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This disseration contains two topics: (1) A Comparative Study of Statistical Methods for

Quantifying and Testing Between-study Heterogeneity in Meta-analysis with Focus on Rare

Binary Events; (2) Estimation of Variances in Cluster Randomized Designs Using Ranked

Set Sampling.

Meta-analysis, the statistical procedure for combining results from multiple studies, has

been widely used in medical research to evaluate intervention efficacy and safety. In many

practical situations, the variation of treatment effects among the collected studies, often

measured by the heterogeneity parameter τ 2, may exist and can greatly affect the infer-

ence about effect sizes. Comparative studies have been done for only one or two of the

heterogeneity-related topics including statistical models used, descriptive measures, estima-

tion, hypothesis testing, and confidence intervals. Also, none of the studies is focused on rare

binary events that require special attention. Our goal is to provide a comprehensive review

of all the topics and to evaluate the performance of existing methods involved and make rec-

ommendations based on simulation studies that examine various realistic scenarios for rare

binary events. We summarize 13 models, 11 descriptive measures, 23 estimators, 33 tests,

and 16 confidence intervals in total. We not only provide synthesized information but also

categorize the methods based on their key features. We find that there is no uniformly “best”

estimator or inference method. However, methods with consistently better performance do

exist. For the purpose of estimation, we suggest to use the improved Paule-Mandel estimator

v



in general situations and the Sidik and Jonkman estimator in some specific situations (i.e.,

extremely rare events coupled with studies of small sample sizes and existence of at least

moderate-level heterogeneity) for their relatively low bias and mean squared error. The most

commonly used DerSimonian and Laird estimator and its one-step variants tend to perform

unsatisfactorily. For the purpose of testing the homogeneity of odds ratios, we recommend

the likelihood ratio (LR) test based on the fixed-effect logistic model and the conditional LR

test based on the fixed-effects hypergeometric model. For the purpose of interval estimation,

we recommend the profile likelihood methods and the approximate Jackson method in gen-

eral and the Sidik and Jonkman method for the specific situations mentioned above.

We consider the estimation of variance components in cluster randomized designs (CRDs)

using ranked set sampling (RSS). Under the hierarchical linear model (HLM), we propose

nonparametric estimators for the between and within cluster variances and explore the im-

pact of design parameters on their performance. Simulation studies show that these RSS-

based variance estimators are more efficient than the SRS-based estimator even when the

ranking is imperfect. We also illustrate our proposed methods with a real data example.
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CHAPTER 1

A Comparative Study of Statistical Methods for Quantifying and Testing Between-study
Heterogeneity in Meta-analysis with Focus on Rare Binary Events

1.1. Introduction

Meta-analysis, the statistical procedure synthesizing information from multiple studies,

has been widely used in many research areas including social, psychological and especially

medical sciences. Meta-analysis is a powerful tool in drug safety evaluation, where the num-

ber of cases (adverse events) can be very limited in a single study. The U.S. Food and

Drug Administration (FDA) released a draft guidance for industry titled "Meta-Analyses of

Randomized Controlled Clinical Trials to Evaluate the Safety of Human Drugs or Biolog-

ical Products” in November 2018, which demonstrates the importance of meta-analysis in

the development of new drugs. Such meta-analysis often involves binary outcomes of rare

events, which are the focus of this study. A typical example is the meta-analysis of 48 trials

conducted by Nissen and Wolski [57] evaluating the adverse effects of rosiglitazone, where

the outcomes are myocardial infarction and death events from cardiovascular causes.

The primary goal of a meta-analysis is usually to estimate and infer the overall effect size

while the variability in the effect estimates from component studies should also be properly

accounted for. Besides the within-study sampling errors, the variability may come from

diverse characteristics of individual studies such as disparities in trial protocols, subjects’

conditions, and population characteristics, etc. When the study-wise differences exist, we

call these studies heterogeneous and the heterogeneity is typically measured by a between-

study variance parameter τ 2. Identifying the existence of such heterogeneity can affect the
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choice of model when conducting meta-analysis. Quantifying the level of heterogeneity is

also important since it can affect the estimation and inference about the overall effect size.

Also, descriptive measures have been widely used by clinicians to provide a more intuitive

interpretation about the heterogeneity for ease of understanding.

Heterogeneity related topics not only include point and interval estimation of τ 2 and

hypothesis testing for homogeneity of effect sizes, but also cover statistical models used for

meta-analysis and descriptive measures quantifying the level of heterogeneity. Although

modeling is the foundation of a meta-analysis, very few studies in literature paid attention

to this topic. For binary events, besides the traditionally used fixed-effect and random-effects

models, quite a few generalized linear mixed-effects (GLMM) models have been developed

in the meta-analysis framework. Thus we spend an entire section on the models, especially

those for binary outcomes. Descriptive measures are widely used by clinicians to provide an

intuitive interpretation about heterogeneity for ease of understanding. Currently, there is no

comprehensive and updated review on this topic though there exist various measures and

some recently developed ones may have advantages in certain situations over routinely used

measures such as I2.

For point estimation of τ 2, the DerSimonian and Laird (DL) estimator [21], most widely

used in the field, has been frequently challenged for its default use in many software packages,

largely due to its sizable negative bias when the heterogeneity level is high [69, 86, 7, 61, 60].

Many modifications over the DL estimator have been suggested based on the method of

moments. Other approaches such as likelihood-based and other nonparametric methods can

also be applied.

For hypothesis testing of homogeneity of effect sizes, besides the standard test using

Cochran’s Q statistic [16], many other tests, such as likelihood ratio tests, score tests, and

Wald tests, have been developed. Having too many choices actually makes it harder for

people to decide which test to employ in solving their problems. Hence it calls for a careful

review, classification and benchmarking of these methods before a plausible one can be used
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to provide evidence for heterogeneity, especially for low-frequency 0/1 responses.

Confidence intervals (CIs) can be used for hypothesis testing, too, and they provide more

information than a yes/no answer. For interval estimation of τ 2, different types of CIs have

been constructed to gauge the estimation uncertainty. However, nearly all these methods

were constructed without a special consideration of dichotomous data and their performance

remains unclear in the context of rare binary events, in which some of these methods may

produce large bias or even fail to work.

Comparative studies/review papers exist for all the above topics except for descriptive

measures. For example, Veroniki et al. [85], Langan et al. [45], Petropoulou and Mavridis [64]

reviewed and compared most of the existing estimators of τ 2, among which only Petropoulou

and Mavridis [64] conducted simulation studies to evaluate their performance. Almalik

and van den Heuvel [2] compared ten tests specifically designed for testing homogeneity of

multiple 2 × 2 tables, but no attention was given to rare binary events. Jackson et al. [38]

summarized and evaluated seven random-effects models for meta-analysis with odds ratio as

effect measure. Previous comparisons about CIs [41, 87, 82] were largely limited to several

similar types of CIs. We summarized the relatively comprehensive review papers in Table

1.1. None of these papers covers all the topics for heterogeneity mentioned above, nor do

they focus on rare binary events. And most of them are far from being complete, some even

outdated, which motivates us to conduct this study to provide useful guidance to clinicians

and biostatisticians.

The first part of this dissertation is organized as follows. In Section 1.2, we introduce

notation and frequently used terms in meta-analysis. In Section 1.3, we summarize and cat-

egorize existing models for meta-analysis that are either general-purpose or binary-specific.

Section 1.4 reviews existing descriptive measures quantifying the level of heterogeneity. In

Section 1.5, we list estimators for τ 2 and briefly summarize two recently developed ones

that are not included in any of the existing review papers. In Section 1.6, we thoroughly

summarize over thirty hypothesis testing procedures including both general-purpose tests
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and specifically designed tests for meta-analysis of dichotomous outcomes. In Section 1.7,

different types of confidence intervals for τ 2 are described and categorized. In Section 1.8,

we compare the performance, in terms of bias and mean squared error (MSE) for point

estimators, size and power for tests, and empirical coverage probability and width for CIs.

Simulation studies are conducted over a large collection of scenarios designed to mimic prac-

tical situations. In Section 1.9, we re-analyze the data from a meta-analysis of 20 trials of

type 2 diabetes mellitus after gestational diabetes [6] and another cohort of 56 trials of type

2 diabetes patients treated with rosiglitazone to assess risk of cardiovascular side effects [58].

The final section provides recommendations in terms of choosing appropriate estimators and

inference procedures in meta-analysis of rare binary events as well as a brief discussion.

Ref. Model Estimator Hypothesis testing Confidence interval Simulation

Paul and Donner [62] X X

Takkouche et al. [77] X X

Reis et al. [66] X X

Viechtbauer [88] X X X

Viechtbauer [87] X X

Sidik and Jonkman [70] X X

Kontopantelis et al. [43] X X

Veroniki et al. [85] X X

Langan et al. [45] X

Petropoulou and Mavridis [64] X X

Jackson et al. [38] X X

Almalik and van den Heuvel [2] X X

Langan et al. [46] X X

Table 1.1: Existing comparative studies/reviews

1.2. Notation & frequently used terms

Suppose a meta-analysis includes K independent studies and the kth study contains nk

subjects (k = 1, ..., K). In study k, let θk be the true but unknown treatment effect and yk be

the observed treatment effect such that E[yk|θk] = θk and Var[yk|θk] = σ2
k, the within-study
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variance. Typically s2
k, an estimate of σ2

k, is reported along with yk in published studies

and it is often treated as a known quantity in practice (i.e., indistinguishable from σ2
k).

When the study-specific effects θk’s are treated as random variables rather than constants,

we assume E[θk] = θ and Var[θk] = τ 2, where θ, a parameter of main interest in the meta-

analysis, represents the overall treatment effect across different studies, and τ 2 measures

the between-study heterogeneity. Further, for binary responses, we denote the number of

events by xk0 (xk1) and the number of subjects by nk0 (nk1) in the control (treatment) group.

The probability of having an event in the control (treatment) group is denoted by pk0 (pk1).

Effect measures for binary outcomes include risk difference (RD, pk1 − pk0), risk ratio (RR,

pk1/pk0) and odds ratio (OR, [pk1/(1−pk1)]/[pk0/(1−pk0)]). For rare binary events, RR≈OR.

A logarithm transformation of the odds ratio (LOR) is often used in meta-analysis for a

much faster convergence to asymptotic normality, and the within-study variance σ2
k is then

estimated by s2
k = 1

xk0
+ 1

nk0−xk0
+ 1

xk1
+ 1

nk1−xk1
. Gart [25] added a continuity correction

factor of 0.5 to all the cells so that

yk = log
xk1 + 0.5

nk1 − xk1 + 0.5
− log

xk0 + 0.5

nk0 − xk0 + 0.5
,

and σ2
k is estimated by

s2
k =

1

xk0 + 0.5
+

1

nk0 − xk0 + 0.5
+

1

xk1 + 0.5
+

1

nk1 − xk1 + 0.5
,

which will be used in our numerical evaluation of rare binary events.

In the literature of meta-analysis, there are two main parametric models, namely Re and

Fe, to combine results from component studies. The Re model assumes that yk = θk + εk,

where θk ∼ N(θ, τ 2) and εk ∼ N(0, σ2
k). When τ 2 = 0, it is reduced to the Fe model

yk = θ + εk, where a common treatment effect θ is assumed for all component studies (i.e.,

θk ≡ θ). These models can be used with any effect measure, as long as the assumed normality

is (approximately) valid.
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Next, we introduce the (generalized) Q statistic [20] and related terms, which will fre-

quently appear in this chapter. For any parameter of interest, we use the corresponding

letter/symbol with a hat to denote its estimate. For example, we use θ̂ to denote the es-

timate of the overall treatment effect θ. The Q statistic is defined as the weighted sum of

squared deviations between the estimated overall treatment effect and observed treatment

effect in each individual study, namely

Q =
K∑
k=1

wk(yk − θ̂)2, (1.1)

where wk is a positive weight assigned to study k, and θ̂ =
∑K

k=1wkyk/
∑K

k=1wk, the weighted

average of the estimated study-specific effects. A commonly used weighting scheme is to set

wk = [V̂ar(yk)]−1, i.e., the inverse of the estimated variance of yk. Under this inverse-variance

weighing scheme, the variance of θ̂ can be given by 1/
∑K

k=1 wk if we treat wk’s as known

constants (i.e., indistinguishable from Var(yk)]−1). Further, this scheme yields wk = 1/s2
k

for the Fe model, and wk = 1/(s2
k + τ̂ 2) for the Re model, where τ̂ 2 can be any estimator

discussed in Section 1.5. Under the Fe (Re) model with the inverse-variance weights, we

denote the corresponding Q statistic by QFe (QRe) and the corresponding θ̂ by θ̂Fe (θ̂Re) with

variance vFe (vRe). In fact, the Cochran’s Q statistic is QFe, also known as the DerSimonian

and Laird’s Q test statistic [21].

DerSimonian and Kacker [20] showed that if the weights wk’s are treated as known

constants, the expected value of Q is

E(Q) = τ 2

(
K∑
k=1

wk −
∑K

k=1w
2
k∑K

k=1wk

)
+

(
K∑
k=1

wkσ
2
k −

∑K
k=1w

2
kσ

2
k∑K

k=1wk

)
. (1.2)

By equating Q to its expected value, replacing σ2
k by s2

k in (1.2) , solving for τ 2 and truncating

any negative solution to zero , the generalized method of methods (GMM) estimator of τ 2
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can be obtained easily:

τ̂ 2
GMM = max

Q−
(∑K

k=1 wks
2
k −

∑K
k=1 w

2
ks

2
k∑K

k=1 wk

)
∑K

k=1 wk −
∑K
k=1 w

2
k∑K

k=1 wk

, 0

 . (1.3)

The DL estimator τ̂ 2
DL [21] is a special case of τ̂ 2

GMM , with wk = 1/s2
k and Q = QFe.

Throughout this dissertation, we use χ2
df to denote a chi-squared distribution with df

degrees of freedom, and use χ2
df,α to denote its 100α-th percentile.

1.3. Statistical models for meta-analysis

We restrict our attention to meta-analysis models without covariates accounting for char-

acteristics of different studies. Such models can be divided into two groups, generic models

and binary-specific models. Generic models can be applied to any type of response, con-

tinuous or discrete. The conventional fixed-effect (Fe) and random-effects (Re) models, as

described in Section 1.2, belong to this category. Viechtbauer [88] pointed out that they

both are special cases of the generalized linear mixed-effects model (GLMM).

Among binary-specific models, as listed in Table 1.2, the simplest is the fixed-effect

binomial (FeB) model that has been widely used in many earlier papers on statistical analysis

of multiple 2×2 tables [1]. This model only assumes xki ∼ Binomial(nki, pki) for k = 1, . . . , K

and i = 0, 1, with all pki’s being unknown constants so that the treatment effect in each study

k, as a function of (pk0, pk1), is a fixed effect. In fact, it is equivalent to the saturated model

among all (fixed-effect) logistic regression models with the response variable O and two

explanatory variables S and Z, where O is the binary outcome of the event of interest (1

for success and 0 for failure), S is a categorical variable indicating which study is involved,

and Z is a binary variable indicating which treatment is involved (0 for control and 1 for
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treatment). The saturated model is given by

logit [P (O = 1)] ≡ log
P (O = 1)

P (O = 0)
= µ+

K−1∑
k=1

αkI(S = k)+θ ·Z+
K−1∑
k=1

βk [Z · I(S = k)] , (1.4)

where I(·) is the indicator function, αk represents the effect of study k, θ represents the

main effect of the treatment, βk represents the study-treatment interaction for study k,

αK = βK = 0 for the purpose of identifiability, and all µ, αk, θ, and βk are treated as

constants rather than random variables. This fixed-effect logistic (FeL) model (1.4) has 2K

free parameters, and so it is equivalent to FeB, which does not assume any reduced structure

among pki’s.

For small-sample inference, instead of FeB, the fixed-effect hypergeometric (FeH) model

is often used [48, 1]. Let ψk denote the odds ratio in study k and xk ≡ xk0 + xk1. In each

table k, by conditioning on the row total nk1 and the column total xk, the distribution of

xk1 is a (non-central) hypergeometric distribution,

P (xk1 = t|nk1, xk, nk, ψk) =

 nk1

t


 nk0

xk − t

ψtk

∑bk
u=ak

 nk1

u


 nk0

xk − u

ψuk

,

where ak = max{0, xk−nk0} and bk = min{xk, nk1}. In FeH, ψk are treated as fixed effects.

Liang and Self [48] considered a random-effects hypergeometric (ReH) model that assumes

logψk = α + τZk, where Zk are independent, identically distributed random variables with

distribution F .

Other binary-specific models are mainly two-stage hierarchical models, among which

binomial-normal (BN) hierarchical models are the most popular, including BNBA [7], BNSH

[71], BNAH [2], BNLW [47] and BNV H [83]. All the BN models use the LOR as the
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effect measure and assume that event counts follow binomial distributions, i.e., xki ∼

Binomial(nki, pki) for k = 1, · · · , K and i = 0, 1. The first two models, BNBA and BNSH ,

assume logit(pk0) = µk and logit(pk1) = µk + θk, where µk represents the baseline risk of the

event in each study, θk ∼ N(θ, τ 2) is the log odds ratio representing the random treatment

effect. The only difference between the two is that BNBA treats the baseline risks as random

effects by assuming µk ∼ N(µ, σ2) and µk ⊥ θk, while BNSH treats µk’s as fixed effects.

Both BNBA and BNSH implicitly assume that the variance of logit(pk0) is not greater than

the variance of logit(pk1). This assumption is removed by BNAH , which models (µk, θk) by

a bivariate normal distribution,

 µk

θk

 ∼ N


 µ

θ

 ,

 σ2 ρστ

ρστ τ 2


 .

Note that BNAH was recently considered in [2] as a random-effects logistic (ReL) regression

model, which has the same form as the FeL model (1.4) but assumes both αk and βk are

random with a bivariate normal distribution that has the mean vector 0 and the same

covariance matrix as (µk, θk). For this reason, we refer to BNAH by ReL in later sections.

The fourth model, BNLW , is flexible yet intuitive, as it introduces an additional parameter

ω ∈ [0, 1] to allow for unequal group variability without assuming any specific direction:

logit(pk0) = µk − ωθk, logit(pk1) = µk + (1− ω)θk,

where µk ∼ N(µ, σ2), θk ∼ N(θ, τ 2), and µk ⊥ θk. Note that in BNLW , µk no longer

represents the baseline risk in study k. When ω = 0, BNLW becomes BNBA, forcing

Var[logit(pkc)] ≤ Var[logit(pkt)]. When ω = 1
2
, BNLW becomes the model used in [74]

that assumes the equality of the variances.

The fifth model, BNV H , is the most general one, directly describing the joint distribution

of the logit transformed probabilities in the treatment and control groups via a bivariate
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normal distribution: logit(pk0)

logit(pk1)

 ∼ N


 µ

µ+ θ

 ,

 σ2
0 ρσ0σ1

ρσ0σ1 σ2
1


 .

Clearly, BNLW can be expressed as a special case of BNV H , yielding

 logit(pk0)

logit(pk1)

 ∼ N


 µ

µ+ θ

 ,

 σ2 + ω2 · τ 2 σ2 − ω (1− ω) τ 2

σ2 − ω (1− ω) τ 2 σ2 + (1− ω)2 τ 2


 .

Jackson et al. [38] compared seven random-effects models for meta-analysis that use the

odds ratio as the effect measure, among which Model 1 is the generic Re model and Models

2-6 are all BN models. In fact, Model 2 is BNSH , Model 3 is BNBA, Model 4 is a modified

version of BNLW with ω = 1
2
and µk’s being fixed effects, Model 5 is a special case of BNLW

with ω = 1
2
, and Model 6 is BNV H . As mentioned before, Models 2 and 3 are the same except

that one treats µk’s as random effects and the other as fixed effects. So do Models 4 and 5.

Further, Model 6 is a generalization of Models 3 and 5 as it eliminates some independence

structures from the two models.
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Type∗ Model Name Effect
Measure

Specification Ref.

1
Random-effects
(Normal-
Normal)

Re any yk = θk + εk; θk ∼ N(θ, τ 2), εk ∼ N(0, σ2
k) [21]

Fixed-effect (i.e.
common effect) Fe any yk = θ + εk; εk ∼ N(0, σ2

k)

2 Fixed-effect
Binomial FeB/FeL RD/RR/OR xki ∼ Binomial(nki, pki) for i = 0, 1; all pki’s are

unknown constants
[1]

Fixed-effect
(non-central)
Hypergeometric

FeH OR xk1 ∼ Hypergeometric(nk, xk, nk1, ψk); odds ratios ψk’s
are unknown constants

[48]

Random-effects
(non-central)
Hypergeometric

ReH OR xk1 ∼ Hypergeometric(nk, xk, nk1, ψk), where the log
odds ratio logψk = α + τZk, Zk

iid∼ F

[48]

Binomial-
Normal

BNBA OR xki ∼ Binomial(nki, pki) for i = 0, 1;
logit(pk0) = µk, logit(pk1) = µk + θk;
µk ∼ N(µ, σ2), θk ∼ N(θ, τ 2)

[7]

BNSH OR xki ∼ Binomial(nki, pki) for i = 0, 1;
logit(pk0) = µk, logit(pk1) = µk + θk;
µk’s are fixed effects, θk ∼ N(θ, τ 2)

[71]

BNAH/ReL OR xki ∼ Binomial(nki, pki) for i = 0, 1;
logit(pk0) = µk, logit(pk1) = µk + θk;(
µk

θk

)
∼ N

((
µ

θ

)
,

(
σ2 ρστ

ρστ τ 2

)) [2]

BNLW OR xki ∼ Binomial(nki, pki) for i = 0, 1;
logit(pk0) = µk − ωθk, logit(pk1) = µk + (1− ω)θk;
µk ∼ N(µ, σ2), θk ∼ N(θ, τ 2), ω ∈ [0, 1]

[47]

BNV H OR

(
logit(pk0)

logit(pk1)

)
∼ N

((
µ

µ+ θ

)
,

(
σ2

0 ρσ0σ1

ρσ0σ1 σ2
1

))
[83]

Hypergeometric-
Normal HN OR P (Xk1 = xk1|θk) =

(nk1xk1
)(nk0xk0

)exp(θkxk1)∑
j (nk1j )( nk0

xk0+xk1−j
)exp(θkj)

,

θi ∼ N(θ, τ 2)

[83]

Beta-Binomial BB OR xki ∼ BetaBinom(nki, pki, ρ) for i = 0, 1,
where ρ is the intra-class correlation (ICC)

[4]

Poisson-Gamma PG RR xk0 ∼ Poisson(nk0ξk), xk1 ∼ Poisson(nk1λk1)
λk1 = ξk exp(θk), ξk ∼ Gamma(α, β), θk ∼ N(θ, τ 2),
ξk is the baseline event rate, θk is the log relative risk

[12]

* Type 1: Generic; Type 2: Binary-Specific

Table 1.2: Overview of statistical models without covariates for meta-analysis

For binary outcomes, several hierarchical models based on other distributions have also

been proposed in the literature, as specified in Table 1.2. Van Houwelingen et al. [83]
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suggested to use a hypergeometric distribution by conditioning on fixed row and column

totals in each 2× 2 table, combined with normally distributed random effects for log-odds.

This HN model is actually Model 7 in [38], a mixed-effects conditional logistic regression

model. Bakbergenuly and Kulinskaya [4] proposed a beta-binomial (BB) model, which

assumes a common parameter ρ for both groups that can be interpreted as an intra-class

correlation (ICC), to make inference about the odds ratio for over-dispersed count data. Cai

et al. [12] proposed a Poisson-Gamma (PG) model to make inference about the risk ratio

for meta-analysis of rare events. In Table 1.2, most binary-specific models belong to the

GLMM family except for the BNLW and BB models, due to the unknown ω (BNLW ) and

the pooled ρ (BB). Nearly all these GLMMs can be fitted with the R function glmer() in

the lme4 package [38].

The above models have not taken into account the influence of moderator variables.

In the presence of important study-level characteristics (e.g., measures of research or data

quality in each study k, selected characteristics of the authors, the sample size, etc.) or

differences in model specifications (e.g., whether or not potentially relevant independent

variables being omitted from study k, differences in functional forms, types of regression,

and data definitions or sources, etc.), one can add covariates that reflect such factors in these

models, and so meta-analysis becomes meta-regression analysis.

