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Numerical methods have been developed to solve partial differential equations involving

the far-field radiation of waves. In addition, there has been recent interest in uncertainty

quantification- a burgeoning field involving solving PDEs where random variables are used

to model uncertainty in the data. In this thesis we will apply uncertainty quantification

methodology to the 1D and 2D wave equation with nonreflecting boundary. We first derive

a boundary condition for the 1D wave equation assuming several models of the random wave

speed. Later we use our result to compare to an asymptotic SDE approach, and finally we

repeat our analysis for the 2D wave equation, providing numerical results for each.
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Chapter 1

INTRODUCTION

1.1. Far-Field Wave Propagation

Radiation to the far-field is an important feature in many applications of wave phenom-

ena. This arises in many contexts, whether it be acoustic, electromagnetic, or quantum

mechanical, and in many different geometries. The common feature is that the correspond-

ing PDEs which describe these phenomena must be equipped with a boundary condition “at

infinity” describing the eventual behavior of the waves in the far field. This is in conflict

with the need to simulate such problems in a finite domain.

In order to resolve this issue, methods have been developed which introduce an artificial

boundary along the region of interest, and prescribe appropriate boundary conditions to the

artificial boundary. This allows one to simulate in a finite region the behavior of the wave

as if a boundary were not present. Several novel methods have been introduced which limit

the added computational complexity, as well as error that manifests (undesired) reflection

at the artificial interface.

An overview of some of the main developments in the development of nonreflecting bound-

ary conditions is described in detail in [11]. The most ubiquitous model of wave propagation,

the scalar wave equation, is studied in detail for the cases of planar, spherical, and cylindrical

artificial boundaries. Results are extended to other models of wave phenomena, including

the dispersive wave equation, general first-order hyperbolic systems, Maxwell’s equations

and the equations of linear elasticity.

This situation is illustrated by Figure (1.1). In the figure, Ω is the finite region where

the solution is to be computed, Σ is the unbounded region outside of Ω, and Γ is the

computational “nonreflecting” boundary.
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Figure 1.1. Nonreflecting Boundary Scheme

Although no physical boundary is present, it is necessary computationally to develop

conditions on Γ such that waves travel through Γ without reflection. Given a second order

initial-boundary value problem with Dirichlet data on Γ and zero initial conditions and

forcing in the exterior region Σ, a unique causal solution u can be determined. This in turn

uniquely determines the Neumann data ∂u
∂n

on the boundary Γ. This defines the Dirichlet to

Neumann (DtN) map D. First taking the Laplace transform of u, defined for s ∈ C as

û(x, s) =

∫ ∞
0

u(x, t)e−stdt,

the DtN map is a linear operator parametrized by s and we write

∂û

∂n
= −D̂û, x ∈ Γ. (1.1)

2



After finding D̂ in the problem of interest, the exact radiation condition to be used or

approximated in the simulation is then obtained by taking the inverse Laplace transform,

∂u

∂n
+ L−1(D̂Lu) = 0, x ∈ Γ. (1.2)

The main focus of this thesis is the wave equation, which in one space dimension is given

by

∂

∂x

(
c2(x)

∂u

∂x

)
− ∂2u

∂t2
= f(x, t), x ∈ [−L,L], t ∈ [0, T ], (1.3)

with initial conditions

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x).

The boundary is then the points Γ = {−L,L}. In the case of constant coefficients, the DtN

map has a simple form. Taking the Laplace transform in time, we can reduce equation(1.1)

with constant c to an ODE given by

c2d
2û

dx2
(x, s)− s2û(x, s) = f̂(x, s)− v0(x)− su0(x) (1.4)

In the far field |x|≥ L we assume the source term f̂(x, s) = 0 and the initial conditions

u0(x) = v0(x) = 0. Noting that in this simple geometry

∂û

∂n
(L, s) =

∂û

∂x
(L, s),

∂û

∂n
(−L, s) = −∂û

∂x
(−L, s),

we can insert equation (1.1) into equation (1.1) to obtain

D̂(s) =
s

c
.

Therefore equation (1.1) for the 1D Wave equation is

∂u

∂x
(L, t) +

1

c

∂u

∂t
(L, t) = 0,

∂u

∂x
(−L, t)− 1

c

∂u

∂t
(−L, t) = 0. (1.5)

3



Exact nonreflecting boundary conditions for the wave equation in two dimensions,

utt = c2∆u (1.6)

have been constructed in [2]. The solution u(x, y, t) satisfies zero initial conditions on the

exterior region

u(x, y, t) = ut(x, y, t) = 0, t ≤ 0, (x, y) ∈ Σ

and to determine the DtN map we assume that u(x, y, t) is known for (x, y, t) ∈ Γ and t > 0.

For the case where the boundary Γ (referring to Figure 1.1) are the planes x = ±a, we

can write the nonreflecting boundary condition by taking the Fourier transformation in the

variable y,

u(x, y, t) =
1

2π

∫ ∞
−∞

û(x, η, t)eiyηdη,

and the Laplace transformation in time

ũ(x, η, s) =

∫ ∞
0

û(x, η, t)e−stdt.

This leads to

D̂(s, η) = [(s/c)2 + η2]1/2

and therefore

± ũx +
√

(s/c)2 + η2ũ = 0, x = ±a, (1.7)

which upon taking the inverse Laplace transform and inverse Fourier transform is the ana-

logue of equation (1.1) in two dimensions.

1.2. Summary of Results

For the 1D Wave Equation, whose setting is illustrated in Figure (1.2), we have extended

the nonreflecting boundary conditions given by equation (1.1) to equation (2.1), which con-

tains a term which approximates the reflections brought about by small perturbations to the

4



wave speed in the far field. The stochastic process used to represent the small fluctuations

in the wave speed has expansion given by equation (2.1). Using this boundary condition,

we have devised a numerical experiment to determine the accuracy of the random bound-

ary condition in Section (2.3). In addition, we have performed a preliminary experiment to

determine the mean and variance of some selected functionals of the solution.

Figure 1.2. Setting for 1D Wave Equation

Similarly, for the 2D Wave Equation, whose setting is illustrated in Figure (1.3), we have

extended the nonreflecting boundary condition given by equation (1.1) by calculating an

additional term which approximates reflections made by small perturbations in the wave

speed in the far field. The small perturbations in the far-field are modeled by the expansion

in equation (5.1) and the resulting boundary condition is given by equation (5.1),

Lastly, we have devised an experiment to compare the random boundary approach devel-

oped in this thesis to an asymptotic analysis of wave propagation through a random medium

in [8]. To set up the comparison, we have derived the random boundary condition in equa-

tion (3.1) using a stationary process with expansion derived in Section (3.1). An experiment

to test the accuracy of this method is described in Section (3.2). A proposed experiment to

5



Figure 1.3. Setting for 2D Wave Equation

compare the random boundary to the asymptotic approach is set up in Section (4.5).

1.3. Uncertainty in the Far-Field

All of the results on exact radiation conditions mentioned above, in particular the cal-

culations leading to (1.5) and (1.7), are based on the assumption that c is constant in the

far-field Σ. If this assumption is relaxed very little has been done. Boundary conditions

have been proposed based on high-frequency asymptotics (e.g. [6,7]) or in the case of decay-

ing potentials [18], but there is no general theory. Moreover, in practical applications, for

example wave propagation in the earth or ocean, the wave speed in the exterior region will

be uncertain.

The primary contribution of this thesis is to develop a systematic approach to compute

accurate radiation conditions for the wave equation where the wave speed c(x) is variable in

the far field. Since the precise wave speed may be unknown, we may model the wave speed

as a random process c(x, ω), where ω ∈ Ω1 and Ω1 is a sample space.

6



We assume more specifically that the wave speed takes the following form

c(x, ω) = c∞ + c̃(x, ω)

where c∞ is the expected value of the wave speed in the far field and c̃ is a small perturbation.

In particular we assume that almost everywhere and almost surely

|c̃(x, ω)|
c∞

� 1.

This in turn implies (again almost everywhere and almost surely) that there are positive

constants c0 and c1 such that

c0 ≤ c(x, ω) ≤ c1.

Moreover we will choose c̃ to be a square-integrable zero-mean stochastic process on a closed

interval [L,M ] with covariance function C(s, t) such that it may be represented in a series

of eigenfunctions, see [9].

c̃(x, ω) =
∞∑
j=1

√
νjφj(x)ξj(ω)

where ν and φ are the eigenvalues and normalized eigenfunctions of the operator

TC : L2([L,M ])→ L2([L,M ])

f 7→ TCf =

∫ M

L

C(s, ·)f(s)ds

and ξj are zero-mean, uncorrelated random variables given by

ξj(ω) =
1
√
νj

∫ M

L

c̃(x, ω)φj(x)dx.

7



In the analysis that follows we will truncate the expansion to P terms and consider the

fluctuations to the wave speed as simply a sum of P independent random variables:

c̃(x, ω) =
P∑
j=1

√
νjφj(x)ξj(ω)

1.4. Contents

In Chapter 2, we will find boundary conditions for the one-dimensional wave equation

when there are random small fluctuations in the wave speed in the far-field. A linear and

quadratic approximation to a Ricatti equation will be used to obtain a closed-form result.

Numerical results will then be presented to show consistency of the method and a Monte-

Carlo simulation will be performed to study the variability of the solution with respect to

the choice of the perturbation c̃.

In Chapter 3 we repeat the analysis in Chapter 2 for a different process, which has special

statistical properties.

In Chapter 4 we review results presented by Papanicolaou et al. in [8] which provides

a different approach to the problem of wave propagation and reflection through a random

medium. The design of a numerical experiment is proposed to compare the results of Chapter

3 to the asymptotic approach.

In Chapter 5 we conclude by extending the analysis to the two-dimensional wave equation,

and discuss the challenges thereof.

8



Chapter 2

1D WAVE EQUATION WITH RANDOM BOUNDARY CONDITIONS

2.1. Derivation of Random Boundary Condition for 1D Wave Equation

We will now develop a boundary condition to account for the far-field radiation of the

1D wave equation with variable wave speed, given by

∂

∂x

(
c2(x)

∂u

∂x

)
− ∂2u

∂t2
= f(x, t), x ∈ [−L,L], t ∈ [0, T ]

with initial conditions given by

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x).

Taking the Laplace transformation in time, we have

d

dx

(
c2(x)

dû

dx

)
− s2û = f̂(x)− v0(x)− su0(x), x ∈ [−L,L]. (2.1)

For simplicity we assign a Dirichlet boundary condition at x = −L. Therefore the exterior

region is Σ = [L,∞) and the boundary is the point Γ = {L}. See Figure (2.1). We are

interested in computing the DtN map for the case of variable wave speed in Σ. We also treat

the random process with sample space Ω1 so that

c(x, ω) = c∞ + c̃(x, ω), x ∈ Σ, ω ∈ Ω1

9



Figure 2.1. Setting for 1D Wave Equation. c̃ = 0 for x ∈ Ω

where c̃(x, ω) is a small random perturbation and c∞ is deterministic and constant. The

DtN map D̂ is a scalar function σ(L, s, ω) of the Laplace parameter s, satisfying

ûx(x, s, ω) + σ(x, s, ω)û(x, s, ω) = 0. (2.2)

The outside region Σ = (L,∞) does not contain the source f , so inserting the expression for

σ into the 1D wave equation yields

(
d

dx
(c2(x, ω)σ(x, s, ω))− c2(x, ω)σ2(x, s, ω)− s2

)
û(x, s, ω) = 0, x ∈ Σ

for all radiating solutions û. This implies the following Ricatti equation for σ in the exterior

domain:

d

dx
(c2(x, ω)σ(x, s, ω)) = c2(x, ω)σ2(x, s, ω)− s2, x ∈ Σ. (2.3)

We wish to linearize this equation in order to obtain a simple closed-form expression for σ.

