), (4.4), and (4.5)

with the distribution of smokers from NHANES we get δ̂PITT = 0.53 (SE=0.01), Υ̂PITT = 28.02

(0.90), Υ̂PCACE = 52.55 (1.42), compared to δ̂TITT = 0.52 (0.01), Υ̂TITT = 26.91 (0.80), Υ̂TCACE =

51.53 (1.47) in the trial.

We took as our target population males aged 34–60 in NHANES who met current stan-

dards for hypercholesterolemia (total cholesterol ≥ 200 mg/dL; LDL cholesterol ≥ 100

mg/dL; triglycerides ≤ 300 mg/dL). This led to a population of 2,118 subjects. To compute

trial inclusion probabilities, we weighted the subjects in the target population with their

NHANES sampling weights, which reflect representation of these men in the US population.

We assigned LRC-CPPT participants each a weight of 1, as they represent only themselves.

We then estimated a weighted logistic model with age and smoking status, taking T = 1 as

the outcome for trial participation for the LRC-CPPT members and T = 0 as the outcome
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for the NHANES men. The inclusion probabilities were the predicted probabilities of T = 1

for the trial participants.

For the post-stratification, we grouped subjects by age quantiles so that the number

of patients in each category would be similar. We conducted analyses with 2, 5, and 10

subgroups on age to see the effect of the number of subgroups on interpolated estimates.

The total numbers of strata, after combination with smoking status, are therefore J = 4,

10, and 20, respectively. Table 4.3 displays projected estimates of treatment effects, post-

stratified by age group and smoking status. The number of strata had little effect on the

estimates for δ̂PITT and Υ̂PITT, but the SE for Υ̂PCACE increased with J .

4.6.2. NY School Choice Experiment

A stepwise variable selection for reading score identified no variable with significant in-

teraction with randomization, whereas both race and sex had significant interactions with

randomization for math score. A stepwise variable selection on compliance identified race as

having a significant interaction with treatment. Therefore in subsequent analyses we project

based on race and sex. In analysis limited to two binary covariates, the three interpolation

methods will give identical results, so we henceforth present only post-stratification esti-

mates. We base our interpolations on 2000 US Census data for New York City and the

entire United States.(11, 36)

Table 4.4 shows that males have higher improvement on reading, whereas females and

blacks have higher improvement in math. The proportion of blacks in the study (49.0%) far

exceeds that in the New York City population, which was 29.9% in the 2000 census.(36)

Interpolating to the New York race distribution, the resulting Υ̂PCACE is 3.88 (SE=2.54)

for reading and 2.95 (SE=2.83) for math (Table 4.5). Because the causal estimates differ by

race, the interpolated estimate for math deviates from the trial estimate. Nevertheless the
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difference is within 1 SE.

When interpolating math score for race and sex simultaneously, the overall CACE effect

for non-blacks is close to 0, as the strong positive effect for females and strong negative

effect for males cancel out. The 2000 census in NYC showed that for children aged 6–9

in New York City, 50.7% of non-Hispanic blacks were males, and 51.1% of non-blacks were

males.(36) Using these proportions, the values of Υ̂PCACE are 4.07 (SE=2.49) for reading and

2.35 (SE=2.84) for math. The math estimates differ from the overall estimates using the

trial data, but the difference is less for reading scores. As we identified strong interactions

between randomization and race and sex for math scores, the interpolated math scores show

further deviation from the trial estimates when we post-stratify by both race and sex. When

projected to the entire US population based on the 2000 Census, the causal estimates for

math further deviated from the trial, suggesting that applying the treatment across the

country would lead to modest improvements in performance. Gains for reading would be

sustained, however.

4.7. Discussion

We have described projection of causal estimates from a randomized trial to a target

population using post-stratification, inverse inclusion probability weighting, and inclusion

probability stratification. All the methods require that subjects in the trial are similar

to those in the target population, other than on a set of measured covariates, and that

information is available on these covariates in the population. Furthermore, we assume that

compliance behavior for patients in the trial is similar to those in the target population under

the same subgroup, so that the estimated fraction of compliers in the trial can directly apply

to the target population in the same subgroup.