1.4. Descriptive measures quantifying between-study heterogeneity

As mentioned in the introduction, (statistical) heterogeneity exists when true effects being

evaluated differ among studies in a meta-analysis. Assessing the extent of heterogeneity is

essential for model selection between Fe and Re models and decision making. An obvious

choice is by estimating the variance parameter τ 2, as is typically done in a random-effects

meta-analysis. As pointed out by Higgins and Thompson [32], this measure does not facilitate

comparison of heterogeneity across meta-analyses of different types of outcomes (e.g., the
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survival time can be either continuous or discrete). Also, its scale is specific to a chosen effect

metric and the interpretation can be difficult. For example, odds ratio is a commonly used

effect measure for binary data. Still, the variance of log-odds ratio is not easy to understand

for many non-statisticians. Alternatively, one may test the existence of the between-study

heterogeneity (e.g., through Cochran’s Q-test [16]), and use the corresponding test statistic

or p-value to indicate the extent of heterogeneity. However, such measures depend on the

scale of effect sizes or the number of component studies K. To overcome these limitations,

effort has been devoted to development of various descriptive measures that can provide

more intuitive information about the heterogeneity.

Table 1.3 summarizes 11 descriptive heterogeneity measures in the literature. Note that

all these measures are general-purpose and none is specifically designed for binary outcomes.

Takkouche et al. [77] proposed two measures, RI and CVB, to quantify the level of heterogene-

ity in five published meta-analyses. The statistic RI was developed to estimate τ 2/(τ 2 +σ2),

the proportion of total variation in the effect estimates that is due to between-study hetero-

geneity. This quantity is also known as the intra-class correlation in the context of cluster

sampling. Here, the within-study variances σ2
k’s are assumed to be constant, i.e., σ2

k ≡ σ2,

which is estimated by 1/
∑K

k=1 1/s2
k, making RI = τ̂2

τ̂2+K/
∑K
k=1 1/s2k

. The other statistic CVB

estimates the between-study coefficient of variation τ/|θ| by
√
τ̂ 2/
∣∣∣θ̂∣∣∣. Obviously, CVB is

affected by the overall treatment effect θ and is undefined when θ = 0.

Under the assumption of a common within-study variance σ2, Higgins and Thompson

[32] formulated a general heterogeneity measure as a function of the overall treatment effect

θ, the between-study variance τ 2, the within-study variance σ2, and the number of com-

ponent studies, namely, f(θ, τ 2, σ2, K). They proposed three criteria that such a measure

should satisfy in general in order to facilitate its comparability and interpretability, includ-

ing (i) dependence on the extent of heterogeneity, (ii) scale invariance, i.e. f(θ, τ 2, σ2, K) =

f(a + bθ, b2τ 2, b2σ2, K) for any a and b, and (iii) size invariance, i.e. f(θ, τ 2, σ2, K1) =

f(θ, τ 2, σ2, K2) for any positive integers K1 and K2. Criterion (i) implies that the function
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f should increase monotonically with τ 2. Criterion (ii) implies that f should be a function

of the ratio ρ ≡ τ2

σ2 and that θ should not be involved. Criterion (iii) implies that f does

not depend on K. It can be shown that any monotonically increasing function of ρ satisfies

the three criteria. Based on this, three statistics, H2, R2 and I2 were proposed. The first,

H2, estimates the quantity ρ + 1 by equating the observed value of QFe to its expectation

so that H2 = QFe
K−1

can be interpreted as relative excess in QFe over its expected value, the

degrees of freedom K − 1. The second, R2, attempts to estimate ρ + 1 as well; but here,

ρ+1 is approximated by vRe/vFe so that R2 = v̂Re/v̂Fe =
∑K

k=1
1
s2k
/
∑K

k=1
1

s2k+τ̂2
, which can be

interpreted as the inflation in the confidence interval for θ̂Re under the Re model compared

with θ̂Fe under the Fe model. Both H2 and R2 should be at least 1, where 1 means perfect

homogeneity; and the larger the value, the more heterogeneous the studies. In practice, the

authors suggested to use H and R because clinicians may be more familiar with standard

deviations than variances. The third statistic, I2, estimates a different function of ρ, i.e.
ρ

1+ρ
= τ2

τ2+σ2 , which represents the proportion of total variance that is due to between-study

variation. Higgins and Thompson [32] suggested to compute I2 by I2
HT = 1 − K−1

QFe
, which

leads to a convenient relationship I2
HT = 1 − 1

H2 . Jackson et al. [39] suggested to compute

I2 by I2
R = 1 − v̂Fe

v̂Re
= 1 −

∑K
k=1

1
s2k+τ̂2

/
∑K

k=1
1
s2k
, which leads to another convenient relation-

ship I2
R = 1 − 1

R2 . Both I2
HT and I2

R are usually expressed as percentages between 0% and

100%, where a value of 0% corresponds to no observed heterogeneity, while larger values

indicate increasing levels of heterogeneity. They estimate the same quantity as RI does,

but with different within-study variance estimates. Among these measures (i.e. H2, R2,

I2
HT or I2

R), I2
HT is most popular and in the literature, I2 typically represents I2

HT as I2
R is

much less known. Higgins et al. [33] empirically provided a rough guide to the interpreta-

tion of I2 using overlapping intervals: a value in [0,0.4] suggests that heterogeneity may not

be that important; [0.3, 0.6] may represent moderate heterogeneity; [0.5,0.9] may represent

substantial heterogeneity; and [0.75,1] implies considerable heterogeneity.

The assumption of a constant within-study variance is probably untrue in many real

life data. Thus, Crippa et al. [18] lifted this assumption and proposed a new measure Rb,
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defined as Rb = 1
K

∑K
k=1

τ̂2

s2k+τ̂2
, to assess the contribution of the between-study variance τ 2

to vRe (i.e., the variance of the pooled random-effects estimate θ̂Re). It can be viewed as an

average of the study-specific proportions of the study-specific variances due to between-study

heterogeneity. They showed that the quantity τ 2/vRe underlying Rb is a strictly increasing

function of τ 2 and is scale-invariant. However, this quantity depends on K and so is not size-

invariant. They further showed that RI ≥ max(Rb, I
2
HT ). When σ2

k ≡ σ2 and σ2 is estimated

by s2, Rb, RI , I2
HT and I2

R all yield the same quantity τ̂2

s2+τ̂2
. The authors conducted a

simulation study to examine the performance of RI , I2
HT and Rb. Both RI and I2

HT tend to

be positively biased and this overestimation increases as K increases. Confidence intervals

based on RI and I2
HT give lower coverage probabilities compared to those based on Rb and

the difference becomes more obvious when the within-study variances vary more and when

the heterogeneity level increases.

To reduce the impact of outlying studies, Lin et al. [49] proposed new robust measures

H2
r , H2

m, I2
r and I2

m, which are analogous to and have the same interpretations as H2 and I2,

respectively. These methods were developed upon the absolute deviation measures Qr and

Qm rather than the usual squared deviation measure Q, as defined in Table 1.3 and will be

described in more detail in Section 1.5.

All the measures except for CVB depend on the precision of the study-specific effects. As

the sample sizes of the component studies increase, σ2
k’s would decrease to zero so that RI ,

RB and all I2’s would increase to 1 and all H2’s and R2 would become arbitrarily large, even

when there is little between-study heterogeneity. The measure CVB avoids this drawback

but has its own limitation: it would approach +∞ as θ goes to 0. Finally, we mention that

some of the measures involve the estimated value τ̂ 2. In principle, τ̂ 2 can be any estimator

of τ 2, but most software uses the DL estimator τ̂ 2
DL as the default choice.
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Name f(θ, τ 2, σ2, K) Formula Ref. Interpretation Assume σ2
k ≡ σ2?

RI
τ2

τ2+σ2
τ̂2

τ̂2+K/
∑K
k=1 1/s2k

[77]
Proportion of total variation in the
estimates of treatment effect due to
between-study heterogeneity

Yes

CVB
τ
|θ|

√
τ̂2

|θ̂| [77] Between-study coefficient of variation No

H2 τ2+σ2

σ2
QFe
K−1

[32] Relative excess in QFe over its degrees
of freedom

Yes, but can be used
for different σ2

k.

R2 τ2+σ2

σ2 ≈ vRe
vFe

∑K
k=1

1

s2
k∑K

k=1
1

s2
k
+τ̂2

[32]
Inflation in the confidence interval for
a single summary estimate under Re
model compared with Fe model

Yes, but can be used
for different σ2

k.

I2
HT

τ2

τ2+σ2 1− K−1
QFe

[32] Same as RI Yes

I2
R

τ2

τ2+σ2 1−
∑K
k=1

1

s2
k
+τ̂2∑K

k=1
1

s2
k

[39] Same as RI Yes

Rb
τ2

vRe
≈

1
K

∑K
k=1

τ2

σ2
k+τ2

1
K

∑K
k=1

τ̂2

s2k+τ̂2
[18]

Proportion of the between-study
heterogeneity τ 2 relative to vRe, the
variance of θ̂Re.

No

H2
r

τ2+σ2

σ2

πQ2
r

2K(K−1)
,

Qr =
∑K

k=1
1
sk

∣∣∣yk − θ̂Fe∣∣∣
[49] Same as H2 Yes

I2
r

τ2

τ2+σ2 1− 2K(K−1)
πQ2

r
[49] Same as RI Yes

H2
m

τ2+σ2

σ2

πQ2
m

2K2 , Qm =
∑K

k=1
1
sk

∣∣∣yk − θ̂m∣∣∣,
θ̂m is weighted median estimate

[49] Same as H2 Yes

I2
m

τ2

τ2+σ2

Q2
m−2K2/π
Q2
m

[49] Same as RI Yes

Table 1.3: Descriptive measures quantifying the between-study heterogeneity

1.5. Estimators

We summarize 23 estimators for τ 2 in Table 1.4, among which most can be applied to

all kinds of effect measures except for the improved Paule and Mandel estimator (IPM , [7])

and Malzahn, Bӧhning, and Holling (MBH, [54]). IPM is specifically designed to work

with OR for binary outcomes, and MBH can be only used for standardized mean difference

(SMD).
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Estimators Abbre- Reference Iterative? Sign Effect
viation Measure

Method of Moments

Hedges and Olkin HO Hedges and Olkin [31] No >= 0

Two-step Hedges and Olkin HO2 DerSimonian and Kacker [20] No >= 0

DerSimonian and Laird DL DerSimonian and Laird [21] No >= 0

Positive DerSimonian and Laird DLp Kontopantelis et al. [43] No > 0

Two-step DerSimonian and Laird DL2 DerSimonian and Kacker [20] No >= 0

Multi-step Dersimonian and Laird DLk van Aert and Jackson [81] No >= 0

Paule and Mandel PM Paule and Mandel [63] Yes >= 0

Improved Paule and Mandel IPM Bhaumik et al. [7] Yes >= 0 OR
Hartung and Makambi HM Hartung and Makambi [30] No > 0

Hunter and Schmidt HS Hunter and Schmidt [34] No >= 0

Lin, Chu and Hodges LCH Lin et al. [49] No >= 0

Likelihood-based

Maximum Likelihood ML Hardy and Thompson [28] Yes >= 0

Restricted maximum likelihood REML Viechtbauer [86] Yes >= 0

Approximate restricted maximum likelihood AREML Morris [56] Yes >= 0

Model error variance (Least squared)

Sidik and Jonkman SJ Sidik and Jonkman [69] No > 0

Sidik and Jonkman (HO prior) SJHO Sidik and Jonkman [70] No > 0

Bayesian

Rukhin Bayes RB0 Rukhin [67] Yes >= 0

Positive Rukhin Bayes RBp Rukhin [67] Yes > 0

Empirical Bayes (Equivalent to PM) EB Morris [56] Yes >= 0

Fully Bayes FB Smith et al. [74] Yes > 0

Bayes Modal BM Chung et al. [15, 14] Yes > 0

Other nonparametric

Malzahn, Bӧhning, and Holling MBH Malzahn et al. [54] No >= 0 SMD
Non-parametric bootstrap DerSimonian and Laird DLb Kontopantelis et al. [43] No >= 0

Table 1.4: Overview of 23 estimators for the between-study variance τ 2

Table 1.5 shows previous studies that reviewed and compared (large) subsets of these es-

timators. Recommendations were made either based on their own simulations or conclusions

from the literature. Among them, Veroniki et al. [85], Langan et al. [45] and Petropoulou and

Mavridis [64] are more comprehensive. Veroniki et al. [85] reviewed 17 estimators as listed

in Table 1.5, including Hedges and Olkin (HO, [31]), two-step HO (HO2, [20]), DL [21],

two-step DL (DL2, [20]), positive DL (DLp, [43]), nonparametric bootstrap DL (DLb, [43]),

Paule and Mandel (PM , [63]), Hartung and Makambi (HM , [30]), Hunter and Schmidt (HS,

[34]), Maximum Likelihood (ML, [28]), Restricted Maximum Likelihood (REML, [86]), Ap-
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proximate REML (AREML, [56]), Sidik and Jonkman (SJ , [69]), Rukhin Bayes (RB) with

the default (zero-mean) prior (RB0, [67]), positive RB (RBp, [67]), Fully Bayes (FB, [74]),

and Bayes Modal (BM , [14, 15]). Langan et al. [45] and Petropoulou and Mavridis [64]

added IPM , MBH, and SJ with the HO prior (SJHO, [70]) into comparison. Note that

IPM was briefly summarized but not compared with other estimators in Veroniki et al.

[85]. Also, the Empirical Bayes method (EB, [56]) mentioned in [64] has been shown to be

equivalent to PM . Langan et al. [45] also added RB estimators with different priors, RBu

and RBa.

Review paper Estimators compared Effect measure Recommendations

Viechtbauer [86] HO, DL, HS, ML, REML SMD and MD REML

Sidik and Jonkman [70] HO, DL, SJ , SJHO, ML, REML,
EB

OR
SJHO when τ 2 is expected to be small or
moderate; SJ when τ 2 is expected to be
large.

Kontopantelis et al. [43] HO, HO2, DL, DL2, DLb, DLp, SJ ,
SJHO, ML, RB, RBp

Generic DLb

Veroniki et al. [85]
HO, HO2, DL, DL2, DLp, DLb, PM ,
HM , HS, ML, REML, AREML,
SJ , RB, RBp, FB, BM

Generic PM

Langan et al. [45] Estimators in [85] except for FB plus
IPM , SJHO, RBu, RBa, MBH

RR, OR, SMD, MD
and Generic PM

Petropoulou and Mavridis [64] Estimators in [45] except for RBu,
RBa

OR and MD DLb and DLp

Langan et al. [46] DL, HO, PM , PMHO, PMDL, HM ,
SJ , SJHO, REML

OR and Generic REML, PM and PMDL for continuous
outcomes and non-rare binary events

Table 1.5: Existing comparative studies for various estimators of the between-study variance
τ 2.

All the estimators can be divided into five groups: method of moments, likelihood-based,

model error variance (least square), Bayes, and other nonparametric estimators. Some of

these estimators have closed form expressions while the others require iterative solutions.

Some methods provide positive estimates naturally while the others require truncation to

zero when a negative value occurs. All these properties of the estimators are summarized

in Table 1.4. Two newly proposed estimators, the multi-step DL estimator DLm [81] and

the LCH estimators [49], are included in our pool. We mark them in bold in Table 1.4

and provide a brief description for each in the paragraph below. The IPM estimator [7] is

described as well because it is the only method specifically designed for rare binary events.

More details about other estimators can be found in [85] and references therein.
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Lin, Chu and Hodges (LCH) Lin et al. [49] proposed two alternative estimators, τ̂ 2
r

and τ̂ 2
m, designed to be less affected by outliers than conventional estimators based on the Q

statistics in (1.1). For the purpose of robustness, they are based on Qr and Qm, defined as

the weighted sums of absolute differences between the study-specific treatment effects and

the overall treatment effect, namely

Qr =
K∑
k=1

1

sk

∣∣∣yk − θ̂Fe∣∣∣ , Qm =
K∑
k=1

1

sk

∣∣∣yk − θ̂m∣∣∣ .

Here, θ̂Fe =
∑K

k=1
yk
s2k
/
∑K

k=1
1
s2k

is the fixed-effect estimate of θ as defined in Section 1.2, and θ̂m

is the weighted median estimator that is the solution to the equation
∑K

k=1wk [I(θ ≥ yi)− 0.5] =

0, where I(·) is the indicator function. The estimators τ̂ 2
r and τ̂ 2

m , based on Qr and Qm,

respectively, can be derived similarly as the DL estimator τ̂ 2
DL by equating observed Qr and

Qm to their corresponding expected values.

Multistep DL As discussed in Section 1.2, the inverse-variance weighing scheme yields

wk = 1/(s2
k + τ̂ 2) when calculating the (generalized) Q statistic (1.1) under the Re model.

Recall that the original DL estimator τ̂ 2
DL can be obtained by specifying wk = 1/s2

k in (1.3),

which is equivalent to setting τ̂ 2 = 0 in the Re weights. The two-step DL method [20] first

obtains τ̂ 2
DL and then sets τ̂ 2 = τ̂ 2

DL in the Re weights to obtain τ̂ 2
DL2

from (1.3).

van Aert and Jackson [81] proposed the multistep DL estimator as a natural extension of

the two-step DL estimator. The m-step DL estimator τ̂ 2
DLm

can be obtained recursively by

computing τ̂ 2
DL, τ̂ 2

DL2
, ..., τ̂ 2

DLm
using (1.3). It has been shown that the limit of the multistep

DL estimator, τ̂ 2
DL∞ , when it exists, is equivalent to the PM estimator. As further suggested

by the authors, divergence problems seldom happen in practice and the convergence is usually

achieved quickly.
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Improved Paule and Mandel (IPM) For meta-analysis of rare binary events, Bhaumik

et al. [7] adopted a standard binomial-normal random-effects model (labeled BNBA), which

can be specified by

xki ∼ Binomial(nki, pki) for i = 0, 1;

logit(pk0) = µk, logit(pk1) = µk + θk;

µk ∼ N(µ, σ2), θk ∼ N(θ, τ 2), µk ⊥ θk for k = 0, . . . , K.

They proposed a simple average estimator, θ̂sa, for the overall treatment effect θ and then

developed the IPM estimator for τ 2 based on θ̂sa and the iterative PM method. The

treatment effect θk (measured by log-odds ratio) in study k is estimated with a correc-

tion factor a added to each cell count, namely, yka = log [(xk1 + a)/(nk1 − xk1 + a)] −

log [(xk0 + a)/(nk0 − xk0 + a)] . The simple average estimator for θ is then given by θ̂sa =∑K
k=1 yka/K. The authors further proved that a should be 1

2
in order for θ̂sa to be the least

biased for large samples. They noticed that the PM estimator for τ 2 depends on s2
k and

proposed to improve PM by borrowing strength from all component studies when estimating

each within-study variance,

s2
k(∗) =

1

nk1 + 1

[
exp

(
−µ̂− θ̂s 1

2
+
τ 2

2

)
+ 2 + exp

(
µ̂+ θ̂s 1

2
+
τ 2

2

)]
+

1

nk0 + 1
[exp(−µ̂) + 2 + exp(µ̂)] .

Denote the corresponding weights by wk(∗) ≡ 1/[s2
k(∗) + τ 2] and τ̂ 2

IPM can be obtained by

solving Q− (K − 1) = 0 iteratively with weights wk(∗) in the calculation of Q.

1.6. Hypothesis testing procedures

A central issue in meta-analysis is the selection of an appropriate statistical model to

characterize individual effects of component studies. Different model assumptions can lead

to different or even contrary conclusions about the overall treatment effect. For example,
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contrary conclusions were made when conducting meta-analysis of clinical trials in [57] about

the side effect of rosiglitazone on myocardial infarction (MI). By assuming homogeneous

treatment effects, the exact approach by [51] gives a p-value of 0.029 while the simple average

(SA) method proposed by [7] under the model BNBA provides a p-value of 0.463, reported

in [3], when testing whether there exists any effect of rosiglitazone on MI.

Ref. Test statistics compared Effect measure Recommendations

Jones et al. [40] LRU.FeL, USFeL, CS, BD,
MBD, ZCS.FeH , CSReH

OR Only cases of nk0 = nk1 examined; use
BD when nk1 ≡ n; use ZCS.FeH and
CSReH when nk1 varies.

Paul and Donner [62] LRU.FeL, LRC , USFeL,
AUSFeL, CS, ACS, MDB,
AMDB, QG

OR AMDB in all cases and QG for the
balanced design (nk0 = nk1 = n) with
large samples.

Takkouche et al. [77] QFe, Z2
WLS, Z2

WLS,R, Z2
K ,

LRML, parametric
bootstrap versions of these
tests and τ 2

DL-bootstrap

OR Cochran’s Q-test

Reis et al. [66] BD, USFeL, CSFeH ,
LRU.FeL, LRC , Peto

OR USFeL and BD

Viechtbauer [88] QFe, WML, WREML, LRML,
LRREML, SML, SREML

(standardized) MD,
(Fisher transformed)
correlation

Q-test in terms of Type I error rate
(requiring each nki to be large)

Almalik and van den Heuvel [2] LRU.FeL, LRU.ReL, QFe,
QB, MBD, USFeL, USReL,
CS, Peto

OR Use MBD and avoid QFe, QB, Peto,
LRU.ReL and USReL.

Table 1.6: Existing comparative studies for hypothesis testing procedures. Test statistics
are defined in Table 1.7.

The above example emphasizes the need for a test on homogeneity of treatment effects,

a topic with abundant research in the past. Two types of approaches have been commonly

used for this purpose. One is to test H0 : θ1 = θ2 = · · · = θK when the model treats θks as

fixed effects (e.g., FeB, FeH), and the other is to testH0 : τ 2 = 0, when the model treats θks

as random effects with variance τ 2 (e.g., Re, ReH, BNBA, BNAH). We summarize existing

review papers about testing the homogeneity in Table 1.6 in terms of the test statistics

compared, effect measures and recommendations. Clearly, each of the six review papers only

includes a limited number of tests. So far, no comprehensive review has been done in the

literature about different testing procedures, and their performance in meta-analysis of rare

binary data has not been systematically evaluated.
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Method Test Statistic Asymptotic
Null Dist.

Conditions Response/Effect
Measure

Model Ref.

