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Studying the growth pattern of cities/urban areas has received considerable 

attention during the past few decades. The goal is to identify directions and locations of 

potential growth, assess infrastructure and public service requirements, and ensure the 

integration of the new developments with the existing city structure. This dissertation 

presents a novel model for urban growth prediction using a novel machine learning model. 

The model treats successive historical satellite images of the urban area under 

consideration as a video for which future frames are predicted. A time-dependent 

convolutional encoder-decoder architecture is adopted. The model considers as an input a 

satellite image for the base year and the prediction horizon. It constructs an image that 

predicts the growth of the urban area for any given target year within the specified horizon. 

A sensitivity analysis is performed to determine the best combination of parameters to 

obtain the highest prediction performance. As a case study, the model is used to predict the 

urban growth pattern for the Dallas-Fort Worth (DFW) area in Texas, with focus on two 

of its counties that observed significant growth over the past decade. In addition, the model 

is applied to predict the growth pattern of five cities in the Middle East and North Africa 



 

 vi 

(MENA) region. These cities vary in terms of their size, population, historical heritage, 

level of control applied to their growth, geographical locations, complexity of their 

structure, and socio-economic characteristics. The model is shown to produce results that 

are consistent with other growth prediction studies conducted for these cities.
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Chapter 1 

 

INTRODUCTION 

 

 

1-1. Background 

Cities have historically created vast economic opportunities and provided the 

required services to their citizens efficiently and conveniently. They evolved from small 

concentrations around sources of fresh water to a dense fabric in the form of multiple 

interconnected centers. Studying the growth pattern of cities/urban areas has received 

considerable attention during the past few decades (Triantakonstantis and Mountrakis, 

2012). The goal is to identify directions and locations of potential growth, assess 

infrastructure and public service requirements, and ensure the integration of the new 

developments with the existing city structure. In addition, urban growth has been studied 

for the purpose of deriving effective policies that help achieve sustainable and 

economically-sound growth patterns. 

1-2. Main Theories for Studying Urban Growth 

Two main theories have been generally considered for studying urban growth: the 

ecological theory (Alberti et al., 2003; Wu, 2014) and the machine theory (Lubell et al., 

2009). The ecological theory models urban areas as ecological systems that naturally adopt 

to alterations in biophysical and socio-economic activities. On the contrary, the machine 
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theory views growth as the outcome of a deliberate planning process defined by the 

interactions among different stakeholders including policy makers, city planners, land 

developers and residents. While the machine theory is widely accepted as it explains many 

of the growth phenomena observed in urban areas, advocates of the ecological theory view 

the machine theory as one phase of the natural process that shapes the long-term urban 

growth.  

1-3. Challenges of Developing Urban Growth Prediction Models  

Several challenges and complexities characterize the urban growth prediction 

problem. For example, urban growth is a dynamic non-linear process in both time and 

space that is difficult to represent in a closed analytical form (Cheng, 2003; 

Triantakonstantis and Mountrakis, 2012). Therefore, most successful urban growth 

prediction models (UGPMs) have adopted simulation-based techniques that require 

considerable effort for model specification, calibration and validation (Chan and Chiu, 

2000; Waddell, 2002; Leao et al., 2004; Li et al., 2014; Xia et al., 2019). Furthermore, 

urban growth prediction is normally impacted by many biophysical, socioeconomic and 

political variables that are in return difficult to obtain and/or predict (Cheng, 2003; Liberati 

et al., 2009). Thus, the results obtained by UGPMs usually require careful interpretation, 

considering the limitation and/or uncertainty of their input data. Also, urban growth 

involves complex interactions among policy makers, urban planners and developers 

(Cheng et al., 2003). Predicting the interest and decisions of the different stakeholders and 

capturing their interactions are nontrivial tasks.    
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1-4.   Emerging Technologies for Developing Urban Growth Prediction Models 

Two important technologies have significantly benefited the ongoing effort for 

UGPM development: (I) satellite imagery and (II) machine learning. Satellite imagery has 

been widely used as a reliable data source for UGPM development. They provide 

information on land cover change over time, which can be used to retrieve reliable 

information on the time-varying growth pattern in urban areas. However, the usage of these 

images has been limited mostly to manual data extraction for the purpose of model 

calibration and validation. The increased richness and quality of the satellite imagery 

datasets open the doors for more comprehensive usage of these images to develop the next-

generation UGPMs.  

Computer vision technologies have observed significant advancements during the 

past decade. Taking advantage of the growing data sizes and the enhanced computational 

capabilities, more accurate models for object recognition and classification are 

continuously developed (Simonyan and Zisserman, 2014; He et al. 2016). Considering 

their fast advancements, machine learning techniques are increasingly adopted for 

developing UGPMs (Berling-Wolff and Wu, 2004; Triantakonstantis and Mountrakis, 

2012). In particular, artificial neural networks (ANN) have been adopted to overcome 

known limitations of regression-based models that are significantly impacted by the input 

data relationships (e.g., auto-correlation and multi-collinearity). In addition, deep learning 

(DL) has been introduced over the past decade as an extension of the traditional (shallow) 

machine learning methodologies. DL takes advantage of available large datasets and 

improved computational capabilities to build learning models in the form of many 

interconnected layers of nonlinear processing units for efficient feature extraction and 
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transformation. These layers systematically reduce the dimensionality of the problem in 

order to discover complex patterns and relationships in the data sets (LeCun et al., 2015; 

Schmidhuber, 2015). DL has shown great success in solving many complex problems that 

traditional learning methodologies failed to solve including computer vision, speech 

recognition, drug discovery, social network filtering (Deng et al, 2013; Black et al, 2020; 

Izbassarova et al, 2020; Zhavoronkov et al, 2020; Stokes et al, 2020; Roy et al, 2020), bio 

informatics and face recognition (Wang and Bai, 2018), medical (Kaur and Khosla, 2020; 

Black et al, 2020; Kalinin et al, 2020), defense (Husodo et al, 2019; Qiu et al, 2019; Ye et 

al, 2020), emergency response (Li et al, 2019; Cho et al, 2019), driverless vehicles (Chen 

et al, 2020; Thakurdesai and Aghav, 2020; Joubert et al, 2020),  traffic network reliability 

analysis and real-time management (Hashemi and Abdelghany, 2018; Nabian and Meidani, 

2018), vehicle type detection and classification (Molina-Cabello et al., 2018), traffic 

frequency crash analysis (Zhang et al., 2019), crowd counting (Shen et al., 2019), and 

infrastructure health monitoring (Acharya et al, 2018; Bang et al., 2019; Cha et al., 2018; 

Gao and Mosalam, 2018; Kang and Cha, 2018; Li et al., 2019; Maeda et al., 2018; Rafiei 

and Adeli, 2017, 2018; Rafiei et al., 2017; Xue and Li, 2018; Yang et al., 2018). 

1-5. Research Approach 

This research presents a novel UGPM that builds on recent advances of these two 

technologies. An UGPM is developed in the form of a time-dependent encoder-decoder 

(TDED) with embedded convolutional neural networks (CNNs). The model treats 

successive satellite images taken for an urban area over an extended horizon as a video and 

aims at predicting future frames of that video based on the temporal and spatial features 
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learned from its past frames. A trained model considers as an input (a) a base-year satellite 

image of a pre-defined resolution for the urban area under study; and (b) the length of the 

prediction horizon of interest (i.e., target year). It generates an image that predicts the 

growth pattern for the urban area for the target year at the same resolution. The model can 

also generate an image that shows the growth pattern predicted for any time along the given 

horizon.  

A dataset of a considerable size is used for model training and validation. Each 

record in this dataset consists of two different satellite images for the study area along with 

the time difference between these two images. The model is trained to learn the 

spatiotemporal growth features from the satellite images, which enables it to predict the 

growth pattern in the urban area for any given future year. We present the application of 

the new model through a case study in which the model is used to predict the urban growth 

pattern for the Dallas-Fort Worth, Texas (DFW) area with focus on Collin County and 

Denton County, which observed significant growth over the past decade. In addition, the 

model is applied to predict the growth pattern of five cities in the Middle East and North 

Africa (MENA) region. These cities vary in terms of their size, population, historical 

heritage, level of control applied to their growth, geographical locations, complexity of 

their structure, and socio-economic characteristics  The results of the case studies show 

that, despite their limited data requirements compared to other approaches adopted in the 

literature, the model is able to produce high-fidelity prediction results that are consistent 

with the results of other growth studies conducted for the urban areas considered in this 

study.  
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1-6. Research Contributions 

This problem contributes to the existing literature in several ways. To the author’s 

knowledge, this research is among the first attempts to develop a DL-based model for urban 

growth prediction. The model is capable of extracting the temporal and spatial growth 

patterns from satellite images through adopting a TDED with embedded CNNs. 

Furthermore, the model deviates from most current practices that require intensive 

biophysical and socioeconomic data for model development. It proposes a new approach 

that extracts growth information from a series of satellite imagery that indirectly 

encapsulates such data. Developing UGPMs with reduced data requirements is highly 

desirable, considering the extensive effort that is typically associated with collecting data 

needed to develop most existing UGPMs. The research presents the results of a real-world 

case study that illustrates the application of the model and its ability to predict at high 

fidelity the growth pattern in two counties in the DFW area. In addition, we applied the 

model to five MENA cities including Dubai (United Arab Emirates (UAE)), Cairo (Egypt), 

Doha (Qatar), Casablanca (Morocco), and Riyadh (Kingdom of Saudi Arabia (KSA)). We 

present a framework to validate the model by comparing its results with data collected from 

other urban growth studies conducted for these cities. Finally, based on the obtained results 

and their analysis, the research provides recommendations for sustainable urban growth in 

the MENA region.  

1-7. Dissertation Organization  

The dissertation is organized as follows. Chapter 2 presents a review of the 

literature and summarizes main approaches used for modeling urban growth prediction as 
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well as machine learning models for video prediction applications. Chapter 3 describes 

main concepts and preliminaries used to develop the model. Chapter 4 provides the model 

architecture and the data requirement for its training and validation. Chapter 5 describes 

the efforts of data collection and preparation. Chapter 6 presents a set of experiments that 

illustrates the sensitivity of the model with respect to the values assumed for its hyper-

parameters.  Chapter 7 presents a real-world case study that illustrates the application of 

the model to predict the growth pattern for the DFW area. Chapter 8 presents the model 

application for several cities in the MENA region along with their validation results. 

Finally, Chapter 9 provides a summary and presents research extensions. 
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Chapter 2  

 

BACKGROUND REVIEW 

 

 

2-1. Introduction 

This chapter reviews the literature of two topics related to urban growth prediction 

models (UGPMs) and video prediction (VP) models that are based on machine learning 

techniques. The chapter starts with section 2-2 that provides a review of the different 

modeling approaches used to develop urban growth prediction models. These approaches 

include Cellular Automata (CA), Artificial Neural Network (ANN), Linear/Logistic 

Regression (LR), Agent-Based Models (ABM), Decision Trees (DT) and Fractals 

Geometry (FG). Section 2-3 reviews previous research work focusing on video prediction 

(VP) methodologies and applications. The transformation approach, the action-conditional 

approach, and the predicting from static images approach are the main approaches used for 

developing most VP methodologies. Finally, section 2-4 concludes the review and 

summarizes the contribution of the proposed research with respect to the existing literature. 

2-2. Urban Growth Prediction Models 

Previous studies have resulted in numerous UGPMs that differ in their underlying 

theory, data requirements, and scope of application. According to Triantakonstantis and 

Mountrakis (2012), the main objective of UGPMs is to capture the fundamental 

relationships of spatial and temporal complexities associated with urban growth prediction. 
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Spatial complexity pertains to the large number of socioeconomic and biophysical factors 

that affect urban growth along with their complicated interactions (Albeverio et al., 2007; 

Batty, 2013). Temporal complexity arises from the challenge of capturing how these 

factors change and interact over time to shape the future growth (Engelen, 1988).  

Several modeling approaches have been proposed in the literature for developing 

UGPMs including Cellular Automata (CA), Artificial Neural Network (ANN), 

Linear/Logistic Regression (LR), Agent-Based Models (ABM), Decision Trees (DT) and 

Fractals Geometry (FG). According to a review study conducted by Triantakonstantis and 

Mountrakis (2012), CA, ANN and LR models are the most popular among these 

approaches as they demonstrated a superior performance in capturing the complex 

relationships of parameters relevant to predicting urban growth. 

2-2-1. Cellular Automata (CA) Models 

Considering its relative simplicity, CA is widely used to develop UGPMs (Wu and 

Webster, 1998; He et al., 2006). CA represents complex dynamic environments in the form 

of a discrete system comprising of a grid of cells that interact with each other according to 

a set of pre-defined rules. A typical CA-based model for urban growth prediction consists 

of three main building blocks, which are (1) the grid/neighborhood of the study area; (2) 

the states defined for each cell; and (3) the transition rules that define the mechanism by 

which cells change their states (Stanilov and Batty, 2011).  

The area under study is typically divided into cells of adequate sizes such that each 

cell represents a parcel of a homogenous land use type. A set of feasible states are then 

defined for each cell (e.g., developed or undeveloped). A cell transits from a current state 
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to another state according to pre-defined transition rules. Deriving accurate transition rules 

is the most critical task for developing CA-based UGPM as it significantly affects the 

model’s prediction performance (Debnath and Amin, 2015; D’Autilia and Hetman, 2018).  

These rules are typically extracted from historical growth pattern for the urban area 

under study or for other similar urban areas. Examples of case studies that illustrate the 

application of CA-based UGPM can be found in Clarke and Gaydos, (1998), Van Vliet et 

al. (2009), Chaudhuri and Clarke (2013), and Ke et al. (2016). A widely known CA-based 

UGPM is the SLEUTH (slope, land cover, excluded, urban, transportation, and hill-shade) 

model (Chaudhuri and Clarke, 2013). While the SLEUTH model has shown successes in 

explaining the growth phenomena observed in many cities around the world, the 

considerable effort and the large amount of data required for its calibration and validation 

remain to be obstacles for its adoption.  

2-2-2. Artificial Neural Network (ANN) Models 

The ANN model is a popular machine learning technique, which is used effectively 

to model land use change and urban growth prediction (e.g., Pijanowski et al., 2002; Lin et 

al., 2011; Tayyebi and Pijanowski, 2014; Shafizadeh-Moghadam et al., 2017). One 

advantage of ANN over traditional regression analysis is that it does not require making 

assumptions regarding spatial autocorrelation that might be presented in the input data.  

As indicated by Tayyebi et al. (2014), the multi-layer-perceptron (MLP) neural 

network is one of the most commonly ANN forms that is widely applied for modeling land 

use change and urban growth. This MLP model consists of at least three layers of nodes, 

which are the input layer, one or more hidden layers, and the output layer. The MPL model 
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is trained using the back-propagation algorithm, which follows an iterative procedure to 

determine the optimal weight that minimizes the difference between the training data and 

the estimated output (Chauvin and Rumelhart, 2013; Zhang and Goh, 2016).  

The enhanced computational capabilities during the past few decades have enabled 

the development of rigorous ANN-based models with rich socioeconomic and environment 

input data for studying complex urban growth patterns (Berling-Wolff and Wu, 2004). For 

example, Liu and Seto (2008) and Thapa and Murayama (2009) developed an ANN-based 

models with input data that includes topology, land use, and roadway network extracted 

from satellite images to predict city boundaries and developed areas within these 

boundaries.  

Tayyebi et al. (2011) developed a similar model to evaluate the complex geometry 

of cities and boundaries of future growth by considering variables such as green spaces, 

built areas, distances from roads, service stations, etc. ANN models have also been 

integrated with GIS tools to provide a platform to forecast and visualize changes in land 

use (Pijanowski et al., 2005). 

2-2-3. Linear/Logistic Regression (LR) Models 

Several LR-based models are proposed for developing UGPMs (Hu and Lo, 2007; 

Yang et al., 2011; Kang, 2014; Gerasimovic et al., 2016; Han and Jia, 2017). LR is useful 

for driving a relationship that explains urban change in terms of different explanatory 

variables. For example, Yang et al. (2011) and Han and Jia (2017) developed UGPMs in 

the form of LR that combine variables such as socioeconomic, land topology, land zoning, 

and accessibility to the city center. 
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In these models, a binary output variable is used to indicate land use change. LR 

models have also been developed to study land use change with focus on retail and 

commercial location modeling. For instance, the LR model developed by Mustafa et al. 

(2017) is shown to present the growth in commercial developments as a function of the 

evolution of the road network and changes in property taxes. 

