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The continuously changing structure of power systems and the inclusion of renewable

energy sources are leading to changes in the dynamics of modern power grid, which have

brought renewed attention to the solution of the AC power flow equations. In particular,

development of fast and robust solvers for the power flow problem continues to be actively

investigated. A novel multigrid technique for coarse-graining dynamic power grid models

has been developed recently. This technique uses an algebraic multigrid (AMG) coarsening

strategy applied to the weighted graph Laplacian that arises from the power network’s topol-

ogy for the construction of coarse-grain approximations to the original model. Motivated by

this technique, a new multigrid method for the AC power flow equations is developed using

this coarsening procedure. The AMG coarsening procedure is used to build a multilevel hi-

erarchy of admittance matrices, which automatically leads to a hierarchy of nonlinear power

flow equations. The hierarchy of power flow equations is then used in a full approximation

scheme (FAS) and a multiplicative correction multigrid framework to produce multilevel

solvers for the power flow equations.
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Chapter 1

Introduction

The rapid proliferation of renewable energy generation, such as hydro, bio-gas, solar,

wind and geothermal sources, leads to substantial changes in the dynamics of power grid

networks. Because modern society requires large amounts of energy for use in industry,

commerce, transportation, communication and domestic appliances, this consumption affects

the dynamics too ([33]). This increasing demand of electric energy causes large power systems

to operate under stressed conditions that reach the system’s stability limits. For these

reasons, it is important to know the state of the system by determining the voltages and

currents at every node of the power network to monitor the system under stressed conditions.

Moreover, monitoring the system can help in long-term planning designs so that the network

components (generators, lines, transformers, etc.) can be appropriately constructed and

stationed to withstand the stresses they will be exposed to ([33]).

1.1. Derivation of the Power Flow Equations

A power grid network is composed of r generator buses, n − r − 1 load buses, and

a slack bus. The network can be represented as a graph denoted by G(V,E) where the

set V = {1, . . . , n} represents the bus nodes and E is the set of edges representing the

transmission lines connecting the buses. Behind the network, we have the system of nodal

network equations describing the relationships between currents and voltages at every node

in the network. It is given by

I = YV, (1.1)
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(a) Renewable energy alternatives and new ele-
ments taking part into the modern energy market

(b) Large power networks are composed of a
large number of buses

Figure 1.1: Modern power grid networks

where I andV are the vectors of complex current injections and voltages at every node in the

grid, respectively, and Y is the complex admittance matrix, which is discussed in Chapter

7.

The power injected at node i is given by

Si = Pi + ı̂Qi = ViIi, (1.2)

where (·) denotes complex conjugate and ı̂ =
√
−1 is the imaginary unit. Pi (the real

component of the injected power) is called the active power andQi (the imaginary part of the

injected power) is called the reactive power. Expressing the components of the admittance

matrix in terms of their real and imaginary parts

Yij = Gij + ı̂Bij , (1.3)
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the total current injection at node i can be written as

Ii =

n∑

j=1

YijVj =

n∑

j=1

(Gij + ı̂Bij)Vj . (1.4)

Using polar coordinates for V, i.e. Vj = |Vj| eı̂δj , equation (1.2) can be rewritten as

Pi = |Vi|
n∑

j=1

|Vj| {Bij sin (δi − δj) +Gij cos (δi − δj)} (1.5)

Qi = |Vi|
n∑

j=1

|Vj| {Gij sin (δi − δj)−Bij cos (δi − δj)} (1.6)

where δi is the voltage phase angle at the ith bus, and Gij and Bij are the conductance and

susceptance of the transmission line connecting buses i and j. Equations (1.5)-(1.6) are the

power flow equations. There are four quantities defined for every bus i: the active power

Pi, the reactive power Qi, the voltage magnitude |Vi| and the phase angle δi. A bus at

which the active power and the voltage magnitude are specified is called a PV bus (usually

a generator). A bus at which active and reactive powers are specified is called a PQ bus

(usually a load bus). At the slack bus the voltage magnitude and the phase angle are known.

Since only the voltage magnitude |Vi| and active power Pi = Re (Si) are known for every

PV bus i, equation (1.6) is not complete for PV buses. In order to have a complete set of

equations for the PV buses, the voltage magnitudes are specified at the PV buses. Thus, a

complete set of power flow equations in polar form are

3



Pi = |Vi|
n∑

j=1

|Vj| {Bij sin (δi − δj) +Gij cos (δi − δj)} (1.7)

for i = 1 . . . , n− 1,

Qi = |Vi|
n∑

j=1

|Vj| {Gij sin (δi − δj)−Bij cos (δi − δj)} (1.8)

for every PQ bus i,

(|Vsp
i |)2 = |Vi|2 (1.9)

for every PV bus i

where |Vsp
i | is the specified voltage magnitude at the PV bus i.

Typically, the resistance of a transmission line is significantly smaller in magnitude than

the reactance. Therefore, the real part of the admittance matrix is often set to zero resulting

in the following simplified system of equations

Pi = |Vi|
n∑

j=1

|Vj| {Bij sin (δi − δj)} (1.10)

for i = 1, . . . , n− 1

Qi = −|Vi|
n∑

j=1

|Vj| {Bij cos (δi − δj)} (1.11)

for every PQ bus i

(|Vsp
i |)2 = |Vi|2 (1.12)

for every PV bus i.

The unknown quantities are determined by solving either nonlinear system (1.7)-(1.9) or

(1.10)-(1.12).

4



1.2. Review of Classical Solution Methods

In general, analytic solutions for the power flow problem are not known. Thus, compu-

tational methods have to be used to calculate an approximate solution ([19, 43, 50]).

In the following, the magnitudes (moduli) of voltages, currents and impedances are ex-

pressed in per-unit or percent of specified base values. For instance, if 20kV is specified as

base voltage, then 19kV corresponds to 19/20=0.95 per unit (p.u.). Calculations are made

using per-unit quantities rather than dimensional quantities ([20]). Use of the per-unit sys-

tem can be thought as a normalization or rescaling of the quantities involved in a power flow

model.

1.2.1. Nonlinear Gauss-Seidel (Cartesian Form)

When complex voltages, power injections, and entries of the admittance matrix are rep-

resented using cartesian coordinates (i.e., real and imaginary components), the voltages can

be computed iteratively by solving the system of equations

Vi =
1

Yii

[
Pi − ı̂Qi

Vi

−
n∑

j=1, j 6=i

YijVj

]
(1.13)

for i = 1, . . . , n−1. These equations are obtained by using (1.1) and taking the complex con-

jugate of (1.2). The most simple iterative method used for solving the power flow equations

is Gauss-Seidel. Starting with an initial guess V0, Gauss-Seidel approximates the complex

voltage at node i by iterating the equation

Vl
i =

1

Yii

[
Pi − ı̂Qi

V
l−1

i

−
i−1∑

j=1

YijV
l
j −

n∑

j=i+1

YijV
l−1
j

]
(1.14)

for every i = 1, . . . , n− 1 and for l = 1, 2, . . .

Since for a PV bus Qi is unknown, it can be first approximated using (1.8) giving

Qi ≈ |Vi|
n∑

j=1

|Vj| {Gij sin (δi − δj)−Bij cos (δi − δj)} . (1.15)

5



Then, this value is used in (1.14) to calculate Vl
i ([20]).

1.2.2. Newton-Raphson

By rewriting equations (1.5)-(1.6) in the vector form

F (x)− y = 0, (1.16)

a different approach can be obtained. Here

x =


 δ

|V|


 =




δ1
...

δn−1

|V1|
...

|Vn−1|




, y =


 P

Q


 =




P1

...

Pn−1

Q1

...

Qn−1




, F(x) =


 F1(x)

F2(x)


 =




F1

1
(x)

...

F1

n−1
(x)

F2

1
(x)

...

F2

n−1
(x)




, (1.17)

with

F1
i (x) = |Vi|

n∑

j=1

|Vj| {Bij sin (δi − δj) +Gij cos (δi − δj)} (1.18)

and

F2
i (x) = |Vi|

n∑

j=1

|Vj| {Gij sin (δi − δj)−Bij cos (δi − δj)} (1.19)

for i = 1, . . . , n− 1 (the slack bus is omitted since |Vn| and δn are specified).

6



Problem (1.16) can be then solved by using Newton’s iterative method. The Jacobian

matrix of F(x) is

J(x) =


 J1(x) J2(x)

J3(x) J4(x)


 =




∂F1
1

∂δ1
. . .

∂F1
1

∂δn−1

∂F1
1

∂|V1|
. . .

∂F1
1

∂|Vn−1|

...
...

...
...

∂F1
n−1

∂δ1
. . .

∂F1
n−1

∂δn−1

∂F1
n−1

∂|V1|
. . .

∂F1
n−1

∂|Vn−1|

∂F2
1

∂δ1
. . .

∂F2
1

∂δn−1

∂F2
1

∂|V1|
. . .

∂F2
1

∂|Vn−1|

...
...

...
...

∂F2
n−1

∂δ1
. . .

∂F2
n−1

∂δn−1

∂F2
n−1

∂|V1|
. . .

∂F2
n−1

∂|Vn−1|




. (1.20)

Starting with an initial guess

x0 =


 δ0

|V0|


 ,

Newton’s method approximates the solution of (1.16) as follows:

for i = 0, 1, . . .

1. Compute

∆yi =


 P− F1(xi)

Q− F2(xi)


 (1.21)

using (1.18) and (1.19).

2. Compute the Jacobian matrix of F evaluated at xi, denoted J (xi), using (1.20).

3. Solve

J
(
xi
)
∆xi = ∆yi (1.22)

for ∆xi.

4. Update the approximate solution

xi+1 = xi +∆xi. (1.23)

7



Since for each PV bus i, Qi is unknown, the equation

F2
i (x)−Qi = 0 (1.24)

in (1.16) is not completely defined. Furthermore, |Vi| is known, which implies that no

processing is needed for the corresponding element in x. Hence, |Vi| and Qi can be dropped

from x and y, respectively. Moreover, with |Vi| dropped from x, the column corresponding

to partial derivatives with respect to |Vi| have to be removed from the Jacobian matrix

(1.20). In addition, since equation (1.24) is not completely defined, the row corresponding

to partial derivatives of F2
i are also removed from the Jacobian matrix of F. After removing

|Vi|, Qi from x and y, and the indicated row and column from the Jacobian matrix of F,

the size of problem (1.16) is reduced ([20]).

1.2.3. Fast Decoupled Power Flow

Two useful properties of power systems are ([21]):

1. As the transmission lines are more reactive, the conductances are relatively small com-

pared to the susceptances, i.e. Gij ≪ Bij .

2. Under normal steady-state operation, differences between phase angles are very small.

With these facts at hand, let us analyze
∂F1

i

∂|Vi|
,

∂F1
i

∂|Vj |
,

∂F2
i

∂δi
and

∂F2
i

∂δj
in (1.20) with i 6= j for

all i, j = 1, . . . , n− 1. These terms are given by the expressions

∂F1
i

∂|Vi|
= 2|Vi|Gii +

n∑

j=1, j 6=i

|Vj| [Gij cos (δi − δj) +Bij sin (δi − δj)] , (1.25)

∂F1
i

∂|Vj|
= |Vi| [Gij cos (δi − δj) +Bij sin (δi − δj)] , (1.26)

∂F2
i

∂δi
=

n∑

j=1, j 6=i

|Vi| |Vj| [Gij cos (δi − δj) +Bij sin (δi − δj)] , (1.27)

8



∂F2
i

∂δj
= −|Vi| |Vj| [Gij cos (δi − δj) +Bij sin (δi − δj)] . (1.28)

By the first property, Gii and Gij are negligible. Also, since (δi − δj) is small, so is

sin (δi − δj). Hence,
∂F1

i

∂|Vi|
≈ 0,

∂F1
i

∂|Vj |
≈ 0,

∂F2
i

∂δi
≈ 0 and

∂F2
i

∂δj
≈ 0. This implies that J2(x

i) ≈ 0

and J3(x
i) ≈ 0 in (1.20), reducing (1.22) to two sets of decoupled equations

J1(x
i)∆δi = P− F1(xi) (1.29)

J4(x
i)∆|Vi| = Q− F2(xi) (1.30)

This simplified method is known as Fast Decoupled Power Flow.
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1.2.4. DC Power Flow

Usually, the base value for the voltages in the per-unit representation is chosen in such

a way that the voltage magnitudes are close to 1.0 per unit. By assuming this, under

normal steady state operation, the voltage magnitudes are exactly equal to 1.0 per unit (i.e.

|Vi| = 1.0 for all i = 1, . . . , n), the dependence of F2 on |V| in (1.20) can be completely

neglected. With this additional simplification the real power balance equations reduce to

the linear problem

−Bδ = P. (1.31)

This technique is referred to as DC Power Flow ([20]).

10



Chapter 2

Multigrid

One of the most popular methods for solving nonlinear problems is Newton’s method,

described in Section 1.2.2 ([26, 46]). Unfortunately, its basin of attraction is generally small

compared to other nonlinear solvers, which means it is less robust. Furthermore, for large

problems such as the power flow equations on large power grids, Newton’s method must solve

large systems of equations, increasing its computational cost. In order to overcome these

limitations, a multiscale solver will be examined. This solver will use local information of the

problem to update the solution values at every node. The method has a basin of attraction

that can be larger than Newton’s method, and the multiscale feature of the scheme can

reduce the actual cost of the solution procedure.

Multigrid (MG) is one of the most successful multiscale solvers for PDE-based problems.

It is a methodology for solving an extensive class of problems by constructing a hierarchy of

grids and resolving different scales of the solution on each grid of the hierarchy. Multigrid

methods were first investigated by Fedorenko, who in 1964 proposed and proved the conver-

gence of the first multigrid algorithm for the Poisson equation on a square domain ([16, 17]).

In 1966, Bakhvalov extended its application to more general boundary value problems ([2]).

Inspired by the papers of Fedorenko and Bakhvalov, in 1972 Brandt proved the actual effi-

ciency of multigrid algorithms ([4]). He also studied the development of adaptive multilevel

methods and introduced the nonlinear multigrid method FAS, which will be discussed in Sec-

tion 2.3 ([5]). In 1976, Hackbusch analyzed the convergence of the multigrid algorithm first

using the Fourier transform and later making use of the smoothing and approximation prop-

erties ([22, 23]). The effectiveness of these multigrid algorithms is based on the knowledge
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of the geometry of the underlying discretization grid. This approach is known as geometric

multigrid. The first investigations of a purely algebraic approach, which uses information

from the matrix equation rather than the geometry of the discretization grid, were developed

in the early 80’s by Brandt, McCormick, Stüben and Ruge ([10, 11, 41]). This approach is

known as algebraic multigrid (AMG) and is described in further details in Section 2.2. Since

then, several variants of the multigrid algorithms have been developed ([49, 15, 12, 32, 13])

and applied to a vast number of problems such as image processing, combinatorial optimiza-

tion, flow calculations, statistical mechanics and electrodynamics ([6, 7, 14, 27, 29]).

In this chapter, we start by reviewing geometric multigrid, which is the simplest form of

multigrid. We then introduce algebraic multigrid (AMG) and the full approximation scheme

(FAS). The last two will be used in the development of the multiscale solver for the power

flow equations.

2.1. Geometric Multigrid

Geometric multigrid is the most basic form of multigrid. It is a very effective technique

for solving linear systems

Au = f , (2.1)

where A is a discretization of a diffusion operator. It employs a hierarchy of grids (which is

built from the initial discretization grid) in order to solve different scales of the solution. The

number of computational operations employed by geometric multigrid for solving a discrete

PDE problem is a small multiple of the number of unknowns of the problem. This makes

geometric multigrid highly efficient for solving PDE-based problems.

In order to understand how geometric multigrid works, assume, without loss of generality,

a two-level setting. Problem (2.1) and its underlying discretization grid are associated to

level 1. Thus, problem (2.1) can be written as

A1u1 = f1. (2.2)

12



At level 2, a grid and an equation defined on this grid needs to be determined, i.e. A2, f2

and operators to transfer data between grids are required. We examine how this is done by

considering a particular problem described in the next section.