(Modified) Q-test

(Cochran’s) Q-test QFe χ2
K−1 nki →∞, K fixed Generic/Any Re [16]

Modified Q-test Q̃r χ2
K−1 nki →∞, K fixed Generic/Any Re [41]

Jackson QJ Lin. comb. of
χ2

1s
nki →∞, K fixed Generic/Any Re [35]

Gart QG χ2
K−1 nki →∞, K fixed Binary/OR FeB [25]

Bliss QB χ2
K−1 nki →∞, K fixed Binary/OR FeB [10, 2]

Bhaumik’s T3 based on QRe Bh.T3 N(0, 1) nki →∞, K →∞ Binary/OR BNBA [7]
Kulinskaya’s Qγ QG Ga(α, β) nki →∞, K fixed Binary/OR FeB [44]

Likelihood ratio tests

MLE under Re LRML 0.5χ2
0 + 0.5χ2

1 nki →∞, K →∞ Generic/Any Re [84, 88]
REML under Re LRREML 0.5χ2

0 + 0.5χ2
1 nki →∞, K →∞ Generic/Any Re [84, 88]

Unconditional under FeL LRU.FeL χ2
K−1 nki →∞, K fixed Binary/OR FeB [62]

Unconditional under ReL LRU.ReL 0.5χ2
0 + 0.5χ2

2 nki →∞, K →∞ Binary/OR BNAH [2]
Conditional likelihood LRC χ2

K−1 nki →∞, K fixed Binary/OR FeH [62]

(Modified)Score tests

MLE under Re SML N(0, 1) nki →∞, K →∞ Generic/Any Re [84, 88]
REML under Re SREML N(0, 1) nki →∞, K →∞ Generic/Any Re [84, 88]
(Approx.)Unconditional
under FeL

(A)USFeL χ2
K−1 nki →∞, K fixed Binary/OR FeB [5, 59, 62]

(Approx.) Unconditional
under ReL

(A)USReL χ2
K−1 nki →∞, K fixed Binary/OR BNAH [2]

(Approx.) Conditional
under FeH

(A)CSFeH χ2
K−1 nki →∞, K fixed Binary/OR FeH [48, 62]

(Normal approx.)
Conditional under FeH

ZCS.FeH N(0, 1) K →∞, nkis fixed Binary/OR FeH [48, 40]

Conditional under ReH CSReH N(0, 1) K →∞, nkis fixed Binary/OR ReH [48, 40]
Breslow-Day test BD χ2

K−1 nki →∞, K fixed Binary/OR FeB [11]
(Approx.) Modified
Breslow-Day

(A)MBD χ2
K−1 nki →∞, K fixed Binary/OR FeB [78]

Wald tests

MLE under Re WML N(0, 1) nki →∞, K →∞ Generic/Any Re [88]
REML under Re WREML N(0, 1) nki →∞, K →∞ Generic/Any Re [88]
FeL W 2

FeL χ2
K−1 nki →∞, K fixed Binary/OR FeB

Others

Peto Peto χ2
K−1 nki →∞, K fixed Binary/OR FeB [92]

Lipsitz tests Z2
WLS, Z2

WLS,R F1,K−1 nki →∞, K →∞ Binary/RD,RR,OR FeB [50, 77]
Lipsitz test Z2

V F1,K−1 nki →∞, K →∞ Binary/RD FeB [50]
Lipsitz test Z2

K F1,K−1 nki →∞, K fixed Binary/RD,RR,OR FeB [50, 77]
Bhaumik’s T4 based on SA Bh.T4 N(0, 1) nki →∞, K →∞ Binary/OR BNBA [7]
Bayesian by DIC — — — Binary/OR BNBA [3]
Bootstrap Any — — Generic/Any Any [23, 43]
Generalized variable
approach

Rτ2 — — Normal/MD Re [80]

Table 1.7: Tests of between-study homogeneity in meta-analysis.
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Table 1.7 summarizes over thirty methods for testing the homogeneity that can be applied

to meta-analysis of dichotomous events except for the generalized variable approach in [80]

that is designed for the measure mean difference (MD) but is nonetheless included herein

for completeness. These tests can be grouped into five categories as discussed below. For

each test, Table 1.7 presents key information including the test statistic, asymptotic null

distribution and conditions, the data type and effect measure, as well as the model under

which the the test is derived.

1.6.1. Tests based on (modified) Q statistics

One of the most commonly used testing procedures is based on Cochran’s Q statistic

QFe =
∑K

k=1
1
s2k

(yk − θ̂Fe)2. According to [16], QFe follows a χ2
K−1 distribution (asymptot-

ically) under the null hypothesis H0 : τ 2 = 0. One rejects H0 if QFe > χ2
K−1,1−α. This

procedure is referred to as the (standard) Q-test. Many later proposed testing procedures

were developed by modifying a Q statistic taking the form of formula (1.1) such as QFe

and QRe to make the null distribution better approximated by the χ2
K−1 distribution or by

applying different asymptotic theories about the null distribution.

Generic tests Among random-effects meta-analysis using the generic Re model described

in Section 1.2, Knapp et al. [41] considered Q in (1.1) with weights wk = 1/(τ 2 + s2
k), and

proposed a regularization function for wks in order to better approximate the distribution of

(regularized) Q by χ2
K−1. The regularization term rk is derived through a moment matching

approach based on approximating the distribution of τ 2 + s2
k by a scaled χ2 distribution

[29] and the new regularized weight is wrk = rkwk. The resulting sum of weighted squared

deviation based on wrks, denoted byQ̃r(τ
2), is referred to as the modified Q statistic, which

can be inverted to produce confidence intervals for τ 2 as described in [41]. When the resulting

100(1−α)% confidence intervals do not include zero, reject the null at the significance level

α.
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Jackson [35] proved that under the Re model, the generalized Q in (1.1) is distributed as

a positive linear combination of χ2
1 random variables, whose cumulative distribution function

can be numerically obtained using Farebrother’s algorithm [24] via the CompQuadForm R

package. Then like Q̃r(τ
2), the test statistic Q, as a function of τ 2, can be inverted to

produce confidence intervals for τ 2 and perform hypothesis testing. Based on simulation,

Jackson [35] further suggested that weighting component studies by the reciprocal of their

within-study standard errors (i.e. 1/sk), rather than by their variances (i.e. 1/s2
k) as the

convention dictates, appears to provide a sensible and viable option when there is little a

priori knowledge about the extent of heterogeneity. This version of Q is referred to as QJ .

Binary-specific tests For meta-analysis of multiple 2 × 2 tables, Woolf [91] applied the

Q-test to examine the homogeneity of LORs, where yk = log xk1
nk1−xk1

− log xk0
nk0−xk0

and s2
k =

1
xk0

+ 1
nk0−xk0

+ 1
xk1

+ 1
nk1−xk1

when computing QFe. Bliss [10] applied the Q-test in a slightly

different way and the test statistic is given by QB = K − 1 +
√

n̄−4
n̄−1

[
n̄−2
n̄
QFe − (K − 1)

]
,

where n̄ =
∑K

k=1 (nk − 2) /K is the average of the degrees of freedom over all studies (two

parameters estimated per study under a fixed-effects logistic regression, thus 2 degrees of

freedom are lost). The distribution of QB may be approximated by χ2
K−1 under the null

of homogeneity [10]. For infrequent dichotomous events, Gart [25] added the continuity

correction (CC) factor of 0.5 to all the four cells so that

yk = log
xk1 + 0.5

nk1 − xk1 + 0.5
− log

xk0 + 0.5

nk0 − xk0 + 0.5
, (1.5)

and the within-study variance σ2
k is estimated by

s2
k =

1

xk0 + 0.5
+

1

nk0 − xk0 + 0.5
+

1

xk1 + 0.5
+

1

nk1 − xk1 + 0.5
(1.6)

when computing QFe. This version of the Q-test is denoted by QG. In our numerical ex-

periments, we perform the Q-test using QG in the meta-analysis of rare binary events (with

LOR as the effect measure) as there are often studies with zero event counts.
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Bhaumik et al. [7] proposed to test H0 : τ 2 = 0 in the BNBA model using QRe for rare

event data based on the observation that the normal distribution approximation is better

for a standardized log-transformed gamma distribution than for the standardized gamma

distribution. Here, QRe is computed with yk in (1.5), s2
k in (1.6) and wk = 1/(s2

k + τ̂ 2). The

test statistic

Bh.T3 =
(K − 1)[logQRe(τ̂

2)− log(K − 1)]√
V̂ar[logQRe(0)]

follows the standard normal distribution asymptotically, where V̂ar[logQRe] can be derived

by the delta method under H0.

Kulinskaya and Dollinger [44] argued that when LOR is used as the effect measure, the

χ2
K−1 distribution of Gart’s QG (i.e., QFe with the CC factor 0.5 applied to each cell) is too

conservative for moderate-size studies, though asymptotically correct. Using a mixture of

theoretical results and simulations, they derived formulas to estimate the mean and variance

of QG,

(K − 1)− E[QG] = 0.678 {(K − 1)− Eth[QG} ,

Var[QG] = 4.74(K − 1)− 12.17E[QG] + 9.42E[QG]2/(K − 1),

where Eth[QG] is the approximation to the mean of QG purely based on the Taylor expan-

sion, and the constants like 0.678 and so on were obtained from simulation. Then the null

distribution of QG can be better approximated by matching these moments to those of a

gamma distribution Ga(α, β), where the shape parameter α is set to E[QG]2/Var[QG] and

the scale parameter β is set to Var[QG]/E[QG]. The test based on this gamma distribution,

denoted Qγ, was compared with QG and the Breslow-Day (BD) test in [44]. They found

that Qγ was not superior to the BD test either in accuracy or in power except for sparse

data (i.e., small within-study sample sizes) where BD often performs poorly.
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1.6.2. Likelihood ratio (LR) tests

Generic tests Under the generic Re model, likelihood ratio tests can be carried out with

both maximum likelihood (ML) and restricted maximum likelihood (REML) estimation [84,

88].

Since yk ∼ N(θ, τ 2 + σ2
k) in the Re model, the log-likelihood function of (θ, τ 2) is given

by

l(θ, τ 2) = −K
2

ln 2π − 1

2

K∑
k=1

ln(τ 2 + σ2
k)−

1

2

K∑
k=1

(yk − θ)2

τ 2 + σ2
k

. (1.7)

Given the value of τ 2, it can be shown that the ML estimator of θ can be obtained by

θ̂ML(τ 2) =
K∑
k=1

yk
τ 2 + σ2

k

/
K∑
k=1

1

τ 2 + σ2
k

, (1.8)

where σ2
k is often replaced by s2

k in practice. Denote the log-likelihood with ML estimates θ̂ML

and τ̂ 2
ML by l(θ̂ML(τ̂ 2

ML), τ̂ 2
ML) and the log-likelihood assuming τ 2 = 0 by l(θ̂ML(0), 0). Then

the LR test statistic LRML = −2
(
l
(
θ̂ML(0), 0

)
− l
(
θ̂ML(τ̂ 2

ML), τ̂ 2
ML

))
is asymptotically

distributed as a 50:50 mixture of a degenerate random variable χ2
0 at zero and a χ2

1 random

variable under the null hypothesis H0 : τ 2 = 0. Therefore, when P (χ2
1 > LRML) < 2α, one

rejects H0 at the significance level α.

Alternatively, when using REML estimation, the restricted log-likelihood function of τ 2

is given by

lR(τ 2) = −K
2

ln 2π − 1

2

K∑
k=1

ln(τ 2 + σ2
k)−

1

2
ln

K∑
k=1

1

τ 2 + σ2
k

− 1

2

K∑
k=1

(
yk − θ̂ML(τ 2)

)2

τ 2 + σ2
k

. (1.9)

The corresponding test statistic is LRREML = −2 (lR (0)− lR (τ̂ 2
REML)), where τ̂ 2

REML is the

REML or approximate REML (AREML) estimate of τ 2 (by maximizing lR), and one rejects

H0 when P (χ2
1 > LRREML) < 2α. Note that AREML has a direct adjustment for the loss
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of degrees of freedom due to estimating θ in (1.9). Since the REML and AREML estimates

are very similar [70, 85], we only examine the performance of the tests based on ML and

REML in our numerical experiments.

Binary-specific tests For meta-analysis of binary event data, there have been three LR

tests reported in the literature [62, 2], including two unconditional tests and one conditional

test, with test statistics denoted by LRU.FeL, LRU.ReL and LRC , respectively. The major

difference between the unconditional and conditional tests is that LRC is derived from the

likelihood based on (non-central) hypergeometric distributions, where the row and column

totals in each study are both treated as fixed, while LRUs are derived from the likelihood

based on binomial distributions, where only row totals are treated as fixed. The difference

between the two unconditional tests is that LRU.FeL is related to fixed-effects logistic regres-

sion and LRU.ReL is related to random-effects logistic regression, as described in Section 1.3.

When assuming the event counts xk0 and xk1 follow separate binomial distributions and

using LOR as the effect measure, the meta-analysis can be put under a framework of fixed-

effects logistic regression and testing between-study homogeneity can be done via model

comparison. Denote the (unconditional) log-likelihood under the null hypothesis of homoge-

neous odds ratios by l0U.FeL and that under the alternative by l1U.FeL, which correspond to the

model with main effects only (i.e.., logit [P (O = 1)] = µ+
∑K−1

k=1 αkI(S = k) + θZ) and the

saturated model (1.4) , respectively. Then LRU.FeL = 2(l1U.FeL− l0U.FeL) follows a χ2
K−1 distri-

bution asymptotically. This test is equivalent to the goodness of fit test via model deviance

for the model with main effects only. Under the hypergeometric distribution assumption for

event counts (conditional on fixed margins), the meta-analysis can be done via conditional

logistic regression and LRC can be derived in the same spirit, which also follows a χ2
K−1

distribution asymptotically.

Alternatively, the meta-analysis can be put under a framework of random-effects logistic

regression, where (αk, βk) in (1.4) follows a bivariate normal distribution with zero means,
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variances σ2 and τ 2, and correlation ρ, as described by the model ReL (or equivalently

BNAH) in Section 1.3. Then testing homogeneity becomes testing H0 : τ 2 = 0. Denote the

(unconditional) log-likelihood under H0 by l0U.ReL, and that under the alternative by l1U.ReL.

When H0 holds, LRU.ReL = 2(l1U.ReL − l0U.ReL) approximately follows a 50:50 mixture of a

degenerate random variable χ2
0 with all probability mass concentrated at 0 and a χ2

2 random

variable. Thus, when P (χ2
2 > LRU.ReL) < 2α, one rejects H0 at the significance level α [84].

1.6.3. (Modified) Score tests

Both likelihood ratio and score tests are generally used to conduct hypothesis testing

about parameters estimated with maximum likelihood methods. Rather than using the

ratio of the likelihoods of the null model vs. the alternative model, score tests rely on the

score function, defined as the first derivative of the log-likelihood evaluated under the null

hypothesis, to derive the score statistics. It is generally believed that for binary data, score

test statistics require fewer observations to reach the convergence to asymptotic distributions

and are less sensitive to data sparsity than LR tests [1].

Generic tests Under the Re model, score tests can be used with both ML and REML

estimation [84, 88]. Starting from the log-likelihood or restricted log-likelihood function, ob-

taining the corresponding score function, dividing it by the square root of the corresponding

Fisher information, and finally substituting all unknown parameters by their estimates yields

SML =

∑K
k=1 s

−4
k

[(
yk − θ̂ML(0)

)2
− s2

k

]
√

2
∑K

k=1 s
−4
k

,

SREML =

∑K
k=1 s

−4
k

[(
yk − θ̂ML(0)

)2
− s2

k +
(∑K

k=1 s
−2
k

)−1
]

√
2
∑K

k=1 s
−4
k − 4

∑K
k=1 s

−6
k /
∑K

k=1 s
−2
k + 2

(∑K
k=1 s

−4
k /
∑K

k=1 s
−2
k

)2
,
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where θ̂ML(0) is the ML estimate of θ under the FE model. Because τ 2 ≥ 0, one-sided score

tests are performed, where H0 : τ 2 = 0 is rejected at the significance level α when SML or

SREML exceeds z1−α, the 100(1− α)th percentile of a standard normal distribution.

Binary-specific tests For meta-analysis of binary event data, there are two unconditional

and two conditional score tests, with test statistics denoted by USFeL [5, 59, 62], USReL [2],

CSFeH [48], and CSReH [48], respectively, plus several modified score tests.

Bartlett [5] proposed an (unconditional) score test to test homogeneity of odds ratios in

two 2×2 contingency tables and Norton [59] extended it to the more general case of multiple

2 × 2 tables under FeL (or equivalently FeB). Recently, Almalik and van den Heuvel [2]

proposed an (unconditional) score test based on the random-effects logistic regression model

ReL for testing zero between-study variance. The two unconditional test statistics USFeL

and USReL have the same form

US =
K∑
k=1

[
xk1 − E(xk1 | xk, ψk = ψ̂U)

]2

Var(xk1 | xk, ψk = ψ̂U)
,

where xk = xk0 + xk1 is the total number of events in study k. For USFeL(USReL), ψ̂U is

substituted by ψ̂U.FeL(ψ̂U.ReL), the (unconditional) ML estimator based on FeL(ReL); the

expectation and variance are computed under the null hypothesis of homogeneity based on

FeL(ReL); and for fixed K and large nkis, the null distribution can be approximated by

χ2
K−1. Note that USFeL has been shown to be equivalent to the Pearson Chi-squared test

statistic developed by [93] and [27]. When computing either US test, obtaining the exact

moments of xk1 can be computationally difficult, and they are usually replaced by (estimated)

asymptotic moments, which leads to AUS [26, 62]. For AUS, E(xk1 | xk, ψk = ψ̂U) is replaced

by ek(ψ̂U) and Var(xk1 | xk, ψk = ψ̂U) is replaced by vk(ψ̂U), where ek is the solution to the
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equation ek(nk0−xk+ek)
(xk−ek)(nk1−ek)

= ψ̂U , and vk can be calculated by

vk =

(
1

ek
+

1

xk − ek
+

1

nk1 − ek
+

1

nk0 − xk + ek

)−1

. (1.10)

Liang and Self [48] proposed a conditional score test for homogeneity of odds ratios based

on the fixed-effects hypergeometric model FeH, which is asymptotically equivalent to US

with a similar form

CSFeH =
K∑
k=1

[
xk1 − EC(xk1 | xk, ψk = ψ̂C)

]2

VarC(xk1 | xk, ψk = ψ̂C)
.

Here, ψ̂C is the conditional ML estimator based on FeH, and EC(·) and VarC(·) are the

conditional expectation and variance under the null hypothesis of homogeneous odds ratios,

conditioning on the fixed margins nk0, nk1 and xk in each 2 × 2 table. Like US, an ap-

proximate version of CSFeH , denoted by ACSFeH , can be obtained using the (estimated)

asymptotic mean and variance ek(ψ̂C) and vk(ψ̂C), where ek(ψ̂C) is the solution to the equa-

tion ek(nk0−xk+ek)
(xk−ek)(nk1−ek)

= ψ̂C and vk(ψ̂C) is then computed from (1.10) based on ek(ψ̂C).

Liang and Self [48] proposed two other statistics CSReH and ZCS.FeH , which were specifi-

cally designed for the “sparse-data” situation. Here, sparsity means that within-study sample

sizes can be small so that the assumption each nki → +∞ is not appropriate. However, it

may be plausible to assume the number of studies K → +∞ in such situations. The con-

ditional score test CSReH was derived for testing H0 : τ 2 = 0 under the random-effects

hypergeometric model ReH, wherein logψk = α+ τZk is assumed and Zks are independent

and identically distributed random variables. The statistic ZCS.FeH was derived based on a

normal approximation to CSFeH . Both CSReH and ZCS.FeH are asymptotically normal as

K → +∞ for fixed nki. Their (lengthy) technical detail can be found in [48, 40].

The Breslow-Day test statistic BD [11] has the same form as US except for replacing

ψ̂U by the Mantel-Haenszel estimator ψ̂MH =
∑K
k=1 xk1(nk0−xk0)/nk∑K
k=1 xk0(nk1−xk1)/nk

. The BD can be computed
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conveniently using ek(ψ̂MH) and vk(ψ̂MH), where ek and vk can be obtained as in AUS.

Tarone [78] demonstrated that a score test statistic that substitutes a consistent but ineffi-

cient estimator (e.g. ψ̂MH) for a ML estimator would be stochastically larger than a χ2
K−1

random variable under H0. He then proposed a modified test statistic MBD to improve the

Chi-squared approximation under H0, given by

MBD =
K∑
k=1

[
xk1 − E(xk1 | xk, ψk = ψ̂MH)

]2

Var(xk1 | xk, ψk = ψ̂MH)
−
∑K

k=1 xk1 −
∑K

k=1 E(xk1 | xk, ψ̂MH)∑K
k=1 Var(xk1 | xk, ψ̂MH)

,

where E(xk1 | xk, ψ̂MH) and Var(xk1 | xk, ψ̂MH) can be approximated by ek(ψ̂MH) and

vk(ψ̂MH) as in BD, leading to AMBD. Note that MBD differs from BD only by the cor-

rection term. ThoughMBD seems to be more sound theoretically, Kulinskaya and Dollinger

[44] found that there was a minimal difference between the BD and MBD tests, which is also

observed in the simulation results of [40].

1.6.4. Wald tests

For likelihood-based inference, Wald, likelihood ratio, and score tests are three commonly

used approaches to hypothesis testing. Among the three, Wald tests are believed to be the

most sensitive to violations of regularity conditions required for asymptotic theories and

of sample size requirements; even when the conditions are met, their convergence to the

asymptotic distribution tends to be the slowest. Nevertheless, Wald tests can be easily

derived under the generic RE model to test H0 : τ 2 = 0 [88]. The test statistics have the

form W = τ̂ 2/SE(τ̂ 2), where τ̂ 2 can be τ̂ 2
ML or τ̂ 2

REML, and the standard error is estimated
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by

ŜE(τ̂ 2
ML) =

√√√√2

[
K∑
k=1

w2
ML.k

]−1

,

ŜE(τ̂ 2
REML) =

√√√√√2

 K∑
k=1

w2
REML.k − 2

∑K
k=1w

3
REML.k∑K

k=1wREML.k

+

(∑K
k=1 w

2
REML.k∑K

k=1 wREML.k

)2
−1

with wML.k = 1/(τ̂ 2
ML + s2

k) and wREML.k = 1/(τ̂ 2
REML + s2

k). We label the Wald statistics

based on ML and REML estimation by WML and WREML, respectively. Like score tests,

one-sided Wald tests are performed, where H0 : τ 2 = 0 is rejected when WML or WREML

exceeds z1−α.

We should also mention that based on the fixed-effects logistic regression model (1.4),

the test of homogeneity of odds ratios can be done by testing whether the interaction terms

βks can be dropped. Let β = (β1, · · · , βK−1). The multivariate Wald statistic is given by

W 2
FeL = β̂ML[V̂ ar(β̂ML)]−1β̂TML, and the testing is done via a χ2

K−1 distribution.

Because τ 2 falls on the boundary of the parameter space [0,+∞) under H0, the standard

likelihood theories are not valid [68] and so we no longer expect the Wald tests to control

the Type I error rate adequately. However, it has been reported by [88] that WML and

WREML are still used by practitioners, and so we include these Wald tests in our numerical

experiments.

1.6.5. Other tests

Peto Chi-squared test Yusuf et al. [92] proposed the Peto odds ratio as a modified

Mantel-Haenszel estimator of the common odds ratio ψ, and derived the Peto statistic for
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testing the homogeneity of odds ratios, namely

Peto =
K∑
k=1

(xk1 − Ek1)2

Vk
−

(∑K
k=1(xk1 − Ek1)

)2

∑K
k=1 Vk

,

where Ek1 = xknk1
nk

, xk = xk1 + xk0, nk = nk1 + nk0, and Vk = xk(nk−xk)nk1nk0
n2
k(nk−1)

. This Peto

statistic has an approximate null distribution of χ2
K−1.

Lipsitz et al.’s Z2
WLS, Z2

WLS,R, Z2
V and Z2

K For meta-analysis of multiple 2 × 2 tables

with sparse data, Lipsitz et al. [50] proposed several test statistics for testing homogeneous

risk differences, i.e., H0 : θ1 = θ2 = · · · = θK = θ, where θk = pk1 − pk0 is the risk difference

in study k and is treated as a fixed effect such that Var[yk] ≡ Var[yk|θk] = σ2
k. The first

statistic, Z2
WLS, is a transformation of QFe,

Z2
WLS =

[QFe − (K − 1)]2

2(K − 1)
,

whose distribution can be approximated by χ2
1 when the number of studies K and each

within-study sample size nki are all large. Lipsitz et al. [50] proposed three other test

statistics, Z2
WLS,R, Z2

V and Z2
K , derived based on a general quantity Z(a, b),

Z(a, b) =

∑K
k=1 ak

[(
yk − θ̂(b)

)2

− s2
k

]
√

Var
(∑K

k=1 ak

[(
yk − θ̂(b)

)2

− s2
k

]) ,

where θ̂(b) =
∑K

k=1 bkyk/
∑K

k=1 bk, and a = {ak}Kk=1 and b = {bk}Kk=1 are different choices of

weights. Lipsitz et al. [50] showed that under H0, the variance term in the numerator of

Z(a, b) can be approximated by
∑K

k=1 a
2
k

[(
yk − θ̂(b)

)2

− s2
k

]2

. Then Z2
WLS,R was obtained
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by setting ak = bk = 1/s2
k, yielding

Z2
WLS,R =

(QFe −K)2∑K
k=1

[
(yk − θ̂Fe)2/s2

k − 1
]2 .

The Z2
V was obtained by specifying ak = 1/Var[

(
yk − θ̂Fe

)2

− s2
k] ≈ 1/Var[(yk − θ)2] and

bk = 1/s2
k, where the large-sample approximation Var[(yk − θ)2] is estimated under H0. The

Z2
K uses the same ak and bk as Z2

V , but these weights are estimated by assuming no treatment

effect (i.e., pkt = pkc = p) so that ak and bk can be specified by ( 1
nk0

+ 1
nk1

)−2 and ( 1
nk0

+ 1
nk1

)−1,

respectively.