2-2-4. Agent-Based Models (ABM) Models 

ABM has been also used to understand and predict different urban growth scenarios 

(Brown and Duh, 2004). A simplest ABM consists of two components, which are (1) a 

system of agents (e.g., people, organizations, etc.); and (2) the rules that govern the 

interactions between these agents (Bonabeau, 2002). An agent is an autonomous unit that 

is assumed to be able to interact with other agents in the system and take actions following 

the predefined rules. As such, the behavior of the agents permits the effect of human 

decision making to be incorporated into the model.  

The pioneer work of Sanders et al. (1997) is an example of adopting ABM to model 

urban growth. Zhang et al. (2010) presents another example of using ABM to simulate the 

interactions among government agencies, farmers, and residents to predict urban growth. 

However, one drawback of ABM-based UGPMs is that they might produce highly variable 

results depending on the rules defined for agent interactions and decision making 

(Couclelis, 2002). 

2-2-5. Decision Trees (DT) Models 

The DT technique presents a simple model structure that is used to derive rules for 

optimal data segmentation. The construction of most DTs for urban growth prediction 
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involves three stages following an iterative procedure: a primary stage in which nodes are 

split recursively, an optional pruning stage to lower the tree complexity, and a final stage 

to select the optimal tree that gives the least testing error (Giovanis, 2012).  

Most work that adopted the TD technique focused on developing tools for the 

classification of remote sensing images (Friedl et al., 1999; Hansen et al., 2000; Chan et 

al., 2001; Schneider et al., 2003; Li and Yeh, 2004; Tooke et al., 2009). For example, Li 

and Yeh (2004) and Tooke et al. (2009) developed DT-based models to classify the land 

in remotely sensed imagery in terms of its type (e.g., urban development, vegetation cover, 

etc.). Two challenges face the development of DT-based models for land use classification. 

First, similar to other models such as ANN, DT can create overfitting structures which 

prevent their generalization, Second, spatial autocorrelation might cause these models to 

underperform compared to other classification techniques. 

2-2-6. Fractals Geometry (FG) Model 

Witten and Sander (1981) and Mandelbrot (1983) are among the first to adopt FG 

for studying urban growth, assuming that urban growth follows a spatial self-organization 

characteristic. FG is shown to generate a more accurate descriptions for spatiotemporal 

growth patterns compared to those obtained using the classical Euclidean geometry 

(Frankhauser, 2008).  

The diffusion-limited aggregation (DLA) method, developed by Witten and Sander 

(1981), is an example of the FG approach. DLA is defined as a process where a structure 

grows through the aggregation of units which spread over space until they arrived to a 

certain point (Fotheringham et al., 1989). This point is classified as ‘developed’ compared 
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to the rest of the urban area which is classified as ‘undeveloped’. Batty et al. (1989) 

proposed the DLA method to represent the urban structures in the form of tree-like, which 

manifesting self-similarity of the form across different scales. Several algorithms are used 

in the literature to calculate fractal dimensions.  

As reported by Myint (2003), different results may occur for the same urban area 

when using different approaches of fractal dimension measurement. Thus, one should 

carefully choose the fractional dimension measurement that produces urban growth pattern 

that is consistent to what is historically observed in the urban area under study. 

2-3. Video Prediction Techniques 

 The main goal of video prediction (VP) is to obtain future frames of any video by 

producing a possible trajectory for it based on a sequence of frames that have already been 

seen (Ge, 2017). In other words, it aims to infer future frames from a series of earlier frames 

while minimizing the reconstruction error that may occur between the actual future frame 

and the future frame that is generated.  

As described hereafter, most VP models are built on top of an encoder-decoder 

system that consists of at least three basic components: (1) convolutional encoders, (2) a 

set of convolutional layers or fully connected layers, and (3) deconvolutional decoders (Oh 

et al., 2015; Ge, 2017; Vukotić et al., 2017). Convolutional encoders extract main features 

of the input images which are transformed into latent variables through the fully connected 

layers. These latent variables are decoded back to an image by the deconvolutional 

decoders.  
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Three main approaches are considered for developing most VP methodologies 

presented in the literature, which are the transformation approach, the action-conditional 

approach, and the predicting from static images approach. 

2-3-1. Transformation Approach 

The idea of the transformation-based approach is to predict a change that maps the 

input sequence of frames to the next frame as opposed to generating pixels of the next 

frame directly. Therefore, the approach is shown to be more suitable for natural videos in 

which there is a smooth and continuous motion of objects. However, it does not work well 

for videos in which objects may move in and out of the scenes. Another advantage of the 

transformation-based approach is that it can generate sharper images using small-size 

models as it focuses on predicting the change rather than the entire image (Van Amersfoort 

et al., 2017).  

Numerous VP models that are based on transformation-based approach have been 

reported in the literature. For example, Patraucean et al. (2015) proposed a model that 

adopts a convolutional – long short-term memory (LSTM) – deconvolutional architecture 

for optical flow prediction. The architecture encompasses a sampling module and a grid 

generator to build the subsequent image based on the optic flow. One strength of this model 

is that the predicted optical flow could be integrated with another model such as a semantic 

segmentation model to implement video segmentation.  

Van Amersfoort et al. (2017) developed a convolutional model to predict the local 

affine transformations for overlapping patches. An affine transformer is defined as a 

function that maps an affine space to itself or similar objects in the space. It preserves the 
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dimension of any affine subspaces and also preserves the ratio of the lengths of parallel 

line segments. An affine transformation does not necessarily preserve angles between lines 

or distances between points. However, it preserves ratios of distances between points lying 

on a straight line. Consider an example of tree leaves, an affine transformer can be 

developed to map these leaves to each other even they have different angles and sizes. The 

model involves devising an affine transform extractor that identifies the set of affine 

transforms which is essential in constructing a frame with minimum MSE loss function. 

The resulting affine mappings from this procedure were utilized in the convolutional model 

as inputs and used for training as ground truth. While the model is shown to attain superior 

outcomes in terms of the accuracy of a standard classifier on the future frames, it shares 

the limitation of not being able to generate new objects that are not represented in input 

frames due to the preservation of lines and points by affine transformations. 

 Liu et al. (2017) introduced the deep voxel flow (DVF) model which adopts a 

multi-scale convolutional architecture for predicting voxel flow. Similar to a pixel in a 2D 

bitmap, a voxel represents a single data point on a three-dimensional grid that is regularly 

spaced. This data point can consist of a single piece of data, such as an opacity, or multiple 

pieces of data, such as a color and opacity. The DVF model can be implemented and used 

in different tasks such as action recognition, flow estimation, and video extrapolation. The 

DVF model is shown to be capable of generating sharp frames utilizing a small model 

consisting of three deconvolutional and convolutional layers. However, it has been argued 

that the model may fail in instances where the scenes have repetitive patterns (e.g., Parks) 

(Liu et al. 2017). 
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2-3-2. Action-Conditional Approach 

 The action-conditional approach solves the VP problem by recognizing that future 

frames do not rely only on the sequence of previous frames, but also on the action taken at 

the current time step (Kalchbrenner et al., 2017). The action-conditional is used as the basis 

for developing several VP models (Oh et al., 2015; Srivastava et al., 2015; Xue et al., 2016; 

Chiappa et al., 2017).  

For example, Watter et al. (2015) developed the embed-to-control (E2C) model, 

which is used to learn and control a non-linear dynamical system from historical images. 

The model produces image trajectories from a latent space to simplify the system from 

non-linear to be locally linear. The model allows long-term predictions of image sequences 

to be accomplished without degrading the representations quality.   

Oh et al. (2015) proposed a deep action-conditional model to predict future image-

frames of the Atari game through the combination of controller variables (or action) at the 

existing frame. A multi-phase training based on time steps is used to ensure that the model 

is learning how to make a longer sequence of accurate predictions as suggested by 

Michalski et al. (2014). Two encoding variants were examined, which are feedforward and 

recurrent encoding. The feedforward encoding takes a fixed number of past frames as an 

input, while the recurrent encoding takes one frame for each time step as an input and used 

LSTM to memorize the information about the past frames. The model is shown to be able 

to predict realistic frames and also control future frames in several domains of Atari games.  

Finn et al. (2016) developed an action-conditioned video prediction model that 

learns to predict a transformation by connecting the present frame to the following one. An 
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architecture that contains multiple LSTM cells is proposed, which divides the image into a 

background layer and a foreground layer. A transformation to the foreground is then 

applied and combined again with the background layer to form the predicted image. The 

model is tested using datasets representing real-world interactive agents. The model is 

shown to produce high quality video predictions both qualitatively and quantitatively.  

2-3-3. Predicting from Static Images Approach 

The prediction from static images approach is utilized as a foundation for several 

VP models (Pintea et al., 2014; Chao et al., 2017). The idea is to use a series of past 

successive static images to learn the movement pattern (e.g., direction and speed) and 

extrapolate this pattern for a given future time. The approach has shown to be useful for 

applications such as automated animation and visual analogy-making (Xue et al., 2016).  

For example, Sohn et al. (2015) developed a model called conditional variational 

auto-encoder (CVAE) that is an extension of the variational autoencoder (VAE). CVAE is 

a conditional directed graphical model, in which the outputs are generated as the input 

observation modulates and the prior on latent variables. Yan et al. (2016) used CVAE to 

model the conditional distribution of future frames, where it is used to maximize the 

reconstruction log-likelihood of the input under a condition. Walker et al. (2016) proposed 

a CVAE architecture consisting of fourteen convolutional layers for extracting visual 

representations from the image used by the decoder and encoder.  

Xue et al. (2016) proposed a convolutional network to synthesize the movement of 

an object by encoding the image information as feature maps and the motion information 

as convolutional kernels. This network is designed by introducing a cross convolutional 
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layer into a CVAE model. This layer considers the fact that different semantic segments 

that exist in an image are having different distributions over all possible motions (e.g., a 

building is often static, but a waterfall flows). While the model produces good results for 

synthetic data (e.g., animated game and 2D shapes), the model could generate superficial 

artifacts when seeking to simulate large movements.  

Vondrick et al. (2016) proposed a generative adversarial network (GAN) model for 

video prediction using spatiotemporal convolutional architecture. The architecture consists 

of two independent streams: (1) a pathway for generating a static background; and (2) a 

pathway for generating a dynamic foreground. The two pathways are then combined to 

generate the future video. A limitation of using this model is that it sometimes predicts a 

reasonable future but is incorrect. For example, the generated video could have a similar 

scene to the input image but not identical as some objects are dropped or some colors are 

altered.   

Regardless of the phenomenal improvement in VP methodologies over the past 

decade, several challenges are still to be addressed by the research community. For 

example, developing frameworks that can learn spatiotemporal information would usually 

require evaluating the effectiveness of various non-trivial options in terms of model 

structure and parameter values. Another challenge is related to the high computation 

expenses associated with evaluating these options (Tran et al., 2017). In addition, most 

methodologies are deficient in capturing long contexts (Simonyan and Zisserman, 2014). 

As the prediction horizon increases, the prediction error tends to increase effecting the 

reliability of the obtained prediction. Thus, one should be careful on selecting the proper 

application for VP tools and interpreting their results.  
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Finally, Karpathy et al. (2014) reveal that the lack of a standard benchmark slows 

the development of VP methodologies. As videos are significantly more difficult to collect, 

annotate and store, comprehensive datasets that cover different applications are needed to 

be established. 

2-4. Summary 

The chapter discussed several approaches considered for urban growth prediction 

modeling. These approaches aim at capturing the complex relationships of main variables 

that affect urban growth such as socio-economic, biophysical, and political variables. 

Numerous publications focused on studying the complexity of the UGPMs, which showed 

that urban growth is a dynamic non-linear process in both time and space, which is difficult 

to represent in a closed analytical form. Most of the effective UGPMs have adopted 

simulation-based techniques which require considerable effort for model specification, 

calibration and validation. The chapter also reviewed VP techniques which proposed to 

infer future frames from a series of earlier frames while minimizing the reconstruction error 

that may occur between the actual future frame and the future frame that is generated. The 

transformation approach, the action-conditional approach, and the predicting from static 

images approach are the main three VP techniques that have been widely used in the 

literature. 
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Chapter 3  

 

MAIN CONCEPTS AND PRELIMINARIES USED TO DEVELOP THE MODEL   

 

 

3-1. Introduction 

This chapter presents the preliminaries and concept required for developing and 

validating the proposed UGPM. The chapter is organized as follows. Section 3.2 formally 

describes the concepts of CNNs and convolutional auto-encoders (CAEs) which represent 

the foundation for our UGPM. Section 3.3 presents the concept of transfer learning (TL) 

which focuses on adapting knowledge from a source task to a target task to build a target 

prediction model with good performance. Section 3.4 illustrates the measures that have 

been proposed in the literature to evaluate the similarity between two images for the 

purpose of validating the developed UGPM. Section 3.5 presents measures that are 

commonly used to evaluate the training and validation processes of neural networks such 

as the loss function and accuracy. Section 3.6 presents historical overview of the use of 

civilian satellites for Earth observation. Finally, Section 3.7 gives a summary of the 

chapter. 

3-2. Convolutional Networks and Auto-Encoders (CAEs) 

CNN, In the past, known as Neocognitron and inspired by biological processes 

where neurons are connected to resemble the organization of the mammal’s visual cortex 

(Fukushima, 1980; Hubel & Wiesel, 1968). The neurons consist of three sections, the 
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dendrites to receive the (input), cell nucleus (processor), and an axon (output) as shown in 

Figure 3-1. 

 

Figure 3- 1: The biological neuron (https://www.cs.toronto.edu). 

CNNs or ConvNets is a category of deep neural networks that are intensively used 

to classifying visual imagery (Zafar et al., 2018). A Typical CNN consists of a sequence 

of convolution and pooling operations that are followed by several fully connected layers. 

Every CNN contains four layers or blocks: The Convolution Layer, the Non-Linearity 

(ReLU activation) Layer, the Pooling Layer, and the Fully-Connected (FC) Layer (Zhou et 

al., 2017).  

The job of the convolutional layer is to detect the important characteristics in the 

image pixels. The Rectified Linear Unit (ReLU) is a powerful non-linearity operation. It 

replaces all the pixels that have negative values in the feature map with zero. The result is 

then passed from the convolution layer through an ReLU activation function to the 

following layer. The pooling layer is used to reduce each dimension of the feature map, 

which helps to reduce the number of parameters and computation processes in the network. 

Finally, the FC layers use the high-level features from the convolution and pooling layers 

for classifying the input image into different classes determined by the training data. 
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Figure 3- 2: The Convolutional Auto-Encoder structure. 

CAEs can be viewed as a type of CNN (Lintas et al., 2017). While CNNs are trained 

end-to-end to combine features and learn filters in order to classify the input, CAEs, by 

contrast, are only trained to learn filters, which extract features that can then be used for 

reconstruction of the input (Zhou et al., 2017). As illustrated in Figure 3-2, a typical CAE 

consists of two parts: the encoder and the decoder. Both the encoder and the decoder consist 

of a series of convolutional layers as described above. In the encoder part, the convolutional 

layers are used to decrease the complexity of the model by gradually reducing the number 

of hidden units (filters or the resolution of the output).  

Two common approaches are used to down-scaling a layer, which are employing 

convolutions with strides and using a small window as a pooling value. The decoder works 

as reverse version of the encoder part. Its layers gradually up-scale the low-dimension 

Input Layer 

Encoder Decoder 

Output Layer 

Hidden layers 
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image that comes from the encoder. The process of up-scaling the layers is typically 

referred to as deconvolution, which is repeated until the size of the original image is 

obtained.    

3-3. Transfer Learning  

While TL was originally proposed under the name ‘transfer of practice’ by 

Woodworth and Thorndike (1901), the earliest cited work on adopting TL for machine 

learning is Pratt (1993). TL focuses on adapting knowledge from a source task to a target 

task with little or no label information to build a target prediction model with good 

performance. As shown in the Figure 3-3, two main possible observations are usually 

associated with adopting TL. First, the use of transferred knowledge provides a higher 

starting and end performances in the target task compared to those obtained without any 

transferred knowledge. Second, adopting TL usually results in a steeper learning rate which 

reduces the amount of time required to allow the target task to be fully learned (Torrey and 

Shavlik, 2010). 

In some cases, the model performance decreases when TL is used, implying that 

negative transfer has occurred. The effectiveness of the TL method depends on the relation 

between the source task and the target task. For example, if we transfer knowledge from a 

model that has certain data to a different model with a different structure of data, that might 

decrease the performance of the target task. Thus, for TL to succeed, one should ensure 

that there is a strong relationship between the source task and the target task in terms of the 

model structure and the data to achieve a higher performance. 
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Figure 3- 3: Transfer learning observations (Torrey & Shavlik, 2010). 