In the case that the wave speed c(x) = c∞ is constant, we showed in Chapter 1 that the DtN

10



map takes the form σ(s) = s/c∞. Anticipating that σ will be a small perturbation of s/c∞

for c̃ small we write

σ(x, s, ω) = s/c∞ + σ̃(x, s, ω), x ∈ [L,M ],

for some M > L. Recall from the introduction we have assumed that c(x, ω) ≤ c1 almost

everywhere and almost surely. Suppose now we are only interested in simulations up to some

finite time T . Then if M > L + c1T no wave can reach x = M in the simulation time and

we can assume that c̃ = 0 for x ≥ M . Then σ̃(M,ω) = 0. Following our assumption that

c̃ is small compared with c∞ we will assume that σ̃ is small and, to first approximation,

approximate it by linearizing equation (2.1). We seek to find σ̃, the contribution to the DtN

map caused by the small perturbations c̃. Using the above linearization leads to the ODE

for σ̃ given by

dσ̃

dx
(x, s, ω)− 2s

c∞
σ̃(x, s, ω) = − 2s

c2
∞

dc̃

dx
(x, ω) +

2s2

c3
∞
c̃(x, ω)

c̃(L, ω) = c̃(M,ω) = 0 (2.4)

σ̃(M, s, ω) = 0

which has solution

σ̃(L, s, ω) =
2s2

c3
∞

∫ M

L

e−
2s
c∞

(z−L)c̃(z, ω)dz. (2.5)

To complete the analysis, we need to choose a model for the random fluctuations in the

wave speed. In order to obtain an analytical result we choose c̃ to be a stochastic process

having the following expansion.

c̃(x, ω) =
∞∑
j=1

1

π2jr
sin

(
jπ(x− L)

M − L

)
ξj(ω), ξj ∼ U(−1, 1), x ∈ [L,M ]. (2.6)

11



The boundary conditions are trivially satisfied due to the choice of the eigenfunction, and the

process has negative drift, so that with high probability the process stays close to the mean

value of 0. The parameter r controls the regularity of the process. For r = 0 we have white

noise, for r = 1 we have a bridge process which is continuous but nowhere differentiable. In

general, the process c̃(x, ω) is r − 1-times differentiable. The process above is therefore a

convenient choice for experimentation since the regularity is controlled by a single parameter

r. Further details are in [9]. Sample paths for different values of r are given below in Figure

(2.2).

Figure 2.2. Sample Paths for Process, truncated to P = 1000 terms

12



Inserting the expression for c̃ into the integral in equation (2.1) for σ̃ and truncating the

expansion after P terms yields

σ̃(L, s, ω) =
1

2(M − L)c∞π

P∑
j=1

1

jr−1

s2

s2 +B2
j

[1− (−1)je−2s(M−L)/c∞ ]ξj(ω) (2.7)

so that, in the Laplace domain, we have

dû

dx
(L, s, ω)+

s

c∞
û(L, s, ω)+

1

2c∞π(M − L)

P∑
j=1

1

jr−1

s2û(L, s, ω)

s2 +B2
j

[1−(−1)je−2s(M−L)/c∞ ]ξj(ω) = 0,

where Bj = πc∞
2(M−L)

j. Since we are in the Laplace domain, we note that the (−1)je−2s(M−L)/c∞

term can be neglected, since taking the inverse Laplace transform would invoke the identity

L−1(û(x, s)e−2s(M−L)/c∞) = u(x, t− 2(M − L)/c∞) = 0. (2.8)

for t ≤ T as by assumption t − 2(M − L)/c∞ < 0. Therefore, taking the inverse Laplace

transform to return to the time domain, we obtain

∂u

∂x
(L, t, ω) +

1

c∞

∂u

∂t
(L, t, ω) +

1

2c∞π

P∑
j=1

1

jr−1

u(L, t, ω)− φj(t, ω)

M − L
ξj(ω) = 0, (2.9)

where we introduce the auxiliary variable φj, satisfying

d2φj
dt2

(t, ω) +B2
jφj(t, ω) = B2

ju(L, t, ω), (2.10)

φj(0) = φ′j(0) = 0, j = 1, 2, . . . .

The summation term in equation (2.1) approximates the contribution of the random

fluctuations of the wave speed in the exterior domain to the DtN map.

13



2.2. Quadratic Approximation

We will also derive the DtN map σ̃ with a quadratic approximation to the random wave

speed fluctuations. Starting with the Ricatti Equation derived above, equation (2.1)

d

dx
(c2(x, ω)σ(x, s, ω)) = c2(x, ω)σ2(x, s, ω)− s2, x ∈ Σ.

and writing the wave speed and DtN map as above,

c(x, ω) = c∞ + c̃(x, ω), σ(x, s, ω) =
s

c∞
+ σ̃(x, s, ω),

and inserting into the Ricatti equation (2.1), this time keeping the quadratic terms we obtain

σ̃x +
2s

c2
∞
c̃x +

2

c∞
(c̃σ̃)x +

s

c3
∞

(c̃2)x =
2s2c̃

c3
∞

+
2s

c∞
σ̃ +

4sσ̃c̃

c2
∞

+ σ̃2 +
s2

c4
∞
c̃2.

Rearranging we introduce the recursion

σ̃(n+1)
x − 2s

c∞
σ̃(n+1) = − 2s

c2
∞
c̃x +

2s2c̃

c3
∞
− 2c̃σ̃

(n)
x

c∞
− 2c̃xσ̃

(n)

c∞
+

4sσ̃(n)c̃

c2
∞

+ (σ̃(n))2 (2.11)

+
s2

c4
∞
c̃2 − s

c3
∞

(c̃2)x, n ≥ 0

starting with σ̃(1) satisfying the linearized problem (2.1). In the case n = 0 then, we have

the linear case again

σ̃(1)
x −

2s

c∞
σ̃(1) =

2s2

c3
∞
c̃− 2s

c2
∞
c̃x.

with solution given by

σ̃(1)(x, s, ω) =
2s2

c3
∞

∫ M

x

e−2s(z−x)/c∞ c̃(z, ω)dz − 2s

c2
∞
c̃(x, ω)
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Using the same representation for c̃ used in the previous section

c̃(x, ω) =
P∑
j=1

1

π2jr
sin

(
jπ(x− L)

M − L

)
ξj(ω), ξj(ω) ∼ U(−1, 1), x ∈ [L,M ] (2.12)

we calculate for L < x < M that

σ̃(1)(x, s, ω) =
P∑
j=1

2s2ξj
c3
∞π

2jr

∫ M

x

e−2s(z−x)/c∞ sin

(
jπ(z − L)

M − L

)
dz − 2s

c2
∞
c̃(x, ω).

Defining Aj = jπ(z−L)
M−L ,

∫ M

x

e−2s(z−x)/c∞ sin

(
jπ(z − L)

M − L

)
dz =

e−2s(M−x)/c∞(−1)j+1 jπc2∞
4(M−L)

+ c∞s
2

sin(Aj)

s2 + j2π2c2∞
4(M−L)2

+

jπc2∞
4(M−L)

cos(Aj)

s2 + j2π2c2∞
4(M−L)2

Thus,

σ̃(1)(x, s, ω) =
P∑
j=1

Djs
2
e−2s(M−x)/c∞(−1)j+1 jπc2∞

4(M−L)
+ c∞s

2
sin(Aj) + jπc2∞

4(M−L)
cos(Aj)

s2 + C2
j

− 2s

c2
∞
c̃(x, ω),

where Cj = j2π2c2∞
4(M−L)2 , Dj =

2ξj
c3∞π

2jr
. Plugging in x = L gives equation (2.1). Now, looking at

the recursion in equation (2.2) for n = 1, we have

σ̃(2)
x +

2s

c2
∞
c̃x −

2s

c∞
σ̃(2) =

2s2c̃

c3
∞
− 2c̃σ̃

(1)
x

c∞
− 2c̃xσ̃

(1)

c∞
+

4sσ̃(1)c̃

c2
∞

+ (σ̃(1))2

+
s2

c4
∞
c̃2 − s

c3
∞

(c̃2)x
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The solution is after some integration by parts,

σ̃(2)(L, s, ω) =
2s2

c3
∞

∫ M

L

e−2s(z−L)/c∞ c̃(z, ω)dz −
∫ M

L

e−2s(z−L)/c∞(σ̃(1))2dz (2.13)

+
s2

c4
∞

∫ M

L

c̃2(z, ω)e−2s(z−L)/c∞dz

The first integral of equation (2.2) has been previously evaluated:

2s2

c3
∞

∫ M

L

e−2s(z−L)/c∞ c̃(z, ω)dz =
1

2π(M − L)c∞

P∑
j=1

ξj(ω)

jr−1

s2

s2 + C2
j

.

The second integral of equation (2.2) is upon expansion

∫ M

L
e−2s(z−L)/c∞(σ̃(1))2dz =

P∑
j=1

D2
j s

4

(s2 + C2
j )

2

∫ M

L

(
Ej cos(Aj) + Fs sin(Aj) + Ej(−1)j+1e−2s(M−z)/c∞

)2
e−2s(z−L)/c∞dz

+
P∑
j 6=k

DjDks
4

(s2 + C2
j )(s

2 + C2
k)

∫ M

L

(
Ej cos(Aj) + Fs sin(Aj) + Ej(−1)j+1e−2s(M−z)/c∞

)
×
(
Ek cos(Ak) + Fs sin(Ak) + Ek(−1)k+1e−2s(M−z)/c∞

)
e−2s(z−L)/c∞dz (2.14)

−
P∑
j=1

2Djs
3

c3
∞(s2 + C2

j )

∫ M

L

(
Ej cos(Aj) + Fs sin(Aj) + Ej(−1)j+1e−2s(M−x)/c∞

)
c̃e−2s(z−L)/c∞dz

+
s2

c6
∞

∫ M

L
c̃2(z, ω)e−2s(z−L)/c∞dz

where Dj =
ξj

c4∞π
2jr

, Ej = jπc2∞
4(M−L)

, F = c∞
2

. Upon integration, the e−2s(M−z)/c∞(−1)j+1Ej

terms lead to the factor e−2s(M−L)/c∞ which as in equation (2.1) can be neglected. Therefore,
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we can simplify equation (2.2) as

∫ M

L
e−2s(z−L)/c∞(σ̃(1))2dz =

P∑
j=1

D2
j s

4

(s2 + C2
j )

2

∫ M

L
(Ej cos(Aj) + Fs sin(Aj))

2 e−2s(z−L)/c∞dz

+
P∑
j 6=k

DjDks
4

(s2 + C2
j )(s

2 + C2
k)

∫ M

L
(Ej cos(Aj) + Fs sin(Aj))

× (Ek cos(Ak) + Fs sin(Ak)) e
−2s(z−L)/c∞dz (2.15)

−
P∑
j=1

2Djs
3

c3
∞(s2 + C2

j )