As with Z2
WLS, the distributions of Z2

WLS,R and Z2
V can be approximated by χ2

1 when K

and each nki are all large. The Z2
K also follows the χ2

1 distribution asymptotically but it only

requires large K and so is less sensitive to small within-study sample sizes. Actually, Lipsitz

et al. [50] used F1,K−1 (an F-distribution with 1 and K − 1 degrees of freedom) as a better

approximation than χ2
1 for finite-sample distributions of Z2

WLS, Z2
WLS,R, Z2

V and Z2
K . They

recommended to use one of the four Z2 tests instead of the conventional Q-test for testing

the homogeneity of risk difference when data are sparse.

Though originally designed for risk difference, Z2
WLS, Z2

WLS,R, and Z2
K have been gener-

alized by [77] to other measures such as odds ratio and risk ratio for binary outcomes. The

difference lies in the specification of ak, bk and s2
k for the different measures. Based on sim-

ulation results using OR as the effect measure, they compared these tests with several other

test statistics, including QFe and LRML, and concluded that in terms of validity, power, and

computational ease, the Q-test was clearly the best choice.

SA estimator-based test (Bh.T4 in [7]) Under the BNBA model, Bhaumik et al. [7]

proposed a simple average (SA) estimator θ̂S 1
2
of the overall treatment effect measured by

the log odds ratio θ, θ̂S 1
2

= 1
K

∑K
k=1 yk, where yk is given by (1.5) with the CC factor 0.5

used by [25]. Let zk = (yk − θ̂S 1
2
)2. Then under H0 : τ 2 = 0, Bk = K−2

K
s2
k +

∑K
k=1 s

2
k

K2 is an
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estimate for the mean of zk and 2Bk is an estimate for the variance of zk, where s2
k is given

by (1.6). The test statistic for testing H0 based on the SA estimator is defined as Bh.T4 =∑K
k=1(zk − Bk)/

√∑K
k=1 2Bk. This test statistic approximately follows a standard normal

distribution when K and each nki are all large. Bhaumik et al. [7] showed via simulation that

Bh.T4 is very conservative for finite samples and thus the parametric bootstrap technique is

used instead to determine the critical value.

Bayesian testing As described in Section 1.3, most of the models are hierarchical and thus

can be fit under a Bayesian framework by assigning prior distributions to parameters involved

and then computing the joint posterior distribution via Markov chain Monte Carlo (MCMC).

For meta analysis of sparse dichotomous events, Bai et al. [3] developed a Bayesian model

selection method using Deviance Information Criterion (DIC) for simultaneously testing the

existence of the treatment effect and between-study heterogeneity. The basic idea is to select

the best model (model with the smallest DIC) among all four possible models in terms of the

overall treatment effect θ = 0 vs. θ 6= 0 and the between-study variance τ 2 = 0 vs. τ 2 6= 0.

They concluded that for rare event data, the Bayesian method based on DIC performed

better in most cases than classical methods (e.g., AIC and BIC) in terms of the percentage

of selecting correct models.

Bootstrap Hypothesis testing can be performed using bootstrap techniques, which relax

certain distributional assumptions and require no analytical derivation of the reference dis-

tribution of the test statistic. For nonparametric bootstrap, we can sample K studies with

replacement from the observed set of studies B times to get B bootstrap samples. For each

sample we calculate the corresponding estimate for τ 2. If the αth percentile of the B esti-

mates is greater than 0, then we reject the null hypothesis of H0 : τ 2 = 0 at the significance

level α. Most of the τ 2 estimators summarized in [85] can be used with this nonparametric

procedure, but we only perform it for the most widely used DerSimonian and Laird (DL)
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estimator [21], τ̂ 2
DL, for illustration(labeled BSDL):

τ̂ 2
DL = max

{
Q− (K − 1)∑

k s
−2
k −

∑
k s
−4
k /
∑

k s
−2
k

}
.

For parametric bootstrap, we first obtain the parameter estimates and then generate sam-

ples from the assumed distributions with these estimates. This parametric procedure was

used in [7] to determine the critical value of Bh.T4, which performs much better than the

corresponding asymptotic test in terms of the power to detect heterogeneity. We perform

the parametric bootstrap procedure based on Bh.T4 in our numerical experiments (labeled

BSBh.T4).

The generalized variable (GV) approach For meta-analysis of normally distributed

outcomes, Tian [80] proposed inference procedures based on the generalized pivotal quantity

for τ 2. A pivotal quantity is a function of observations and parameters such that the dis-

tribution of the function does not depend on the parameters including nuisance parameters.

Let σ2
k0 (σ2

k1) be the population variance of the control (treatment) group in study k; let s2
k0

(s2
k1) be the corresponding sample variance. For normally distributed outcomes, it is well

known that Vki ≡ (nki − 1)s2
ki/σ

2
ki ∼ χ2

nki−1 for k = 1, . . . , K and i = 0, 1. Denote Q in (1.1)

with weight wk = 1/(σ2
k0/nk0+σ2

k1/nk1+τ 2) by Q(τ 2), which follows χ2
K−1 and is a monotonic

decreasing function of τ 2. Thus, given a real number η ≥ 0, there exists a unique τ 2
η ≥ 0 such

that Q(τ 2
η ) = η. Based on this, Tian [80] defined the generalized pivotal quantity for τ 2 by

Rτ2 = τ 2
η if η ≤ Q(0) and Rτ2 = 0 otherwise. Given the observed treatment effects yks and

sample variances s2
kis, the distribution of Rτ2 does not depend on any nuisance parameters.

A series of Rτ2 values can be obtained by first simulating Vki ∼ χ2
nki−1 and η ∼ χ2

K−1 and

setting σ2
ki = (nki− 1)s2

ki/Vki in Q(τ 2) for k = 1, . . . , K and i = 0, 1, and then solving for τ 2
η .

The p-value for testing H0 : τ 2 = 0 can be approximated by the proportion of Rτ2 = 0.
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1.7. Confidence intervals

Table 1.8 reports 16 existing methods for constructing CIs for τ 2 in terms of abbreviation

used and key features including whether the algorithm for computing a CI is iterative,

whether truncation for non-negativity is needed, which distribution is used for construction,

and whether the CI is exact under the Re model. All the methods are general-purpose and so

can be applied to meta-analysis of binary events except for the generalized variable approach

[80], which is specifically designed for the mean difference (MD) metric based on normally

distributed outcomes. Some of the CIs are obtained via a test-inverting process based on

different statistics for testing H0 : τ 2 = 0.

In Table 1.9, we list existing review papers on constructing confidence intervals for τ 2.

Clearly, none of these reviews is comprehensive.

Method Abbre- Iterative? Truncation Distribution Exact Method Reference
viation (Y/N) to 0? (Y/N) Used for Re ?(Y/N)

CIs based on (modified) Q statistics

Q-Profile QP Y Y χ2
K−1 Y [29, 41]

Modified Q-Profile MQP Y Y χ2
K−1 N [29, 41]

Biggerstaff and Tweedie BT Y Y Ga(r, λ) N [8]
Biggerstaff and Jackson BJ Y Y A positive linear

combination of χ2
1

Y [9]

Jackson J Y Y A positive linear
combination of χ2

1

Y [35]

Approximate Jackson AJ N Y Normal N [37]
Unequal-tail Q-profile UTQ Y Y χ2

K−1 Y [36]
Profile likelihood CIs

PL based on ML estimation PLML Y Y χ2
1 N [28]

PL based on REML estimation PLREML Y Y χ2
1 N [87]

Wald CIs

Wald based on ML estimation WML N Y N(0, 1) N [8, 88]
Wald based on REML estimation WREML N Y N(0, 1) N [88]

Others

Sidik and Jonkman SJ N N χ2
K−1 N [69]

Sidik and Jonkman with HO priori SJHO N N χ2
K−1 N [70]

Bayesian credible intervals — Y N — N [85]
Bootstrap BSP/BSNP Y Y — N [23, 43]
Generalized variable approach GV Y Y — N [80]

Table 1.8: CI methods for τ 2 in random-effects meta-analysis.
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Review paper CI methods reviewed/compared Effect
measure

Recommendations

Knapp et al. [41] QP, MQP, BT, PLML, WML MD/OR QP and MQP
Viechtbauer [87] QP, BT, PL, W, SJ, BS OR QP
Veroniki et al. [85] PL, W, BT, BJ, J, QP, SJ, BS, BC Generic —
van Aert et al. [82] QP, BJ, J OR None recommended when pki < 0.1 in

combination with either K ≥ 80 or (K ≥ 40
and nki < 30)

Table 1.9: Existing comparative studies on constructing CIs for τ 2 in random-effects meta-
analysis

1.7.1. Confidence intervals based on (modified) Q statistics

Q-profile and modified Q-profile CIs Knapp et al. [41] and Viechtbauer [87] considered

the Q-profile CIs based on the generalized Q statistic in (1.1) with weights wk = 1/(τ 2 +s2
k),

denoted by Q(τ 2), which depends on τ 2 and treats s2
ks as known constants. It can be shown

that Q(τ 2) follows a χ2
K−1 distribution under the Re model for any τ 2. It follows that

P (χ2
K−1,α/2 < Q(τ 2) < χ2

K−1,1−α/2) = 1−α. Based on the test-inversion principle, a 100(1−

α)% confidence interval for τ 2 can be obtained as the interval (τ̃ 2
l , τ̃

2
u) satisfying Q(τ̃ 2

l ) =

χ2
K−1,1−α/2 and Q(τ̃ 2

u) = χ2
K−1,α/2. Since τ 2 is a non-negative quantity, τ̃ 2

l is truncated to 0

if Q(0) < χ2
K−1,1−α/2 (meaning that τ̃ 2

l is negative); and the CI is set to [0, 0] (or {0}, the

set containing only zero) if Q(0) < χ2
K−1,α/2 (meaning that τ̃ 2

u is also negative). This type of

CIs is referred to as the Q-profile (QP) CIs as we are profiling Q(τ 2) with different τ 2 values

when solving the above equations for τ̃ 2
l and τ̃ 2

u iteratively.

Knapp et al. [41] considered the fact that s2
k’s are only estimates and so have error

variability, and constructed CIs using the test statistic Q̃r that replaces the weights in Q(τ 2)

with regularized variants wrk = rk/(τ
2 + s2

k) to achieve a closer approximation to χ2
K−1,

where the regularization factor rk is derived through a moment matching approach based on

approximating the distribution of τ 2 + s2
k by a scaled χ2 distribution [29]. The lower bound

τ̃ 2
l is obtained by profiling Q̃r(τ

2) while the upper bound τ̃ 2
u is still obtained by profiling
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Q(τ 2), satisfying Q̃r(τ̃
2
l ) = χ2

K−1,1−α/2 and Q(τ̃ 2
u) = χ2

K−1,α/2. We refer to this type of CIs as

the modified Q-profile (MQP) CIs.

Like the Q-profile CIs, the MQP CIs need left truncation to zero if the lower bound τ̃ 2
l

turns out to be negative, and they are set to {0} if the upper bound τ̃ 2
u is also negative. The

same rule applies to all other types of CIs based on (modified) Q statistics in Section 1.7.1,

as discussed below.

BT and BJ CIs based on Cochran’s Q statistic Biggerstaff and Tweedie [8] pro-

posed to approximate the distribution of the Cochran’s Q statistic QFe by a gamma distri-

bution with a shape parameter r(τ 2) ≡ E2(QFe)/Var(QFe) and a scale parameter λ(τ 2) ≡

Var(QFe)/E(QFe). The mean and variance ofQFe under the Remodel are given by E(QFe) =

(K−1)+(S1 − S2/S1) τ 2 and Var(QFe) = 2(K−1)+4 (S1 − S2/S1) τ 2+2 (S2 + S2
2/S

2
1 − 2S3/S1) τ 4,

where Sr ≡
∑K

k=1[1/s2
k]
r. CIs for τ 2 can be obtained similarly based on this gamma approx-

imation instead of χ2
K−1 using the above profiling approach, which we refer to as the BT

intervals.

Biggerstaff and Jackson [9] derived the exact CDF of QFe under the Re model, denoted

by FQ(q; τ 2), as a positive linear combination of χ2
1 random variables, whose cumulative

distribution function can be obtained using Farebrother’s algorithm [24] via the CompQuad-

Form R package. They then obtained (τ̃ 2
l , τ̃

2
u) by solving the two equations numerically,

FQ(cτ̂ 2
uDL + K − 1; τ̃ 2

l ) = 1− α/2 and FQ(cτ̂ 2
uDL + K − 1; τ̃ 2

u) = α/2, where c = S1 − S2/S1

and τ̂ 2
uDL = [QFe − (K − 1)]/c is the untruncated version of the DL estimator of τ 2. This

type of CIs is referred to as the BJ intervals.

Jackson and approximate Jackson CIs Following the numerical approach in [9], Jack-

son [35] proposed CIs by test inversion based on the generalized Q in (1.1), which is also

distributed as a positive linear combination of χ2
1 random variables under the Re model.

Jackson et al. [37] further proposed to apply the arcsinh transformation to the untruncated
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version of τ̂ 2
GMM for variance stabilization and then constructed CIs for τ 2 based on a nor-

mal approximation. These types of CIs are referred to as the Jackson (J) and approximate

Jackson (AJ) CIs, respectively. Based on simulation, Jackson [35] further commented that

weighting component studies by the reciprocal of their within-study standard errors (i.e.

1/sk), rather than by their variances (i.e. 1/s2
k) as the convention dictates, appears to pro-

vide a sensible and viable option when there is little a priori knowledge about the extent of

heterogeneity.

Unequal-tail Q profile CIs Jackson and Bowden [36] advocated to use unequal tail

probabilities to obtain shorter intervals whenever such methods are justifiable. For example,

when constructing a 100(1−α)% unequal-tail Q-profile (UTQ) confidence interval, the lower

and upper bounds, τ̃ 2
l and τ̃ 2

u , are obtained by solving Q(τ̃ 2
l ) = χ2

K−1,1−α1
and Q(τ̃ 2

u) =

χ2
K−1,α2

, respectively, where α2 > α1 and α1 + α2 = α. They further suggested to use a

pre-specified α-split with α1 = 0.01 and α2 = 0.04 for a 95% CI, which was shown to be

able to retain the nominal coverage and reduce the width under the Re model. Obviously,

the idea of unequal tails can be applied to all kinds of confidence intervals. In our numerical

evaluation, we examine the performance of the Q-profile CIs with α1 = 0.01 and α2 = 0.04

as a representative.

1.7.2. Profile likelihood confidence intervals

Under the Re model, Hardy and Thompson [28] proposed the profile likelihood CIs based

on maximum likelihood (ML) estimation, referred to as PLML. The profile log-likelihood for

τ 2 takes into account the fact that θ is also unknown and must be estimated, given by

l(θ̂ML(τ 2), τ 2), where the log-likelihood function of (θ, τ 2) is given by

l(θ, τ 2) = −K
2

ln 2π − 1

2

K∑
k=1

ln(τ 2 + σ2
k)−

1

2

K∑
k=1

(yk − θ)2

τ 2 + σ2
k

,
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and given the value of τ 2, the ML estimator of θ can be obtained by

θ̂ML(τ 2) =
K∑
k=1

1

τ 2 + σ2
k

yk/
K∑
k=1

1

τ 2 + σ2
k

.

Then the 100(1 − α)% CI for τ 2 is given by the set of τ 2 values satisfying l(θ̂ML(τ 2), τ 2) >

l(θ̂ML(τ̂ 2
ML), τ̂ 2

ML)− χ2
1,1−α/2.

Viechtbauer [87] proposed to construct profile likelihood CIs based on restricted maxi-

mum likelihood (REML) estimation, referred to as PLREML. The 100(1 − α)% CI for τ 2 is

given by the set of τ 2 values satisfying lR(τ 2) > lR(τ̂ 2
REML)− χ2

1,1−α/2, where the restricted

log-likelihood function of τ 2 is given by

lR(τ 2) = −K
2

ln 2π − 1

2

K∑
k=1

ln(τ 2 + σ2
k)−

1

2

K∑
k=1

ln
1

τ 2 + σ2
k

− 1

2

K∑
k=1

(
yk − θ̂ML(τ 2)

)2

τ 2 + σ2
k

,

and τ̂ 2
REML is the REML estimate of τ 2 (by maximizing lR). Viechtbauer [87] found that the

REML-based CIs were slightly more accurate than the ML-based CIs in terms of coverage

probability, especially for small K.

Because ML and REML estimates of τ 2 require non-negativity, the lower bounds of profile

likelihood (PL) intervals are always non-negative and the upper bounds are strictly positive

after applying the same truncation for Q-profile CIs.
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1.7.3. Wald confidence intervals

The Wald test statistics for testing H0 : τ 2 = 0 under the Re model have the form

W = τ̂ 2/SE(τ̂ 2), where τ̂ 2 can be τ̂ 2
ML or τ̂ 2

REML, and the standard error is estimated by

ŜE(τ̂ 2
ML) =

√√√√2

[
K∑
k=1

w2
ML.k

]−1

,

ŜE(τ̂ 2
REML) =

√√√√√2

 K∑
k=1

w2
REML.k − 2

∑K
k=1w

3
REML.k∑K

k=1wREML.k

+

(∑K
k=1 w

2
REML.k∑K

k=1 wREML.k

)2
−1

with wML.k = 1/(τ̂ 2
ML + s2

k) and wREML.k = 1/(τ̂ 2
REML + s2

k). We label the Wald statistics

based on ML and REML estimation by WML and WREML, respectively. The correspond-

ing 100(1 − α)% Wald (W) CI for τ 2 can be easily obtained by τ̂ 2
ML ± z1−α/2ŜE(τ̂ 2

ML) or

τ̂ 2
REML±z1−α/2ŜE(τ̂ 2

REML) [8, 87], where zα is the 100α-th percentile of the standard normal

distribution. Negative lower bounds of the Wald CIs should be truncated to 0 since both

ML and REML estimates of τ 2 are constrained to be non-negative.

1.7.4. Other confidence intervals

Sidik and Jonkman (SJ) CIs Sidik and Jonkman [69] proposed confidence intervals

based on the SJ estimator of τ 2, which is derived from the weighted residual sum of squares

in the framework of a linear regression model. Let the crude estimate τ̂0 =
∑K

k=1(yk− ȳ)2/K

be an a priori value for τ 2. Then the SJ estimator is given by τ̂ 2
SJ =

τ̂20
K−1

∑K
k=1 ŵk(yk − θ̂0)2,

where ŵk = 1/(s2
k + τ̂ 2

0 ), and θ̂0 =
∑K

k=1 ŵkyk/
∑K

k=1 ŵk. It follows that (K − 1)τ̂ 2
SJ/τ

2 has

an asymptotic distribution of χ2
K−1. Thus an approximate 100(1 − α)% confidence interval

can be calculated by
(K − 1)τ̂ 2

SJ

χ2
K−1,1−α/2

≤ τ 2 ≤ (K − 1)τ̂ 2
SJ

χ2
K−1,α/2

.
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Since τ̂ 2
SJ is always positive, the SJ confidence intervals have positive lower and upper bounds.

Sidik and Jonkman [70] later proposed an improved estimator τ̂ 2
SJHO

by using τ̂ 2
HO as the a

priori value. Then improved confidence intervals can be constructed correspondingly.

Bayesian credible intervals Bayesian credible (BC) intervals can be obtained when a

Bayesian approach is employed and posterior samples are drawn from the (joint) posterior

distribution of all parameters involved using an MCMC algorithm. The lower and upper

points of a 100(1−α)% CI can be the 100(α/2) and 100(1−α/2) percentiles of the posterior

sample of τ 2’s, or determined by the region that gives the highest posterior density. Such

intervals may be heavily affected by the prior selection when the number of studies K is

small.

Bootstrap CIs Bootstrap techniques can be used to obtain confidence intervals for nearly

all τ 2 estimators. For nonparametric bootstrap (denoted by BSNP), we sample K studies

with replacement from the observed set of studies B times to get B bootstrap samples.

For parametric bootstrap (denoted by BSP), we first obtain the parameter estimates and

then generate B samples from the assumed distributions with these estimates. For each

(parametric or nonparametric) sample, we calculate the corresponding estimate τ̂ 2. Then

the 100(α/2)th and 100(1− α/2)th percentiles of the B estimates of τ 2 are respectively the

lower and upper bounds of a 100(1 − α)% bootstrap confidence interval. In our numerical

experiment, we only perform the nonparametric bootstrap procedure for the DL estimator

for illustration.

The generalized variable (GV) approach For meta-analysis of normally distributed

outcomes, Tian [80] proposed inference procedures based on the generalized pivotal quantity

for τ 2. A pivotal quantity is a function of observations and parameters such that the dis-

tribution of the function does not depend on the parameters including nuisance parameters.

Let σ2
k0 (σ2

k1) be the population variance of the control (treatment) group in study k; let s2
k0
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(s2
k1) be the corresponding sample variance. For normally distributed outcomes, it is well

known that Vki ≡ (nki − 1)s2
ki/σ

2
ki ∼ χ2

nki−1 for k = 1, . . . , K and i = 0, 1. Denote Q in (1.1)

with weight wk = 1/(σ2
k0/nk0+σ2

k1/nk1+τ 2) by Q(τ 2), which follows χ2
K−1 and is a monotonic

decreasing function of τ 2. Thus, given a real number η ≥ 0, there exists a unique τ 2
η ≥ 0

such that Q(τ 2
η ) = η. Based on this, Tian [80] defined the generalized pivotal quantity Rτ2

for τ 2 as Rτ2 = τ 2
η if η ≤ Q(0) and Rτ2 = 0 otherwise. Given the observed treatment effects

yk’s and sample variances s2
ki’s, the distribution of Rτ2 does not depend on any nuisance

parameters. A series of Rτ2 values can be obtained by first simulating Vki ∼ χ2
nki−1 and

η ∼ χ2
K−1 and setting σ2

ki = (nki− 1)s2
ki/Vki in Q(τ 2) for k = 1, . . . , K and i = 0, 1, and then

solving for τ 2
η . A 100(1− α)% confidence interval is given by (Rτ2,α/2, Rτ2,1−α/2), where the

lower and upper bounds are the 100(α/2)th and 100(1− α/2)th percentile of the generated

Rτ2 ’s.

1.8. Simulation focusing on rare binary events

For meta-analysis of rare binary events, Li and Wang [47] conducted a comprehensive

simulation study to compare the performance of various estimators of the overall treatment

effect θ, where the BNLW model was used for data generation to accommodate treatment

groups with unequal variability. In this section, we adopt the same simulation setup, to

examine the performance of methods for estimating and testing the between-study hetero-

geneity, as summarized in previous sections. Here, bias and MSE are reported for point

estimation, the actual type I error rate and power are reported for hypothesis testing, and

the actual coverage probability and width of confidence intervals reported for interval esti-

mation. To be specific, we set the number of studies K to 10, 20 and 50 to reflect different

sizes of meta-analysis. We generated the number of events xki from Binomial(nki, pki) for

k = 1, . . . , K and i = 0, 1, where nk0s were generated from Uniform[2000, 3000] to exam-

ine large-sample performance and from Uniform[20, 1000] to examine small-sample perfor-

mance, and then rounded to the nearest integers. For small sample sizes, as noted in [47],
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the range [20, 1000] was chosen so that the empirical means of min(nk0pk0, nk0pk0)Kk=1 in all

the settings are below one while it still allows for cases where most component studies have

small sample sizes but a few can have sample sizes close to 1000. To allow varying alloca-

tion ratios across studies, the within-study sample sizes were set to follow the relationship

nk1 = Rknk0, where log2Rk ∼ N(log2R, σ
2
R), R ∈ {1, 2, 4} and σ2

R = 0.5. To generate

pkis, we fixed σ2 at 0.5, and set τ 2 ∈ {0, 0.25, 0.5, 0.75, 1} for evaluating different estima-

tors and τ 2 ∈ {0, 0.1, 0.2, · · · , 0.9, 1} for evaluating different tests and CIs. We further set

θ ∈ {−1, 0, 1} to reflect different directions of the overall treatment effect, set µ ∈ {−2.5,−5}

to represent low and very low incidence rates of the binary event (i.e., 0.076 and 0.0067 in the

probability magnitude), and set ω ∈ {0, 0.5, 1} to represent smaller/equal/larger variability

in the control group, compared to the treatment group. For each setting, 1000 datasets were

simulated to compute empirical values of the performance measures by taking the average.