3-4. Image Similarity Measures 

Validating the developed UGPM requires comparing its output images with the 

ground truth images. Two main measures are commonly used for measuring image 

similarity that are adopted in this research, which are (a) the Mean Square Error (MSE) 

and (b) the Structural Similarity Index (SSIM). The objective of the MSE measure is to 

compare two data streams or signals representing the observed and predicted values. It 

provides information on the degree of similarity or alternatively finds the level of distortion 

that exists between the two signals (Wang and Bovik, 2009). The general form of the MSE 

equation is given as follows: 

!"#(%, %') =
1

+
,(-. − -0.)

1

2

.34

 
(1) 

where !"#5%, %'6 ≥ 0, and Y = {-.|i = 1, 2,··· , n} and %' = {-0.|i = 1, 2,··· , n} are 

two discrete, finite-length signals (e.g., visual images), n is the number of signal samples 

(if the signals are images, then these will be pixels), and -. and -0. are the values of the i-th 
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samples in Y and %', respectively. A smaller MSE value implies that the two signals are 

more similar. 

The SSIM index is designed specifically for calculating the similarity existing 

between two images to quantify their visual similarity (Wang et al., 2004). As shown in 

the Figure 3-4, the SSIM first computes the correlations between two images X and Y in 

three terms luminance, structure, and contrast at the local level. Then, these quantities are 

averaged over the whole image (Renieblas et al., 2017). The values of the SSIM index 

ranges from zero (completely different images) to one (identical patches). Equations (2) to 

(4) give the computation of the luminance, contrast, and structure comparisons, while 

Equation (5) shows how these comparisons are used to compute the SSIM.  

Luminance comparison: 9(:, -) =
51;<;=>?46

(;<
@>;=

@>?4)
 (2) 

Contrast comparison: A(:, -) =
51B<B=>?16

(B<
@>B=

@>?1)
 (3) 

Structure comparison: C(:, -) =
5B<=>?D6

(B<B=>?D)
 (4) 

""E!(:, -) = [9(:, -)]H. [A(:, -)]J. [C(:, -)]K (5) 

where LM, LN, OM, ON, and OMN are the local means between the two images, the 

standard deviations of the signals, the covariance for images X and Y, respectively. The 

user-defined constants c1, c2, c3 are introduced if the local means and variances are close 

to zero. The overall index is created via a multiplicative combination of the three terms 

presented in equation (5), where α, β, and γ are parameters defining the relative importance 

of the three components. 
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Figure 3- 4: Diagram of structural similarity index measurement system (Wang et al., 2004).  

Figure 3-5 illustrates the minimal/maximal SSIM images. These images are 

assumed to be equal in MSE values but extremely different quality to the reference image. 

As long the image far away from the reference image, it has the worst SSIM. On the other 

hand, if the image close to the reference image, it has the best SSIM.   

 

 

Figure 3- 5: Image quality using SSIM technique.    

3-5. Loss and Accuracy Measures 

Two measures are commonly used to evaluate the training and validation processes 

of neural networks which are the value of the loss function and the accuracy measure 
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(Capelo, 2018). In case the prediction results are very different from the actual results, the 

loss function produces a very large number. Loss functions can be categorized into two 

different types which are Regression losses (e.g., MSE, root mean squared error (RMSE), 

etc.) and Classification losses (e.g., binary cross-entropy, categorical cross-entropy, etc.). 

The purpose of using the accuracy measure is to evaluate how the prediction accuracy of 

the model (Pelánek, 2015). The general form of the accuracy is presented in the equation 

(6): 

PAAQRSA- =
TQUVWR	YZ	AYRRWA[	\RW]^A[^Y+C

_Y[S9	+QUVWR	YZ	\RW]^A[^Y+
 (6) 

The other form that can calculate the accuracy is binary classification in terms of 

positive and negative classes, which is presented in the equation (7): 

PAAQRSA- =
_` + _T	

_` + _T + b` + bT
 (7) 

Where _`, _T, b`	and	bT	are true positives, true negatives, false positives, and 

false negatives. 

3-6. Earth Observation Satellite Images 

The first civilian Earth observation satellite (ERTS-1), later named as Landsat 1, 

was launched in 1972. This effort was then followed by launching satellites Landsat 2, 

Landsat 3, and Landsat 4 in 1975, 1978, and 1982, respectively. These early-launched 

satellites provided low-resolution images, which limited their application for urban growth 

studies. Newer satellites, Landsat 5, Landsat 7, and Landsat 8, which were launched in 

1984, 1999, and 2013, respectively, provided higher resolution images of 30 meters per 

pixel as shown in the Table 3-1 and 3-2. Obtaining such high-resolution images opened the 
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doors for their wide use in land use and urban growth studies (Longley and Mesev, 2000; 

Masek et al., 2000; Bagan and Yamagata, 2015; El Garouani et al., 2017).  

Figure 3-6 shows the timeframe covered by all satellites. Each satellite provided a 

number of images per year that might vary from year to year depending on the study area 

under consideration. Some of the downloaded images could be unclear in cases where they 

were recorded on a cloudy day. Table 3-3 gives the number of images downloaded from 

year 1984 to 2018 for the Dallas-Fort Worth (DFW) area which its growth pattern is studied 

as part of this research work. The table shows the number of downloaded clear images in 

each year and the satellite used to obtain these images. 

 

Figure 3- 6: Landsat missions (landsat.usgs.gov). 

Table 3- 1: Landsat 5 and Landsat 7 spectral band description 

Bands Wavelength (µm) Resolution (m) 
Band 1: Blue (0.45 - 0.52) 30 

Band 2: Green (0.52 - 0.60) 30 

Band 3: Red (0.63 - 0.69) 30 

Band 4: Near Infrared (0.76 - 0.90) 30 

Band 5: Short-wave Infrared 1 (1.55 - 1.75) 30 

Band 6: Thermal (10.40 - 12.50) 120, 60 * (30) 

Band 7: Short-wave Infrared 2 (2.08 - 2.35) 30 

Band 8 - Panchromatic (Landsat 7 only) (0.52 - 0.90) 15 
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Table 3- 2: Landsat 8 spectral band description 

Bands Wavelength (µm) Resolution (m) 
Band 1: Ultra-Blue (coastal/aerosol) (0.435 - 0.451) 30 

Band 2: Blue (0.452 - 0.512) 30 

Band 3: Green (0.533 - 0.590) 30 

Band 4: Red (0.636 - 0.673) 30 

Band 5: Near Infrared (0.851 - 0.879) 30 

Band 6: Short-wave Infrared 1 (1.566 - 1.651) 30 

Band 7: Short-wave Infrared 2 (2.107 - 2.294) 30 

Band 8: Panchromatic (0.503 - 0.676) 15 

Band 9: Cirrus (1.363 - 1.384) 30 

Band 10: Thermal Infrared 1 (10.60 - 11.19) 100 * (30) 

Band 11: Thermal Infrared 2 (11.50 - 12.51) 100 * (30) 

 

Table 3- 3: Number of available images for the DFW area for the different years 

 

3-7. Summary 

This chapter introduced preliminaries based on which the proposed UGPM are 

developed. The chapter described the concept of convolutional neural networks and auto-

encoders which is mostly used in visual imagery classification. Then, the concept of 

Year 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 
No. of downloaded 
images 9 12 12 12 12 10 12 12 12 12 12 12 

No. of clear images 3 4 4 6 2 2 4 4 3 3 4 3 

Satellite ID Landsat 5 

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 
No. of downloaded 
images 12 12 12 12 12 11 12 12 11 12 10 11 

No. of clear images 3 4 9 4 5 5 4 3 5 3 2 5 

Satellite ID Landsat 5 

Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 up to the study starting 

date 

No. of downloaded 
images 12 12 11 12 10 12 12 12 12 3   

No. of clear images 6 6 7 2 2 4 4 7 4 2   

Satellite ID Landsat 5 
Land
-sat 7 

Landsat 8   
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transfer learning is then described. The chapter also provided a review of similarity 

measures (SSIM and MSE) used to compare images. Finally, the chapter described the 

history of launching satellites for civilian applications and the effort to obtain images form 

model development and validation. 
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Chapter 4  

 

MODEL ARCHITECTURE AND DATA REQUIREMENT 

 

4-1. Introduction 

This chapter presents a novel solution methodology for urban growth prediction 

that adopts a VP technology. The VP technology allows the model to predict urban growth 

in a target year by learning the growth in previous years. A TDED with embedded CNN is 

developed. This Chapter is organized as follows. Section 4.2 presents an overview of the 

Video Prediction (VP) technique. Section 4.3 gives the details of the developed model 

which is in the form of a TDED with embedded CNN. 

4-2. Overview of Video Prediction (VP) Approach  

In this section, we describe the structure of a novel ML-based model for UGPM. 

As illustrated in Figure 4-1, the model adopts a VP approach as it treats successive satellite 

images recorded for an urban area over an extended past horizon as a video. The model is 

trained using these historical satellite images to learn the spatiotemporal growth pattern 

(i.e., direction and rate of growth over time). The model obtains input an image : 

representing the urban area in base year [f and a pre-defined prediction horizon (∆[, ∆[	 ∈

E +). It constructs an image - that predicts the urban area for future year [f + ∆[, using the 

learned historical growth pattern. 
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Figure 4- 1: Applying the video prediction paradigm for urban growth prediction modeling. 

4-3. Time-Dependent Encoder-Decoder (TDED) 

The model adopts a structure similar to the ones presented in Tatarchenko et al. 

(2016) and Vukotić et al. (2017), respectively, for general-purpose video prediction. It 

implements a TDED with embedded convolutional neural networks. Figure 4-2 illustrates 

the overall configuration of the model. As shown in the figure, the model is composed of 

two main parts; an encoder and a decoder.  

The encoder receives two input elements. The first input is the base-year satellite 

image for the urban area under study with a pre-defined resolution. The second input is the 

length of the prediction horizon of interest ∆[ (i.e., desired temporal movement). As shown 

in the Figure 4-3, the input image is encoded through a series of convolutional and pooling 

layers. The first convolutional layer defines the resolution of the input image (height, 

width, and color channels). The last layer is connected with a fully connected neural 

network, FC1, that encodes the image information. The time horizon input is directly 

encoded into two consecutive fully connected networks, FC0′ and FC1′, respectivly. The 

two fully connected networks FC1 and  FC1′ are concatenated forming one fully connect 

network, FC2, that combines the image and the time horizon information. The decoder is 

responsible for decoding the information in FC2 to generate the predicted image for the 
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specified time horizon. As shown in the figure, the decoder follows a reverse structure of 

the encoder through implementing a series of de-convolutional and up-sampling 

(unpooling) layers to construct an image for the target year with the same resolution as that 

of the input image.   

Table 4-1 provides more details on the different layers used to construct the encoder 

and the decoder, respectively. In the current implementation, a colored image with 

512x512x3 resolution is processed using five convolutional layers with 1x1 strides in each 

layer and five maximum pooling layers. These layers transform the input tensor to a tensor 

of 16x16x256. This tensor is processed through a dense network of dimension 16x16x256. 

The time horizon is encoded into another tensor with dimensions 16x16x1. Thus, a 

concatenated tensor with dimensions 16x16x257 is obtained, which is considered as the 

input for the decoder. The decoder consists of five deconvolution layers and five unpooling 

layers which gradually decode the concatenated input tensor to produce the predicted 

image with 512x512x3 resolution. 

 

Figure 4- 2: The overall structure of the time-conditioned encoder-decoder architecture for 

UGPM. 
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Table 4- 1: The dimensions of the different layers of the encoder-decoder architecture 

Layer 
ID 

Layer type/ 
Activation 

Kernel 
size 

Strides Filter Spatial input 
size 

Encoder 
Input_1 (512x512) RGB image 

CL1 Conv2D-ReLU 3x3 1x1 16 512x512 

 MaxPooling2D 

CL2 Conv2D-ReLU 3x3 1x1 32 256x256 

 MaxPooling2D 

CL3 Conv2D-ReLU 3x3 1x1 64 128x128 

 MaxPooling2D 

CL4 Conv2D-ReLU 3x3 1x1 128 64x64 

 MaxPooling2D 

CL5 Conv2D-ReLU 3x3 1x1 256 32x32 

 MaxPooling2D 

 FC1 

 Input_2 (Time) 
 FC0′ (time) 

 FC1′ (time) 

 Concatenate (FC1, FC1′ (time)) 

 FC2 

 Decoder 
DL5 Deconv2D-ReLU 3x3 1x1 256 16x16 

 UpSampling2D 

DL4 Deconv2D-ReLU 3x3 1x1 128 32x32 

 UpSampling2D 

DL3 Deconv2D-ReLU 3x3 1x1 64 64x64 

 UpSampling2D 

DL2 Deconv2D-ReLU 3x3 1x1 32 128x128 

 UpSampling2D 

DL1 Deconv2D-ReLU 3x3 1x1 16 256x256 

 UpSampling2D 

 Output (512x512) RGB image 
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Figure 4- 3: Flowchart of the proposed model. 
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Chapter 5  

 

DATA COLLECTION AND PREPARATION   

 

 

5-1. Introduction 

This chapter describes the data collection and preparation processes for testing the 

developed UGPM model, considering three urban areas: the Dallas/Fort Worth (DFW) and 

two of its fast-growing counties, Collin and Denton. Each data set is in the form of a series 

of historical satellite images that were obtained from three different landsats as mentioned 

earlier in Chapter 3. This Chapter is organized as follows. Section 5-2 presents a brief 

description of the study areas. Section 5-3 illustrates the data structure used for training 

and validating the UGPM. Section 5-4 presents the preparation of the dataset that are used 

for model development. Finally, Section 5-5 describes the computation platform used in 

this study.  

5-2. Study Area  

The model described in chapter 4 is applied to study the urban growth pattern for 

the entire DFW area and two of its fast-growing counties, Collin and Denton. Ranked 

among the five largest metropolitan areas in the U.S., DFW is also one of the fastest 

growing areas (US Census Bureau, 2018). Table 5-1 illustrates the Longitude and Latitude 

of the three study areas.  
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A population growth of more than one million people per decade has been reported 

for the past three decades for the DFW area. This growth is expected to continue as 

the area gained more new residents in 2018 than any other metropolitan area in the nation. 

According to recent U.S. Census Bureau data, the city's population, now more than 7.5 

million, grew by nearly 132,000 people from 2017 to 2018, marking a 1.8 % increase. 

Located in the North Central Plains of Texas, DFW is largely flat with no mountains that 

restrict its growth from any direction. The region includes multiple lakes that cover about 

10% of the area of DFW. Figure 5-1 shows satellite images for the study areas in 1985 and 

2018, respectively, which depict the growth of these areas during that period. 

 

Table 5- 1: The longitude and latitude for the three study areas 

Study area NW NE SW SE Area 
(mi2) 

DFW Longitude 
Latitude 

97°29'34.40"W 

33°30'34.39"N 

96°23'4.54"W 

33°30'34.39"N 

97°29'34.40"W 

32°24'18.58"N 

96°23'4.54"W 

32°24'18.58"N 
4,896 

Collin 
County 

Longitude 
Latitude 

96°53'43.03"W 
33°13'50.29"N 

96°34'8.57"W 
33°13'50.29"N 

96°53'43.03"W 
32°54'18.17"N 

96°34'8.57"W 
32°54'18.17"N 

425 

Denton 
County 

Longitude 
Latitude 

97°23'2.77"W 

33°30'42.71"N 

96°50'24.50"W 

33°30'42.71"N 

97°23'2.77"W 

32°58'6.37"N 

96°50'24.50"W 

32°58'6.37"N 
1,179 
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Figure 5- 1: Satellite images of the study areas showing their growth between 1985 and 

2018.  

5-3. Data Structure for Training and Validating the Model 

Table 5-2 illustrates the structure used to store the data required for training and 

validating the UGPM described above. A separate dataset is prepared for each study area 

(i.e., DFW, Collin County and Denton County).  Each data record, demonstrated as one 

column in the table, is defined in terms of the triplet EM, EN and ∆[, where EM represents the 

input satellite image at time [f, EN represents the output image at time [f + ∆[, and ∆[ is 

the time difference in years between the two images. The two images EM and EN have the 

same resolution. Once the model is trained and validated, it can be used to construct the 

predicted image EN for a given input pair EM and ∆[. 
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 For the purpose of applying the model to predict the growth pattern for a given 

urban area, EM is typically taken as the image of the current year. For the purpose of model 

validation and testing, EM could be any image with time index [f such that a subsequent 

image EN with time index [f + ∆[ exists in the dataset. The image constructed by the model, 

EmN, is then compared to the ground truth image, EN, and their similarity measures (i.e., MSE 

and SSIM) are reported.  