∫ M

L
(Ej cos(Aj) + Fs sin(Aj)) c̃(z)e

−2s(z−L)/c∞dz

+
s2

c6
∞

∫ M

L
c̃2(z, ω)e−2s(z−L)/c∞dz

Anticipating that we will use the identity (2.1) upon taking the inverse Laplace transform, we have

with a(j) = c2∞jπ
M−L , b(j) =

c2∞j
2π2

(M−L)2 the following integral calculations

∫ M

L
sin(Aj(z))e

−2s(z−L)/c∞dz =
a(j)/4

s2 + b(j)/4∫ M

L
cos(Aj(z))e

−2s(z−L)/c∞dz =
c∞s/2

s2 + b(j)/4∫ M

L
sin(Aj(z)) sin(Ak(z))e

−2s(z−L)/c∞dz =
c∞s/4

s2 + b(j − k)/4
− c∞s/4

s2 + b(j + k)/4∫ M

L
cos(Aj(z)) cos(Ak(z))e

−2s(z−L)/c∞dz =
c∞s/4

s2 + b(j − k)/4
+

c∞s/4

s2 + b(j + k)/4∫ M

L
sin(Aj(z)) cos(Ak(z))e

−2s(z−L)/c∞dz =
a(j + k)/8

s2 + b(j + k)/4
+

a(j − k)/8
s2 + b(j − k)/4∫ M

L
sin(Ak(z)) cos(Aj(z))e

−2s(z−L)/c∞dz =
a(j + k)/8

s2 + b(j + k)/4
− a(j − k)/8
s2 + b(j − k)/4∫ M

L
sin2(Aj(z))e

−2s(z−L)/c∞dz =
c∞
4s
− c∞s/4

s2 + b(2j)/4∫ M

L
cos2(Aj(z))e

−2s(z−L)/c∞dz =
c∞
4s

+
c∞s/4

s2 + b(2j)/4∫ M

L
sin(Aj(z)) cos(Aj(z))e

−2s(z−L)/c∞dz =
a(2j)/8

s2 + b(2j)/4

∫ M

L
c̃2(z)e−2s(z−L)/c∞dz =

P∑
j,k=1

ξjξk
π4jrkr

(
c∞s/4

s2 + b(j − k)/4
− c∞s/4

s2 + b(j + k)/4

)
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∫ M

L
c̃(z) sin(Aj(z))e

−2s(z−L)/c∞dz =

P∑
k=1

ξk
π2kr

(
c∞s/4

s2 + b(j − k)/4
− c∞s/4

s2 + b(j + k)/4

)
∫ M

L
c̃(z) cos(Aj(z))e

−2s(z−L)/c∞dz =
P∑
k=1

ξk
π2kr

(
a(j + k)/8

s2 + b(j + k)/4
− a(j − k)/8
s2 + b(j − k)/4

)

which upon insertion into equation (2.2) gives

∫ M

L
e−2s(z−L)/c∞(σ̃(1))2dz =

P∑
j,k=1

DjDk

[
EjEk(R

j−k
1 +Rj+k1 ) + EjF (R

j+k
2 −Rj−k2 )

]

+
P∑

j,k=1

DjDk

[
EkF (R

j+k
2 +Rj−k2 ) + s2F 2(Rj−k1 −Rj+k1 )

]

− 2

c3
∞

P∑
j,k=1

Djξk
π2kr

[
Ej(R

j+k
3 −Rj−k3 ) + F (Rj−k4 −Rj+k4 )

]

+
1

c6
∞

P∑
j,k=1

ξjξk
π4jrkr

(Rj−k5 −Rj+k5 )

where, since b(l)/4 = C2
l ,

Rl1(s) =
c∞s

5/4

(s2 + C2
j )(s

2 + C2
k)(s

2 + C2
l )
, Rl2(s) =

s5a(l)/8

(s2 + C2
j )(s

2 + C2
k)(s

2 + C2
l )

(2.16)

Rl3(s) =
s3a(l)/8

(s2 + C2
j )(s

2 + C2
l )
, Rl4(s) =

c∞s
5/4

(s2 + C2
j )(s

2 + C2
l )
, Rl5(s) =

c∞s
3/4

s2 + C2
l

.
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We reduce the order of s in the numerators of equation (2.2) by

s5

(s2 + C2
j )(s

2 + C2
k)(s

2 + C2
l )

=
s

s2 + C2
j

− (C2
k + C2

l )
s

(s2 + C2
j )(s

2 + C2
k)

+ C4
l

s

(s2 + C2
j )(s

2 + C2
k)(s

2 + C2
l )

+ (C4
k + C2

kC
2
l + C4

l )
s

(s2 + C2
j )(s

2 + C2
k)

− C6
l

s

(s2 + C2
j )(s

2 + C2
k)(s

2 + C2
l )

s3

(s2 + C2
j )(s

2 + C2
l )

=
s

s2 + C2
j

− C2
l

s

(s2 + C2
j )(s

2 + C2
l )

s5

(s2 + C2
j )(s

2 + C2
l )

= s− (C2
j + C2

l )
s

s2 + C2
j

+ C4
l

s

(s2 + C2
j )(s

2 + C2
l )

s3

s2 + C2
l

= s− C2
l

s

s2 + C2
l

Using partial fractions, we have

1

(s2 + C2
j )(s

2 + C2
k)(s

2 + C2
j−k)

=
J1(j, k)

s2 + C2
j

+
J2(j, k)

s2 + C2
k

+
J3(j, k)

s2 + C2
j−k

1

(s2 + C2
j )(s

2 + C2
k)(s

2 + C2
j+k)

=
J4(j, k)

s2 + C2
j

+
J5(j, k)

s2 + C2
k

+
J6(j, k)

s2 + C2
j+k

1

(s2 + C2
j )(s

2 + C2
k)

=
J7(j, k)

s2 + C2
j

+
J8(j, k)

s2 + C2
k

1

(s2 + C2
j )(s

2 + C2
j−k)

=
J9(j, k)

s2 + C2
j

+
J10(j, k)

s2 + C2
j−k

1

(s2 + C2
j )(s

2 + C2
j+k)

=
J11(j, k)

s2 + C2
j

+
J12(j, k)

s2 + C2
j+k

J1 =
1

(C2
k − C2

j )(C
2
j−k − C2

j )
, J2 =

1

(C2
j − C2

k)(C
2
j−k − C2

k)

J3 =
1

(C2
j − C2

j−k)(C
2
k − C2

j−k)
, J4 =

1

(C2
k − C2

j )(C
2
j+k − C2

j )

J5 =
1

(C2
j − C2

k)(C
2
j+k − C2

k)
, J6 =

1

(C2
j − C2

j+k)(C
2
k − C2

j+k)

J7 =
1

C2
k − C2

j

, J8 =
1

C2
j − C2

k

, J9 =
1

C2
j−k − C2

j

J10 =
1

C2
j − C2

j−k
, J11 =

1

C2
j+k − C2

j

, J12 =
1

C2
j − C2

j+k
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When j = l, we have

1

(s2 + C2
j )

2(s2 + C2
k)

=
J13

(s2 + C2
j )

2
+

J14

s2 + C2
j

+
J15

s2 + C2
k

J13 =
1

C2
k − C2

j

, J14 =
1− C2

kJ1 − C4
j J3

C2
jC

2
k

, J15 =
1

(C2
j − C2

k)
2

When k = l, we have

1

(s2 + C2
k)

2(s2 + C2
j )

=
J16

(s2 + C2
k)

2
+

J17

s2 + C2
k

+
J18

s2 + C2
j

J16 =
1

C2
j − C2

k

, J17 =
1− C2

j J1 − C4
kJ3

C2
jC

2
k

, J18 =
1

(C2
k − C2

j )
2

The boundary condition is therefore, in the Laplace domain,

ûx +
1

c∞
sû = ĝ

where

ĝ =
−1

2π(M − L)c∞

P∑
j=1

ξj
jr−1

s2û(x, s, ω)

s2 + C2
j

+
P∑

j,k=1

DjDk

[
EjEk(R

j−k
1 +Rj+k1 ) + EjF (R

j+k
2 −Rj−k2 )

]

+
P∑

j,k=1

DjDk

[
EkF (R

j+k
2 +Rj−k2 ) + s2F 2(Rj−k1 −Rj+k1 )

]
û

− 2

c3
∞

P∑
j,k=1

Djξk
π2kr

[
Ej(R

j+k
3 −Rj−k3 ) + F (Rj−k4 −Rj+k4 )

]
û

+

(
1

c6
∞

+
1

c4
∞

) P∑
j,k=1

ξjξk
π4jrkr

(Rj−k5 −Rj+k5 )û
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Going back to the time domain, we utilize the approach used above in equation (2.1) to deal with

the convolution by introducing the auxiliary ODEs

du

dt
=
d2φ1

k

dt2
+ C2

kφ
1
k

u =
d2φ2

j

dt2
+ C2

j φ
2
j

du

dt
=
d4φ3

j

dt4
+ 2C2

j

d2φ3
j

dt2
+ C4

j φ
3
j

at the boundary for k = 1, . . . , P , j = 1, . . . , 2P .

Defining

S1 = J1φ
1
j + J2φ

1
k + J3φ

1
j−k

S2 = J4φ
1
j + J5φ

1
k + J6φ

1
j+k

S3 = J7φ
1
j + J8φ

1
k

S4 = J9φ
1
j + J10φ

1
j−k

S5 = J11φ
1
j + J12φ

1
j+k

S6 = J13φ
3
j + J14φ

1
j + J15φ

1
k

S7 = J16φ
3
k + J17φ

1
k + J18φ

1
j

S8 = J19φ
3
j + J20φ

1
j + J21φ

1
2j

S9 = J22φ
1
j + J23φ

1
2j
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When j 6= |j − k| and k 6= |j − k|, then

Rj−k
1 +Rj+k

1 =
c∞
4

(
2φ1

j − (2C2
k + C2

j−k + C2
j+k)S3 + C4

j−kS1 + C4
j+kS2

)
s2(Rj−k

1 −Rj+k
1 ) =

c∞
4

(
(C2

j+k − C2
j−k)φ

1
j + (C4

j−k + C2
kC

2
j−k − C4

j+k − C2
kC

2
j+k)S3

)
− c∞

4

(
C6
j−kS1 + C6

j+kS2

)
Rj+k

2 −Rj−k
2 =

a(j + k)

8
(φ1

j − (C2
k + C2

j+k)S3 + C4
j+kS2)

− a(j − k)

8
(φ1

j − (C2
k + C2

j−k)S3 + C4
j−kS1)

Rj+k
2 +Rj−k

2 =
a(j + k)

8
(φ1

j − (C2
k + C2

j+k)S3 + C4
j+kS2)

+
a(j − k)

8
(φ1

j − (C2
k + C2

j−k)S3 + C4
j−kS1)

Rj+k
3 −Rj−k

3 =
a(j + k)

8
(φ1

j − C2
j+kS5)− a(j − k)

8
(φ1

j − C2
j−kS4)

Rj−k
4 −Rj+k

4 =
c∞
4

((C2
j+k − C2

j−k)φ
1
j + C4

j−kS4 − C4
j+kS5)

Rj−k
5 −Rj+k

5 =
c∞
4

(C2
j+kφ

1
j+k − C2

j−kφ
1
j−k).

