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Hypervalent (HV) iodine(III) reagents have been widely applied to organic transformations 

owing to their ability to undergo various redox and ligand exchange reactions. HV iodine(III) 

compounds have also been employed in the synthesis of polymers, almost exclusively as 

polymerization initiators. This dissertation is focused on the utilization of HV iodine(III) reagents 

in the synthesis and functionalization of various macromolecules. The ligand exchange reaction at 

the HV iodine(III) center with nucleophiles, especially ones containing functional groups (e.g., 

bromine, azides, and isocyanate substituted carboxylates), provided a convenient source of 

functional radicals that were used in the polymerization of vinyl monomers and their in-situ 

postpolymerization. Furthermore, the synthesis of HV iodine(III) compounds containing various 

tetrazoles served as the reagents for the post polymerization of natural rubber to yield energetic 

materials.  This method can be used to easily incorporate diverse functionalities in materials or to 

build up complex macromolecular architectures. The HV iodine(III) compounds were also used to 

demonstrate their versatile nature of serving as initiators and an efficient transfer agent. Several 
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synthetic approaches were developed utilizing HV iodine(III) chemistry to provide a versatile and 

robust tool to synthesize advanced macromolecular materials. 
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CHAPTER 1.   

                                                        INTRODUCTION 

1.1. History and Structure of HV Iodine(III) Compounds 

Ever since their discovery in 1886 by Willgerodt,1 HV iodine(III) compounds have 

continued to attract the attention of synthetic organic, theoretical, and materials chemists, and have 

found numerous applications, especially in organic synthesis, which are described in several 

monographs2-6 and review papers.7-14 The first of these compounds, dichloroiodobenzene (PhICl2), 

was discovered by the German chemist Willgerodt in 1886 and was synthesized by the reaction of 

iodobenzene (PhI) and Cl2. Soon after that, new HV iodine(III) compounds were described, 

including DAIB15 and PhIO16 in 1892, 2-iodoxybenzoic acid in 1893 and the first diaryl iodonium 

salts in 1894. The classification and nomenclature of HV iodine(III) compounds is based on the 

structural characteristics of these compounds. Because the iodine in  HV iodine(III) compounds 

can exhibit the oxidation states of +3, +5 and +7, one common method based on electronic 

structures, referred to as the Martin-Arduengo N-X-L designation17, 18 is widely used, where X is 

the central atom with variable valence, N is the number of valence shell electrons around thecentral 

atom, and L is the number of ligands. The structures and corresponding Martin-Arduengo 

designations of several HV iodine(III) species are shown in Figure 1-1.  
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Figure 1-1. Structures and Martin-Arduengo nomenclatures of common HV iodine(III)  species. 

Owing to the unique reactivity of HV iodine(III) compounds of the type ArIL2 (Ar = aryl; 

L = ligand, such as (pseudo)halide, carboxylate, etc.), namely their ability to participate in both 

radical (e.g., bond homolysis with the formation of iodoarenes ArI and radicals L•)19, 20 and ionic 

reactions (e.g., ligand exchange with nucleophiles Nu-, leading to compounds of the types ArILNu 

and eventually – ArINu2), these compounds are of importance in the synthesis of functional 

macromolecules. Uses of ArIL2 in polymer science and technology that have already been reported 

include i) initiators of radical polymerization,21-27 ii) reagents for post-polymerization 

modifications (polymer-analogous reactions),28-30 and iii) structural elements or building blocks of 

complex macromolecules.31, 32 The iodine atoms in common HV iodine(III) compounds have 

either 10 or 12 valence electrons, and are known as either iodinanes and periodinanes, respectively. 

Iodanes are designated as λ3- and λ5-iodanes based on the lambda convention set forth by the 1983 

IUPAC recommendations33 that state that heteroatoms with nonstandard valence states (n) are 

named with λn notation (Figure 1-2). However, it should be noted that the older 1979 nomenclature 

rules of IUPAC and common names from older literature based on ligands attached to the iodine 

center are still widely used (Table 1-1). 
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Figure 1-2. Molecular geometry of 1) λ3-iodanes, 2) iodonium salts and 3) λ5-iodanes. 

Table 1-1. Nomenclature and abbreviations of common HV iodine(III) compounds. 

Compounds IUPAC names Common names Abbreviations 

I

Cl

Cl

 

(Dichloroiodo)benzene Iodobenzene dichloride 

Iodosobenzene dichloride 

Phenyliodo dichloride 

IBD 

I

OAc

OAc

 

(Diacetoxyiodo)benzene Iodobenzene diacetate 

Iodosobenzene diacetate 

Phenyliodo diacetate 

DAIB 

DIB 

IBD 

I

O2CF3

O2CF3

 

[bis(trifluoroacetoxy)iodo] 

benzene 

Iodobenzene 

 

Bis(trifluoroacetate) 

BTI 

I

O

 

Iodosylbenzene Iodosobenzene IDB 

 

O
I

O

HO

 

1-Hydroxy-1H-1λ3- 

benzo[d][1,2]iodoxol-3-

one 

2-Iodosobenzoic acid 

2-Iodosylbenzoic 

acid 1-Hydroxy-1,2- 

benziodoxol-2-(1H)-one 

IBA 
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I

O

O  

Iodylbenzene Iodoxybenzene None 

 

O
I

AcO
OAc

OAc

O  

1,1,1-Triacetoxy-1H-1λ5- 

benzo[d][1,2]iodoxol-3-

one 

Dess-Martin Periodinate DMP 

 

Polyvalent iodine compounds generally contain at least one carbon-based ligand, usually 

an aryl or perfluoroalkyl group, and single heteroatom ligands such as fluorine, chlorine, oxygen, 

or nitrogen. The iodine atom in the aryl-λ3-iodanes (ArIL2) has an overall T-shaped molecular 

geometry: two heteroatom ligands L located in the apical positions and an aryl ligand and lone 

pairs of electrons occupying the equatorial positions.34 The two axial ligands L are attached to one 

of each lobe of the non- hybridized 5p orbital of iodine resulting a hypervalent three-center-four-

electron bond (3c–4e bond)35 which is composed of two electrons from iodine and one electron 

from each of the ligands L, as shown in Figure 1-3. The aryl group is bonded to the iodine center 

by a normal two-electron covalent bond. The length of the highly polarized 3c-4e bond is 

comparatively between that of a covalent bond and an ionic bond, according to experimental X-

ray structural data, which accounts for the weak bonding of ligands in HV iodine(III) compounds. 
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For instance, the I-Cl bond lengths in PhICl2 are 2.45 Å and the I-O bond lengths in PhI(OAc)2 are 

2.15-2.16 Å compared to, the respective sums of the covalent radii of I and Cl (2.41 Å), and I and 

O (1.99 Å).36 The lability of 3c-4e bonds can also be explained by Molecular Orbital Theory. Three 

σ-molecular orbitals (bonding, nonbonding and antibonding) orbitals are generated via the orbital 

interactions between the p-orbital of iodine and two orbitals – one from each of the ligands. The 

four σ electrons occupy the two lower energy levels yielding weakly associated HV iodine (III) 

bonds. The two bonding electrons are delocalized over the two ligands, which results in the 

electrophilicity of the iodine center. Most of the electron density is located at the ends of the L-I-

L triad, explaining why hypervalent iodanes could be stabilized by electronegative ligands and 

exhibit high electrophilic reactivity. The other types of λ3- iodanes, iodonium salts, have similar 

pseudo-trigonal bipyramidal geometry with two carbon structure with an angle close to 90° and a 

closely associated anionic part of the molecule. Aryl λ5-iodanes, ArIL4, have a square pyramidal 

structure with an aryl group in the apical position and four heteroatom ligands in basal positions. 

 

 
Figure 1-3. Molecular orbital of the 3c-4e bond in aryl-λ3-iodanes (ArIL2). 

 

The λ3-iodanes are overall the most abundant and relatively stable HV iodine(III) 

compounds. For this reason, their synthetic utility is most practical and will be the main focus of 

the research discussed in the remainder of this dissertation. 
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1.2. Ligand Exchange Reactions and Homolytic Fragmentation of HV iodine(III) 

Reagents 

The reactivity of HV iodine(III)  compounds is characterized by several factors, including 

the molecular structure of HV iodine(III), the lability of 3c-4e HV iodine(III)  bonds, the 

electrophilicity of the iodine center, and the good leaving group ability of the iodoaryl group. The 

electrophilic iodine(III) center and the labile HV iodine(III) bonds allow susceptibility to efficient 

attack from nucleophiles, followed by the leaving of ligands. Ligand exchange reactions involving 

HV iodine(III) compounds have no well-established order of reactivity, which is mostly affected 

by the nature of substrates and solvents, but the general rule of “the better leaving group” similar 

to SN reactivity at carbon centers is always observed in the ligand transfer process. Two possible 

reaction patterns – associative and disassociative pathways – were proposed based on mechanisms 

similar to SN1 and SN2 reactions (Scheme 1-1).37, 38 The dissociative pathway affords the unstable 

8-I-2 cationic intermediates [ArIL]+. The associate pathway involves the formation of a 12-I-4 

species, followed by the isomerization and leaving of a ligand. A vast number of nucleophiles are 

able to participate in the ligand exchange reaction including F-, Cl-, RCOO-, CN-, N3-, SCN-, 

OCN-, etc. affording a wide range of polyvalent derivatives. In general, the 3c-4e HV iodine(III) 

bonds are longer and less stable than regular covalent bonds. The homolytic dissociation can be 

triggered by heating, irradiation, or sonication.38 
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IAr

L

L

IAr

L

L

Nu IAr

L

L

Nu

12-I-4 (trans) 12-I-4 (cis)

L

IAr

L

Nu

Nu IAr

L

Nu

12-I-4 (trans)

Nu IAr L

Nu

12-I-4 (cis)

Nu L

IAr

Nu

Nu

Nu

IAr

L

Nu
IAr

L

Nu

L

IAr

Nu
Nu

IAr

Nu

Nu

Associate
Pathway

Dissociate
Pathway

8-I-2 8-I-2

L

 
 

Scheme 1-1. Associate and dissociate pathways of ligand exchange reactions of HV iodoarenes, 

ArIL2, in the presence of external nucleophiles, Nu-. 

 

1.3. Reactivity of HV Iodine(III) Reagents 

Most organic HV iodine(III)  species are thermodynamically unstable and some are known 

to be explosive, which requires most HV iodine(III)  reagents to be freshly prepared and used. 

With that being said, there is still quite a selection of relatively stable organic HV iodine(III) 

compounds that are commercially available, including DAIB, BTI, 

[hydroxy(tosyloxy)iodo]benzene, IBA, 2-iodoxybenzoic acid, and Dess-Martin periodinane 

(DMP). In contrast, the inorganic polyvalent iodine derivatives show marked thermal stability and 

are commonly used as strong oxidants. For instance, iodine(V) oxide, I2O5, can efficiently convert 

carbon monoxide into carbon dioxide at room temperature and is used as a convenient reagent to 

detect carbon monoxide gas concentration.39 Iodine pentafluoride is a fluorinating agent that can 

be handled in glass equipment and is widely used in many industrial situations.  

Stable organic HV iodine(III) compounds, especially the λ3-iodanes and λ5-iodanes, are 

very useful in organic synthesis due to their versatile reactivities and benign environmental 

character. For instance, they are utilized as selective oxidants in organic transformations (Scheme 
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1-2). Organic HV iodine(III) reagents are employed to convert secondary alcohols into ketones 

and primary alcohols into carboxylic acids, and the use of the less oxidative λ3- iodanes relative to 

λ5-iodanes generally requires catalysts such as bromide salts or (2,2,6,6-tetramethyl-piperidin-1-

yl)oxyl (TEMPO). Oxidations using HV iodine(III) reagents show great tolerance of functional 

groups, such as ethers, esters, sulfonates, azides, etc., and also give nearly quantitative yields that 

make them favorable and applicable for different synthetic purposes. 

 

R OH

R R'

OH

Ar

OH

OR

O

R OH

O

R R'

O

Ar

O

OR

O

PhIO, KBr, H2O

r.t., 2 h

DAIB, TEMPO, CH2Cl2

r.t., 0.1-15 h

DMP, CH2Cl2

r.t.

a)

b)

 
 

 

Scheme 1-2. Examples of using a) HV iodine(III) and; b) HV iodine(V) reagents as oxidants in 

the organic transformation of alcohols into carbonyl compounds. 

 

HV iodine(III) reagents can also be used to introduce new chemical bonds, such as C-C, 

C-O, C-N, and C-X (X = halogen), during organic transformations via either nucleophilic 

substitution or radical addition mechanisms (Scheme 1-2). For instance, (difluoroiodo)arenes, 

particularly 4-(difluoroiodo)toluene (TolIF2) due to its stability, solubility and facile preparation, 

were used as powerful fluorinating agents in many selective fluorination reactions. The 

fluorination of alkene derivatives using TolIF2 proceeds through a nucleophilic substitution 
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pathway yielding the difluorination of various alkenes.40, 41 Likewise, chlorination reactions using 

the (dichloroiodo)arenes, such as PhICl2, proceed through either radical and ionic pathways 

depending on the chemical environment.10, 42, 43 In general, the radical pathway is conducted in 

nonpolar solvents under photochemical conditions or in the presence of radical initiators, while 

the ionic approach is used in polar solvents. HV iodine(III) compounds can be diversified by ligand 

exchange reactions with various nucleophiles in situ providing convenient access to a number of 

functional groups. 

 

R1

R2

I Tol

F

F

R1

R2

I

F
Tol

F

R1

R2

I
F

Tol

F I Tol

F

R1

F

R2

PhICl2

Cl

Cl
Cl

Cl

CHCl3, 0.5 h, hv

Cl

Cl

Cl Cl
Cl

R

R'

R

R'

N3

N3

Ar

R'

R

R'

NTs2

Ts2N

X

R

R'

X

R

R'

SCN

a)

b)

c)

d)

CF3CO2H-CHCl3, 1:4

Reflux, 0.5 h

PhIO, NaN3, AcOH

25 - 50 0C, 2-3 h

DAIB, HNTs2, CH2Cl2

r.t., 12 h

PhICl2, KSCN, CH2Cl2

0 0C to r.t., 50 min

(25%) (75%)

(38%) (16%) (27%)

 
 

Scheme 1-3. Examples of organic HV iodine(III) reagents in the formation of new chemical bonds 

via a) halogenation,40 b) azidation,44 c) amination,45 and d) thiocyanation.46 
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 In addition to the extensive applications as oxidants in organic synthesis, HV iodine(III)  

compounds can also participate in ligand (L) exchange and radical or ionic reactions. Recently, it 

was reported47-49 that the ligands (L) in L-I-L bonds could be substituted by nucleophiles to afford 

new HV iodine(III) compounds, and the newly formed hypervalent I-Nu bonds could in turn 

dissociate homolytically and yield Nu• radicals. For example, azide anions from NaN3 efficiently 

substituted the acetoxy ligands in DAIB (Scheme 1-4). The new hypervalent bonds I-N3 

decomposed rapidly even at ambient temperature, generating N3
• radicals as initiators to afford 

various azide-containing polymers.  

I OAcAcO

DAIB

NaN3 AcONa

I N3AcO

I N3N3

N3

IAcO I

AcO

CO2

CH3

N3

IAcO
I

N3

 

Scheme 1-4. Exchanging reaction of DAIB with sodium azide, generating azide radicals to initiate 

the polymerization of vinyl monomers. 

 

 Because of the relatively weak hypervalent bonds, HV iodine(III)  compounds themselves 

can serve as initiators for radical and ionic polymerizations. For instance (Scheme 1-5), the 

hypervalent I-O bonds in ArI(O2CR)2 can be cleaved homolytically upon either heating or 

irradiation, and the generated radicals initiate free radical polymerization of vinyl monomers.50-52 

In addition, the photolysis of iodonium salts can generate cationic species, which are useful to 

initiate cationic polymerization of vinyl and heterocyclic monomers.53, 54 Therefore, HV iodine(III)  
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compounds may open new opportunities for synthetic chemistry, and particularly polymer 

chemistry in the fields of polymer modification, functional initiation, dynamic crosslinking, and 

also CRP systems. It should be mentioned that not every HV iodine(III)  compound that generates 

radicals or cations can be used for CRP or dynamic materials.  

 

I

AcO

CO2

CH3

I OAcAcO

DAIB

2

2

2

or h

 

 

Scheme 1-5. HV iodine(III) compounds serving as initiators for radical and ionic polymerizations. 

 

1.4. Benziodoxolone-derived reagents 

 Heterocyclic HV iodine(III) compounds, benziodoxolone (BIO) and its derivatives are of 

significant interest due to their simple preparation,55-57 higher thermodynamic stability compared 

to acyclic HV iodine(III) compounds,56 and various applications in organic synthesis including 

carbon- or hetero- atom transfer reactions have been described.58 Scheme 1-6, shows the chemical 

structures of some popular BIO derivatives.  
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O
I

O

HO

HBIO

O
I

O

O

O

O
I

O

Cl

O
I

O

N3

O
I

O

N

ClBIO (BrBIO)

N3BIO CNBIO

O
I

O

F
F

F

CF3BIO

(-Br)

AcBIO

 

 

Scheme 1-6. Examples of BIO derivatives. 

 The greater stability can be explained by the bridging of an apical and an equatorial position 

by a five-membered ring and by conjugative overlap of the lone pairs of electrons on the iodine 

atom with the π-orbitals of the benzene ring,59 which enables the isolation of otherwise unstable 

HV iodine(III)  compounds with I-Br, I-N3, I-CN, etc. For example, azido benziodoxolone 

(AzBIO) can be isolated as a thermally stable, microcrystalline solid, and can be stored at room 

temperature for several months without noticeable decomposition,56 while in contrast, 

(diazidoiodo)benzene PhI(N3)2 decomposes rapidly even at -25 to 0 °C with the formation of 

iodobenzene and nitrogen (the latter formed by the coupling of azide radicals).56 One of the most 

important and best investigated heterocyclic HV iodine(III) compounds is hydroxyl 

benziodoxolone (HBIO), which was discovered by Meyer,15 and is the cyclic tautomeric form of 

2-iodosylbenzoic acid. Based on X-ray crystal structure and theoretical studies, the cyclic form is 

the better representation.60 The internal endocyclic I-O bond, which is 2.30 Å long and 

significantly longer than the computed covalent I-O bond length of 1.99 Å, indicates its 

hypervalent nature. In addition, the exocyclic I-O bond is 2.00 Å.61 
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IO

COOH
O

I
HO

O

HBIO2-iodosylbenzoic acid  

Scheme 1-7. Structures of 2-iodosylbenzoic acid and HBIO. 

 

 HBIO, as a precursor of various functional group-substituted BIOs, can be easily prepared 

by the oxidation of a commercially available and inexpensive compound 2-iodobenzoic acid 

(IBA).60 For example, the reaction between IBA and NaIO4 yields HBIO with a high purity, and 

the yield is typically more than 90%.62 Starting from HBIO, a great variety of BIO-derived reagents 

can be synthesized, including AzBIO,54 acetoxy benziodoxolone (ABIO),63 chloro benziodoxolone 

(ClBIO),64 trifluromethyl benziodoxolone (CF3BIO),63 cyano benziodoxolone (CNBIO),65 etc. 

These and some future BIO-derived compounds are useful in functionalization reactions such as 

atom- or functional group transfer reactions.66, 67 
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CHAPTER 2.   

IODOSYLBENZENE-PSEUDOHALIDE-BASED INITIATORS FOR RADICAL 

POLYMERIZATION 

2.1. Introduction 

2.1.1. Iodosylbenzene 

Even though the iodosyl compounds have the chemical composition of ArIO, polymeric 

structure of the molecule causes their general expression of (RIO)n. Thermal instability prevents 

the iodosylalkane from many practical uses, while the iodosylarenes are capable of being 

synthesized, isolated, and used under mild conditions. It should be kept in mind that drying of 

iodosylbenzene at an elevated temperature is to be avoided due to its lability, causing a violent 

explosion upon 110 °C in vacuo and a disproportionation reaction yielding PhI and explosive 

iodylbenzene. There is no structural evidence supporting the existence of a I=O double bond, 

instead, iodylbenzene exhibits a zigzag-shaped asymmetric bridge structure via the intra- and 

intermolecular bonding of primary I─O (2.04 Å) and secondary I▪▪▪O (2.37 Å) respectively 

(Figure 2-1).1, 2 This can lead to purification issues due to the resulting insolubility of 

iodosylbenzene in nonreactive organic solvents and inability to purify via recrystallization.  
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Figure 2-1. The structure of the polymeric state of PhIO. 

One of the simplest synthetic approaches to PhIO is the oxidation of iodobenzene by 

dimethyldioxirane (DMDO) in acetone (Scheme 2-2),1 which is also applicable for the synthesis 

of other organo-iodosyl compounds such as iodosylperfluoroalkanes RfIO (Rf = perfluoroalkyl 

group). The proposed reaction mechanism involves the formation of the diradical intermediate by 

the PhI-induced homolysis of the peroxide bond. However, because of low product yield and over-

oxidized impurity, iodosylarenes were generally prepared via the alternative route – hydrolysis of 

diacetoxy or (dichloroiodo)arenes (Scheme 2-2). 
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Scheme 2-1. Synthetic routes and conversions of PhIO.3,4,5 

 

Iodosylbenzene can serve as a precursor for a variety of polyvalent iodine species, which 

makes it a great source of functional radicals applicable in small molecule synthesis and post-
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polymerization modifications. For example, iodosylbenzene reacts with NaN3 or TMSN3 forming 

the azido HV iodine(III) intermediates in situ which rapidly decompose and generate azide radicals 

providing a convenient functionalization route to introducing azide groups.6, 7 

 

2.1.2. Reactivity of PhIO with psuedohalide sources 

The ligand exchange reactions of the acyloxy groups in (diacyloxyiodo)arenes with 

(pseudo)halide anions X- or the reactions between iodosylarenes ArIO and trimethylsilyl 

(pseudo)halides TMSX are convenient routes to (di(pseudo)haloiodo)arenes ArIX2, which are 

typically unstable and decompose in situ with the formation of (pseudo)halogen radicals, which 

can react with numerous substrates, including compounds with unsaturated carbon-carbon bonds 

or easy to abstract hydrogen atoms. In addition to chlorination radical reactions in the presence of 

(dichloroiodo)arenes (typically not prepared by ligand exchange but by chlorination of the 

corresponding iodoarene), numerous synthetically useful chemical transformations have been 

reported involving, for example, azides and thiocyanates as the pseudohalogens. Very limited 

number of ligand exchange reactions involving λ3-iodanes of the type ArIL2 and nucleophiles, 

followed by homolytic cleavage (upon heating or irradiation with light) of the hypervalent bonds 

of the newly formed iodanes have been reported that have application in the polymerization of 

radically polymerizable monomers to yield directly functional polymers. For example, it was 

shown8 that the exchange of the acetoxy groups in DAIB with methacryloyloxy groups (i.e., in 

reaction with methacrylic acid) is an easy way to prepare directly, without the need of isolation of 

the reaction products, branched polymers, owing to the fact that both the produced 

[(acetoxy)(methacryloyloxy)iodo]benzene or (dimethacryloyloxyiodo)benzene serve as both 
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initiators of polymerization and monomers (i.e., as inimers). The generation of azide radicals by a 

ligand exchange reaction between (diacetoxyiodo)benzene and NaN3 and their use in the synthesis 

of linear and branched polymers with azide functionalities at the chain ends was also reported.9 

The main goals of this work were i) to explore alternative hypervalent iodine(III)-based 

sources of azide and other (pseudo)halide radicals that could be employed to initiate 

polymerization and ii) to examine systematically the scope and limitations of (pseudo)halide 

radical-initiated polymerizations of various monomers. 