2.1.1. Model Problem

Consider the model 1D problem

−u′′(x) = f(x), 0 < x < 1, (2.3)

u(0) = 0, (2.4)

u(1) = 0. (2.5)

A discretization of this problem using a finite difference method requires a partitioning of

the domain Ω = {x ∈ R : 0 ≤ x ≤ 1} into n subintervals with nodes xh
i = ih for i = 0, . . . , n,

where h = 1/n. These nodes form a grid denoted by Ωh (Figure 2.1). Equations (2.3)-(2.5)

are replaced by the difference equations

−v1i−1 + 2v1i − v1i+1

h2
= f

(
xh
i

)
, 1 ≤ i ≤ n− 1, (2.6)

v10 = 0, (2.7)

v1n = 0. (2.8)

where v1i is an approximation to the exact solution u at node xh
i .

An important concept fundamental in the design of multigrid methods is smooth and

oscillatory modes. To define them we start by writing (2.6)-(2.8) in matrix form

A1v1 = f1, (2.9)
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Figure 2.1: One-dimensional grid Ωh defined over Ω in model problem (2.3)-(2.5).

where

A1 =
1

h2




2 −1 . . .

−1 2 −1 . . .

. . .
. . .

. . .
. . .

. . . −1 2 −1
. . . −1 2




, v1 =




v11

v12
...

v1n−2

v1n−1




and f1 =




f(xh
1)

f(xh
2)

...

f(xh
n−2)

f(xh
n−1)




.

A relatively simple iterative method for solving (2.9) is Gauss-Seidel iteration. To explain

the effect of Gauss-Seidel iteration on (2.9), consider the eigenvalues and eigenvectors of A1.

The eigenvalues of A1 are given by

λj = 4 sin2

(
jπ

2n

)
, j = 1, . . . , n− 1, (2.10)

and the k-th component of the j-th eigenvector is

wj,k = sin

(
jkπ

n

)
, j = 1, . . . , n− 1, k = 0, . . . , n. (2.11)

The vectors wj are also known as Fourier modes. The integer j is called wavenumber (or

frequency) and it indicates the number of half sine waves that constitutes wj on the domain

of the problem ([14]). For n = 64, modes w1, w6 and w32 are shown in Figure 2.2a.

These modes can be categorized as low-oscillatory (smooth) modes if 1 ≤ j < n
2
and

highly-oscillatory (high-frequency) modes if n
2
≤ j ≤ n − 1 ([14]). To see how Gauss-Seidel

acts on the modes, consider taking f1 = 0 in (2.9) (so the exact solution is u1 = 0), and
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(a) Fourier modes w1, w6 and w32 of A1 in (2.9) with n = 64.
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(b) Sup-norm of the error e1 = u1 − v1 after 100 Gauss-Seidel
sweeps with different initial guesses w1, w6, w32 and n = 64.

Figure 2.2: Modes w1, w6 and w32 of Al, with n = 64, and the corresponding error norms
after 100 Gauss-Seidel sweeps.

a random initial guess. After several sweeps of Gauss-Seidel, an approximate solution v1

is obtained. It can be observed that Gauss-Seidel damps out the components of the error

e1 = v1 corresponding to oscillatory modes very quickly, but hardly reduces the components

of the error corresponding to smooth modes. Figure 2.2b shows the errors after 100 sweeps

starting with initial guesses v1,0 = w1, v
1,0 = w6 and v1,0 = w32 to further illustrate this.
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2.1.2. The Two Components of a Multigrid Scheme

From the above observations, the two main components of a multigrid scheme can be

defined. The first component is the smoother, which corresponds to a simple iterative method

(e.g. Gauss-Seidel or Jacobi iteration). It effectively reduces highly-oscillatory components

of the error in an approximate solution, but fails to eliminate smooth components. We denote

by S the operator associated to the smoother such that its action on a vector v1 ∈ Ωh is

given by of the update

v1 ← S
(
A1,v1, f1

)
. (2.12)

The second component is built to resolve the smooth components of the error that remain

after smoothing. Its construction is guided by the coarse-grid approximation principle, which

states that smooth modes on a certain grid can be well approximated on coarser grids. By

considering the coarse-grid approximation principle, a coarse grid needs to be defined at level

2 where the smooth components of the error remaining after smoothing can be approximated

and resolved. In geometric multigrid the definition of the coarse grid is based merely on the

structure of the grid at level 1. Given the grid Ωh at level 1, a coarse grid can be defined at

level 2 by partitioning Ω = {x ∈ R : 0 ≤ x ≤ 1} into subintervals with grid points xH
i = iH

where H > h. This coarse grid is denoted by ΩH . A common choice for the coarse grid is

by taking n as an even number and then setting H = 2h (Figure 2.3).

Figure 2.3: Graphical representation of the one-dimensional grids Ωh and ΩH with n = 8,
H = 2h.
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Notice that, given the j-th mode on Ωh with 1 ≤ j ≤ n
2
, its k-th component satisfies the

identity

w1
j,2k = sin

(
2kjπ

n

)
= sin

(
kjπ

n/2

)
:= w2

j,k for k = 0, . . . , n/2. (2.13)

Here the superscripts indicates the grids on which the modes are defined. Identity (2.13)

implies that the j-th mode on Ωh corresponds to the j-th mode on Ω2h. Since j ≤ n
2
, this

means that the smooth modes can be represented on Ω2h. Because the number of modes in

Ω2h is half the number of modes in Ωh, then wj can be more oscillatory on Ω2h (recall how

the oscillatory modes are defined). This fact is illustrated in Figure 2.4.
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(a) Mode w4 on Ωh with h = 1/24.
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(b) Mode w4 on ΩH with H = 1/6.

Figure 2.4: Mode w4, which is smooth on Ωh with h = 1/24, is an oscillatory mode on Ω4h.

Since the second component of a multigrid scheme involves a coarse-grid approximation

of the smooth error, is it called the coarse grid correction. It proceeds as follows: Given an

approximate solution v1 on Ωh obtained by smoothing, the error e1 = u1 − v1 is smooth.

The resulting equation for the low-oscillatory dominating error is

A1e1 = r1 = f1 −A1v1, (2.14)

which is called residual equation. This equation is projected by means of a restriction

operator R onto Ω2h and solved there. Once the solution of the problem on Ω2h is obtained,

it is transferred back to Ωh by means of an interpolation operator P and used to correct the
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approximation v1 on Ωh:

v1 ← v1 + Pv2. (2.15)

Note 2.1 The problem on Ω2h, which corresponds to a projection of equation (2.14) onto

Ω2h by means of R, has the form

RA1e1 = Rr1. (2.16)

The interpolation operator P is commonly chosen to be piecewise linear from Ω2h to Ωh.

In addition, it is assumed to have full rank (i.e. its columns are linearly independent). Notice

that the range of the interpolation P consists of linear combinations of smooth modes on Ωh.

This is because only smooth modes can be represented on Ω2h. Hence, given v2 ∈ Ω2h, Pv2

can only be smooth on Ωh. Thus, if e2 ∈ Ω2h is a coarse-grid approximation to the smooth

error e1 ∈ Ωh, one expects Pe2 to accurately approximate e1 on Ωh,i.e., Pe2 ≈ e1. Then,

we can assume that the smooth error that remains after smoothing lies approximately in the

range of P . This assumption implies that

e1 ≈ Pv2 for some v2 ∈ Ω2h. (2.17)

By replacing (2.17) into (2.16) one obtains

RA1Pv2 = Rr1, (2.18)

which provides an explicit definition of A2: A2 = RA1P .

The idea used for the construction of the grids and the coarse-grid equations in the two-

level setting can be generalized to a multilevel setting, i.e., given a grid Ωhl defined at level

l, a coarse grid Ωhl+1 at level l + 1 is built doubling the step size hl, i.e., hl+1 = 2hl. Then,

given the level l problem

Alvl = f l, (2.19)
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the coarse-grid problem on Ωhl+1 is defined by the equation

Al+1vl+1 = Rl+1
l rl (2.20)

with Al+1 := Rl+1
l AlP l

l+1, which is commonly referred to as Galerkin approximation or RAP

construction of the coarse-grid operator ([14]). Once vl+1 is determined, it is transferred back

to level l to correct the approximation vl. The steps for multigrid are given in Algorithm

(2.1).

Figure 2.5: Pictorial representation of the multigrid V-Cycle.

2.1.3. Complementary Condition

One important principle to recognize in an efficient multigrid scheme is that the smoother

and the coarse-grid correction work complementarily. In order to see this we first need to de-

fine the concepts of A-orthogonality, A-orthogonal projector, and two-grid error propagation

operator.

Definition 2.1 Given a symmetric positive definite matrix A ∈ Rn×n, the A-inner product

of two vectors u,v ∈ Rn is defined as

〈u,v〉A := 〈Au,v〉 (2.21)

19



where 〈·, ·〉 denotes the usual Euclidean inner product on Rn. The corresponding norm ‖ · ‖A
is defined as

‖v‖ :=
√
〈Av,v〉 (2.22)

Two vectors u,v ∈ Rn are said to be A-orthogonal if 〈u,v〉A = 0.

Definition 2.2 Let V a vector space with an inner product 〈·, ·〉, and let W be a nontrivial

subspace of V . A linear operator P : V → W is said to be a projection on W if P2v = Pv

for every v ∈ V . In addition, given a symmetric positive definite matrix A, P is said to be

an A-orthogonal projection if 〈Pv,w〉A = 〈v,Pw〉A for all v,w ∈ V .

Consider Algorithm 2.1 applied to problem (2.19) on a two-level scenario. Assuming no

smoothing, the procedure described in Algorithm 2.1 can be written as a single operation

on vl as

vl ← vl + P l
l+1

(
Al+1

)−1
Rl+1

l

(
f l −Alvl

)
. (2.23)

Since the exact solution ul satisfies f l −Alul = 0, then we have

ul = ul + P l
l+1

(
Al+1

)−1
Rl+1

l

(
f l −Alul

)
. (2.24)

After subtracting (2.23) from (2.24) we obtain

el ← T lel (2.25)

where T l = I−P l
l+1

(
Al+1

)−1
Rl+1

l Al, which is called the two-grid error propagation operator.

If Rl+1
l := P l

l+1 and Al+1 :=
(
P l
l+1

)t
AlP l

l+1, then it can be verified that the operator

I− T l = P l
l+1

[(
P l
l+1

)t
AlP l

l+1

]−1 (
P l
l+1

)t
Al

is an Al-orthogonal projection onto the range of P l
l+1. In fact,
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(
I− T l

)2
vl =

{
P l
l+1

[(
P l
l+1

)t
AlP l

l+1

]−1 (
P l
l+1

)t
Al

}2

vl for all vl

=

{
P l
l+1

[(
P l
l+1

)t
AlP l

l+1

]−1 [(
P l
l+1

)t
AlP l

l+1

] [(
P l
l+1

)t
AlP l

l+1

]−1 (
P l
l+1

)t
Al

}
vl

for all vl

= P l
l+1

[(
P l
l+1

)t
AlP l

l+1

]−1 (
P l
l+1

)t
Alvl for all vl

=
(
I− T l

)
vl for all vl.

This proves that I − T l is a projection onto R
(
P l
l+1

)
. To see that I − T l is an Al-

orthogonal projection, note that if Al is symmetric positive definite and P is full-rank,

then
(
P l
l+1

)t
AlP l

l+1 is also symmetric positive definite. Thus, given vl and wl, we have that

〈(
I− T l

)
vl,wl

〉
Al =

〈{
Al
(
I− T l

)}
vl,wl

〉

=

〈{
AlP l

l+1

[(
P l
l+1

)t
AlP l

l+1

]−1 (
P l
l+1

)t
Al

}
vl,wl

〉

=

〈{
P l
l+1

[(
P l
l+1

)t
AlP l

l+1

]−1 (
P l
l+1

)t
Al

}
vl,Alwl

〉

=

〈{[(
P l
l+1

)t
AlP l

l+1

]−1 (
P l
l+1

)t
Al

}
vl,
{(

P l
l+1

)t
Al
}
wl

〉

=

〈{(
P l
l+1

)t
Al
}
vl,

{[(
P l
l+1

)t
AlP l

l+1

]−1 (
P l
l+1

)t
Al

}
wl

〉

=

〈
Alvl,

{
P l
l+1

[(
P l
l+1

)t
AlP l

l+1

]−1 (
P l
l+1

)t
Al

}
wl

〉

=
〈
Alvl,

(
I− T l

)
wl
〉

=
〈
vl,
(
I− T l

)
wl
〉
Al .

The above conditions imply that the range of P l
l+1 lies in the nullspace of T l ([14]). Indeed,

if vl is in the range of P l
l+1, then vl has the form P l

l+1v
l+1 for some vector vl+1. Thus,
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Tvl = TP l
l+1v

l+1

=
(
I− P l

l+1

(
Al+1

)−1
Rl+1

l Al
)
vl+1

= Pvl+1 − Pvl+1

= 0.

Hence, if the smooth modes are approximated accurately by the interpolation, the smooth

error will be effectively reduced by the coarse-grid correction. To this end, the interpolation

must be built in such a way that its range, R
(
P l
l+1

)
, approximates the null-space of Al,

N
(
Al
)
; i.e., the relationship

R
(
P l
l+1

)
≈ N

(
Al
)

(2.26)

is required for an effective MG algorithm.

2.2. Algebraic Multigrid (AMG)

When the matrix A in equation (2.1) does not arise from a PDE discretization and/or

the grid structure is irregular, geometric multigrid may no longer be applicable since there

may not be a geometric grid available ([45]). A variation of multigrid that requires only the

matrix equation is known as algebraic multigrid (AMG). While geometric multigrid approach

is based on the structure of the discrete grid, an AMG approach is based only on the

coefficients of A. Thus, AMG is more appropriate for solving the power flow equations since

these equations are defined on unstructured graphs. However, unlike geometric multigrid,

AMG requires the selection of the coarse DOFs and intricate construction of the restriction

and interpolation operators.

Assume a hierarchy of levels. At the level l the problem is

Alvl = f l (2.27)
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Algorithm 2.1 MG V(ν1, ν2)-Cycle

1: MG(Al, f l,vl, l, ν1, ν2)

2: if l = L then

3: Solve Alvl = f l.

4: else

5: vl ← S
(
Al,vl, f l

)
ν1 times.

6: rl ← f l −Alvl

7: f l+1 ←
(
Rl+1

l

)
rl, vl+1 ← 0

8: vl+1 ← MG(Al+1, f l+1,vl+1, l + 1, ν1, ν2)

9: vl ← vl +
(
P l
l+1

)
vl+1

10: vl ← S
(
Al,vl, f l

)
ν2 times.

11: end if

Figure 2.6: Multigrid V-cycle algorithm for solving the discrete PDE-problem Au = f .

where Al is a symmetric M-matrix; i.e., a symmetric positive definite matrix with positive

entries along its main diagonal and nonpositive off-diagonal entries ([42]). As in geometric

multigrid, we seek to define a coarse-grid problem at level l + 1 and operators that transfer

vectors between levels l and l+1. In geometric multigrid the coarse grid, and the interpolation

and restriction operators are determined based only on the geometric information. Since

AMG approach does not consider any geometric information from level l, defining a coarse

grid at level l + 1 and building the interpolation and restriction operators are not obvious.

2.2.1. Strong Influence

To determine the coarse DOFs that form the grid at level l + 1, consider the concept of

how strongly one variable at level l affects the other variables at the same level. This concept

is illustrated by Example 2.1.
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Example 2.1 Consider the operator Al ∈ R3×3 defined by

Al =




1 −0.8 −0.001
−0.8 1 −0.01
−0.001 −0.01 1


 .

By observing the components of Al, it can be seen that changes in variable 2 will dramatically

affect variable 1. On the other hand, changes in variable 3 will not strongly affect variable 1.

Following the same reasoning, it can be also verified that variable 2 will be strongly affected

by changes in variable 1; and variable 3 will be strongly affected by changes in variable 2,

but not by changes in variable 1.

Example 2.1 illustrates the concept of variable influence.