When j = k,

Rj−k
1 +Rj+k

1 =
c∞
4

(
2φ1

j − (2C2
k + C2

j+k)φ
3
j + C4

j+kS8

)
s2(Rj−k

1 −Rj+k
1 ) =

c∞
4

(
C2
j+kφ

1
j − (C4

j+k + C2
kC

2
j+k)φ

3
j + C6

j+kS8

)
Rj+k

2 −Rj−k
2 =

a(j + k)

8
(φ1

j − (C2
k + C2

j+k)φ
3
j + C4

j+kS8)

Rj+k
2 +Rj−k

2 =
a(j + k)

8
(φ1

j − (C2
k + C2

j+k)φ
3
j + C4

j+kS8)

Rj+k
3 −Rj−k

3 =
a(j + k)

8
(φ1

j − C2
j+kS9)

Rj−k
4 −Rj+k

4 =
c∞
4

(C2
j+kφ

1
j − C4

j+kφ
1
j)

Rj−k
5 −Rj+k

5 =
c∞
4
C2
j+kφ

1
j+k.
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When j = |j − k| then

Rj−k
1 +Rj+k

1 =
c∞
4

(
2φ1

j − (2C2
k + C2

j−k + C2
j+k)S3 + C4

j−kS6 + C4
j+kS2

)
s2(Rj−k

1 −Rj+k
1 ) =

c∞
4

(
(C2

j+k − C2
j−k)φ

1
j + (C4

j−k + C2
kC

2
j−k − C4

j+k − C2
kC

2
j+k)S3

)
+
c∞
4

(
−C6

j−kS6 + C6
j+kS2

)
Rj+k

2 −Rj−k
2 =

a(j + k)

8
(φ1

j − (C2
k + C2

j+k)S3 + C4
j+kS2)

− a(j − k)

8
(φ1

j − (C2
k + C2

j−k)S3 + C4
j−kS6)

Rj+k
2 +Rj−k

2 =
a(j + k)

8
(φ1

j − (C2
k + C2

j+k)S3 + C4
j+kS2)

+
a(j − k)

8
(φ1

j − (C2
k + C2

j−k)S3 + C4
j−kS6)

Rj+k
3 −Rj−k

3 =
a(j + k)

8
(φ1

j − C2
j+kS5)− a(j − k)

8
(φ1

j − C2
j−kφ

3
j)

Rj+k
4 −Rj−k

4 =
c∞
4

((C2
j+k − C2

j−k)φ
1
j + C4

j−kS4 − C4
j+kφ

3
j)

Rj−k
5 −Rj+k

5 =
c∞
4

(C2
j+kφ

1
j+k − C2

j−kφ
1
j−k).
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When k = |j − k|, then

Rj−k
1 +Rj+k

1 =
c∞
4

(
2φ1

j − (2C2
k + C2

j−k + C2
j+k)S3 + C4

j−kS7 + C4
j+kS2

)
s2(Rj−k

1 −Rj+k
1 ) =

c∞
4

(
(C2

j+k − C2
j−k)φ

1
j + (C4

j−k + C2
kC

2
j−k − C4

j+k − C2
kC

2
j+k)S3

)
+
c∞
4

(
−C6

j−kS7 + C6
j+kS2

)
Rj+k

2 −Rj−k
2 =

a(j + k)

8
(φ1

j − (C2
k + C2

j+k)S3 + C4
j+kS2)

− a(j − k)

8
(φ1

j − (C2
k + C2

j−k)S3 + C4
j−kS7)

Rj+k
2 +Rj−k

2 =
a(j + k)

8
(φ1

j − (C2
k + C2

j+k)S3 + C4
j+kS2)

+
a(j − k)

8
(φ1

j − (C2
k + C2

j−k)S3 + C4
j−kS7)

Rj+k
3 −Rj−k

3 =
a(j + k)

8
(φ1

j − C2
j+kS5)− a(j − k)

8
(φ1

j − C2
j−kS3)

Rj+k
4 −Rj−k

4 =
c∞
4

((C2
j+k − C2

j−k)φ
1
j + C4

j−kS4 − C4
j+kS3)

Rj−k
5 −Rj+k

5 =
c∞
4

(C2
j+kφ

1
j+k − C2

j−kφ
1
j−k).

We calculate that

g =
−1

2π(M − L)c∞

P∑
j=1

ξj
jr−1

(u(L, t, ω)− φ2
j) +

P∑
j,k=1
|j−k|6=j
|j−k|6=k

(A1
1φ

1
j + A1

2φ
1
k + A1

3φ
1
j−k + A1

4φ
1
j+k)

+
P∑

j,k=1
|j−k|=j

(A2
1φ

1
j + A2

2φ
1
k + A2

3φ
1
j+k + A2

4φ
3
j) +

P∑
j,k=1
|j−k|=k

(A3
1φ

1
j + A3

2φ
1
k + A3

3φ
1
j+k + A3

4φ
3
k) (2.17)

+
P∑

j,k=1
j=k

(A4
1φ

1
j + A4

2φ
3
j + A4

3φ
1
2j)
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where

A1
1 = D1D2E1E2

c∞
4
(2− (2 ∗ C2

k + C2
j−k + C2

j+k)J7 + C4
j−kJ1 + C4

j+kJ4)

+D1D2E1F
A2

8
(1− (C2

k + C2
j+k)J7 + C4

j+kJ4 − E1F
A1

8
(1− (C2

k + C2
j−k)J7 + C4

j−kJ1))

+D1D2E2F
A2

8
(1− (C2

k + C2
j+k)J7 + C4

j+kJ4) + E2F
A1

8
(1− (C2

k + C2
j−k)J7 + C4

j−kJ1)

+D1D2F
2 c∞
4
((C2

j+k − C2
j−k) + (C4

j−k + C2
kC

2
j−k − C4

j+k − C2
kC

2
j+k)J7 − C6

j−kJ1 + C6
j+kJ4)

− 2D1E1
ξk

π2krc3
∞

(
A2

8
(1− C2

j+kJ11)−
A1

8
(1− C2

j−kJ9)

)
− 2D1F

ξk
π2krc3

∞

c∞
4
((C2

j+k − C2
j−k)− C4

j+kJ11 + C4
j−kJ9)

A1
2 = D1D2E1E2

c∞
4
(−(2C2

k + C2
j−k + C2

j+k)J8 + C4
j−kJ2 + C4

j+kJ5)

+D1D2E1F
A2

8
(−(C2

k + C2
j+k)J8 + C4

j+kJ5)−D1D2E1F
A1

8
(−(C2

k + C2
j−k)J8 + C4

j−kJ2)

+D1D2E2F
A2

8
(−(C2

k + C2
j+k)J8 + C4

j+kJ5) +D1D2E2F
A1

8
(−(C2

k + C2
j−k)J8 + C4

j−kJ2)

+D1D2F
2 c∞
4
((C4

j−k + C2
kC

2
j−k − C4

j+k − C2
kC

2
j+k)J8 − C6

j−kJ2 + C6
j+kJ5)

A1
3 = D1D2E1E2

c∞
4
C4
j−kJ3 −D1D2E1F

A1

8
C4
j−kJ3 +D1D2E2F

A1

8
C4
j−kJ3 −D1D2F

2 c∞
4
C6
j−kJ3

− 2D1E1
ξk

π2krc3
∞

A1

8
C2
j−kJ10 − 2D1F

ξk
π2krc3

∞

c∞
4
C4
j−kJ10 −

ξjξk
c6
∞π

4jrkr
c∞
4
C2
j−k

A1
4 = D1D2E1E2

c∞
4
C4
j+kJ6 +D1D2E1F

A2

8
C4
j+kJ6 +D1D2E2F

A2

8
C4
j+kJ6 +D1D2F

2 c∞
4
C6
j+kJ6

+ 2D1E1
ξk

π2krc3
∞

A2

8
C2
j+kJ12 + 2D1F

ξk
π2krc3

∞

c∞
4
C4
j+kJ12 +

ξjξk
c6
∞π

4jrkr
c∞
4
C2
j+k

A2
1 = D1D2E1E2

c∞
4
(2− (2 ∗ C2

k + C2
j−k + C2

j+k)J7 + C4
j−kJ14 + C4

j+kJ4)

+D1D2E1F
A2

8
(1− (C2

k + C2
j+k)J7 + C4

j+kJ4)− E1F
A1

8
(1− (C2

k + C2
j−k)J7 + C4

j−kJ14)

+D1D2E2F
A2

8
(1− (C2

k + C2
j+k)J7 + C4

j+kJ4) + E2F
A1

8
(1− (C2

k + C2
j−k)J7 + C4

j−kJ14)

+D1D2F
2 c∞
4
((C2

j+k − C2
j−k) + (C4

j−k + C2
kC

2
j−k − C4

j+k − C2
kC

2
j+k)J7 − C6

j−kJ14 + C6
j+kJ4)

− 2D1E1
ξk

π2krc3
∞

(
A2

8
(1− C2

j+kJ11)−
A1

8

)
− 2D1F

ξk
π2krc3

∞

c∞
4
((C2

j+k − C2
j−k)− C4

j+kJ11)−
ξjξk

c6
∞π

4jrkr
c∞
4
C2
j−k
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A2
2 = D1D2E1E2

c∞
4
(−(2C2

k + C2
j−k + C2

j+k)J8 + C4
j−kJ15 + C4

j+kJ5)

+D1D2E1F
A2

8
(−(C2

k + C2
j+k)J8 + C4

j+kJ5)−D1D2E1F
A1

8
(−(C2

k + C2
j−k)J8 + C4

j−kJ15)

+D1D2E2F
A2

8
(−(C2

k + C2
j+k)J8 + C4

j+kJ5) +D1D2E2F
A1

8
(−(C2

k + C2
j−k)J8 + C4

j−kJ15)

+D1D2F
2 c∞
4
((C4

j−k + C2
kC

2
j−k − C4

j+k − C2
kC

2
j+k)J8 − C6

j−kJ15 + C6
j+kJ5)

A2
3 = D1D2E1E2

c∞
4
C4
j+kJ6 +D1D2E1F

A2

8
C4
j+kJ6 +D1D2E2F

A2

8
C4
j+kJ6 +D1D2F

2 c∞
4
C6
j+kJ6

+ 2D1E1
ξk

π2krc3
∞

A2

8
C2
j+kJ12 + 2D1F

ξk
π2krc3

∞

c∞
4
C4
j+kJ12 +

ξjξk
c6
∞π

4jrkr
c∞
4
C2
j+k

A2
4 = D1D2E1E2

c∞
4
C4
j−kJ13 −D1D2E1F

A1

8
C4
j−kJ13 +D1D2E2F

A1

8
C4
j−kJ13 −D1D2F

2 c∞
4
C6
j−kJ6

+ 2D1E1
ξk

π2krc3
∞

A1

8
C2
j−k + 2D1F

ξk
π2krc3

∞

c∞
4
C4
j−k

A3
1 = D1D2E1E2

c∞
4
(2− (2 ∗ C2

k + C2
j−k + C2

j+k)J7 + C4
j−kJ18 + C4

j+kJ4)

+D1D2E1F
A2

8
(1− (C2

k + C2
j+k)J7 + C4

j+kJ4 − E1F
A1

8
(1− (C2

k + C2
j−k)J7 + C4

j−kJ18))

+D1D2E2F
A2

8
(1− (C2

k + C2
j+k)J7 + C4

j+kJ4) + E2F
A1

8
(1− (C2

k + C2
j−k)J7 + C4

j−kJ18)

+D1D2F
2 c∞
4
((C2

j+k − C2
j−k) + (C4

j−k + C2
kC

2
j−k − C4

j+k − C2
kC

2
j+k)J7 − C6

j−kJ18 + C6
j+kJ4)

− 2D1E1
ξk

π2krc3
∞

(
A2

8
(1− C2

j+kJ11)−
A1

8
(1− C2

j−kJ7)

)
− 2D1F

ξk
π2krc3

∞

c∞
4
((C2

j+k − C2
j−k)− C4

j+kJ11 + C4
j−kJ7)

A3
2 = D1D2E1E2

c∞
4
(−(2C2

k + C2
j−k + C2

j+k)J8 + C4
j−kJ17 + C4

j+kJ5)

+D1D2E1F
A2

8
(−(C2

k + C2
j+k)J8 + C4

j+kJ5)−D1D2E1F
A1

8
(−(C2

k + C2
j−k)J8 + C4

j−kJ17)

+D1D2E2F
A2

8
(−(C2

k + C2
j+k)J8 + C4

j+kJ5) +D1D2E2F
A1

8
(−(C2

k + C2
j−k)J8 + C4

j−kJ17)