 

2.2. Results and discussion 

2.2.1. Polymerizations 

The reactions of both TMSX and KX (X = (pseudo)halide) with either 

(diacetoxyiodo)benzene or PhIO are known to yield compounds of the type PhIX2, which, 

depending on the nature of the group X, may be very unstable and decompose rapidly with the 

formation of (pseudo)halide radicals X•. These radicals, especially when present at high 

concentration, may couple to the corresponding (pseudo)halogen X2, which may participate in 

further “side” reactions (for instance, when X = N3, nitrogen is released, and when X = SCN, the 

initially produced dithiocyangoen (SCN)2 undergoes oligomerization or polymerization with the 

formation of colored products10). However, in the presence of large amounts of unsaturated 

compounds (monomers), the radicals X• may also initiate polymerization. The initiation step (with 

a rate coefficient ki) in these cases, yields a monomeric radical (i.e., with a degree of 

polymerization DP = 1), which can react further with the monomer and propagate. Eventually, the 
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polymeric radicals, each containing an X group at the α-chain end, terminate by coupling (ktc) or 

disproportionation (ktd), thus affording “dead” polymer chains with two or one X end-groups, 

respectively. In addition, the propagating radicals may terminate with the radicals X• (kt,X) or 

potentially abstract an X group from ArIX2 (i.e., take part in transfer reactions (ktr)), both of which 

produce polymer chains with X groups at the ω-chain ends. Transfer of chlorine atoms from 

(dichloroiodo)arenes to various carbon-centered radicals is documented in the literature and some 

rate constants have been determined.11 It could therefore be reasonably assumed that similar 

transfer reactions are likely to take place from the hypervalent iodine(III)-based initiator PhIX2 

generated via the reaction of iodosylbenzene with (pseudo)halides and the propagating polymeric 

radicals. All mentioned reactions and the corresponding rate coefficients are presented in Scheme 

2-2. 
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Scheme 2-2. Polymerization of vinyl monomers initiated by the iodosylbenzene-pseudohalide 

system and formation of pseudohalide-capped polymers.6 

 



28 

 

 In addition to serving as radical precursors,12, 13 hypervalent iodine(III) compounds can 

generate a number of cationic species, and in order to ensure that the polymerizations reported in 

this study were indeed radical (and not cationic), three of the monomers employed (MMA, VAc, 

and MA) were selected for their inability to undergo cationic polymerization. Several different 

PhIO-(pseudo)halide-based initiators were studied, all at 30 °C, including TMSN3 and KN3, 

TMSNCO and KOCN, and KBr (in all cases the molar ratio of PhIO and (pseudo)halide was 1:2), 

in two solvents of rather different polarity – DMAc and PhCl. The trimethylsilyl pseudohalides 

were soluble in the reaction mixtures and upon their addition to the mixtures of monomer, solvent, 

and PhIO, homogeneous solutions were formed within a short time period. The potassium 

(pseudo)halides have limited solubility in DMAc (especially in the presence of the weakly polar 

monomers), and even lower solubility in the rather nonpolar PhCl. All reaction mixtures, in which 

potassium salts were used as components of the initiating system, remained heterogeneous 

throughout the polymerization. All polymerization data is summarized in Table 2-2. 

 

Table 2-1. Polymerization of Sty, MMA, VAc, and MA initiated by various PhIO-pseudohalide 

systems at 30 °C. 

# Monomer Pseudohalide [M]0/[in]0 
a) Solvent Conversion 

[%] 

(time [min]) 

Mn,app [g mol-1]; 

Ð b) 

1 Sty TMSN3 100 DMAc 12 (30) 8,730; 2.21 

2   100 PhCl 10 (30) 2,230; 2.17 

3  TMSNCO 100 DMAc 10 (600) 4,730; 2.01 

4 MMA TMSN3 25 DMAc 53 (1,200) 2,120; 5.44 

5   100 DMAc 20 (30) 6,500; 4.89 

6   100 PhCl 21 (180) 5,125; 5.32 

7   500 DMAc 12 (120) 4,520; 3.20 

8  KN3 100 DMAc 60 (1,740) 149,300; 2.32 

9   500 DMAc 82 (3,000) 98,800; 3.59 

10  TMSNCO 25 DMAc 77 (1,200) 24,440; 3.28 
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11   100 DMAc 55 (900) 18,980; 2.70 

12   100 PhCl 63 (1,440) 35,900; 2.21 

13   500 DMAc 16 (600) 27,400; 2.11 

14  KCNO 100 DMAc 78 (1,740) 87,500; 2.47 

15   500 DMAc 86 (2,400) 122,800; 2.60 

16  KBr 100 DMAc 70 (2,820) 31,630; 2.20 

17 VAc TMSN3 100 DMAc 31 (30) 4,860; 1.90 

18   100 PhCl 32 (30) 6,360; 1.76 

19  TMSNCO 100 DMAc 30 (600) 5,940; 2.16 

20 MA TMSN3 25 DMAc 81 (30) 3,840; 3.30 

21   100 DMAc 72 (30) 17,050; 1.91 

22   100 PhCl 91 (30) 30,760; 1.69 

23   500 DMAc 61 (30) 3,300; 3.27 

24  KN3 100 DMAc 75 (180) 67,340; 2.04 

25   500 DMAc 35 (120) 210,070; 2.11 

26  TMSNCO 25 DMAc 88 (30) 15,770; 2.20 

27   100 DMAc 92 (600) 33,860; 3.12 

28   100 PhCl 94 (480) 142,000; 1.91 

29   500 DMAc 36 (180) 93,600; 1.96 

30  KCNO 100 DMAc 70 (180) 75,360; 2.06 

31   500 DMAc 67 (300) 172,500; 2.32 

32  KBr 100 DMAc 25 (300) 29,200; 2.22 

a) Molar/concentration ratio of monomer to initiator, where the initiator consisted of PhIO-

pseudohalide (1:2 (n/n)). b) Apparent number-average molecular weight and molecular weights 

distribution dispersities determined by SEC calibrated with linear polySty standards. 

 

The polymerizations of MMA, in which PhIO-KX-based initiators were employed, were 

slower but reached higher monomer conversions and higher polymer molecular weights were 

attained compared to those, in which PhIO-TMSX-based initiators were used (Table 2-2). This is 

clearly seen by examining entries 5 and 8 (1 mol % of azide-based initiator vs. MMA), 7 and 9 

(0.2 mol % of azide-based initiator vs. MMA), 11 and 14 (1 mol % of (iso)cyanate-based initiator 

vs. MMA), or 13 and 15 (0.2 mol % of (iso)cyanate-based initiator vs. MMA). Similar trends were 

observed in the polymerizations of the more rapidly polymerizing monomer, MA, especially with 

regards to reaction rates and molecular weights of the polymers, as can be ascertained by inspecting 
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entries 21 and 24 (1 mol % of azide-based initiator vs. MA), 23 and 25 (0.2 mol % of azide-based 

initiator vs. MA), 27 and 30 (1 mol % of (iso)cyanate-based initiator vs. MA), or 29 and 31 (0.2 

mol % of (iso)cyanate-based initiator vs. MA). These results can be explained with the lower 

solubility of potassium pseudohalides compared to the corresponding TMSX compounds, which 

leads to slower but more “uniform” and continuous generation of the actual initiator, PhIX2 (vide 

infra for further discussion). The nature of the solvent did not affect the polymerization rates and 

the monomer conversions (compare, for instance, entries 1 and 2 (Sty), 5 and 6 (MMA), 17 and 

18 (VAc), or 21 and 22 (MA) for the PhIO-TMSN3-based initiating systems, or 11 and 12 (MMA), 

or 27 and 28 (MA) for the PhIO-TMSNCO-based initiator), as expected for radical mechanism of 

polymerization. The solvent had a somewhat more pronounced impact on the molecular weights, 

particularly in the polymerizations of MA, where the reactions conducted in DMAc yielded 

polymers with lower molecular weights than those in PhCl (compare entries 21 and 22 or 27 and 

28, in Table 2-2). This can be explained by the more pronounced transfer reactions with the former 

solvent. Although the transfer coefficients of polyacrylate radicals to DMAc and PhCl are not 

available in the literature, it is known14 that for polystyrene radicals the transfer to DMAc (transfer 

coefficient CDMAc = ktr,DMAc/kp = 4.610-4 at 60 °C) is more efficient than transfer to PhCl (CPhCl = 

ktr,PhCl/kp = 0.133-1.510-4 at 60 °C). 

Detailed polymerization kinetics data of all four studied monomers using the PhIO-TMSN3 

initiating system in DMAc are presented in Figure 2-2(a). With the notable exception of the most 

rapidly polymerizing monomer, MA, all polymerizations stopped at relatively low monomer 

conversions. The polymer molecular weights (Figure 2-2(b)), again, with the exception of that of 

polyMA (Mn,app = 17,050 g mol-1) were relatively low (< 9,000 g mol-1). 
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Figure 2-2. Kinetics (a) and evolution of molecular weights and molecular weight distribution 

dispersities (b) for the polymerization of Sty, MMA, VAc, and MA initiated by PhIO-TMSN3 (1:2 

(n/n); 1 mol % vs. monomer) at 30 °C in DMAc. 

 

 A comparison between five PhIO-pseudohalide initiating systems for the polymerization 

of MMA is presented in Figure 2-3. There was a very pronounced difference between the kinetics 

of the reaction in the presence of PhIO-TMSN3 and PhIO-KN3, the former being faster but stopping 

at lower conversion. With the (iso)cyanate-based initiators that difference was still observed, 

although it was less significant. The molecular weights of the polymers prepared with the PhIO-

TMSX initiator were dramatically lower than those of polymers synthesized using the 

corresponding PhIO-KX systems, most likely due to efficient termination and/or transfer to the 

initiator (Scheme 2-2) when PhIX2 was present at large concentrations (in the homogeneous 

mixtures). Interestingly, the PhIO-KBr-based initiator also afforded polymers (as opposed to 

vicinal dibromo-compounds) with reasonably high molecular weights using either MMA (Table 

2-2, entry 16) or MA (entry 32) as the monomer. These reactions in all likelihood afforded 

polymers with one or two alkyl bromide end groups, but due to the fact that many other approaches 
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are known for the synthesis of Br-capped macromolecules, for instance by atom transfer radical 

polymerization15 or by transfer to CBr4, these materials were not analyzed or studied further. 
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Figure 2-3. Kinetics (a) and evolution of molecular weights and molecular weight distribution 

dispersities (b) for the polymerization of MMA initiated by various PhIO-pseudohalide 

combinations (1:2 (n/n); 1 mol % vs. monomer) at 30 °C in DMAc. 

 

In summary, in many of the studied polymerizations, particularly those of monomers with 

relatively low propagation rate coefficients, such as Sty and MMA, and those that were initiated 

by particularly unstable with respect to homolysis of the hypervalent I-X bonds (i.e., rapidly 

dissociating) initiators, such as the PhIO-TMSN3 system, the limiting monomer conversions were 

relatively low. For example, when the ratio of monomer to PhIO-TMSN3 initiator was 100, the 

conversions of Sty did not exceed 10-12 % before the polymerizations stopped (Table 2-2, entries 

1 and 2) and these of MMA were of the order of 20 % (entries 5 and 6). Polymerization systems 

involving slowly polymerizing monomers and rapidly decomposing radical initiators are often 

named “dead-end polymerizations” and their kinetics was described in the late 1950s.16, 17 The 

limiting conversion, i.e., the maximal conversion observed at “infinite” time (convmax) depends 
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upon the ratio of the propagation and the square root of the termination rate coefficients (both 

monomer-dependent) as well as other reaction parameters, such as the rate coefficient of 

dissociation (kd), the initial concentration of the initiator ([in]0), and the initiation efficiency (f): 

 p 0
max

dt

f ink
conv 1 exp 2

kk

 
 = − −
 
 

 

The maximal conversion for a series of monomers polymerized under identical conditions 

(temperature, solvent, as well as nature and concentration of radical initiator) will increase with 

the ratio kp/(kt)
1/2. The rate coefficients and the ratio in question (as well as the relative values of 

that ratio) for all studied monomers are presented in Table 2-3. Based on the data in that table, it 

is to be expected that the limiting conversion will increase in the order Sty < MMA < VAc < MA, 

which was indeed observed (Table 2-2 and Figure 2-2(a)). 

 

Table 2-2. Propagation (kp) and termination (kt) rate coefficients for the radical polymerization of 

the monomers studied in this work. 

Monomer kp (30 °C) [M-1·s-1] a) kt
1,1 (25 °C) [M-1·s-1] b) kp/(kt)

1/2 kp/(kt)
1/2

rel 

Sty 107 (1.1 – 1.2)108 9.810-3 1 

MMA 369 (4.2 – 6.6)107 ~0.05 5 

VAc 3,985 >5108 (80 °C) 0.18 18 

MA 14,800 1109 0.46 47 
a) Calculated using the Arrhenius equation with pre-exponential factors and activation energies 

provided in ref. 18 
b) Rate coefficient for termination between monomeric radicals.19 

 

 The molecular weights of the polymers are related to the kinetic chain length, which also 

depends on the ratio of the propagation and termination rate coefficients.20 However, the data in 
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Table 2-3 is not suitable for prediction of molecular weights, because reactivity of the propagating 

radicals in transfer reaction should be taken into account. For example, the polymers derived from 

VAc (Table 2-2, entries 17-19) had low molecular weights, due to the very high reactivity of the 

corresponding polymeric radical in transfer reactions to initiator, monomer and/or polymer, and 

solvent. 

 

2.2.2. Composition of the polymers 

In order to prove the presence of pseudohalide chain end(s) (and possibly – pendant) groups 

in some of the polymers described in the previous section, it was essential to prepare low molecular 

weight materials. The PhIO-TMSN3 initiating system was studied in detail because it yielded 

polymers with azide groups, which are easy to detect, even at low amount, by IR spectroscopy, 

due to the intense absorbance at ca. 2,100 cm-1 of that functionality, corresponding to the azide 

asymmetric stretching vibration.21, 22 In addition, each azide group contains three nitrogen atoms, 

which makes it easy to detect by elemental analysis. Four polymers were synthesized derived from 

each of the studied monomers using the PhIO-TMSN3-based initiator. For the preparation of 

azidated polymers derived from Sty and VAc (polySty(N3)x and polyVAc(N3)x, respectively), 1 

mol % of initiator relative to monomer was used in DMAc, for, as seen in Table 2-2 (entries 1 and 

17), low molecular weight polymers were readily obtained under these conditions. To prepare 

azide-containing polymers derived from MMA (polyMMA(N3)x) and especially MA 

(polyMA(N3)x) that were of as low as possible molecular weight and therefore suitable for spectral 

and elemental analyses, larger amount of initiator was used, namely 4 mol % vs. monomers (see 

entries 4 and 20 in Table 2-2). After thorough purification of the polymers by dialysis against 
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acetone (to ensure that all N-containing low molecular weight (non-oligomeric and non-polymeric) 

impurities, derived from PhIO-TMSN3, or residual reaction solvent (DMAc) were removed), 

followed by drying, films were cast onto KBr plates, which were analyzed by IR spectroscopy. In 

addition, the elemental composition of the polymers was determined. The results are presented in 

Figure 2-4. All polymers contained nitrogen, which is consistent with the presence of azide at the 

chain end(s) and possibly the backbone. The amount of nitrogen was particularly large in the 

polySty(N3)x sample, which suggested that in that case, the azide-capped polymer was possibly 

further azidated by the azide radicals that were still being generated in the system. Indeed, it has 

been shown23 that the similar system (diacetoxyiodo)benzene-TMSN3 is useful for the direct 

azidation of polySty, and, depending on the reaction conditions, as much as 1 out of 11 monomer 

repeat units per chain could be azidated. 

 

Figure 2-4. IR spectra (films cast on KBr plates) and nitrogen contents of polymers prepared using 

the PhIO-TMSN3 initiating system (1 mol % (Sty and VAc) or 4 mol % (MMA and MA) vs. 

monomer) in DMAc. 
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 Cyanates and isocyanates are also relatively easy to detect by IR spectroscopy. Both groups 

absorb IR light in the 2,280-2,240 cm-1 region.21, 24 The spectra of polymers prepared from Sty and 

VAc using the PhIO-TMSNCO initiating system are shown in Figure 2-5. The (iso)cyanate 

absorbance is clearly seen, especially in the case of polySty(NCO)x, suggesting that the mentioned 

hypervlent iodine initiator can be successfully employed for the direct synthesis of (iso)cyanate-

functionalized polymers, which could find applications in the synthesis of polyureas or 

polyurethanes. 

 

 

Figure 2-5. IR spectra (films cast on KBr plates) of polymers prepared using the PhIO-TMSNCO 

initiating system (1 mol % vs. monomer) in PhCl. 
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2.2.3. Modifications (coupling reactions) of (pseudo)halide-containing polymers 

 The presence of azide groups in the polymers prepared using the PhIO-TMSN3 initiating 

system makes them suitable substrates for various types of modifications, due to the diverse 

reactions, in which azides can participate.25-32 Of particular interest is the use of azide-containing 

polymers as building blocks of complex functional macromolecules, e.g., by azide-alkyne click 

chemistry.33-40 The azide-containing polymers (Table 2-4, entries 1-4) derived from Sty, MMA, 

VAc, and MA were reacted with a dialkyne, Pg2O (using an equimolar ratio of azide groups 

(determined by elemental analysis) and acetylene groups), in the presence of CuBr as the catalyst 

of the 1,3-cycloaddition. In all cases, the click coupling reactions led to the formation of polymers 

with higher molecular weight than the starting materials, indicating that the majority of 

macromolecules contained at least one azide functionality, as expected from the reaction 

mechanism represented in Scheme 2-2. 

 

Table 2-3. Molecular Weights and Molecular Weight Distribution Dispersities of Pseudohalide-

Containing Polymers Prepared by Using the PhIO-TMSN3 or PhIO-TMSNCO Initiating Systems 

before and after Modification with Difunctional Coupling Agentsa 

# Polymer Elemental 

analysis 

(wt % N) 

Mn,app  

[g mol-1]; Ð 

Coupling reagent Mn,app  

[g mol-1]; Ð 

(after 

coupling) 

1 polySty(N3)x 1.12 4200; 2.04 Pg2O (+CuBr), DMF, r.t. 13000; 4.87 

2 polyMMA(N3)x 0.74 8800; 4.89 Pg2O (+ CuBr), DMF, r.t. 13600; 3.60 

3 polyVAc(N3)x 0.83 8100; 2.77 Pg2O (+ CuBr), DMF, r.t. 19 900; 2.92 

4 polyMA(N3)x 0.86 9200; 4.53 Pg2O (+ CuBr, DMF, r.t.) 12 500; 3.97 

5 polySty(NCO)x 3.12 5800; 2.58 H2N-(CH2)3-NH2, THF, r.t. 14 800; 14.96 

6 polyVAc(NCO)x 2.26 4200; 2.10 H2N-(CH2)3-NH2, THF, r.t. 13 600; 13.21 
aSamples were collected and analyzed after 15 h. 
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The SEC traces of two of the azide-containing polymers, polySty(N3)x (entry 1 in Table 

2-4), and polyVAc(N3)x (entry 3 in Table 2-4). along with the evolution of these traces during the 

Cu(I)-catalyzed reaction of the polymers with Pg2O in DMF over a 15-h period are shown in 

Figure 2-6 (a). Upon click coupling, the entire molecular weight distribution shifted toward higher 

apparent molecular weights (shorter elution times or smaller elution volumes), although the 

“tailing” toward the low molecular weight region on the SEC traces of the coupling products 

suggested that there were some unreacted chains of the original polymer. In the case of click 

coupling of polySty(N3)x, at longer reaction times (ca. 21 h), the reaction mixture became very 

viscous and it was difficult to withdraw samples from it; after dilution in the SEC solvent, THF, 

the solution could not be passed through a 0.2 μm PTFE syringe filter without applying high force, 

indicating that by that point, cross-linking reactions had commenced. This suggests that at least 

some of the chains contained more than two azide groups, as expected from the reported7 reaction 

between polySty and azide radicals, which yields backbone- and pendant-group-azidated polymer. 

The SEC results serve as another proof (in addition to elemental analysis, IR, and NMR spectra) 

of the existence of azide groups in the polymers. 