Before interpolation, one should use the trial data to identify covariates that display a

strong interaction with randomization on either the response or compliance. One can also
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include variables that are likely to evince heterogeneity but may not demonstrate statistical

significance due to sample size limitations. In our simulation study, the estimates using

methods involving inclusion scores were close to the ground truth. Post-stratification results

was less effective, presumably due to its reliance on categorical variables only. Although post-

stratification is less flexible, we can use it to conduct a sensitivity analysis with the joint

distribution of confounders in the target population when subject-level population data are

unavailable.

We have shown that the weights implied in post-stratification is similar to the weights

from inverse of trial inclusion scores using the same set of discrete stratifiers. Therefore, if

all variables are discrete, the three methods will give similar answers.

If subject-level data are not available in the target population, one can create a pseudo-

data set consisting of individuals weighted by their proportions in the population and use

this as the basis of a model for computing trial inclusion probabilities. Again, if all predictors

are categorical, this analysis should closely resemble the post-stratification analysis.

In both data examples, we defined the response variable as the difference between follow-

up and baseline measurements.(5, 14) This is less efficient compared with ANCOVA including

baseline measure, which is more preferable.(15, 45)

Control-group patients in a clinical trial may still observe a positive effect due to benefits

of trial participation such as reduced health care cost and frequent evaluations.(52) Never-

theless, there is evidence showing that treatment effects from randomized experiments are

similar to observational studies, (37, 40) which justifies the use of projection methods.

An important general issue is that failure to adjust for unmeasured confounders — vari-

ables that are both associated with participation and have interactions with treatment —

can lead to biased projections. In the New York School Choice Experiment example, poten-

tial confounders include variables such as school transportation, the availability and quality

of after-school programs, etc., that are likely to differ across the country and affect test out-
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comes. These variables are not available in the dataset or the Census. An important future

direction is to address this concern via sensitivity analysis.(35)
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Table 4.1. Interpolated causal estimates (SE) from simulated data based on LRC-CPPT;

outcome is actual treatment received for δ̂ITT, and drop in cholesterol (mg/dL) for Υ̂ITT and

Υ̂CACE. Selection into the trial is based on age, smoking status, and education. Compliance

is based on age and smoking status.

Method δ̂TITT Υ̂TITT Υ̂TCACE

Synthetic trial (N = 3,792) 0.59 (0.01) 30.54 (0.24) 51.81 (0.70)

δ̂PITT Υ̂PITT Υ̂PCACE

Synthetic population (N = 22,704) 0.52 29.02 56.11

Trial inclusion score analysis δ̂PITT Υ̂PITT Υ̂PCACE

IIPW with true score 0.52 (0.01) 29.03 (0.25) 55.67 (1.20)

IIPW with true score, corrected variance 0.52 (0.01) 29.03 (0.20) 55.67 (1.20)

IIPW with estimated score 0.53 (0.01) 29.16 (0.25) 55.31 (1.15)

IIPW with estimated score, corrected variance 0.53 (0.01) 29.16 (0.15) 55.31 (1.15)

IPS analysis 0.52 (0.01) 28.94 (0.25) 55.71 (1.25)

IPS analysis, correct variance 0.52 (0.01) 28.94 (0.16) 55.71 (1.25)

Post-stratification δ̂PITT Υ̂PITT Υ̂PCACE

Education 0.60 (0.01) 30.82 (0.25) 51.24 (0.67)

Smoking 0.59 (0.01) 30.48 (0.24) 52.02 (0.70)

Age group 0.54 (0.01) 29.48 (0.16) 54.72 (0.80)

Education+smoking 0.60 (0.01) 30.76 (0.25) 51.42 (0.68)

Education+age group 0.54 (0.01) 29.50 (0.17) 54.66 (0.80)

Smoking+age group 0.54 (0.01) 29.48 (0.16) 54.84 (0.80)

Education+smoking+age group 0.54 (0.01) 29.54 (0.17) 54.58 (0.79)
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Table 4.2. Causal effect estimates (SE) by smoking status from LRC-CPPT; outcome is the

treatment received for δ̂ITT, and drop in cholesterol (mg/dL) for Υ̂ITT and Υ̂CACE.