+D1D2F
2 c∞
4
((C4

j−k + C2
kC

2
j−k − C4

j+k − C2
kC

2
j+k)J8 − C6

j−kJ17 + C6
j+kJ5)

− 2D1E1
ξk

π2krc3
∞

A1

8
C2
j−kJ8 − 2D1F

ξk
π2krc3

∞

c∞
4
C4
j−kJ8 −

ξjξk
c6
∞π

4jrkr
c∞
4
C2
j−k

A3
3 = D1D2E1E2

c∞
4
C4
j+kJ6 +D1D2E1F

A2

8
C4
j+kJ6 +D1D2E2F

A2

8
C4
j+kJ6 +D1D2F

2 c∞
4
C6
j+kJ6

+ 2D1E1
ξk

π2krc3
∞

A2

8
C2
j+kJ12 + 2D1F

ξk
π2krc3

∞

c∞
4
C4
j+kJ12 +

ξjξk
c6
∞π

4jrkr
c∞
4
C2
j+k
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A3
4 = D1D2E1E2

c∞
4
C4
j−kJ16 −D1D2E1F

A1

8
C4
j−kJ16 + E2F

A1

8
C4
j−kJ16 −D1D2F

2 c∞
4
C6
j−kJ16

A4
1 = D2

1E
2
1

c∞
4
(2 + C2

2jJ20) + 2D2
1E1F

A3

8
(1 + C4

2jJ20) +D2
1F

2 c∞
4
(C2

2j + C6
2jJ20)

− 2D1E1
ξj

π2jrc3
∞

A3

8
(1− C2

2jJ22)− 2D1F
ξj

π2jrc3
∞

c∞
4
(C2

2j − C4
2jJ22)

A4
2 = D2

1E
2
1

c∞
4
(−(2C2

j + C2
2j) + C4

2jJ19) + 2D2
1E1F

A3

8
(−(C2

j + C2
2j) + C4

2jJ19)

+D2
1F

2 c∞
4
((−C4

2j − C2
jC

2
2j) + C6

2jJ19)

A4
3 = D2

1E
2
1

c∞
4
C4

2jJ21 + 2D2
1E1F

A3

8
C4

2jJ21 +D2
1F

2 c∞
4
C6

2jJ21

+ 2D1E1
ξj

π2jrc3
∞

A3

8
C2

2jJ23 + 2D1F
ξj

π2jrc3
∞

c∞
4
C4

2jJ23 +
ξ2
j

c6
∞π

4j2r

c∞
4
C2

2j
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2.3. Numerical Results

Numerical experiments were performed to compare the stochastic boundary condition

obtained with a solution on the extended domain. The system corresponding to the linear

approximation obtained in section 2.1 is

∂2u

∂t2
(x, t, ω) =

∂

∂x

(
c2(x)

∂u

∂x
(x, t, ω)

)
+ f(x, t), x ∈ [−L,L]

u(x, 0, ω) = u0(x),
∂u

∂t
(x, 0, ω) = v0(x),

∂u

∂x
(L, t, ω) +

1

c∞

∂u

∂t
(L, t, ω) = g1(L, t, ω), (2.18)

∂u

∂x
(−L, t, ω)− 1

c∞

∂u

∂t
(−L, t, ω) = 0,

d2φj
dt2

(t, ω) +B2
jφj(t, ω) = B2

ju(L, t, ω).

where g1(x, t, ω) = 1
4c2∞π

∑P
j=1

1
jk−1

u(L,t,ω)−φj(t,ω)

M−L ξj(ω) and we assume that c = c∞ for x <

−L so that we use the exact boundary condition there. The system corresponding to the

quadratic approximation obtained in Section 2.2 is

∂2u

∂t2
(x, t, ω) =

∂

∂x

(
c2(x)

∂u

∂x
(x, t, ω)

)
+ f(x, t), x ∈ [−L,L]

u(x, 0, ω) = u0(x),
∂u

∂t
(x, 0, ω) = v0(x),

∂u

∂x
(L, t, ω) +

1

c∞

∂u

∂t
(L, t, ω) = g2(L, t, ω),

∂u

∂x
(−L, t, ω)− 1

c∞

∂u

∂t
(−L, t, ω) = 0, (2.19)

du

dt
(L, t, ω) =

d2φ1
k

dt2
(t, ω) + C2

kφ
1
k(t, ω)

u(L, t, ω) =
d2φ2

j

dt2
(t, ω) + C2

j φ
2
j(t, ω)

du

dt
(L, t, ω) =

d4φ3
j

dt4
(t, ω) + 2C2

j

d2φ3
j

dt2
(t, ω) + C4

j φj(t, ω),
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where g2(L, t, ω) is given by (2.2). Writing the system (2.3) or (2.3) in weak form, we obtain

∫ L

−L

∂2u

∂t2
(x, t)v(x, t)dx = −

∫ L

−L

∂

∂x

(
c2(x)

∂u

∂x
(x, t)

)
v(x, t)dx+

∫ L

−L
f(x, t)v(x, t)dx

for test functions v ∈ C∞(−L,L). Using integration by parts,

∫ L

−L

∂2u

∂t2
(x, t)v(x, t)dt = −

∫ L

−L
c2(x)

∂u

∂x
(x, t)

∂v

∂x
(x, t)dx+ c2(x)

∂u

∂x
(x, t)v(x, t) |L−L

+

∫ L

−L
f(x, t)v(x, t)dx∫ L

−L

∂2u

∂t2
(x, t)v(x, t)dt = −

∫ L

−L
c2(x)

∂u

∂x
(x, t)

∂v

∂x
(x, t)dx+ c2

∞v(L, t)

(
g − 1

c∞

∂u

∂t
(L, t)

)
− c∞v(−L, t)∂u

∂t
(−L, t) +

∫ L

−L
f(x, t)v(x, t)dx

We use the Galerkin approximation

u(x, t, ω) ≈
nx∑
k=0

uk(t, ω)ψk(x) (2.20)

where ψk are the Galerkin difference basis functions as in [3]. These are piecewise polynomials

defined by values on a uniform grid whose restriction to any interval bounded by grid points

is the Lagrange interpolant of the nodal data. Near boundaries we simply take the values of

the solution at external ghost points to be free, called the ghost basis method in [3]. Here

we take the local polynomial degrees to be 3 and the grid spacing to be ∆x = 1/100. This

seems sufficient to resolve the waves to the accuracy provided by the linearized approximate

boundary condition, but some discretization errors are noticeable for the more accurate

quadratic approximation when the amplitude of the perturbation is very small.

nx∑
k=1

Mjk
d2uk
dt2

=
nx∑
k=1

(
−Sjk

duk
dt

+Mjkfk

)
+ c2
∞v(L, t)

(
g − 1

c∞

∂u

∂t
(L, t)

)
(2.21)

−c∞v(−L, t)∂u
∂t

(−L, t)
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where

Mjk =

∫ L

−L
ψj(x)ψk(x)dx, Sjk =

∫ L

−L
c2(x)

dψj
dx

(x)
dψk
dx

(x)dx

The standard 4th-order Runge-Kutta method is used to discretize the time-variable with

∆t = 1/10000. We take the source term f(x, t) = 0, and the initial conditions to represent a

pulse u0(x) = e−x
2
I[−5,5], v0(x) = 0. The wave speed on the domain [−L,L] is c(x) = c∞ =

10.

2.3.1. Consistency with Extended Domain

First we will test the accuracy of the method by comparing the solution obtained with the

random boundary condition to the solution obtained by solving the problem on the extended

domain. Let u1(x, t) denote the solution to equation (2.3) and u2(x, t) the solution of

∂2u

∂t2
(x, t, ω) =

∂

∂x

(
c2(x, ω)

∂u

∂x
(x, t, ω)

)
+ f(x, t), x ∈ [−L,M ]

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x),

∂u

∂x
(M, t, ω) +

1

c∞

∂u

∂t
(M, t, ω) = 0 (2.22)

∂u

∂x
(−L, t, ω)− 1

c∞

∂u

∂t
(−L, t, ω) = 0

with discretization analogous to equation (2.3). We choose a single sample c̃ scaled by various

amplitudes A so that the solutions are deterministic. We measure the difference between u1

and u2 at a time t = T by using the maximum norm

err =
nx

max
x=1
|u1(x, T )− u2(x, T )|.

In Figure (2.3) we plot err vs A, for the single sample Ac̃. The parameters r = 6,

P = 10, L = 10, M = 20, and T = 2. As A increases, the error of the method increases at

second-order rate, as expected.
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Figure 2.3. Error for Linear Approximation

In Figure (2.4) we plot err vs A, for the single sample Ac̃. As A increases, the error of

the method increases at third-order rate for sufficiently large A, as expected. There is not

3rd order accuracy at small fluctuation values because the error in discretization is larger

than the error in the linearization of the Ricatti equation for these values of A. However, it

is observed that the slope of a sufficiently short tail of the graph is 3.
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Figure 2.4. Error for Quadratic Approximation

2.3.2. Monte-Carlo

We approximate the mean and variance of the reflected wave at the boundary by using

the Monte-Carlo method. The system (2.3) is solved N times to approximate the statistics

of the solution. Let Xi(x, t) = f(ui1(x, t)) be a quantity of interest, where ui1(x, t) is the

solution using the ith sample. The sample mean m(x, t) and sample variance σ2(x, t) are

given by

m(x, t) =
1

N

N∑
i=1

Xi(x, t)

σ2(x, t) =
1

N − 1

N∑
i=1

(Xi(x, t)−m(x, t))2

where N is the number of samples.

The first quantity computed is the maximum value of the reflected wave at t = 2, given

by Xi(x, t) = maxx(|ui1(x, t)|). The value t = 2 is selected because this is the value of time

when the wave has passed completely through the random medium. The same parameters
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were chosen as in the previous experiment. The mean m and variance σ2 is given below

in Figures (2.5) and (2.6). The small variance is due to small perturbations in the random

medium. We do not expect these quantities to be zero because the small perturbations in

the wave speed should generate reflected wave energy.

The second quantity computed is the mean value of the reflected wave at t = 2, given

by Xi(x, t) = 1
n

∑
j(u

i
1(xj, t)). The mean m and variance σ2 is given below in Figures (2.7)

and (2.8). In these preliminary uncertainty quantification experiments we expect the sample

mean and sample variance to converge to their true values as N → ∞. A simulation with

several orders of magnitude increase in the number of samples used here is expected to be

necessary to observe convergence.
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Figure 2.5. Mean Maximum of Reflected Wave at Boundary

Figure 2.6. Variance of Maximum of Reflected Wave at Boundary
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Figure 2.7. Mean of Average Reflected Wave at Boundary

Figure 2.8. Variance of Average of Reflected Wave at Boundary
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Chapter 3

EXTENSIONS TO A STATIONARY PROCESS

3.1. DtN Map for Whittle-Matérn Covariance Process

In this chapter we will repeat the procedure carried out in Chapter 2 for a stationary

Gaussian process. This will prepare us for Chapter 4 when we will compare the reflection

of the wave at the boundary caused by the random boundary condition obtained here to an

asymptotic calculation carried out in [8]. A class of stationary covariance functions are given

by the Matérn class

Cv(d) =
21−v

Γ(v)

(√
2v
d

ρ

)v
Kv

(√
2ν
d

ρ

)
, (3.1)

where Γ is the gamma function, Kv is the modified Bessel function of the second kind,

d = |x − y| is the distance between points, and ρ, v are positive parameters. It is shown

in [9] that a Gaussian process with Matérn covariance function is dve−-times differentiable.

The selection of the Whittle-Matérn covariance function was motivated by the desire to find

an orthogonal expansion which has closed-form eigenfunctions. In the future it would be

interesting to choose a process which is motivated by a physical example.