 Cyanates41 and isocyanates42, 43 are also reactive functionalities, with numerous 

applications in organic syntheses and materials science. One of the most important (and large-

volume) applications is the synthesis of polyurethanes and polyureas. The polymers synthesized 

by using the PhIO-TMSNCO initiating system contained (as seen in the IR spectra in Figure 2-5) 

(iso)cyanate groups and were therefore suitable candidates for reactions with diols or diamines. If 

more than two (iso)cyanate groups were present on average per chain, the reactions were expected 

to yield first highly branched and eventually network polymers. If the number of functionalities 
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per chain were smaller, than simple coupling (i.e., increase in the apparent molecular weight) 

would be observed. The results presented in Table 2-4 (entries 5 and 6 for samples collected after 

15-h stirring at r.t. in THF) clearly confirm that the (iso)cyanate groups were attached to the 

polymer chains. Samples were collected at 5 and 15 h, and the changes in the shapes of the 

molecular weight distributions, compared to the precursors, are shown in Figure 2-7. The very 

significant broadening of the molecular weight distributions was the result of some unreacted 

polymer (possibly due to the fact that some of the (iso)cyanate groups were hydrolyzed, as 

indicated by the IR spectra shown in Figure 2-5). However, although a fraction of the (iso)cyanate 

groups in the polymers were “lost”, which altered the ratio between (iso)cyanate and amine groups 

(originally set to the ideal molar ratio for reaching high molecular weights of 1:1), branching and 

eventually gelation still occurred (in ca. 35 h) with the polySty(NCO)x. 
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Figure 2-6. Evolution of SEC traces of polySty(N3)x (a) and polyVAc(N3)x (b) prepared by using 

the PhIO-TMSN3 initiating system (1 mol % vs monomer in PhCl) during CuBr-catalyzed click 

coupling reactions with Pg2O in DMF at r.t. The last two numbers in each of the rows in the legend 

indicate the apparent number-average molecular weight and the molecular weight distribution 

dispersity, respectively. 
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Figure 2-7. Evolution of SEC traces of polySty(NCO)x (a) and polyVAc(NCO)x (b) prepared by 

using the PhIO-TMSNCO initiating system (1 mol % vs monomer in PhCl) during coupling 

reactions with 1,3-propylenediamine in THF at r.t. The last two numbers in each of the rows in the 

legend indicate the apparent number-average molecular weight and the molecular weight 

distribution dispersity, respectively. 

 

2.3. Experimental 

2.3.1. Materials 

Methyl methacrylate (MMA, 99%, Aldrich), methyl acrylate (MA, 99%, Aldrich), styrene 

(Sty, 99%, Acros), and vinyl acetate (VAc, 99%, Acros) were purified before the experiments by 

passing the neat monomer through a column filled with basic alumina, which absorbs the phenolic 

polymerization inhibitor present in commercial samples. Iodosylbenzene (PhIO) was synthesized 

using a procedure described in the literature,44 which is based on the hydrolysis of 

(diacetoxyiodo)benzene (98%, Acros) with 3M aqueous NaOH (pellets, 97+%, Sigma-Aldrich, 

were employed to prepare the solution), followed by washing with chloroform (99% extra pure, 

Acros). Trimethylsilyl azide (TMSN3, 94%, Alfa Aesar), trimethylsilyl isocyanate (TMSNCO, 

85%, Sigma-Aldrich), trimethylsilyl bromide (TMSBr, 97%, Sigma-Aldrich), KN3 (99.9%, 
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Sigma-Aldrich), KOCN (96%, Sigma-Aldrich), KBr (99%, Acros), propargyl ether (Pg2O, 98%, 

Aldrich), CuBr (99.99%, Aldrich), 1,3-diaminopropane (99%, Acros), and the solvents, including 

anhydrous N,N-dimethylacetamide (DMAc, 99.5%, Acros), anhydrous ether (98%, EMD 

Millipore), petroleum ether (technical grade, EMD Millipore), N,N-dimethylformamide (DMF, 

98%, EMD millipore), and tetrahydrofuran (THF, 99%, Fisher) were used as received. 

Chlorobenzene (PhCl, 99%, Acros ) was dried over anhydrous sodium sulfate prior to use. The 

deuterated solvent, CDCl3, (99.8% D, Cambridge Isotope Laboratories) contained a small amount 

of tetramethylsilane (TMS) as a chemical shift reference. 

 

2.3.2. Analyses 

Monomer conversion was determined by NMR spectroscopy using the Bruker Avance 

DRX (400 MHz) spectrometer. Samples were withdrawn periodically during polymerization using 

a nitrogen-purged syringe equipped with a Teflon-coated needle and diluted CDCl3 to monitor 

monomer conversion. Molecular weights (number average (Mn) and weight average (Mw)) and 

molecular weight distribution dispersities (Ð = Mw/Mn) were determined by size exclusion 

chromatography (SEC) on a Tosoh EcoSEC system equipped with a series of 4 columns (TSK gel 

guard Super HZ-L, Super HZM-M, Super HZM-N, and Super HZ2000) and using THF as the 

eluent (30 °C) and a refractive index detector. The SEC was calibrated using a series of linear 

polySty standards. Prior to the chromatographic analyses, the samples were diluted with THF and 

filtered through Acrodisc 0.2 μm PTFE syringe filters. Elemental analyses were carried out at 

Midwest Microlab, IN. Infrared (IR) spectra were collected on a Thermo Scientific Nicolet iS10 

FT-IR Spectrometer. The samples were prepared by dissolving 20 mg of polymer in 1 mL of 
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chloroform, followed by casting a film on a KBr plate by slow evaporation of the solvent (achieved 

by covering the salt plate with the polymer solution with a beaker). 

 

2.3.3. Synthetic procedures 

Synthesis of polymers using the PhIO-TMSX (X = N3 or NCO) initiating system 

In a 10-mL dry reaction tube, a magnetic stir bar was added followed by the monomer (1 mL, 

corresponding to 11.0 mmol (in the case of MA), 9.4 mmol (MMA), 8.7 mmol (Sty), or 10.9 mmol 

(VAc)) and PhIO (1 mol % vs. monomer, i.e., 0.11 mmol (24.2 mg) in the polymerizations of MA, 

0.094 mmol (20.7 mg) (MMA), 0.087 mmol (19.4 mg) (Sty), or 0.109 mmol (24.0 mg) (VAc)). 

The tube was capped with a pre-washed with acetone rubber septum, secured with electric tape, 

and was then wrapped with aluminum foil to prevent the exposure of the contents to light. The dry 

solvent (DMAc or PhCl; 1 mL) was then injected and the tube was placed in an ice-water cooling 

bath in order to minimize evaporation of the reaction components during the following purging 

with nitrogen. The reaction mixture was deoxygenated by purging with nitrogen, which was 

introduced using a Teflon-coated needle, for 10 min. The tube was immersed in a water bath at 30 

°C. After this, TMSX (X = N3 or NCO; 2 eq vs. PhIO) was added using a micro syringe. The 

heterogeneous mixture rapidly became homogenous. At timed intervals, samples (ca. 0.08 mL) 

were withdrawn from the reaction mixture with a nitrogen-purged syringe, equipped with a Teflon-

coated needle. Part of the sample was diluted with CDCl3 (for NMR analysis) and part – with THF 

(for SEC analysis). Similar experiments were carried out using different amounts of PhIO (0.2-4 

mol % vs. monomer) and TMSX (2 eq vs. PhIO) in DMAc. The polymers thus prepared contained 

one or more (x) (pseudo)halide groups X and are designated polyStyXx, polyMMAXx, 
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polyVAcXx, and polyMAXx. PolySty(N3)x and polyVAc(N3)x were purified by re-precipitation of 

solutions of the polymer in methylene chloride into large excess of methanol-water mixture (4:1 

(v/v)), which was repeated three times, followed by drying. PolyMMA(N3)x and polyMA(N3)x 

were purified by dialysis against acetone using a membrane with molecular weight cut-off of 1,000 

Da (Spectrum Labs). The solvent was changed every 10-12 hours and this was repeated six times, 

and the polymer was obtained by evaporation of the solvent. The corresponding (iso)cyanate-

containing polymers were precipitated from methylene chloride solutions in hexane. 

 

Synthesis of polymers using the PhIO-KX (X = Br, N3, or OCN) initiating system 

In a 10-mL dry reaction tube, equipped with a magnetic stir bar, the monomer (1 mL, 

corresponding to 11.0 mmol in the case of MA or 9.36 mmol in the case of MMA), PhIO (1 mol 

% vs. monomer), and potassium (pseudo)halide (bromide, azide, or isocyanate; 2 eq vs. PhIO) 

were mixed. The tube was sealed with an acetone-washed and dried rubber septum, which was 

secured with electric tape, and wrapped with aluminum foil. Anhydrous DMAc (1.0 mL) was then 

added through the septum and the mixture (cooled in an ice-water bath) was deoxygenated by 

purging with nitrogen (introduced with a Teflon-coated needle) for 10 min. Then, the tube was 

transferred to a water bath at 30 °C. Samples (ca. 0.08 mL) were withdrawn periodically from the 

mixture with a nitrogen-purged syringe equipped with a Teflon-coated needle for analysis, as 

described above. Similar experiments were carried out at a lower ratio of initiator to monomer (0.2 

mol % of PhIO and 2 eq of pseudohalide salt vs. PhIO). The purifications of the final products 

were carried out as described above. 
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Click reactions of the azide-containing polymers with Pg2O 

The nitrogen contents in the polymers prepared using the PhIO-TMSN3 initiating system 

was first determined in order to know the amount of azide groups present in a given mass of 

polymer. In a 10-mL reaction tube containing a magnetic stir bar, the amount of azide-containing 

polymer containing 600 μmol of N, i.e., 200 μmol of azide (0.22 g (in the case of polySty(N3)x), 

0.98 g (polyMA(N3)x), 1.14 g (polyMMA(N3)x), or 1.04 g (polyVAc(N3)x)) and CuBr (1.4 mg, 10 

μmol, 5 mol % vs. azide groups), were added and the tube was capped with a pre-washed with 

acetone rubber septum, which was then secured with electric tape. The tube was evacuated and 

back-filled with nitrogen five times. Deoxygenated DMF (2.0 mL) was injected with a nitrogen-

purged syringe, and the mixture was stirred until solution was formed. Then, deoxygenated Pg2O 

(10.3 μL, 100 μmol, corresponding to 200 μmol of acetylene groups) was added using a nitrogen-

purged micro syringe, and the solution turned yellow. The reaction mixture was stirred for 15 h at 

r.t., after which a small sample was taken, diluted with THF and analyzed by SEC. 

 

Reactions of (iso)cyanate-containing polymers with 1,3-propylene diamine 

In a 10-mL reaction tube containing a magnetic stir bar, polymer prepared using the PhIO-

TMSNCO initiating system (0.50 g, corresponding to 54.95 μmol of polySty(NCO)x, or 50 μmmol 

of polyVAc(NCO)x) was added followed by DMF (1 mL). The reaction mixture was stirred until 

the polymer dissolved and then 1,3-propylenediamine (3.67 μL, 57.95 μmol in the case of 

polySty(NCO)x or 3.34 μL, 50 μmmol, in the case of polyVAc(NCO)x) was added. The reaction 

tubes were capped, and the solutions were stirred for 15 h at r.t., after which samples were diluted 

in THF and analyzed by SEC. 
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2.4. Conclusions 

The combination of iodosylbenzene with various (pseudo)halides, including trimethylsilyl 

azide or cyanate as well as potassium azide, isocyanate, or bromide, affords unstable hypervalent 

iodine(III) compounds, most likely, PhIX2 (X = (pseudo)halide), which rapidly decompose in situ 

to the corresponding (pseudo)halide radicals, even at moderate temperatures (30 °C). These 

radicals can initiate the polymerization of monomers such as styrene, acrylates and methacrylates, 

as well as vinyl esters, and (pseudo)halide-capped functional polymers are produced. In the cases 

of monomers with relatively low propagation rate coefficients (e.g., styrene and methyl 

methacrylate) and especially when the radical source (initiator) PhIX2 is generated rapidly at 

comparatively high concentrations and is particularly unstable (e.g., X = azide), limiting monomer 

conversions were observed, in accordance with “dead-end” polymerization mechanism. The 

presence of (pseudo)halide groups in the prepared polymers (in some cases, plausibly not only at 

the chain ends, but also as pendant backbone functionalities) is proved by elemental analysis, IR 

spectroscopy, and by conducting coupling reactions with propargyl ether (in the case of azide-

containing polymers) or 1,3-propylenediamine (in the case of (iso)cyanate-containing polymers). 

The PhIO-(pseudo)halide-based initiators reported in this work provide a straightforward one-step 

methodology for the direct (i.e., not requiring postpolymerization modifications) synthesis of 

functionalized macromolecules. 
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CHAPTER 3.   

SYNTHESIS OF LINEAR POLYMMA USING 1-CHLORO-1,2-BENZIODOXOL-3(1H)-

ONE 

3.1. Introduction 

3.1.1. Heterocyclic HV iodine(III) compounds 

 On the basis of the available literature data, it can be stated that iodine is not capable of 

forming conjugated cyclic systems with aromatic stabilization because of the large atom size 

(hence poor orbital overlap) and the semi-ionic nature of the hypervalent I−N, and I−O bonds.1 

Moreover, the high level computational studies using adaptive natural density partitioning bond 

modeling technique reveal that the double bond between iodine atom and other elements does not 

exist.2 Despite the lack of aromatic conjugation, five-membered heterocyclic iodine compounds 

have considerably higher thermal stability as compared to the noncyclic analogues due to the 

bridging of the equatorial HV bonds and the apical positions, covalent bonds, at HV iodine(III) 

center by a five-membered ring,3 and also due to the better overlapping of the nonbonding electrons 

on HV iodine(III) atom with the π-orbitals of the benzene ring.4 High thermal stability of five-

membered I-O heterocycles (benziodoxoles) made possible the preparation of HV iodine(III) 

derivatives with exocyclic I−F,5 I−Br,6, 7 I−N3,
8 I−CN,9 and I−CF3 bonds,10 the linear analogues of 
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which are unstable. These substituted benziodoxoles have found applications as “atom-transfer” 

reagents for organic synthesis.11 The most important heterocyclic λ3-iodanes are represented by 

five-membered heterocycles, although several examples of four-membered and six-membered 

heterocycles with iodine(III) atom in the ring have also been reported. The five membered 

iodine(III) heterocycles are represented by various cyclic compounds12, 13 incorporating HV 

iodine(III) and oxygen, nitrogen, or some other elements in the ring. Particularly important are the 

five-membered heterocyclic iodine compounds12 with an oxygen atom in the ring, the so-called 

“benziodoxoles”. 

 

3.1.2. Structures and derivatives of benziodoxole (BIO) 

X-ray single crystal structures have been reported for various benziodoxole derivatives, 

benziodazoles,5, 14-16 benziodoxaboroles,17 benziodoxathioles,18, 19 and cyclic phosphonate.20 In 

general, benziodoxoles have a planar structure with a highly distorted T-shaped geometry around 

iodine. The I−O bond length in the cycle of benziodoxolones (1, 2X = O) can vary from 2.11 Å in 

a benzoate derivative (1, Y = 3-ClC6H4CO2)
21 to 2.48 Å in arylbenziodoxolone (1, Y = Ph),22 

which is indicative of a significant increase in the ionic nature of this bond. In the latter case, the 

bond length is consistent with iodonium salt structure. The observed bond angle C−I−O in 

benziodoxoles is about 80°, which is different from the 90° angle typical of noncyclic hypervalent 

iodine compounds.  
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Scheme 3-1. Specific examples of hypervalent iodine(III) five-membered heterocycles. 

 

Cyanobenziodoxoles (1, 2X = O and Y = CN) are thermally stable, white, microcrystalline 

solids; their structures of these compounds were confirmed by X-ray diffractometry. 

Cyanobenziodoxoles are useful cyano transfer reagents.9, 23, 24 Waser and co-workers have reported 

the synthesis of thiocyanates by treatment of aliphatic and aromatic thiols with CNBIO at room 

temperature.23 The cyclic N3BIO (1, 2X = O and Y = N3), Zhdankin’s reagent,25  are thermally 

stable, microcrystalline solids, which can be stored indefinitely long in a refrigerator. Zhdankin’s 

reagent can be readily prepared by the reaction of appropriate benziodoxoles with trimethylsilyl 

azide or sodium azide in good yields, and the corresponding structure was determined by single-

crystal X-ray diffraction.8, 26 Zhdankin’s reagent are extensively used as efficient electrophilic or 

radical azidating reagents toward various organic substrates.27 AcBIO28 and 

methoxybenziodoxole29 are stable compounds, which have been used as reagents in oxidation 

reactions.  
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Togo and co-workers reported the oxidation of alcohols to aldehydes or ketones using 

various acetoxybenziodoxole derivatives (Scheme 3-1).28 Togni and co-workers have reported the 

synthesis of stable electrophilic trifluoromethylating reagents, trifluoromethylbenziodoxoles, by 

treatment of the corresponding methoxybenziodoxole or acetoxybenziodoxole with 

trimethyl(trifluoromethyl)silane.10, 30 Solid-state structures of trifluoromethylbenziodoxoles were 

characterized by X-ray crystallography, which showed the distorted T-shaped geometry around 

iodine, typical for the hypervalent λ3-iodanes.31, 32 The chemistry of trifluoromethylbenziodoxoles 

has been summarized in a recent review by Togni and co-workers.10 

Another very interesting heterocyclic HV iodine(III) compound, 1-chloro-1,2-

benziodoxol-3-one, (1, 2X = O and Y = Cl)  discovered in the middle of 20th century,33 found to 

be very stable towards thermal and hydrolysis conditions. It is a well reputed oxidant34, 35 and 

chlorine transfer reagent.36, 37 Unfortunately, very few articles are available that describe its utility 

as oxidant and Cl-transfer agents compared to other cyclic HV iodine(III) reagents. 

In this chapter, a series of heterocyclic HV iodine(III) compounds, including AcBIO, 

AzBIO and chloro benziodoxolone (ClBIO) were synthesized and employed as initiators in the 

polymerization of MMA.  
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The HV iodine(III) compounds shown in Scheme 3-2 contain weak hypervalent bonds, 

such as I-O, I-N3, I-Cl, which can be cleaved homolytically upon heating or irradiation generating 

functional radicals like CH3COO2
• (or CH3

•, after decarboxylation), Cl•, and N3
•, utilized 

extensively in transformation of small organic molecules or employed to initiate radical 

polymerization.38-41 The resulting polymers contain functionalities such as Cl• or N3
• at the α-

terminus, which could be used to further functionalize the polymer α-chain end. at the α-chain end 

but, depending on the termination mechanism and the occurrence of transfer of (pseudo)halide 

groups from the initiator to the propagating radicals, also at the ω-chain end.  
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3.2. Results and Discussions 

3.2.1. Synthesis and hydrolysis study of cyclic HV iodine(III) compounds 

Cyclic HV iodine(III) derivatives are known for their radical reactions18,19 and it was 

reasoned that they could be utilized to initiate the radical polymerization of vinyl monomers, such 

as MMA. These cyclic HV iodine(III) compounds are known for their stability and based on the 

literature, they can be easily synthesized and confirmed by NMR spectroscopy. The starting 

material for these cyclic HV iodine(III) is a commercially available and inexpensive compound, 

2-iodobenzoic acid (IBA), both HBIO and ClBIO were prepared by a one-step reaction with high 

yields and high purity20,21. HBIO was then utilized to prepare 1-(acetoxy)-1,2-benziodoxol-3(1H)

-one (AcBIO) and 1-(azido)-1,2-benziodoxol-3(1H)-one (AzBIO).22,23 DMSO-d6 was used as the 

NMR solvent except for ClBIO, which could oxidize DMSO rapidly to the sulfone, so CDCl3 was 

used instead.  

AzBIO, as an alternative to the unstable (diazidoiodo)benzene, PhIN3, is an excellent 

source of azide radicals and very promising to prepare azide-containing polymers.16,19,24 It was 

confirmed that AzBIO could decompose to generate azide radicals under visible light, however, 

the compound was found to be very sensitive to water, which rapidly hydrolyzed to HBIO and 

HN3. This severely affected the efficiency of initiation of polymerization and could probably 

explain the unusual phenomenon that a white precipitate always occurred in the polymerization of 

MMA when AzBIO was used as the initiator. To study the hydrolysis of AzBIO, a NMR study 

was carried out in darkness by reacting AzBIO ( 4.3×10-2 M) with deionized water (0, 5 eq. or 10 

eq.) in deuterated DMSO-d6. According to Figure 3-1(a) and 3-1(b), AzBIO was hydrolyzed very 



57 

 

quickly and afterwards an equilibrium was established between AzBIO and HBIO. The hydrolysis 

was also observed in the control, of which the deuterated solvent contained trace amount of water. 

In addition to AzBIO, another heterocyclic HV iodine(III) compound, AcBIO, was also 

reactive to water. Similarly, HBIO was formed as the product of the hydrolysis. As shown in 

Figure 3-2 (a), the hydrolysis was a little slower but more complete than that of AzBIO. An 

example is shown in Figure 9 (b), which illustrates the hydrolysis of AcBIO into HBIO. The 

hydrolysis studies of AzBIO and AcBIO were also conducted in dry MeCN-d3, and, as expected, 

both compounds were hydrolyzed rapidly. Due to the hydrolyzed product, HBIO, could not 

dissolve well in MeCN, a comparison between solvents was not given.  