Smoking

Non-smoker Smoker

(N = 904) (N = 2880)

δ̂ITT,j 0.56 (0.02) 0.51 (0.01)

Υ̂ITT,j 30.96 (1.66) 25.62 (0.91)

Υ̂CACE,j 55.06(2.68) 50.29 (1.74)

Table 4.3. Interpolated causal effect (SE) based on the distribution of smoking status and

age in NHANES. Outcome is treatment received for δ̂ITT and drop in cholesterol (mg/dL)

for Υ̂ITT and Υ̂CACE.

δ̂TITT Υ̂TITT Υ̂TCACE

Trial 0.52 (0.01) 26.91 (0.80) 51.53 (1.47)

Analysis δ̂PITT Υ̂PITT Υ̂PCACE

Post-stratification, J = 4 0.53 (0.01) 28.33 (0.91) 53.14 (1.43)

Post-stratification, J = 10 0.53 (0.01) 28.27 (0.93) 53.16 (2.19)

Post-stratification, J = 20 0.53 (0.01) 28.29 (0.94) 53.08 (2.82)

IIPW 0.54 (0.01) 28.15 (0.79) 52.57 (1.42)

IPS 0.53 (0.01) 28.01 (0.87) 52.46 (1.43)
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Table 4.4. Causal effect estimates (SE) by stratum from the New York School Choice

Experiment; the outcome is actual attendance of private school for δ̂ITT, and change in

grade-normed national centile ranking for Υ̂ITT and Υ̂CACE.

Male (n = 349) Female (n = 366)

Reading Math Reading Math

δ̂ITT,j 0.75 (0.03) 0.73 (0.04)

Υ̂ITT,j 4.81 (1.98) 0.46 (2.21) 0.84 (1.81) 5.66 (2.12)

Υ̂CACE,j 6.42 (2.64) 0.61 (2.95) 1.16 (2.48) 7.78 (2.94)

Non-black (n = 365) Black (n = 350)

Reading Math Reading Math

δ̂ITT,j 0.67 (0.04) 0.81 (0.03)

Υ̂ITT,j 2.22 (1.90) 0.35 (2.27) 4.01 (1.85) 6.20 (2.03)

Υ̂CACE,j 3.32 (2.82) 0.52 (3.40) 4.96 (2.30) 7.67 (2.54)
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Table 4.5. Interpolated results (SE) from the New York School Choice Experiment; the

outcome is actual attendance of private school for δ̂ITT, and change in grade-normed national

centile ranking for Υ̂ITT and Υ̂CACE.

Reading

Stratifier Distribution δ̂TITT Υ̂TITT Υ̂TCACE

— Trial 0.74 (0.02) 2.80 (1.34) 3.79 (1.80)

δ̂PITT Υ̂PITT Υ̂PCACE

Sex NYC 2000 Census 0.74 (0.03) 2.87 (1.34) 3.88 (2.56)

US 2000 Census 0.74 (0.03) 2.88 (1.34) 3.89 (2.55)

Race NYC 2000 Census 0.71 (0.03) 2.76 (1.44) 3.88 (2.54)

US 2000 Census 0.69 (0.03) 2.50 (1.63) 3.62 (2.56)

Race & sex NYC 2000 Census 0.71 (0.03) 2.89 (1.44) 4.07 (2.49)

US 2000 Census 0.69 (0.03) 2.70 (1.64) 3.89 (2.48)

Math

Stratifier Distribution δ̂TITT Υ̂TITT Υ̂TCACE

— Trial 0.74 (0.02) 3.07 (1.53) 4.15 (2.07)

δ̂PITT Υ̂PITT Υ̂PCACE

Sex NYC 2000 Census 0.74 (0.03) 3.01 (1.53) 4.07 (2.87)

US 2000 Census 0.74 (0.03) 3.01 (1.53) 4.07 (2.81)

Race NYC 2000 Census 0.71 (0.03) 2.10 (1.70) 2.95 (2.83)

US 2000 Census 0.69 (0.03) 1.26 (1.94) 1.82 (2.85)

Race & sex NYC 2000 Census 0.71 (0.03) 1.67 (1.72) 2.35 (2.84)

US 2000 Census 0.69 (0.03) 0.73 (1.96) 1.05 (2.84)
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CHAPTER 5

CONCLUSION

In this dissertation, we have proposed a rule-based phase I dose-finding design for oncol-

ogy studies. In addition, we have projected the treatment effects from a randomized clinical

trial to a target population. One innovation aspect of this project is interpolation in medical

trials considering compliance.