In the case v = p+ 1/2 equation (3.1) simplifies to

Cp+1/2(d) = exp

(
−
√

2p+ 1d

p

)
p!

(2p)!

p∑
i=0

(p+ i)!

i! (p− i)!

(
2
√

2p+ 1d

ρ

)p−i

For p = 0 we have the exponential covariance,

C1/2(d) = exp(−d),
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where we chose ρ = 1 for simplicity. Here the sample paths are continuous but not differen-

tiable. We will find the eigenfunction expansion for the p = 1 case

C3/2(d) = (1 +
√

3d) exp(−
√

3d).

which is continuous and differentiable. The eigenfunction expansion is given by

c̃(x, ω) = c∞ +
∞∑
j=1

√
νjφj(x)ξj(ω), ξj(ω) ∼ N(0, 1)

where, taking d = |x− y|, φ and ν are the eigenfunctions and eigenvalues of the covariance

operator satisfying

∫ a

−a
(1 +

√
3|x− y|)e−

√
3|x−y|φ(y)dy = νφ(x), x ∈ [−a, a]

Differentiating under the integral sign gives

νφ′(x) = −3

∫ x

−a
(x− y)e−

√
3(x−y)φ(y)dy + 3

∫ a

x

(y − x)e−
√

3(y−x)φ(y)dy

νφ′′(x) =

∫ x

−a
(3
√

3(x− y)− 3)e−
√

3(x−y)φ(y)dy +

∫ a

x

(3
√

3(y − x)− 3)e−
√

3(y−x)φ(y)dy

νφ′′′(x) =

∫ x

−a
(−9(x− y) + 6

√
3)e−

√
3(x−y)φ(y)dy +

∫ a

x

(9(y − x)− 6
√

3)e−
√

3(y−x)φ(y)dy

νφ′′′′(x) =

∫ x

−a
(9
√

3(x− y)− 27)e−
√

3(x−y)φ(y)dy +

∫ a

x

(9
√

3(y − x)− 27)e−
√

3(y−x)φ(y)dy

+ 12
√

3φ(x)

Thus we see that the integral equation is equivalent to the linear 4th order ODE

φ′′′′(x)− 6φ′′(x) +
9ν − 12

√
3

ν
φ(x) = 0

φ′′(−a)− 2
√

3φ′(−a) + 3φ(−a) = 0, φ′′′(−a)− 2
√

3φ′′(−a) + 3φ′(−a) = 0

φ′′(a) + 2
√

3φ′(a) + 3φ(a) = 0, φ′′′(a) + 2
√

3φ′′(a) + 3φ′(a) = 0
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Solving the ODE gives the characteristic polynomial r4− 6r2 + (9− 12
√

3/ν) = 0, which has

roots

r2 = 3±

√
12
√

3

ν
.

The eigenvalues satisfy ν1 ≥ ν2 ≥ . . . ≥ 0, so we expect two real and two imaginary roots,

giving the general solution

φ(x) = A exp(−r1(x+ a)) +B exp(r1(x− a)) + C cos(r2(x+ a)) +D sin(r2(x+ a))

with r1 =

√
3 +

√
12
√

3/ν, r2 =

√√
12
√

3/ν − 3.

Applying the boundary conditions leads to



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44





A

B

C

D


=



0

0

0

0


(3.2)

where

A11 = r2
1 + 2

√
3r1 + 3, A12 = (r2

1 − 2
√

3r1 + 3) exp(−2ar1)

A13 = 3− r2
2, A14 = −2

√
3r2, A21 = (−r3

1 − 2
√

3r2
1 − 3r1)

A22 = (r3
1 − 2

√
3r2

1 + 3r1) exp(−2ar1), A23 = 2
√

3r2
2, A24 = (3r2 − r3

2)

A31 = (r2
1 − 2

√
3r1 + 3) exp(−2ar1), A32 = r2

1 + 2
√

3r1 + 3

A33 = (3− r2
2)C − 2

√
3r2S, A34 = 2

√
3r2C + (3− r2

2)S

A41 = (−r3
1 + 2

√
3r2

1 − 3r1) exp(−2ar1), A42 = (r3
1 + 2

√
3r2

1 + 3r1)

A43 = (r3
2 − 3r2)S − 2

√
3r2

2C, A44 = (3r2 − r3
2)C − 2

√
3r2

2S

where S = sin(2ar2), C = cos(2ar2).
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The eigenvalues ν and corresponding eigenvectors φ are found numerically by applying

the power method to the eigenvalue problem Aφ = νφ where A is given in (3.1). The

eigenvectors φ are then normalized by enforcing ‖φ‖2= 1. Sample paths are given in Figure

(3.1), where the process has been truncated to P = 100 terms.

Figure 3.1. Sample Paths for Stationary Process

Starting from equation (2.1), we follow the same procedure to obtain the DtN map with

the added complication that there will generally be a jump at the boundary x = L

σ̃(L, s, ω) =
2s2

c3
∞

∫ M

L

e−
2s
c∞

(z−L)c̃(z, ω)dz − 2s

c2
∞
c̃(L, ω)

=
2s2

c3
∞

∞∑
i=1

ξi(ω)
√
νi

(
Ai

∫ M

L

e−
2s
c∞

(z−L)e−r1(z−L)dz +Bi

∫ M

L

e−
2s
c∞

(z−L)er1(z−M)dz

)
+

2s2

c3
∞

∞∑
i=1

ξi(ω)
√
νiCi

∫ M

L

e−
2s
c∞

(z−L) cos(r2(z − L))dz

+
2s2

c3
∞

∞∑
i=1

ξi(ω)
√
νiDi

∫ M

L

e−
2s
c∞

(z−L) sin(r2(z − L))dz − 2s

c2
∞
c̃(L, ω).
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Using the following integrals

∫ M

L

e−
2s
c∞

(z−L)e−r1(z−L)dz =
c∞/2

s+ c∞r1/2∫ M

L

e−2s(z−L)/c∞er1(z−M)dz =
c∞e

−(M−L)r1/2

s− c∞r1/2∫ M

L

e−2s(z−L)/c∞ cos(r2(z − L))dz =
c∞s/2

s2 + c2
∞r

2
2/4∫ M

L

e−2s(z−L)/c∞ sin(r2(z − L))dz =
c2
∞r2/4

s2 + c2
∞r

2
2/4

the DtN map in the Laplace domain is then, in the Laplace domain

σ̃(L, s, ω) =
2s2

c3
∞

∞∑
i=1

ξi
√
νi

(
Ai

c∞/2

s+ c∞r1/2
+Bi

c∞e
−(M−L)r1/2

s− c∞r1/2

)
+

2s2

c3
∞

∞∑
i=1

ξi
√
νi

(
Ci

c∞s/2

s2 + c2
∞r

2
2/4

+Di
c2
∞r2/4

s2 + c2
∞r

2
2/4

)
− 2s

c2
∞
c̃(L, ω).

=
2

c3
∞

∞∑
i=1

ξi
√
νi

(
Ai
c∞
2

(
s− sc∞r1/2

s+ c∞r1/2

)
+Bi

c∞e
−(M−L)r1

2

(
s+

sc∞r1/2

s− c∞r1/2

))
+

2

c3
∞

∞∑
i=1

ξi
√
νi

(
Ci
c∞
2

(
s− sc2

∞r
2
2/4

s2 + c2
∞r

2
2/4

)
+Di

c2
∞r2

4

(
1− c2

∞r
2
2/4

s2 + c2
∞r

2
2/4

))
− 2s

c2
∞
c̃(L, ω).

=
2s

c3
∞

∞∑
i=1

ξi
√
νi

(
Ai
c∞
2

+Bi
c∞e

−(M−L)r1

2
+ Ci

c∞
2

)
+

2

c3
∞

∞∑
i=1

ξi
√
νi

(
−Ai

c∞
2

c∞r1

2

(
1− c∞r1/2

s+ c∞r1/2

))
+

2

c3
∞

∞∑
i=1

ξi
√
νi

(
Bi
c∞e

−(M−L)r1

2

c∞r1

2

(
1 +

c∞r1/2

s− c∞r1/2

))
+

2

c3
∞

∞∑
i=1

ξi
√
νi

(
−Ci

c∞
2

c2
∞r

2
2

4

(
s

s2 + c2
∞r

2
2/4

)
+Di

c2
∞r2

4

(
1− c2

∞r
2
2/4

s2 + c2
∞r

2
2/4

))
− 2s

c2
∞
c̃(L, ω).
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Define

h =
2

c3
∞

∞∑
i=1

ξi
√
νi

(
Ai
c∞
2

+Bi
c∞e

−(M−L)r1

2
+ Ci

c∞
2

)
ĝ =

2û

c3
∞

∞∑
i=1

ξi
√
νi

(
Ai
c∞
2

c∞r1

2

(
1− c∞r1/2

s+ c∞r1/2

))
− 2û

c3
∞

∞∑
i=1

ξi
√
νi

(
Bi
c∞e

−(M−L)r1

2

c∞r1

2

(
1 +

c∞r1/2

s− c∞r1/2

))
− 2û

c3
∞

∞∑
i=1

ξi
√
νi

(
−Ci

c∞
2

c2
∞r

2
2s/4

s2 + c2
∞r

2
2/4

+Di
c2
∞r2

4

(
1− c2

∞r
2
2/4

s2 + c2
∞r

2
2/4

))

The boundary condition is then

dû

dx
+ s

(
1

c∞
− 2

c2
∞
c̃(L) + ĥ

)
û = ĝ

In the time domain,

du

dx
+

(
1

c∞
− 2

c2
∞
c̃(L, y) + h

)
du

dt
= g

Where

g =
2

c3
∞

∞∑
i=1

ξi
√
νi

(
Ai
c∞
2

c∞r1

2
(u− c∞r1φ1/2)−Bi

c∞e
−(M−L)r1

2

c∞r1

2
(u+ c∞r1φ2/2)

)
(3.3)

− 2

c3
∞

∞∑
i=1

ξi
√
νi

(
−Ci

c∞
2
c2
∞r

2
2φ3/4 +Di

c2
∞r2

4

(
u− c2

∞r
2
2φ4/4

))
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and

u(t, ω) =
dφ1

dt
+ c∞r1φ1/2

u(t, ω) =
dφ2

dt
− c∞r1φ2/2

du

dt
(t, ω) =

d2φ3

dt2
+ c2
∞r

2
2φ3/4

u(t, ω) =
d2φ4

dt2
+ c2
∞r

2
2φ4/4

with zero initial conditions for φj, j = 1, 2, 3, 4.