1.8.1. Comparison of different heterogeneity estimators

We compared all the methods listed in Table 1.4 except for FB, and MBH. Since the

full Bayesian method can be greatly affected by the prior choice and other factors (such

as convergence), we eliminated FB from our simulation. The MBH method is designed

specifically for standard mean difference thus not suitable for binary events. In addition,

the empirical Bayes method EB is equivalent to PM and the multistep DL method has the

property that DL∞ converges to PM . Thus, we include PM in the comparison and leave

EB and DLk out. We use heat maps to visualize the bias and MSE results where the rows

of each map represent different methods and columns represents different τ 2 values in [0,1].

Large-sample results Figure 1.1 presents the bias and MSE results of different estimators

for µ = −2.5 and µ = −5 based on large-sample settings with R = 1, K = 50, θ = 0, and

w = 0. As shown in Figure 1.1(a), as the event of interest becomes rarer, all methods seem

to produce more bias when estimating the heterogeneity parameter τ 2. Almost all methods
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underestimate the between-study heterogeneity when τ 2 > 0. The RBp estimator, however,

consistently overestimates τ 2 when the event is very rare (µ = −5). As τ 2 increases, most

estimators produce more bias except for BM and RBp; the bias from BM first increases then

decreases, and the bias from RBp decreases for very rare events (µ = −5). When the events

are not that rare (µ = −2.5), most estimators have similarly low bias except for the one-step

DL estimators (DL, DLp, DLb), HM , HS, and BM . However, IPM stands out with

the lowest bias when the incidence rate becomes very low, especially when τ 2 ≥ 0.5. The

HS, HM , BM and one-step DL family methods remain the worst and should be avoided

in terms of bias. All three likelihood-based methods, ML, REML and AREML, produce

similar results with a moderate level of bias. In terms of MSE, most methods have similar

performance except for HM and BM , which are the most inefficient according to Figure

1.1(b). Those with relatively large magnitude of bias tend to have relatively large MSE.
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(a) Comparison of estimation bias. Left panel: µ = −2.5; Right panel: µ = −5.

(b) Comparison of MSE. Left panel: µ = −2.5; Right panel: µ = −5.

Figure 1.1: Large-sample performance of different τ 2 estimators based on settings withR = 1,
K = 50, θ = 0, and w = 0.

We next discuss the potential impacts of R, K, θ, and w on the estimation performance

for the large-sample case. Figures A.1 and A.2 in Appendix A show the bias and MSE results

for different R and K values, respectively, based on settings with µ = −2.5, θ = 0 and w = 0.

We can see that when τ 2 < 0.5, regardless of R and K, all the methods perform somewhat

similarly and have both bias and MSE close to zero except for BM which has much larger

bias. As K increases, MSE decreases significantly for every estimator when τ 2 ≥ 0.5 but bias

for a few estimators seems not to get closer to zero (e.g., DL for τ 2 = 1, BM for τ 2 = 0.5,

and 0.75). However, the heat maps show very similar color patterns both vertically and

horizontally, indicating that the impact of R and K on the relative performance of these

methods is merely marginal. Figures A.3 and A.4 in Appendix A show the bias and MSE
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results for different θ and w values, respectively, based on settings with R = 1, K = 50 and

µ = −5. When θ = −1, bias decreases as w increases while this trend reverses when θ = 1.

This effect of w is minimal when there is no treatment effect (θ = 0). Similar trends are

observed but less obvious for MSE. Also, we find that IPM maintains the best performance

in terms of both bias and MSE while DL, DLp, DLb, HS, HM , and BM are among the

worst in nearly all the settings considered.

Small-sample results Figure 1.2 presents the bias and MSE results of different estimators

for µ = −2.5 and µ = −5 based on small-sample settings with R = 1, K = 50, θ = 0, and

w = 0. From Figure 1.2(a), we can see that when τ 2 > 0, the underestimation observed in

the large-sample results for all the estimators but RBp is much more severe for small samples,

where the magnitude of bias increases substantially for very rare events (µ = −5). Note that

RBp consistently overestimates τ 2 for both µ = −2.5 and µ = −5, and unlike most other

estimators, the bias decreases as τ 2 increases. When events are not that rare (µ = −2.5),

IPM is still the least biased. However, for very rare events (µ = −5), SJ becomes the least

biased estimator for τ 2 ≥ 0.5. The problem of SJ is that it significantly overestimates τ 2

when there is no or little heterogeneity, due to its positive nature. From Figure 1.2(b) we

can see that MSE does not change much when µ = −2.5 but dramatically increases when

µ = −5 compared to results from large samples. For very rare events (µ = −5), SJ is the

most efficient method except for τ 2 = 0 and IPM seems to be the second best in terms of

MSE. Note that when τ 2 = 1, RBp has smaller MSE than IPM for very rare events, but it

does not perform as well as IPM for smaller τ 2 values.
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(a) Comparison of estimation bias. Left panel: µ = −2.5; Right panel: µ = −5.

(b) Comparison of MSE. Left panel: µ = −2.5; Right panel: µ = −5.

Figure 1.2: Small-sample performance of different τ 2 estimators based on settings withR = 1,
K = 50, θ = 0, and w = 0.

The impacts of R, K, θ, and w on the estimation bias and MSE for the small-sample case

are shown in Figure A.5-A.8 of Appendix A. Since several methods (e.g., the likelihood-based

methods) failed in some small-sample settings for very rare events (µ = −5), we show results

for µ = −2.5 in these figures. Although the effect of K on MSE becomes more significant

for small samples (i.e., MSE decreases more as K increases), it is still the case that both R

and K have little impact on the relative performance of the different methods. Also, similar

trends for both bias and MSE occur when w and θ change as in the large-sample case. For

these µ = −2.5 settings, IPM seems to be the best estimator due to its consistently top-level

performance across various settings. This also agrees with the results in the left panels of

Figure 1.2. On the other hand, DL, DLp, DLb, HM , HS, and BM should be avoided due
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to their generally large bias.

1.8.2. Comparison of methods for testing homogeneity of odds ratios

Among those summarized in Table 1.7, we compared 29 testing methods at the signifi-

cance level α = 0.05, as listed in Table 1.10. We excluded Bayesian methods for the same

reason as mentioned for FB in Section 1.8.1, the Cochran’s Q test based on QFe that is

not applicable to rare binary data with zero counts without continuity correction, one of the

Lipsitz tests based on Z2
V , which only works for the risk difference measure, the multivariate

Wald test based onW 2
FeL that failed to work in many of our simulation settings, and the gen-

eralized variable approach that is only applicable to normal data. Among all the Q-statistic

based tests, Q̃r, QB and QG have similar performance thus we only report power results

from QG. Recall that QG is actually QFe applied to binary outcomes with the continuity

correction factor 0.5. The power values of Bh.T3, two Wald tests WML and WREML, and

two Lipsitz tests Z2
WLS,R and Z2

K are much lower than those of the other tests thus are also

not shown in the comparison figures. According to [7], the (asymptotic) test using Bh.T4 is

very conservative, which is confirmed by our simulation results in Table 1.10. Thus we only

include the bootstrap version of Bh.T4 for power comparison. With all above mentioned

methods excluded, there are 21 left in our final comparison using Figures 1.3 and 1.4. From

our simulation results (not reported due to the space limit), we find that the influences of

R, θ, and w on the performance of different testing procedures are marginal, and so we only

report results for settings with R = 1, θ = 0, and w = 0.

Table 1.10 presents the test sizes of different methods for both large- and small-sample

cases and different incidence rates (µ = −2.5, -5) based on settings with R = 1, K = 20,

θ = 0, w = 0 and τ 2 = 0. The Wald tests (WML and WREML), Bh.T3, and Bh.T4 are

very conservative in all the settings, which was previously reported in [7, 88]. Also, LRML,

LRREML, Z2
WLS, and BSDL seem to be quite conservative, too. On the other hand, the tests
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based on Z2
WLS,R and Z2

K have severely inflated Type I error rates. When µ = −2.5 and

the sample sizes are large, most tests except for those mentioned above seem to maintain

the Type I error rates close to the target level 0.05. As events get rarer (i.e., µ decreases),

nearly all tests become more conservative with smaller test sizes except for the conditional

and unconditional LR tests (LRU.FeL, LRU.ReL and LRC), Z2
WLS,R and Z2

K . And for very

rare events (µ = −5), most of these tests become more conservative with test sizes getting

very close to zero when the sample sizes become smaller, but they appear to be less impacted

by sample size when µ = −2.5.

Figure 1.3 shows power curves of different heterogeneity tests for different K values based

on large-sample settings with R = 1, µ = −5, θ = 0 and w = 0. For all the methods, the

power increases when τ 2 increases as we expect, and as the number of studies K increases,

the curves increase more rapidly. The biggest improvement from increasing K is obtained

by the test BSDL based on the nonparametric bootstrap procedure combined with the DL

estimator. The relative performance of different tests does not vary much in different K

settings. Note that each curve starts at τ 2 = 0, where the power becomes the empirical type

I error rate. It appears that the effect of K on the test size is marginal for the different

methods.

Figure 1.4 shows power curves of different homogeneity tests for both large- and small-

sample cases and different µ values based on settings with R = 1, K = 20, θ = 0, and w = 0.

When events are not that rare (µ = −2.5) and sample sizes are large, most tests achieve very

high power (close to one) even when the true heterogeneity level is low. However, as events

become rarer or the sample sizes are smaller, the power decreases for each method, starting

from smaller τ 2 values. The unconditional LR test based on the ReL model (LRU.ReL) has

the highest power in all the settings. The power of LRU.ReL is especially higher than the other

tests when sample sizes are small and events are very rare, but it comes with inflated test

sizes, as shown in Table 1.10. To better compare the power of different tests, we focus on the

case of µ = −5 and small sample sizes, where the differences become most obvious. The LR
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test based on the FeL model and the conditional LR test based on the FeH model (LRU.FeL

and LRC) have close performance and are the second most powerful tests. The test based on

Qγ has the highest power among all the (modified) Q-statistic based tests, which we believe is

due to the more accurate gamma approximation achieved with extra computational burden.

Among all the score tests, the conditional score test based on the ReH model (CSReH) has

the highest power and performs slightly better than Qγ. Another observation is that tests

based on the REML estimates performed better than the corresponding tests based on the

ML estimates.

Overall, we recommend LRU.FeL and LRC for testing the homogeneity of treatment effects

when dealing with rare binary events as these two tests achieve high power while maintaining

the nominal Type I error rate roughly. The widely used Cochran’s Q-test with continuity

correction QG is not recommended due to its lackluster performance especially when the

events are very rare and the sample sizes are small.

(µ, size) QG Q̃r QJ QB Bh.T3 Qγ LRML LRREML LRU.FeL LRU.ReL LRC SML SREML USFeL USReL

(−2.5 LS) 0.047 0.046 0.048 0.046 0.019 0.049 0.027 0.036 0.048 0.054 0.028 0.04 0.053 0.049 0.049
(−5, LS) 0.027 0.027 0.029 0.027 0 0.042 0.011 0.019 0.062 0.113 0.06 0.018 0.03 0.036 0.036
(−2.5, SS) 0.04 0.037 0.025 0.039 0.004 0.055 0.024 0.031 0.066 0.084 0.04 0.046 0.064 0.049 0.049
(−5, SS) 0 0 0 0 0 0.025 0.001 0.003 0.072 0.156 0.069 0.001 0.004 0.002 0.003

(µ, size) CSFeH ZCS.FeH CSReH BD MBD WML WREML Peto Z2
WLS Z2

WLS,R Z2
K Bh.T4 BSBh.T4 BSDL

(−2.5, LS) 0.049 0.045 0.042 0.049 0.049 0.001 0.002 0.048 0.03 0.095 0.127 0 0.060 0.014
(−5, LS) 0.036 0.036 0.041 0.036 0.036 0.001 0.001 0.049 0.017 0.119 0.143 0.003 0.041 0.016
(−2.5, SS) 0.047 0.046 0.054 0.049 0.049 0 0 0.059 0.026 0.11 0.142 0.006 0.058 0.011
(−5, SS) 0.002 0.005 0.016 0.002 0.002 0 0 0.019 0.014 0.375 0.225 0 0.068 0

Table 1.10: Actual Type I error rates of different homogeneity tests for settings with R = 1,
K = 20, θ = 0, w = 0, and τ 2 = 0. Here, LS represents large sample and SS represents small
sample.
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Figure 1.3: Power curves of different homogeneity tests for different K values based on
large-sample settings with R = 1, µ = −5, θ = 0, and w = 0.
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Figure 1.4: Power curves of different homogeneity tests for both large- and small-sample
cases and different µ values based on settings with R = 1, K = 20, θ = 0, and w = 0.

1.8.3. Comparison of different types of CIs

Among those summarized in Table 1.8, we compared 14 different types of 95% CIs for the

heterogeneity parameter τ 2 in Figures 1.5 and 1.6, excluding Bayesian credible intervals and

the GV method as before. As mentioned in Section 1.7, BSNP represents the nonparametric

bootstrap procedure combined with the DL estimator and UTQ represents the unequal-tail

Q-profile CI with α1 = 0.01 and α2 = 0.04. Again, from our (unreported) simulation results,

we find that the influences of R, θ, and w on the empirical coverage probability are marginal.
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Figure 1.5: Actual coverage probabilities of different types of 95% CIs for different K values
based on large-sample settings with R = 1, µ = −5, θ = 0, and w = 0.

Figure 1.5 shows actual coverage probabilities of different types of CIs for different K

values based on large-sample settings with R = 1, µ = −5, θ = 0, and w = 0. When there is

no between-study heterogeneity (τ 2 = 0), all the methods provide 100% coverage except for

SJ and SJHO that produce strictly positive intervals and so have zero coverage. When τ 2 is

small, as K increases, the methods based on (modified) Q statistics gain some improvement

in coverage except for AJ, which achieves relatively high coverage for all K and τ 2 values.

As τ 2 gets larger, most methods do not improve their coverage by increasing K.
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Figure 1.6: Actual coverage probabilities of different types of 95% CIs for both large- and
small-sample cases and different µ values based on settings with R = 1, K = 20, θ = 0, and
w = 0.

Figure 1.6 presents actual coverage probabilities of different types of CIs for both large-

and small-sample cases and different µ values based on settings with R = 1, K = 20, θ = 0,

and w = 0. When µ = −2.5, most methods have actual coverage close to the nominal level

0.95. Among all, the nonparametric bootstrap CI has the lowest coverage, followed by the

two Wald CIs when τ 2 > 0. The influence of sample sizes is not obvious except for J, SJ

and SJHO that improve their coverage for large sample sizes when τ 2 is small. For very rare

events (µ = −5), the impact of sample sizes is much more severe and some of the CIs (e.g.,

SJHO, J, UTQ) do not even achieve 50% coverage in most small-sample settings. In the

large-sample settings, PLML, PLREML, and AJ maintain the nominal 95% coverage quite well

at all positive levels of τ 2. As the sample sizes become small, all methods fail to do so for

very rare events when τ 2 ≥ 0.3. Still, PLML and PLREML, and AJ are among those with

the highest coverage. We also find that when τ 2 ≥ 0.4, SJ joins the top-performing group

with the following order SJ ≈ PLREML > PLML > AJ. This matches with the estimation
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results reported in Section 1.8.1 that for very rare events coupled with small samples, the SJ

estimator is the least biased and has the smallest MSE when τ 2 ≥ 0.5. In such situations, the

Q-statistic based CIs have generally low coverage and thus should be avoided; meanwhile the

Wald and nonparametric bootstrap CIs have moderate coverage instead of being the worst

in the other three cases.

Figure 1.7: Width curves of different types of 95% CIs for both large- and small-sample cases
and different µ values based on settings with R = 1, K = 20, θ = 0, and w = 0.

Figure 1.7 shows width curves of different types of CIs under the same settings of Figure

1.6, where for all estimators, the width shows an increasing pattern as τ 2 increases. The

influence of sample sizes on the CI width is only obvious when µ = −5, where all the CIs

become narrower when sample sizes decrease. This is anti-intuitive. A closer examination

reveals that when events are very rare and sample sizes are small, many simulation iterations

produce confidence intervals of a point {0}, which makes the average width become smaller.

In the first three situations (either µ = −2.5 or large samples), BT and BJ produce the

widest intervals, and PL and AJ intervals, which offer higher coverage than most other
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methods, have moderate widths among all CIs. Unsurprisingly, the nonparametric bootstrap

procedure produces the narrowest CIs. In the last situation (very rare events coupled with

small samples), PL and AJ intervals are among the widest. Here, CIs with shorter widths are

not necessarily desirable as they may reflect more {0} intervals due to sparsity. SJ produces

intervals with moderate widths though it also provides higher coverage when τ 2 is large.

Overall, we recommend PL and AJ intervals in general meta-analysis of rare binary events

for their high coverage. For very rare events with small samples, we recommend SJ intervals

if we know there exists at least moderate-level heterogeneity. Besides, AJ and SJ intervals

are much easier to obtain than PL intervals.

1.9. Example

1.9.1. Type 2 diabetes mellitus after gestational diabetes

Women with gestational diabetes are believed to have a higher chance to develop type 2

diabetes. Bellamy et al. [6] performed a comprehensive systematic review and meta-analysis

to assess the strength of this association. They selected 20 cohort studies that included

675,455 women with/without gestational diabetes and 10,859 type 2 diabetic events from

205 reports between Jan 1, 1960, and Jan 31, 2009, from Embase and Medline (see Table

A.1 in Appendix A). We reanalyzed the data focusing on inference about the heterogeneity

parameter τ 2. We note that the overall event rate is ∼1.61% and many studies have very

small sample sizes with zero event counts. So this data example fits in the scenario of very

rare events coupled with small sample sizes. Recall that in this scenario, SJ gives the least

bias and most efficient estimator when there exists a moderate or large level of heterogeneity

and IPM is the second best which tends to underestimate τ 2.
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Point estimates for the heterogeneity parameter τ 2 and corresponding inverse-variance

weighted estimates for the treatment effect θ are summarized in Table 1.11(a). Here, most

methods give an estimate between 0.4 and 0.7 for τ 2, where the estimate from IPM is 0.563

and that from SJ is 0.679. This seems to suggest a moderate to large level of heterogeneity,

especially after accounting for the underestimation from IPM . The RBp method, which has

been shown to severely overestimate τ 2 for very rare events, gives the largest estimate of

1.162 as we expect. On the other hand, the HS estimate is much smaller than the others.

The resulting estimated odds ratios do not vary as much except for the one from RBp. The

p-values from testing H0 : τ 2 = 0 are presented in Table 1.11(b). We find that except for

Bh.T3, Bh.T4, Z2
WLS,R and Z2

K , all other methods reject the null hypothesis of homogeneity

at the significance level 0.05. This is not surprising as the four tests have low power in

detecting the existence of heterogeneity, as mentioned in Section 1.8.2. Table 1.11(c) shows

the confidence intervals from all the compared methods. BT gives a very large upper bound,

which seems to be odd. All CIs except for those from BT, BJ, and Wald methods exclude

zero, among which SJ yields the shortest interval with the largest lower bound and the

upper bound in line with that from PL and AJ methods. Recall that SJ tends to produce

the best interval with higher coverage and relatively shorter width when there exists at least

moderate-level heterogeneity, as reported in Section 1.8.3. In this example, we lean toward

reporting the SJ interval, among the top performing methods PL, AJ and SJ. Based on the

estimation and inference results above, we believe that these studies are heterogeneous.
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Estimator HO HO2 DL DL2 DLp DLb PM

τ̂ 2 0.220 0.418 0.466 0.411 0.466 0.265 0.413
θ̂ 2.093 2.136 2.146 2.135 2.146 2.104 2.135

OR 8.112 8.469 8.547 8.457 8.547 8.197 8.461
95% CI for OR (5.658, 11.630) (5.435, 13.197) (5.395, 13.540) (5.442, 13.141) (5.395, 13.540) (5.552, 12.293) (5.439, 13.162)

Estimator IPM HM HS LCHmean LCHmedian ML REML

τ̂ 2 0.563 0.419 0.046 0.519 0.298 0.396 0.449
θ̂ 2.162 2.137 2.092 2.155 2.111 2.132 2.142

OR 8.691 8.470 8.099 8.626 8.260 8.432 8.520
95% CI for OR (5.321, 14.194) (5.435, 13.200) (6.424, 10.210) (5.354, 13.897) (5.553, 12.285) (5.455, 13.034) (5.409, 13.419)

Estimator AREML SJ SJHO RB0 RBp BM

τ̂ 2 0.433 0.679 0.290 0.198 1.162 0.195
θ̂ 2.139 2.180 2.110 2.088 2.235 2.088

OR 8.493 8.846 8.245 8.072 9.345 8.067
95% CI for OR (5.432, 13.302) (5.241, 14.932) (5.562, 12.223) (5.694, 11.443) (4.953, 17.631) (5.698, 11.419)

(a) Estimates of the heterogeneity parameter τ2 and treatment effect θ from different methods

Test QG Q̃r QJ QB Bh.T3 Qγ LRML LRREML LRU.FeL LRU.ReL

P-value 0.000 0.000 0.011 0.000 0.571 0.000 0.000 0.000 0.000 0.000

Test LRC SML SREML USFeL USReL CSFeH ZCS.FeH CSReH BD MBD

P-value 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Test WML WREML W 2
FeL Peto Z2

WLS Z2
WLS,R Z2

K Bh.T4 BSBh.T4 BSDL

P-value 0.041 0.044 0.000 0.000 0.000 0.055 0.184 0.256 <0.05 <0.05

(b) P-values from different methods for testing homogeneity of odds ratios

Method QP MQP UTQ BT BJ J AJ
CI (0.109, 1.603) (0.106, 1.603) (0.083, 1.403) [0, 8.610) [0, 2.660) (0.048, 1.540) (0.004, 1.396)

Method SJ SJHO BSNP PLML PLREML WML WREML

CI (0.393,1.449) (0.168, 0.620) (0.012, 0.670) (0.113, 1.285) (0.129, 1.458) [0, 0.841) [0, 0.966)

(c) Confidence intervals for the heterogeneity parameter τ2 from different methods

Table 1.11: Data example of gestational diabetes meta-analysis

1.9.2. Rosiglitazone meta-analysis

The side effect of rosiglitazone on cardiovascular (CV) safety has been evaluated by

[57] with a meta-analysis of 48 trials, which concluded a significantly elevated risk for my-

ocardial infarction (MI) and a borderline significant increased risk for cardiovascular death

(CVD). However, debate over the CV safety of rosiglitazone remained as some subsequent
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meta-analyses reported inconclusive results [72, 22]. To address the controversy, Nissen and

Wolski [58] conducted an updated meta-analysis of 56 trials including 35,531 patients: 19,509

assigned to treatment groups (rosiglitazone) and 16,022 assigned to control group (see Table

A.2 in Appendix A). Here we reanalyzed the data focusing on inference about the hetero-

geneity parameter τ 2. Among all the 56 trials, only three have sample sizes larger than 2000

in either groups. In the rosiglitazone groups, there are 159 MI and 103 CVD cases reported

while in the control groups, there are 136 MI and 98 CVD cases. The overall event rate

is 0.83% for MI and 0.57% for CVD. So this data example fits in the scenario of very rare

events coupled with small sample sizes.

Table 1.12 summarizes results for the MI data from different aspects and methods. Point

estimates for τ 2 from different estimators and corresponding weighted average estimates for

θ and odds ratio are presented in Table 1.12(a). A 95% t-confidence interval is also given for

OR. All the methods except for those positive ones give zero estimates for τ 2. All the CIs for

OR include 1, indicating no treatment effect of rosiglitazone. Here we favor the conclusion

of τ 2 = 0 instead of 0 < τ 2 ≤ 0.25 for the following reason. Based on the small-sample

simulation results for estimation bias with very rare events (Figure 1.2), all the nonnegative

estimator are unbiased when τ 2 = 0. The positive bias of 0.659 from RBp here is very close

to that of 0.65 when τ 2 = 0 in the simulation. On the other hand, if 0 < τ 2 ≤ 0.25, IPM ,

HM , SJ , and RBp are expected to have (much) larger estimates than what was observed

here.