Therefore, to seek a water-insensitive cyclic HV iodine(III)-derivative was important for 

polymerizations and further functionalization. Fortunately, ClBIO, which could be synthesized 

directly from IBA, proved inert to water and also effective as a radical initiator. A similar 

hydrolysis study ([ClBIO]0 = 4.4×10-2 M, [H2O]0 = 2.2 M in MeCN-d3) was carried out, and as a 

result, the chemical shifts of ClBIO did not change after 1 day in the dark. It was reported20 that 

ClBIO could participate in radical-involved chlorination reactions, thus the homolytic cleavage of 

I-Cl HV bonds provided a route of generating Cl • radicals to induce polymerization.  
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Figure 3-1. (a) NMR spectra showing the hydrolysis reaction of AzBIO ([AzBIO]0 = 4.3×10-2 M, 

and [H2O]0 = 2.1×10-1 M) and (b) hydrolysis study of AzBIO: different amounts of deionized water 

(0, 5 eq. or 10 eq.) added to ABIO in DMSO-d6 = 4.3×10-2 M in a dark NMR tube (b). 
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Figure 3-2 (a) NMR spectra showing the hydrolysis of ABIO ([ABIO]0 = 4.1×10-2 M, and [H2O]0 

= 4.1×10-1 M; the spectrum ranging from 8.7 to 7.5 ppm was enlarged for better visualization.) 

and (b) hydrolysis study of ABIO: different amounts of deionized water (0, 10 eq. or 50 eq.) added 

to ABIO in DMSO-d6 (conc. = 4.1×10-2 M) in a dark NMR tube. 
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3.3. Mechanism aspect of the polymerization of MMA using ClBIO 

After the hydrolysis study, we concluded that ClBIO is compatible in the presence of water 

and hence chosen to be the candidate as the suitable radical initiator for the vinyl monomers such 

as MMA. Heterocyclic HV iodine(III) compounds of type (2, Y = Cl, Scheme 3-1) with I-Cl 

bonds41 has been employed as potential radical initiators, where Cl• is shown to initiate 

polymerization of styrene with no significant living behavior. As illustrated in Scheme 3-3, a 

reaction mechanism, for the formation of radicals that might act as initiator or deactivator for the 

polymerization of MMA, might be assumed to involve the following key steps: (a) bond cleavage 

of the hypervalent iodine(III)-Cl bond of ClBIO generating Cl• and 9-I-2, iodanyl (iodinanyl) 

radical.42, 43 and (b) where the Cl•  could initiate the polymerization of MMA and in principal, the 

iodanyl radical could cap the chain ends since these radicals are stable enough to not generate new 

chains but due to the short lived nature of radicals it will couple with the propagating radical. The 

HV iodine(III)-based radicals and sterically hindered tertiary radicals are considered only as short- 

lived intermediates. However, under some conditions they may be present at higher concentrations 

and retardation is plausible.44 Keeping these key points in mind we can anticipate a controlled 

system during the polymerization of MMA using ClBIO as initiators.  
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Scheme 3-3. Formation of Cl• and iodanyl (9-I-2) radicals under thermal conditions (a) and (b) the 

Cl• initiating the polymerization of MMA while the iodanyl radical reversibly deactivating the 

propagating radical. 

 

3.3.1. Polymerization of MMA using ClBIO 

ClBIO has very poor solubility in common organic solvents due to the benziodoxol ring 

and but has extremely high solubility in polar solvents like DMAc and hence, DMAc was chosen 

as the initial choice of solvent for the polymerization. To begin the investigation, MMA was 

polymerized in DMAc at 70 0C using ClBIO as the radical initiator with the degree of 

polymerization at complete monomer conversion [MMA]0/[ClBIO]0 set to 500 (Figure 3-4).  
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Figure 3-3. Temperature effect on the polymerization of MMA using ClBIO atratio [MMA]0 :       

[ClBIO]0 = 500. 
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Figure 3-4. Polymerization of MMA (in DMAc, 1:1 (v/v)) using ClBIO ([MMA]0/[ClBIO]0 = 

500) at 80 0C. a) Kinetics; (b) evolution of molecular weights and dispersities; and c) evolution of 

SEC traces of the polymers with monomer conversion (shown at each curve). 

 

The monomer conversion was periodically determined by integrating the NMR signals of 

the vinyl and the solvent protons. This semilogarithmic plot is very sensitive to any change of the 

concentration of the active propagating species. A constant radical concentration is revealed by a 

straight line.  A steady radical concentration in a living system is established by balancing the rates 

of activation and deactivation and not by balancing the rates of initiation and termination as in a 

conventional radical polymerization. As shown in Figure 3-4 (a), the first-order kinetic plot was 

almost linear but with an upward curvature indicating an increase in radical concentration over 
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time, which occurs in case of slow initiation. The polymerization was well-controlled, as indicated 

by the linear increase of Mn, app with conversion [Figure 3-4 (b)]. The MWDs were rather broad 

but shifted smoothly towards higher molecular weights as the reactions proceeded [Figure 3-4 

(c)], proving that the chosen HV iodine(III) (ClBIO) compound efficiently exchanged between 

propagating and dormant chains. The MWD dispersity was inevitable phenomena occurring during 

the polymerization.  

High molecular weight functional polymers are desirable for many applications, and the 

limitation on the target degree of polymerization was explored next (Figure 3-5). At DPn,targ = 500, 

relatively high conversion of 80 % could be reached in less than 8 h, and the polymers were very 

well-defined and shifted smoothly towards higher molecular weights as the reactions proceeded. 

Reaching this conversion was not possible when DPn,targ was increased to 4000, even after 48 h, 

because of the low initiator concentration. As shown in Figure 3-5 (a), the kinetic rate gets slower 

as the initiator concentration is decreased that is at higher DPn,targ. Whereas, as the DPn,targ is 

increased from 500 to 4000 the molecular weight increases as shown in Figure 3-5 (b). The SEC 

traces, Figure 3-5 (c), again revealed that the molecular weight distribution is wider that is higher 

polydispersity index and that can be attributed to the slow deactivation of the propagating chain 

ends. Nevertheless, well-defined polymers of relatively high molecular weights could be 

synthesized under the optimized reaction conditions. 
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Figure 3-5. Polymerization of MMA (in DMAc, 1:1 (v/v)) using ClBIO (DPn,targ = 500, 1000, 

2000, and 4000) at 80 0C. a) Kinetics; (b) evolution of molecular weights and dispersities with the 

theoretical MWs ; and c) evolution of SEC traces of the polymers (DPn,targ = 4000). 

 

3.3.2. Solvent effect on the polymerization of MMA using ClBIO 

In the retrospect of the previous results, our next attempts were to polymerize MMA using 

ClBIO (DPn,targ = 500) in various solvents and examine the living behavior. To our surprise, the 

rate of polymerization was significantly faster in DMAc (Figure 3-6 (a)) than in methyl 

isobutyrate (MIB, analogue to MMA structure) and in PhCl (relatively non-polar solvent) and also 

the polymerization was well-controlled, as indicated by the linear increase of Mn, app with 

conversion in DMAc (Figure 3-6 (b)).   
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Figure 3-6. Polymerization of MMA (in DMAc, MIB, and PhCl in 1:1 (v/v)) using ClBIO (DPn,targ 

= 500) at 80 0C. a) Kinetics; (b) evolution of molecular weights and dispersities. 

 

One of the most important advantages that controlled/“living” radical polymerization 

techniques offer is the ability to produce well-defined block copolymers through chain extension 

reactions. This is one of the ways to prove that there is a dormant species that could be activated 

under external stimuli. In this case to prove that the polyMMA chains are living in nature, i.e. 

caped with 9-I-2 (iodanyl) radical, a chain extension experiment was carried out by polymerizing 

MMA with the macroinitiator obtained from the polymerization of MMA using ClBIO with 

(DPn,targ = 500). To begin the investigation, MMA was polymerized in DMAc at 70 0C using 

macroinitiator (Mn,app = 63,000 gmol-1, obtained from SEC data) as the radical initiator with the 

degree of polymerization at complete monomer conversion (DPn,targ = [MMA]0/[macro-initiator]0) 

set to 1500 (Figure 3-7).  
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Figure 3-7. Chain extension of MMA using macroinitiator DPn,targ = [MMA]0/[macro-initiator]0 

set to 1500 in DMAc at 80 oC. 

 

 From the above data presented in Figure 3-7 (c) the chain extension revealed that the SEC 

traces for the polymers did not shift smoothly towards higher molecular weights as the reactions 

proceeded. Th bimodality was an indication of either some of the chain ends were dead while 

purification of macro-initiator since the chain end is essentially a HV iodine(III) moiety that is 

susceptible to external stimuli such as light, heat or any nucleophile (like MeOH). Or, there is 

another mechanism that could happen where instead of the coupling reaction between the 

propagating  polymer radicals and 9-I-2 (as shown in Scheme 3-3 (b)), an irreversible transfer of 

Cl-atoms from ClBIO or Cl2 (combination of two Cl-radicals) is evident (Scheme 3-4).  
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Scheme 3-4. Transfer of Cl-atoms to the propagating polymeric radicals. 
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3.4. Conclusions  

In conclusion we have shown that ClBIO could be a potential candidate that can possibly 

control the synthesis of vinyl monomers such as MMA. The ratios between [MMA]0/[ClBIO]0 = 

500, 1000, 2000, and 4000 were carried out in DMAc at 80 0C and yielded polymers that were 

found to have a  

 

3.5. Experimental Section 

3.5.1. Materials 

             Methyl methacrylate (MMA, 99%, Aldrich) and ethylene glycol dimethacrylate 

(EGDMA, 97%, TCl) were purified before the experiments by passing the neat liquid through a 

column filled with basic alumina. The deuterated solvents (CDCl3 (99.8% D) and DMSO-d6 

(99.9% D)) were purchased from Cambridge Isotope Laboratories, and a small amount of 

tetramethylsilane (TMS) was added as a chemical shift reference. 2-iodobenzoic acid (IBA, 98%, 

Acros), sodium chlorite (NaClO2, 80%, Alfa Aesar), sodium periodate (NaIO4, 99%, Acros), Bu3P 

(95%, Alfa Aesar), CBr4 (98%, Acros), trimethylsilyl azide (TMSN3, 94%, Alfa Aesar), acetic 

acid (99.5%, Acros), acetic anhydride (99.1%, Fisher) and aqueous hydrochloric acid (37%, 

Aldrich) were used as received. Acetonitrile (MeCN, 99.8%, Aldrich) and N,N-dimethylacetamide 

(DMAc, 99.5%, Acros) were dried over anhydrous sodium sulfate powder for at least 12 h prior 

to use. All other solvents including acetone (99.5%, EMD Millipore), anhydrous ether (98%, EMD 

Millipore), petroleum ether (technique grade, EMD Millipore) and tetrahydrofuran (THF, 99%, 

Fisher) were used as received.  
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3.5.2. Analyses and equipment 

Molecular weights and molecular weight distribution dispersities (Mw/Mn) were 

determined by size exclusion chromatography (SEC) on a Tosoh EcoSEC system equipped with a 

series of 4 columns (TSK gel guard Super HZ-L, Super HZM-M, Super HZM-N, and Super 

HZ2000) and using refractive index (RI) and UV detectors. THF was used as the eluent at a flow 

rate of 0.35 mL min−1 (40 °C). The SEC calibration was based on linear polystyrene standards. 

Monomer conversions were determined by 1H NMR spectroscopy using a Bruker Avance DRX 

400. 

 

3.5.3. Synthetic procedures 

Synthesis of hydroxyl-benziodoxole (HBIO) 

NaIO4 (7.24 g, 33.8 mmol), 2-iodobenzoic acid (8.0 g, 32.2 mmol), and aqueous acetic acid 

solution (30 vol%, 50 mL) were added to a 250 mL round bottom flask equipped with a magnetic 

stir bar. The mixture was rigorously stirred and refluxed at 110 °C for 4 h. The mixture was then 

diluted with cold deionized water (100 mL) and allowed to cool down to r.t. The flask was wrapped 

with aluminum foil to prevent light. White crystals were gradually formed, and after 1 h, the solids 

were collected by filtration, washed with ice water (3 × 20 mL) and acetone (3 × 20 mL) and 

finally dried under vacuum in darkness. The final product was obtained as a white crystal (8.17 g, 

96.1%).  

 

Synthesis of acetoxy-benziodoxolone (ABIO) 

 The above-mentioned HBIO (8.17 g, 30.9 mmol) was added to acetic anhydride (40 mL) 

in a 100 mL round bottom flask equipped with a magnetic stir bar. The flask was equipped with a 
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condenser. The flask was transferred into a preheated oil bath at 140 °C. After ca. 20 min, the 

mixture turned into a clear homogenous solution. The reaction solution was heated for another 5 

mins and then allowed to cool to r.t. Note: the flask was wrapped with aluminum foil to prevent 

light. The flask was then put into a refrigerator at -18 °C for recrystallization. Finally, the product 

was filtered, washed with anhydrous ether, and dried under vacuum to yield a white crystal (8.0 g, 

84.6%). 

 

Synthesis of azido-benziodoxolone (AzBIO)  

 HBIO (0.53 g, 2 mmol) and TMSN3 (0.53 mL, 4 mmol) were added to dry MeCN (20 mL) 

in a 100 mL round bottom flask equipped with a magnetic stir bar. The flask was capped with a 

clean rubber septum and the mixture was stirred overnight at r.t. The next day (after ca. 20 h), a 

clear pale-yellow solution had formed which indicated the formation of AzBIO. The solvent was 

removed by a rotary evaporator to give the crude product. After washing with anhydrous ether and 

followed by filtration and drying in air, a light-yellow solid was obtained (0.32 g, 56.2%).   

 

Synthesis of chloro-benziodoxolone (ClBIO) 

 2-Iodobenzoic acid (2.48 g, 10 mmol) and NaClO2 (3.38 g, 30 mmol) were dissolved in 

deionized water (50 mL) in a round bottom flask equipped with a magnetic stir bar. Concentrated 

aqueous HCl (20 mL) was added to the stirred solution dropwise over 10 min at r.t. During addition 

of the acid, the solution turned yellow. The flask was capped with a clean rubber septum and 

wrapped with aluminum foil to prevent light. The reaction was stirred for another 16 h at r.t. After 

that, the reaction mixture was filtered to collect the yellow solid. The solid was then washed with 
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deionized water and petroleum ether and dried under vacuum. A pale-yellow powder was obtained 

(2.5 g, 88.5%).    

 

Hydrolysis study of ABIO and AzBIO 

 The hydrolysis study of AzBIO is described here as an example. AzBIO (10 mg, 3.46×10-

5 mol) was dissolved in deuterated DMSO (0.8 mL) in a dark NMR tube, and certain amount of 

deionized water was added, e.g., 6 µL (10 eq.), 3 µL (5 eq.) and no water added as the control. The 

NMR tubes were covered with a cap and sealed with parafilm. The NMR tubes were shaken at r.t. 

and analyzed periodically by NMR spectroscopy. Hydrolysis conversion was calculated based on 

the decrease of the integrals at the specific chemical shift of AzBIO as well as the appearance of 

new chemical shifts from the hydrolyzed product HBIO.  

 

3.5.4. Preparation of linear polyMMA by using ClBIO as radical initiator. 

 ClBIO (29.0 mg, 0.1 mmol), MMA (1.0 mL, 9.35 mmol) with a magnetic stir bar were 

added to a cleaned and overnight dried 10 mL reaction tube. The tube was wrapped with an 

aluminum foil (to avoid any vis-light interactions) and capped with a rubber septum (soaked in 

acetone for two days and dried overnight) and through the septum, anhydrous DMAc (1.0 mL) 

was added. The mixture was purged with nitrogen for 15 mins using a special teflon coated needle 

(to prevent any oxidation reaction of ClBIO on the surface of regular steel needle) in an ice bath. 

A zero sample was withdrawn using a nitrogen purged syringe with teflon coated needle and then 

transferred the tube into an oil bath preheated to 80 °C to start the polymerization. Samples (ca. 
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0.2 mL) were periodically withdrawn with a nitrogen-purged syringe to monitor the monomer 

conversion, the apparent molecular weights, and molecular weight distributions of the polymers. 

The tube was wrapped with an aluminum foil (to avoid any vis-light interactions) and capped with 

a rubber septum (soaked in acetone for two days and dried overnight) and through the septum, 

anhydrous DMAc (1.0 mL) was added. The mixture was purged with nitrogen for 15 mins using 

a special teflon coated needle (to prevent any oxidation reaction of ClBIO on the surface of regular 

steel needle) in an ice bath. A zero sample was withdrawn using a nitrogen purged syringe with 

teflon coated needle and then transferred the tube into an oil bath preheated to 80 °C to start the 

polymerization. Samples (ca. 0.2 mL) were periodically withdrawn with a nitrogen-purged syringe 

to monitor the monomer conversion, the apparent molecular weights, and molecular weight 

distributions of the polymers. 
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CHAPTER 4.    

SYNTHESIS OF BRANCHED POLYMERS USING 1-CHLORO-1,2-BENZIODOXOL-

3(1H)-ONE 

 

4.1. Introduction 

4.1.1. Hyperbranched Polymers 

Hyperbranched (HB) polymers, compared to the linear polymers, possess various 

advantages, such as highly branched topological structures, abundant functional groups, intramolecular 

cavities, low viscosity.1-3 The application of HB polymers have been explored in various fields 

such as drug delivery, bioimaging, photoelectric materials, membranes, and coatings.4-6 To date, 

polycondensation of ABn-type monomers remains the predominate synthetic approach in the 

preparation of HB polymers.7-14  

 

 
 

Scheme 4-1. Synthesis of HB using polycondensation of ABn-type monomers. 
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Another popular method is self-condensing vinyl polymerization (SCVP) of inimer 

(containing monomer vinyl group and initiator fragment in one molecule).15-19 It requires the use 

of controlled polymerization methods, such as controlled radical polymerization (CRP),20-22 living 

ionic polymerization,23-26 ring-opening metathesis polymerization (ROMP),27 and group transfer 

polymerization28 (as shown in Scheme 4-2). 

 

Scheme 4-2. Schematic representation of SCVP. 

 

In both cases, the growth of HB polymers is accompanied by random polymer-polymer 

reactions in the continuous reaction media and finally results in polymers with extremely broad 

molecular weight distribution, which undermines the physical properties of HB polymers. 

Recently, one notable strategy for successful synthesis of HB polymers with high molecular weight 

and uniform structure was developed by carrying out one-pot polymerization of inimers in 

microemulsion.29 Another very interesting synthetic approach, Scheme 4-3, in the preparation of 

HB polymers is the copolymerization of monovinyl monomers with divinyl or multivinyl 

crosslinkers in the presence of appropriate amounts of chain transfer agents (CTAs).  



78 

 

 

initiator in

R

R'

R''

R''
ni

R

R' R''

R

R'

R

R'

R''
termination

in

R

R' R''

R

R'

R

R'

R''

X

R

R'

R''

R''

R''

R''

CTA

termination

R''

R''

CTA Br

branching point

branching point

R''

R''

CTA Br

R''

R''

R

R'

.......

(possibly)

CTA X CTA

CTA XCTA

 
Scheme 4-3. Copolymerization of vinyl monomers with di-vinyl crosslinker in the presence of 

CBr4 as CTA, yielding multi-brominated HB polymers. 

 

The above strategy, Scheme 4-3, has been known for a relatively long time,30, 31 and its 

utility has become more widely recognized and appreciated ever since the work of Sherrington 

and his collaborators.32-34 The CTAs could be either a conventional transfer agent such a thiol,32-

34 carbon tetrabromide,31, 35-37 or a controlling group that also imparts pseudo-livingness to the 

polymerization system.38 

 

4.1.2. HV Iodine(III) Compounds as radical initiators 

The HV iodine (III) compounds have attracted the attention of synthetic organic, 

theoretical, and materials chemists, and have been utilized as strong oxidants in organic synthesis, 

described in several research articles and review papers. Very limited number of HV iodine (III) 

compounds are known to undergo homolytic cleavage (upon heating or irradiation with light) of 
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the hypervalent bonds and have been utilized in the polymerization of radically polymerizable 

monomers to yield directly functional polymers. For example, it was shown that the exchange of 

the acetoxy groups in (diacetoxyiodo)benzene with methacryloyloxy groups, formed branched 

polymers, via the in-situ formation of (dimethacryloyloxyiodo)benzene which served as monomer 

and as well initiators (i.e., as inimers). The generation of azide radicals by a ligand exchange 

reaction between (diacetoxyiodo)benzene and NaN3 and their use in the synthesis of linear and 

branched polymers with azide functionalities at the chain ends were also reported. Another 

alternative approach demonstrated the use of iodosylbenzene, PhIO, to generate azide and other 

(pseudo)halide radicals that were employed to initiate polymerization of various monomers such 

as styrene, (meth)acrylates, and vinyl esters and were examined systematically for their scope and 

limitations in (pseudo)halide radical-initiated polymerizations. So far, the heterocyclic HV iodine 

(III) reagents have not been utilized as radical initiator into polymerization system because they 

often suffer from hydrolytically instability and limited solubility in common organic solvents. 

Thus, an alternative heterocyclic HV iodine (III) compounds with better stability towards 

hydrolysis and better solubility are highly desirable. 

 

4.1.3. Iniferters in the preparation of HB polymers   

 Iniferters, proposed by Otsu in 1982,34 are compounds that can mediate CRP. The term 

originates from the term’s initiator, transfer and terminator. In principle, iniferters can induce 

radical polymerization which proceeds via dissociation, initiation, propagation, primary radical 

termination, and transfer to initiator. Typical iniferters include asymmetric azo compounds, 

tetraphenylethanes, sulfides and disulfides, dithiocarbamates, etc. The utilization of 
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dithiocarbamate compounds is of significant interest because the polymerization can proceed via 

a “living” radical polymerization mechanism due to the reversible coupling between propagating 

radicals and the CTA• radicals.35-39  

 In fact, the chain transfer as well as (reversible) termination reactions involved in the 

iniferter polymerization can significantly affect the chain length of propagating polymers. Similar 

to the strategy by using CBr4 as chain transfer agents,40,41 the iniferter-initiated radical 

polymerization of vinyl monomers with the addition of a small amount of di- or multi-vinyl 

monomers can also produce hb polymers prior to gelation.42,43 The limited polymer chain length 

and average number of incorporated pendant vinyl groups per chain greatly delay the crosslinking 

until moderate to high monomer conversions are reached. Without the further addition of additives 

such as chain transfer agents, the iniferter-initiated polymerization provides a facile method to 

prepare various hb polymers under FRP conditions, and importantly, afford polymers with specific 

chain end functionalities (originating from the iniferter).  