3.2. Numerical Results

Numerical experiments were performed to compare the solution computed with the

stochastic boundary condition to a solution computed on the extended domain. The system

is

∂2u

∂t2
=

∂

∂x

(
c2(x)

∂u

∂x

)
+ f(x, t), x ∈ [−L,L]

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x),

∂u

∂x
+

1

c∞

∂u

∂t
= g(x, t, ω), x = L (3.4)

∂u

∂x
− 1

c∞

∂u

∂t
= 0, x = −L

d2φj
dt2

+B2
jφj = B2

ju.

where g(x, t, ω) is given by (3.1). Writing the system (3.2) in weak form, we obtain

∫ L

−L

∂2u

∂t2
(x, t)v(x, t)dx = −

∫ L

−L

∂

∂x

(
c2(x)

∂u

∂x
(x, t)

)
v(x, t)dx+

∫ L

−L
f(x, t)v(x, t)dx
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for test functions v ∈ C∞(−L,L). Using integration by parts,

∫ L

−L

∂2u

∂t2
(x, t)v(x, t)dt = −

∫ L

−L
c2(x)

∂u

∂x
(x, t)

∂v

∂x
(x, t)dx+ c2(x)

∂u

∂x
(x, t)v(x, t) |L−L

+

∫ L

−L
f(x, t)v(x, t)dx∫ L

−L

∂2u

∂t2
(x, t)v(x, t)dt = −

∫ L

−L
c2(x)

∂u

∂x
(x, t)

∂v

∂x
(x, t)dx+ c2

∞v(L, t)

(
g − 1

c∞

∂u

∂t
(L, t)

)
− c∞v(−L, t)∂u

∂t
(−L, t) +

∫ L

−L
f(x, t)v(x, t)dx

We use the Galerkin approximation

u(x, t, ω) ≈
nx∑
k=0

uk(t, ω)ψk(x) (3.5)

where ψk are the Galerkin difference basis functions as in [3]. These are piecewise polynomials

defined by values on a uniform grid whose restriction to any interval bounded by grid points

is the Lagrange interpolant of the nodal data. Near boundaries we simply take the values of

the solution at external ghost points to be free, called the ghost basis method in [3]. Here

we take the local polynomial degrees to be 3 and the grid spacing to be ∆x = 1/100. This

seems sufficient to resolve the waves to the accuracy provided by the linearized approximate

boundary condition, but some discretization errors are noticeable for the more accurate

quadratic approximation when the amplitude of the perturbation is very small.

nx∑
k=1

Mjk
d2uk
dt2

=
nx∑
k=1

(
−Sjk

duk
dt

+Mjkfk

)
+ c2
∞v(L, t)

(
g − 1

c∞

∂u

∂t
(L, t)

)
(3.6)

−c∞v(−L, t)∂u
∂t

(−L, t)

where

Mjk =

∫ L

−L
ψj(x)ψk(x)dx, Sjk =

∫ L

−L
c2(x)

dψj
dx

(x)
dψk
dx

(x)dx
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The standard 4th-order Runge-Kutta method is used to discretize the time-variable with

∆t = 1/10000. We take the source term f(x, t) = 0, and the initial conditions to represent a

pulse u0(x) = e−x
2
I[−5,5], v0(x) = 0. The wave speed on the domain [−L,L] is c(x) = c∞ =

10.

3.2.1. Consistency with Extended Domain

First we will test the accuracy of the method by comparing the solution obtained with the

random boundary condition to the solution obtained by solving the problem on the extended

domain. Let u1(x, t) denote the solution to equation (2.3) and u2(x, t) the solution of

∂2u

∂t2
(x, t, ω) =

∂

∂x

(
c2(x, ω)

∂u

∂x
(x, t, ω)

)
+ f(x, t), x ∈ [−L,M ]

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x),

∂u

∂x
(M, t, ω) +

1

c∞

∂u

∂t
(M, t, ω) = 0 (3.7)

∂u

∂x
(−L, t, ω)− 1

c∞

∂u

∂t
(−L, t, ω) = 0

with discretization analogous to equation (4.5). We choose a single sample c̃ scaled by various

amplitudes A so that the solutions are deterministic. We measure the difference between u1

and u2 at a time t = T by using the maximum norm

err =
nx

max
x=1
|u1(x, T )− u2(x, T )|.

In Figure (3.2) we plot err vs A, for the single sample Ac̃. The parameters are r = 6,

P = 100, L = 10, M = 20, and T = 2. As A increases, the error of the method increases at

second-order rate, as expected.
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Figure 3.2. Error for Linear Approximation

45



Chapter 4

COMPARISON WITH ASYMPTOTIC RESULTS

In this section we will summarize an alternative approach developed in [8] to study the

transmission and reflection of waves through a random medium. In the final section we will

compare the method obtained in previous chapters to an asymptotic one developed here.

Preliminary results are obtained.

4.1. Scaling Regimes of Wave Propagation through Random Medium

Three parameters of interest in the random layer wave propagation problem are the

random layer size l, the typical wavelength of the propagating pulse λ0, and the propagation

distance L. See Figure (4.1). The relative magnitude of these parameters determines the

qualitative behavior of the wave as it passes through the random slab. First we would like

to nondimensionalize the problem in order to introduce our scaling parameters. We start

with the 1D wave equation written in the form

ρ(z)
∂u

∂t
+
∂p

∂z
= F (t, z), (4.1)

1

K(z)

∂p

∂t
+
∂u

∂z
= 0,

where ρ and K are the density and permissibility of the medium. Upon differentation and

substitution this system is equivalent to

ρ(z)
∂2u

∂t2
=

∂

∂z

(
K(z)

∂u

∂z

)
+
∂F

∂t
(z, t) (4.2)

with c2(z) = K(z)/ρ(z). We will go through the asymptotic analysis using the first order

system (4.1), keeping equation (4.1) in mind when we do the comparison in Section 4.5. The
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Figure 4.1. Scaling regime of asymptotic approach

random fluctuations are modeled in the form

1

K(z)
=


1
K

(1 + νK(z, ω)) for z ∈ [0, L],

1
K

for z ∈ (−∞, 0) ∪ (L,∞),

ρ(z) = ρ for all z.

This corresponds to

1

c2(z, ω)
=

ρ̄

K̄
(1 + νK(z, ω))

We therefore assume for simplification that the properties of the medium on either side of

the random slab are the same, so that in the absence of random perturbations there is no

reflection.

The randomness is therefore contained in the zero-mean stationary process νK(z, ω). A

process being stationary means that the (transition) probability of νK(z0 + z, ω) = y given
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νK(z0, ω) = x, z ≥ 0 does not depend on z0. We write the process νK(z, ω) in scaled form as

νK(z, ω) = σν(z/l, ω).

The source is F (t, z) is a point source given by

F (t, z) = ζ̄1/2g(t)δ(z − z0),

where ζ̄ =
√
Kρ̄ is the impedance, so that the right-going wave that travels to the random

slab has the form

A(t, z) = g

(
t− z − z0

c̄

)
, z < 0.

c̄ is the wave speed given by c̄ =
√
K/ρ̄.

One can define a pulse width T0 by root mean square

T 2
0 =

∫∞
−∞(t− T̄ )2g2(t)dt∫∞

−∞ g
2(t)dt

, where T̄ =

∫∞
∞ tg2(t)dt∫∞
−∞ g

2(t)dt
,

so that the typical frequency is ω0 = 2π/T0 and the typical wavelength is λ0 = 2πc̄/ω0. We

can write the source term in terms of these variables as

F (t, z) = ζ̄1/2f(ω0t)δ(z − z0).

Now we define the dimensionless space and time variables

z̃ =
z

L0

, t̃ =
c0t

L0

,

where L0 is a typical propagation distance and c0 is a reference speed of propagation. We

introduce a reference impedance ζ0 and take the normalized pressure and velocity fields to

be

p̃(t̃, z̃) = ζ
−1/2
0 p

(
t̃
L0

c0

, z̃L0

)
, ũ(t̃, z̃) = ζ

1/2
0 u

(
t̃
L0

c0

, z̃L0

)
(4.3)
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and the normalized source and fluctuation terms as

F̃ (t̃, z̃) = L0ζ
−1/2
0 F

(
t̃
L0

c0

, z̃L0

)
, ν̃(z̃) = ν(z̃L0).

Then the wave equation (4.1) is given by

ρ̃
∂ũ

∂t̃
+
∂p̃

∂z̃
= F̃ (t̃, z̃),

1

K̃

(
1 + σν̃

(
z̃
L0

l

))
∂p̃

∂t̃
+
∂ũ

∂z̃
= 0,

with p̃ = c0(ρ̄/ζ0) and K̃ = K̄/(c0ζ0). The source is of the form

F̃ (t̃, z̃) = ζ̃1/2f

(
t̃
ω0L0

c0

)
δ(z − z0),

where

ζ̃ =

√
K̃ρ̃ = ζ̄/ζ0, z̃0 = z0/L0.

Now we introduce our scaling parameters ε and δ as

L0

l
=

1

ε2
,

ω0L0

c0

=
θ

ε
.

The ratio δ/ε is thus the propagation distance measured in terms of the wavelength. Invert-

ing, we have

ε =

√
l

L0

, θ =
ω0

c0

√
lL0.

ε � 1 obviously in all cases of interest. When θ ∼ ε, we are in the effective medium

regime. Here, there is not enough wave interaction with the medium to cause much random

scattering, and homogenization can be used to find effective medium parameters. When

θ ∼ ε−1 and σ ∼ ε, we are in the weakly heterogeneous regime. It is weak because the

variations in the random medium are small, but the propagation distance is large enough

to experience significant scattering nonetheless. When θ ∼ 1, σ ∼ 1, we are in the strongly
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heterogeneous regime.

The scaled and dimensionless wave equation in terms of these parameters has the form

ρ̄
∂uε

∂t
+
∂pε

∂z
= ζ̄1/2f

(
θt

ε

)
δ(z − z0),

1

K

(
1 + σν

( z
ε2

)) ∂pε
∂t

+
∂uε

∂z
= 0.

Decomposing the wave into right- and left-going modes via the transformation

Aε =
pε

ζ̄1/2
+ ζ̄1/2uε, Bε = − pε

ζ̄1/2
+ ζ̄1/2uε,

The boundary conditions correspond to a right-going wave

Aε(t, z) = f

(
θ

ε

(
t− z

c̄

))
, z < 0,

and Bε(t, z) = 0 coming from the left (z > L). Transform the waves along the characteristics

aε(s, z) = Aε
( ε
θ
s+

z

c̄
, z
)
,

bε(s, z) = Bε
( ε
θ
s− z

c̄
, z
)
,

and taking the Fourier transform with respect to the time variable s,

âε(ω, z) =

∫
eiωsaε(s, z)ds, b̂ε(ω, z) =

∫
eiωsbε(s, z)ds,

we arrive at the system

d

dz

âε
b̂ε

 =
iθωσ

2c̄ε
ν
( z
ε2

) 1 −e−2iθωz/(εc̄)

e+2iθωz/(εc̄) −1


âε
b̂ε


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with boundary conditions given by

âε(ω, 0) =

∫
eiωsAε

( ε
δ
s, 0
)
ds =

∫
eiωsf(s)ds = f̂(ω),

b̂ε(ω, L) = 0.

4.2. Reflection of Monochromatic Waves

Now we are ready to derive the reflection of monochromatic waves through a random

slab on [0, L̂] in the weakly heterogeneous regime, where the frequency of the waves is ω/ε2,

the fluctuations in the random medium are of order ε2, and the size of the slab is order 1.

We will take L̂ = M − L so that the width of the slab is consistent with other chapters.

The right-going and left-going modes âε and b̂ε satisfy the BVP

d

dz

âε
b̂ε

 =
1

ε
Hω

( z
ε2
, ν
( z
ε2

))âε
b̂ε

 , (4.4)

Hω(z, ν) =
iω

2c̄
ν

 1 −e−2iωz/c̄

e2iωz/c̄ −1


with boundary conditions

âε(ω, 0) = 1, b̂ε(ω, L̂) = 0. (4.5)

The reflection and transmission coefficients are given by

Rε
ω(0, L̂) = b̂ε(ω, 0), T εω(0, L̂) = âε(ω, L̂).
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First, we convert the above BVP into an IVP by using the propagator Pω, a 2× 2 complex

matrix function satisfying

d

dz
Pω(0, z) = Hω(z, z/l)Pω(0, z), Pω(0, 0) = I.

The matrix Pω(0, z) is of the form

Pω =

αω βω

βω αω

 . (4.6)

This is seen by using Jacobi’s formula for the derivative of a determinant

d det(Pω)

dz
= tr

(
Adj(Pω)

dPω

dz

)

where the adjugate matrix PωAdj(Pω) = det(Pω)I, so that

d det(Pω)

dz
= Tr(Adj(Pω)HωPω) = Tr(HωPωAdj(Pω))

= Tr(Hω) det(Pω) = 0.