Results from hypothesis testing and confidence intervals for τ 2 presented in Table 1.12(b)

and 1.12(c) further consolidate our conclusion. All the tests, except for Z2
WLS, Z2

WLS,R, and

Z2
K , fail to reject the null hypothesis of homogeneous effects. As shown in Table 1.10, when

µ = −5 and sample sizes are small, Z2
WLS,R, and Z2

K have largely inflated Type I error rate

of 0.375 and 0.225 for a test at the significance level of α = 0.05 while most of the other tests

maintain sizes well below α. Thus we believe that those three tests falsely reject the null

hypothesis and conclude that the treatment effects in different studies are homogeneous. All
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the CIs for τ 2 include zero except for SJ and SJHO as presented in Table 1.12(c). Due to

their positive nature, the SJ and SJHO CIs have zero coverage when τ 2 = 0, which is mostly

likely to be true in this example. Combining all the evidences from estimation and testing,

we conclude that τ 2 = 0 and rosiglitazone has no significant effect on MI.

Estimator HO HO2 DL DL2 DLp DLb PM

τ̂ 2 0.000 0.000 0.000 0.000 0.010 0.000 0.000
θ̂ 0.159 0.159 0.159 0.159 0.156 0.159 0.159

OR 1.172 1.172 1.172 1.172 1.168 1.172 1.172
95% CI for OR (0.937, 1.467) (0.937, 1.467) (0.937, 1.467) (0.937, 1.467) (0.920, 1.484) (0.937, 1.467) (0.937, 1.467)

Estimator IPM HM HS LCHmean LCHmedian ML REML

τ̂ 2 0.000 0.040 0.000 0.000 0.000 0.000 0.000
θ̂ 0.159 0.145 0.159 0.159 0.159 0.159 0.159

OR 1.172 1.156 1.172 1.172 1.172 1.172 1.172
95% CI for OR (0.937, 1.467) (0.883, 1.514) (0.937, 1.467) (0.937, 1.467) (0.937, 1.467) (0.937, 1.467) (0.937, 1.467)

Estimator AREML SJ SJHO RB0 RBp BM

τ̂ 2 0.000 0.156 0.003 0.000 0.659 0.002
θ̂ 0.159 0.116 0.158 0.159 0.073 0.158

OR 1.172 1.123 1.171 1.172 1.076 1.172
95% CI for OR (0.937, 1.467) (0.810, 1.558) (0.931, 1.473) (0.937, 1.467) (0.706, 1.639) (0.933, 1.470)

(a) Estimates of the heterogeneity parameter τ2 and treatment effect θ from different methods

Test QG Q̃r QJ QB Bh.T3 Qγ LRML LRREML LRU.FeL LRU.ReL

P-value 1.000 1.000 1.000 1.000 1.000 0.983 0.5 0.5 0.935 0.879

Test LRC SML SREML USFeL USReL CSFeH ZCS.FeH CSReH BD MBD

P-value 0.937 0.898 0.901 1.000 1.000 1.000 1.000 0.879 1.000 1.000

Test WML WREML W 2
FeL Peto Z2

WLS Z2
WLS,R Z2

K Bh.T4 BSBh.T4 BSDL

P-value 0.5 0.5 NA 1.000 0.001 0.000 0.003 1.000 >0.05 >0.05

(b) P-values from different methods for testing homogeneity of odds ratios

Method QP MQP UTQ BT BJ J AJ
CI [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

Method SJ SJHO BSNP PLML PLREML WML WREML

CI (0.111, 0.235) (0.002, 0.005) [0, 0] [0, 0.091) [0, 0.111) [0, 0.080) [0, 0.108)

(c) Confidence intervals for the heterogeneity parameter τ2 from different methods

Table 1.12: Results for MI data in rosiglitazone meta-analysis
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Table 1.13 summarizes results for the CVD data. Similar observations can be made from

Table 1.13: all non-negative τ 2 estimates are zero and the positive ones have values even

smaller than those for the MI data, all estimated ORs are close to 1, and all their CIs include

one. Thus, we conclude that τ 2 = 0 and rosiglitazone has no significant effect on CVD, too.

Estimator HO HO2 DL DL2 DLp DLb PM

τ̂ 2 0.000 0.000 0.000 0.000 0.010 0.000 0.000
θ̂ -0.059 -0.059 -0.059 -0.059 -0.045 -0.059 -0.059

OR 0.943 0.943 0.943 0.943 0.956 0.943 0.943
95% CI for OR (0.727, 1.223) (0.727, 1.223) (0.727, 1.223) (0.727, 1.223) (0.723, 1.256) (0.727, 1.223) (0.727, 1.223)

Estimator IPM HM HS LCHmean LCHmedian ML REML

τ̂ 2 0.000 0.020 0.000 0.000 0.000 0.000 0.000
θ̂ -0.059 -0.034 -0.059 -0.059 -0.059 -0.059 -0.059

OR 0.943 0.966 0.943 0.943 0.943 0.943 0.943
95% CI for OR (0.727, 1.223) (0.720, 1.297) (0.727, 1.223) (0.727, 1.223) (0.727, 1.223) (0.727, 1.223) (0.727, 1.223)

Estimator AREML SJ SJHO RB0 RBp BM

τ̂ 2 0.000 0.061 0.002 0.000 0.429 0.002
θ̂ -0.059 -0.009 -0.056 -0.059 0.011 -0.056

OR 0.943 0.991 0.945 0.943 1.011 0.946
95% CI for OR (0.727, 1.223) (0.709, 1.383) (0.726, 1.231) (0.727, 1.223) (0.654, 1.562) (0.726, 1.232)

(a) Estimates of the heterogeneity parameter τ2 and treatment effect θ from different methods

Test QG Q̃r QJ QB Bh.T3 Qγ LRML LRREML LRU.FeL LRU.ReL

P-value 1.000 1.000 1.000 1.000 1.000 0.993 0.500 0.500 1.000 0.967

Test LRC SML SREML USFeL USReL CSFeH ZCS.FeH CSReH BD MBD

P-value 1.000 0.814 0.835 1.000 1.000 1.000 1.000 0.645 1.000 1.000

Test WML WREML W 2
FeL Peto Z2

WLS Z2
WLS,R Z2

K Bh.T4 BSBh.T4 BSDL

P-value 0.500 0.500 NA 1.000 0.000 0.000 0.002 1.000 >0.05 >0.05

(b) P-values from different methods for testing homogeneity of odds ratios

Method QP MQP UTQ BT BJ J AJ
CI [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

Method SJ SJHO BSNP PLML PLREML WML WREML

CI (0.043, 0.092) (0.001, 0.003) [0, 0] [0, 0.130) [0, 0.161) [0, 0.085) [0, 0.164)

(c) Confidence intervals for the heterogeneity parameter τ2 from different methods

Table 1.13: Results for CVD data in rosiglitazone meta-analysis

63



1.10. Discussion and recommendations

In the development of reliable statistical techniques for research synthesis, much effort has

been put on inference about the effect sizes. However, identifying and quantifying between-

study heterogeneity is important as well. Inspired by the wide application of meta-analysis

in medical research that focuses on the odds ratio between two conditions in the presence of

a binary response of disease status, treatment efficacy or an adverse reaction, we have made

our best effort to fully review models applicable to meta-analysis with binary outcomes and

heterogeneity measures, and thoroughly evaluated inference procedures about the between-

study variance τ 2 covering point estimation, interval estimation, and hypothesis testing. Our

simulation studies focus on rare binary events, which have the greatest practical importance

as most diseases or adverse events have (very) low incidence rates but are often ignored in

previous comparative studies. Unlike published reviews that focus on either estimation or

testing and only include a limited subset of methods, we attempt to provide a systematic and

updated review that includes all applicable methods covering both estimation and testing

for rare binary events.

Based on our comprehensive simulation studies for large-sample meta-analysis of rare

binary events, we recommend the IPM method for estimating the heterogeneity parameter

τ 2 if reducing estimation bias is of high priority, especially when the events are extremely rare.

Most of the methods do not differ much in terms of MSE. We suggest to avoid using HM ,

HS and BM since they have relatively large bias and MSE compared with other estimators.

The most widely used DL estimator and its one-step variants DLp and DLb do not perform

satisfactorily and should also be avoided. For small-sample meta-analysis of rare events,

IPM is still recommended and SJ also performs much better than the other estimators in

terms of both bias and MSE when τ 2 ≥ 0.5 and the events are extremely rare. In terms of

hypothesis testing of homogeneity of odds ratios, we recommend the LR test based on the

FeL model and the conditional LR test ( LRU.FeL and LRC). Regardless of sample sizes, we
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should avoid Bh.T3,WML,WREML, Z2
WLS,R and Z2

K for their largely biased test sizes and low

power. In terms of interval estimation, we recommend the profile likelihood methods (PLML

and PLREML) and the approximate Jackson method AJ in general situations. Among the

three, PLREML usually produces higher coverage but with wider intervals. The SJ method

is a good candidate when events are extremely rare, sample sizes are small, and τ 2 ≥ 0.4.

We did not examine the performance of Bayesian methods in estimation and inference of the

heterogeneity parameter because of the computation burden, convergence detection issue,

and potential sensitivity to prior choices. However, as presented in [3], Bayesian hierarchical

modeling can be a good alternative in eliminating estimation bias and improving testing

power.

We also notice that most estimators for τ 2 are negatively biased in our simulation, an

interesting phenomenon observed in other simulation studies with binary outcomes [42, 69,

70, 7] as well. In simulation studies with continuous outcomes [43], most of the estimators

show positive bias when τ 2 is small (< 0.1) and the magnitude of bias of RBp is much larger

than the other estimators; for larger τ 2 values, the HS and ML estimators are negatively

biased and the magnitude increases as τ 2 increases [86]. Viechtbauer [86] provides some

analytical results for the bias of estimators HO, DL, HS, ML, and REML. Most of these

results were derived based on the homogeneous within-study variance assumption (σ2
k = σ2).

Under this assumption, the bias due to truncation is always positive for DL, HO and REML

with all levels of heterogeneity and is negative for HS and ML when τ 2 ≥ 0.5. However,

we believe that in the rare events context, it is the sparsity (caused by zero counts) and

lack of accuracy in estimating the within-study variances that cause the large magnitude

of underestimation for many methods. This underestimation is much reduced by the IPM

estimator where the within-study variance estimates are improved by pooling information

from all the studies.

All testing procedures, except for Bayesian, bootstrap, and generalized variable methods,

use asymptotic null distributions to obtain p-values. Reis et al. [66] examined the exact
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version of several tests, including USFeL, CSFeH , and LRFeL, where the exact p-value is given

by the null conditional probability of attaining a statistic value not less than the observed

one. These exact tests were shown to maintain the test size better in small-sample or sparse

data situations and the power is only slightly higher than the corresponding asymptotic

tests under certain settings. However, the exact p-value can be much more computationally

expensive to obtain and may not worth the effort in common meta-analysis with a moderate

number of studies and sample sizes.

We use two data examples to illustrate inference and interpretation of between-study

heterogeneity in meta-analysis of rare binary events. These two applications are somewhat

representative: the diabetes example shows heterogeneous studies and a significant overall

effect; the rosiglitazone example shows no heterogeneity and no significant effect. Some-

times, unanimous conclusions are hard to be drawn when different methods provide different

indications and then simulation results can provide us useful guidance. It is worth men-

tioning that our conclusion about the effect of rosiglitazone on MI is different from those in

[58], which used Peto and Mantel-Haenszel methods in estimating ORs and 95% CIs. Both

methods assume a fixed treatment effect, i.e., a common OR, which is also the assumption in

[51] mentioned in Section 1.6. Thus different assumptions about the treatment effects in dif-

ferent studies can lead to contrary conclusions about the inference of the overall effect. The

potential heterogeneity should be carefully accounted for in a meta-analysis. Our conclusion

matches with those in [47] and supports the actions that FDA lifted its earlier restrictions

on rosiglitazone in 2013 and further eliminated the Risk Evaluation and Mitigation Strategy

(REMS) in 2015.

Finally, we should mention that, when synthesizing information from multiple studies to

get more reliable conclusions, one should not simply rely on one point estimate or one p-value

(especially those from the default methods in software packages) without considering the rich

selection of statistical tools offered in the literature. Each of the above reviewed models or

methods has its own limitations. In practice, all kinds of evidence should be combined and
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evaluated together with the specific characteristics of component studies included in the

meta-analysis.
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CHAPTER 2

Estimation of Variances in Cluster Randomized Designs Using Ranked Set Sampling

2.1. Introduction

Cluster randomized design (CRD) is a commonly used statistical design with a hierar-

chical structure in many agricultural and educational studies. A typical CRD involves a

two-stage sampling, at the cluster level and at the individual level. Simple random sampling

(SRS) is usually applied in both stages to obtain samples. Standard textbooks, such as [79]

and [52] present details of such design with SRS. An example of the application of CRD

in educational studies is the evaluation of schools’ performance where schools are nested

within their corresponding school districts. Here school districts are clusters and schools are

individuals. In agricultural applications, for example, when evaluating the crop production

in the United States, we treat states as clusters and counties within each state as individu-

als. Such hierarchical design can better address the potential heterogeneity among different

clusters while individuals within a cluster are homogeneous.

In order to improve cost-efficiency in the sampling process, McIntyre [55] proposed ranked

set sampling (RSS) in the estimation of pasture yields. This sampling method can reduce the

amount of measurement, and thus reduce the cost, by incorporating the ranking information,

which is presumably cheaper to acquire than to take actual measures. In general, one can

perform RSS as follows. Let H be a predetermined size of a ranked set. In each iteration i,

i = 1, . . . , H, select a set of random samples containingH sampling units from the population

using SRS. Order the H units within that set from the smallest to the largest based on some

ranking variable X that is easy to measure and is related the the parameter of interest.
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For example, to estimate crop production of farms, the farm size can be used as a ranking

variable which is easily obtainable and is highly related to the crop yield. Then, measure

the ith unit in the set and discard the remaining H − 1 units. We refer to the above process

of H iterations as one cycle. We can obtain a total of N = Hm observations after m cycles.

Although H2m sampling units are randomly selected from the population, only Hm ones are

actually measured. This is only an illustration of the process of RSS in a one stage sampling.

In a two-stage CRD sampling, the RSS procedure can be applied at the cluster level only, at

the individual level only or at both levels. For sampling at the cluster level, clusters are the

sampling units, and for sampling at the individual level, RSS is performed for each cluster

and the individuals within the corresponding cluster become the population.

Most of the existing research on RSS and the application of RSS with CRDs focus on

the inference about the mean. For example, for one level sampling, Takahasi and Wakimoto

[76] first proved that under perfect ranking, the RSS mean is an unbiased estimator of the

population mean and is more efficient than the SRS sample average in terms of mean squared

error (MSE). Dell and Clutter [19] derived closed form formula for the relative precision (RP)

of the RSS mean versus the SRS mean under perfect ranking. For the application of RSS

with CRD on inference about population mean, Wang et al. [90] developed a nonparametric

estimator for the treatment effect, studied its theoretical properties, and quantified the

magnitude of improvement over the corresponding SRS-based estimator. They also proposed

a new test to detect treatment effects. The variance components can be important in finding

an efficient design. For example, Chen and Lim [13] proposed estimators of the variances in

ranked set sampling, which can help obtain an optimal design for unbalanced RSS. However,

related topics were much less studied compared to the inference of the mean. In terms of

the estimation and inference on the variance using RSS in a one-stage sampling, Stokes

[75] proposed an asymptotically unbiased estimator. Sinha et al. [73] and Philip et al. [65]

developed improved variance estimators for the Normal distribution with perfect judgment

ranking. MacEachern et al. [53] proposed an alternative unbiased estimator which is more

efficient than Stokes’s estimator and applies it to non-normal distributions and imperfect
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ranking. However, all above mentioned RSS-based variance estimators were designed for

one-level models. To the best of our knowledge, no study has focused on estimating variances

in CRDs using RSS, which is the topic of the second part of this thesis. Inference about the

variances, especially the between-cluster variance, can be very informative as it can assist

the statistical design suited for applications with differing population characteristics. If the

between-study variance is relatively small, the benefit may be marginal to conduct a cluster

randomized design.

In the second part of the thesis, we explore the use of RSS with CRDs in the estimation

of the variance components. We first introduce the population model and RSS-structured

data in Section 2.2. In Section 2.3, we derive the nonparametric method of moment (MOM)

estimators for the between and within cluster variances. In Section 2.4, we evaluate the

impact of design parameters, ranking schemes, and the presence of imperfect ranking on the

performance of the newly proposed estimators via simulation studies. In Section 2.5, we

propose the Panle and Mandel (PM) estimator for the between cluster variance, which is

inspired by the PM estimator for the heterogeneity parameter in meta-analysis. In Section

2.6, we present the improvement in efficiency of the PM estimator over the MOM estimator.

In Section 2.7, we provide an example using the California API data. Section 2.8 concludes

with discussions and possible extensions to the proposed work.

2.2. Data, model and notation

2.2.1. The population model

We consider a typical CRD with two-stage sampling [90], using SRS to sample clusters

and individuals within each selected cluster. Let Yk(ij) be the response of the kth subject of

the jth cluster in the ith treatment group, k = 1, . . . Kj(i), j = 1, . . . Ji, i = 0, 1, where Kj(i)
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is the sample size in cluster j under treatment i, and Ji is the number of selected clusters

for treatment i. The HLM reflecting the nested structure under the traditional CRD can be

written as

Yk(ij) = µ+ ai + bj(i) + rk(ij), (2.1)

where µ is the mean response of the control group; ai is the fixed effect of treatment i with

a0 ≡ 0; bj(i) is the random effect of cluster j nested in treatment i; rk(ij) is the random

error term. We assume bj(i)’s follow a common but unknown distribution with mean 0 and

variance σ2
b , and rk(ij)’s are independent and identically distributed random variables from

an unspecified distribution with mean 0 and variance σ2
r . We also assume that bj(i)’s and

rk(ij)’s are independent. Under model (2.1), responses from subjects in the same cluster

are dependent and those from different clusters are independent. Define the intra-class

correlation (ICC), a measure of the variation among different clusters, as σ2
b/(σ

2
b +σ2

r). Here

we are interested in estimating σ2
b and σ2

r .

2.2.2. RSS-based data and notation

Besides individual outcomes, ranking information becomes available for data from RSS-

structured CRDs. As mentioned previously, there are three possible ranking schemes in a

two-stage CRD: (1) ranking at the cluster level only, (2) ranking at the individual level

only, and (3) ranking at both levels. For ranking at the cluster level only, let Hc
i denote

the set size for treatment group i, mc
i denote the number of cycles for group i, Oc

j(i) denote

the (judgmental) order of cluster j in group i among its own comparison set, and Kj(i)

denote the number of individuals in cluster j in group i. Then the data can be expressed

by Dc = {Yk(ij), O
c
j(i)} given the design parameters {Hc

i ,m
c
i , Kj(i)} for k = 1, . . . , Kj(i),

j = 1, . . . , Ji (Ji = Hc
i ×mc

i), and i = 0, 1. For ranking at the individual level only, let Ji

be the number of clusters under treatment i, H id
j(i) be the set size for cluster j in treatment

group i, mid
j(i) be the number of cycles for cluster j in treatment group i, and Oid

k(ij) be the
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(judgmental) order of individual k within cluster j under treatment group i among its own

comparison set. Then the data can be expressed by Did = {Yk(ij), O
id
k(ij)} given the design

parameters {Ji, H id
j(i),m

id
j(i)} for k = 1, . . . , Kj(i) (Kj(i) = H id

j(i) × mid
j(i)), j = 1, . . . , Ji, and

i = 0, 1. For ranking at both levels, the data can be expressed by Db = {Yk(ij), O
c
j(i), O

id
k(ij)}

given the design parameters {Hc
i ,m

c
i , H

id
j(i),m

id
j(i)} for k = 1, . . . , Kj(i), j = 1, . . . , Ji, i = 0, 1.

Note single level ranking is a special case of ranking at both levels: H id
j(i) = 1 andmid

j(i) = Kj(i)

for ranking at the cluster level only; and Hc
i = 1 and mc

i = Ji for ranking at the individual

level only. As in [90], we drop the superscripts “c”, “id”, and “b” when no ambiguity exists. In

the HLM of (2.1), the term bj(i) represents the average effect of cluster j in treatment i, and

the random error rk(ij) reflects the difference among subjects from cluster j under treatment

i. Thus, ranking clusters is equivalent to ranking based on values of bj(i), and ranking

individuals is equivalent to ranking based on values of rk(ij). However, the values of bj(i) and

rk(ij) are not directly observable. In real application we usually rank clusters or individuals

based on some latent variables that are correlated with bj(i) and rk(ij), respectively.

2.3. Method of moments (MOM) estimators

Under model (2.1), we use the same notations as those in [90]. Denote the treatment

effect by ∆ ≡ µ1 − µ0 = a1, where µi = µ+ ai, the mean of responses in treatment group i.

We denote the RSS-based estimator for σ2
b (σ2

r) by σ̂2
b (σ̂2

r) and the SRS-based estimator by

σ̃2
b (σ̃2

r). For ranking at the cluster level only and both levels, we define the index set Ji(h) =

{j : cluster j in treatment i has rank h} for h = 1, . . . , Hi and i = 0, 1; denote the number

of clusters in Ji(h) by Jih = mc
i ; further let µb.ih ≡ E[bj(i) | Oj(i) = h] and σ2

b.ih ≡ var[bj(i) |

Oj(i) = h] be the mean and variance, respectively, of the hth judgment order statistic of the

cluster effect b. For ranking at the individual level only and ranking at both levels, we define

the index set Kj(i)(h′) = {k : individual k within cluster j under treatment i has rank h′},

where h′ = 1, . . . , Hj(i); further let µr.ijh′ ≡ E[rk(ij) | Ok(ij) = h′] and σ2
r.ijh′ ≡ var[rk(ij) |

Ok(ij) = h′] be the mean and variance, respectively, of the h′th judgment order statistic of
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the individual effect r. Denote the number of subjects in Kj(i)(h′) by Kijh = mid
j(i).

2.3.1. Ranking at the cluster level

2.3.1.1. Estimating σ2
r .

For ranking at the cluster level only, ranking information does not contribute to estimat-

ing σ2
r . Let SSW c ≡

∑1
i=0

∑Hi
h=1

∑
j∈Ji(h)

∑Kj(i)
k=1

(
Yk(ij) − Ȳj(i)

)2, where Ȳj(i) = 1
Kj(i)

∑Kj(i)
k=1 Yk(ij).

Note that Ȳj(i) = µ + ai + bj(i) + r̄j(i), where r̄j(i) = 1
Kj(i)

∑Kj(i)
k=1 rk(ij). So we have SSW c =∑1

i=0

∑Hi
h=1

∑
j∈Ji(h)

∑Kj(i)
k=1

(
rk(ij) − r̄j(i)

)2and it follows that

E[SSW c] =
1∑
i=0

Hi∑
h=1

∑
j∈Ji(h)

(
Kj(i) − 1

)
σ2
r = (K..− J.)σ2

r ,

where K.. is the total number of subjects and J. = J0 + J1, the total number of clusters.

Thus, an unbiased estimator for σ2
r can be written as

σ̂2
r =

SSW c

K..− J.
. (2.2)

2.3.1.2. Estimating σ2
b .

To estimate σ2
b , we apply a relationship derived from equation (2) in [19]:

σ2
b.i =

1

Hi

Hi∑
h=1

(
µ2
b.ih + σ2

b.ih

)
(2.3)

for i = 0, 1, where σ2
b.i is the variance of cluster effect b in treatment group i. In order
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to obtain an unbiased estimator for σ2
b.i, we first derive unbiased estimators for

∑Hi
h=1 µ

2
b.ih

and
∑Hi

h=1 σ
2
b.ih. Let SSBRc(i) ≡

∑Hi
h=1(µ̂ih − µ̂i)2, where µ̂ih =

∑
j∈Ji(h) Ȳj(i)/Jih and µ̂i =∑Hi

h=1 µ̂ih/Hi. Then we have

SSBRc(i) =

Hi∑
h=1

[(
µ+ ai + b̂ih + r̂ih

)
−
(
µ+ ai + b̂i + r̂i

)]2

=

Hi∑
h=1

[(
b̂ih − b̂i

)
− (r̂ih − r̂i)

]2

,

where b̂ih =
∑

j∈Ji(h) bj(i)/Jih, r̂ih =
∑

j∈Ji(h) r̄j(i)/Jih, b̂i =
∑Hi

h=1 b̂ih/Hi, and r̂i =
∑Hi

h=1 r̂ih/Hi.