Table 5- 2: Data structure for model training and validation 

 

5-4. Data Preparation 

To prepare this dataset, a series of historical satellite images for each study area is 

first collected. As mentioned earlier, high resolution images become available in year 1985 

with the launching of Landsat 5. Thus, a past horizon that extends from 1985 to 2018 is 

considered. The clearest image in each quarter of each year is obtained. In cases where 

there are no clear images available for the quarter, an image from the next or previous 

quarters is borrowed for that quarter. Thus, four different streams of satellite images are 

obtained for each area. Each stream includes 34 images that represent the area’s year-to-
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year growth. Each stream resulted in 594 data records (combinations of EM, EN, ∆[). 

Combining the four streams together, a total of 2376 data records are obtained for each 

study area. 

Two strategies are implemented to enlarge the size of this dataset. First, the above 

steps are repeated after rotating all images in the four stream 180o around the y-axis 

resulting in 4752 data points. Second, for each data stream, the data record in which EM and 

EN are both the images of the base year (i.e., year 2018 with ∆[ = 0) is copied 100 times. 

The reason for replicating the data point representing the base year is to help the model 

learn the features of the base year as it is only included once in the original dataset. Adding 

the base year data records for all streams increases the size of the dataset to 5152. A random 

shuffling operation is then applied to ensure that images of the same year are not all falling 

in one training batch.  

A split percentage of 80%-20% is used to obtain the training and validation 

datasets, respectively. While a limited theory exists on the data size requirements for 

developing a successful deep learning model, one should expect that the data size to depend 

on the application domain, which defines the number and complexity of the instances to be 

learned (Beleites et al., 2013). For example, a general-purpose video prediction model 

might require thousands or even millions of training instances to capture all possible 

objects and contexts. However, other applications such as predicting urban growth from 

satellite images are expected to require less data to train a CAE model and obtain a 

reasonable prediction accuracy. 
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5-5. Computational Platform 

A high-performance computing (HPC) cluster with graphics processing capabilities 

is used to train the model. The cluster includes 36 cores of NVIDIA P100 GPUs with 256 

GB memory. It is worth mentioning that the resolution of the downloaded satellite images 

is in the range of 15,000x12,000. However, these high-resolution images cannot be used 

considering the limited memory of the used HPC platform.  

After several trials to examine the highest resolution that can be used, the resolution 

of the original images was reduced to 512x512, which is the highest resolution that can be 

accommodated by the HPC platform. As this research focuses primarily on presenting a 

proof-of-concept of the idea of adopting VP technology for UGPM, the use of the reduced-

resolution images is considered adequate. Of course, better results are expected if images 

with higher resolution are used, which could be achieved as a more advanced computing 

platform becomes available.      

5-6. Summery 

This chapter describes the datasets that were collected and prepared for the purpose 

of training and validating the UGPM for three study areas: DFW, Collin County, and 

Denton County. The chapter presented a brief description of the study areas. It also 

described the data structure used for training and validating the developed UGPM.  
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Chapter 6  

 

SENSITIVITY ANALYSIS AND RESULTS   

 

 

6-1. Introduction 

In this chapter, we present a summary of the results of a sensitivity analysis that is 

conducted to determine the optimal values for the model parameters. The model described 

in chapter 4 is implemented using the Keras/TensorFlow platform. Keras is an open-source 

neural-network library that is written in Python and runs on top of TensorFlow, which is 

also an open-source software library that enables fast implementation of neural network 

models. The model is trained using different parameters, which are (a) number of epochs, 

(b) batch sizes, (c) optimizers, (d) data sizes, and (e) number of convolution/deconvolution 

layers in the CAE architecture. 

6-2. Values of Hyper-Parameters      

This section shows the values that tested for each parameter as shown in Table 6-

1. For example, number of epochs of 500, 1,000, 2,000, and 5,000 are considered. The 

number of batch sizes varies from 8 to 256. Six common optimizers including the 

Stochastic Gradient Decent (SGD), Adadelta, Adamax, Nadam, Adam, and Root Mean 

Square Propagation (RMSprop) are examined. Four datasets of different sizes are used for 

model training and validation with 80%-20% split. These datasets are: (I) basic dataset 
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resulting from combining the 35 images for each quarter for each year (2,376 data points); 

(II) the basic dataset in (I) plus the dataset obtained after rotating all images 180o around 

the y-axis (4,752 data points); (III) the basic dataset in (I) after adding 400 data points for 

the base year (2,776 data points); and (IV) the dataset in (II) after adding 400 data points 

for the base year (5,152 data points). Finally, different number of convolution and 

deconvolution layers are considered. We examined a model structure with 3, 4 and 5 layers 

in the encoder and the decoder, respectively. Larger number of layers are not considered 

as it is expected to result in an overfitting model considering the size of the available data.  

Table 6- 1: Values considered for the model parameters 

No. of epochs 500    1,000     2,000     5,000 

Batch size 8    16    32    64    128    256 

Optimizer SGD   Adadelta   Adamax   Nadam   Adam   RMSprop 

Dataset sizes 2,376     4,752     2,776     5,152        (80% training and 20% validation) 

No. of CNN layers 3      4      5       

 

To evaluate the model prediction performance, the similarity between the predicted 

images and their corresponding ground truth images is examined. Considering year 1985 

to be the base year, the model is used to predict the urban growth for years 1985 (∆[ = 0), 

1990 (∆[ = 5), 1995 (∆[ = 10), and 2015 (∆[ = 30), respectively. For each target year, 

the similarity measures, MSE and SSIM, between the image constructed by the model and 

its corresponding actual image are reported. As mentioned earlier, while the SSIM is a 

normalized measure between zero and one, the MSE gives the total error between the two 

images. 
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6-3. Effect of Number of Epochs  

The first experiment examines the effect of the number of epochs on the model 

performance. In this experiment, the Adam optimizer is used for dataset IV with a batch 

size that is fixed at 32.  The model accuracy and loss functions along with the run time in 

hours for each case are reported in Table 6-2. As shown in the table, increasing the number 

of epochs improves the model accuracy measure and reduces the value of loss function. 

For example, at 500 epochs, an accuracy of 0.8301 and a loss of 0.0033 are recorded after 

training. As the number of epochs is increased to 5,000, the accuracy improves to 0.8404 

and the loss reduces to 0.0028. One can also notice that a lower accuracy and a higher loss 

are recorded when the model is validated.  

The improvement in the model accuracy with the increase in the number of epochs 

comes with a substantial increase in the execution time, which jumped from 11.80 hours 

for 500 epochs to 109.72 hours for 5,000 epochs. Considering the trade-off between model 

accuracy and execution time, the case in which 2,000 epochs is adopted for all following 

experiments, which generally provides a good level of accuracy in a reasonable execution 

time.  

Figure 6-1 shows the convergence pattern for the accuracy and loss measures 

during model training and validation, respectively, for the 2000 epoch case.  As shown in 

the figures, the accuracy and the loss measures systematically improve with the increase in 

the number of epochs. As expected, the training results are better than those obtained 

during the validation of the model.  
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Table 6- 2: The model performance for different number of epochs 

Number of 

Epochs 

Training Validation Run Time 

(hrs.) Accuracy Loss Accuracy Loss 

500 0.8301 0.0033 0.8239 0.0036 11.80 

1,000 0.8350 0.0030 0.8266 0.0035 21.94 

2,000 0.8370 0.0029 0.8263 0.0035 43.33 
5,000 0.8404 0.0028 0.8254 0.0034 109.72 

 

Figure 6- 1: The convergence pattern of the model accuracy (left) and the loss (right) 

measures for 2000 epochs. 

The results of the model’s prediction performance are summarized in Table 6-3. 

The table gives the SSIM and the MSE for the four prediction scenarios mentioned above 

for different number of epochs. Several observations can be made based on the results in 

this table. First, a good level of similarity is recorded between the constructed and the actual 

images as the SSIM measure ranges from about 73% to 82% for the tested cases. Second, 

the SSIM measure tends to increase with increasing the number of epochs, while no clear 

pattern is observed for the MSE measure. Finally, there is no clear correlation pattern 

between the SSIM and the MSE measures as high SSIM values could be associated with 

low MSE, and vice versa. Thus, reporting both measures is critical to better evaluate the 

model’s prediction fidelity. 
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Table 6- 3: The model prediction performance for different numbers of epochs. 

Compared Images 

No. of Epochs 

500 Epochs 1,000 Epochs 2,000 Epochs 5,000 Epochs 

SSIM MSE SSIM MSE SSIM MSE SSIM MSE 

Actual (1985) 
0.778 83,996 0.786 82,436 0.779 85,750 0.773 89,464 

Predicted @ ∆t =0  

Actual (1990) 
0.732 87,293 0.752 81,836 0.759 81,897 0.754 85,391 

Predicted @ ∆t =5  

Actual (1995) 
0.795 93,075 0.805 91,156 0.807 90,478 0.805 96,532 

Predicted @ ∆t =10  

Actual (2015) 
0.802 87,725 0.816 89,829 0.820 86,700 0.818 86,558 

Predicted @ ∆t =30  

 

6-4. Effect of Batch Size  

In the second experiment, we investigated the effect of the batch size on the 

performance of the model. The batch size was changed from 8 to 256, while the number of 

epochs was fixed at 2,000. In addition, the Adam optimizer and dataset IV are used. As 

shown in Table 6-4, the accuracy and loss values do not significantly vary as the batch size 

increases.  

A batch size of 64 gives the highest accuracy value of 83.83% and the lowest loss 

value of 0.0029, compared to the other batch sizes. As for the run time, up to a batch size 

of 64, a run time of about 44 hours is required for model training. An increase in the run 

time is recorded with increasing the batch size. For example, using a batch size of 256, the 

run time jumps to about 49 hours. Based on these results, a batch size of 64 for model 

training is considered for the following experiments as it provides the highest accuracy and 

lowest loss within a reasonable run time.  

Figure 6-2 gives the convergence pattern for the accuracy and loss measures for the 

model training and validation, respectively, using a batch size of 64. Again, a lower 
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performance is recorded for model validation compared to that recorded during the model 

training.  

Table 6- 4: The model performance for different batch sizes 

Batch Size 
Training Validation Run Time 

(hrs.) Accuracy Loss Accuracy Loss 

8 0.8369 0.0029 0.8272 0.0035 43.78 

16 0.8354 0.0030 0.8255 0.0035 43.80 

32 0.8364 0.0030 0.8221 0.0035 43.61 
64 0.8383 0.0029 0.8231 0.0035 43.99 

128 0.8381 0.0029 0.8175 0.0037 43.81 

256 0.8369 0.0029 0.8256 0.0036 49.02 

 

Figure 6- 2: The convergence pattern of the model accuracy (left) loss (right) for 64 batch 

size. 

Table 6-5 summarizes the results related to examining the model prediction 

performance considering different batch sizes. The SSIM and MSE resulting from 

comparing the actual and constructed images for the four different years mentioned above 

are given for all tested batch sizes. As shown in the table, consistent with the accuracy 

results presented above, high SSIM values, ranging from about 75% to 82%, are obtained 

for all years at a batch size of 64. Based on these results, we conclude that no clear pattern 

for the effect of the batch size on the MSE can be derived. 
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Table 6- 5: The model prediction performance for different batch sizes. 

Compared Images 

Batch Size 

8 16 32 

SSIM MSE SSIM MSE SSIM MSE 

Actual (1985) 
0.784 82,363 0.778 84,931 0.779 84,390 

Predicted @ ∆t =0  

Actual (1990) 
0.753 81,474 0.750 81,094 0.748 86,446 

Predicted @ ∆t =5  

Actual (1995) 
0.804 92,845 0.803 93,631 0.798 97,539 

Predicted @ ∆t =10  

Actual (2015) 
0.817 86,138 0.812 89,945 0.819 88,605 

Predicted @ ∆t =30  

 64 128 256 

 SSIM MSE SSIM MSE SSIM MSE 

Actual (1985) 
0.778 86,815 0.781 86,534 0.782 84,014 

Predicted @ ∆t =0  
Actual (1990) 

0.754 84,554 0.744 87,722 0.754 80,788 
Predicted @ ∆t =5  
Actual (1995) 

0.806 94,881 0.796 98,539 0.805 93,649 
Predicted @ ∆t =10  
Actual (2015) 

0.819 88,519 0.814 91,864 0.816 88,012 
Predicted @ ∆t =30  

 

6-5. Examining the Performance of Different Optimizers  

As mentioned earlier, the model performance is examined considering several 

widely-used optimizers for the CAE’s parameter estimation. In this set of experiments, 

dataset IV is used for model training and validation. In addition, the number of epochs and 

the batch size are set to be equal to 2,000 and 64, respectively. Table 6-6 provides a 

summary of the model performance results. As shown in the table, the Adamax optimizer 

recorded the highest accuracy value, 84.16%, and the lowest loss value, 0.0027.  

On the other hand, the SGD optimizer recorded the lowest accuracy value, 78.69%, 

and the highest loss value, 0.0070. For the run time, all optimizers recorded close run times 

with the exception of RMSprop, which recorded a relatively higher run time. Although 

Adamax, Nadam and Adam are among the highest performing optimizers in terms of 
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accuracy and loss values, their constructed images for the four prediction horizons 

mentioned above were found to include unexplained black spots. The size and number of 

these spots generally increases with the increase in the prediction horizon.  

Visually examining the constructed images using the RMSprop optimizer shows 

that they do not include such spots. As RMSprop gives the highest accuracy and the lowest 

loss after those of Adamax, Nadam and Adam, the RMSprop is adopted for model 

development.  

Figure 6-3 shows the convergence pattern for the accuracy and loss measures for 

the model training and validation, respectively, using the RMSprop optimizer. As shown 

in the figure, the accuracy systematically increases while the loss systematically decreases 

with the number of epochs. As expected, the validation performance is lower that of the 

training performance. 

Table 6- 6: The model performance for different optimizers 

Optimizer 
Training Validation Run Time 

(hrs.) Accuracy Loss Accuracy Loss 

SGD 0.7869 0.0070 0.7886 0.0069 43.79 

Adadelta 0.8164 0.0046 0.8181 0.0046 43.91 

Adamax 0.8416 0.0027 0.8274 0.0033 43.74 
Nadam 0.8300 0.0034 0.8227 0.0038 43.98 

Adam 0.8390 0.0029 0.8286 0.0034 43.49 

RMSprop 0.8292 0.0035 0.8192 0.0039 46.14 

Figure 6- 3: The convergence pattern of the model accuracy (left) and loss (right) for the 

RMSprop optimizer. 
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6-6. Effect of Data Size for Model Training  

In this set of experiment, we examine the effect of the training data size on the 

performance of the model. As mentioned earlier, four datasets with different sizes are 

considered. These experiments are performed using the RMSprop optimizer while fixing 

the number of epochs and the batch size at 2,000 and 64, respectively.  

Table 6-7 provides a summary of the performance measures for these experiments. 

As shown in the table, the model trained with dataset III produced the highest performance 

in terms of accuracy and loss values. For example, using the training data, an accuracy of 

83.47% and a loss of 0.003 are recorded using this dataset. Despite being the smallest, 

dataset I (basic dataset) is also shown to produce a model with comparable performance to 

the other datasets.  

Thus, while enlarging the data size by rotating the original images is a common 

practice used for training computer vision models (Stallkamp et al., 2012; Defferrard et al., 

2016; Masi et al., 2016), such practice does not seem to benefit the UGPM as no 

improvements in the model performance are recorded. One can also observe the increase 

in the run time associated with increasing the size of the used dataset. For example, run 

times of 20.30 hrs. and 23.60 hrs. are recorded for datasets I and III, respectively. The run 

time jumped to 40.00 hrs. and 46.14 hrs. using dataset II and IV, respectively. Based on 

these results, dataset III is used to develop the model. Figure 6-4 gives the convergence 

pattern for the accuracy and loss measures using dataset III. The convergence pattern is 

similar to those of the previous experiments presented above. 
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Table 6- 7: The model performance for different data sizes 

Dataset 

(size) 

Training Validation Run Time 

(hrs.) Accuracy Loss Accuracy Loss 

I – (2,376)      0.8269 0.0030 0.8127 0.0038 20.30 

II – (4,752)     0.8268 0.0035 0.8040 0.0042 40.00 

III – (2,776)      0.8347 0.0030 0.8151 0.0038 23.60 
IV – (5,152)         0.8292 0.0035 0.8192 0.0039 46.14 

 

Figure 6- 4: The convergence pattern of the model accuracy (left) and loss (right) using 

dataset III. 