Definition 2.3 Given a value θ, 0 < θ ≤ 1, and nodes i and j at level l, node j is said to

strongly influence node i if
∣∣Al

ij

∣∣ ≥ θmaxk 6=i

{∣∣Al
ik

∣∣} . (2.28)

The relevance of Definition 2.3 for the coarsening procedure can be seen by noticing that

given the i-th equation (i.e., the equation associated to node i) in system (2.27), if node

j strongly influences node i, then Al
ij is large compared to other off-diagonal entries Al

ik

(k 6= j, k 6= i) in the i-th row of Al. Thus, any change in vl
j will affect v

l
i more than changes

in other component vl
k of vl. Because vl

j is significant in determining the value of vl
i, it

makes sense to consider node vl
j in the interpolation of vl

i. This makes node j a candidate

for the set of coarse nodes at level l+1 ([14]). The nodes that strongly influence most nodes

are good candidates for the set of coarse nodes.

2.2.2. Construction of the Coarse Grid and the Interpolation Operator

In addition to the definition of strong influence, a key concept for the construction of

the coarse grid and the interpolation operator is algebraic smoothness. First, assume that
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the smoother has been already defined. When no geometric information is available, it is

not possible to determine the smooth components of the error el geometrically. Instead,

we recall from Section 2.1.1 that smooth errors are hardly reduced by the smoother. Thus,

the algebraically smooth error is defined as the error that does not decrease significantly in

magnitude after applying successive smoothing iterations to (2.27).

With the help of the concepts of strong influence and algebraic smoothness, the construc-

tion of the coarse grid at level l + 1 and the interpolation operator from level l + 1 to level

l can be described. First, the set of nodes at level l are partitioned into two sets C and F

with C ∩ F = ∅. The following definitions on the grid at level l are required ([41]):

• Ni, the neighborhood of node i, is the set of all nodes j 6= i such that Al
ij 6= 0.

• Ci, the interpolatory set for i, is the neighboring nodes of i in C that strongly influence

node i.

• Ds
i , the subset of neighboring nodes in F that strongly influence node i.

• Dw
i , the set of neighboring nodes in F that do not strongly influence node i.

• Si, the set of nodes in C ∪ F that strongly influence node i.

• St
i , the set of nodes j strongly influenced by node i.

The elements of C, which are the nodes to form the grid at level l + 1, are selected by

enforcing the following two criteria ([41]):

• Cr1: For each node i ∈ F , every node that strongly influences node i either should be

in Ci or should be influenced by at least one node in Ci.

• Cr2: C should be a maximal subset such that there is no node in C strongly influencing

another node in C.

The selection of coarse-grid nodes (C-nodes) is done in a procedure known as coloring scheme

([14]), which is applied in two stages. A first set of C-nodes is formed such that it tends to
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satisfy Cr2. Then, a second step is performed on the remaining F -nodes to enforce Cr1.

In the first stage, every node i is initially assigned a weight that measures its potential

quality as a C-point. A usual choice for this weight is the number of nodes that i strongly

influences (i.e, the cardinality of St
i), which is denoted by λi. After all the weights have

been assigned, the node with the largest λi is selected as a C-node. Since the nodes in St
i

are already influenced by a C-node, they should become F -nodes in order to fulfill Cr2

(otherwise, there would be C-nodes being strongly influenced by other C-nodes). All other

nodes strongly influencing every node j ∈ St
i can be useful for improving the accuracy of the

interpolation of j. Thus, it makes sense to consider them as prospective C-nodes. Hence, for

each node j ∈ St
i , the value λk is incremented for every k ∈ Sj that has not been assigned

as C- or F -node. The process is repeated for a new node that has not been assigned as C-

or F -node until all the nodes are assigned to C or F . After this first step, it may occur that

Cr1 is not satisfied, i.e., there is a pair of F -nodes with one of them strongly influencing the

other, but not being strongly connected to a common C-node. Therefore, a second step is

necessary to ensure that Cr1 is fulfilled. In this step, one checks for any nodes where Cr1

is violated. If this occurs, then Cr1 is enforced by converting some F -nodes into C-nodes.

Example 2.2 illustrates how the coloring scheme works. In the following, we assume that

the nodes of the grid at level l have been already partitioned into the sets C and F , and the

C-nodes have been already determined.

Example 2.2 Consider the two-dimensional Poisson equation

−uxx − uyy = f(x, y), 0 < x < 1, 0 < y < 1, (2.29)

u(x̃, y) = 0 if x̃ = 0 or x̃ = 1, (2.30)

u(x, ỹ) = 0 if ỹ = 0 or ỹ = 1 (2.31)
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defined on the unit square [0, 1] × [0, 1]. Given the positive integers m and n, a grid can

be defined on this domain with grid points (xi, yj) := (ihx, jhy) for every 0 ≤ i ≤ m and

0 ≤ j ≤ n with hx = 1/m and hy = 1/n. Here we choose m = n = 6. By using second-order

finite differences, problem (2.29)-(2.31) can be replaced by the linear system

−vi−1,j + 2vi,j − vi+1,j

h2
x

+
−vi,j−1 + 2vi,j − vi,j+1

h2
y

= fi,y (2.32)

1 < i < 5, 1 < j < 5,

vi,j = 0 if i = 0 or i = 6, (2.33)

vi,j = 0 if j = 0 or j = 6 (2.34)

where vi,j is an approximation to the exact solution u at (xi, yj) and fi,j = f(xi, yj). The

number of unknowns is (m−1)(n−1) = 25. Thus, the system (2.32)-(2.34) can be rewritten

in matrix form as

Av = f

where v, f ∈ R25 are the vectors of unknowns and right-hand side values, respectively,

which are organized lexicographically, i.e. v = (v1,1, v1,2, . . . , v1,5, v2,1, . . . , v5,5)
t and f =

(f1,1, f1,2, . . . , f1,5, f2,1, . . . , f5,5)
t. The matrix A is a block matrix with the form

A =
1
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B −I
−I B −I

−I B −I
−I B −I

−I B
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where

B =




4 −1
−1 4 −1

−1 4 −1
−1 4 −1

−1 4




and I is the 5× 5 identity matrix.

The grid corresponding to the graph connection is shown on the upper left corner of

Figure 2.7. Initially, all the nodes are labeled with ’X’, indicating that they have not been

yet selected as C- or F -nodes. Nodes that have been selected as C-nodes (or F -nodes) are

labeled with C (or F ). New F -nodes and their undetermined neighbors are labeled in bold.

For an arbitrary 0 < θ < 1, every node is strongly influenced by and strongly influences its

left, right, upper and lower neighbors. At the beginning, the nodes at the interior of the grid

have weight λ = 4, the nodes along the sides have weight λ = 3 and the nodes at the corners

have weight λ = 2. The steps of the coloring scheme algorithm are shown in Figure 2.7.

Since Cr1 is already satisfied in this case, there is no need of a second step.

As in the geometric case, the interpolation operator P l
l+1 in AMG has to be built such

that for an algebraically smooth error el, P l
l+1e

l+1 must accurately approximates el for some

el+1. For an algebraically smooth error el we have

0 ≈ Alel = rl. (2.35)

This shows that the residual is relatively small. The i-th component of equation (2.35) can

be written as

Al
iie

l
i ≈ −

∑

j∈Ni

Al
ije

l
j . (2.36)
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Figure 2.7: Coloring scheme steps for the graph corresponding to the discrete problem (2.32)-
(2.34) with a five-point stencil.

Splitting the right-hand side of equation (2.36) into sums over the sets Ci, D
s
i and Dw

i yields

Al
iie

l
i ≈ −

∑

j∈Ci

Al
ije

l
j −

∑

j∈Ds
i

Al
ije

l
j −

∑

j∈Dw
i

Al
ije

l
j . (2.37)

Now, assume that the interpolation operator from level l + 1 to level l has the form

(
P l
l+1e

l
)
i
=





eli if i ∈ C
∑

j∈Ci
ωije

l
j if i ∈ F

.

In order to determine ωij for every j ∈ Ci, the second and third summations on the right-
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hand side in (2.37) need to be expressed in terms of eli and elj, where j ∈ Ci. Since nodes

j ∈ Dw
i are weakly connected to node i, the coefficients Al

ij in the third summation on the

right-hand side of (2.37) are relatively small and can be lumped into the diagonal coefficient

Al
ii without causing any significant change. This gives us


Al

ii +
∑

j∈Dw
i

Al
ij


 eli ≈ −

∑

j∈Ci

Al
ije

l
j −

∑

j∈Ds
i

Al
ije

l
j . (2.38)

Every error component elj in the second summation on the right-hand side of (2.37) can be

approximated by a weighted summation over Ci in the form

elj ≈
∑

k∈Ci
Al

jke
l
k∑

k∈Ci
Al

jk

. (2.39)

Since Al is a symmetric M-matrix, equation (2.39) is well defined. Replacing equation (2.39)

into equation (2.38) yields

Al

ii +
∑

j∈Dw
i

Al
ij


 eli ≈

∑

j∈Ci


Al

ij +
∑

m∈Ds
i

(
Al

imA
l
mj∑

k∈Ci
Al

mk

)
 elj . (2.40)

Therefore, the weights ωij are given by

ωij = −
Al

ij +
∑

m∈Ds
i

(
Al

imAl
mj∑

k∈Ci
Al

mk

)

Al
ii +

∑
n∈Dw

i
Al

in

. (2.41)

With the weights wij determined, the interpolation P l
l+1 is obtained. The restriction

operator is then defined as Rl+1
l :=

(
P l
l+1

)t
and the AMG V-cycle scheme can be described

as in the geometric multigrid.

2.3. Full Approximation Scheme (FAS)

Since the power flow equations are nonlinear and AMG is designed for solving linear

problems, a new multigrid approach is needed that is suitable for solving the nonlinear
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problem

N (u) = f (2.42)

whereN is a nonlinear operator acting on u. Again, assume a multigrid hierarchy is available.

With the problem

N
l
(
ul
)
= f l (2.43)

defined on the grid at level l, we seek to derive an analogous problem at level l + 1 based

on equation (2.43). We start by noticing that the residual equation (2.14) no longer holds

([25]), i.e. if vl is an approximation to the solution ul of (2.43), then

N
l
(
ul
)
−N

l
(
vl
)
6= N

l
(
ul − vl

)
= N

l
(
el
)
. (2.44)

Thus, we consider the defect equation

N
l
(
ul
)
−N

l
(
vl
)
= dl. (2.45)

If ul is replaced by vl + el in (2.45), where el = ul − vl is the approximation error, then the

defect equation (2.45) can be rewritten as

N
l
(
vl + el

)
−N

l
(
vl
)
= dl. (2.46)

Accordingly, equation (2.46) at level l + 1 should have the form

N
l+1
(
vl+1 + el+1

)
−N

l+1
(
vl+1

)
= dl+1 (2.47)

where N
l+1 denotes the level l + 1 coarse-grid operator, dl+1, vl+1 and el+1 are coarse

approximations to dl, vl and el, respectively. The coarse defect dl+1 is simply chosen as

the projection of the fine-grid defect dl onto the grid at level l+ 1 by means of a restriction

operator Rl+1
l , i.e.
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dl+1 = Rl+1
l dl = Rl+1

l

[
N

l
(
vl + el

)
−N

l
(
vl
)]

= Rl+1
l

[
N

l
(
ul
)
−N

l
(
vl
)]

= Rl+1
l

[
f l −N

l
(
vl
)]

. (2.48)

As for the coarse approximation vl+1, it is often computed by restricting vl to the coarse

grid through a transfer operator R̂l+1
l which can be different from Rl+1

l . After substituting

this restriction into (2.47), it gives us

N
l+1
(
R̂l+1

l vl + el+1
)
−N

l+1
(
R̂l+1

l vl
)
= Rl+1

l

[
f l −N

l
(
vl
)]

, (2.49)

or more conveniently

N
l+1
(
R̂l+1

l vl + el+1
)
= N

l+1
(
R̂l+1

l vl
)
+Rl+1

l

[
f l −N

l
(
vl
)]

. (2.50)

Assuming that the right-hand side of equation (2.50) is already computed, the goal is to

compute or approximate the solution ul+1 = R̂l+1
l vl + el+1 to this system. The approximate

error el+1 = ul+1− R̂l+1
l vl is then interpolated to level l and used to correct the approximate

solution vl.

The process outlined above is summarized in Algorithm 2.2 and called the Full Approxi-

mation Scheme (FAS) because it resolves (2.50) for ul+1 rather than for the coarse error el+1

([5, 6]). It employs a nonlinear relaxation method (i.e., nonlinear Jacobi or Gauss-Seidel

iteration) as the smoother. In contrast to Newton’s method, which uses only the target

problem in the solution process, FAS reduces the computational cost by using a hierarchy

of grids. In addition, FAS can have a larger basin of attraction than Newton’s method and

handles the nonlinearities locally at every node ([38, 47, 51]).
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Algorithm 2.2 FAS V(ν1, ν2)-cycle

1: FAS(Nl, f l,vl, l, ν1, ν2)

2: if l = L then

3: Solve N
l
(
vl
)
= f l using Newton’s method.

4: else

5: vl ← Smooth (Nl,vl, f l) ν1 times.

6: dl ← f l −N
l
(
vl
)
.

7: dl+1 ← Rl+1
l dl.

8: vl+1 ← R̂l+1
l vl

9: f l+1 ← dl+1 +N
l+1
(
vl+1

)
.

10: wl+1 ← FAS(Nl+1, f l+1,vl+1, l + 1, ν1, ν2).

11: el+1 ← wl+1 − vl+1

12: vl ← vl + P l
l+1e

l+1

13: vl ← Smooth (Nl,vl, f l) ν2 times.

14: end if
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Chapter 3

Affinity-Based Coarsening

Unfortunately, the FAS approach described in Section 2.3 by itself cannot be applied di-

rectly to the power flow equations since the coarse-grid problems are obviously not available.

Furthermore, coarsening based on strong influence given in Section 2.2 is not effective for

matrices that do not satisfy the hypothesis of standard AMG (i.e., satisfying a symmetric

M-matrix property) and can lead to an incorrect coarse-node selection when applied to a

power grid system [8, 40]. Thus, a different coarsening strategy is required for the power

flow equations.

3.1. Coarsening of Simplified Real Power Flow Problems

As noted earlier, in standard AMG, the coarsening procedure is based on the concepts

of algebraically smooth error and strong influence. These concepts are used to detect strong

connections between nodes in a linear system. To “measure the strength of connection”

between nodes in a power grid model, the coefficients of the graph Laplacian associated with

the admittance matrix are considered ([31, 40]). A new coarsening procedure is described

by considering first the simplified real power flow problem

Pi = |Vi|
n∑

j=1

|Vj| {Bij sin (δi − δj)} (3.1)

Qi = −|Vi|
n∑

j=1

|Vj| {Bij cos (δi − δj)} . (3.2)
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which involves merely an admittance matrix with real-valued coefficients. For this problem

the graph Laplacian Lf is defined as

Lf, ij =




|Vi| |Vj|Bij i 6= j

−|Vi|
∑

k 6=i |Vk|Bik i = j
. (3.3)

In order to describe the coarsening procedure, note that the algebraically smooth error

e needs to be accurately represented at the coarse level. As mentioned in Section 2.2.2,

the algebraically smooth error e is poorly reduced after successive smoothing iterations, and

satisfies the condition Lfe ≈ 0. Hence, since this error is unknown, the smoother itself can

be used to expose it by relaxing the problem Lfx = 0 ([8, 9, 40]). Here, we start with a

random initial guess x0,and the right-hand side is set to zero to prevent any dependence of

the solution on the right-hand side.

For simplicity, let us consider a two-level setting and assume that problem (3.1)-(3.2) is

already defined on a grid (fine grid) at level 1. The set of neighboring nodes of node i in

the fine grid is denoted by N(i). The selection of the nodes that form the grid (coarse grid)

at level 2 and the construction of the interpolation and coarse operators are carried out as

follow:

1. Taking a set of K random test vectors
{
x(k)
}K
k=1

at the fine level and applying s

relaxation sweeps to the linear system Lfx
(k) = 0, a set of smoothed test vectors is

obtained that exposes the profile of the smooth error.