Let SSBc(i, h) ≡
∑

j∈Ji(h)(Ȳj(i)−µ̂ih)2. From the derivation of V̂
(

∆̂RSS

)
in Section 4 of [90],

we have E
[
SSBc(i,h)
(Jih−1)Jih

]
=

σ2
b.ih

Jih
+

∑
j∈Ji(h)

σ2
r

J2
ih

. We can obtain the expected value of SSBRc(i)

as

E [SSBRc(i)] =

Hi∑
h=1

µ2
b.ih + (1− 1

Hi

)

Hi∑
h=1

E

[
SSBc(i, h)

(Jih − 1)Jih

]
,

and thus an unbiased estimator for
∑Hi

h=1 µ
2
b.ih is given by

SSBRc(i)− (1− 1

Hi

)

Hi∑
h=1

SSBc(i, h)

(Jih − 1)Jih
. (2.4)

Also, combining (2.4) with the unbiased estimator of σ2
r in (2.2), we have an unbiased

estimator for each σ2
b.ih for h = 1, . . . , Hi and i = 0, 1 as

σ2
b.ih =

SSBc(i, h)

Jih − 1
− 1

Jih

∑
j∈Ji(h)

1

Kj(i)

SSW c

K..− J.
.
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It then follows from (2.3) that an unbiased estimator for σ2
b.i can be expressed as

σ̂2
b.i =

SSBRc(i)

Hi

+
1

Hi

Hi∑
i=1

(
1− 1

Jih
+

1

HiJih

)
SSBc(i, h)

Jih − 1
− 1

Hi

Hi∑
h=1

1

Jih

∑
j∈Ji(h)

1

Kj(i)

· SSW
c

K..− J.
.

Finally, an unbiased estimator for σ2
b is given by σ̂2

b =
σ̂2
b.0+σ̂2

b.1

2
. We truncate negative

estimates to 0, which makes the estimator no longer unbiased.

When the set sizes in the two treatment groups are equal, we can further improve our

estimation by pooling information from both groups. When Hi = Hc, we can express (2.3)

as σ2
b = 1

Hc

∑Hc

h=1(µ2
b.h +σ2

b.h), where µ2
b.h = 1

2

∑1
i=0 µ

2
b.ih and σ2

b.h ≡ σ2
b,0h ≡ σ2

b,1h. This implies

that we no longer need to estimate the variances for the two treatment groups separately.

Instead, we can directly estimate σ2
b . The corresponding estimator for σ2

b can be obtained

following the above derivations and is shown in Table 2.1. For a completely balanced design

(mi = mc, Kj(i) = K), the estimator of σ2
b can be further simplified (see Table 2.1).

2.3.2. Ranking at the individual level

2.3.2.1. Estimating σ2
b .

Let SSW id(i, j, h) ≡
∑

k∈Kj(i)(h)(Yk(ij) − Ȳijh)2, where Ȳijh = 1
Kijh

∑
k∈Kj(i)(h) Yk(ij). Note

that Ȳijh = µ+ai+bj(i)+r̄ijh, where r̄ijh =
∑

k∈Kj(i)(h) rk(ij)/Kijh. Thus we have SSW id(i, j, h) =∑
k∈Kj(i)(h)

[
rk(ij) − r̄ijh

]2
. It follows that

E
[
SSW id(i, j, h)

]
= (Kijh − 1)σ2

r.ijh.
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Therefore, an unbiased estimator for σ2
r.ijh is given by

σ̂2
r.ijh =

SSW id(i, j, h)

Kijh − 1
.

Let SSBid(i) ≡
∑Ji

j=1(µ̂j(i) − µ̂i)2, where µ̂j(i) = 1
Hj(i)

∑Hj(i)
h=1 Ȳijh, and µ̂i = 1

Ji

∑Ji
j=1 µ̂j(i). As

mentioned above, from the derivation of V̂
(

∆̂RSS

)
in Section 4 of [90], we have E

[
SSBid(i)
Ji−1

]
=

σ2
b.i + 1

Ji

∑Ji
j=1

1
H2
j(i)

∑Hj(i)
h=1

σ2
r.ijh

Kijh
. Then an unbiased estimator for σ2

b.i is given by

σ̂2
b.i =

SSBid(i)

Ji − 1
− 1

Ji

Ji∑
j=1

1

H2
j(i)

Hj(i)∑
h=1

σ̂2
r.ijh

Kijh

,

and σ2
b can be estimated by σ̂2

b.0+σ̂2
b.1

2
.

When the set sizes are equal in all clusters of both groups, i.e. Hj(i) = H id, we can

further improve the estimation of σ2
r.ijh by pooling information from all subjects within

one ranking stratum where Ok(ij) = h for j = 1, . . . , Ji and i = 0, 1. Let SSW id(h) ≡∑1
i=0

∑Ji
j=1

∑
k∈Kj(i)(h)

[
Yk(ij) − Ȳijh

]2
=
∑1

i=0

∑Ji
j=1 SSW

id(i, j, h). Then we have E
[
SSW id(h)

]
=∑1

i=0

∑Ji
j=1(Kijh − 1)σ2

r.h, where σ2
r.h is the variance of the hth judgement order statistic of

the individual effect r. Then an unbiased estimator of σ2
r.h is given by

σ̂2
r.h =

SSW id(h)

K..h − J.
,

where K..h is the total number of subjects in the hth ranking stratum and J. = J0 + J1.

An improved estimator for σ2
b based on σ̂2

r.h is shown in Table 2.1 along with the simplified

estimator for σ2
b when the design is completely balanced.
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2.3.2.2. Estimating σ2
r .

To estimate σ2
r when the data are obtained using RSS at the individual level only, we

first use a similar relationship as (2.3) to estimate σ2
r.ij:

σ2
r.ij =

1

Hj(i)

Hj(i)∑
h=1

(
µ2
r.ijh + σ2

r.ijh

)
(2.5)

for j = 1, . . . , Ji and i = 0, 1. Let SSBRid(i, j) ≡
∑Hj(i)

h=1 (Ȳijh − µ̂j(i))
2 and an unbiased

estimator for
∑Hj(i)

h=1 µ2
r.ijh is given by

SSBRid(i, j)−
(

1− 1

Hj(i)

)Hj(i)∑
h=1

SSW id(i, j, h)

(Kijh − 1)Kijh

.

Thus an unbiased estimator for σ2
r.ij is given by

σ̂2
r.ij ≡

SSBRid(i, j)

Hj(i)

+
1

Hj(i)

Hj(i)∑
h=1

(
1− 1

Kijh

+
1

Hj(i)Kijh

)
SSW id(i, j, h)

Kijh − 1
.

Further, σ2
r can be estimated by averaging σ̂2

r.ij over all i and j as σ̂2
r = 1

J.

∑1
i=0

∑Ji
j=1 σ̂

2
r.ij. As

mentioned above, when Hj(i) = H id, we can improve our estimation by pooling information

from clusters within the same ranking stratum in both treatment groups.
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2.3.3. Ranking at both levels

2.3.3.1. Estimating σ2
b .

Let SSWB(i, j, h) ≡
∑

k∈Kj(i)(h)(Yk(ij) − Ȳijh)2 and we have E
[
SSWB(i, j, h)

]
= (Kijh −

1)σ2
r.ijh as the case for ranking at the individual level only. Let SSBR1(i) ≡

∑Hi
h=1(µ̂ih−µ̂i)2,

which has the same expression as SSBRc(i). Similarly, we can have the expected value of

SSBR1(i) as

E[SSBR1(i)] =

Hi∑
h=1

µ2
b.ih +

(
1− 1

Hi

) Hi∑
h=1

 1

Jih
σ2
b.ih +

1

J2
ih

∑
j∈Ji(h)

1

H2
i

Hj(i)∑
h′=1

σ2
r.ijh′

Kijh′

 .

Let SSBB(i, h) ≡
∑

j∈Ji(h)

(
µ̂j(i) − µ̂ih

)2and following the derivation in [90] we haveE
[
SSBB(i,h)
(Jih−1)Jih

]
=

1
Jih
σ2
b.ih + 1

J2
ih

∑
j∈Ji(h)

1
H2
j(i)

∑Hj(i)
h′=1

σ2
r.ijh′

Kijh′
. We can further obtain an unbiased estimator of∑Hi

h=1 µ
2
b.ih as

SSBR1(i)−
(

1− 1

Hi

) Hi∑
h=1

SSBB(i, h)

(Jih − 1)Jih

and an unbiased estimator for σ2
b.ih as

SSBB(i, h)

Jih − 1
− 1

Jih

∑
j∈Ji(h)

1

H2
j(i)

Hj(i)∑
h′=1

SSWB(i, j, h)

(Kijh′ − 1)Kijh′
.

With the relationship in (2.3), we can get estimate σ2
b.i as

σ̂2
b.i =

SSBR1B(i)

Hi

+
1

Hi

Hi∑
i=1

(
1− 1

Jih
+

1

HiJih

)
SSBB(i, h)

Jih − 1
− 1

Hi

Hi∑
h=1

1

Jih

∑
j∈Ji(h)

Hj(i)∑
h′=1

SSWB(i, j, h)

(Kijh′ − 1)Kijh′

When the design becomes balanced in both levels, an improved estimator for σ2
b can be
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achieved by applying the same information-pooling technique specified above for both levels.

This improved estimator can be further simplified in completely balanced designs and all are

shown in Table 2.1.

2.3.3.2. Estimating σ2
r .

Let SSBR2(i, j) ≡
∑Hj(i)

h=1

[
Ȳijh − µ̂j(i)

]2, which has the same expression as SSBRid(i, j).

Similarly, we can have the expectation of SSBR2(i, j) expressed as

E[SSBR2(i, j)] =

Hj(i)∑
h=1

µ2
r.ijh +

(
1− 1

Hj(i)

)Hj(i)∑
h=1

σ2
r.ijh

Kijh

.

Thus, an unbiased estimator for σ2
r.ij can be written as

σ̂2
r.ij =

SSBR2(i, j)

Hj(i)

+
1

Hj(i)

(
1− 1

Kijh

+
1

Hj(i)Kijh

)
SSWB(i, j, h)

Kijh − 1

and σ2
r can be estimated by

∑1
i=0

∑Ji
j=1 σ̂

2
r.ij

J0+J1
.
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Design Estimator

Ranking at
cluster level

General 1

2

1∑
i=0

SSBRc(i)

Hi

+
1

Hi

Hi∑
h=1

(1− 1

Jih
+

1

HiJih
)
SSBc(i, h)

Jih − 1
− 1

Hi

Hi∑
h=1

1

Jih

∑
j∈Ji(h)

1

Kj(i)

SSW c

K·· − J·


Hi = Hc 1

2Hc

1∑
i=0

SSBRc(i) +
1

Hc

1∑
i=0

Hc∑
h=1

[
1

J· − 2
− 1−H−c

2Jih(Jih − 1)

]
SSBc(i, h)− 1

Hc

1∑
i=0

Hc∑
h=1

1− J−1
ih

J· − 2

∑
j∈Ji(h)

1

Kj(i)

SSW c

K·· − J·

Hi = Hc, Jih = mc 1

2Hc

1∑
i=0

SSBRc(i) +
1

2Hc(mc − 1)

[
1− 1

mc
+

1

Hcmc

] 1∑
i=0

Hc∑
h=1

SSBc(i, h)− 1

2mcHc

1∑
i=0

Hc∑
h=1

∑
j∈Ji(h)

1

Kj(i)

SSW c

K·· − J·

Hi = Hc, Jih = mc,
Kj(i) = K

∑1
i=0 SSBR

c(i)

2Hc
+

(
1− 1

mc
+

1

Hcmc

)∑1
i=0 SSB

c(i, h)

2Hc(mc − 1)
− SSW c

2HcmcK(K − 1)

Ranking at
individual
level

General 1

2

1∑
i=0

[
SSBI(i)

Ji − 1
− 1

Ji

Ji∑
j=1

1

H2
j(i)

Hi∑
h=1

SSW I(i, j, h)

Kijh(Kijh − 1)

]

Hj(i) = H id 1

J· − 2

1∑
i=0

SSBI(i)− (1− 1

Ji
)

1

(H id)2

Ji∑
j=1

Hid∑
h=1

SSW id(h)

K··h − J·


Hj(i) = H id, Kijh = mid 1

J· − 2

1∑
i=0

SSBid(i)− 1

J·(H id)2mid(mid − 1)

Hid∑
h=1

SSW id(h)

Ranking at
both levels

General 1

2

1∑
i=0

SSBR1(i)

Hi

+
1

Hi

Hi∑
h=1

(1− 1

Jih
+

1

HiJih
)
SSBB(i, h)

Jih − 1
− 1

Hi

Hi∑
h=1

1

Jih

∑
j∈Ji(h)

Hj(i)∑
h′=1

SSWB(i, j, h′)

Kijh′(Kijh′ − 1)


Hi = Hc, Hj(i) = H id 1

2Hc

1∑
i=0

SSBR1(i)−
(

1− 1

Hc

) Hc∑
h=1

1

Jih
σ̂2
b.h −

(
1− 1

Hc

) Hc∑
h=1

1

J2
ih

∑
j∈Ji(h)

1

(H id)2

Hid∑
h′=1

σ̂2
r.h′

Kijh′
+

1

Hc

Hc∑
h=1

σ̂2
b.h


Hi = Hc, mi = mc,
Hj(i) = H id, mj(i) = mid

∑1
i=0 SSBR1(i)

2Hc
+

∑1
i=0

∑Hc

h=1(i, h)

2Hc(mc − 1)

(
1− 1

mc
+

1

Hcmc

)
−
∑1

i=0

∑Ji
j=1

∑Hid

h=1 SSW
B(i, j, h)

2Hcmc(H id)2mid(mid − 1)

Table 2.1: Method of moment estimators for σ2
b

Design Estimator

Ranking at
cluster level

General SSW c

K··−J·

Ranking at
individual
level

General
1

J·

1∑
i=0

Ji∑
j=1

1

Hj(i)

SSBRid(i, j) +

Hj(i)∑
h=1

(
1− 1

Kijh

+
1

Hj(i)Kijh

)
SSW id(i, j, h)

Kijh − 1



Hj(i) = H id 1

H idJ·

1∑
i=0

Ji∑
j=1

SSBRid(i, j) +
1

H id

Hid∑
h=1

[
1− 1

J·
(1− 1

H id
)

1∑
i=0

Ji∑
j=1

1

Kijh

]
SSW id(h)

K··h − J·

Hj(i) = H id, Kijh = mid 1

J·H id

1∑
i=0

Ji∑
j=1

SSBRid(i, j) +

∑Hid

h=1 SSW
id(h)

J·H id(mid − 1)

(
1− 1

mid
+

1

H idmid

)

Ranking at
both levels

General
SSBR2(i, j)

Hj(i)

+
1

Hj(i)

Hj(i)∑
h=1

(
1− 1

Kijh

+
1

Hj(i)Kijh

)
SSWB(i, j, h)

Kijh − 1

Hi = Hc, Hj(i) = H id 1

J·H id

 1∑
i=0

Ji∑
j=1

SSBR2(i, j)−
(

1− 1

H id

) 1∑
i=0

Ji∑
j=1

Hid∑
h=1

σ̂2
r.h

Kijh

+
1

H id

Hid∑
h=1

σ̂2
r.h

Hi = Hc, mi = mc,
Hj(i) = H id, mj(i) = mid

1

2HcH idmc

1∑
i=0

Ji∑
j=1

SSBR2(i, j) +

∑1
i=0

∑Ji
j=1

∑Hid

h=1 SSW
B(i, j, h)

2HcmcH id(mid − 1)

(
1− 1

mid
+

1

H idmid

)

Table 2.2: Method of moment estimators for σ2
r
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2.4. Impact of design parameters and ranking schemes

We examined the impact of design parameters on the estimation of σb and σr based on the

relative efficiency (RE), defined as the ratio of the Mean Squared Error (MSE) of RSS versus

that of SRS. Unlike the estimation of the treatment effect, there is no closed form formula for

the RE. To estimate the RE, we conducted simulations under two ranking schemes – ranking

at the cluster level only and ranking at the individual level only – with completely balanced

designs. For ranking at the cluster level only, a completely balanced design means Hi ≡ Hc,

mi ≡ mc and Kj(i) ≡ K, where (Hc,mc, K) are the design parameters, for all i and j. For

ranking at the individual level only, that means Ji ≡ J , Hj(i) ≡ H id and mj(i) ≡ mid, where

(H id,mid, J) are the design parameters, for all i and j. In our simulations, we assumed µ = 0

and ∆ = 0 since they do not affect the RE of the estimation of the variance components.

We used the same settings as used by [90], namely σ2
b = 1 and σ2

r = 4, with ICC=0.2, a

typical value for many applications in educational studies. We examined the performance of

the proposed MOM estimators with different underlying distributions, including the Normal,

Uniform and Lognormal, of the cluster and individual effects. For each combination of the

design parameters we simulated 50,000 samples.

2.4.1. Estimating σb

2.4.1.1. Perfect ranking

When estimating σb, first we assumed the ranking was perfect at both the cluster and

individual level. Imperfect ranking will be discussed later.
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Ranking at the cluster level only. Considering completely balanced CRDs with design

parameters (Hc,mc, K), we performed simulations for ranking at the cluster level only, in

which the RE of estimating σb was denoted by REc.

The top panel of Figure 2.1 displays the estimated REc for various values of (Hc, K) when

mc is fixed at 6. The five numbered lines in every subplot correspond to Hc = 2, 3, 4, 6, 8,

respectively. Figure 2.1(a) shows that the REc of all situations are greater than one, suggest-

ing that RSS is more efficient than SRS, although the gain in efficiency largely depends on

the distributions, where the Uniform has the largest estimated REc, followed by the Normal

distribution, whereas the Lognormal only has marginal improvement in the efficiency. In

addition, the REc increases as Hc increases when other parameters are equal for all three

distributions, although the increments in the Lognormal case are rather small. When fixing

Hc and mc, the REc seems to increase as K increases, at least for the Uniform and Normal

cases, but the upward trend is visible only when Hc is large. For the Lognormal distribution,

an increasing trend is barely noticeable, if at all. The bottom panel of Figure 2.1 shows the

estimated REc of different values of (Hc,mc) when K is 30. Unlike the case of estimating the

treatment effect when mc has no effect on REc, for the Uniform and Normal distributions,

the estimated REc decreases as mc increases with the remaining parameters fixed. Again, in

the Lognormal case, a similar trend, if any, is barely visible. Finally we held Hc constant at

2 and 8, and examined the influence of (mc, K). The two panels in Figure 2.2 display the

estimated REc are above one for various values of (mc, K) with Hc fixed at 2 and 8 for all

three distributions. The Lognormal distribution, however, shows no conclusive patterns in

any setting. As a result, in the remaining part of this paragraph, all observations we made

are limited to the Normal and Uniform cases. It is noticeable that the REc, when Hc and K

are unchanged, becomes smaller as mc increases. Figure 2.2(b), when Hc = 8 and mc is held

constant, displays a notable increasing trend in the REc as K increases. A similar pattern

is hardly observable in Figure 2.2(a) when Hc = 2.
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Figure 2.1: The impact of (Hc, K) and (Hc,mc) on relative efficiencies of σ̂b under completely
balanced CRDs, with perfect ranking at the cluster level only
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Figure 2.2: The impact of (mc, K) on relative efficiencies of σ̂b under completely balanced
CRDs, with perfect ranking at the cluster level only

Ranking at the individual level only. For ranking at the individual level only, we

conducted simulations to estimate the RE of σ̂b, denoted by REid, in completely balanced

CRDs with design parameters (H id,mid, J).

Figure 2.3 displays the estimated values ofREid with respect to various values of (H id,mid, J).

The five numbered lines in all subplots correspond to H id = 2, 3, 4, 6, 8, respectively. First

we note that all estimated values of REid are greater than one, suggesting that RSS is more

efficient than SRS in estimating σb when ranking is performed at the individual level only.

We can see from Figure 2.3(a) that, when J = 20, for each H id, the estimated REid decreases

as mid increases (or equivalently as K increases). This trend is clear for the Normal and
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Uniform but not so for the Lognormal distribution. The influence of H id on REid does not

have a clear pattern with fixed mid, especially when mid is large. This is probably because

when mid is sufficiently large, so is the sample size, making σ̂b almost as efficient as σ̃b. For

this reason we fixed mid fixed at 2 and plotted the estimated REid against values of (H id, J)

in Panel (b) of Figure 2.3. For the Normal and Uniform distributions , when H id > 2, REid

seems to decrease as H id increases for fixed J . For the Lognormal distribution, at any fixed

J , the estimated REids are similar for different set sizes except H id = 2, which has smaller

REid than the others. Figures 2.4(a) and 2.4(b) plot the estimated REid versus different

values of (mid, J) when holding H id at 2 and 8, respectively. From both panels we can see

that, for any value of J , the REid decreases as mid increases. The impact of J , however,

when fixing mid, seems to be negligible as the curves in Figure 2.4 (b) overlap largely with

each other.
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Figure 2.3: The impact of (H id,mid) and (H id, J) on relative efficiencies of σ̂b under com-
pletely balanced CRDs, when ranking is conducted at the individual level only and is perfect.
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Figure 2.4: The impact of (mid, J) on relative efficiencies of σ̂b under completely balanced
CRDs, when ranking is conducted at the individual level only and is perfect.

2.4.1.2. Imperfect ranking

When ranking is imperfect, we used a linear ranking error model as that in [90]. For

cluster-level ranking only, ranking is performed via a latent variable X, which is related to b

through b = X+ εx, where εx is the error term, independent of X, with mean 0 and variance

σ2
εx . Denote the correlation between b andX by ρc and we have ρc =

√
σ2
b − σ2

εx/σb. Similarly,

for ranking at the individual level only, ranking is performed via an individual-level latent

variable Z and r = Z + εz, where εz is the error term, independent of Z, with mean 0 and
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variance σ2
εz . Denote the correlation between r and Z by ρid and we have ρid =

√
σ2
r − σ2

εz/σr.

We plotted the estimated RE values against ρ in Figure 2.5 for the three distributions under

completely balanced CRDs. The left panel shows RE for ranking at the cluster level only,

with the parameters Hc = 4, mc = 3, K = 20, σ2
b = 1, and σ2

r = 4, whilst the right panel

shows RE for ranking at the individual level only, with the parameters H id = 4, mid = 5,

J = 12, σ2
b = 1, and σ2

r = 4. We can observe that in general RE increases when the ranking

quality increases, and this trend becomes more obvious after ρ > 0.5. In terms of the

three distributions, the improvement follows the order: Uniform>Normal>Lognormal when

ρ > 0.6. When ρ < 0.6, all three distributions seem to have similar RE for ranking at the

cluster level only; and for ranking at the individual level only, the Lognormal distribution

has the least improvement in RE. .

Figure 2.5: Relative efficiency of σ̂b versus ρ under completely balanced CRDs for three
distributions of the ranking variables, including N(0, 1), U(−1.74, 1.74), LN(0, 0.481)− 1.27
for ranking at the cluster level and N(0, 22), U(−3.47, 3.47), LN(0, 0.941) − 1.6 for ranking
at the individual level.
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2.4.2. Estimating σr

2.4.2.1. Ranking at the cluster level only.

As outlined in Section 2.3.1, ranking at the cluster level does not affect the estimation

of σr, as shown in Figure 2.6 where all estimated RE values are centered around 1 in all the

settings for all three distributions.