6-7. Effect of Different Model Structures  

In this set of experiment, we investigated the performance of different model 

structures with respect to the number of convolution and deconvolution layers in the CAE 

architecture. Five model structures are compared as described in Table 6-8.  As shown in 

the table, the base model has five convolution and five deconvolution layers (see Table 4-

1) with a total number of parameters that is equal to 1,526,213. For both Model 1 and 

Model 2, four convolution and four deconvolution layers are considered (see Table 6-10 

and 6-11). Compared to the base model, CL5 and DL5 are eliminated in Model 1 resulting 

in 607,045 parameters, and CL1 and DL1 are eliminated in Model 2 resulting in 1,517,829 

parameters. Model 3 and Model 4 are constructed using three convolution layers and three 
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deconvolution layers (see Table 6-12 and 6-13). Models 3 includes convolution layers CL1, 

CL2 and CL3 and deconvolution layers DL1, DL2 and DL3 with a total number of 

parameters that is equal to 294,917.  Model 4 includes convolution layers CL1, CL3 and 

CL5 and deconvolution layers DL1, DL3 and DL5 with a total number of parameters that 

is equal to 1,055,877.  

These experiments are performed using the RMSprop optimizer for dataset III 

while fixing the number of epochs and the batch size at 2,000 and 64, respectively. The 

results of this set of experiments are given in Table 6-9. As shown in the table, despite the 

increase in the running time, increasing the number of layers significantly improves the 

model performance.  

The base model (Model 0) gives the highest performance with accuracy and loss 

measures of 0.8347 and 0.0030, respectively. The lowest performance is recorded for 

Model 3, which has 0.8186 accuracy and 0.0031 loss values. Model 4 recorded a good 

performance in terms of accuracy and loss values compared to the base model. However, 

examining the images constructed by both models, the base model produced images with 

higher quality than those produced by Model 4. 

Table 6- 8: Summary of five model structures with different number of layers 

Model 

No. of 

layers (E-

D) 

Used layer (kept) 
No. of 

parameters Encoder (Conv.) Decoder (Deconv.) 

Model 0 
Base Model  

5 See Table 4- 1 1,526,213 

Model 1 4 CL1, CL2, CL3, CL4 DL1, DL2, DL3, DL4 607,045 

Model 2 4 CL2, CL3, CL4, CL5 DL2, DL3, DL4, DL5 1,517,829 

Model 3 3 CL1, CL2, CL3 DL1, DL2, DL3 294,917 

Model 4 3 CL1, CL3, CL5 DL1, DL3, DL5 1,055,877 
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Table 6- 9: The performance of different model structures 

Model 
Training Validation Run Time 

(Hrs.) Accuracy Loss Accuracy Loss 

Model 0 
Base Model 

0.8347 0.0030 0.8151 0.0038 23.60 

Model 1 0.8194 0.0033 0.8061 0.0038 05.56 

Model 2 0.8324 0.0023 0.8198 0.0028 07.22 

Model 3 0.8186 0.0031 0.8135 0.0036 01.40 

Model 4 0.8319 0.0021 0.8235 0.0024 01.41 

Based on the results of the sensitivity analysis presented above, the best 

performance of the UGPM is achieved for the model when an architecture with five 

convolution layers and five deconvolution layers is considered. This model is trained using 

dataset III and the RMSprop optimizer with 2,000 epochs and 64 batch size. Figure 6-5 

shows the constructed images for the four prediction horizons mentioned above and 

compares them with their corresponding actual ones. 

 Assuming year 1985 as the base year, the model constructed images for horizons 

that are equal to zero, 5, 10 and 30 years, respectively.  For each pair of images, the SSIM 

and the MSE similarity measures are given. The values of the SSIM, which are greater than 

70% for all tested cases, suggest that the model is able to construct images that are close to 

the actual ones. Also, visually examining the constructed images, they capture the main 

features of their corresponding ground-truth ones. 
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Table 6- 10: Model 1 dimensions of the different layers of the encoder-decoder architecture 

 

  

Layer 
ID 

Layer type/ 
Activation 

Kernel 
size 

Strides Filter Spatial input 
size 

Encoder 
Input_1 (512x512) RGB image 

CL1 Conv2D-ReLU 3x3 1x1 16 512x512 

 MaxPooling2D 

CL2 Conv2D-ReLU 3x3 1x1 32 256x256 

 MaxPooling2D 

CL3 Conv2D-ReLU 3x3 1x1 64 128x128 

 MaxPooling2D 

CL4 Conv2D-ReLU 3x3 1x1 128 64x64 

 MaxPooling2D 

 FC1 

 Input_2 (Time) 
 FC0′ (time) 

 FC1′ (time) 

 Concatenate (FC1, FC1′ (time)) 

 FC2 

 Decoder 
DL4 Deconv2D-ReLU 3x3 1x1 128 32x32 

 UpSampling2D 

DL3 Deconv2D-ReLU 3x3 1x1 64 64x64 

 UpSampling2D 

DL2 Deconv2D-ReLU 3x3 1x1 32 128x128 

 UpSampling2D 

DL1 Deconv2D-ReLU 3x3 1x1 16 256x256 

 UpSampling2D 

 Output (512x512) RGB image 
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Table 6- 11: Model 2 dimensions of the different layers of the encoder-decoder architecture 

 

  

Layer 
ID 

Layer type/ 
Activation 

Kernel 
size 

Strides Filter Spatial input 
size 

Encoder 
Input_1 (512x512) RGB image 

CL2 Conv2D-ReLU 3x3 1x1 32 256x256 

 MaxPooling2D 

CL3 Conv2D-ReLU 3x3 1x1 64 128x128 

 MaxPooling2D 

CL4 Conv2D-ReLU 3x3 1x1 128 64x64 

 MaxPooling2D 

CL5 Conv2D-ReLU 3x3 1x1 256 32x32 

 MaxPooling2D 

 FC1 

 Input_2 (Time) 
 FC0′ (time) 

 FC1′ (time) 

 Concatenate (FC1, FC1′ (time)) 

 FC2 

 Decoder 
DL5 Deconv2D-ReLU 3x3 1x1 256 16x16 

 UpSampling2D 

DL4 Deconv2D-ReLU 3x3 1x1 128 32x32 

 UpSampling2D 

DL3 Deconv2D-ReLU 3x3 1x1 64 64x64 

 UpSampling2D 

DL2 Deconv2D-ReLU 3x3 1x1 32 128x128 

 UpSampling2D 

 Output (512x512) RGB image 
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Table 6- 12: Model 3 dimensions of the different layers of the encoder-decoder architecture 

 

  

Layer 
ID 

Layer type/ 
Activation 

Kernel 
size 

Strides Filter Spatial input 
size 

Encoder 
Input_1 (512x512) RGB image 

CL1 Conv2D-ReLU 3x3 1x1 16 512x512 

 MaxPooling2D 

CL2 Conv2D-ReLU 3x3 1x1 32 256x256 

 MaxPooling2D 

CL3 Conv2D-ReLU 3x3 1x1 64 128x128 

 MaxPooling2D 

 FC1 

 Input_2 (Time) 
 FC0′ (time) 

 FC1′ (time) 

 Concatenate (FC1, FC1′ (time)) 

 FC2 

 Decoder 
DL3 Deconv2D-ReLU 3x3 1x1 64 64x64 

 UpSampling2D 

DL2 Deconv2D-ReLU 3x3 1x1 32 128x128 

 UpSampling2D 

DL1 Deconv2D-ReLU 3x3 1x1 16 256x256 

 UpSampling2D 

 Output (512x512) RGB image 
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Table 6- 13: Model 4 dimensions of the different layers of the encoder-decoder architecture 

 

Layer 
ID 

Layer type/ 
Activation 

Kernel 
size 

Strides Filter Spatial input 
size 

Encoder 
Input_1 (512x512) RGB image 

CL1 Conv2D-ReLU 3x3 1x1 16 512x512 

 MaxPooling2D 

CL3 Conv2D-ReLU 3x3 1x1 64 128x128 

 MaxPooling2D 

CL5 Conv2D-ReLU 3x3 1x1 256 32x32 

 MaxPooling2D 

 FC1 

 Input_2 (Time) 
 FC0′ (time) 

 FC1′ (time) 

 Concatenate (FC1, FC1′ (time)) 

 FC2 

 Decoder 
DL5 Deconv2D-ReLU 3x3 1x1 256 16x16 

 UpSampling2D 

DL3 Deconv2D-ReLU 3x3 1x1 64 64x64 

 UpSampling2D 

DL1 Deconv2D-ReLU 3x3 1x1 16 256x256 

 UpSampling2D 

 Output (512x512) RGB image 
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Figure 6- 5: Comparison between the actual image and the predicted (constructed) images for different prediction horizons considering 

year 1985 as the base year.
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6-8. Summary 

Based on the results of the sensitivity analysis presented in this chapter, the best 

performance of the UGPM is achieved for the model when an architecture with five 

convolution layers and five deconvolution layers is considered. This model is trained using 

dataset III and the RMSprop optimizer with 2,000 epochs and 64 batch size. The values of 

the SSIM, which are greater than 70% for all tested cases, suggesting that the model is able 

to construct images that are close to the actual ones. Also, visually examining the 

constructed images, they capture the main features of their corresponding ground-truth 

ones.  
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Chapter 7  

 

MODEL APPLICATION FOR THE DALLAS-FORT WORTH REGION   

 

 

7-1. Introduction 

In this chapter, we present the results of applying the model presented above to 

study urban growth in the DFW area and two of its fast-growing counties (Colling County 

and Denton County). In addition to developing a model for the entire DFW (i.e., using the 

satellite images for the entire DFW area for model training and validation), two other 

models are developed. The first model covers the southwest part of Collin County while 

the second model covers most of Denton County. These two models are developed using 

the settings defined in chapter 6 (CAE model with five convolution and five deconvolution 

layers, RMSprop optimizer, dataset III, 2000 epochs and 64 batch size). Also, they were 

investigated more by using two cases: (1) with Transfer Learning (TL) and (2) without 

Transfer Learning (TL). In addition, these models are used to predict the urban growth 

pattern in their corresponding areas. We validated the output of growth pattern predicted 

through the developed models, by comparing it against the growth pattern predicted by the 

North Central Texas Council of Government (NCTCOG).  

This chapter is organized as follows. Section 7-2 describes the model development 

effort for Collin County model and Denton County model. Section 7-3 presents the 

validation of the result of the UGPM with North Central Texas Council of Government 

(NCTCOG). Finally, Section 7.4 gives a summary of the chapter. 
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7-2. Model Development for Collin County and Denton County  

Two cases are considered for developing these two modes: (I) with TL and (II) 

without TL. In the first case, the parameter values obtained for the DFW model are used as 

the initial values for the parameters of the models developed for Collin County and Denton 

County, respectively. In addition, the parameter values obtained for the Collin County 

model are used as the initial values for the parameters of the models developed for Denton 

County, and vice versa. In the second case, the model parameters are initialized randomly. 

Table 7- 1: The accuracy and loss recorded at the start and the end of the training process 

Area Model 

Model 
Collin County Denton County 

At the start of the 
training process 

At the end of the 
training process 

At the start of the 
training process 

At the end of the 
training process 

Accuracy Loss Accuracy Loss Accuracy Loss Accuracy Loss 

Collin  Without TL -- -- -- -- 0.6248 0.0126 0.7996 0.0027 
With TL -- -- -- -- 0.7215 0.0073 0.7955 0.0098 

Denton  
Without TL 0.5941 0.0147 0.7656 0.0042 -- -- -- -- 
With TL 0.6360 0.0117 0.7540 0.0049 -- -- -- -- 

DFW Without TL 0.5941 0.0147 0.7656 0.0042 0.6248 0.0126 0.7996 0.0027 
With TL 0.6484 0.0112 0.7592 0.0046 0.7212 0.0069 0.7953 0.0028 

 

Table 7-1 gives the values of the accuracy and loss measures recorded at the start 

and at the end of the training process with and without TL for the Collin County model and 

the Denton County model, respectively. As shown in the table, the adopted TL strategy has 

not improved the performance of the models developed for the two counties. While the 

transferred parameters resulted in a higher accuracy and less loss at the beginning of the 

training process for both models, these initial improvements are diminished by the end of 

the training process. The case without TL resulted in a slightly higher accuracy and less 

loss compared to those obtained in the case with transfer learning. This exercise is an 

example of negative transfer in which the model performance decreases when TL is used. 
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Hence, the models developed without TL are applied for predicting the growth in their 

corresponding counties. 

Similar to the DFW model evaluation presented above, the performance of these 

two models are evaluated by comparing their constructed images with the corresponding 

actual images for different past years. Table 7-2 gives the SSIM and the MSE values 

resulting from comparing the actual images with their corresponding constructed images 

using the DFW model, the Collin County model and the Denton County model, 

respectively. The results are given for years 1985, 1990 and 2015. As shown in the table, 

all models recorded SSIM values that are greater than 70%. In addition, the model for 

Denton County recorded a relatively higher SSIM values that are greater than 80%. 

Table 7- 2: The prediction performance of the three developed models 

Compared Images DFW Collin County Denton County 
SSIM MSE SSIM MSE SSIM MSE 

Actual (1985) 0.748 97,855 0.753 81,061 0.814 91,800 Predicted @ ∆t =0  
Actual (1990) 0.718 89,490 0.707 82,425 0.807 70,595 Predicted @ ∆t =5  
Actual (1995) 0.760 97,982 0.768 91,698 0.822 85,212 Predicted @ ∆t =10  
Actual (2015) 0.794 90,246 0.764 97,153 0.825 85,076 Predicted @ ∆t =30  

 
These three models are used to predict the urban growth pattern in their 

corresponding areas. Considering year 2018 as the base year, the urban growth patterns for 

target years 2021, 2023, and 2025, respectively, are obtained by constructing an image for 

each target year. While the model can cover longer horizons, the dataset prepared for model 

training (combinations of !", !#, ∆%) is expected to have more observations with small ∆% 

values compared to those obtained for large ∆% values. Thus, we select a prediction horizon 
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∆% = 7 is considered as it captures the tradeoff between using longer prediction horizons 

and having enough observations in the data to adequately learn the growth pattern for that 

horizon. Figures 7-1 to 7-3 show the constructed images for the three considered target 

years for DFW, Collin County and Denton County, respectively. In addition, to illustrate 

the growth in each area, the figures depict the difference between each constructed image 

and the image of the base year. These images give the locations of the growth predicted by 

the model for each target year.  

Several observations can be made based on the obtained predictions. First, the 

amount of growth is proportional to the length of the prediction horizon. As the length of 

the prediction horizon increases, more growth is depicted compared to the base year. This 

pattern is observed for all three studied areas, which indicates that they will be subject to a 

steady growth during the next few years. Second, the models are able to determine the 

boundaries of the developed region(s) within each studied area, and hence the growth is 

predicted to occur mostly outside these core regions. In addition, the models are able to 

identify areas that are naturally ineligible for development such as lakes. For the DFW 

area, all lakes are identified as no-growth areas. Third, each study area has its unique 

growth pattern. For example, for the entire DFW area, more growth is observed to occur 

on the north side and northeast sides compared to that occurring in the south side of the 

region. One can expect this predicted growth pattern considering the very slow 

development historically observed in the area south of the Trinity River.  

For Collin County, it falls on the northern borders of the City of Dallas (just 

northeast of Dallas County), where most of its southeast corner (i.e., the border with Dallas 

County) is well-developed. Thus, the growth is predicted to occur mostly in the north and 
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northeast directions. Finally, Denton County is located northwest of Dallas County. The 

growth for Denton County is predicted to occur in the south and the east sides of the county. 

The growth direction tends to connect the developed area in Denton County with those in 

Dallas County to the southwest corner of Collin County, respectively. 
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Figure 7- 1: Urban growth prediction for the DFW area after three, five, and seven years considering 2018 as the base year. 
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Figure 7- 2: Urban growth prediction for Collin County after three, five, and seven years considering 2018 as the base year. 
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Figure 7- 3: Urban growth prediction for Denton County after three, five, and seven years considering 2018 as the base year. 
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7-3. Validation the Model Result with North Central Texas Council of Government 

(NCTCOG) 

To further validate the accuracy of the growth pattern predicted using the developed 

models, their output is compared against the growth pattern predicted by North Central 

Texas Council of Government (NCTCOG), the metropolitan planning organization for the 

DFW area. The prediction provided by NCTCOG is in the form of population density 

maps. Figure 7-4 presents the results of this comparison for Collin County, while Figure 

7-5 presents the results for Denton County. 

To perform this comparison, we first identify the zones in both counties that are 

predicted to experience growth in target year 2025. These zones are then superimposed on 

the corresponding population density map obtained from NCTCOG. If the superimposed 

zones are characterized by a significant change in the population density, it implies that the 

developed UGPM models are producing consistent results with NCTCOG growth 

prediction. Of course, one should not expect perfect match between the prediction pattern 

produced by the model and those obtained from NCTCOG, which themselves need to be 

verified.  