In Chapter 2, the proposed design is flexible based on the target toxicity probability; it

is more efficient on dose assignment so that more patients can be treated near the potential

maximum tolerated dose, which will be recommended for future trials; and the design is

simple to use. We have developed a package in R to make it more accessible.

The design is targeted for phase I oncology trials in which the toxicity increases with

increasing doses. The aim is to obtain preliminary information on safety fast with few number

of patients. In cases where treatments do not have monotonic dose toxicity relationship, other

designs are better suited.

Rule-based designs use information from patients treated at the maximum tolerated dose

only, whereas model-based designs uses information from all patients to identify a dose that

delivers a targeted dose limiting toxicity rate. This is more accurate and efficient; but

it requires a model based on little data to begin with, then conducts analysis after each

response to recommend dose for the next patient. It requires more time from statisticians

and clinicians. Thus, there is still a continuing role for rule-based designs, especially in

institutions where statistical resources are limited.
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After getting preliminary safety and efficacy information from early-stage trials, more

patients are randomized in late-stage trials for estimating the treatment effect. In Chapter 3

and 4, we use results from late-stage clinical trials to project to the target population where

the same treatment can be applied. When we include stratification factors that show strong

interaction on outcome or compliance, the interpolated estimates can differ substantially from

the trial estimates. Post-stratification can work with just joint distribution of stratifiers.

Approaches using inclusion probabilities are more flexible and accurate on modeling trial

inclusion, but it requires individual-level data that is rarely available for medical trials. In

addition, these approaches require additional step for getting the standard error of estimates

accounting for heterogeneity of causal effect by covariates, which is automatically built-in

for post-stratification.

To conduct interpolation, the patients in the trial are similar to those in the target pop-

ulation, other than on a set of measured covariates. A future direction for this research is

to combine information from similar trials to include a larger group of subjects for interpo-

lation. One example would be to combine information from other trials on cholestyramine

that includes females, so that the target population can include male and female patients.
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APPENDIX A

APPENDIX OF CHAPTER 3

A.1. Appendix A. Equivalence of IPW and post-stratification with discrete S

Define Yij, i = 1, . . . nj, j = 1, . . . J , to be the outcome from subject i in stratum j of the

trial sample. Let nj and Nj represent the total numbers of subjects in stratum j in the trial

and target populations, respectively. Thus, n =
∑J

j=1 nj is the trial size; N =
∑J

j=1Nj is

the population size; fT (sj) = nj/n; and fP(sj) = Nj/N . The inverse-probability-weighted

treatment effect is

Υ̂P,IPW =

∑
i,j ZijYijW

IPW
ij∑

i,j ZijW IPW
ij

−
∑

i,j(1− Zij)YijW
IPW
ij∑

i,j(1− Zij)W IPW
ij

,

where the inverse trial inclusion probability is

W IPW
ij =

Nj

nj

.

Moreover,
∑

i,j W
IPW
ij =

∑
j
njNj

nj
=
∑

j Nj = N .

Let nj1 and nj0 be the number of patients in stratum j in the experimental and control

arms, respectively. Note that the inverse-inclusion-probability-weighted estimate is a linear

function of the observations: Υ̂P,IPW =
∑

i,j AijYij, where,

Aij =


Nj/nj∑

k Nknk1/nk
, if Zij = 1,

− Nj/nj∑
k Nknk0/nk

, if Zij = 0.
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Similarly, the post-stratified estimated Υ̂P =
∑

i,j BijYij, where,

Bij =


Nj

Nnj1
, if Zij = 1,

− Nj

Nnj0
, if Zij = 0.

Under equal randomization fractions in each stratum, i.e., nj0/nj = nj1/nj = 1/2 ∀j, the

methods give identical weights:

Aij =
2Nj

njN
= Bij.

In practice, the weights in the two approaches will differ slightly due to accidental imbalances

in randomization fractions across strata.
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