2. The affinity measure cij between nodes i and j is defined as ([31])

cij =
|(xi,xj)|2

(xi,xi)(xj ,xj)
with (xi,xj) :=

K∑

k=1

x
(k)
i x

(k)
j . (3.4)

We have 0 ≤ cij ≤ 1 and cij = cji.

3. The set of nodes in the fine grid is partitioned into two sets C and F , initially with F

containing all the fine-grid nodes. Then
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(i) For each node i in the fine grid, let vi be its volume, which is initially set to 1.

The projected volume for node i is defined as ([40])

νi = vi +
∑

(i,j)∈E

vj
cij∑

(j,k)∈E cjk
. (3.5)

All nodes having projected volume greater than some factor σ times the average

projected volume are moved to C.

(ii) Given a threshold Q, if either of the following condition holds for an F -node i

([30]) ∑
j∈C∩N(i) cij∑
j∈N(i) cij

≤ Q or

∑
j∈C∩N(i) |Lf, ij |∑
j∈N(i) |Lf, ij |

≤ Q, (3.6)

then node i is moved to C.

4. The caliber l interpolation operator P is computed as

Pij =





Lf, ij/
∑

k∈NCl(i) Lf, ik i ∈ F, j ∈ NCl(i)

1 j = i, i ∈ C

0 elsewhere

, (3.7)

where NCl(i) is the set of (at most l) C-nodes that node i ∈ F is associated with.

5. Once P has been computed, the coarse graph Laplacian Lc is defined as

Lc = P tLfP.

More generally, given a hierarchy of levels, if Ll is the graph Laplacian at level l, then

Ll+1 :=
(
P l
l+1

)t
LlP l

l+1 (3.8)

where P l
l+1 is the interpolation operator from level l + 1 to level l.

COMMENTS:

1. The affinity measure is a correlation-related value between two variables. In step 1 of
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the algorithm above, it is a common practice to select the initial random guesses to

have uniformly distributed values from [-1,1] and zero mean ([31]).

2. The set C introduced in step 3 is the set of coarse-grid nodes (C-nodes). These nodes

should be selected such that each node in F is strongly coupled to a set of nodes in C.

3. Step 3(ii) guarantees that F -nodes that are not strongly connected to any C-node be-

come C-nodes themselves. This step ensures that there are no “near-isolated” F -nodes,

i.e., nodes having none or a few strong affinity and/or weighted graph connections to

C after Step 3(i).

4. In step 4, the caliber of interpolation is defined as the maximum number of C-nodes

that a node i ∈ F can interpolate from ([31]).

3.2. Coarsening of Complex Power Flow Problems

The procedures for determining the coarse nodes and the interpolation operator for a

general power flow problem must be extended to the complex case. These procedures are

similar to the ones described in Section 3.1, but with some modifications. Recall that the

power flow problem is given in polar form by

Pi = |Vi|
n∑

j=1

|Vj| {Bij sin (δi − δj) +Gij cos (δi − δj)} (3.9)

for i = 1 . . . , n− 1,

Qi = |Vi|
n∑

j=1

|Vj| {Gij sin (δi − δj)−Bij cos (δi − δj)} (3.10)

for every PQ bus i,

(|Vsp
i |)2 = |Vi|2 (3.11)

for every PV bus i,
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and in cartesian form by

Pi = VR
i

n∑

j=1

(
GijV

R
j −BijV

I
j

)
+VI

i

n∑

j=1

(
BijV

R
j +GijV

I
j

)
(3.12)

for i = 1, . . . , n− 1

Qi = −VR
i

n∑

j=1

(
BijV

R
j +GijV

I
j

)
+VI

i

n∑

j=1

(
GijV

R
j −BijV

I
j

)
(3.13)

for every PQ bus i

(|Vsp|)2 =
(
VR

i

)2
+
(
VI

i

)2
(3.14)

for every PV bus i

whereVR
i andVI

i are the real and imaginary components of the voltageVi. This formulation

may improve the accuracy of the calculations because polynomial expressions of the real and

imaginary components of voltages, admittances and power injections are involved rather

than transcendental functions.

3.2.1. Smoothing

Since PV and PQ buses are of different nature, and the injected power Si is fully known

on PQ buses, equations (3.10) and (3.13) are consistent only if i is a PQ bus. Therefore,

the smoother can be applied exclusively to equations corresponding to PQ buses at every

level, except for the coarsest level where a different method will be used. Applying the

smoother only to the equations corresponding to PQ buses reduces the effectiveness of the

smoother since only voltages at the PQ buses are resolved, while voltages at PV buses are left

untouched until the coarsest level is reached. However, not resolving the PV bus voltages in

the intermediate levels does not significantly affect the effectiveness of the smoother because

the number of PV buses is considerably less than the number of PQ buses.
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3.2.2. Coarsening Procedure for Complex Admittance Matrices

Because of the physical differences between the PV and PQ buses (PV buses have a

constraint condition), PQ nodes are permitted to interpolate only from PQ buses, so the PV

buses and the slack bus need to be removed from the interpolatory set of every PQ bus. On

the other hand, because the undetermined quantities for the PV buses are left unresolved at

every level until the coarsest level, it is necessary to include all the PV buses into every coarse

grid during the coarsening procedure. Other modifications to the coarsening procedure and

the construction of the interpolation operator are:

1. By assuming that the admittance matrix is nearly a graph Laplacian and all the voltage

magnitudes (in p.u.) are nearly constant, the graph Laplacian in (3.3) is replaced with

the complex admittance matrix Y. Thus,

Lf = Y. (3.15)

2. The inner product (xi,xj) in (3.4) is extended to complex values, giving

(xi,xj) =
K∑

k=1

xk
i x

k
j . (3.16)

3. The inequalities in (3.6) are now expressed in terms of the moduli of the coefficients

of the graph Laplacian defined in (3.15), giving∑
j∈C∩Ñ(i) cij∑
j∈N(i) cij

≤ Q or

∑
j∈C∩Ñ(i) |Lf, ij|∑
j∈N(i) |Lf, ij|

≤ Q. (3.17)

Here, Ñ(i) = N(i) = i if i is a PV bus. If i is a PQ bus, then Ñ(i) denotes the set

of neighboring nodes to i that remains after removing all the PV buses (and the slack

bus) from N (i).

4. With interpolation operator P , the coarse graph Laplacian Lc in a two-level setting is

Lc = RLfP (3.18)
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where the restriction operator R is given by R = P t if Lf is symmetric, and R = P ∗ =

P
t
otherwise ([35]). The same applies for a multilevel setting; i.e., given Ll defined on

a grid a level l, the level l + 1 graph Laplacian is computed as

Ll+1 =
(
Rl

l+1

)t
LlP l

l+1 (3.19)

where Rl
l+1 =

(
P l
l+1

)t
if Ll is symmetric and Rl

l+1 =
(
P l
l+1

)t
otherwise.

Algorithm 3.1 summarizes the steps of the coarsening technique for the power flow prob-

lem.

Algorithm 3.1 Coarsening procedure for the power flow equations

1: Construct a set of orthogonal test vector
{
x(k)
}K
k=1

by relaxing on the problem Lx = 0

where L is given by equation (3.15).

2: Determine the affinity measure between two nodes i and j by (3.4), and using the inner

product (5.41).

3: Perform the first pass in the selection of coarse nodes by following step 3(i) of the

algorithm described in Section 3.1.

4: Perform the second pass in the selection of coarse nodes by following step 3(ii) in the

algorithm described in Section 3.1, but with the inequalities given in (3.17).

5: Add all PV buses and the slack bus to C.

6: Construct the interpolation operator P according to (3.7).

3.2.3. Coarse-Grid Power Flow Problem for the AMG-FAS Scheme

With the coarsening procedure and the smoother already defined, there is only one aspect

that remains to be attended to describe the AMG-FAS scheme for the power flow problem.

Specifically, we need to construct the coarse power flow equations.

Assume that an L-level hierarchy of grids has been already formed. According to the

FAS algorithm, the power flow equations at level 1 are given (including the constraint on
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the PV buses) as

N
1
(
V1
)
= f1

where 



f1i = Si if i is a PQ bus

Re (f1i ) = Re (Si) if i is a PV bus

(|Vsp
i |)2 = (|Vi|)2 if i is a PV bus

(3.20)

and 



[N1 (V1)]i = V1
i

[
YV

]
i

if i is a PQ bus

Re ([N1 (V1)]i) = Re
(
V1

i

[
YV

]
i

)
if i is a PV bus

. (3.21)

Assuming that the nonlinear problem at level l − 1 (2 ≤ l ≤ L) is defined by the equation

N
l−1
(
Vl−1

)
= f l−1, (3.22)

the problem at level l is given by

N
l
(
Vl
)
= f l (3.23)

where Nl
(
Vl
)
is constructed using the coarse graph Laplacian Ll, Vl = R̂l

l−1V
l−1+el, where

R̂l
l−1 is the injection from level l− 1 to level l, el is a coarse approximation to the error el−1,

and f l = N
l
(
R̂l

l−1V
l−1
)
+Rl

l−1

[
f l−1 −N

l−1
(
Vl−1

)]
. Thus, for the polar form the equations

at level L are

P̃L
i = |ṼL

i |
nL∑

j=1

|ṼL
j |
{
B̃L

ij sin (δ̃
L
i − δ̃Lj ) + G̃L

ij cos (δ̃
L
i − δ̃Lj )

}
(3.24)

for i = 1, . . . , n− 1,

Q̃L
i = |ṼL

i |
nL∑

j=1

|ṼL
j |
{
G̃L

ij sin (δ̃
L
i − δ̃Lj )− B̃L

ij cos (δ̃
L
i − δ̃Lj )

}
(3.25)

for every PQ bus i,

(|Vsp
i |)2 = |ṼL

i |2 for every P bus i (3.26)
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where P̃L
i = Re

(
fLi
)
. Q̃L

i = Im
(
fLi
)
, G̃L

ij and B̃L
ij denote the real and imaginary components

of the coarse admittance matrix at level L, nL is the number of nodes in the grid at level L,

and |ṼL
j | and δ̃Lj are to the magnitude and phase angle of the unknown ṼL

i .

The equations at level L in cartesian coordinates are

P̃L
i =

(
ṼR

i

)L nL∑

j=1

{
G̃L

ij

(
ṼR

j

)L
− B̃L

ij

(
ṼI

j

)L}

+
(
ṼI

i

)L nL∑

j=1

{
B̃L

ij

(
ṼR

j

)L
+ G̃L

ij

(
ṼI

j

)L}
(3.27)

for i = 1, . . . , n− 1,

Q̃L
i = −

(
ṼR

i

)L nL∑

j=1

{
B̃L

ij

(
ṼR

j

)L
− G̃L

ij

(
ṼI

j

)L}

+
(
ṼI

i

)L nL∑

j=1

{
G̃L

ij

(
ṼR

j

)L
− B̃L

ij

(
ṼI

j

)L}
(3.28)

for every PQ bus i,

(|Vsp
i |)2 =

[(
ṼR

i

)L]2
+

[(
ṼI

i

)L]2
for every P bus i. (3.29)

The solver at the coarsest level is Newton-Raphson. The resulting AMG-FAS scheme for

the solution of the power flow equations N1 (V1) = f1 is described in Algorithm 3.2.
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Algorithm 3.2 AMG-FAS V(ν1, ν2)-cycle

AMG-FAS(Nl, f l,Vl, l, ν1, ν2)

1: if l = L then

2: Solve N
l
(
Vl
)
= f l using Newton’s method.

3: else

4: Relax N
l
(
Vl
)
= f l ν1 times using the iterate (1.14) for each PQ bus i.

5: dl ← f l −N
l
(
Vl
)
.

6: dl+1 ← Rl+1
l dl.

7: V̂l+1 ← R̂l+1
l Vl

8: f l+1 ← dl+1 +N
l+1
(
V̂l+1

)
.

9: Wl+1 ← AMG-FAS(Nl+1, f l+1, V̂l+1, l + 1, ν1, ν2).

10: el+1 ←Wl+1 − V̂l+1

11: Vl ← Vl + P l
l+1e

l+1

12: Relax N
l
(
Vl
)
= f l ν2 times using the iterate (1.14) for each PQ bus i.

13: end if
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Chapter 4

Multigrid with Multiplicative Correction for the Power Flow Equation

A different strategy can be developed for solving the power flow equations by constructing

a hierarchy of power flow problems, all having the form

S = DV

(
YV

)
, (4.1)

where DV is a diagonal matrix with the nodal voltages along the diagonal. This idea was

proposed by Ponce et al. in ([39]). In order to describe this new approach, consider a two-

grid scenario. The coarse-grid problem has to have the form of (4.1). This can be attained

by using a multiplicative update of the form

V← DV (PW) (4.2)

for the fine grid element V, rather than using the traditional additive update

V← V +
(
PŴ

)
, (4.3)

in the correction phase. Here, P is an interpolation operator, W and Ŵ are multiplicative

and additive coarse-grid corrections to V, respectively. In addition, in the method decribed

in ([39]), the admittance matrix is assumed symmetric. Hence, only the nonzero elements

of the upper triangular part are considered in the coarsening procedure. These elements are

first ordered by their magnitudes (i.e., ordering the quantities |Yij| 6= 0 with j > i). Then,

nodes i and j are aggregated together into one coarse node if |Yij| is large compared to the

magnitude of other admittance matrix entries.
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4.1. Description of the Multilevel Scheme

The following lemma shows how the multiplicative correction leads to a coarse-grid prob-

lem having the same form as the fine-grid problem.

Lemma 4.1 ([39]) Let P ∈ {0, 1}n×l, l ≤ n, denote a matrix with exactly one 1 in each

row and let x ∈ Cl. Then

P tDPx = DxP
t.

Using the above lemma and (4.2), the coarse-grid problem can be derived. Suppose that U

is an exact solution to (4.1). Thus, U satisfies

S = DU

(
YU

)
. (4.4)

Let V be an approximation to U and W a coarse-grid correction to V such that

U = DV (PW) . (4.5)

By replacing (4.5) into (4.4), we have that

DVDPWYDVPW = S. (4.6)

With the restriction operator chosen as R = P t, then projection of equation (4.6) onto the

coarse grid gives us

P t
(
DVDPWYDVPW

)
= P tS

P tDPWDV

(
YDVPW

)
= P tS

DWP tDV

(
YDVPW

)
= P tS

DW

(
P tDVYDVP

)
W = P tS

DWYcW = Sc (4.7)
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where Yc = P tDVYDVP and Sc = P tS.

Assuming that a hierarchy of L grids has been already built, the problem at level 1 is

S1 = DV1

(
Y1V1

)
(4.8)

where Y1 = Y, S1 = S and V1 = V. Thus, given the problem

Sk = DVk

(
YkVk

)
(4.9)

defined at level k ≥ 1, the problem at level k + 1 is given by

Sk+1 = DVk+1

(
Yk+1Vk+1

)
(4.10)

where Yk+1 =
(
P k
)t
DVkYkDVkP k, Sk+1 =

(
P k
)t
Sk and P k is an interpolation operator

from level k + 1 to level k.

At every level, the error is smoothed by applying a few sweeps of Gauss-Seidel iteration.

If V̂1 is solution to (4.8), then Ŵk = 1 = [1, . . . , 1]t is solution to (4.9) for every k > 1. This

fact suggests that Vk = 1 is a good initial guess for the process at every level k = 2, . . . , L

([39]).

Once the problem at level L has been solved, the solution VL is interpolated up to level

L− 1 via the operator PL−1
L and the result corrects VL−1 in a multiplicative fashion:

VL−1 ← DVL−1

(
PL−1
L VL

)
. (4.11)

Then VL−1 is smoothed before being used to correct the approximation VL−2 a level L− 2.