For example, eleven zones with notable growth are identified for Collin County. 

Superimposing these zones on the population density maps of Collin County shows that 

most of these zones (4, 5, 7, 8, 10 and 11) are falling in areas that are predicted to also have 

a growth in their population densities. Similarly, for Denton County, eleven zones with 

significant growth are identified based on the results of the developed UGPM. Several of 

these zones (2, 3, 5, 6, 8, 9, and 10) have shown a predicted growth pattern that consistent 

with NCTCOG’s growth prediction. These results illustrate that the approach introduced 
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Constructed image 
for target year 2025 

Difference between target 
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Population Density 
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in this research is an effective approach to develop UGPMs with high fidelity as it 

overcomes limitations of most existing approaches that require intensive data and model 

specification effort to obtain good results. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7- 4: Model validation for Collin County by comparing the predicted urban growth 

with NCTCOG’s population growth prediction. 
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Figure 7- 5: Model validation for Denton County by comparing the predicted urban growth 

with NCTCOG’s population growth prediction. 

7-4. Model Limitations 

Several limitations could be identified for the model based on its application results 

presented above. First, the value of the results depends mainly on the quality of the satellite 

images that are used to cover the horizon of interest. For example, the satellite image should 

Constructed image 
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Difference between target 
year 2025 and base year 2018 
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be clear to show the contrast between the undeveloped and developed areas. Failing to 

clearly present that contrast could affect the quality of the prediction. In addition, we have 

noticed inconsistency in the color pattern of the satellite images recorded in different 

periods (e.g., two consecutive month). This could be due to the time of day and/or the 

prevailing weather conditions at which the satellite image was recorded. This inconsistency 

in the pixel colors could negatively impact the model’s ability to learn the land cover 

change. Of course, one expects these issues to be addresses with advancement in high 

resolution cameras used for satellite imaging and the availability of high-quality aerial 

photos.    

Second, the variety of the color of the pixels in a monthly satellite image. This 

variety of the color from image to image, effect on the prediction results. For example, 

when downloading the satellite images for monthly bases with RGB color, some of the 

images have different pixel colors. This depends on the time that the satellite recorded the 

images (in the early morning or in the evening). In addition, some of these images are not 

only diverse in pixel color, but they are considered unclear in cases where they were 

recorded on a cloudy day. 

Third, similar to most image processing applications, there is a trade off between 

the resolution of the images used to train model and the quality of the results. The use of 

high-resolution images is expected to provide superior prediction quality. However, using 

the high-resolution images would require high computational resources, which might not 

be available. In our study, we started using the original satellite images with a resolution 

of 15,000 × 12,000. However, these high-resolution images could not be used directly 

considering the limited memory of the used HPC platform. Thus, the resolution of these 
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satellite images was gradually reduced to a resolution of 512 × 512. The computational 

platform was able to process these images with a training time of repetitive use of process 

about two days. 

Finally, the quality of the prediction is expected to be higher for shorter horizons 

compared to that of longer horizons. The reason is that the dataset includes more training 

examples for short horizons than for long horizons. Based on our analysis, the best 

prediction results are obtained for horizons that are in the range of one quarter to one third 

of the time difference between the oldest and the most recent image in the training data set. 

For instance, the images in the dataset used in the application described above are recorded 

between 1985 and 2018.  For this case and based on the conducted validation, the highest 

quality prediction results are obtained when a horizon in the range of 7 years is considered.     

7-5. Summary 

The chapter presents the results of applying the model presented above to study 

urban growth in the DFW area and two of its fast-growing counties (Colling County and 

Denton County). In addition to developing a model for the entire DFW (i.e., using the 

satellite images for the entire DFW area for model training and validation), two other 

models are developed. The first model covers the southwest part of Collin County while 

the second model covers most of Denton County. Several observations can be made based 

on the obtained results: (1) the amount of growth is proportional to the length of the 

prediction horizon for all three studied areas, (2) the models are able to determine the 

boundaries of the developed region(s) within each studied area, (3) unique growth pattern 

has observed in each study area. For example, DFW area observed more growth occur on 
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the north side and northeast sides compared to that occurring in the south side of the region. 

In addition, to validate our developed model, we compared our results of the growth pattern 

with the growth pattern predicted by North Central Texas Council of Government 

(NCTCOG). These results illustrate that the approach introduced in this research could be 

effective in developing UGPMs.  
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Chapter 8  

 

 MODEL APPLICATION FOR THE MIDDLE EAST AND NORTH AFRICA 

(MENA) REGION  

 

8-1. Introduction  

Many urban areas around the globe have reported significant growth rates over the 

past few decades. The average urbanization rate is estimated to reach more than 50% in 

most cities by 2050 (Zhou and Chen, 2018). This high rate of urbanization presents 

substantial stresses to these cities’ ecological and financial resources as well as the overall 

well-being of their residents. Therefore, there are increasing calls to study urban growth, 

especially in developing countries where this growth is less controlled and could be 

associated with many undesirable consequences including the formation of slums, high 

unemployment rates, lack of infrastructure services (e.g., clean water, sewage, 

transportation, etc.), and vulnerability to epidemic diseases, to name a few.  

This chapter presents the application of the UGPM presented in Chapter 4 for five 

MENA cities. As mentioned earlier, the purpose of urban growth studies is to identify 

locations and directions of potential growth, assess infrastructure and public service needs, 

and ensure the integration of new developments with the existing city structure. In addition, 

urban growth has been studied for deriving effective policies that help achieve sustainable 

and economically-sound growth patterns. 
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The model is applied to predict the urban growth of five MENA cities including 

Dubai (United Arab Emirates (UAE)), Cairo (Egypt), Doha (Qatar), Casablanca 

(Morocco), and Riyadh (Kingdom of Saudi Arabia (KSA)). These selected cities vary in 

terms of their size, population, historical heritage, level of control applied to their growth, 

geographical locations, complexity of their structure, and socio-economic characteristics. 

 For example, Cairo is one of the oldest and largest cities in the MENA region. 

Founded in 969 AD, the city is located at the fork of the Nile’s Delta which expands over 

175 square miles with a total population of about 20.5M. On the other side of the spectrum, 

the City of Doha is located on the Gulf coast, which was founded in 1820 and declared as 

Qatar’s capital in 1971, and has an area of 51 square miles with a population that is close 

to 0.65M. Egypt and Qatar differ significantly in terms of their GDP. While an average 

GDP per capita of about $2,600 is reported for Egypt, Qatar’s average GDP per capita is 

near $70,400 (Plecher, 2019).  

This chapter is organized as follows. Sections 8-2 and 8-3 provides an overview of 

the MENA region and the list of cities selected for this study. Section 8-4 reviews the urban 

growth studies for selected MENA cities. The application of the model to predict the 

growth pattern for the selected MENA cities is then presented in Section 8-5. Finally, 

Section 8-6 concludes with a discussion on best practices to achieve sustainable urban 

growth for the MENA region. 

8-2. Urban Growth Acceleration in the MENA Region 

The Middle East and North Africa (MENA) is one particular region that is 

characterized by significant urban growth during the past few decades (Gouda et al., 2016). 
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MENA’s total population has grown from around 100 million in 1950 to nearly 578 million 

in 2018, with around 70% of this population concentrated in urban areas (Statista Research 

Department, 2020).  

Several factors have contributed to this expedited urban growth in the MENA 

region. For example, most MENA countries very high birth rates compared to the rest of 

the world. The birth rates of most MENA countries are in the upper 20s per 1000 capita, 

compared to less than 10 births per 1000 capita in most western European countries. In 

addition, intensive migration from rural to urban areas has occurred in most MENA cities 

over the years. 

The modernization of the agriculture sector has pushed for massive population 

movement seeking alternative economic opportunities in urban areas. Furthermore, the 

political instability followed the Arab Spring events in 2011 have also forced migration 

from war zones in countries like Iraq, Syria, Libya and Yemen to safer cities in the region. 

For example, the City of Amman, Jordan is estimated to host about 0.40M refugees from 

Syria and Iraq in addition to approximately 0.30M Palestinian refugees (ICMPD, 2018). 

Finally, since the boom of the oil industry in the early 1970s, cities in the Gulf countries 

have attracted emigrant workers. It is estimated that the Gulf countries host about 

5.0M expatriate workers from other countries including Egypt, Pakistan, India, Philippines 

and Bangladesh.  

With this unpresented increase in the urban population in the MENA region, local 

authorities in most MENA cities are struggling to adequately plan for sustainable urban 

growth and provide efficient infrastructure expansion. Unfortunately, most cities in the 
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region are suffering many of the above-mentioned undesirable consequences of such 

uncontrolled and unsustainable growth.      

Considerable effort has been devoted to developing sustainable urban growth plans 

for cities in the MENA Region (e.g., Hashem and Balakrishnan, 2015; Alqurashi et al., 

2016; Mallouk et al., 2019; Aldogom et al., 2019; Ibrahim et al., 2019; Altuwaijri et al., 

2019). A main requirement for developing these plans is to obtain high-fidelity prediction 

of the growth pattern in terms of its direction and intensity under different growth 

management scenarios. While several urban growth prediction models (UGPM) have been 

developed during the past two decades as presented in Chapter 2, most models are 

assuming controlled growth environments where strict regulations and enforcement are 

maintained.   

This assumption limits the suitability of these models to study urban growth of most 

MENA cities characterized by uncontrolled growth. In addition, in order to properly 

calibrate and validate these models, they require intensive amount of historical land use, 

biophysical and socioeconomic data that extends over a relatively long horizon. Obtaining 

such historical data is a challenge in most countries in the MENA region. Therefore, 

UGPMs adopted to study urban growth in the region should be capable of providing 

accurate prediction results with minimum data requirements.  

8-3. Overview of the Selected Cities  

In this section, we provide an overview of the five MENA cities considered in this 

study. For each city, we present a brief historical background, growth trends and basic 

demographic and socio-economic data contributing to the growth. Figure 8-1 gives a map 



 

 

79 

 

showing the location of these cities in the MENA area along with a summary of their 

data.     

 

Figure 8- 1: The five MENA cities considered in this study.  

(Source: multiple resources as given in the text) 

8-3-1. Dubai, UAE 

Located on the coast of the Persian Gulf in the Arabian Peninsula, Dubai is UAE's 

second-largest city after Abu Dhabi and the most crowded city in UAE (Held and 

Cummings, 2018). The city was first established in the early years of the nineteenth 

century (Ulrichsen, 2016). Modern development of the city started with the oil boom in 

1960’s. The city covers about 1,588 square miles, representing 5.0% of the total area of the 

UAE. With an average GDP per capita of about $39,700, the city is one of the richest cities 

in the region. Dubai is a perfect example of rapidly developing cities. The city’s population 

has grown significantly over the past four decades. In 1984, the total population was only 

325,000 persons, and jumped to more than 2.8 million in 2019 see Table 8- 1.  
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The city was gradually transformed from a small cluster of settlements on the 

Arabian Gulf into a modern multicultural city with a state-of-the-art infrastructure and 

commercial hubs. According to Elessawy (2017), the progress of Dubai’s urban 

development could be divided into four different periods: (1) urban origin before 1971, (2) 

the planned suburban growth from 1971 to 1984, (3) the modern construction of Dubai 

from 1985 to 2003, and (4) mega city formation starting in 2004.  

In the first period, Dubai Municipality was established and started to form the roads 

and the town center following the city’s first master plan. During this period, growth has 

sprawled incoherently on the outer edges of Dubai specifically along the West roads toward 

the City of Abu Dhabi and the East roads towards the City of Sharjah. A new master plan 

was developed for the second period followed by enormous expansion, where the total 

built-up area increased from 15.44 to 42.08 square miles (Elessawy, 2017). In the 

beginning of the third period, a strategic plan was created to guide the development of the 

city into the 21st century. The plan included the construction of mega projects converting 

the city into a large metroplex with city-of-cities structure, where the city’s total built-up 

area expanded to 377 square miles. The current stage focuses on the upgrade of the city’s 

central business district (CBD) and the construction of new suburbs. Enriching the city’s 

skyline, several hotels, residential and financial tower buildings have been constructed, 

which contribute significantly to the city’s economic and tourism activities. Peripheral 

growth also continued to occur, connecting the city to adjacent emirates such as Sharjah 

and Ajman to the east and Abu Dhabi to the west. 
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8-3-2. Cairo, Egypt 

Cairo is Egypt's capital and considered the most significant urban center in Africa 

due to its long history and large population. The city is located at the fork of the Nile’s 

Delta north of Egypt. The city covers about 1,191 square miles on the east and west banks 

of the River Nile and is surrounded by desert hills to the east and west (Robaa, 2003). As 

one of the most crowded cities in the world, Cairo's current population is estimated at 

about 21M with a current growth rate close to 2%. Modern Cairo was founded as a capital 

by the Fatimid dynasty in 969 CE, and since then the city has undertaken several stages 

towards urbanization (AlSayyad, 2013). 

The urban development of Cairo was based on the idea of asserting its significance 

of the city and developing a highly accessible capital. As such, the construction of 

highways and bridges in the city center allowed smooth connection between the new 

housing areas and the city's commercial center. In addition, new highways were 

constructed along the east-west axis which serve the city’s central business district and 

connect the airport to the pyramids of Giza.  

To accommodate the significant increase in the population, a plan was envisioned 

to develop new societies in the dessert surrounding the old city. The government 

established several new towns in the desert to facilitate urban growth outside Cairo and its 

agricultural periphery. However, some of these towns failed to attract considerable 

population because they lacked the necessary services and infrastructure. In the last two 

decades, private developers were handed over the business of new residential 

developments in Cairo and the new surroundings towns. However, private developers 
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focused on building new compounds that serve mainly the high-income sector which 

represents a small percentage of the population. Most recently, the government started the 

construction of a new administrative capital in the desert east of Cairo. The new city is 

expected to host the government offices and most of the professional and financial services. 

The dynamics of Cairo in light of the interaction between the old and the new capitals are 

to be revealed in the coming years.    

8-3-3. Doha, Qatar 

Since the establishment of the State of Qatar in 1971, Doha was declared as the 

country’s capital and quickly became the center of most its economic and cultural 

activities. The city occupies about 51 square miles on the east coast of Qatar Peninsula. It 

has gradually transformed from a small pearling and fishing settlement to a modern urban 

center. Doha's population has grown significantly over the past few decades reaching near 

0.65 million capita in 2019, compared to about 50,000 in 1971. The city is also the 

destination of a significant number of foreign workers, representing about 40% of the total 

population. 

In the early stages of the city, Doha's urban development was based on transit-

oriented development supported by a streetcar and railway system (Zaina et al., 2016). 

With the boom of the oil and gas industry, more dependence on the private car has been 

observed, resulting in significant sprawl to accommodate the high rate of population 

growth. The country’s strong economy enabled the construction of new shopping malls, 

neighborhoods, and other facilities that have entirely reshaped Doha into a modern 
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capital (Azzali and Tomba, 2018). Mega infrastructure projects are undergoing as the 

country is scheduled to host the FIFA’s World Cup activities in 2022.  

8-3-4. Casablanca, Morocco 

A coastal city located on the Atlantic Ocean, Casablanca is one of the oldest cities 

in North Africa. The city occupies about 85 square miles in western Morocco with a 

population that is close to 3.8 million capita. The city is known as Morocco’s second capital 

and a significant tourist attraction. For several decades, the city continued to operate as a 

small-sized harbor with the population gradually stretching due to the improved residential 

homes and increased economic opportunities.  

The first master plan for promoting the urban development of the city was 

developed soon after the French occupation in 1907 (Folkers and Buiten, 2019). The plan 

consisted of two main phases. The first phase focuses on reestablishing the city as a great 

port situated near its traditional core. The later phase suggested establishing a modern city 

to be developed around the city core. In the past few decades, the city has experience 

significant population growth resulting mainly from migration from surrounding farming 

areas.  

With an estimated average GDP per capita of about $3,400 by the end of 2020, the 

government has been struggling to develop the city to cope with this significant population 

increase. Despite effort to maintain controlled zoning practice to prevent undesirable 

growth patterns, the City of Casablanca has seen the formation of several slum areas 

occupied mainly by migrated agricultural labor from the mountains area. In recent years, 

the government has attempted to stop further growth of these slums by constructing large-
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scale social housing projects, offered to the residents of these slums and other low-income 

groups. In addition, the private sector started to become involved in the city development 

with several ongoing projects to remodernize the traditional city core by adding affordable 

apartment complexes.  