 In this chapter, a series of heterocyclic hypervalent iodine (III) compounds including 

ABIO, AzBIO and chloro benziodoxolone (ClBIO) were synthesized and employed as initiators 

in the polymerization of methacrylates. Since all these compounds contain weak hypervalent 

bonds, e.g., I-O, I-N3, I-Cl, which can be cleaved homolytically upon heating or irradiation, various 

functional radicals (CH3COO2
• (or CH3

•), Cl•, and N3
•) could be easily generated under suitable 

reaction conditions, and then employed to initiate radical polymerization. The resulting polymers 

contain a functionality at the α-terminus, which could be used to further functionalize the polymer 

α-chain end. In addition, ClBIO may serve as a CTA or iniferter in the polymerization of 

methacrylates under visible light irradiation. Although the polymerization did not follow a “living” 
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polymerization mechanism, significant transfer reactions were found based on the kinetic studies, 

and polymers with lower molecular weights were obtained when the amount of ClBIO in the 

mixtures was increased. With the addition of di-vinyl crosslinkers, hb polymers were successfully 

synthesized prior to gelation. The peripheral alkyl chloride groups were promising for further 

functionalizations.  

 

4.2. Results and Discussions 

4.2.1. Chain transfer coefficients 

Dichloroiodoarenes ArICl2 can easily transfer Cl atoms to carbon-centered radicals and 

some rate coefficiants have been reported.39 In this work, the ability of ClBIO, which contain a 

HV iodine(III) center and the labile I-Cl bond, to participate in chlorine transfer reactions with 

propagating radicals in polymerization reactions was examined. Our initial efforts were focused 

on determining chain transfer coefficients (CCTA) of ClBIO in the polymerization of MMA. The 

classical Mayo equation (1)40 was employed: 

 
 

 
 

tr
CTA

n n,0 p n,0

CTA CTAk1 1 1
C

DP DP k M DP M
= + = +             (1) 

DPn,0 and DPn are respectively the number-average degrees of polymerization of a polymer 

obtained at low monomer (M) conversion in the absence and in the presence of a CTA (at 

concentration [CTA]). It was found that due to the thermal lability of ClBIO, it can initiate radical 

polymerization of MMA, Chapter 3, at temperatures exceeding 80 oC. This is why, the experiments 

aimed at determination of the values of CCTA were conducted at lower temperature (60 oC), at 

which no appreciable initiation by ClBIO took place, especially during short (< 20 min) time 
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periods (Chapter 3, Figure 3-3). In all cases, AIBN was used as the thermal initiator. For 

comparison purposes, the transfer coefficient of a well-known efficient CTA, which likewise 

transfers Cl atoms to C-centered radicals, CCl4, was compared with the ClBIO. As shown in 

Figure 4-1, the chain transfer coefficient of ClBIO was determined to be 1.46 while that of CCl4 

was markedly lower (CCTA(CCl4) = 0.012, i.e., similar to the value reported in the literature, 

0.009941, 42). 

 

Table 4-1. As the equivalents of ClBIO vs. AIBN increases the number-average molecular weight 

decrease. 

# Equivalents of ClBIO Time (min) Conversion [%] Mn, app [g mol
-1

]  

1 0 15 3 350,000 

2 2 15 3 40,000 

3 4 15 2 30,500 

4 6 15 7 22,000 

5 8 15 3 12,200 

 

0.000 0.001 0.002 0.003 0.004 0.005 0.006
0.000

0.002

0.004

0.006

0.008

0.010

 

 

1
 /

 D
P

n
, 

a
p

p

[ClBIO]0 / [MMA]0  
Figure 4-1. Mayo plots for the bulk polymerization of MMA in the presence of ClBIO at 60 ºC. 

In all cases, the monomer conversions were below 5%. The raw data is provided in Table 4-1. 
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4.2.2. Preparation of hb polymers by using ClBIO as radical initiator 

When divinyl crosslinkers are (co)polymerized, insoluble networks are formed usually 

extremely fast and at low monomer conversion, but the gelation can be significantly delayed by 

adding an efficient CTA to the reaction mixture; the extent, to which the formation of gel is delayed 

depends upon the concentrations of both the crosslinker and the CTA, as well as the efficiency of 

the latter. Prior to formation of crosslinked structures, soluble highly branched polymers are 

formed. At a fixed concentration of CTA, as the concentration of crosslinker increases, the degree 

of branching increases,43 but also macroscopic gelation occurs earlier, i.e., at a lower conversion. 

Very highly branched polymers can still be obtained by using high fraction of crosslinker relative 

to the total monomer amount and even by homopolymerization of crosslinkers, but the CTA must 

be very efficient and/or used at high concentrations. HV iodine(III) compounds have been utilized 

as CTAs in the synthesis of branched polymers of styrene42 but the measured high transfer 

coefficients (vide supra) for compounds with HV I-Cl bonds suggested that they indeed could be 

very useful, even when pure crosslinkers are polymerized. In particular, ClBIO was not only a 

very efficient CTA making it very suitable as additive in the copolymerization of MMA and 

EGDMA to afford branched functional polymers. The compound decomposes sufficiently fast at 

80 oC and its decomposition products (Cl• and the 9-I-2, Scheme 4-1) can initiate polymerization 

of MMA. The copolymerization of MMA and EGDMA initiated by ClBIO afforded, up to 

moderate to high conversions, Cl-capped HB polymers, which, in analogy with alkyl bromide-

capped branched polymers reported in the literature, can be used for further chain-end 

functionalization reactions, such as nucleophilic substitution with azide followed by click coupling 
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with alkynes44 or chain extension reactions under ATRP conditions to afford star polymers with 

branched cores.44, 45 
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Scheme 4-4. Proposed mechanism for the formation of linear and branched polymers in radical 

copolymerization initiated by ClBIO, in which the same compounds served also as CTAs. 

 

Initially, the effect of crosslinker amount on the branching and time of crosslinking was 

studied (Table 4-2 and Figures 4-2). The concentration of ClBIO ([vinyl groups]0 / [ClBIO]0 = 

100) was kept constant while the amount of EGDMA was varied from 10, 20, 40, 60, 80, to 100 

mol % of the total vinyl groups. The polymerization rates were independent of the amount of 

EGDMA (Figure 4-2(a)). The apparent number average molecular weights (Mn, app) increased in 

an almost linear fashion with conversion and the molecular weight distributions (MWD) were 

broad, with the width increasing as the amount of EGDMA increased (Figure 4-2(b)), in 

accordance with the expected increase in the degree of branching. 
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Figure 4-2. Copolymerization of MMA and EGDMA at 80 °C with ClBIO as initiator and CTA 

([vinyl groups]0 / [ClBIO]0 = 100) and using 10, 20, 40, 60, 80, or 100 mol % EGDMA with respect 

to total vinyl groups: (a) kinetics; (b) evolution of molecular weights and Mw/Mn. 

 

At almost the same vinyl group conversion (in the range 9-12 %), the value of the MWD 

dispersity (Đ = Mw/Mn) of the polymers formed in the reactions containing 10, 20, 40, 60, 80, and 

100 mol % of EGDMA were 2.3, 2.7, 3.3, 5.4, 14.9, and 15.2, respectively as shown in Table 4-

2. When pure EGDMA polymerized in the presence of ClBIO, gelation only occurred at 9 %, up 

to which point, soluble highly branched (and with high content of pendant vinyl group) polymers 

were formed (entry 6 in Table 4-2).  
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Table 4-2. Characteristics of HB polymers prepared using ClBIO as initiator and CTA in the 

copolymerization of MMA with EGDMA (at various amounts of EGDMA) at 80 °C. 

# EGDMA [mol%] a) Reaction time [h]  Conversion Mn, app [g mol-1] b) Mw/Mn 
b) 

1 10 6  0.09  5,400 2.3  

  32 0.41 12,500 15.3 

  34 gel   

2 20 7 0.10 6,200 2.7 

  22 0.34 15,000 17.2 

  24 gel   

3 40 7 0.12 10,440 3.3 

  14 0.24 17,300 11.2 

  15 gel   

4 60 6 0.10 11,800 5.4 

  9 0.16 16,350 19.1 

  10 gel   

5 80 7 0.10 15,550 14.9 

  7.5 gel   

6 100 6 0.09 14,930 15.2 

  6.5 gel 
  

a) Relative to the vinyl groups. 
b) Determined by SEC calibrated using linear polySty standards and equipped with an RI etector. 

 

Next, the effect of the amount of ClBIO on the outcome of the polymerization was studied 

systematically (Figure 4-3). In the set of experiments summarized in Table 4-3, the amount of 

EGDMA was kept constant at 40 mol % relative to all vinyl groups, but the concentration of ClBIO 

was varied ([vinyl groups]0 / [ClBIO]0 = 25, 50, 100, 200, or 500). 
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Figure 4-3. Copolymerization of MMA and EGDMA (40 mol %) at 80 °C in the presence of 

various amounts of ClBIO: (a) kinetics; (b) evolution of molecular weights and MWD dispersities. 

 

The polymerization rates were virtually unaffected by the amount of ClBIO (Figure 4-

3(a)). However, the amount of ClBIO impacted the MWD (Figure 4-3(a)): as the concentration 

of ClBIO increased, the MWDs became narrower. For instance, for the experiments where [vinyl 

groups]0 / [ClBIO]0 = 100, the value of Đ was 6.3 (at 14 % conversion) but as the concentration of 

ClBIO was doubled, the highly branched polymers had a narrower MWD (Đ = 5.5 at 15 % 

conversion), and when it was quadrupled, the MWD became narrower still (Đ = 3.8 at the same 

conversion), as seen in Table 4-3 (entries 1–3). At higher concentrations of ClBIO, the formation 

of network was delayed to higher monomer conversions. Thus, at [vinyl groups]0 / [ClBIO] = 400, 

macroscopic gelation was observed in less than 4 h at 10 % conversion but a 16-fold increase of 

the amount of ClBIO ([vinyl groups]0 / [ClBIO] = 25) made it possible to form soluble branched 

polymers up to 30 % monomer conversion, which occurred in more than 12 h (Table 4-3).  
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Table 4-3. Characteristics of HB polymers prepared by the copolymerization of MMA and 

EGDMA (40 mol % of EGDMA) at 80 oC using various amounts of ClBIO. 

# [vinyl groups]0 / [ClBIO]0 Reaction time [h] Conversion Mn, app [g mol-1] b) Mw/Mn 
b) 

1 25 6 0.15 3,850 3.8 

  12 0.30 7,400 20.1 

  13 gel   

2 50 4 0.15 6,800 5.5 

  9 0.22 9,260 23.6 

  10 gel   

3 100 5 0.14 9,500 6.3 

  7 0.18 14,000 16.5 

  7.5 gel   

4 200 4 0.11 15,800 8.7 

  5 0.13 16,800 12.2 

  5.5 gel   

5 500 3 0.08 23,350 9.6 

  4 0.10 27,800 21.1 

  4.5 gel   

a) Relative to the total vinyl groups. 
b) Determined by SEC calibrated using linear polySty standards and equipped with an RI detector. 

 

These observations are consistent with the fact that at higher concentrations of ClBIO, 

shorter chains containing smaller number of pendant vinyl groups are formed, and thus the 

probability of each chain to serve as crosslinker connecting many other chains decreases, thus 

delaying gelation. Highly compact branched structures consisting of interconnected short polymer 

chains were most likely formed under these reaction conditions. 
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4.3. Experimental Section 

4.3.1. Materials 

             Methyl methacrylate (MMA, 99%, Aldrich) and ethylene glycol dimethacrylate 

(EGDMA, 97%, TCl) were purified before the experiments by passing the neat liquid through a 

column filled with basic alumina. The deuterated solvents (CDCl3 (99.8% D) and DMSO-d6 

(99.9% D)) were purchased from Cambridge Isotope Laboratories, and a small amount of 

tetramethylsilane (TMS) was added as a chemical shift reference. 2-iodobenzoic acid (IBA, 98%, 

Acros), sodium chlorite (NaClO2, 80%, Alfa Aesar), sodium periodate (NaIO4, 99%, Acros), Bu3P 

(95%, Alfa Aesar), CBr4 (98%, Acros), trimethylsilyl azide (TMSN3, 94%, Alfa Aesar), acetic 

acid (99.5%, Acros), acetic anhydride (99.1%, Fisher) and aqueous hydrochloric acid (37%, 

Aldrich) were used as received. Acetonitrile (MeCN, 99.8%, Aldrich) and N,N-dimethylacetamide 

(DMAc, 99.5%, Acros) were dried over anhydrous sodium sulfate powder for at least 12 h prior 

to use. All other solvents including acetone (99.5%, EMD Millipore), anhydrous ether (98%, EMD 

Millipore), petroleum ether (technique grade, EMD Millipore) and tetrahydrofuran (THF, 99%, 

Fisher) were used as received.  

 

4.3.2. Analyses and equipment 

Molecular weights and molecular weight distribution dispersities (Mw/Mn) were 

determined by size exclusion chromatography (SEC) on a Tosoh EcoSEC system equipped with a 

series of 4 columns (TSK gel guard Super HZ-L, Super HZM-M, Super HZM-N, and Super 

HZ2000) and using refractive index (RI) and UV detectors. THF was used as the eluent at a flow 

rate of 0.35 mL min−1 (40 °C). The SEC calibration was based on linear polystyrene standards. 
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Monomer conversions were determined by 1H NMR spectroscopy using a Bruker Avance DRX 

400. 

 

4.3.3. Synthetic procedures 

Synthesis of chloro benziodoxolone (ClBIO)  

 2-Iodobenzoic acid (2.48 g, 10 mmol) and NaClO2 (3.38 g, 30 mmol) were dissolved in 

deionized water (50 mL) in a round bottom flask equipped with a magnetic stir bar. Concentrated 

aqueous HCl (20 mL) was added to the stirred solution dropwise over 10 min at r.t. During addition 

of the acid, the solution turned yellow. The flask was capped with a clean rubber septum and 

wrapped with aluminum foil to prevent light. The reaction was stirred for another 16 h at r.t. After 

that, the reaction mixture was filtered to collect the yellow solid. The solid was then washed with 

deionized water and petroleum ether and dried under vacuum. A pale-yellow powder was obtained 

(2.5 g, 88.5%).    

 

4.3.4. Synthesis of HB polymers by copolymerization of MMA and EGDMA in the 

presence of ClBIO 

In the following procedure, 40 mol % of EGDMA of the total vinyl groups and ClBIO (1 

mol % vs. the total vinyl groups) were used. In a 10 mL reaction tube, a magnetic stir bar was 

added, followed by MMA (0.66 mL, 5.76 mmol), EGDMA (0.250 g, 1.92 mmol), and ClBIO 

(0.035 g, 9.59 mmol). The tube was capped with a rubber septum (pre-washed with acetone and 

dried), which was secured with electric tape, and the contents were protected from light by 

wrapping the tube with aluminum foil. Dry DMAc (1.34 mL) was then injected and the tube was 
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placed in an ice-water cooling bath, and the reaction mixture was deoxygenated by purging with 

nitrogen using a Teflon-coated needle for 10 min. The reaction tube was then placed in an oil bath 

preheated to 80 °C. At timed intervals, samples (ca. 0.04 mL) were withdrawn from the reaction 

mixture with a nitrogen-purged syringe equipped with a Teflon-coated needle to determine the 

monomer conversion (by NMR) and the molecular weights (SEC) of the polymers. 

Similar experiments were conducted using the same amount of ClBIO ([vinyl groups]0 / 

[ClBIO]0 = 100), but varying amounts of EGDMA. The MMA and EGDMA amounts were: MMA 

(1 mL, 8.64 mmol) and EGDMA (0.063 g, 0.48 mmol) for [EGDMA]0 = 10 mol % of the total 

vinyl groups; MMA (0.88 mL, 7.64 mmol) and EGDMA (0.125 g, 0.96 mmol) for [EGDMA]0 = 

20 mol % of the total vinyl groups; MMA (0.44 mL, 3.74 mmol) and EGDMA (0.374 g, 2.88 

mmol) for [EGDMA]0 = 60 mol % of the total vinyl groups; MMA (0.22 mL, 1.92 mmol) and 

EGDMA (0.499 g, 3.84 mmol) for [EGDMA]0 = 80 mol % of the total vinyl groups; and pure 

EGDMA (0.624 g, 4.80 mmol, corresponding to 9.6 mmol of vinyl groups). In each case, the 

amount of DMAc used was changed so that the total volume of the reaction mixture was 2 mL. 

When varying amounts of ClBIO relative to vinyl groups were used, the amounts of MMA 

(1 mL, 8.64 mmol), EGDMA (0.374 g, 2.88 mmol), and DMAc (1 mL) were kept constant while 

the amount of ClBIO was changed to 0.2102 g (0.576 mmol for [vinyl groups]0 / [ClBIO]0 = 25), 

0.1051 g (0.288 mmol for [vinyl groups]0 / [ClBIO]0 = 50), 0.053 g (0.144 mmol for [vinyl groups]0 

/ [ClBIO]0 = 100), 0.026 g (0.072 mmol for [vinyl groups]0 / [ClBIO]0 = 200), or 0.013 g (0.036 

mmol for [vinyl groups]0 / [ClBIO]0 = 400). 
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4.4. Conclusions  

The heterocyclic HV iodine(III) compound, ClBIO with I-Cl bonds was found to be a very 

efficient chain transfer agents (CTAs) in the polymerization of MMA. The chain transfer 

coefficient was found to be markedly higher than those of a traditionally used CTA, CCl4. At high 

temperatures, the HV iodine(III) compounds served simultaneously as efficient radical initiators 

and CTAs, which made them very suitable reactants for the synthesis of highly branched and chain-

end functionalized (mostly Cl-capped) polymers when added to mixtures of MMA and a divinyl 

crosslinker, EGDMA. Due to the significant values of the chain transfer coefficients, the HV 

iodine(III) compounds could be used at relatively low concentrations (in some cases, less than 1 

mol % vs. vinyl groups), even in copolymerizations in the presence of large concentrations of 

crosslinker, and still efficiently delay gelation up to moderate to high conversions and yield soluble 

highly branched end-functional polymers. 
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CHAPTER 5.   

HV IODINE(III) COMPOUNDS WITH TETRAZOLE LIGANDS 

 

5.1. Introduction 

5.1.1. HV iodine(III) compounds containing I-N bonds 

HV iodine(III) compounds containing I-N bonds were first reported in 1983 by 

Varvoglis.[1,2] Subsequently, different HV iodine(III) compounds with I-N bonds, such as 

azidoiodanes[3–8], benziodazoles[9,10], and iminoiodanes[11–15] were investigated as efficient 

reagents for C-N bond forming reactions. These reagents have been utilized in the direct 

Azidation,[5,8,16] amination,[12,16,18–23] aziridination,[13,14] and C-H insertion reactions.[23,24] 

Furthermore, there are very few examples of HV iodine(III) compounds containing azoles as 

ligands with I-N bonds.[2,15,20] The azoles are an important class of heterocycles due to their unique 

pharmaceutical and explosive properties. Particularly, tetrazoles are known for high enthalpy of 

formation,[25,26] which makes them highly effective propellants[26] and explosives producing only 

molecular nitrogen as waste. Many groups have demonstrated the transfer of  tetrazoles to various 

substrates via Suarez reactions[27] or HV iodine(III)  mediated (tetra)azole transfer.[8,28] In this 

context, synthesis of HV iodine(III) compounds containing transferable tetrazoles which are both 

stable and reactive would be highly desirable.  
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5.1.2. Tetrazoles and their properties      

Tetrazoles are unsaturated five-membered heterocycles with four nitrogen atoms in the 

ring. The enthalpies of energetic chemical systems are governed by their molecular structure. From 

imidazole (𝛥𝐻𝑓
𝑜 = + 58.5 kJmol-1) to 1,2,4-triazole (𝛥𝐻𝑓

𝑜 = + 109.0 kJmol-1) to tetrazole (𝛥𝐻𝑓
𝑜 = + 

237.2 kJmol-1),[32] the heats of formation get increasingly positive. Since the generation of 

molecular nitrogen as an end-product of propulsion or explosion is highly desired to avoid 

environmental pollution and health risks,as well as to reduce detectible plume signatures, 

compounds containing a backbone of directly linked nitrogen atoms (catenated nitrogen) are of 

great interest. The high nitrogen content of tetrazole and its derivatives has led to investigations 

for their use as potential energetic materials. Tetrazoles1-6 are of interest, due to properties such as 

complex-formation ability, biological activity, and especially their highly positive enthalpy of 

formation,7 which makes them attractive as effective propellants and explosives producing 

molecular nitrogen as the dominating gaseous product of decomposition. C-(5-)substituted 

tetrazoles RCN4H resemble structurally carboxylic acids RCO2H and are often characterized by 

similar (typically, within an order of magnitude) values of Ka,
8 which is why they are often referred 

to as tetrazolic acids. For instance, pKa of 5-methyltetrazole CH3CN4H is around 5.6,8 while pKa 

of CH3CO2H is 4.8.9 Likewise, the pKa values of 5-phenyltetrazole and benzoic acid are 

respectively 4.88 and 4.2.9 It was therefore to be expected that tetrazoles or tetrazolate anions can 

be used in the place of carboxylic acids or carboxylate anions to prepare the compounds 

ArI(N4CR)2 or cyclic iodanes where the tetrazole is connected to phenyl ring, analogue of 2-

iodobenzoic acid. In addition, we can also synthesize N-heterocyclic iodanes where tetrazole is a 

part of heterocycle and has I-N bonds as the hypervalen bond. Herein, we report the formation, 

isolation, structural characterization, and reactivity studies of acyclic compounds of the type 
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ArI(N4CR)2, as well as derived from 5-methyl-, 5-phenyl-, and 5-(p-tolyl)tetrazole. Along with 

this we also report the synthesis of N-heterocyclic iodanes containing tetrazole in the heterocycle. 

 

5.2. Results and discussion 

5.2.1. Synthesis of acyclic HV iodine(III) compound containing tetrazole ligands 

with I-N bonds. 

The reactions between PhIO and trimethylsilyl halides TMSX, hydrogen halides or 

carboxylic acids are convenient routes to synthesize various HV iodine(III) compounds such as 

PhIF2,
[29–31] PhI(N3)2,

[32,33] PhI(NCO)2,
[33] PhI(OAc)2,

[29,34] PhI(OCOCF3)2,
[32,35] etc. In our initial 

efforts, PhIO was reacted with 2 equivalents of 1a to afford compound 2 in high yield (Table 5-1, 

Entry 1-3) in various solvents such as DCM, CHCl3, and CH3CN. The HV iodine(III) compound 

2 was characterized by 1H and 13C NMR, and MALDI-Tof . The compound 3a was isolated as an 

oily substance and it turned into a sticky solid upon drying under high vacuum which is stable at 

low temepratures for several weeks. After the 1H NMR and MALDI-Tof data analysis, it was 

revealed that 3a exists as symmetric HV iodine(III) compound.  After synthesizing compound 3a 

in high yields from PhIO, our next efforts were focused on the synthesis of HV iodine(III) 

compounds containing different tetrazoles such as 5-phenyl tetrazole (1b) and 5-tolyl tetrazole 

(1c).   
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Scheme 5-1. Synthetic routes to prepare different HV iodine(III) compounds containing different 

tetrazoles. 