In general, given the solution Vk at level k, the solution at level k−1 is obtained by updating

the approximation Vk−1 using a multiplicative correction

Vk−1 ← DVk−1

(
P k−1
k Vk

)
(4.12)

and smoothing Vk−1.
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4.2. Modified Scheme

Here, a similar scheme is presented with some modifications. First, because of the dif-

ferent attributes between PV and PQ buses, the voltages at these buses will be resolved in

different fashions. The strategy used here is the same as in Section 3.2: at every level, some

Gauss-Seidel sweeps are applied to the equations corresponding to PQ buses to smooth out

the error; and the equations associated to the PV buses are left untouched until the coarsest

level is reached, where the PV components of the solution are resolved.

At level L, the problem is solved using Newton’s iteration for all the equations. The

equations expressed in cartesian coordinates have the same form as (3.27)-(3.28) with the

constraint

(|Vsp
i |)2 =

[(
|V̂1

i |
)]2{[(

VL,R
i

)]2
+
[(

VL,I
i

)]2}
for every PV bus i. (4.13)

Here
(
|V̂1

i |
)
is the approximated voltage magnitude at the PV bus i on level 1. As in the

finer levels, the initial guess at level L is VL =
(
VL,R

i

)
+ ı̂
(
VL,I

i

)
= 1. Equation (4.13)

results from considering (3.11) at level 1 for every PV bus. If V̂1 is an approximation to the

exact solution Vsp of (3.11) and W is such that Vsp = DV̂1W, then for every PV bus i

|Vsp
i |2 =

∣∣∣V̂1
iWi

∣∣∣
2

=
∣∣∣V̂1

i

∣∣∣
2

|Wi|2 =
∣∣∣V̂1

i

∣∣∣
2 {(

WR
i

)2
+
(
WI

i

)2}
(4.14)

where WR
i and WI

i are the real and imaginary components of Wi, respectively.

For the AMG-FAS scheme described in Chapter 3 the hierarchy of grids, and the coarse-

grid and transfer operators are computed prior to the solution process. For Ponce’s method

requires these elements to be recomputed after each multigrid cycle, which makes this method

computationally more expensive.

The procedures of a multigrid V-cycle scheme for solving the power flow equations us-

ing a multiplicative correction, including the modifications presented above, are shown in

Algorithm 4.1.
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Algorithm 4.1 MG-V(ν1, ν2)-Cycle-MULT

1: MG-MULT(Yk,Vk,Sk, k, ν1, ν2)

2: if k = L then

3: Solve (3.27)-(3.28) and (4.13) using Newton’s method.

4: else

5: Relax (4.9) ν1 times using the iterate (1.14) for each PQ bus i.

6: Rk+1
k ←←

(
P k
k+1

)t
.

7: Yk+1 ←
(
P k
k+1

)t
DVkYkDVkP k

k+1.

8: Vk+1 ← 1.

9: Sk+1 ←
(
P k
k+1

)t
Sk

10: Vk+1 ← MG-MULT
(
Yk+1,Vk+1,Sk+1, k + 1, ν1, ν2

)
.

11: Vk ← DVk

(
P k
k+1V

k+1
)

12: Relax (4.9) ν2 times using the iterate (1.14) for each PQ bus i.

13: end if
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Chapter 5

Convergence Analysis of Multigrid with Affinity-Based Coarsening

The aim of this chapter is to discuss the convergence of the two-level AMG-FAS scheme

for the power flow equations using the affinity-based coarsening procedure introduced in

Chapter 3. Convergence is analyzed for a two-level rather than a multilevel setting because,

in general, the theory for multilevel methods involves more restricted conditions ([34, 37]).

Although a convergence factor can be approximated only on the smoother, we are interested

in convergence estimates based on the norm of the complete two-grid scheme operator, which

involves both the smoother and the coarse-grid correction operator. We start by discussing

the convergence of a two-grid AMG scheme for a linear problem with a real symmetric

positive definite matrix using the theory presented in ([41]) and ([34]). Then, we consider

problems involving complex-valued matrices, establishing conditions for the extension of the

theory from the real case. Finally, we review the theory of convergence of a two-level FAS

scheme for nonlinear PDE-based problems given in ([24]), which provides a starting point

for discussing on the convergence of the AMG-FAS algorithm for the power flow equations.

5.1. Linear Problem with a Real Symmetric Positive Definite Operator

Consider the linear system

Au = f (5.1)

where A ∈ Rn×n is a symmetric positive definite (SPD) linear operator. The set of unknowns

u is associated to a set of indices (nodes), Ω = {1, . . . , n}. We seek conditions that guarantee

the convergence of AMG for problem (5.1) and then progressively move to the power flow
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problem establishing suitable conditions for the convergence of the proposed AMG-FAS

scheme.

Consider a two-level AMG setting. Let C denote the set of coarse-grid nodes and P the

prolongation operator. The restriction R is defined by R = P t, and the coarse-grid operator

Ac is defined by Ac = RAP . In addition, the pre- and post-smoothing operators Ŝ and S

are expressed as

Ŝ = I− Q̂−1A and S = I−Q−1A (5.2)

for some matrices Q̂ and Q, respectively. Here, I ∈ Rn×n denotes the identity operator. The

matrices Q̂ and Q are determined by the smoother. For instance, if A = D−U−Ut, where

D = diag (A) and U is the negative strictly upper triangular part of A, then Q = D for the

Jacobi iteration, and Q = D−Ut for the Gauss-Seidel iteration. The approximate solution

is updated through the operators Ŝ and S associated to Ŝ and S, respectively:

v← Ŝ (v, f) and v← S (v, f) . (5.3)

Using C to denote the elements in the coarse level, the two-level AMG V(1,1)-cycle is de-

scribed in Algorithm 5.1.

Algorithm 5.1 AMG V(1, 1)-Cycle

AMG(A, f ,v)

1: v← Ŝ (v, f)

2: r← (f −Av)

3: fc ← Rr

4: vc ← A−1
c fc

5: v← v + Pvc

6: v← S (v, f)
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The F −C partition and the prolongation operator have to be determined in such a way

that the interaction between the smoother and the coarse-grid correction leads to an efficient

AMG method.

We start the discussion of the convergence for the two-level setting by noticing that, since

A is SPD, it leads to the inner product

〈u,v〉A := 〈Au,v〉 (5.4)

with the corresponding norm

‖v‖A :=
√
〈v,v〉A. (5.5)

A being SPD also implies that Aii > 0 ∀i = 1, . . . , n. Thus, denoting the diagonal of A by

D, two additional inner products are

〈u,v〉D := 〈Du,v〉 and 〈u,v〉AD−1A :=
〈
D−1Au,Av

〉
(5.6)

together with their corresponding norms

‖v‖D :=
√
〈v,v〉D and ‖v‖AD−1A :=

√
〈v,v〉AD−1A. (5.7)

Recall from Section 2.1.3 that the two-grid error propagator is defined as

T = I− P (AC)
−1RA. (5.8)

After replacing the explicit form of AC into (5.8) and using the fact that R = P t, the

two-grid error propagation operator is given by

T = I− P
(
P tAP

)−1
P tA. (5.9)

It was proven in Section 2.1.3 that the operator I−T = P (P tAP )
−1

P tA is theA-orthogonal

projector onto the range R (P ) of P , and R (P ) is A-orthogonal to the range R (T ) of T .
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In addition to the above conditions, the smoothing operators S and Ŝ are assumed to be

convergent in the A-norm, i.e., ‖S‖A < 1 and ‖Ŝ‖A < 1. Lemma 5.1 below will show how

the norms of the two-level V(0,1)-, V(1,0)- and V(1,1)-cycle operators are related to each

other. To understand the lemma, we need the concept of the M-adjoint of a linear operator.

Definition 5.1 Given a linear operator A ∈ Rm×m, its adjoint with respect to the Euclidean

inner product is a linear operator B ∈ Rm×m such that 〈Av,w〉 = 〈v,Bw〉 for all v,w ∈ Rm.

Given an SPD matrix M, B is said to be the M-adjoint of A if 〈Av,w〉M = 〈v,Bw〉M for

all v,w ∈ Rm.

Lemma 5.1 ([36]) Assume that A is SPD, the prolongation operator P is full rank and the

two-grid error propagation operator is T = I − P (P tAP )
−1

P tA. In addition, assume that

S and Ŝ are convergent under the A-norm. Then the A-adjoint of the two-level V(0,1)-cycle

operator ST is the operator of the two-level V(1,0)-cycle TS†, with S† = I−Q−tA. Hence,

the operators ST and TS† have the same A-norm; i.e., ‖ST‖A = ‖TS†‖A. Furthermore,

the A-norm of the two-level V(1,1)-cycle operator STS† is ‖STS†‖A = ‖ST‖2A.

Therefore, according to Lemma 5.1, it suffices to discuss the convergence of the two-level

V(0,1)-cycle operator. In ([41]) and ([34]) sufficient conditions on S and T are provided to

guarantee the convergence of the two-level AMG scheme. The results are summarized in the

next theorem.

Theorem 5.2 ([41]) Assume that A is SPD, P is a full rank prolongation operator, the

the two-level coarse-grid correction operator has the form T = I−P (P tAP )
−1

P tA, and the

smoothing operator S is convergent under the A-norm. If there exists αg > 0 such that

‖Se‖2A ≤ ‖e‖2A − αgg (e) for all e (smoothing assumption) (5.10)

and there exists βg > 0 such that

‖Te‖2A ≤ βgg (Te) for all e (weak approximation assumption), (5.11)
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then

‖ST‖A ≤
√

1− αg

βg

(5.12)

where g (e) is a given nonnegative function.

A common choice for g (e) is g (e) = ‖e‖2
AD−1A

([41]). The approximation assumption (5.11)

can be rewritten in terms of the action of the prolongation operator P by considering the

A-orthogonality between the range of P and the range of T . Then

‖Te‖A = inf
eC
‖e− PeC‖A. (5.13)

Relationship (5.13) is illustrated in Figure 5.1. Hence, again using this A-orthogonality and

the Cauchy-Schwarz inequality, for an arbitrary eC we have

Figure 5.1: Graphical representation of relationship (5.13). The length of the dotted line
corresponds to ‖Te‖A.
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‖Te‖2A = 〈ATe, Te〉

= 〈ATe, Te− PeC〉

=
〈
D1/2D−1/2ATe, Te− PeC

〉
(5.14)

=
〈
D−1/2ATe,D1/2 (Te− PeC)

〉
(5.15)

≤ ‖D−1/2ATe‖ ‖D1/2 (Te− PeC) ‖ (5.16)

=
√
〈D−1/2ATe,D−1/2ATe〉

√
〈D1/2 (Te− PeC) ,D1/2 (Te− PeC)〉 (5.17)

=
√
〈AD−1ATe, Te〉

√
〈D (Te− PeC) , Te− PeC〉 (5.18)

= ‖Te‖AD−1A‖Te− PeC‖D. (5.19)

Since Ω is finite dimensional,

inf
eC
‖e− PeC‖D = mineC‖e− PeC‖D for all e.

Thus, for every e there exists êC such that

‖e− P êC‖D = mineC‖e− PeC‖D.

In particular, since eC in (5.19) is arbitrary, ‖Te− PeC‖D can be replaced with

‖Te− P êC‖D. Hence, if for some βw we have that

mineC‖e− PeC‖2D ≤ βw‖e‖2A (5.20)

for all e, and in particular Te, i.e., ‖Te− PeC‖2D ≤ βw‖Te‖2A, then, from (5.19), we have

‖Te‖2A ≤ ‖Te‖AD−1A‖Te− P êC‖D

= ‖Te‖AD−1AmineC‖Te− PeC‖D

≤ ‖Te‖AD−1A

√
βw‖Te‖A. (5.21)
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Inequality (5.21) implies that

‖Te‖A ≤
√
βw‖Te‖AD−1A

which leads to (5.11) with g (Te) = ‖Te‖AD−1A. Thus, condition (5.20) will be used rather

than (5.11).

5.1.1. Smoothing Assumption for Gauss-Seidel

In order to determine the conditions for the Gauss-Seidel iteration to satisfy the smooth-

ing assumption (5.10), we start by stating Lemma 5.3 and Lemma 5.4. They are used later

for the proof of the main result in Theorem 5.5.

Lemma 5.3, whose proof is given in ([44]), states an equivalent statement for the smooth-

ing assumption given in (5.10).

Lemma 5.3 ([44]) Let A be SPD and the smoothing operator be of the form S = I−Q−1A

for some nonsingular matrix Q. Then the smoothing assumption (5.10) is equivalent to

αg

〈
QtD−1Qe, e

〉
≤
〈(
Q+Qt −A

)
e, e
〉

for all e. (5.22)

The next lemma proves that the matrix norm ‖A‖W defined for symmetric matrices as

‖A‖W := max1≤i≤n

{
1

Wii

n∑

j=1

Wjj |Aij|
}

(5.23)

where W is a n × n diagonal matrix with Wii > 0 for i = 1, . . . , n is induced by a vector

norm.

Lemma 5.4 The matrix norm defined by (5.23) is induced by the weighted vector 1-norm

‖x‖W := ‖Wx‖1 =
∑n

i=1 |Wiixi|.

Proof: By definition, the matrix norm induced by ‖x‖W is given by

‖A‖x,W = sup
‖x‖W=1

‖Ax‖W.
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Then we need to prove that ‖A‖x,W agrees with ‖A‖W. Consider y = Wx. Since W is

SPD, y is uniquely determined by x. We have

‖A‖x,W = sup
‖x‖W=1

‖Ax‖W

= sup
‖Wx‖1=1

‖WAx‖1

= sup
‖y‖1

‖WAW−1y‖1

= ‖WAW−1‖1.

Now notice that
(
WAW−1

)
ij
=

Wii

Wjj
Aij.

Thus, by definition, the induced 1-norm of WAW−1 is

‖WAW−1‖1 = max1≤j≤n

{
n∑

i=1

∣∣∣∣
Wii

Wjj
Aij

∣∣∣∣

}

= max1≤i≤n

{
1

Wii

n∑

j=1

Wjj |Aij |
}

(by symmetry of A).

Therefore, the induced matrix norm ‖A‖x,W agrees with ‖A‖W. �

With the help of the above lemmas, the smoothing operator associated with Gauss-

Seidel iteration is proven to satisfy the smoothing assumption (5.10). This result is stated

in Theorem 5.5, whose proof is given in ([44]).

Theorem 5.5 ([44]) Let A be SPD and define, for any vector w such that wi > 0,

γ− = max1≤i≤n

{
1

wiAii

∑

j<i

wj |Aij|
}

and γ+ = max1≤i≤n

{
1

wiAii

∑

j>i

wj |Aij |
}
.

(5.24)
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Then Gauss-Seidel relaxation satisfies the smoothing assumption (5.10) with

αg =
1

(1 + γ−) (1 + γ+)
. (5.25)

If w in (5.24) is chosen to be w = 1, then the norm defined by (5.23) becomes simply

the usual matrix 1-norm. Furthermore, γ− and γ+ are given by

γ− = max1≤i≤n

{
1

Aii

∑

j<i

|Aij|
}

and γ+ = max1≤i≤n

{
1

Aii

∑

j>i

|Aij |
}
.

If, in addition, A is assumed to be diagonally dominant, then

1

Aii

∑

j>i

|Aij| ≤
1

Aii

n∑

j=1
j 6=i

|Aij|

≤ 1

Aii

|Aii|

=
Aii

Aii

= 1

for all i = 1, . . . , n, and similarly

1

Aii

∑

j<i

|Aij| ≤ 1

for all i = 1, . . . , n. This implies that γ− ≤ 1 and γ+ ≤ 1. Thus

1

4
≤ 1

(1 + γ+) (1 + γ−)
.

Therefore, ifA is SPD and diagonally dominant, the hypothesis of Theorem 5.5 is satisfied
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with

αg ≤
1

4
. (5.26)

5.1.2. Approximation Assumption for the Coarse-Grid Correction

Conditions are now determined on the coarse-node selection and the prolongation opera-

tor in order to find an appropriate value for the constant βg in the approximation assumption

(5.20):

inf
eC
‖e− PeC‖D2 ≤ βg‖e‖2A for all e.

First, assume that a subset C has been already selected from Ω as the set of the coarse

nodes, and let F = Ω \C. In addition, as in Section 3.1, given the caliber of interpolation l,

denote by NCl (i) the maximal set of C-nodes to which node i ∈ F can be interpolated from.