8-3-5. Riyadh, KSA 

Riyadh, the capital of KSA, is located in the middle of the Arabian Peninsula. 

Similar to most cities in the rich gulf countries, Riyadh is one of the few cities in the world 

whose urban developments have transformed significantly over a short period. The city 

evolved from a small desert village in the beginning of the 19th century to a large 

metropolitan area with more than seven million residents. Since the establishment of the 

Kingdom as an independent state in 1932, the city has been used as the government 

headquarters and declared as the Kingdom’s new capital.  

Taking advantage of the country’s oil-trading wealth, the government has 

implemented significant projects to modernize the city, focusing on infrastructure 

development. In early stages, the city was growing in all directions with expedited 

establishment of neighborhoods of single-family houses. A master plan was later 

developed for the city suggesting the establishing a north-south axis to allow for future 

growth (Elsheshtawy, 2019). The plan did not consider public transportation, assuming full 

dependence on private vehicles as the sole mode of transportation. The city continued to 

grow in all directions, suffering from an uncontrolled urban sprawl pattern. With the 

increasing traffic congestion problem, the city pushed for more investment in public 
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transportation. Projects are underway to construct the city’s metro network to reduce 

dependence on the private car and the associated congestion problem. 

Table 8-  1: The Statistical information for the five MENA cities 

  

No. City
Year

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

1 Dubai, UAE

GDP per 
capita $39,700

Area 1,588 mi²
Population 325 345 366 391 416 444 473 504 537 572 610 650 694

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Population 742 793 848 907 970 1,037 1,109 1,186 1,268 1,365 1,478 1,600 1,732

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Population 1,875 1,970 2,070 2,175 2,285 2,401 2,523 2,651 2,785 2,833

2 Cairo, Egypt

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
GDP per 

capita $2,600

Area 1,191 mi²
Population 8,123 8,328 8,539 8,826 9,169 9,523 9,892 10,275 10,674 11,087 11,516 11,962 12,426

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Population 12,773 13,051 13,335 13,626 13,922 14,225 14,534 14,851 15,174 15,504 15,842 16,187 16,539

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Population 16,899 17,267 17,643 18,027 18,419 18,820 19,230 19,648 20,076 20,485

3 Doha, Qatar

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
GDP per 

capita $70,400

Area 50.97 mi²
Population 196 208 218 222 226 230 235 239 243 247 252 256 261

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Population 267 277 287 298 309 320 332 348 373 400 429 460 493

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Population 524 536 549 562 576 590 604 619 633 637

4 Casablanca, 
Morocco

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
GDP per 

capita $3,400

Area 84.94 mi²
Population 2,355 2,406 2,459 2,513 2,568 2,624 2,682 2,741 2,801 2,862 2,925 2,963 2,997

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Population 3,031 3,065 3,099 3,134 3,170 3,205 3,242 3,278 3,307 3,335 3,362 3,391 3,419

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Population 3,447 3,476 3,505 3,534 3,563 3,593 3,623 3,653 3,684 3,716

5 Riyadh, KSA

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
GDP per 

capita $23,500

Area 739 mi²
Population 1,447 1,566 1,695 1,834 1,985 2,149 2,325 2,517 2,724 2,845 2,938 3,035 3,135

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
Population 3,238 3,344 3,454 3,567 3,684 3,806 3,931 4,060 4,252 4,471 4,700 4,868 5,041

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Population 5,220 5,406 5,599 5,798 6,004 6,218 6,440 6,669 6,907 7,071
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8-4. A Review of Urban Growth Studies Conducted for the Selected MENA Cities  

Dubai: Several recent studies have focused on studying the progression of the City 

of Dubai. These studies incorporate both remote sensing (RS) and GIS (Alghais, 2018). For 

example, Khalil et al. (2017) adopted a technique to assess the city’s infrastructural growth 

by analyzing a sequence of satellite images. Elmahdy and Mohamed (2018) proposed a 

low-cost remote sensing (RS) approach to analyze the land use and land cover (LULC) 

changes. Their methodology adopted an image difference procedure to improve the 

categorization of maps and aid the process of growth monitoring and evaluation. The study 

predicted a considerable reduction in the vegetation cover in the city as a result of 

urbanization.  

Adopting a methodology similar to the one presented in Khalil et al. 

(2017), Aldogom et al. (2019) employed multiple time series Landsat images to discover 

and evaluate the city’s development profile. The methodology consists of three main steps. 

The first step involved classification algorithms in conjunction with variation detection, 

segmentation, and extraction to achieve LULC footprints. In the second step, Shannon's 

entropy is used to predict if the city is compacting or sprawling. In the third step, the CA-

Markov approach was applied to simulate the city’s future expansion. The study reported 

a significant evolution in the urban fabric of the city, estimating a three percent expansion 

by 2030 at the expense of green areas and open spaces. Similar results were reported in the 

model adopted by Abulibdeh et al. (2019). 

Cairo: Several studies have focused on studying Cairo’s growth focusing on 

developing sustainable growth plans for the city. The work of Abdalmalak et al. 
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(2016) and Midekisa et al. (2017) discuss the derivers of uncontrolled growth in Cairo and 

the need to address them for sustaining and protecting surrounding farming spaces. Osman 

et al. (2016) evaluated policies to preserve agricultural space on the north and the south 

borders of the city. They employed the SLEUTH model to analyze the influence of the 

policies on land use. The model provided two conclusions: a) a compact growth approach 

could pose minimal effect on the agricultural space, and b) the city will continue to grow 

considering its historical expansion trends.  

In a subsequent effort, Osman et al. (2019) developed a modeling framework that 

integrates Markov Chain (MC), CA, and Logistic Regression (LR). The framework aimed 

at enhancing the value of spatiotemporal models and extrapolations of urban sprawl and 

land utilization variations. The framework predicted a continuous loss of agricultural land, 

and the development of future urban settlement along major roads.  

Ibrahim et al. (2019) developed PredictSLUMS, an ML-based model developed to 

identify and forecast the expansion of unofficial settlements in Cairo. PredictSLUMS 

integrates Multinomial Logistic Regression (MLR) and ANN techniques. The model 

displayed a high legitimacy and precision in identifying and forecasting informal growth 

within Cairo. 

Doha: Several models have been developed to study the process of urbanization 

and inform sustainable land use management and policymaking for the City of Doha. These 

studies emphasized that the expedited logistic and infrastructure projects within the city 

significantly affected its urban fabric as a result of poor realization of master plans and land 

utilization strategies (Mansour et al., 2020; Verbeek, 2017). Shandas et al. 
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(2017) developed a model to evaluate the opportunities for sustainable growth based on 

remote sensing data. They examined the pace, quality, and behavior of expansion. The 

outcome of their study suggested that the development patterns of Doha were equivalent 

to that of western cities. As such, urban planners need to evaluate if this growth pattern can 

be sustainable.  

The model developed by Makido et al. (2020), which is based on a mixture of 

spatial analysis, predicted that more than 20000 hectares of open space will experience 

urban developments. The study suggested that this scenario could significantly change the 

land utilization patterns and impact the overall environment quality of the city. Hashem 

and Balakrishnan (2015) proposed a model that is based on Markov process integrated with 

GIS and remote sensing to generate different scenarios of future LULC change in the city. 

The model predicted that the built-up areas will increase by about 20%, occurring in the 

urbanized open space within and around the city. 

Casablanca: Concerned by the city’s ongoing uncontrolled growth, several models 

have been developed to enable informed decision making by policymakers and 

planners (Kadhim et al., 2016; Buğday and Buğday, 2019). For example, Mallouk et al. 

(2019) developed an urban growth prediction model that is based on SLEUTH. The 

approach entails calibrating the model using satellite imagery. The result of the study 

predicted an increase in the urbanized space as a result of expanding the city’s port 

infrastructure.  

Saadani et al. (2020) developed a CA-based Markov Chain (CA-MC) approach to 

simulate the growth of Moroccan cities. The model combined CA-MC with Landsat images 
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to forecast LULC. The study reported that rapid urban growth did replace the agricultural 

spaces. The prediction outcome calls for the institution of novel environmental protection 

measures and the promotion of sustainable growth. 

Riyadh: Several models have been used to explain the growth pattern of the City 

of Riyadh. For instance, Al-Ahmadi et al. (2016) presented an improved CA-based model 

referred to as Fuzzy Cellular Urban Growth Model (FCUGM) that incorporated a genetic 

algorithm (GA), parallel simulated annealing (PSA), and expert knowledge (EK). The 

outcome of this study suggested that a combination of GA and EK enhances the model’s 

prediction performance. 

 Alqurashi et al. (2016) used a simulation model that integrates the CA and MC 

techniques to predict the urban growth at years 2024 and 2034, respectively. Their model 

is claimed to offer a fundamental comprehension of historical, present, and future patterns 

of urban sprawl in the city. Al-Ahmadi (2018) modeled the expansion pattern and the 

derivers of urbanization in the City of Riyadh by incorporating GIS and Fuzzy sets. The 

results obtained by the model are intended to simulate the decision-making process utilized 

for zoning and defining land use structures.  

The study conducted by Altuwaijri et al. (2019) focused on predicting the growth 

of the city to year 2040 using the CA-MC model supported by GIS platform. The study 

predicted 38% increase in urban spaces during the next three decades. Finally, Alghamdi 

and Cummings (2019) used the high-resolution SPOT 5 images and developed a 

framework that integrates maximum likelihood and object-oriented categorization to assess 

land use variation between years 2004 and 2014. 
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8-5. Urban Growth Prediction for the Selected MENA Cities: Model Application  

This section presents the results of applying the ML-based urban growth prediction 

model described in Chapter 4 for the five selected MENA cities. We adopted the same 

model structure and hyperparameter values used for the DFW model (i.e., autoencoder with 

five convolution and five deconvolution layers, RMSprop optimizer, 2000 epochs, and 64 

batch size).  

The model is trained using a dataset obtained for each of the five cities. In other 

words, a sperate model is developed for each city using its satellite imagery dataset. To 

prepare the dataset for each city, a series of historical satellite images for that city is first 

collected. High resolution images became available starting in 1984 with the launching of 

Landsat 5 (U.S. Geological Survey, 2020). Thus, a past horizon that extends from 1985 to 

2019 is considered. The clearest image in each quarter of each year is obtained. In cases 

where there are no clear images (i.e., cloudy conditions) available for a quarter, an image 

from the next or previous quarters is borrowed for that quarter.  

Thus, four different streams of satellite images are obtained for each area. Each 

stream includes 35 images that represent the area’s year-to-year growth. Each stream 

resulted in 765 data records (i.e., combinations of !", !#, ∆%). Combining the four streams 

together, a total of 3060 data records are obtained for each city. This dataset is used for 

model training and validation with 80%-20% split. A high-performance computing (HPC) 

cluster with graphics processing capabilities is used to train the model. The cluster includes 

36 cores of NVIDIA P100 GPUs with 256 GB memory.  
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It is worth mentioning that the downloaded satellite images have a resolution of 

about 15,000x12,000. However, these high-resolution images could not be used directly 

considering the limited memory of the used HPC platform. The downsizing of the images 

is conducted in an iterative way. After several trials to examine the highest resolution that 

can be used, the resolution of the original images was reduced to 512x512. 

Table 8-  2: The model prediction performance for the five MENA cities 

MENA Cities Training Validation 
Accuracy Loss Accuracy Loss 

Dubai, UAE 0.9814 0.0016 0.9820 0.0017 

Cairo, Egypt 0.9467 0.0012 0.9468 0.0012 

Doha, Qatar 0.9663 0.0017 0.9665 0.0020 

Casablanca, Morocco 0.9419 0.0019 0.9382 0.0019 

Riyadh, KSA 0.9939 0.0010 0.9938 0.0010 

Dubai, UAE 

Cairo, Egypt 
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Figure 8- 2: The convergence pattern of the accuracy (left) and loss functions (right) of the 

model’s training and validation processes for the five MENA cities considered in this study. 

Doha, Qatar 

Casablanca, Morocco 

Riyadh, KSA 
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Figure 8- 3: Predicted urban growth of the City of Dubai for year 2026. 
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Figure 8- 4: Predicted urban growth of the City of Cairo for year 2026. 
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Figure 8- 5: Predicted urban growth of the City of Doha for year 2026. 
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Figure 8- 6: Predicted urban growth of the City of Casablanca for year 2026. 
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Figure 8- 7: Predicted urban growth of the City of Riyadh for year 2026. 
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Figure 8-2 illustrates the convergence pattern of the accuracy and loss functions for 

the training and validation processes of the model developed for each city. As illustrated 

in the figure, all five models showed systematic conversion patterns of their accuracy and 

loss functions. A summary of the values of these functions at convergence is also given in 

Table 8- 2. As shown in the table, all models converge at accuracy values higher than 

94.00% and loss value that are less than 0.002. For example, the City of Riyadh recorded 

the highest accuracy value at 99.39%, and the lowest loss value at 0.001. On the other hand, 

the City of Casablanca recorded the lowest accuracy value at 94.19%, and the highest loss 

value at 0.0019.  

Considering year 2019 as the base year, the model is used to predict the growth 

patterns for the five MENA cities in the target year 2026, respectively. The prediction is 

obtained in the form of a model-constructed satellite image showing the city growth in the 

target year. Figure 8-3 to 8-7 present the obtained prediction results for the five cities. In 

each figure, the constructed satellite image is given for the target year. In addition, the 

difference between the target year’s image and the base year’s image is provided. This 

difference image highlights all the zones predicted to include significant growth activities 

(i.e., zones with significant difference between the predicted and the base images). To 

validate the obtained prediction results, each figure included a zoom-in view of each 

identified growth zone showing its current state of development. Examining these zoom-

in views shows that these zones are either an extension of existing developments located 

at the city boundaries, or a fill of an open space surrounded by already developed areas. In 

all cases, these identified zones are located near major roadways that facilitate their access.  
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The following subsections provide an analysis of the results obtained for each city 

by comparing them with results obtained from previous urban growth studies conducted 

for these cities. Of course, one should not expect a perfect match between the future growth 

pattern produced by the model and those obtained from other studies, which themselves 

are predictions that need to be verified. Nonetheless, the analysis presented here is intended 

to generally examine the level of agreement between the different modeling approaches. 

8-5-1. Dubai, UAE 

As shown in Figure 8-3, the model predicts 10 zones with active development in 

the target year. The development of these zones is expected to further convert the cities of 

Dubai, Sharjah and Ajman into one large metropolitan area and to further expand its size. 

These 10 zones are a combination of peripheral zones as well as inner zones that were 

skipped in previous development stages. Zones 1, 6, 9 and 10 are examples of peripheral 

zones that expand the size of Dubai’s metropolitan area.  

For example, Zone 1 shows a future growth in Al-Salamah and Al-Abrab located 

on the north and northeast boundaries (i.e., north east of Ajman). Similarly, Zone 9 and 

Zone 10, are located at the south boundaries of Dubai known by Nad Al Sheba 1, MBR 

city, Al Quoz 2, and City of Arabia area. Inner zones are partially developed areas with 

vacant land that is ready for further development as shown in Zones 4, 5 and 7, respectively. 

The zones representing Al-Jurainah, Al-Khawaneej and Al-Khor areas will experience 

development to fill their vacant lands. One observation is that all identified growth zones 

are accessible through the existing roadway network.  



 

 

100 

 

This pattern demonstrates the strong correlation between transportation 

accessibility and urban growth. In addition, it is clear from the zoom-in views provided in 

Figure 8-3 that the identified growth zones are surrounded or close to areas that are already 

developed. New developments that is not connected to the existing fabric of the city has 

not been observed.  

The results in Figure 8-3 are compared against those reported by Aldogom et al. 

(2019). Unfortunately, this benchmarking study was limited only to the Emirate of Dubai 

excluding its neighboring cities: Sharjah and Ajman. In addition, the study was also limited 

to defining the new boundaries of the city without identifying density changes within these 

boundaries. As mentioned earlier, Aldogom et al. (2019) implemented a methodology that 

integrates classification algorithms and CA-Markov approach to simulate the city’s future 

expansion for years 2030, 2050, and 2100, respectively. The CA-Markov approach creates 

a transition probability matrix to evaluate the changes in each pixel in the map over time, 

and a transition area matrix to illustrate the number of these changed pixels.  

The results of the benchmarking study are summarized in Figure 8-8, which 

presents the predicted growth for the three considered target years. The predicted growth 

zones obtained by our model which, indicated by a light green color are superimposed on 

that figure. The Figure shows that the growth zones identified within the borders of the 

Emirate of Dubai (Zones 5 to 10) are falling within the 2030 city growth reported by 

Aldogom et al. (2019). The agreement between the two models encourages the adoption of 

remote sensing and video prediction-based UGPM to provide the City of Dubai’s 

authorities and urban planners with adequate tools to predict the city’s growth with limited 

data requirements. 
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Figure 8- 8: Model validation and urban expansion of the City of Dubai.  