 

Table 5-1. Synthesis of HV iodine(III) compounds containing various tetrazoles in different 

solvents at 25 °C 

Entry HV iodine(III) precursors HN4CR, R = Solvent Time Yield (%) 

1 PhIO (2 equiv.) CH3 (2 eq.) CH3CN 30 min 70 

2   DCM  85 

3   CHCl3  82 

4 

5 

PhI(OAC)2 (1 equiv.) 

PhI(OCOCF3)2 (1 equiv.) 

CH3 (2 eq.) CH3CN 30 min 12 

25 

 

          The products from the reactions of PhIO and compounds 1b and 1c (2 equiv. vs. PhIO) were 

precipitated out as off-white solids in 2 h that were found to be insoluble in any solvent except 

MeOH. It is known that the reaction between PhIO and nucleophiles such as AcOH and CF3COOH 

usually generates oligomeric HV iodine(III) compounds[34]. In the similar way it could be 

suspected that the compounds obtained from the reactions of PhIO and 1b or 1c were to be 

oligomeric HV iodine(III)  compounds 3 or 4 respectively. We have concluded that unlike 3 and 

4, compound 2 from the reaction of PhIO and 1a, was formed in high yields as soluble symmetric 

HV iodine(III)  species. The reason could be attributed to the solubility of the compound 2 and 1a 

which becomes the driving force for the reaction to proceed to completion. On the other hand, the 

oligomeric HV iodine(III) compounds 3 and 4, from the reaction of PhIO and 1b or 1c, were 



102 

 

insoluble in CH3CN hence there was no driving force for the reaction to reach completion. The 

contact time of PhIO (1 eq.) and 1b or 1c (2 eq.) in CH3CN was increased to 20 h. The increased 

time of contact resulted in off-white solids in both the cases and both products were found soluble 

in polar solvents such as DMF. The 1H NMR analysis of both off-white solid products in DMF-d7 

revealed them to exist as μ-oxo products.  

                Our efforts were now focused on exploring other methods to prepare symmetric HV 

iodine(III) compounds containing 1b and 1c were explored to eliminate the necessity of excess 

amount of tetrazole. To achieve this goal ligand exchange reactions of HV iodine(III) precursors 

such as PhI(OAc)2 with 1a were used (Scheme 5-2). Varvoglis and coworkers have shown that 

various acidic N-containing ligands can participate in exchange reactions with HV iodine(III) 

compounds such as PhI(OAc)2.
[1,2] The reaction of PhI(OAc)2 with 1a afforded 3a in 12 % yield 

(Table 5-1, Entry 4). Furthermore, the yield remained similar even when the reaction time was 

increased. The lower yield might be a consequence of low affinity of 1a for HV iodine(III)  center 

than acetoxy groups or low nucleophilicity of compound 1a to replace acetoxy groups of 

PhI(OAc)2 or low stoichiometric ratio of 1a to replace all the acetoxy groups of PhI(OAc)2. This 

encouraged us to perform a solution study by 1H NMR in order to investigate the ability of 1a to 

replace the acetoxy groups of PhI(OAc)2. 
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Scheme 5-2. Synthesis of bis(5-methyltetrazolyl)iodobenzene from PhI(OAc)2. 

 

            The exchange of the acetoxy groups in PhI(OAc)2 with 1a at the HV Iodine(III)  center 

was studied by 1H NMR in CD3CN. The PhI(OAc)2 (10 mM in CD3CN) was mixed with different 

amounts of 1a (1, 2, and 4 equivalents vs. PhI(OAc)2. When 1 eq. of 1a vs. PhI(OAc)2 was mixed 

in CD3CN afforded 3a in 17% (the 1H NMR yields were calculated using equation 1) and 

asymmetric compound 3a’ in 10 % 1H NMR yield as calculate after the equilibrium had established 

(ca. 5 h). When the 2 eq. of 1a (vs. PhI(OAc)2 was mixed with PhI(OAC)2 the 1H NMR yield of 

compound 2 was 18% and the 1H NMR yield of the asymmetric compound 3a’ was similar. When 

4 eq. of 1a was mixed with PhI(OAc)2, the amount of 3a and 3a’ remained constant. Another set 

of experiments were carried (Figure 5-1b) where the isolated compound 3a, from the reaction of 

PhIO and 1a, was mixed with different amounts of AcOH in CD3CN (1, 2, and 4 equivalents 

related to compound 3a). When 1 eq. of AcOH related to 3a was added the formation of PhI(OAc)2 

and mixed compound 3a’ was immediately evident with NMR yields of 33% and 9.5% 

respectively (calculated after the equilibrium had been established i.e. at 5 h). When 2 eq. of AcOH 

was mixed with the solution of 3a , the 1H NMR yields for PhI(OAc)2 and the compound 3a’ were 

calculated to be 85.5% and 29% respectively. And the 4 eq. of AcOH related to 2 was sufficient 

enough to replace all the tetrazole from the di- and mixed compounds to give PhI(OAc)2 as the 
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only product (Figure 5-1b). These 1H NMR solution studies suggested that the acetoxy groups 

have more affinity towards HV Iodine(III)  center than the tetrazolyl group in CD3CN.  
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Scheme 5-3. Exchange of the acetoxy groups in PhI(OAc)2 with 1a. 
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Figure 5-1. Spectra of equilibrated (5 h) reaction mixtures containing PhI(OAc)2 (10 mM) and 

series of CH3CN4H (a) and (b) compound 2 (10 mM) and series of AcOH in CD3CN. 
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The solution study demonstrated that the exchange between acetoxy group of PhI(OAc)2 

and 1a is not an efficient way to synthesize compound 3a. Even the high concentration of 

compound 1a was incapable of replacing all the acetoxy groups of PhI(OAc)2. The quest to achieve 

the symmetric HV Iodine(III)  species containing tetrazoles with minimum amount used persisted. 

We moved to the synthesis of symmetric HV Iodine(III)  species containing tetrazoles with I-N 

bonds by the exchange reaction of more nucleophilic potassium salt of 1a, 1b, and 1c and HV 

Iodine(III)  precursors such as PhICl2 and PhI(OCOCF3)2. 

           It is a well-known practice to synthesize symmetric HV Iodine(III)  compounds by reaction 

a HV Iodine(III)  precursor and a sodium or potassium salts of nucleophile.[17–19,33] First, PhICl2 

was prepared by reacting PhI with sulfuryl chloride in AcOH. The isolated crystalline PhICl2 was 

then reacted with the potassium salts 2a, 2b, and 2c (2 equiv. vs. PhICl2) in dry CH3CN (Scheme 

4) for 15 h affording symmetric HV Iodine(III) compounds 3a-c in 82%, 65%, and 69% (Table 5-

2, Entry 1-3) yields respectively. The isolated yields were encouraging and suggested that the 

efficiency of ligand exchange reactions was increased with the increase in nucleophilicity of 

tetrazoles to produce the desired symmetric HV Iodine(III)  compounds with I-N bonds. 

Compounds 3a-c were analyzed with 1H and 13C NMR, and MALDI-Tof. When the same reactions 

were carried out in normal CH3CN, the compounds 2a gave the same product 3a in similar yields. 

But when PhICl2 was reacted with 2b or 3c in regular CH3CN, the resulted products were μ-oxo-

bridged HV Iodine(III) compounds 4b and 4c as evident from 1H NMR, as shown in Scheme 5-1. 

The similar exchange reactions were carried out with PhI(OCOCF3)2 and potassium salts 2a, 2b 

and 2c, in dry CH3CN for 15 h. The isolated yields of 3b and 3c were found to be higher compared 

to when synthesized from PhICl2 due to the solubility of the byproduct potassium trifluoroacetate 

and the precipitation of the products in CH3CN. In the case of PhICl2, the byproduct KCl has a 



106 

 

limited solubility in CH3CN and hence also precipitates out with the products 3b and 3c. As result, 

loss of products become inevitable duo to extra purification steps to remove KCl. This precipitation 

of KCl was a driving force in the case of the reaction of PhICl2 and 2a that afforded higher yield 

than the reaction of PhI(OCOCF3)2 and 2a (Table 5-2, Entry 1 and 4). These methods turned out 

to be the most efficient methods to prepare symmetric HV Iodine(III)  compounds 3a-c containing 

tetrazoles with minimum equivalents of tetrazole used. 

 

Table 5-2. Synthesis of (RCN4)2IPh compounds under different conditions and synthetic routes at 

25 °C in CH3CN 

 

 

 

 

 

5.2.2. Reactivity 

Suarez and coworkers[40,41] demonstrated the use of PhI(OAc)2-I2 in the oxidative addition 

of acetoxy groups to the various N-based substrates. The reaction was further implemented to 

iodoacyloxylation of various olefins.[27] In this context, the compounds 3a-c were reacted with 

cyclohexene in the presence of I2 in different solvents to iodotetrazolylation of styrene and 

cyclohexene. All the reactions were performed in dark at 25 0C for 1 h as shown in Table 5-3.  

 

 

 

 

Entry HV Iodine(III)  precursor K+-N4CR, R = Yields (%) 

1 

2 

3 

DCIB CH3 

p-Tol 

Ph 

82 

65 

69 

4 

5 

6 

PhI(OCOCF3)2 

 

 

CH3 

p-Tol 

Ph 

72 

65 

70 



107 

 

Table 5-3. Iodotetrazolylation reaction of cyclohexene in different solvents. 

I

N4CR

N4CR

N4CR

I

I2, solvent, 25 OC

1 h

3 a-c 6 a-c

I

N4CR

O

I

N4CR
4 b-c

or

 

Entry R in PhI(N4CR)2 Solvent Yield (%) 

1 CH3 CH3CN 75 

2 „ DCM 70 

3 „ CHCl3 69 

4 „ DMF 80 

5 „ MeOH 82 

6 4-CH3C6H4 CH3CN 80 

7 „ DCM 75 

8 „ MeOH 89a 

9 C6H5 CH3CN 85 

10 „ DCM 82 

11 „ MeOH 90a 

12 μ-oxo 4-CH3C6H4 DCM 72 

13 μ-oxo C6H5 DCM 82 

 [a] the reaction proceeded through the formation of iodomethoxylation reaction. 

 

A plausible mechanism was proposed below that shows the formation of an intermediate forming 

iodo-tetrazole adduct and which in turn reacts with olefin for yield the desired products. When the 

reactions with compounds 3b and 3c with cyclohexene were conducted in methanol (Table 3, 

entries 8 and 11), the product obtained in both cases was compound 7 (Scheme 5-4). This product 

could be the result of an exchange reaction between 3b or 3c and methanol (yielding PhI(OCH3)2), 

followed by reaction of the newly formed compound with iodine and eventually – with 

cyclohexene. 
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Scheme 5-4. The exchange reaction of compounds 7 and 8 with MeOH and further reaction with 

cyclohexene in the presence of I2. 

 

This reaction was extended to styrene and under the similar conditions two isomers a and 

b were obtained. The product a was always in higher yields than the product b in all given 

conditions and synthetic routes as shown in Table 5-4. It was already reported and explained[27] 

that the intermediate carbocation is more substituted and hence more favorable which results in 

higher yield of compound a.  

 

Table 5-4. Iodotetrazolylation reaction of styrene in different solvents  

 

Ph I

N4CR

N4CR

I2, solvent, 25 OC

1 h

R = CH3, 2
       p-Tol, 7 
       Ph, 8

R = CH3, 13
       p-Tol, 14 
       Ph, 15

N4CR

I

I

N4CR

R = CH3, 16
       p-Tol, 17 
       Ph, 18

(a) (b)

 
 

Entry PhI(HN4CR)2, R = Solvent Yields (%) 

(a) (b) 

1 CH3 CH3CN 75 20 

2  DCM 70 15 

3  MeOH 82 10 

4 p-Tol DCM 80 12 

5 Ph DCM 85 16 
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Scheme 5-5. Oxidative radical tetrazolylation of N,N-dimethylaniline at 80 oC in CH3CN. 
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In addition to these PhI(N4CR)2-I2-mediated reactions, the possibility of radical reactions of 

compound 3a in the absence of I2 was explored. The reaction between 3a and N,N-dimethylaniline 

(Scheme 4) was performed at 80 0C in bulk for 12 h and the product 10 was isolated using 

preparative TLC. 

 

5.3. Synthesis of I-sunstituted benzoiodazolotetrazoles 

As shown above, that tetrazoles are analogoues of the carboxylate and they can form HV 

I-N bonds. Based on this observation, our next steps were to synthesize an analogue of 2-

iodobenzoic acid where the carboxylate is replaced with terazole (Scheme 5-6) to form 5-(2-iodo-

phenyl)-1H-tetrazole and upon oxidize possibly forms a HV iodine(III) compound with I-N bond.  
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5.3.1. Synthesis of 5-(2-iodo-phenyl)-1H-tetrazole 

 In our initial step, the 5-(2-iodo-phenyl)-1H-tetrazole was synthesized using a literature 

procedure but with modification. 2-iodobenzonitrile (1 eq) was reacted with NaN3 (2.0 eq) and 

NH4Cl (2.0 eq) in DMF (50.0 mL) under reflux condition for 20 h. The reaction was cooled down 

at room temperature and deionised water (50.0 mL) was added (dissolves unreacted NaN3, NH4Cl, 

and the sodium salt of product) followed by the dropwise addition of concentrated HCl untill no 

precpitation was formed. The precipitated was seperated by vacuum filtaration and washed with a 

large amount of water. The obtained crude precipitate was dissolved in a solution of NaOH (20 %, 

w/v) followed by filteration. The clear basic solution was again acidified by dropwise addition of 

concentrated HCl. The obtained product was isolated in high yields and characterized by 1H and 

13C NMR spectroscopy. 
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Scheme 5-6. Synthesis of HTZIB and AcTZIB. 
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5.3.2. Synthesis and characterization of HTZIB 

After isolation, the compound was oxidized with NaIO4 in aq. AcOH (30 %, v/v) under 

refluxed conditions and after 4 h (Scheme 5-6), while cooling down brown crystals formed. The 

crystals were washed with large amounts of diethyl ether, to remove the staarting material, and 

were analyzed by 1H and 13C NMR spectroscopy single crystal X-ray crystallography (Figure 5-

2) and found to be a HV iodine(III) compound, HTZIB, with O-I-N bond as shown in Scheme 5-

6. The bond distance between I-N (end-tetrazole) was found to be 2.369 Å and whereas, O-I bond 

distance was 1.969 Å (Table 5-5). HTZIB was found to be explosive in nature due to the N-atom 

of terazole is directly bounded to HV iodine(III) which makes the compound very unstable. The 

cause of the explosion is unknown but the speculations are either the vicinty of metal spatula, 

tapping or static shock. 

 
 

Figure 5-2. X-ray crystal structure of HTZIB (50 % probability) 

 

Table 5-5. Selected bond distances and angles of HTZIB determined by the X-ray crystallography 

Selected bond distances (Å) Selected angles  

I1-O1       1.969 

I1-N4       2.369 

I1-C1       2.126 

O1-I1-C1         89.62            

N4-I1-C1         74.54 

N4-I1-O1         164.16 

I1-N4-C7         111.86 
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5.3.3. Synthesis and characterization of AcTZIB 

When HTZIB was refluxed with acetic anhydride, the obtained white crystalline solid was 

anaylzed by 1H and 13C NMR spectroscopy single crystal X-ray crystallography (Figure 5-3). The 

bond distances between I-N was measured to be 2.198 Å and the distance between O-I is 2.147. 

 
Figure 5-3. X-ray crystal structure of AcTZIB (50 % probability). 

 

Table 5-6. Selected bond distances and angles of AcTZIB determined by the X-ray 

crystallography. 

Selected bond distances (Å) Selected angles 

I1-O1         2.139         

I1-N4         2.202 

I1-C1         2.121 

I1-O2         2.791 

O1-I1-C1         85.57            

N4-I1-C1         76.72            

N4-I1-O1        161.93 

I1-N4-C7        114.53 

 

5.4. Conclusions 

In conclusion, novel symmetric HV iodine(III) reagents containing different 5-substituted 

tetrazoles were prepared and were found to be reasonably stable under ambient conditions in both 

the solid and solution states. The compounds proved to be strong oxidants. An oligomer with I-O-
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based backbone and tetrazole end groups was characterized by X-ray diffraction. The use of these 

reagents allowed oxidative iodotetrazolylation reactions of styrene and cyclohexene as well as 

radical transfer of tetrazole groups to N,N-dimethylaniline. Further investigations focused on 

expanding the utility of the HV iodine(III) reagents is currently in progress. In another part we 

could demonstrate that when carboxylate in 2-iodobenzoic acid is replaced with tetrazole it 

behaves in the similar manner as carboxylate and when oxidized it forms a new class of HV 

iodine(III) with I-N bond. Two different HV iodine(III) were synthesized, HTZIB and AcTZIB 

and shown to have HV bonds. 

 

5.5. Experimental section 

5.5.1. Materials 

 5-Methyl-1H-tetrazole (Alfa Aesar, 97 %), 5-phenyl-1H-tetrazole (Alfa Aesar, 99 %), 5-

(p-tolyl)-1H-tetrazole (TCI, 98 %), (diacetoxyiodo)benzene (PhI(O2CCH3)2, Acros, 98 %), 

[bis(trifluoroacetoxy)iodo]benzene (PhI(O2CCF3)2, Acros, 98 %), cyclohexene (Sigma-Aldrich, 

97+ %), styrene (Acros, 99 %), trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-

propenylidene]malononitrile (DCTB, TCI, 98 %), NaCl (Sigma-Aldrich, 99.9 %), NaNO3 (Sigma-

Aldrich, 99.9 %), (n-Bu)4NPF6 (TCI, 98 %), I2 (Sigma-Aldrich, 99.8 %), Na2S2O3 (Acros, 99.8 

%), CH3CO2H (Sigma-Aldrich, 99 %), Na2SO4 (Sigma-Aldrich, 99.8 %), N,N-dimethylaniline 

(Sigma-Aldrich, 99 %) were used as received. Iodosylbenzene (PhIO) was synthesized using a 

procedure described in the literature,10 which is based on the hydrolysis of PhI(O2CCH3)2 with 3 

M aqueous NaOH (pellets, 97+ %, Sigma-Aldrich, were employed to prepare the solution), 

followed by washing with chloroform (Acros, 99 % extra pure). Dichloroiodobenzene (PhICl2) 

was synthesized using a procedure described in the literature.11 The solvents, including anhydrous 



114 

 

acetonitrile (Acros, 99.9 %), anhydrous dichloromethane (Acros, 99.9 %), 1,2-dichloroethane 

(Acros, 99.8 %), diethyl ether (Acros, 99 %), n-hexane (Acros, 99.9 %), methanol (Acros, 99.8 %) 

were used as received.. The deuterated solvents, DMSO-d6 (Acros, 99.8 % D), DMF-d7 (Alfa 

Aesar, 99.5 % D), CD3CN (Cambridge Isotope Laboratories, 99.8 % D), CDCl3 (Cambridge 

Isotope Laboratories, 99.8 % D), and CD3OD (Cambridge Isotope Laboratories, 99.8 % D), 

contained a small amount of tetramethylsilane (TMS) as a chemical shift reference. All chemicals 

were used as recieved without further purification. 

 

5.5.2. Analytical procedures 

NMR spectra were recorded on a Bruker Avance DRX (400 MHz) spectrometer. 

Compound 3b-c and 4b-c were characterized by MALDI-ToF. MALDI mass spectra were aquired 

on a Shimadzu Axima Performance MALDI TOF-TOF (Shimadzu Biotech) in both positive and 

negative ion reflectron modes (100-1000 Da). For each compound, 100 profiles of 10 

spectra/profile were collected at repetition rates of either 10 or 50 Hz. Laser power was optimized 

for each sample based on the intensity and resolution of the peaks in the spectra. Pulsed ion 

extraction voltages were optimized for the expected molecular weight of each compound. The 

matrix used was DCTB dissolved in methanol (30 mg/mL) and NaCl and NaNO3 were used as 

doping agents. All spectra were baseline subtracted and Gaussian filtered for final analysis and 

compared with the matrix spectrum. The exact mass for compounds 3a, 6a-c, 8a-c, 9a-c, and 10 

was obtained using Shimadzu LCMS-IT-ToF. Standard conditions (electrospray ion source, 

positive-ion acquisition mode, interface voltage of +4.50 kV, CDL temperature of 200 °C, and 

block heater temperature of 200 °C) were used to identify all compounds except 3a. Due to the 

instability of 3a, a small peak corresponding to a fragment could only be observed when the 



115 

 

analysis conditions were changed as follows: electrospray ion source, positive-ion acquisition 

mode, interface voltage of +1.00 kV, CDL temperature of 100 °C, and block heater temperature 

of 100°C. However, the HRMS data for 4b and 3c could not be obtained due to fragmentation of 

the fragile hypervalent I-N bonds. Electrochemical measurements were carried out in an 

electrochemical cell system controlled with a CHI620E electrochemical station (CH Instruments, 

Inc., USA) with a Pt wire as the counter electrode, AgNO3/Ag as the reference and glassy carbon 

(GC) as working electrode while purging dry argon. All potential values are referenced to 

AgNO3/Ag in 0.1 M (n-Bu)4NPF6 with 0.01 M AgNO3 in DMF. Samples were prepared by 

dissolving 10-5 mol of the studied HV iodine(III) compounds in 10 mL of 0.1 M solution of (n-

Bu)4NPF6 in dry and deoxygenated DMF. The sample (10 mL) was divided in 3 parts and CV 

measurements were done on each part only once at a particular scan rate. For comparison, first, 

the redox potential of 1 mM ferrocene solution in DMF was measured with respect to AgNO3/Ag 

at the same scan rates. All samples were prepared in glove box to avoid moisture or air. X-ray 

diffraction setup is described in the SI. 