In order to find a value of βg that satisfies inequality (5.20), we can compare both sides of

(5.20) by expressing it as summations involving entries of e. The following lemma provides

summation expansion for ‖e‖2A.

Lemma 5.6 ([44]) For any SPD M-matrix A such that A is weakly diagonally dominant

the following identity holds:

‖e‖2A =
1

2

n∑

i=1

[
n∑

j=1

(−Aij) (ei − ej)
2

]
+

n∑

i=1

(
n∑

j=1

Aij

)
e2 for all e. (5.27)

Since A is a weakly diagonally dominant M-matrix,
∑n

j=1Aij ≥ 0, and Aij ≤ 0 if j 6= i

for all i = 1, . . . , n. Thus,
∑n

i=1

(∑n
j=1Aij

)
e2i ≥ 0. Then
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‖e‖2A = 〈Ae, e〉

=

n∑

i=1

[
n∑

j=1

eiAijej

]

=
1

2

n∑

i=1

[
n∑

j=1

(−Aij) (ei − ej)
2

]
+

n∑

i=1

(
n∑

j=1

Aij

)
e2i

=
1

2

n∑

i=1




n∑

j=1
j 6=i

(−Aij) (ei − ej)
2


+

n∑

i=1

(
n∑

j=1

Aij

)
e2i

≥
∑

i∈F


 ∑

j∈NCl(i)

(−Aij) (ei − ej)
2


+

∑

i∈F

(
n∑

j=1

Aij

)
e2i

=
∑

i∈F


 ∑

j∈NCl(i)

(−Aij) (ei − ej)
2 +

(
n∑

j=1

Aij

)
e2i


 . (5.28)

Consider now a reordering of the indices in Ω such that the F -nodes appear first. Then,

the vector e can be written blockwise as

e =


 eF

eC




where eF and eC are the blocks corresponding to the components of e in F and C, re-

spectively. The prolongation operator can be also rewritten, according to the proposed

reordering, as

P =


 IFC

I


 (5.29)

where IFC ∈ RnF×nC is a block of coarse-to-fine prolongation weights and I ∈ RnC×nC is the

identity on the coarse level. Hence,
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e− PeC =


 eF

eC


−


 IFC

I


 [eC ]

=


 eF − IFCeC

eC − eC




=


 eF − IFCeC

0


 . (5.30)

With the help of (5.30), the expression ‖e−PeC‖2D can now be bounded by a summation

in terms of the entries of e similar to that in (5.27). This result is given in the following

lemma.

Lemma 5.7 ([44]) Let A be a weakly diagonally dominant SPD matrix. Suppose that P is

defined as in (5.29) with Pij ≥ 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ nC and
∑

j∈NCl(i) Pij ≤ 1 for

1 ≤ i ≤ n. Then

‖e− PeC‖2D ≤
∑

i∈F

Aii


 ∑

j∈NCl(i)

Pij (ei − ej)
2 +


1−

∑

j∈NCl(i)

Pij


 e2i


 . (5.31)

By considering (5.27) and (5.31), the weak approximation assumption (5.20) can be

satisfied if

∑

i∈F

∑

j∈NCl(i)

AiiPij (ei − ej)
2 +

∑

i∈F

Aii


1−

∑

j∈NCl(i)

Pij


 e2i ≤

βg


∑

i∈F

∑

j∈NCl(i)

(−Aij) (ei − ej)
2 +

∑

i∈F

(
n∑

j=1

Aij

)
e2i


 (5.32)

for certain βg. The existence of βg ≥ 0 such that inequality (5.32) is satisfied can be shown

by first noticing that each term of the summations in both sides of (5.32) is nonnegative. In
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fact, since A is a diagonally dominant M-matrix, we have that

Aii > 0, Aij ≤ 0 for all i, j = 1, . . . , n (j 6= i) and
n∑

j=1

Aij ≥ 0 for all i = 1, . . . , n.

In addition, because of the way P is constructed, we have that

Pij ≥ 0 for all i = 1, . . . , n, j ∈ NCl (i) and 1−
∑

j∈NCl(i)

Pij = 0 for all i = 1, . . . , n.

Thus, the second summation on the left-hand side of (5.32) is always zero. This implies that

Aii


1−

∑

j∈NCl(i)

Pij


 ≤ βg

n∑

j=1

Aij for all i ∈ F and for any βg ≥ 0. (5.33)

Moreover, the value of the left-hand side of (5.32) is only determined by the first summation.

It only remains to prove that there exists a βg ≥ 0 such that

∑

i∈F

∑

j∈NCl(i)

AiiPij ≤ βg

∑

i∈F

∑

j∈NCl(i)

(−Aij) . (5.34)

If AiiPij = 0 for all i = 1, . . . , n and j ∈ NCl (i), then (5.34) holds for any βg ≥ 0. Hence,

(5.32) is satisfied. Otherwise, if AiiPij > 0 for some i and j ∈ NCl (i), then Pij > 0 (Aii > 0

because A is an M-matrix). However, Pij > 0 implies that (−Aij) > 0. Thus, one can

always find β̂ij > 0 such that

AiiPij ≤ β̂ij (−Aij) .

If we define

βg := maxi∈F

[
maxj∈NC

l
(i)

{
β̂ij

}]
,

then (5.34) is satisfied and so (5.32) is satisfied. This proves the existence of βg ≥ 0 such

that (5.32) is fulfilled.

From (5.34), and recalling how the entries of P are computed, we also have that

βg (−Aij) ≥ AiiPij = Aii
Aij∑

k∈NCl(i) Aik
for all i ∈ F, j ∈ NCl (i) . (5.35)
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Since Aij < 0 when j ∈ NCl (i), then dividing (5.35) by −Aij yields

βg ≥ −
Aii∑

k∈NCl(i) Aik

=
Aii∑

k∈NCl(i) (−Aik)
=

Aii∑
k∈NCl(i) |Aik|

for all i ∈ F. (5.36)

Now, A being diagonally dominant implies, together with (5.36), that

βg ≥
Aii∑

k∈NCl(i) |Aik|
≥

∑n
k=1
k 6=i
|Aik|

∑
k∈NCl(i) |Aik|

≥ 1 for all i ∈ F. (5.37)

5.1.3. Convergence Bound for the Two-Grid AMG Operator

Combining (5.26) and (5.37) for the smoothing and approximation assumptions, we have

the following:

Proposition 5.8 Suppose A is a SPD and weakly diagonally dominant matrix with Aij ≤ 0

for all i = 1, . . . , n, j 6= i. Consider a two-level V(0,1)-cycle setting constructed with a

relaxation-based coarsening. Suppose that the prolongation operator P satisfies

Pij ≥ 0 for all i = 1, . . . , n, j ∈ NCl (i) and
∑

j∈NCl(i)

Pij = 1 for all i = 1, . . . , n,

and the post-smoothing operator S is Gauss-Seidel iteration and satisfies the smoothing as-

sumption

‖Se‖2A ≤ ‖e‖2A − αg‖e‖2AD−1A

with αg ≤ 1
4
. Then, the coarse-grid operator T = I− P (P tAP )

−1
P tA satisfies

inf
eC
‖e− PeC‖2D ≤ βg‖e‖2A

with βg ≥ 1 and the two-level V(0,1)-cycle operator ST satisfies

‖ST‖A ≤
√
1− αg

βg
. (5.38)
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5.2. Linear Problem with a Complex Operator

We now consider the complex-valued problem

Au = f A ∈ C
n×n, u, f ∈ C

n. (5.39)

As in Section 5.1, u is associated to the set of indices Ω = {1, . . . , n} and a two-level scheme

is constructed by partitioning Ω into subsets F and C. The complex prolongation operator

P : C → Ω is assumed to be full-rank. To describe how the restriction operator R is selected,

we recall that a matrix M ∈ Cn×n is said to be Hermitian positive definite if M⋆ = M and

〈Mv,v〉 > 0 for all v 6= 0. Here, M⋆ denotes the adjoint (i.e., the complex conjugate

transpose) of M. If A in (5.39) is Hermitian positive definite, then R is selected as R = P ⋆.

For more general matrices, the restriction operator R is chosen to be the adjoint of P̂ , the

interpolation operator associated with A⋆; i.e., R = P̂ ⋆ ([35]). Note that this choice of R

coincides with the case when A is Hermitian positive definite since A = A⋆.

The complex two-grid error propagation operator is

T = I− PA−1
C RA (5.40)

where AC = RAP is the coarse-grid approximation to the operator A. The post- and

pre-smoothing operators S and Ŝ are also expressed as in (5.2).

Given the way R is chosen, the convergence analysis of the two-grid V-cycle is discussed

considering two cases. We consider only the case when A is Hermitian positive definite.

Then R is chosen to be R = P ⋆ and the inner products and norms given in (5.4)-(5.7) can

be redefined on C
n by means of the Euclidean inner product

〈u,v〉 =
n∑

i=1

uivi (5.41)

where the bar denotes complex conjugation.
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5.2.1. Hermitian Positive Definite Case

For the two-grid scheme this implies that the A-adjoint of ST is TS† where S† = I −
Q−⋆A, and the Hermitian two-grid V(1,1)-cycle operator can be written as STS†. Thus, as

in the real case, the convergence of the two-grid V(0,1)-cycle operator ST leads to similar

results for the two-grid V(1,0)- and V(1,1)-cycle operators. In addition, since the smoothing

assumption (5.10) and the weak approximation assumption (5.11) are derived using only

properties of the A-norm, they can be extended to their analogous complex forms

‖Se‖2A ≤ ‖e‖2A − αgg (e) for all e (5.42)

and

‖Te‖2A ≤ βgg (Te) for all e (5.43)

with αg, βg ∈ R, αg, βg > 0 and g (e) a real-valued nonnegative function. As a result,

Theorem 5.2 can be also extended to the complex Hermitian case; i.e.,

‖ST‖A ≤
√
1− αg

βg

. (5.44)

Following the reasoning in Section 5.1, and using the A-orthogonality between R (T ) and

R (P ), the quantity ‖Te‖A can be expressed in terms of P as

‖Te‖A = inf
eC
‖e− PeC‖A. (5.45)

If Aii > 0 for all i = 1, . . . , n, then by choosing g (e) = ‖e‖2
AD−1A

one obtains the alternative

form of the weak approximation assumption (5.20).

Unfortunately, we have not yet determined an extension of the convergence from the real

case to complex-valued problems.
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5.3. Nonlinear Problem for a Real PDE Operator

Establishing convergence for FAS is nontrivial because of the complicated form of this

algorithm. To get an idea on how convergence of FAS can be established, we consider its

application to nonlinear elliptic PDEs. Let

NΩh
(u) = fΩh

(5.46)

NΓh
(u) = fΓh

(5.47)

be a system of nonlinear equations arising from a discretization of a boundary value prob-

lem. Here u, fΩh
, fΓh

∈ Rn, Ωh is a resolution of the domain Ω , Γh is the resolution of the

boundary of Ω , NΩh
is a discretization of a nonlinear PDE operator defined on Ω and NΓh

is the discretization of the boundary conditions. Problem (5.46)-(5.47) leads to a system of

nonlinear equations

Nh (u) = 0. (5.48)

Assume a two-level setting. At level l, problem (5.48) is written as

Nl (ul) = fl (l = 1, 2) (5.49)

where f1 = f2 = 0. The number of unknowns at level l is denoted by nl. Let the Jacobian

of Nl evaluated at vl be denoted by Jl (vl). The solution of (5.49), if there exists one, is

denoted as N−1
l (fl), and it is approximately computed using a two-grid FAS V(ν1, ν2)-cycle.
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Algorithm 5.2 Two-Grid FAS V-cycle

FAS(ν1,ν2) (u1, f1)

1: u1 ← S
(ν1)
1 (u1, f1)

2: d2 ← R ∗ [f1 −N1 (u1)]

3: ũ2 ← R̂u1

4: f̃2 ← N2 (ũ2)

5: d2 ← f̃2 + d2

6: u2 ← N
−1
2 (d2)

7: u1 ← u1 + P ∗ (u2 − ũ2)

8: u1 ← S
(ν2)
1 (u1, f1)

S
(ν1)
l (ul, fl) and S

(ν2)
l (ul, fl) correspond to smoothing steps at level l. This smoothing

procedure consists of a nonlinear relaxation method (e.g., nonlinear Jacobi or nonlinear

Gauss-Seidel iteration). Notice that Algorithm 5.2 is well defined if the following conditions

are satisfied:

1. CND1: u1 in the right-hand side of Steps 1 and 8 lie in the region of attraction of

S
(ν1)
l and S

(ν2)
l ,

2. CND2: u1 in the right-hand side of Step 2 is within the domain where Step 2 is well

defined and

3. CND3: d2 in Step 6 leads to a unique solution of N2 (v2) = d2.

Condition CND3 is held if the hypothesis of the following proposition is fulfilled.

Proposition 5.9 (Remark 9.1.1 in [24]) Let Nl (·) be continuous in a neighborhood of a

solution u∗
l of (5.49). Suppose that fl = 0 and Jl (u

∗
l ) is nonsingular. Then the Implicit

Function Theorem implies that there are neighborhoods Nu (u
∗
l ) of u∗

l and Nf (0) of 0 such

that

Nl|Nu(u∗

l )
: Nu (u

∗
l )→ Nf (0)
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is a homeomorphism.

Thus, according to Proposition 5.9, Algorithm 5.2 is well-defined if u1 in the right-hand sides

of Steps 1,2 and 8 of Algorithm 5.2 lie in Nu (u
∗
1), and d2 from Step 6 to lie in Nf (0). In

order to provide conditions for the latter, we need to specify the neighborhoods Nu (u
∗
l ) and

Nf (0). For an appropriate norm ‖ · ‖ defined on Nu (u
∗
l ) there exists εl > 0 such that

Nu (u
∗
l , ̺l) := {ul : ‖ul − u∗

l ‖ ≤ ̺} (5.50)

satisfies

Nu (u
∗
l , ̺l) ⊂ Nu (u

∗
l ) for all 0 < ̺ ≤ εl. (5.51)

Similarly, Nf (0, εl) is defined as

Nf (0, ̺) := Nl (Nu (u
∗
l , ̺)) ⊂ Nf (0) for all 0 < ̺ ≤ εl. (5.52)

To analyze the convergence of the two-grid FAS algorithm, we aim to show that the two-

grid FAS iteration applied to problem (5.48) behaves asymptotically as the linear two-grid

iteration applied to the linearized problem. In order to do so, divided differences DNl and

DSl must be assigned to Nl and S
(ν)
l :

Nl (ul)−Nl (u
′
l) = DNl (ul,u

′
l) (ul − u′

l) , (5.53)

S
(ν)
l (ul, fl)−S

(ν)
l (u′

l, fl) = DS
(ν)
l (ul,u

′
l, fl) (ul − u′

l) (5.54)

for all ul,u
′
l ∈ Nu (u

∗
l ) and fl ∈ Nf (0).

We recall smoothing and approximation properties that the linear operators DNl (u
′
l,ul)

and DS
(ν)
l (u′′

l ,ul, fl) must satisfy.

Definition 5.2 Suppose there exist functions η (ν) and ν̃ (h), and a number α such that

‖DNl (u
′
l,ul)DS

(ν)
l (u′′

l ,ul, fl) ‖ ≤ η (ν) h−α
l for all 1 ≤ ν < ν̃ (hl) , l ≥ 1, (5.55)
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η (ν)→ 0 as ν →∞, (5.56)

ν̃ (h) =∞ or ν̃ (h)→∞ as h→∞. (5.57)

Then DS
(ν)
l is said to possess the smoothing property.