Figure 2.6: Relative efficiencies of σ̂r versus σ̃r under completely balanced CRDs, with perfect
ranking at the cluster level only

2.4.2.2. Ranking at the individual level only.

Figure 2.7 and Figure 2.8 display estimated REid of σ̂r with various settings of the design

parameters when ranking is at the individual level only. The figures show that σ̂r is notably

more efficient than σ̃r for the Normal and Uniform distributions but not for the Lognormal

distribution, whose estimated REid is marginally greater than one. From Figure 2.7(a) we

can observe that for normally and uniformly distributed individual effect r, REid increases
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as H id increases when mid and J are held constant. There is little impact of mid on REid for

the Normal distribution while the REid decreases as mid increases for uniform distribution

when fixing other parameters. Panel (b) in Figure 2.7 shows that the number of clusters J

does not seem to influence REid. Similar to the case of estimating σb, Figure 2.8 shows that

the REid decreases as mid increase for fixed J , while the influence of J on REid is negligible

for all values of mid. In addition, we also examined the impact of imperfect ranking on

estimating σr. Figure 2.9 shows that RE increases as ρ increases for both Normal and

Uniform distributions. The influence of ρ for the Lognormal distribution does not show a

noticeable pattern since RSS seems to have little improvement in estimating σr over SRS in

all the settings. Among all three distributions, the Uniform has the largest RE while the

Lognormal has the smallest RE.
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Figure 2.7: The impact of (H id,mid) and (H id, J) on relative efficiencies of σ̂r versus σ̃r
under completely balanced CRDs, with perfect ranking at the individual level only
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Figure 2.8: The impact of (mid, J) on relative efficiencies of σ̂r versus σ̃r under completely
balanced CRDs, with perfect ranking at the individual level only

Figure 2.9: Relative efficiency of σ̂r versus ρ under completely balanced CRDs for three
distributions of the ranking variables, including N(0, 22), U(−3.47, 3.47), LN(0, 0.941)− 1.6.
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2.5. Paule and Mandel estimator

Meta-analysis is a statistical procedure to combine data from multiple studies targeting at

making inferences on a common treatment effect. Often researchers assign different weights

to different studies in estimating the overall treatment effect and one of the most commonly

used weighting scheme is inverse-variance weighting. There is a structural similarity between

a CRD and a meta-analysis. We can view the studies in a meta-analysis as the clusters in

a CRD. Thus, a widely used method in meta-analysis for estimating the between-study

heterogeneity, proposed by Paule and Mandel [63], can be applied here in combination with

the ranking information to estimate the between cluster variance. We denote this method

by PM and the corresponding estimator of σ2
b by σ̂2

b.PM . Under model (2.1), let ∆̂j be

the estimated treatment effect in cluster j for j = 1, . . . , J . Under the inverse-variance

weighting scheme, the overall treatment effect can be estimated by ∆̂ =
∑J
j=1 wj∆̂j∑J
j=1 wj

, where

wj =
[
V̂ ar(∆̂j)

]−1

= 1
s2j+σ

2
b
and s2

j is the estimated within-cluster variance of cluster j. A

useful quantity in estimating σ2
b is the Q-statistic defined as

Q ≡
J∑
j=1

wj

(
∆̂j − ∆̂

)2

. (2.6)

The expected value of Q is J−1. The estimator σ̂2
b.PM can be obtained by iteratively solving

the equation Q ≡
∑J

j=1 wj

(
∆̂j − ∆̂

)2

= J − 1. Ranking information from RSS can be

integrated into this procedure to further improve the estimation efficiency.

2.5.1. Ranking at the cluster level

For ranking at the cluster level only, we use (2.3) to estimate σ2
b.i first. The PM approach

can be applied here to estimate each σ2
b.ih for h = 1, . . . , Hi and i = 0, 1 . Define the
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Q-statistic for the ranking stratum with Oj(i) = h within treatment group i as

Qih(σ
2
b.ih) ≡

∑
j∈Ji(h)

w∗j(i)
(
µ̂j(i) − µ∗ih

)2
,

where w∗j(i) =
[
V ar

(
µ̂j(i)

)]−1
=
[
σ2
b.ih + σ̂2

r

Kj(i)

]−1

, µ̂∗ih =
∑
j∈Ji(h)

w∗
j(i)

µ̂j(i)∑
j∈Ji(h)

w∗
j(i)

and σ̂2
r = SSW c

K..−J. as

derived in Section 2.3. The expected value of Qih(σ
2
b.ih) is Jih − 1, and thus we can obtain

the PM estimator for σ2
b.ih, denoted by σ̂2

b.ih.PM , by iteratively solving the following equation

Qih(σ
2
b.ih) =

∑
j∈Ji(h)

w∗j(i)
(
µ̂j(i) − µ̂∗ih

)2
= Jih − 1.

If
∑

j∈Ji(h) w
∗
j(i)

(
µ̂j(i) − µ̂∗ih

)2
> Jih − 1 for all σ2

b.ih ≥ 0, we set σ̂2
b.ih.PM = 0. Combining the

unbiased estimator for
∑Hi

h=1 µ
2
ih in (2.4) and σ̂2

b.ih.PM , we can get an PM estimator for σ2
b.i

as

σ̂2
b.i.PM =

1

Hi

SSBRc(i)− 1

Hi

(1− 1

Hi

)

Hi∑
h=1

SSBc(i, h)

(Jih − 1)Jih
+

1

Hi

Hi∑
h=1

σ̂2
b.ih.PM .

Thus, the PM estimator for σ2
b can be easily obtained by taking the average of the estimates

from the two treatment groups as σ̂2
b.PM =

σ̂2
b.0.PM+σ̂2

b.1.PM

2
. When Hi ≡ Hc, we can aggregate

information from both treatment groups to improve our estimation as we did previously in

the MOM method.

2.5.2. Ranking at the individual level

For ranking at the individual level only, we no longer need to perform the PM procedure

for each ranking stratum separately. Instead, we can obtain a Q-statistic for the entire data

94



set. We denote the Q-statistic for treatment group i by Qi(σ
2
b ), defined as

Qi(σ
2
b ) ≡

Ji∑
j=1

w∗j(i)
(
µ̂j(i) − µ∗i

)2
,

where µ∗i =
∑Ji

j=iw
∗
j(i)µ̂j(i)/

∑Ji
j=1w

∗
j(i) and w

∗
j(i) =

[
V ar(µ̂j(i))

]−1
=

[
σ2
b + 1

H2
j(i)

∑Hj(i)
h=1

σ̂2
r.ijh

Kijh

]−1

.

Let Q(σ2
b ) ≡

∑1
i=0 Qi(σ

2
b ) and we have E [Q(σ2

b )] = J0 + J1 − 2. By setting Q(σ2
b ) =∑1

i=0

∑Ji
j=1 w

∗
j(i)

(
µ̂j(i) − µ̂∗i

)
= J0 + J1 − 2 and iteratively solving for σ2

b , we can obtain the

PM estimator σ̂2
b.PM . Similarly, if Q(σ2

b ) < J0 + J1 − 2 for all σ2
b ≥ 0, we set σ̂2

b.PM = 0.

When Hj(i) ≡ H id, σ̂2
b.PM can be improved by pooling information to better estimate σ2

r.ijh

by σ̂2
r.h =

∑1
i=0

∑Ji
j=1 SSW

id(i,j,h)

K··h−J·
.

2.5.3. Ranking at both levels

When ranking is performed at both levels, the PM method is similar to the case for

ranking at the cluster level only expect for the specification of weights w∗j(i)’s. Since we

are ranking at both levels, the weight w∗j(i) for cluster j within the hth ranking stratum in

treatment group i is
[
V ar

(
µ̂j(i)

)]−1
=

[
σ2
b.ih + 1

H2
j(i)

∑Hj(i)
h=1

σ̂2
r.ijh

Kijh

]−1

. The PM procedure is

performed for each ranking stratum in the two treatment groups as for ranking at the cluster

level only.

We list all expressions and weight specifications for the PM method for all three ranking

schemes in Table 2.3, including cases where information can be pooled to improve the esti-

mation efficiency. Note that those expressions involve variance estimates, such as σ̂2
b.ih.PM ,

which should be solved numerically.
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Design Estimator

Ranking at
cluster level

General 1

2

1∑
i=0

[
1

Hi

SSBRc(i)− 1

Hi

(1− 1

Hi

)

Hi∑
h=1

SSBc(i, h)

(Jih − 1)Jih
+

1

Hi

Hi∑
h=1

σ̂2
b.ih.PM

]

Hi = Hc 1

2Hc

1∑
i=0

SSBRc(i)− (1− 1

Hc
)
Hc∑
h=1

1

Jih
σ̂2
b.h.PM − (1− 1

Hc
)
Hc∑
h=1

1

J2
ih

∑
j∈Ji(h)

1

Kj(i)

SSW c

K..− J.

+
1

Hc

Hc∑
h=1

σ̂2
b.h.PM

Hi = Hc, Jih = mc 1

2Hc

1∑
i=0

SSBRc(i)− 1

(mc)2
(1− 1

Hc
)
Hc∑
h=1

∑
j∈Ji(h)

SSW

2HcmcKj(i)(Kj(i) − 1)

+

(
1

Hc
− 1

Hcmc
+

1

(Hc)2mc

) Hc∑
h=1

σ̂2
b.h.PM

Hi = Hc, Jih = mc,
Kj(i) = K

1

2Hc

1∑
i=0

SSBRc(i)− (Hc − 1)SSW

2(Hcmc)2K(K − 1)
+

(
1

Hc
− 1

Hcmc
+

1

(Hc)2mc

) Hc∑
h=1

σ̂2
b.h.PM

Ranking at
individual
level

General
1∑
i=0

Ji∑
j=1

ŵ∗j(i)(µ̂j(i) − µ̂∗i )2 = J· − 2Solve for σ2
b , where ŵ∗j(i) =

[
σ2
b + 1

H2
j(i)

∑Hj(i)
h=1

σ̂2
r.ijh

Kijh

]−1

Hj(i) = H id
ŵ∗j(i) =

σ2
b +

1

(H id)2

Hid∑
h=1

σ̂2
r.h

Kijh

−1

Hj(i) = H id, Kijh = mid
ŵ∗j(i) =

σ2
b +

1

(H id)2mid

Hid∑
h=1

σ̂2
r.h

−1

Ranking at
both levels

General σ̂2
b =

1

2

1∑
i=0

[
SSBR1(i)

Hi

− 1

Hi

(1− 1

Hi

)

Hi∑
h=1

SSBB(i, h)

(Jih − 1)Jih
+

1

Hi

Hi∑
h=1

σ̂2
b.ih.PM

]

Hi = Hc, Hj(i) = H id 1

2Hc

1∑
i=0

SSBR1(i)− (1− 1

Hc
)
Hc∑
h=1

1

Jih
σ̂

2(PM)
b.h − (1− 1

Hc
)
Hc∑
h=1

1

J2
ih

∑
j∈Ji(h)

1

(H id)2

Hid∑
h′=1

σ̂2
r.h′

Kijh′

+
1

Hc

Hc∑
h=1

σ̂2
b.h.PM

Hi = Hc, mi = mc,
Hj(i) = H id, mj(i) = mid

1

2Hc

1∑
i=0

SSBR1(i) +

(
1

Hc
− 1

Hcmc
+

1

(Hc)2mc

) Hc∑
h=1

σ̂2
b.h.PM −

(Hc − 1)
∑1

i=0

∑Ji
j=1

∑Hid

h′=1 SSW
B(i, j, h′)

2(Hcmc)2mid(mid − 1)

Table 2.3: PM estimators for σ2
b

2.6. Improvement of PM over MOM

We ran simulations to estimate the RE of the PM estimator. The most significant

improvement of the PM estimator is observed when K is small for ranking at the cluster

level only as shown in Figure 2.10. The improvement of the PM method in estimating the

heterogeneity parameter in meta-analysis is also found to be significant when sample sizes

are small [61, 60]. As we can observe from Panel (a) of Figure 2.10, the PM estimator has

much higher RE compared to the MOM estimator when K = 3 and the difference diminishes

as K increases. The PM method does not improve the estimation of σb when RSS is applied

at the individual level only as shown in Figure 2.10(b).
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Figure 2.10: The improvement in relative efficiency of PM estimator over MOM estimator.

We also examined the influence of imperfect ranking to the PM estimator under the

same settings as specified in Section 2.4.1.2. In general, RE increases as ρ increases for both

ranking schemes. For ranking at the cluster level only, the improvement of the Uniform

distribution is greater than the Normal distribution in general as is the case for the MOM

estimator. However, for ranking at the individual level only, The Uniform and the Normal

distributions have similar RE and both are greater than the RE of the Lognormal case.
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Figure 2.11: Relative efficiency of σ̂b.PM versus ρ under completely balanced CRDs for three
distributions of the ranking variables, including N(0, 1), U(−1.74, 1.74), LN(0, 0.481)− 1.27
for ranking at the cluster level and N(0, 22), U(−3.47, 3.47), LN(0, 0.941) − 1.6 for ranking
at the individual level.

2.7. Data example

We conducted an empirical study to illustrate the proposed methods. We applied RSS-

structured CRDs to the Academic Performance Index (API) Data from the California De-

partment of Education. The API is a single number on a scale of 200-1000 indicating the

performance of public schools based on students’ test scores in the spring from the pre-

vious year. The APIs were calculated based on test results of the Standardized Testing

and Reporting (STAR) Program, the California High School Exit Examination (CAHSEE),

and the California Alternate Performance Assessment (CAPA). All public schools with at

least 100 students are included. For comprehensive information about API, please refer to

https://www.cde.ca.gov/re/pr/api.asp.
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We used the 2000 API scores as the response, which are publicly available in the R

package “survey”. The data present a hierarchical structure where schools are nested within

school districts. There are 6194 schools from 757 school districts in total. For illustrative

purposes we removed districts with number of schools above 100 or below 20 and treated the

remaining 60 school districts, with a total of 2077 schools, as our population, from which

samples were drawn using either SRS or RSS. We generated rankings using the 1999 API

scores as they are highly correlated with the 2000 API scores with a correlation of 0.99 at

the district level, and 0.98 at the school level. The average district-level scores were used for

ranking at the cluster level. The ICC is about 0.55 for the preprocessed data.

We are interested in estimating the two standard deviations, σb and σr. We first exam-

ined the performance of the two proposed estimators under different (completely balanced)

designs. We fixed the number of school districts at J = 15 and the number of schools from

each selected district at K = 6. Eight RSS-structured (completely balanced) CRDs were

considered: two for scheme (i) ranking at the cluster level only, two for scheme (ii) ranking

at the individual level only, and four for scheme (iii) ranking at both levels, as listed in

Table 2.4. For each design, we generated 100,000 RSS samples and 100,000 SRS samples

from the population. School districts were randomly assigned to either the treatment or

the control group since the actual treatment effect is zero. Then we computed MSE for

RSS-based estimators σ̂b, σ̂b.PM , σ̂r and SRS-based estimators σ̃b, σ̃r. The empirical RE was

recorded in Table 2.4 as the ratios of the corresponding MSE. The true standard deviations

were estimated from the population.

The results are consistent with most of the properties observed in our simulation studies

in Section 2.4. In terms of estimating σb, Design i-2 has a higher RE than i-1, suggesting

a larger Hc may lead to a higher efficiency, in agreement with the conclusions summarized

based on Figure 2.1 (b). For ranking at the individual level only, Design ii-2 is slightly more

efficient than ii-1, suggesting the RE may decrease as mid increases. We conjecture that the

small improvement of RSS over SRS when ranking is conducted at the individual level only
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may result from the relatively large ICC. Ranking at both levels (Design iii) improves the

performance of RSS-based estimators, and Design iii-2-2 is the best for the MOM method.

The PM method provides higher RE in general compared to the MOM method since we have

a small sample size (K = 6). In terms of estimating σr, ranking at the cluster level does not

contribute to the estimation efficiency, again in agreement with the observation from Figure

2.6. Similarly, due to the large ICC, the reduction in MSE of RSS-based estimator for σr is

limited when ranking is performed at the individual level only.

MOM PM
DesignID Hc mc H id mid σ̂b σ̂r σ̂b.PM

i-1 3 5 1 6 1.08 1.01 1.12
i-2 5 3 1 6 1.22 1.00 1.49
ii-1 1 15 2 3 1.01 1.01 1.06
ii-2 1 15 3 2 1.04 1.08 1.06

iii-1-1 3 5 2 3 1.17 1.00 1.16
iii-1-2 3 5 3 2 1.14 1.03 1.13
iii-2-1 5 3 2 3 1.23 1.00 1.55
iii-2-2 5 3 3 2 1.28 1.04 1.37

Table 2.4: California API example: comparing performance of different (completely bal-
anced) designs in estimating σb and σr . Estimators are compared via empirical RE.

2.8. Conclusion and discussion

Among all the research on RSS, most focused on the inference of the mean. However,

the variance components, especially in CRDs, can provide extra information about the het-

erogeneity of different clusters. In this work we proposed two RSS-based nonparametric

methods for estimating σ2
b and σ2

r . Both methods were shown through simulations to im-

prove estimation efficiency over the SRS-based estimators. We explored the impact of design

parameters and imperfect ranking on the RE of σ̂b and σ̂r . It was shown that using RSS

is better than SRS in estimating both variance components even when ranking is imper-
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fect. There do exist some general properties in terms of the impact of design parameters on

RE. However, due to the truncation in the estimation and the unstable performance under

certain settings, these trends are not as consistent and clear as those in the estimation of

treatment effects. Whether to apply RSS in a real application, especially for the inference on

variances and what schemes to apply, can be complicated and should be addressed carefully

by considering the characteristic of the population, such as ICC, and the choices of potential

cost-efficient ranking methods.

We also found that some widely used methods in meta-analysis can be applied to fur-

ther improve RSS under certain settings. Though we only applied the widely used and fairly

straightforward method, to avoid the potential complexity when ranking information is avail-

able, we believe other estimators can possibly be modified to achieve better performance.

We note that the idea of RSS can be easily generalized to data with multiple levels.

Another potential extension is to evaluate the proposed methods under unbalanced designs

as what [89] did for estimating and testing treatment effects.

101



APPENDIX A

APPENDIX OF CHAPTER 1

A.1. Evaluation of the impact of R, K, θ, and w on estimation bias and MSE
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(a) R=1

(b) R=2

(c) R=4

Figure A.1: Large-sample performance of different τ 2 estimators in terms of estimation bias
for different R and K values based on settings with µ = −2.5, θ = 0 and w = 0. In the
3 × 3 matrix of heat maps, the rows correspond to R = 1, 2, 4 from top to bottom and the
columns correspond to K = 10, 20, 50 from left to right.
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(a) R=1

(b) R=2

(c) R=4

Figure A.2: Large-sample performance of different τ 2 estimators in terms of MSE for different
R andK values based on settings with µ = −2.5, θ = 0 and w = 0. In the 3×3 matrix of heat
maps, the rows correspond to R = 1, 2, 4 from top to bottom and the columns correspond
to K = 10, 20, 50 from left to right.

104



(a) θ=-1

(b) θ = 0

(c) θ = 1

Figure A.3: Large-sample performance of different τ 2 estimators in terms of estimation bias
for different θ and w values based on settings with R = 1, K = 50 and µ = −5. In the
3× 3 matrix of heat maps, the rows correspond to θ = −1, 0, 1 from top to bottom and the
columns correspond to w = 0, 0.5, 1 from left to right.
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(a) θ=-1

(b) θ = 0

(c) θ = 1

Figure A.4: Large-sample performance of different τ 2 estimators in terms of MSE for different
θ and w values based on settings with R = 1, K = 50 and µ = −5. In the 3 × 3 matrix
of heat maps, the rows correspond to θ = −1, 0, 1 from top to bottom and the columns
correspond to w = 0, 0.5, 1 from left to right.
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(a) R=1

(b) R=2

(c) R=4

Figure A.5: Small-sample performance of different τ 2 estimators in terms of estimation bias
for different R and K values based on settings with µ = −2.5, θ = 0 and w = 0. In the
3 × 3 matrix of heat maps, the rows correspond to R = 1, 2, 4 from top to bottom and the
columns correspond to K = 10, 20, 50 from left to right.
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(a) R=1

(b) R=2

(c) R=4

Figure A.6: Small-sample performance of different τ 2 estimators in terms of MSE for different
R andK values based on settings with µ = −2.5, θ = 0 and w = 0. In the 3×3 matrix of heat
maps, the rows correspond to R = 1, 2, 4 from top to bottom and the columns correspond
to K = 10, 20, 50 from left to right.
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(a) θ=-1

(b) θ = 0

(c) θ = 1

Figure A.7: Small-sample performance of different τ 2 estimators in terms of estimation bias
for different θ and w values based on settings with R = 1, K = 50 and µ = −2.5. In the
3× 3 matrix of heat maps, the rows correspond to θ = −1, 0, 1 from top to bottom and the
columns correspond to w = 0, 0.5, 1 from left to right.
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(a) θ=-1

(b) θ = 0

(c) θ = 1

Figure A.8: Small-sample performance of different τ 2 estimators in terms of MSE for different
θ and w values based on settings with R = 1, K = 50 and µ = −2.5. In the 3 × 3 matrix
of heat maps, the rows correspond to θ = −1, 0, 1 from top to bottom and the columns
correspond to w = 0, 0.5, 1 from left to right.
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A.2. Data

Type 2 diabetes mellitus Type 2 diabetes mellitus
with gestational diabetes without gestational diabetes

Study # events # observations # events # observations

1 2847 21823 6628 637341
2 71 620 22 868
3 21 68 0 39
4 43 166 150 2242
5 53 295 1 111
6 405 5470 16 783
7 6 70 7 108
8 13 35 8 489
9 7 23 0 11
10 23 435 0 435
11 44 696 0 70
12 21 229 1 61
13 10 28 0 52
14 15 45 1 39
15 105 801 7 431
16 10 15 0 35
17 33 241 0 57
18 14 47 3 47
19 224 615 18 328
20 5 145 0 41

Table A.1: Data from a meta-analysis of studies on type 2 diabetes mellitus after gestational
diabetes [6].
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Rosiglitazone Control Rosiglitazone Control
Study N # MI # CVD N # MI # CVD Study N # MI # CVD N # MI # CVD

1 357 2 1 176 0 0 29 89 1 0 88 0 0
2 391 2 0 207 1 0 30 168 1 1 172 0 0
3 774 1 0 185 1 0 31 116 0 0 61 0 0
4 213 0 0 109 1 0 32 1172 1 1 377 0 0
5 232 1 1 116 0 0 33 706 0 1 325 0 0
6 43 0 0 47 1 0 34 204 1 0 185 2 1
7 121 1 0 124 0 0 35 288 1 1 280 0 0
8 110 5 3 114 2 2 36 254 1 0 272 0 0
9 382 1 0 384 0 0 37 314 1 0 154 0 0
10 284 1 0 135 0 0 38 162 0 0 160 0 0
11 294 0 2 302 1 1 39 442 1 1 112 0 0
12 563 2 0 142 0 0 40 394 1 1 124 0 0
13 278 2 0 279 1 1 41 132 0 0 131 0 1
14 418 2 0 212 0 0 42 160 0 0 213 0 0
15 395 2 2 198 1 0 43 331 8 4 337 7 3
16 203 1 1 106 1 1 44 331 1 0 250 1 1
17 104 1 0 99 2 0 45 49 0 0 49 0 0
18 212 2 1 107 0 0 46 101 0 0 51 0 0
19 138 3 1 139 1 0 47 232 0 0 115 0 0
20 196 0 1 96 0 0 48 52 0 0 25 0 0
21 122 0 0 120 1 0 49 196 0 0 195 0 0
22 175 0 0 173 1 0 50 70 0 0 75 0 0
23 56 1 0 58 0 0 51 28 0 0 29 0 0
24 39 1 0 38 0 0 52 25 0 0 24 0 0
25 561 0 1 276 2 0 53 26 0 0 24 0 0
26 116 2 2 111 3 1 54 2635 15 12 2634 9 10
27 148 1 2 143 0 0 55 1456 27 2 2895 41 5
28 231 1 1 242 0 0 56 2220 64 60 2227 56 71

Table A.2: Data from a meta-analysis of 56 studies on the cardiovascular side effects of
rosiglitazone [58].
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