 

5.5.3. General procedure for the synthesis of HV iodine (III) compounds 3a, 4b, 4c, 

5b, and 5c 

In a 10 mL dry reaction tube, a magnetic stir bar was placed followed by PhIO (2.0 mmol, 

1 eq.) and 1a (4.0 mmol, 2 eq.). The tube was capped with a rubber septum and wrapped with 

aluminum foil to prevent exposure of the contents to light. Then, dry solvent (2.0 mL) was injected, 

the tube was immersed in a water bath at 25 °C, and the mixture was stirred until a clear solution 

was formed (ca. 30 min). The solvent was then evaporated under reduced pressure and the desired 

product was isolated. Similar experiments were performed in CH3CN using tetrazoles 1b and 1c 



116 

 

for two different time intervals: 2 h and 20 h. When the reaction time between PhIO and 1b or 1c 

was 2 h, the products were 5b or 5c, whereas, when contact time was increased to 20 h, mixture 

of oligomers 4b or 4c were obtained. Due to the poor solubility of both 5b and 5c, the spectroscopic 

characterizations were not performed.  

Bis(5-methyltetrazolyl)iodobenzene (3a). Following the general procedure, PhIO (0.44 g, 

2.0 mmol) and 1a (0.34 g, 4.0 mmol) were added in a vial followed by the addition of anhydrous 

CH2Cl2 (2.0 mL) and then removal of CH2Cl2 in 30 min yielded 3a (0.63 g, 85 %) as a sticky solid; 

1H NMR (400 MHz, CD3CN): δ  2.43 (s, 6H), 7.28 (t, J = 7.9 Hz, 2H), 7.46 (t, J = 7.5 Hz, 1H), 

7.86 (d, J = 7.9 Hz, 2H); 13C{1H}NMR (100.578 MHz, CD3CN): δ  9.3, 125.9, 132.0, 132.8, 134.4, 

154.9 ppm; HRMS: calculated m/z for C8H8IN4
+ [M-CH3CN4]

+: 286.9788; found: 286.9756; 

MALDI-ToF: calculated m/z for C10H11IN8Na+ [M+Na]+: 393.0038; found: 392.9162. 

μ-Oxo-bis(5-phenyltetrazolyl)iodobenzene (4b). Following the general procedure, PhIO 

(0.44 g, 2.0 mmol) and 1b (0.58 g, 4.0 mmol) were added in a vial followed by the addition of 

anhydrous CH3CN (20.0 mL) and then removal of solvent in 20 h yielded 4b (0.80 g, 60 %) as an 

off-white solid; 1H NMR (400 MHz, DMF-d7): δ 8.00 (s, 8H), 7.47 (dd, J = 36.0, 29.6 Hz, 12H).; 

13C{1H}NMR (100.578 MHz, DMF-d7): δ 126.6, 127.0, 128.0, 130.0, 131.0, 131.1, 133.7, 137.7 

ppm; MALDI-ToF: calculated m/z for C19H15I2N4O
+ [M-N4CC6H5]

+: 568.9335; found: 568.8090. 

μ-Oxo-bis(5-p-tolyltetrazolyl)iodobenzene (4c). Following the general procedure, PhIO 

(0.44 g, 2.0 mmol) and 1c (0.64 g, 4.0 mmol) were added in a vial followed by the addition of 

anhydrous CH3CN (20.0 mL)  and then removal of solvent in 20 h yielded 4c (0.83 g, 56 %) as an 

off-white solid; 1H NMR (400 MHz, DMF-d7): δ 2.35 (s, 6H), 7.31 (d, J = 7.75 Hz, 4H), 7.44 (t, J 

= 7.5 Hz, 4H), 7.55 (t, J = 7.9 Hz, 2H), 7.92 (d, J = 7.8 Hz, 4H), 8.03 (b, 4H); 13C{1H}NMR 
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(100.578 MHz, DMF-d7): δ 140.30, 137.68, 133.80, 132.06, 131.22, 130.78, 130.60, 129.74, 

127.99, 126.97, 126.66, 20.80 ppm; MALDI-ToF: calculated m/z for C28H23I2N8O
- [M-H]-: 

741.0084; found: 740.9355. 

 

5.5.4. General procedure for the synthesis of PhI(N4CR)2 (R = CH3, C6H5, and 4-

CH3C6H4) 

In a 10 mL dry reaction vial, a magnetic stir bar was placed followed by PhICl2 (2.0 mmol) 

and 2a (4.0 mmol). The tube was capped with a septum and wrapped with aluminum foil and then 

dry CH3CN (4.0 mL) was injected. The tube was immersed in a water bath at 25 °C and the mixture 

was stirred for 15 h. The white precipitate (KCl) was filtered off and washed with CH3CN (5×2 

mL). The combined solvent was evaporated under reduced pressure to afford 3a as yellow oil. The 

oil was dried under high vacuum for 15 h to obtain a sticky solid in 82 % yield. Similar experiments 

were performed with 2b and 2c (to afford 3b and 3c, respectively). In these cases, solids were 

isolated by filtration and washed with a minimum amount of water (2×2 mL) in order to remove 

the byproduct, KCl, followed by CH3CN (5×10 mL) and finally with diethyl ether. The products 

were dried overnight under high vacuum to obtain the pure products with yields indicated in Table 

2. The experiments with PhI(O2CCF3)2 and 2a-c were performed under similar conditions but with 

the change in the purification steps. After the reaction between PhI(O2CCF3)2 and 2a, the CH3CN 

was evaporated and the obtained sticky yellow solid was dissolved in CH2Cl2. The CH2Cl2 

dissolves the desired product 3a, leaving behind the salt, KO2CCF3 which was then filtered and 

further washed with CH2Cl2 (4×4 mL). The combined solvent was evaporated under reduced 

pressure to afford 3a as yellow oil. The oil was dried under high vacuum for 15 h to obtain a sticky 
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solid in 70 % yield. Similar experiments were performed with 2b and 2c (to afford 3b and 3c, 

respectively). In these cases, solids were isolated by filtration and washed with CH3CN (5×5 mL) 

in order to remove the byproduct, KO2CCF3, followed by diethyl ether and dried under vacuum. 

Bis(5-phenyltetrazolyl)iodobenzene (3b). PhICl2 (0.55 g, 2.0 mmol) and 2b (0.74 g, 4.0 

mmol) were added to a vial, followed by anhydrous CH3CN (20.0 mL), and the general method 

yielded 3b (0.68 g, 69 %); 1H NMR (400 MHz, DMSO-d6): δ 8.06 (d, J = 6.6 Hz, 6H), 7.59 (d, J 

= 7.5 Hz, 9H); 13C{1H}NMR (100.578  MHz, DMSO-d6): δ 158.1, 134.1, 132.1, 131.4, 130.8, 

129.7, 127.1, 126.5 ppm; MALDI-ToF: calculated m/z for C13H10IN4Cl [M-PhCN4+Cl]- : 

383.9644; found: 383.9654 

Bis(5-(4-tolyltetrazolyl))iodobenzene (3c). PhICl2 (0.55 g, 2.0 mmol) and 2c (0.79 g, 4.0 

mmol) were added to a vial, followed by anhydrous CH3CN (20.0 mL), and the general method 

yielded 3c (0.68 g, 65%); 1H NMR (400 MHz, DMSO-d6): δ 8.08 (d, J = 7.7 Hz, 2H), 7.92 (d, J = 

8.1 Hz, 4H), 7.62 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H), 7.38 (d, J = 8.1 Hz, 4H), 2.39 (s, 

6H); 13C{1H}NMR (100.578 MHz, DMSO-d6): δ 158.0, 140.7, 134.0, 132.1, 131.3, 130.2, 127.1, 

125.1–124.5, 123.6, 21.3 ppm; MALDI-ToF: calculated m/z for C22H20IN8
+ [M+H]+: 523.0856; 

found: 523.0084 

5.5.5. 1H NMR studies of exchange reaction between acetoxy groups of 

PhI(O2CCH3)2 with 1a in CD3CN 

In a 10 mL glass tube, PhI(O2CCH3)2 (9.6 mg, 3.0×10-5 mol, to reach final concentration 

of 10 mM) was added in CD3CN (3 mL) followed by C2H4Cl2 (internal standard; 10 μL) and 1a 

(2.5 mg, 3.0×10-5 mol, to reach final concentration of 10 mM) and the mixture was stirred to 

dissolve the components. Then, 0.8 mL of this solution was taken in a dark NMR tube and spectra 
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(8 scans) were collected. The equilibrium was determined as the time, at which the ratio of the 

integrals of the C2H4Cl2 protons and aromatic protons of PhI(O2CCH3)2 remained constant. It took 

5 h to reach equilibrium. Similar experiments were performed where larger amounts of 1a (2 and 

4 eq.) in CD3CN were used to replace acetoxy groups of PhI(O2CCH3)2. 

 

5.5.6. Exchange of CH3CN4 groups in PhI(N4CCH3)2 with acetoxy groups 

In a 10 mL reaction tube, a stir bar was added followed by PhI(N4CCH3)2 (11 mg, 3.0×10-

5 mol; to reach final concentration of 10 mM) and the tube was wrapped with aluminum foil to 

protect the contents from light. CD3CN (3.0 mL) was then added. The solution was stirred until it 

became homogeneous (30 min) at room temperature. Then, CH3CO2H (1.72 μL, 3.0×10-5 mol, to 

reach final concentration of 10 mM) was added followed by C2H4Cl2 (10 μL, 0.13 mmol) and TMS 

vapors. Then, 0.8 mL of the solution were transferred into a dark (ambered) NMR tube and 1H 

NMR spectra (8 scans) were collected. It took 5 h to reach equilibrium. Similar experiments were 

performed with larger amounts of CH3CO2H. 

 

5.5.7. Reaction of PhI(N4RC)2 and RCN4-I(Ph)-[O-I(Ph)]n-N4CR with cyclohexene 

in the presence of I2 

In a 10 mL reaction tube, a stir bar was placed followed by 3a (0.37 g, 1.0 mmol) and the 

tube was wrapped with aluminum foil to protect the contents from light. Then, anhydrous CH3CN 

(2.0 mL) was added and the tube was immersed in a water bath at 25 °C and stirred until the 

solution became clear (ca. 30 min). Then, I2 (0.26 g, 1.0 mmol) was added and clear solution turned 
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turbid white. This heterogeneous solution was stirred for another 5 min. and cyclohexene (0.11 

mL, 1.0 mmol) was added using a micropipette. It was noted that upon the addition of cyclohexene 

the color turned brown and the solution remained heterogeneous. After 1 h, the reaction was 

quenched using 10 % Na2S2O3 and the contents were extracted with CH2Cl2 (5×10 mL). All the 

CH2Cl2 layers were collected and washed with distilled water (3×10 mL), dried over Na2SO4, and 

then the solvent was evaporated using rotovap to obtain a yellow oil as the crude product. The 

crude product was dissolved in CH2Cl2 (1.0 mL) and hexane (20.0 mL) was added. Subsequently, 

the mixture was left at room temperature for about an hour to obtain crystals of pure 6a (0.218 g, 

74.8 % yield). Similar experiments were carried out with 3a in different solvents and with 3b and 

3c under the same conditions, as well as with 4b and 4c in DCM. In the later case, the products 

were identical to those isolated from the reactions involving 3b and 3c. 

1-(2-iodocyclohexyl)-5-methyltetrazole (6a). Following the above procedure, product 6a 

was obtained as colorless crystaline compound (0.22 g, 75 %); 1H NMR (400 MHz, CDCl3): δ 

4.57 (ddd, J = 12.5,10.9, 4.3 Hz, 1H), 4.27 (td, J = 11.2, 4.2 Hz, 1H), 2.82–2.64 (m, 1H), 2.64 (s, 

3H), 2.27–1.93 (m, 4H), 1.71 (dd, J = 7.1, 2.6 Hz, 1H), 1.68–1.41 (m, 2H); 13C{1H}NMR (100.578 

MHz, CD3CN): δ 152.7, 64.4, 40.4, 34.7, 33.9, 28.3, 25.1, 9.4 ppm; GC-MS: calculated m/z for 

C8H13IN4: 292.12; found: 292.0. 6a was reported by Hassner and co-workers but no NMR 

spectrum was reported.12  

1-(2-iodocyclohexyl)-5-phenyltetrazole (6b). Following the above procedure, product 6b 

was obtained as colorless crystalline compound (0.30 g, 85 %); 1H NMR (400 MHz, CD3CN): δ 

7.80–7.40 (m, 5H), 4.70 (ddd, J = 12.4, 10.9, 4.2 Hz, 1H), 4.64–4.50 (m, 1H), 2.64–2.55 (m, 1H), 

2.39–2.04 (m, 4H), 1.75–1.12 (m, 3H); 13C{1H}NMR (100.578 MHz, CD3CN): δ 155.6, 132.2, 



121 

 

130.3, 130.3, 125.1, 65.3, 40.2, 35.1, 33.9, 28.2, 25.0 ppm; GC-MS: calculated m/z for C13H15IN4: 

354.19; found: 354.0. 1H NMR spectrum is in agreement with that reported for 6b.13 

1-(2-iodocyclohexyl)-5-(p-tolyl)tetrazole (6c). Following the above procedure, product 6c 

was obtained as colorless crystalline compound (0.29 g, 80 %); 1H NMR (400 MHz, CD3CN + 

DMSO-d6): δ  7.72 – 7.56 (m, 2H), 7.56 – 7.40 (m, 2H), 4.76 – 4.61 (m, 1H), 4.54 (td, J = 11.3, 

4.1 Hz, 1H), 2.55 (ddd, J = 12.8, 5.6, 2.1 Hz, 1H), 2.46 (s, 3H), 2.29 (ddd, J = 6.0, 4.9, 3.1 Hz, 

1H), 2.16 – 2.00 (m, 2H), 2.01 – 1.90 (m, 1H), 1.67 – 1.41 (m, 3H); 13C{1H}NMR (100.578 MHz, 

CD3CN + DMSO-d6): δ 141.37, 129.55, 128.78, 120.47, 117.24, 63.83, 33.69, 32.71, 26.82, 23.59, 

20.25; HRMS: calculated for C14H17IN4 [M+H]+: 369.0566; found: 369.0571. 

1-iodo-2-methoxy-cyclohexane (7). 1H NMR (500 MHz, CD3CN): δ 4.06 (dd, J = 7.6, 5.5 

Hz, 1H), 3.41 (s, 3H), 3.31 – 3.16 (m, 1H), 2.40 (d, J = 15.8 Hz, 1H), 2.21 (d, J = 3.3 Hz, 1H), 2.13 

– 1.90 (m, 1H), 1.90 – 1.66 (m, 1H), 1.66 – 1.49 (m, 1H), 1.53 – 1.11 (m, 3H); GC-MS: calculated 

m/z for C7H13IO: 240.08; found: 240.00. The 1H NMR spectrum is in agreement with that reported 

for 7.14 

 

5.5.8. Reaction of PhI(N4CR)2 with styrene in the presence of I2 

In a 10 mL reaction tube, a stir bar was added followed by 3a (0.37 g, 1.0 mmol) and the 

tube was wrapped with aluminum foil. Anhydrous CH3CN (2.0 mL) was added and the tube was 

immersed in a water bath at 25 °C and stirred until the solution became clear (ca. 30 min). Then, 

I2 (0.26 g, 1.0 mmol) was added and clear solution turned turbid white. This heterogeneous solution 

was stirred for another 5 min and then styrene (0.12 mL, 1.0 mmol) was added using a 
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micropipette. After 1 h, the reaction was quenched using 10 % Na2S2O3 and then the contents were 

extracted with CH2Cl2 (5×10 mL). All the CH2Cl2 layers were collected and washed with distilled 

water (3×10 mL), dried over Na2SO4, and the solvent was evaporated to afford a yellow oil as the 

crude product. The crude product (a mixture of isomers) was dissolved in CH2Cl2 (2.0 mL) and 

the isomers were separated using a preparative thin-layered chromatography. The separated 

isomers were dissolved in CH2Cl2 (1.0 mL) and hexane (20.0 mL) was added. Subsequently, the 

mixtures were left at room temperature for about an hour to obtain crystals of compounds 8a and 

8b as the pure products. Similar experiments were carried out with 3a in different solvents and 

with 3b and 3c under the same conditions. 

1-(2-iodo-1-phenylethyl)-5-phenyl-tetrazole (8a). Following the above procedure, product 

8a was obtained as colorless crystalline compound (0.24 g, 75 %); 1H NMR (400 MHz, CD3CN): 

δ 7.44–7.37 (m, 5H), 6.20 (dd, J = 10.5, 4.7 Hz, 1H), 4.20 (t, J = 10.6 Hz, 1H), 3.94 (dd, J = 10.7, 

4.8 Hz, 1H), 2.48 (d, J = 3.7 Hz, 3H); 13C{1H}NMR (100.578 MHz, CD3CN): δ 164.1, 137.6, 

130.3, 130.0, 129.9, 129.2, 128.7, 127.9, 126.9, 73.8, 69.9, 11.1 ppm; HRMS calculated for 

C10H11IN4 [M+H]+: 315.0095; found: 315.0101. 

1-(2-iodo-1-phenylethyl)-5-phenyl-tetrazole (9a). Following the above procedure, product 

8a was obtained as colorless crystalline compound (0.24 g, 75 %); 1H NMR (400 MHz, CD3CN): 

δ 7.55–7.23 (m, 5H), 5.63 (dd, J = 10.5, 4.7 Hz, 1H), 4.19 (t, J = 10.6 Hz, 1H), 3.85 (dd, J = 10.7, 

4.8 Hz, 1H), 2.54 (d, J = 3.7 Hz, 3H); 13C{1H}NMR (100.578 MHz, CD3CN): δ 153.31, 137.4, 

130.05, 129.14, 128.60, 127.95, 126.87, 73.73, 64.14, 6.57; HRMS calculated for C10H11IN4 

[M+H]+: 315.0099; found: 315.0101. 
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1-(2-iodo-2-phenylethyl)-5-phenyl-tetrazole (8b). Following the above procedure, product 

8b was obtained as colorless crystalline compound (0.32 g, 85 %); 1H NMR (400 MHz, CD3CN): 

δ 8.14–8.12 (s, 2H), 7.55–7.54 (m, 5H), 7.54–7.41 (m, 3H), 6.31 (dd, J = 10.4, 5.3 Hz, 1H), 4.27 

(t, J = 10.6 Hz, 1H), 2.16 (dd, J = 10.8, 5.3 Hz, 1H); 13C{1H}NMR (100.578 MHz, CD3CN): δ 

165.1, 136.6, 130.6, 129.5, 129.2, 129.1, 127.3, 127.1, 126.6, 69.5, 4.4; HRMS calculated for 

C15H13IN4 [M+H]+: 377.0261; found: 377.0258. 

1-(2-iodo-1-phenylethyl)-5-phenyl-tetrazole (9b). Following the above procedure, product 

9b was obtained as white solid (60.2 mg, 16 %); 1H NMR (400 MHz, CDCl3): δ 7.69–7.50 (m, 

5H), 7.48–7.36 (m, 5H), 5.62 (dd, J = 11.1, 4.4 Hz, 1H), 4.23 (t, J = 11.0 Hz, 1H), 3.77 (dd, J = 

10.8, 4.4 Hz, 1H); 13C{1H}NMR (100.578 MHz, CDCl3): δ 155.5, 136.7, 131.6, 129.8, 129.7, 

129.4, 126.8, 123.8, 65.2, 6.1 ppm; HRMS calculated for C15H13IN4 [M+H]+: 377.0255; found: 

377.0258. 

1-(2-iodo-2-phenylethyl)-5-tolyl-tetrazole (8c). Following the above procedure, product 8c 

was obtained as white solid (0.31 g, 80 %); 1H NMR (400 MHz, CDCl3): δ 8.15–7.99 (m, 2H), 

7.53–7.42 (m, 2H), 7.41–7.32 (m, 3H), 7.28 (dd, J = 8.5, 0.6 Hz, 2H), 6.15 (dd, J = 10.3, 5.3 Hz, 

1H), 4.31–4.13 (m, 1H), 3.87 (dd, J = 10.8, 5.3 Hz, 1H), 2.40 (s, 3H); 13C{1H}NMR (100.578 

MHz, CDCl3): δ 165.4, 140.6, 136.2, 129.6, 129.6, 129.2, 126.9, 126.9, 124.5, 70.0, 21.6 ppm; 

HRMS calculated for C16H15IN4 [M+H]+: 391.0414; found: 391.0414. 

1-(2-iodo-1-phenylethyl)-5-tolyl-tetrazole (9c). Following the above procedure, product 9c 

was obtained as white solid (50.0 mg, 12 %); 1H NMR (400 MHz, CD3CN): δ 7.36–7.29 (m, 9H), 

5.73–5.69 (dt, J = 7.6, 3.8 Hz, 1H), 4.09 (td, J = 10.8, 6.6 Hz, 1H), 3.81 (dt, J = 20.8, 10.4 Hz, 

1H), 2.33 (s, 3H); 13C{1H}NMR (100.578 MHz, CD3CN): δ 156.3, 143.0, 137.7, 130.9, 130.6, 
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130.3, 130.2, 130.1, 130.0, 129.9, 127.9, 127.8, 127.5, 65.0, 21.5 ppm; HRMS calculated for 

C16H15IN4 [M+H]+: 391.0417; found: 391.0414. 

 

5.5.9. Reaction of PhI(N4CCH3)2 with N,N-dimethylaniline in CH3CN 

In a 10 mL reaction tube, a stir bar was added followed by 3a (5.84 g, 15.78 mmol) and 

the tube was wrapped with aluminum foil in order to protect the contents from light. The tube was 

carefully purged with nitrogent for 30 min and in a different vial, N,N-dimethylaniline (20 mL) 

was added and purged with nitrogen for 30 min. Then, N,N-dimethylaniline (10 mL, 78.9 mmol) 

was withdrawn using a nitrogen purged syringe and added to the tube containing 3a immediately 

turning into a dark solution. The reaction tube was then immersed in an oil bath preheated to 80 

°C and stirred there for 12 h. Then, the reaction was quenched using 10 % Na2S2O3 (20 mL) and 

the contents were extracted with ethyl acetate (5×50 mL). All the ethyl acetate layers were 

collected and washed with distilled water (3×100 mL), dried over Na2SO4 and the solvent was 

evaporated to afford a dark brown oil as the crude product. The crude product was dissolved in 

ethyl acetate (10.0 mL) and the products were separated using a preparative thin-layered 

chromatography. The desired product was isolated as brown solid (0.17 g, 15%). 