DNl+1

(
u′
l+1,ul+1

)
is said to hold the approximation property if there is some constant

CA such that

‖DN
−1
l (u′

l,ul)− P ∗DN
−1
l+1

(
u′
l+1,ul+1

)
∗R‖ ≤ CAh

α
l for all l ≥ 1. (5.58)

The following result provides sufficient conditions for d2 to lie in Nf (0):

Note 5.10 (Remark 9.5.3 in [24]) Suppose for every ul ∈ Nu (u
∗
l ) we have

∥∥∥DN
−1
2 (u2,u

∗
2)
[
N2

(
R̃ ∗ u1

)
−R ∗N1 (u1)

]∥∥∥ ≤ Chα
2 (5.59)

for all u2 ∈ Nu (u
∗
2, ε2). Furthermore, suppose for ũ2 ∈ N (ε2/2), the condition

∥∥DN
−1
2 (u2,u

′
2)
∥∥ ≤ CDL for all u2,u

′
2 ∈ Nu (u

∗
2, ε2)

holds for a constant CDL, and ‖Rf1‖ ∗ CDL + Chα
2 ≤ ε2. Then d2 ∈ Nf (0) for d2 in Step 6

of Algorithm 5.2.

Assuming that these conditions hold for the two-grid FAS algorithm to be well-defined,

we review its convergence. The convergence analysis for the two-grid FAS algorithm is based

on its contraction number. Denote the approximate solution of the k-th iteration by uk
l . The

iterative solver is said to be a contraction if there exists ζl < 1 such that

‖uk+1
l −N

−1
l (fl) ‖ ≤ ζl‖uk

l −N
−1
l (fl) ‖ for k = 0, 1, . . . (5.60)

Lemma 5.11 (Lemma 9.5.5 in [24]) Let N
−1
1 (f1) be a fixed point of S

(νi)
1 , (i = 1, 2).

If the two-grid iteration described in Algorithm 5.2 is well-defined, then the error δuk
1 :=
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uk
1 −N

−1
1 (f1) satisfies

δuk+1
1 = DS

(ν2)
1 (u′′

1,u1, f1)
[
I − P ∗DN

−1
2 (v2, ũ2)R ∗DN1 (u

′
1,u1)

]
DS

(ν1)
1

(
uk
1,u1, f1

)
∗ δuk

1

(5.61)

where u1 = N
−1
1 (f1) , u′

1 = S
(ν1)
1

(
uk
1, f1

)
, v2 = N

−1
2 (d2) , d2 = f̃2 + R ∗ (f1 −N1 (u

′
1)) ,

u′′
1 = u′

1 + P ∗ (v2 − ũ2).

In order to prove the convergence of the two-grid FAS algorithm, it is more convenient

to have conditions (5.55)-(5.57) and (5.58) satisfied for fixed arguments ul, u
′
l, u

′′
l , ul+1, and

u′
l, instead of having these conditions defined on the sets Nu (u

∗
l ) and Nu

(
u∗
l+1

)
. In order to

determine these fixed arguments notice that, if Nl and S
(ν)
l are continuously differentiable

at u∗
l , then the derivatives

∂

∂ul
Nl (u

∗
l ) and

∂

∂ul
S

(ν)
l (u∗

l , 0)

are approximated byDNl (ul,u
′
l) andDS

(ν)
l (ul,u

′
l, fl) respectively as ul,u

′
l → u∗

l and fl → 0.

This is formally stated by requiring
∥∥∥∥DS

(ν)
l (ul,u

′
l, fl)−

∂

∂ul
S

(ν)
l (u∗

l , 0)

∥∥∥∥ ≤ Θ (̺l/εl) for all u′
l,ul ∈ Nu (u

∗
l , ̺l) , fl ∈ Nf (0, ̺l) ,

(5.62)

and ∥∥∥∥∥

[
∂

∂ul

Nl (u
∗
l )

]−1

DNl (ul,u
′
l)− I

∥∥∥∥∥ ≤ Θ (̺l/εl) for all u′
l,ul ∈ Nu (u

∗
l , ̺l) (5.63)

where

Θ (ε)ց 0 as εց 0. (5.64)

Finally, Proposition 5.12 states conditions for the convergence of the two-grid FAS algo-

rithm.
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Proposition 5.12 (Proposition 9.5.7 in [24]: convergence of FAS(ν,0)) Suppose

(i) for 0 < ν < ν̃ (h1) we have

‖DN1 (u
′
1,u1)DS

(ν)
1 (u′′

1,u1, f1) ‖ ≤ CS, (5.65)

(ii) the smoothing property (5.55)-(5.57) and the approximation property (5.58) are satis-

fied by ∂
∂u1

N1 (u
∗
1),

∂
∂u2

N2 (u
∗
2) and

∂
∂u1

S
(ν)
1 (u∗

1, 0),

(iii) conditions (5.62)-(5.64) are satisfied and

C−1
P ‖u2‖ ≤ ‖Pu2‖ ≤ CP‖u2‖ for all u2 ∈ Nu (u

∗
2) (5.66)

holds where

̺1 ≤ ε1, ̺2 ≤ ε2, ũ2 ∈ Nu (u
∗
2, ̺2/2) , CS ̺1 ≤ ε1, (5.67)

and

(iv) we have

f1 = 0 and u0
1 ∈ Nu (u

∗
1, ̺1) (5.68)

or

f1 ∈ Nf (0, ̺1/3) and u0
1 ∈ Nu (u

∗
1, ̺1/3) . (5.69)

Then, for ̺1, ̺2 sufficiently small the two-grid FAS algorithm satisfies (5.60) with

ζ̂ = ζ (̺1/ε1, ̺2/ε2, ν) < 1

where

ζ (α, β, ν)→
∥∥∥DS

(ν2)
1 (u′′

1,u1, f1)
[
I − P ∗DN

−1
2 (v2, ũ2)R ∗DN1 (u

′
1,u1)

]
DS

(ν1)
1 (u0

1,u1, f1)
∥∥∥

as α, β → 0. Here u1, u
′
1, u

′′
1 and ũ2 are defined as in Lemma 5.11 and u0

1 ∈ Nu (u
∗, ̺1).
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5.3.1. Convergence of FAS Applied to More General Nonlinear Problems

If the nonlinear problem (5.48) is not associated to a PDE, then the convergence theory

above needs to be modified to remove the dependencies on the grid structure. In particular,

bounds for (5.55)-(5.57), (5.58), (5.59) need to be extended for h-independent problems. By

observing the approximation property (5.58), we note that this can be achieved by finding

a parameter ǫl such that

‖DN
−1
l (u′

l,ul)− P ∗DN
−1
l+1

(
u′
l+1,ul+1

)
∗R‖ ≤ CAǫl (5.70)

for all ul,u
′
l ∈ Nu (u

∗
l ); ul+1,u

′
l+1 ∈ Nu

(
u∗
l+1

)
and l ≥ 1.

71



Chapter 6

Numerical Results

In this chapter the effectiveness of the affinity-based coarsening introduced in Section 3.2

is evaluated by comparing its performance with the classical Ruge-Stüben coarsening [41]

on a linear complex-valued problem. Additionally, the performance of the AMG-FAS solver

and the multiplicative correction scheme are examined by applying both solvers to some

real world power systems. These systems considered here are widely used by the power grid

community for testing purposes.

The data used in these tests has been obtained from several sources. The cases IEEE 57,

68, 118, 145 and 300 were taken from the Power System Test Case Archive of the University

of Washington’s College of Engineering [48]. Case IEEE 68 was extracted from [18]. The

Illinois, South Carolina, Texas and Wisconsin cases are entirely synthetic. They were de-

signed in algorithms described in [3] using the PowerWorld simulator. They are statistically

similar to the actual transmission systems on the corresponding geographical regions. All

these systems are symmetric (i.e., the involved admittance matrix is symmetric). In addition,

several test cases that accurately represent the European high voltage transmission network

and the Polish transmission network are considered. These European and Polish test suites

are taken from MatPower [52]. The first European case describes a network with 1354 buses

and operating at 380 and 220kV. The second European case corresponds to a network with

9241 buses operating at 750, 400, 380, 330, 220, 154, 150, 120, and 110 kV. The Polish cases

represent networks with 2383, 2746 and 3375 buses, respectively, all operating at 400, 220

and 110 kV. These cases describe the operation of the Polish system under peak conditions

during the winters of 1999-2000, 2003-2004 and 2007-2008, respectively. The 3375-bus Polish
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system actually involves 3374 buses since one isolated bus has been removed.

6.1. Comparison Between Classical and Affinity-Based Coarsening Procedures

In this section the performance of AMG is tested with the classical Ruge-Stüben coars-

ening method [41] and the affinity-based method on a linear problem, where the operator

corresponds to the admittance matrix of the synthetic power grid simulating the Texas net-

work with 2007 buses and 3043 transmission lines. This linear system has the form

Au = f ,

whereA is not diagonally dominant (which affects the effectiveness of the classical coarsening

scheme), and f = 0 to avoid any dependence of the solution on the right-hand side as we are

interested in the convergence of the method. The solution is iteratively computed starting

from a random initial guess u0.

A 5-level grid hierarchy was constructed using the two coarsenings, and the system is

solved by applying 20 V(1,1)-cycles. For the classical case, the parameter θ were taken from

the interval [0.5, 1) so that, in average, at most a half of the nodes in the fine grid become

candidates for the formation of the coarse grid. For the affinity-based coarsening, 10 test

vectors and 10 smoothing sweeps were used in the coarsening procedure, and the parameters

Q and σ were set initially to 0.75 and 1.5, respectively. In addition a caliber-3 interpolation

was used. Each parameter were changed to observe how they affect the performance of the

resulting AMG schemes.

Table 6.1 shows that the coarse grids for classical AMG get smaller as θ approaches 1.

The number of nonzero entries of A and the interpolation P reduced significantly for values

of θ > 0.5. However, as θ approaches 1, the grid size decreases too rapidly. This rapid

coarsening leads to a loss of information from one level to the next coarser level. Table 6.2

illustrates the poor convergence of AMG with the classical coarsening using a V(1,1)-cycles.
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θ = 0.5 θ = 0.75 θ = 0.875
Level Avg value Level Avg value Level Avg value

1
size= 2007.0

1
size= 2007.0

1
size= 2007.0

nnz(A)= 7221.0 nnz(A)= 7221.0 nnz(A)= 7221.0
nnz(P)= – nnz(P)= – nnz(P)= –

2
size= 412.0

2
size= 214.0

2
size= 89.0

nnz(A)= 1776.0 nnz(A)= 630.0 nnz(A)= 215.0
nnz(P)= 1313.0 nnz(P)= 701.0 nnz(P)= 299.0

3
size= 119.0

3
size= 24.0

3
size= 37.0

nnz(A)= 601.0 nnz(A)= 50.0 nnz(A)= 59.0
nnz(P)= 383.0 nnz(P)= 91.0 nnz(P)= 88.0

4
size= 49.0

4
size= 13.0

4
size= 28.0

nnz(A)= 245.0 nnz(A)= 17.0 nnz(A)= 34.0
nnz(P)= 149.0 nnz(P)= 24.0 nnz(P)= 36.0

5
size= 24.0

5
size= 12.0

5
size= 25.0

nnz(A)= 100.0 nnz(A)= 16.0 nnz(A)= 29.0
nnz(P)= 58.0 nnz(P)= 12.0 nnz(P)= 26.0

Table 6.1: Grid size at every level and number of nonzero entries in operators A and P for different values
of θ using the classical coarsening procedure.

Turning to the affinity-based procedure, Table 6.3 illustrates the average grid size at the

levels and the average number of nonzero entries of A and P . Table 6.6 gives the average

residual norms after 20 V(1,1)-cycles. Table 6.3 shows the grid sizes and the number of

nonzeros of A and P for different values of σ. Even though there is no considerable effect

on the grid size and the number of nonzero entries in the coarse operators, Table 6.4 shows

that the AMG solver performs better when σ is around 1.25. Note also how effectively

the residual norm is reduced when the affinity-based coarsening is applied, with a rate of

convergence close to 1/2 when σ = 1.25.
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θ = 0.5 θ = 0.75 θ = 0.875
V-cycles Res. norm V-cycles Res. norm V-cycles Res. norm

0 1.914e+03 0 1.914e+03 0 1.914e+03
1 7.865e+02 1 1.041e+03 1 1.151e+03
2 2.804e+02 2 5.137e+02 2 6.124e+02
3 1.509e+02 3 3.565e+02 3 4.306e+02
4 9.613e+01 4 2.740e+02 4 3.247e+02
5 6.985e+01 5 2.212e+02 5 2.554e+02
6 5.515e+01 6 1.836e+02 6 2.071e+02
7 4.566e+01 7 1.553e+02 7 1.721e+02
8 3.885e+01 8 1.332e+02 8 1.456e+02
9 3.364e+01 9 1.154e+02 9 1.251e+02
10 2.948e+01 10 1.009e+02 10 1.088e+02
11 2.608e+01 11 8.887e+01 11 9.560e+01
12 2.325e+01 12 7.874e+01 12 8.471e+01
13 2.084e+01 13 7.013e+01 13 7.562e+01
14 1.879e+01 14 6.275e+01 14 6.793e+01
15 1.702e+01 15 5.637e+01 15 6.136e+01
16 1.548e+01 16 5.083e+01 16 5.570e+01
17 1.413e+01 17 4.598e+01 17 5.077e+01
18 1.296e+01 18 4.172e+01 18 4.646e+01
19 1.192e+01 19 3.795e+01 19 4.266e+01
20 1.100e+01 20 3.461e+01 20 3.929e+01

Table 6.2: Residual norm for different values of θ after 20 consecutive V(1,1)-cycles using the classical
coarsening procedure.

σ = 1.25 σ = 1.5 σ = 1.75
Level Avg value Level Avg value Level Avg value

1
size= 2007.0

1
size= 2007.0

1
size= 2007.0

nnz(A)= 7221.0 nnz(A)= 7221.0 nnz(A)= 7221.0
nnz(P)= – nnz(P)= – nnz(P)= –

2
size= 1038.8

2
size= 1037.5

2
size= 1037.9

nnz(A)= 4551.6 nnz(A)= 4553.5 nnz(A)= 4552.9
nnz(P)= 2719.1 nnz(P)= 2710.7 nnz(P)= 2711.7

3
size= 723.3

3
size= 717.9

3
size= 718.4

nnz(A)= 3795.3 nnz(A)= 3794.5 nnz(A)= 3785.8
nnz(P)= 1419.1 nnz(P)= 1427.4 nnz(P)= 1421.6

4
size= 531.0

4
size= 529.7

4
size= 530.4

nnz(A)= 3424.0 nnz(A)= 3442.7 nnz(A)= 3430.4
nnz(P)= 1012.7 nnz(P)= 1010.0 nnz(P)= 1003.3

5
size= 398.8

5
size= 398.3

5
size= 397.6

nnz(A)= 3197.8 nnz(A)= 3199.5 nnz(A)= 3194.6
nnz(P)= 753.6 nnz(P)= 756.7 nnz(P)= 756.9

Table 6.3: Grid size at every level and number of nonzero entries in operators A and P for different values
of σ using the affinity-based coarsening procedure.
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σ = 1.25 σ = 1.5 σ = 1.75
V-cycles Res. norm V-cycles Res. norm V-cycles Res. norm

0 2.101e+03 0 2.101e+03 0 2.101e+03
1 3.520e+02 1 3.557e+02 1 3.553e+02
2 8.860e+00 2 1.088e+01 2 1.036e+01
3 9.235e-01 3 1.659e+00 3 1.539e+00
4 2.191e-01 4 4.496e-01 4 4.747e-01
5 6.488e-02 5 1.370e-01 5 1.811e-01
6 2.144e-02 6 4.417e-02 6 7.848e-02
7 7.502e-03 7 1.485e-02 7 3.746e-02
8 2.709e-03 8 5.205e-03 8 1.940e-02
9 9.978e-04 9 1.901e-03 9 1.076e-02
10 3.723e-04 10 7.249e-04 10 6.295e-03
11 1.402e-04 11 2.889e-04 11 3.831e-03
12 5.321e-05 12 1.206e-04 12 2.396e-03
13 2.032e-05 13 5.268e-05 13 1.526e-03
14 7.803e-06 14 2.405e-05 14 9.828e-04
15 3.011e-06 15 1.142e-05 15 6.376e-04
16 1.167e-06 16 5.603e-06 16 4.156e-04
17 4.542e-07 17 2.823e-06 17 2.716e-04
18 1.774e-07 18 1.452e-06 18 1.779e-04
19 6.956e-08 19 7.582e-07 19 1.166e-04
20 2.736e-08 20 4.005e-07 20 7.647e-05

Table 6.4: Residual norm for different values of σ after 20 consecutive V(1,1)-cycles using affinity-based
coarsening procedure.