(Source: Aldogom et al., 2019) 

8-5-2. Cairo, Egypt 

The growth prediction results for the City of Cairo are presented in Figure 8-4. The 

model predicts a steady growth towards the east and the west deserts as well as the 

disappearance of several agricultural pockets in the Nile’s Delta. The growth in the east 

side of the city, identified by Zone 2 and Zone 3, extends Cairo’s boundaries through a new 

development in the east known as New Cairo. This growth is supported by the accessibility 

provided by two main highways, namely, the Suez road and the Ain El Sokhna road.  

It is worth mentioning that Egypt’s government has recently announced the start of 

a mega-project to develop a New Administrative Capital (NAC) further east of New Cairo, 

which is planned as a modern city with a target population of 5.0 to 6.5M people (Loewert 

and Steiner, 2019). This new administrative city is expected to expedite the growth on the 

east side of old Cairo predicted by the model. The model also predicts a similar growth in 
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the western boundaries of Greater Cairo as depicted by Zone 5. This zone presents the 

development in New Giza, a new development west of the old Giza City (the western part 

of the Greater Cairo Metropolitan Area). This western growth is also promoted by the 

ongoing developments in the Sheikh Zayed City and the 6th of October City, which are 

relatively new cities located 30 miles from Cairo’s downtown in the west desert, and the 

transportation infrastructure developed to connect the two cities to Cairo (e.g., Cairo’s Ring 

road and Alexandria’s Desert road).  

The other two zones (Zone 1 and Zone 4) predict new developments on agricultural 

lands in the north and the south of the Niles’s Delta. the growth of the City of Cairo on the 

expense of agricultural land is a trend that has been observed during the past few decades. 

The model predicts the disappearance of the agricultural lands in Al-Qalg area in Qalyubia 

(Zone 1), and Abo Al-Nomros area in Giza (Zone 4). Both zones include agricultural lands 

surrounded by very high-density residential areas that were also built on an agricultural 

land in the past two decades.  

We compared the obtained prediction results with a previous study that reported 

the change in urban extent of Cairo Metropolitan. The study gives a prediction of open 

space for future urbanization, as given in Figure 8-9 (Angel et al., 2012). This 

benchmarking study is based on a collaboration between the Urban Expansion Program at 

New York University, the United Nations Human Settlements Program (UN-Habitat), and 

the Lincoln Institute of Land Policy.  

The study is applied to a global sample of 200 cities (e.g., New York, Sydney, 

Montreal, Wuhan, Cairo, Riyadh) to map the spatial changes and urban expansion. The 
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study adopts a data intensive approach, using data that were extracted from satellite images 

and land use surveys to predict the urban expansion of the city beyond 2013 with no 

specific target year. We superimposed the five growth zones predicted by the model on top 

of the urban expansion map reported in Angel et al. (2012). As shown in the Figure, all 

these growth zones are coinciding with the predicted urban extent for the metropolitan area 

(indicated by the yellow color). As the benchmarking study does not define a specific target 

year, one would expect the results of this study to show urban expansion that is not 

identified by our model which, limits its prediction to year 2026. 

 

Figure 8- 9: Model validation and urban expansion of the City of Cairo.  

(Source: Angel et al., 2012) 

8-5-3. Doha, Qatar 

Similar to the results presented above, Figure 8-5 gives the constructed satellite 

image for the City of Doha in the target year. The Figure also shows the difference between 

this constructed image and the base year’s image, highlighting zones with predicted 

significant growth activities. As shown in the Figure, ten growth zones are identified by 

the model. Most of these zones are falling in semi-urbanized space near the city’s current 
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boundaries. These predicted growth zones are well connected through a strong highway 

system.  

For example, a growth is predicted to occur toward the north side of the city as 

indicated by Zones 1 to 4, namely Umm Salal Ali, Umm Salal Muhammed, and Al-Daayen. 

These zones are located near main roadways in the city such as Wadi Al-Wasah road and 

the Doha Expressway. Growth is also expected to occur on the west side as illustrated by 

Zones 5 to 9 in Al-Luqta, Luaib, Al-Rayyan, and Umm Al-Seneem areas. These areas can 

also be accessed by major roads that connect the city in the north-south and east-west 

directions such as the Doha Expressway, Al-Rayyan road and Salwa road. Finally, the 

model predicts growth in Zone 10, which is known as Al Wukair area and is located on the 

south side of the city. This zone extends the west side of the City of Al-Wakrah, predicting 

its merge with the City of Doha to form a large multi-city metropolitan area.  

Further investigating the locations of these zones and their surrounding 

environments, most are found to be located near mega commercial, entertainment, sport 

and education projects that are currently planned or under construction including Lusall, 

the Pearl, Katara, West Bay Area, Souq Wagif, Education City, and the Aspire Zone 

(Azzali, 2017). These results are compared against the growth pattern predicted by Makido 

et al. (2020). The approach adopted by Makido et al. (2020) is an empirical land-use change 

model that merges GIS with ANN to predict urban growth based on a set of representative 

variables (e.g., distance to roads, distance to previously developed areas, distance to urban 

center, and distance to the coast).  
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The results of their model are presented in Figure 8-10, which illustrates the urban 

growth predicted for target year 2028. The results obtained from our UGPM adopted is 

overlaid on that figure. On the north side, the growth predicted in Zones 2, 3 and 4 seems 

to agree with that predicted by Makido et al. (2020). However, the two models disagree 

with respect to the coastal growth on the north side of the city. Makido et al. (2020) 

predicted an expedited coastal growth on the north side that might not be realistic for target 

year 2028. On the south side, the two models agree in terms of the predicted growth for 

Zones 8 and 10, respectively. Model predictions in other zones (Zones 5-7 and 9) suggest 

an increase in the development density within the current boundaries of the city, which 

their model did not predict. 

 

Figure 8- 10: Model validation and urban expansion of the City of Doha.  

(Source: Makido et al., 2020) 
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8-5-4. Casablanca, Morocco 

The prediction results for the City of Casablanca are provided in Figure 8-6. Similar 

to Dubai and Doha, the predicted growth is happening mostly inland and along the coast. 

However, two observations differentiate Casablanca from these two cities. First, all 

predicted growth zones are located at the city’s current boundaries. Such a pattern is 

expected as Casablanca is an older city that is highly developed with limited vacant land 

available inside the city’s current boundaries. Second, the predicted peripheral growth is 

almost uniformly distributed around the city. The city’s high population growth rates 

combined with the intensive labor migration from its surrounding farms could explain this 

predicted uniform peripheral growth (Mallouk et al., 2019). The increase in the population 

from inside the city and the migrating population from its surrounding farms are naturally 

meeting at the city’s current boundaries and expediting its growth along these boundaries. 

As shown in the Figure, the model identifies nine growth zones. For example, Zone 

1 shows growth northeast of the city in Ain Harrouda, which is an ocean front area between 

the City of Casablanca and the City of Mohemmedia. Zones 2 and 3 are located on the east 

side of Casablanca (Ain Sebaa, and Moulay Rachid District). These zones are supported 

by strong highway connectivity, including A1 and N9 highways. Similarly, the model 

predicts that Zones 4 and 5 known as Mediouna, Bouskoura, and Ain Chock will grow on 

the south side along highways R315 and N1, respectively. A significant growth is also 

predicted on the west side of the city (Zones 6-9) in the Casablanca-Cil, Bouskoura, Ain 

Chock Hay Hassani, and Madinat Arrahma areas, respectively.  
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Next, we compared our results against the growth pattern reported by Mallouk et 

al. (2019), which gives the probability of growth in year 2040 beyond the city’s current 

boundaries, as illustrated in Figure 8-11. This benchmarking study adopts the SLEUTH 

cellular automaton model Chaudhuri and Clarke (2013), which is calibrated using satellite 

images from 1984 and 2018. As shown in this figure, the two models agree in their 

predictions in most cases, especially in the northeast and the southwest sides of the city 

along the ocean front. 

 

Figure 8- 11: Model validation and urban expansion of the City of Casablanca.  

(Source: Mallouk et al., 2019) 

8-5-5. Riyadh, KSA 

The growth prediction results obtained by the model for the City of Riyadh are 

presented in Figure 8-7. Based on these results, the city is predicted to grow from all 

directions. Twelve growth zones are depicted in the figure. One can expect this growth 

pattern considering the following factors: (1) this peripheral growth pattern matches the 
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historical growth pattern observed for the city during the past few decades; (2) the city 

continues to experience high population growth with a strong cultural preference of single-

family dwellings pushing for new developments outside the city limits where the land is 

generally cheaper; and (3) the city is characterized by flat topography in the surrounding 

desert which promotes such a growth pattern.  

For example, Zones 1 to 3 are the result of urban sprawl occurring on the north side 

of the city in the An-Narjis and Al-Aarid divisions. Such growth is also supported by their 

proximity to King Fahd road and King Salman road. Zone 4, located on the northeast side 

of Al-Rimal and Al-Munsiyah divisions, which is another area with significant predicted 

growth. The growth in this zone is supported by its proximity to Al-Janadriyah road in the 

east and Dammam road in the south. Another example is Zone 12, which is located on the 

west side of the city in the Al Mahdiyah area. This zone extends a fully developed area, 

Dhahrat Laban, further to the north.  

Finally, we compared the prediction results with those of a previous study that 

predicts the change in the urban extent of the City of Riyadh, as given in Figure 8-12 (Angel 

et al., 2012). Similar to the City of Cairo, this benchmarking study is a collaboration 

between the Urban Expansion Program at New York University, the United Nations 

Human Settlements Program (UN-Habitat), and the Lincoln Institute of Land Policy. It 

adopts a data intensive approach extracted from satellite images and land-use surveys to 

predict the urban expansion of the city beyond 2013 with no specific target year. In most 

cases, the growth zones predicted by our model match the city’s reported urban extent in 

the benchmarking study. This match in the prediction results is more obvious on the north 
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and east sides of the city, where all predicted growth zones are falling in urbanized open 

spaces. 

 

Figure 8- 12: Model validation and urban expansion of the City of Riyadh.  

(Source: Angel et al., 2012) 

8-6. Discussion and Conclusion 

Cities in the Middle East and North Africa (MENA) region have experienced 

significant population increase over the past few decades. As such, most urban areas in the 

region have expanded significantly to accommodate such population increase. 

Unfortunately, the expedited urbanization observed in most cities in the region presents 

substantial stresses to their ecological and financial resources, as well as to the overall well-

being of their residents. To ensure long-term sustainability and eliminate the risk of 

uncontrolled growth in these cities, there have been increasing calls for adequate urban 

growth prediction studies that can be used as a foundation to develop sustainable growth 

plans for these cities.  
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This chapter studies the urban growth pattern in five major cities in the MENA 

region including Dubai (United Arab Emirates (UAE)), Cairo (Egypt), Doha (Qatar), 

Casablanca (Morocco), and Riyadh (Kingdom of Saudi Arabia (KSA)). These cities 

represent a representative sample of cities in the region that differ in terms of their size, 

population density, historical heritage, level of control applied to growth, geographical 

locations, complexity of their structure, and economic strength. The study adopts a machine 

learning (ML)-based modeling framework developed by the authors in a previous effort 

(Jaad and Abdelghany, 2020). The model integrates remote sensing and computer vision 

technologies to generate high-fidelity urban growth prediction with limited data 

requirements. The prediction results obtained by the model are compared against the results 

collected from other urban growth studies conducted for the selected cities. These results 

illustrate the potential of the presented approach to develop UGPMs with high fidelity.  

Based on the results obtained for these MENA cities, several recommendations can 

be derived to assist the region’s city planners and policy makers on their mission to develop 

sustainable urban growth plans for their cities. First, a strong correlation is observed 

between the roadway network and the predicted growth in all studied cities. Land 

developers usually give priority to vacant areas that are accessible by the existing roadway 

system. As such, the integration of the urban and transportation planning processes for 

urban areas is critical for ensuring their sustainable growth. In addition, while ring roads 

have been constructed to ease traffic congestion inside cities and to set rigid boundaries to 

curb growth, they have been shown to be ineffective in defining city boundaries and 

preventing its urban sprawl. For example, the City of Cairo continued to growth beyond its 

recently constructed ring road from almost all directions.  
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Second, careful attention needs to be given to the planning of mega projects in 

urban areas. As these projects usually represent major attractions, they could result in 

significant changes in their surrounding areas, either in terms of new developments or a 

change in the current land-use. For example, most urban developments predicted in the 

City of Doha are triggered by nearby new mega projects planned in the city.  

Third, there is always considerable benefits in diversifying housing options within 

the city to prevent urban sprawl. These housing options include apartment buildings and 

townhomes which create high density residential areas near business districts and transit 

services (e.g., transit-oriented developments). For example, the expedited urban sprawl 

observed in the City of Riyadh is primarily contributed to the high preference of most 

households to live in a single-family home, even in the case of small family sizes. Housing 

policies and incentives that encourage small households to live in apartment buildings and 

townhomes could help in curbing the sprawl observed in the city.  

Fourth, most cities in the region are suffering heavy migration from surrounding 

rural areas. This migration is mainly due to increasing agricultural automation and the lack 

of alternative job opportunities for the traditional agricultural labor. As observed in the 

cities of Cairo and Casablanca, the migration of poor labor to nearby cities has resulted in 

the creation of slums and neighborhoods with no adequate services. As such, adequate 

economic investment is needed to create viable economic opportunities in the surrounding 

rural areas to reduce this migration and prevent its adverse consequences.  

Finally, urban growth could occur at the expense of valuable natural resources 

within or surrounding the city. For example, the City of Cairo has been growing at the 
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expense of high-value agricultural land on the north and the south boundaries. Similarly, 

the growth in Dubai and Doha is reported to be occurring at the expense of green space 

within these cities. As such, strict regulations and incentives are required to prevent such a 

growth pattern to ensure that valuable natural resources are preserved. 
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Chapter 9  

 

 SUMMARY AND FUTURE WORK   

 

 

9-1. Summary  

A machine learning-based model for urban growth prediction is presented. The model 

adopts the concept of VP in which successive historical satellite images are treated as a 

video for which future frames are predicted. Each future frame is a construction of a 

satellite image that predicts the urban growth for a specific targeted year. 

An architecture in the form of CAE with time input is adopted for developing the 

model. The CAE is trained and validated using a dataset in which each record is a triplet 

of (a) base year satellite image for the area under study; b) target year satellite image for 

the same area; and (c) the time horizon between the two satellite images. 

A sensitivity analysis is conducted to determine the model’s optimal settings and 

values of its hyperparameters including number of layers in the CAE architecture, 

optimizer, data size, number of epochs and batch size. The model recorded the highest 

performance when the RMSprop optimizer with 2,000 epochs and 64 batch size is used 

considering CAE with five convolution layers and five deconvolution layers. 

The developed model is applied to predict the urban growth for DFW and two of 

its fast-growing counties. The prediction results obtained by the model are compared 

against NCTCOG’s growth prediction. These results illustrate the potentiality of the 
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presented approach to develop UGPMs with high fidelity. In addition, the developed model 

also applied to five MENA cities including Dubai (United Arab Emirates (UAE)), Cairo 

(Egypt), Doha (Qatar), Casablanca (Morocco), and Riyadh (Kingdom of Saudi Arabia 

(KSA)). These selected cities vary in terms of their size, population, historical heritage, 

level of control applied to their growth, geographical locations, complexity of their 

structure, and socio-economic characteristics. A framework is presented to validate the 

model by comparing its results with data collected from other urban growth studies 

conducted for these cities.  Based on the obtained results and their analysis, some 

recommendations for sustainable urban growth in the MENA region are provided.  

9-2. Further Research Extensions 

Several research extensions could be considered for the research work presented in 

this dissertation. For example, the adopted TDED architecture can be extended to include 

other input (e.g., population and socioeconomic data) that can be used to enhance the model 

predictability. For example, as the model is trained using information on the change in the 

image pixels, it can also be trained using the change in the major disruptions, such as natural 

disasters or economic downturns.  

In addition, the model architecture presented in this research can be extended to 

answer policy-related questions related to, for example, the planning of the transportation 

and other infrastructure systems and employment allocation in the region. To achieve this 

goal, the architecture will be extended to include input variables, in addition to the satellite 

images, such as population/employment density and infrastructure configuration.  
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Finally, due to limited computational resources, the resolution of the satellite 

images was reduced in the presented case studies. Using more advanced computational 

platforms to take advantage of the high resolution of the satellite images could be 

investigated. 
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