N-methyl-N-((5-methyl-1H-tetrazol-1-yl)methyl)aniline (10). Following the above 

procedure, product 10 was obtained in the mixture; 1H NMR (400 MHz, CD3CN): δ 7.14 (d, J = 

8.8 Hz, 2H), 6.89-6.61 (m, 3H), 5.36 (s, 2H), 2.90 (s, 3H), 2.45 (s, 3H); 13C{1H}NMR (100.578 

MHz, CD3CN): δ 153.3, 137.4, 130.2, 130.0, 129.1, 127.9, 126.9, 73.7, 64.1; HRMS calculated 

for C10H13N5 [M+H]+: 204.1243; found: 204.1244. 
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CHAPTER 6.   

MODIFICATION OF NATURAL RUBBER USING HV IODINE(III) COMPOUNDS 

CONTAINING TETRAZOLES 

 

6.1. Introduction  

6.1.1. Natural rubber (PIP) 

The natural rubber is obtained from Hevea brasiliensis, contains 93-95% of cis-1,4-

polyisoprene (PIP).1 It is an unsaturated elastomer with many superior properties such as high 

strength, outstanding resilience, and high elongation at break.2 However, PIP lacks in some 

properties such as oil and weather resistances. Moreover, the presence of the unsaturation of 

carbon-carbon double bonds in the PIP backbone causes easy degradation when PIP is exposed to 

sunlight, ozone, UV radiation and air, especially at high temperature.3 Therefore, chemical 

modification of PIP is needed to overcome the disadvantages and to achieve more desirable 

properties. The chemical modification not only improves the interaction between the blend 

components but also compensates some of PIP drawbacks such as its resistance to ageing and to 

solvents or its gas impermeability.4 Many types of chemical modification have been used, such as 

chlorination,5, hydrogenation,6 epoxidation,7, 8 and grafting.9 Because of the high reactivity of 

double bonds, an organic compound carrying functional groups can be easily grafted onto an olefin 

by various reactions such as electrophilic,10 nucleophilic,11 and radical addition reactions.12, 13 The 
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reactivity, however, is often less in a polymer compared with a low molecular weight olefin, since 

the double bond in a macromolecule is less accessible than a structurally similar double bond in a 

molecule. The high sensitivity to changes in temperature14 and the radical nature of the process,15 

leading to the occurrence of gelation reactions, hindered the wide introduction of the given method 

in the synthetic rubber industry. Thus, modification at low temperature and rapid reaction 

conditions might be the key to functionalize the PIP backbone without gelation. Moreover, the 

easy and quick modification of PIP with halogens like iodine and energetic molecule such as 

tetrazoles at the same time, without gelation, could be of interest to many industrialists, defense 

research agencies, and academic societies for the explosive or energetic characteristics of 

tetrazoles and opportunity to further modification of backbone via iodine functionality. 

The modification of PIP with energetic molecules such as tetrazoles might find many 

applications in the fields of binders,16 propellants,17, 18 or high energy output materials.19, 20 They 

offer interesting properties for the demands of new energetic polymers. They bring along a high 

nitrogen content (up to 79 % for 1H-tetrazole) and hence an environmental friendliness (due to 

their solely gaseous decomposition products N2).
21 Additionally, they possess overall good thermal 

stabilities and considerable energetic properties.22 They also offer high heats of formation but are 

more stable than azide groups.23, 24 Hence, readily available polymers such as natural rubber 

functionalized with tetrazole groups are of interest of this article. These energetic polymers are 

promising but they come along with tedious methods to prepare them that is mostly with their 

synthetic routes that require high temperature, longer reaction time, synthesis of special monomers, 

which, similarly to other low molecular weight explosives, are often heat- or shock-sensitive, and 

therefore harmful to work with. 
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The organic compounds of polyvalent (III- or V-valent) iodine, also named HV iodine 

compounds (due to the special 3-center-4-electron bonds at the central halogen atom) have attained 

great importance in organic synthesis. Many of these compounds, including (diacyloxyiodo) 

arenes, ArI(O2CR), can serve as free radical precursors and have been successfully employed in a 

number of chemical transformations, including (pseudo)halogenation and tetrazolylation. Our 

group has reported the synthesis of various types of different HV iodine (III) compounds 

containing various tetrazoles and their use in the oxidative iodotetrazolylation reactions of styrene 

and cyclohexene as well as radical transfer of tetrazole groups to N, N-dimethylaniline. In this 

article, the iodotetrazolylation reactions is extrapolated to PIP to obtain ITZ-PIP. The reactivity at 

iodine site was further explored to prepare N3TZ-PIP and methyl methacrylate (MMA) grafted 

brush polymers using ITP.  

 

 

Scheme 6-1. Synthetic routes to modified PIP. 
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6.2. Results and Discussion 

6.2.1. Synthesis of ITZ-PIP using HV iodine compounds 1a-c in the presence of I2 

The HV iodine (III) compounds 1a-c were synthesized using the previously reported 

procedure (Chapter 5 and section 5-5-3). Suarez and coworkers demonstrated the use of 

PhI(O2CCH3)2-I2 in the acetoxylation of various substrates, and the reaction was further 

implemented to the iodoacetoxylation of olefins. In our previous report, we also successfully 

reported the reaction of HV iodine (III) compounds containing various tetrazoles with cyclohexene 

and styrene in the presence of I2 to yield iodotetrazolylated products. Similar iodotetrazolylation 

reactions between PIP and 1a-c were carried out in the presence of stoichiometric I2 in CH2Cl2 as 

shown in Scheme 6-1. Initially, HV iodine compounds were mixed with I2 in CH2Cl2 to produce 

an intermediate adducts 2 a-c, as shown in Scheme 6-1, that immediately reacts with the double 

bonds of PIP. Since the double bonds of the PIP are assymetric in nature, the addition reaction of 

the adducts 2 a-c with the olefin group of PIP yielded asymmetric products, 3 a-c. The obtained 

copolymers had a secondary and a tertiary iodine and tetrazole at the backbone of PIP. 
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Scheme 6-2. Oxidative iodotetrazolylation of PIP in the presence of I2 in CH2Cl2 at 25 0C. 
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Furthermore, iodine could be very easily be replaced with substituent such as azide, making 

the polymer more energetic in nature. Another advantage of the iodotetrazolylated modification in 

this work was that the reaction was completed in 15 min in all the cases, confirmed by 1H NMR 

analysis. The reaction was kept for a longer time, 1 h, to eliminate the possibility of obtaining 

unreacted PIP. After 1 h, the polymers were individually purified by dialysis against acetone using 

a membrane with molecular weight cutoff of 500 Da (Spectrum Laboratories). The solvent was 

changed every 10−12 h for each and this was repeated ten times, and the polymer was obtained by 

evaporation of the solvent followed by dissolving the polymer in a minimum amount of CH2Cl2 

and pouring into liquid nitrogen to obtain solvent free pure modified PIP with various tetrazoles 

and iodine. After the isolation of products 3a-c, they were subjected to a substitution reaction of 

iodine to azide groups to obtain products 4a-c. The substitution reaction was carried out with NaN3 

in DMF at room temperature for 4h and the polymers were isolated by precipitation in methanol-

water (1:1, v/v) and analyzed by 1H NMR in CDCl3 and IR spectroscopy on KBr plates. 

The 1H NMR spectra for reaction between PIP and 1c in the presence of I2 was analyzed 

and it was found that the vinyl protons of PIP at 5.1 ppm disappeared in 1 h, as shown in Figure 

6-2-A. The appearance of a peak, 5, at 4.5 ppm was for the proton next to the 5-(4-CH3-C6H5) 

tetrazole and peak, 4, at 3.54 ppm is the result of the presence of iodine atom (Figure 6-2-B). The 

appearance of peaks 8 at 2.41 ppm, 9 at 7.23 ppm, and 10 at 8.00 ppm are the protons associated 

with the methyl, meta protons, and ortho protons of 5-(4-CH3-C6H5) of tetrazole respectively 

(Figure 6-2-B). Furthermore, after the substitution reaction of iodine group in 3c with N3-group 

using NaN3 in DMF at room temperature it was found that the peak 4 at 3.54 ppm was disappeared 

and a new peak 11 at 2.57 ppm appeared due to the proton next to the N3-group appeared. Also, 
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there was a new peak 13 at 5.82 ppm appearing which might be a result of the vinyl protons due 

to the elimination reaction, as shown in Figure 6-2.    

 

 
Figure 6-1. 1H NMR spectra overlay for the modification of cis-1,4-polyisoprene with peak 

assignments. Spectrum A) represents the pure cis-1,4-polyisoprene, B) the 1H NMR spectrum of 

iodotetrazolylation product 3c, and C) the 1H NMR spectrum of polymer with tetrazole and azide 

4c. 

 

The polymers 3c and 4c were further analyzed using FT-IR spectroscopy and compared 

with the pure PIP. As shown in the Figure 6-3, for polymer 3c, the disappearance of the 

characteristic peaks of PIP at 2966 cm-1 (=C-H stretch), 2917 and 2848 cm-1 (-C-H stretch), 1660 

cm-1 (alkenyl C=C stretch), 834 cm-1 (=C-H bending) and appearance of new peaks at 1614 cm-1 

(aromatic C=C stretch), 820 cm-1 and 757 cm-1 (aromatic C-H bending) further proves that the 

iodotetrazolylation reaction was successfully achieved with the disappearance of all the starting 

material.  
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Scheme 6-3. Synthetic route to modify cis-1,4-polyisoprene to incorporate various tetrazoles and 

azide groups.  

 

 The intense absorbance at ca. 2100 cm-1 of that functionality, corresponding to the azide 

asymmetric stretching vibration appears for the polymer 4c further proving the substitution of 

iodine to azide groups.  
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Figure 6-2. IR spectra (films cast on KBr plates) for the pure cis-1,4-polyisoprene, polymer 3c, 

and polymer 4c with the assignment of frequencies. 

 

 To further verify the presence of azide groups in the polymers and to demonstrate the utility 

of the presented reaction for further functionalization, the polymers were reacted with an alkyne-
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terminated poly(ethylene oxide) under ‘‘click’’ chemistry conditions with a Cu(I)-based catalyst 

to yield polymeric brushes with hydrophilic side chains and a hydrophobic backbone (Scheme 6-

1 (b)). The grafting-onto functionalization of polymers with azide groups using the same PEO 

derivative as in this work, MePEO-P, has been reported. The click reactions were carried out at r.t. 

in DMF using CuBr as the catalyst under a nitrogen atmosphere. Figure 6-4 shows the SEC 

profiles of the mixtures of N3TZ-PIP and MePEO-P before the reaction and after 20 h at which 

point PMDETA was added and the reaction was continued further for 2 h. After 2 h, that is 22 h 

for the whole reaction, the significant decrease in the intensity of SEC peak for MePEO-P and a 

shift towards the higher molecular weight of N3TZ-PIP confirmed the occurrence of the click 

reaction.  
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Figure 6-3. Click grafting reaction of MePEO-P onto N3TZ-PIP at different time interval. At 20 

h, PMDETA was introduced as a ligand to increase the redox potential of Cu(I)Br. 

 

 In our next attempts, iodine functionality was further explored by using it as initiating site 

for the ITP reaction to graft polymethyl methacrylate (polyMMA). The ITP reactions were done 
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under bulk and solution conditions at 70 0C. When compared, as expected the rate of 

polymerization in bulk ITP (Table 6-1, entry 1) was faster than the rate of polymerization in 

solution (Table 6-1, entry 2) as shown in Figure 6-5 (a).  

 

Table 6-1. Graft polymerization of MMA onto 3c under ITP   

# Solvent [MMA]0 / [3c]0 / [AIBN]0 T [h] Conv [%] Mn PDI 

1 Bulk 200 / 1 / 0.2 2 37 83,000 1.58 

2 DMAc 200 / 1 / 0.2 9 29 24,500 1.59 

 

To begin the investigation, MMA was polymerized in bulk and DMAc at 70 0C using 3c 

as the macro-CTA with the degree of polymerization at complete monomer conversion (DPn,targ = 

[MMA]0 / [3c]0) set to 200, and with 20 mol % AIBN relative to macro-CTA, acting as the 

additional radical source (Figure 6-5). The monomer conversion was periodically determined by 

integrating the 1H NMR signals of the vinyl and methyl hydrogen atoms. The first-order kinetic 

plot (Figure 6-5 (a)) was linear that indicates the constant generation of polymeric radicals. The 

polymerization was well-controlled, as indicated by the linear increase of Mn,app and decrease in 

PDI with conversion (Figure 6-5 (b)). The molecular weight distribution (MWDs) remained 

narrow and symmetric for both bulk and solution (Figure 6-6 (a) and (b)) and shifted smoothly 

towards higher molecular weights proving that the polymer 3c efficiently exchanged between 

propagating and dormant chains. The brush polymers were isolated as described in the synthetic 

procedure and were subjected to TGA analysis and compared with pure polyMMA. It was found 

that the TGA curves for both brush and polyMMA were similar (Figure 6-7) and that could 
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because of dense grafting of polyMMA onto the backbone of polymer 3c. This again proves the 

presence of iodine mostly at each alternate carbon in the 3c backbone and the efficiency of ITP 

reaction. 
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Figure 6-4. The kinetics of the synthesis of brush polymer at the surface of iodotetrazolylated cis-

1,4-polyisoprene using 20 % AIBN vs. ITZ-PIP in bulk and in DMAc (a) and (b) the evolution of 

apparent molecular weights and polydispersity index over conversion. 
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Figure 6-5. Evolution of GPC traces during the synthesis of brush polymer using 20 % AIBN vs. 

macro-CTA in bulk (a) and (b) in DMAc. 
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6.3. Experimental 

6.3.1. Materials 

5-Methyl-1H-tetrazole (Alfa Aesar, 97%), 5-phenyl-1H-tetrazole (Alfa Aesar, 99%), 5-(p-

tolyl)-1H-tetrazole (TCI, 98%), [bis- (trifluoroacetoxy)iodo]benzene (PhI(O2CCF3)2, Acros, 

98%), polyisoprene (Aldrich, average Mw ~38,000 by GPC), I2 (Sigma-Aldrich, 99.8%),  CuBr 

(99.99%, Aldrich), NaN3 (99.9%, Sigma-Aldrich), K2CO3 (Sigma-Aldrich, 99.8%) and solvents, 

including methylene chloride (Fisher, 99.5%), methanol (Fisher, 99.8%), acetone (Fisher, 99.8%) 

and N,N-dimethylformamide (DMF, 98%, EMD Millipore), and were used as received. The 

deuterated solvent, CDCl3, (99.8% D, Cambridge Isotope Laboratories) contained a small amount 

of tetramethylsilane (TMS) as a chemical shift reference. Poly(ethylene oxide) monomethyl ether 

4-pentynoate (MePEO-P, Mn = 2,000 g mol-1) was synthesized by esterification of the polymeric 

alcohol, MePEO-OH, with 4-pentynoic acid. HV iodine(III) reagents were synthesized according 

to a recently reported procedure from our lab. 

 

6.3.2. Instrumentation and analysis 

To monitor the progress of the ITP reactions, samples were withdrawn periodically using 

a nitrogen-purged syringe. Part of each sample was diluted with CDCl3 (containing a small amount 

of tetramethylsilane as the chemical shift reference) for NMR analysis (determination of 

conversion), which was carried out on a Bruker Avance DRX (400 MHz) spectrometer. Another 

part of the sample was diluted with THF and filtered through an Acrodisc 0.2 μm PTFE syringe 

filter, and the solution was subjected to size exclusion chromatography (SEC) analysis. Molecular 

weights (number-average (Mn) and weight-average (Mw)) and molecular weight distribution 

dispersities (Đ = Mw/Mn) were determined by SEC on a Tosoh EcoSEC system equipped with a 
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series of 4 columns (TSK gel guard Super HZ-L, Super HZM-M, Super HZM-N, and Super 

HZ2000) and using THF as the eluent (30 °C) and a refractive index detector. The SEC instrument 

was calibrated using a series of linear polySty standards. Infrared (IR) spectra were collected on a 

Thermo Scientific Nicolet iS10 FT-IR Spectrometer. The samples were prepared by dissolving 

100 mg of polymer in 2 mL of chloroform, followed by casting a film on a KBr plate by slow 

evaporation of the solvent (achieved by covering the salt plate with the polymer solution with a 

beaker). 1H (64 scans) and 13C NMR spectra (10,000−15,000 scans) of the purified polymers (ca. 

0.2 g in 0.6 mL of CDCl3 containing tetramethylsilane, TMS) were acquired on the spectrometer 

mentioned above.  

 

6.3.3. Reaction of 1a, 1b, or 1c with PIP in the presence of I2  

 In a 250 mL beaker, PIP (10 g, 0.147 mol) was dissolved in CH2Cl2 (100 mL) to make the 

stock solution of PIP. Then, in a 100 mL reaction tube, a stir bar was placed followed by 1c (7.67 

g, 14.7 mmol) and the tube was wrapped with aluminum foil to protect the contents from light. 

Then, CH2Cl2 (10.0 mL) was added and the tube was immersed in a water bath at 25 °C and stirred 

until the solution became clear (ca. 30 min). Then, I2 (3.73 g, 14.7 mmol) was added and the clear 

solution turned turbid white. This heterogeneous solution was stirred for another 5 min. and PIP 

(1.0 g, 14.7 mmol, in 10.0 mL CH2Cl2 ) was added using a syringe. It was noted that upon the 

addition of PIP the color turned brown and the solution remained heterogeneous. After 1 h of 

stirring at room temperature, the solvent was evaporated under reduced pressure. The obtained 

brown solid was dissolved in acetone (10.0 mL) and dialyzed against acetone using a membrane 

with molecular weight cutoff of 500 Da (Spectrum Laboratories). The solvent was changed every 

10−12 h and this was repeated six times, and the polymer was obtained by evaporation of the 
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solvent. The corresponding iodotetrazolylated PIP were precipitated from CH2Cl2 solutions in 

methanol-water mixture (1:1, v/v) and dried in vacuum for 12 h to obtain a light brown powder. 

The similar experiments were done with 1a and 1b under similar reaction conditions. 

 

6.3.4. Substitution reaction of iodine in iodotetrazolylated PIP, 3a-c, with azide 

groups 

In a 10 mL test tube equipped with a stir bar, 3c (3.7 g, 9.6 mmol) was dissolved in DMF 

(2.0 mL) and NaN3 (1.25 g, 19.0 mmol, 2 equiv. with respect to each iodine atom in 3c) was added. 

The reaction mixture was allowed to stir for 4h while monitoring the reaction by 1H NMR. Finally, 

the reaction mixture was precipitated in methanol-water mixture (1:1, v/v) to yield a light brown 

powder which was then dried in vacuum for 12 h. 

 

6.3.5. Click chemistry-type grafting onto azidated PIP 

In a 10 mL reaction tube equipped with a magnetic stir bar, 4c (100 mg, 0.37 mmol) and 

CuBr (10 mg, 74.3 µmol, 20 mol % vs. 4c), were added and the tube was capped with a rubber 

septum and secured with electric tape. The tube was evacuated and backfilled with nitrogen five 

times. Deoxygenated DMF (0.5 mL) was injected with a nitrogen purged syringe, and the mixture 

was stirred until the solution was formed. Then, deoxygenated MePEO-P (0.7 g, 0.37 mmol) was 

added using a nitrogen-purged micro syringe, and the solution turned yellow. The reaction mixture 

was stirred at r.t. and samples were taken in 12 h, 20 h (at this time PMDETA (31.0 µL, 0.15 

mmol) 40 mol% vs 4c was added) and 22 h, which were diluted with THF and analyzed by SEC. 
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6.3.6. Grafting of MMA onto iodotetrazolylated PIP using ITP 

To a 10 mL reaction tube, 4c (34 mg, 0.094 mmol, 1 eq.) and AIBN (3 mg, 0.019 mmol, 

0.2 eq.) were added followed by dissolving the solids in MMA (2.0 mL, 18.7 mmol, 200 eq.). The 

homogeneous solution was purged with nitrogen for 15 min while the tube was immersed in an 

ice-water bath followed by placing the reaction tube in an oil bath preheated to 70 0C. Samples 

were withdrawn periodically to determine the monomer conversion by 1H NMR (ca. 0.05 mL of 

the polymer solution was dissolved in 0.5 mL CDCl3) and the molecular weights and PDI evolution 

by GPC (ca. 0.05 mL polymer solution was dissolved in THF and passed through a 0.2 μm PTFE 

syringe filter). The final polymer was dissolved in DCM (approximately 1.8 mL of the polymer 

solution in 10 mL of DCM) and precipitated in diethyl ether (100 mL). The polymer was 

redissolved in DCM and reprecipitated in ether and this was repeated for three times.  The isolated 

polymer was dried in vacuum for 12 h. The similar reaction was carried out in the presence of 1:1 

(v/v) DMAc and anisole (2 mL) vs. MMA. 

 

6.4. Conclusion 

 The oxidative iodotetrazolylation reactions of PIP was performed under mid conditions 

and were found to be efficient. The iodotetrazolylation reaction time was less than an hour and no 

gelation was found during the reaction. The products were characterized by 1H, 13C NMR and IR 

spectroscopy, GPC, DSC, and TGA. The iodine group was further utilized to functionalize the PIP 

backbone with azide groups and the combination of azide and tetrazole were found to be 

exothermic during the SDT analysis. The azidation reaction was not found to be inefficient as most 

of the iodine was present at tertiary position and the secondary position. The iodine functionality 
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was further explored with the ITP reaction where iodine was used as the initiating site for grafting 

polyMMA. The modification of PIP was found efficient throughout the study. 
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