Changes in Q more strongly affect the size of the coarse grids and the number of nonzero

entries in A and P , as can be observed in Table 6.5. As the value of Q increases, the grid

becomes larger by allowing more F -nodes to turn into C-nodes during the second pass of the

coarsening algorithm. Table 6.6 shows that larger values of Q lead to an improvement in the

rate of convergence since the coarse grid captures more features of the grid in the previous

level.
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Q = 0.25 Q = 0.5 Q = 0.75
Level Avg value Level Avg value Level Avg value

1
size= 2007.0

1
size= 2007.0

1
size= 2007.0

nnz(A)= 7221.0 nnz(A)= 7221.0 nnz(A)= 7221.0
nnz(P)= – nnz(P)= – nnz(P)= –

2
size= 735.0

2
size= 913.5

2
size= 1039.0

nnz(A)= 4149.8 nnz(A)= 4508.1 nnz(A)= 4550.8
nnz(P)= 2734.2 nnz(P)= 2809.9 nnz(P)= 2720.3

3
size= 285.2

3
size= 517.6

3
size= 721.0

nnz(A)= 2807.8 nnz(A)= 3627.8 nnz(A)= 3787.4
nnz(P)= 1259.4 nnz(P)= 1443.6 nnz(P)= 1421.8

4
size= 107.4

4
size= 301.6

4
size= 531.4

nnz(A)= 1525.8 nnz(A)= 3080.0 nnz(A)= 3431.8
nnz(P)= 563.9 nnz(P)= 876.4 nnz(P)= 1012.0

5
size= 36.1

5
size= 172.8

5
size= 397.3

nnz(A)= 546.3 nnz(A)= 2418.6 nnz(A)= 3191.7
nnz(P)= 242.1 nnz(P)= 537.0 nnz(P)= 759.9

Table 6.5: Grid size at every level and number of nonzero entries in operators A and P for different values
of Q using the affinity-based coarsening procedure.

Q = 0.25 Q = 0.5 Q = 0.75
V-cycles Res. norm V-cycles Res. norm V-cycles Res. norm

0 1.895e+03 0 1.895e+03 0 1.895e+03
1 4.891e+02 1 4.017e+02 1 3.012e+02
2 5.692e+01 2 2.736e+01 2 1.047e+01
3 1.662e+01 3 3.202e+00 3 1.661e+00
4 6.645e+00 4 7.656e-01 4 4.946e-01
5 3.122e+00 5 3.003e-01 5 1.728e-01
6 1.673e+00 6 1.412e-01 6 6.819e-02
7 1.009e+00 7 7.183e-02 7 3.028e-02
8 6.752e-01 8 3.797e-02 8 1.502e-02
9 4.882e-01 9 2.049e-02 9 8.192e-03
10 3.711e-01 10 1.118e-02 10 4.792e-03
11 2.899e-01 11 6.149e-03 11 2.938e-03
12 2.295e-01 12 3.399e-03 12 1.855e-03
13 1.830e-01 13 1.888e-03 13 1.191e-03
14 1.469e-01 14 1.053e-03 14 7.726e-04
15 1.186e-01 15 5.890e-04 15 5.040e-04
16 9.610e-02 16 3.308e-04 16 3.298e-04
17 7.784e-02 17 1.863e-04 17 2.162e-04
18 6.300e-02 18 1.053e-04 18 1.419e-04
19 5.104e-02 19 5.968e-05 19 9.321e-05
20 4.149e-02 20 3.392e-05 20 6.123e-05

Table 6.6: Residual norm for different values of Q after 20 consecutive V(1,1)-cycles using affinity-based
coarsening procedure.
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The previous experiment demonstrates that, when the operator A is not an M-matrix,

using the classical coarsening may lead to slow convergence of AMG. As noted in Table 6.1,

the coarsening is too aggressive. Hence, the overall performance of classical AMG is poor

when the matrix fails to be an M-matrix. With the affinity-based coarsening, AMG shows

good convergence. The coarsening is less aggressive for the affinity-based procedure, which

may help improving the quality of the coarse-grid approximation for carefully chosen values

of σ and Q.

6.1.1. Comparing AMG-FAS and Multiplicative Correction Schemes

In this section each power grid case is tested using the AMG-FAS and the multiplicative

correction schemes with a five-level hierarchy and with starting guess V0 = 1. V(1,1)

multigrid cycles are applied until the residual reduces by six orders of magnitude. Two sweeps

of Newton’s iteration are performed at the coarsest level. Relaxation-based coarsening with

the parameters set to σ = 1.5, Q = 0.75, and a caliber 3 interpolation are used.

Table 6.7 shows some important features of the systems and the average number of

iterations required to reach the stopping criterion using 10 simulations. Table 6.7 shows

that the AMG-FAS performs better in most of the cases. Furthermore, since the coarse grid

operators have to be recalculated after each cycle in the multiplicative correction scheme,

the AMG-FAS scheme is computationally cheaper.
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Case Buses Lines Gens. Transf./Ph. Shifters FAS its. Mult. MG its.

IEEE 57 57 80 7 15/0 11 10

IEEE 68 68 86 16 16/0 9 11

IEEE 118 118 186 54 9/0 9 12

IEEE 145 145 453 50 52/0 10 11

IEEE 300 300 411 69 62/0 32 48

Illinois 200 200 245 49 0/0 16 17

S. Carolina 500 500 597 90 0/0 17 19

Wisconsin 1664 1664 2462 78 0/0 15 22

Texas 2007 2007 3043 282 0/0 12 16

PEGASE 1354 1354 1991 260 234/6 20 20

Polish 2383 2383 2896 327 170/6 12 16

Polish 2746 2746 3514 382 171/1 16 20

Polish 3375∗ 3374 4161 441 383/2 21 24

PEGASE 9241∗ 9241 16049 1445 1319/66 24 28

Table 6.7: AMG-FAS and multigrid with multiplicative correction performances on real
world power systems. The number of V(1,1) cycles is averaged over 10 simulations.
(∗) The original Polish 3375 and PEGASE 9241 systems have negative line resistances and/or
reactances. These values arose from the π-representation of three-winding transformers.
Both systems were modified to have positive resistances and reactances.
(∗) The 3375-bus Polish system actually involves 3374 buses since one isolated bus has been
removed.

79



Chapter 7

General Form of the Admittance Matrix

Because of the important role the admittance matrix plays in the proposed nonlinear

multigrid solvers, the derivation of this matrix is discussed in this chapter. This matrix

provides the (complex) coupling coefficients in the power flow equations (3.9)-(3.11) and

(3.12)-(3.14).

In order to derive the bus admittance matrix and formulate the power flow equations,

note that every line (i, j) ∈ E in the system has an impedance zij given by

zij = rij + ı̂xij , (7.1)

where rij and xij are real numbers called the series resistance and series reactance, respec-

tively. rij and xij are generally non-negative for actual transmission lines [1]. However, rep-

resentation of two-winding tap-changing transformers and three-winding transformers may

lead to (small) negative resistances or reactances [28]. This is an unusual network condition

that often leads to difficulties for Gauss-Seidel in solving the power flow equations.

Consider the voltage and the current injection (Vi and Ii) at node i. At every node,

the current injection may be either positive (into the node) or negative (out of the node).

Voltages, currents and impedances are generally complex quantities. In order to simplify

the computations, the magnitudes (moduli) of these quantities are expressed in per-unit or

percent of specified base values. For instance, if 20kV is specified as base voltage, then 19kV

corresponds to 19/20=0.95 per unit (p.u.). Calculations are made using per-unit quantities

rather than dimensional quantities [20]. Use of the per-unit system can be thought as a

normalization or rescaling of the quantities involved in a power flow model.
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According to Ohm’s law, the component of the current injection Iij from node j to node

i and the voltage difference (Vi −Vj) are linked through the relationship

Iij =
(Vi −Vj)

zij
, (7.2)

which involves the impedance zij. On the other hand, Kirchoff’s current law states that the

total current flow through node i to be equal to the sum of the currents flowing out and into

node i. Therefore, using these two laws, the total current injected into node i can be written

as

Ii =
∑

(i,j)∈E, j 6=i

Iij =
∑

(i,j)∈E, j 6=i

(Vi −Vj)

zij
. (7.3)

Rather than using the system of equations (7.3), one often rewrites this system by setting

yij =
1

zij
=

1

rij + ı̂xij
=

rij
r2ij + x2

ij

− ı̂
xij

r2ij + x2
ij

= Gij + ı̂Bij. (7.4)

Gij and Bij are known as the conductance and the susceptance of the line (i, j) ∈ E, respec-

tively. After replacing (7.4) into (7.3), it results in the system of nodal network equations

(as i = 1, . . . , n), introduced in Section 1.1 and given by

Ii =
∑

(i,j)∈E, j 6=i

(Vi −Vj)yij , i = 1, . . . , n. (7.5)

The quantity yij is called the admittance of the line (i, j) ∈ E. The system (7.5) may be

rewritten as

Ii =


 ∑

(i,j)∈E, j 6=i

yij


Vi +

∑

(i,j)∈E, j 6=i

(−yij)Vj, i = 1, . . . , n, (7.6)

or more conveniently

Ii =

n∑

j=1

Y0
ijVj, i = 1, . . . , n, (7.7)
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where

Y0
ij =





∑
(i,j)∈E, j 6=i yij i = j

−yij (i, j) ∈ E, i 6= j

0 (i, j) 6∈ E

. (7.8)

By using (7.8), the system of nodal network equations (7.7) can be written also in matrix

form as

I = Y0V, (7.9)

where V = (V1, . . . ,Vn)
T , I = (I1, . . . , In)

T and

Y0 =




Y0
11 Y0

12 . . . Y0
1n

Y0
21 Y0

22 . . . Y0
2n

...
...

. . .
...

Y0
n1 Y0

n2 . . . Y0
nn




. (7.10)

Matrix Y0 is called the bus admittance matrix of the system, and (7.10) is its most basic

form, which arises when only line admittances are involved.

OBSERVATIONS:

1. Usually the resistance of a transmission line is significantly less than the reactance.

Hence, by looking at equation (7.4) it can be observed this implies thatGij is very small

compared to Bij . It is common practice to approximate the terms yij by neglecting

its real part Gij . This leads to the simplified power flow problem (1.10)-(1.12).

2. From the way that the elements of the bus admittance matrix are defined in (7.8), it

can be seen that Y0 is symmetric.

There are other factors in a power system that might affect the computation of the bus

admittance matrix such as the length of the transmission lines, the presence of transformers

and shunt components. Shunt elements cause current diversion through them and prevent

current from flowing through other higher resistance components in a power system. These
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elements are connected to the network at the nodes and are used primarily for compensation

and stability purposes [1, 33].

Note that any transmission line is composed of one or more sections that are equivalent

to a standard π model circuit (Figure 7.1) [1, 21], which is a simple circuit consisting of a

series impedance zij =
1
yij

between the two ends i and j and a shunt admittance ı̂bij that

is halved and placed at each end of the circuit. Here, bij is a real non-negative number

since this term corresponds to a capacitive reactance and is caused by the insulation of the

transmission line from the ground. The difference in voltage between the line and the ground

causes them to form a capacitor. This effect of capacitance between the wire and the ground

is negligible for short transmission lines, but for medium-length and long transmission lines,

the capacitance increases with the length of the line and its effect has to be considered for

these types of lines [21].

Figure 7.1: Standard π circuit model.

When nodes i and j are connected through a line with charging capacitance ı̂bij , then

the admittance matrix is modified by adding ı̂
bij

2
to the diagonal entries corresponding to
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nodes i and j. The resulting form of the admittance matrix is

Y1 =




Y0
11 . . . Y0

1i . . . Y0
1j . . . Y0

1n

...
. . .

...
...

...
...

...

Y0
i1 . . . Y0

ii + ı̂
bij

2
. . . Y0

ij . . . Y0
in

...
...

...
. . .

...
...

...

Y0
j1 . . . Y0

ji . . . Y0
jj + ı̂

bij

2
. . . Y0

jn

...
...

...
...

...
. . .

...

Y0
n1 . . . Y0

ni . . . Y0
nj . . . Y0

nn




. (7.11)

On the other hand, tap setting transformers modify the actual magnitudes of voltages,

currents and impedances from one end to the other of the lines [20]. When nodes i and j

are connected through a single-phase two-winding ideal transformer, the corresponding p.u.

quantities keep the same values on both sides of the transformer. However, in the case of

a phase-shifting transformer, the phase angle of these quantities might differ from one side

to the other. In order to model the action of an ideal transformer connecting nodes i and j

with tap ratio τ and phase shift φ, the bus admittance matrix Y1 must be modified. The

modification leads to [20]

Y2 =




Y1
11 . . . Y1

1i . . . Y1
1j . . . Y1

1n

...
. . .

...
...

...
...

...

Y1
i1 . . .

∑
(i,k)∈E, k 6=j yik +

(
yij + ı̂

bij

2

)
1
τ2

. . . −yij
1

τ e−ı̂φ . . . Y1
in

...
...

...
. . .

...
...

...

Y1
j1 . . . −yji

1
τ êıφ

. . .
∑

(j,k)∈E yjk + ı̂
bij

2
. . . Y1

jn

...
...

...
...

...
. . .

...

Y1
n1 . . . Y1

ni . . . Y1
nj . . . Y1

nn




. (7.12)

Finally, shunt elements such as capacitors and inductors might be connected to the

network at the position of the nodes. A shunt admittance at node i is denoted by αi+ı̂βi and

contributes to the corresponding diagonal term in the computation of the bus admittance
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matrix [20]. By adding shunt admittances at nodes i and j, the bus admittance matrix

becomes

Y3 =




Y2
11 . . . Y2

1i . . . Y2
1j . . . Y2

1n

...
. . .

...
...

...
...

...

Y2
i1 . . .

∑
(i,k)∈E,k 6=j yik +

(
yij + ı̂

bij

2

)
1
τ2

+ αi + ı̂βi . . . −yij
1

τ e−ı̂φ . . . Y2
in

...
...

...
. . .

...
...

...

Y2
j1 . . . −yji

1
τ êıφ

. . .
∑

(j,k)∈E yik + ı̂
bij

2
+ αj + ı̂βj . . . Y2

jn

...
...

...
...

...
. . .

...

Y2
n1 . . . Y2

ni . . . Y2
nj . . . Y2

nn




, (7.13)

where αi is a real non-negative number, while βi can be either positive (when corresponding

to a capacitive shunt, i.e. capacitors) or negative (when corresponding to an inductive shunt,

i.e. reactors) [1]. In this document, Y denotes any one of the forms (7.10),(7.11), (7.12) or

(7.13).

By expressing Yij in terms of its complex components asYij = Gij+ı̂Bij and the voltage

Vi in polar coordinates as Vi = |Vi| eı̂δi, and replacing these expressions into (1.2) for each

i = 1, . . . , n the resulting system is the power flow equations given in (1.7)-(1.9).
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Mathematik 9 (01 1981), 213–239.

[24]Hackbusch, W. Multigrid Methods and Applications. Springer, 2003.

87



[25]Henson, V. E. Multigrid methods nonlinear problems: an overview. In Computational
Imaging (06 2003), vol. 5016 of Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series.

[26]Idema, R., Lahaye, D., Vuik, C., and Sluis, L. Fast Newton load flow. In
2010 IEEE PES Transmission and Distribution Conference and Exposition: Smart
Solutions for a Changing World (May 2010), IEEE, pp. 1–7.

[27]Jameson, A. Multigrid Algorithms for Compressible Flow Calculations. In Multigrid
Methods II. Springer, 1986, pp. 166–201.

[28]Josz, C., Fliscounakis, S., Maeght, J., and Panciatici, P. AC Power Flow Data
in MATPOWER and QCQP Format: iTesla, RTE snapshots, and PEGASE, 2016.
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[44]Stüben, K. Algebraic Multigrid (AMG): An Introduction with Applications, March
1999.
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