Thus

det(Pω) = det(Hω) = 1.

If (αω, βω)T satisfies equation (4.2) with initial condition (1, 0)T , then (βω, αω)T satisfies the

same equation with initial condition (0, 1)T . Thus, we get equation (4.2) with

|αω|2−|βω|2= 1. (4.7)
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Using the identity âε(ω, z)
b̂ε(ω, z)

 = Pε
ω(0, z)

âε(ω, 0)

b̂ε(ω, 0)


applied at z = L̂ and the boundary condition (4.2), we find that

Rε
ω(0, L̂) = −β

ε
ω(0, L̂)

αεω(0, L̂)
.

By using Euler’s identity eix = cos(x) + i sin(x), we get the ODE

d

dz
Pε
ω(0, z) =

iω

2εc̄
ν
( z
ε2

)1 0

0 −1

Pε
ω(0, z)

− ω

2c̄ε
ν
( z
ε2

)
sin

(
2ωz

c̄ε2

)0 1

1 0

Pε
ω(0, z)

− iω

2c̄ε
ν
( z
ε2

)
cos

(
2ωz

c̄ε2

) 0 1

−1 0

Pε
ω(0, z)

The ODE is of the form

d

dz
Pε
ω(0, z) =

1

ε
F
(
Pε
ω(0, z), ν

( z
ε2

)
,
z

ε2

)
(4.8)

where

F(P, ν, τ) =
ω

2c̄

2∑
p=0

g(p)(ν, τ)hpP

h0 = iœ3, h1 = −œ1, h2 = œ2,

œ1 =

0 1

1 0

 ,
0 −i

i 0

 , œ3 =

1 0

0 −1


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g(0)(ν, τ) = ν, g(1)(ν, τ) = ν sin

(
2ωz

c̄

)
, g(2)(ν, τ) = ν cos

(
2ωz

c̄

)
We are interested in the limiting stochastic process as ε → 0. We will use the following

Theorem from [8], page 140:

Theorem 4.1 Let the process Xε(z) be defined by the system of random ordinary differential

equations

dXε

dz
(z) =

1

ε
F
(
Xε(z), Y

( z
ε2

)
,
z

ε2

)
starting from Xε(0) = x0 ∈ Rd. Assume that Y (z) is a z-homogeneous Markov process on S

with generator LY satisfying the Fredholm alternative, and the Rd-valued function F satisfies

the centering condition E[F (x, Y (0))] = 0, where E[·] denotes expectation with respect to the

invariant probability distribution of Y (z). Assume also that F (x, y, τ) and G(x, y, τ) are at

most linearly growing and smooth in x and that F (x, y, τ) and G(x, y, τ) are periodic with

respect to τ with period Z0 where F satisfies the centering condition

∫ Z0

0

E[F (x, Y (0), τ)]dτ = 0

for all x. Then the random processes Xε(z) converge in distribution to the diffusion process

X(z) with generator

Lφ(x) =
1

Z0

∫ Z0

0

∫ ∞
0

E[F (x, Y (0), τ) · ∇x(F (x, Y (z), τ + z) · ∇xφ(x))]dzdτ. (4.9)

Inserting the F below

F(P, ν, τ) =
ω

2c̄

2∑
p=0

g(p)(ν, τ)hpP

into the expression for the generator gives

Lφ(P) =
1

2π

2∑
i,j=0

∫ 2π

0

∫ ∞
0

E[g(i)(ν(0), τ)g(j)(ν(z), τ + z)]dzdτ

× hiP · ∇P(hjP · ∇Pφ(P))
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where P ·Q =
∑

i,j PijQij. Define the correlation integrals Cij by

Cij = 2
1

2π

∫ 2π

0

∫ ∞
0

E[g(i)(ν(0), τ)g(j)(ν(z), τ + z)]dzdτ, p, q = 0, 1, 2

and expanding out the dot product terms:

hiP · ∇P(hjP · ∇Pφ(P)) =
2∑

a,b=1

(hiP)ab
∂

∂Pab

(
2∑

m,n=1

(hjP)mn
∂φ(P)

∂Pmn

)

=
2∑

a,b=1

2∑
m,n=1

(hiP)ab
∂(hjP)mn
∂Pab

∂φ(P)

∂Pmn

+
2∑

a,b=1

2∑
m,n=1

(hiP)ab(hjP)mn
∂2φ(P)

∂Pab∂Pmn

Then, the infinitesimal generator is

Lφ(x) =
1

2

2∑
i,j=0

2∑
a,b,m,n=1

Cij(hiP)ab(hjP)mn
∂2φ(P)

∂Pab∂Pmn
(4.10)

+
1

2

2∑
i,j=0

2∑
a,b,m,n=1

Cij(hiP)ab
∂(hjP)mn
∂Pab

∂φ(P)

∂Pmn

Recall that a general diffusion process with diffusion matrix aij(x) and drift vector bi(x)

has infinitesimal generator given by

Lφ =
1

2

d∑
i,j=1

aij(x)
∂2φ

∂xi∂xj
+

d∑
i=1

bi(x)
∂φ

∂xi
. (4.11)

Moreover, if the diffusion coefficients aij(x) can be factored as

aij(x) =
d∑

k=1

σik(x)σjk(x) (4.12)
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then the diffusion process X(z) is the solution of the SDE

dXi(z) = bi(X(z))dz +
d∑
j=1

σij(X(z))dWj(z), i = 1, . . . , d,

where the Wj are independent Brownian motion processes. Comparing equation (4.2) with

equation (4.2), we see that for our case the diffusion and drift coefficients are given by

aabmn(P) =
2∑

i,j=0

Cij(hiP)ab(hjP)mn

bmn(x) =
1

2

2∑
i,j=0

2∑
a,b=1

Cij(hiP)ab
∂(hjP)mn
∂Pab

Now we just need to factor acd(x) as in equation (4.2) to derive our SDE. First, we shall

compute the components of C:

C00 = 2

∫ ∞
0

E[ν(0)ν(z)]dz,

C11 = 2
1

2π

∫ 2π

0

∫ ∞
0

E[ν(0)ν(z)]dz sin(x) sin

(
x+

2ωz

c̄

)
dx

=
1

π

∫ 2π

0

sin2(x)dx

∫ ∞
0

E[ν(0)ν(z)] cos

(
2ωz

c̄

)
dz

+
1

π

∫ 2π

0

sin(x) cos(x)dx

∫ ∞
0

E[ν(0)ν(z)] sin

(
2ωz

c̄

)
dz

=

∫ ∞
0

E[ν(0)ν(z)] cos

(
2ωz

c̄

)
dz.

The other entries are computed similarly and we have

C =


γ(0) 0 0

0 1
2
γ(ω) −1

2
γ(s)(ω)

0 1
2
γ(s)(ω) 1

2
γ(ω)


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where

γ(ω) = 2

∫ ∞
0

E[ν(0)ν(z)] cos

(
2ωz

c̄

)
dz,

γ(s)(ω) = 2

∫ ∞
0

E[ν(0)ν(z)] sin

(
2ωz

c̄

)
dz.

We decompose C into its symmetric and antisymmetric parts

C(S) =


γ(0) 0 0

0 1
2
γ(ω) 0

0 0 1
2
γ(ω)

 , C(A) =


0 0 0

0 0 −1
2
γ(s)(ω)

0 1
2
γ(s)(ω) 0


Now define œ̃ as the square root of C(S)

œ̃ =



√
γ(0) 0 0

0 1√
2

√
γ(ω) 0

0 0 1√
2

√
γ(ω)


Then, taking

σijl(P) =
2∑
p=0

σ̃lp(hpP)ij

σijl(x) satisfies equation (4.2) so Pω(0, z) satisfies the (Itô) SDE

dPijω(0, z) =
2∑
l=0

σijl(Pω(0, z))dWl(z) + bij(Pω(0, z))dz, i, j = 1, 2. (4.13)

In the Itô Calculus, the ordinary chain rule does not hold. One must use Itô’s Lemma.

However, if we convert this SDE to Stratonovich form, the ordinary chain rule applies. The
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relationship between the Itô and Stratonovich integral above is

∫ z

0

σijl(P)dWl(s) =

∫ z

0

σijl(P) ◦ dWl(s)−
1

2

2∑
a,b=1

∫ z

0

σabl(P)
∂σijl
∂Pab

(P)ds. (4.14)

where ◦ dWl(s) denotes Stratonovich integration. Using the fact that

1

2

2∑
p,q=0

2∑
i,j=1

C(S)
pq (hpP)ij

∂(hqP)ab
∂Pij

=
1

2

2∑
l=0

2∑
i,j=1

σijl
∂σabl
∂Pij

and equation (4.2) we can convert equation (4.2) to Stratonovich form:

dPijω =
2∑
l=0

σijl ◦ dWl(z)− 1

2

2∑
l=0

2∑
a,b=1

σabl
∂σijl
∂Pab

dz + bijdz

=
2∑
l=0

2∑
p=0

σ̃lp(hpP)ij ◦ dWl(z)− 1

2

2∑
p,q=0

2∑
a,b=0

C(S)
pq (hpP)ab

∂(hpP)ij
∂Pab

+ bijdz

=
2∑
l=0

2∑
p=0

σ̃lp(hpP)ij ◦ dWl(z) +
1

2

2∑
p,q=0

C(A)
pq (hqhpP)ijdz.

In matrix form, we have

dPω(0, z) =
2∑
l=0

σ̃llhpP ◦ dWl(z) +
1

2

2∑
p,q=0

C(A)
pq hqhpPdz
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which upon expansion and using the fact that h2h1 = h0 in the dz term gives

dPω(0, z) =
iω
√
γ(0)

2c̄

1 0

0 −1

Pω(0, z) ◦ dW0(z) (4.15)

−
ω
√
γ(ω)

2
√

2c̄

0 1

1 0

Pω(0, z) ◦ dW1(z)

−
iω
√
γ(ω)

2
√

2c̄

 0 1

−1 0

Pω(0, z) ◦ dW2(z)

− iω2γ(s)(ω)

8c̄2

1 0

0 −1

Pω(0, z)dz.

We saw earlier in equation (4.2) that Pω(0, z) is of the form

Pω(0, z) =

αω(0, z) βω(0, z)

βω(0, z) αω(0, z).


It follows that (αω, βω) satisfies the system

dαω =
ω

2c̄

(
i
√
γ(0)αω ◦ dW0(z)−

√
γ(ω)√

2
βω ◦ (dW1(z) + idW2(z))

)

− iω2γ(s)(ω)

8c̄2
αωdz,

dβω =
ω

2c̄

(
−i
√
γ(0)βω ◦ dW0(z)−

√
γ(ω)√

2
αω ◦ (dW1(z)− idW2(z))

)

+
iω2γ(s)(ω)

8c̄2
βωdz

and satisfies |αω|2−|βω|2= 1. Also each matrix in equation (4.2) has trace equal to zero, so
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we can parameterize (αω, βω) as

αω(0, z) = cosh

(
θω(z)

2

)
eiφω(z),

βω(0, z) = sinh

(
θω(z)

2

)
ei(ψω(z)+φω(z)),

where θω(z) ∈ [0,∞), ψω(z), φω(z) ∈ R. Since we are in the Stratonovich framework, we

can use the ordinary chain rule of calculus and select a branch θω(z) ∈ [0,∞) to obtain the

system

dφω = −
ω
√
γ(ω)

2
√

2c̄
tanh

(
θω
2

)
(sin(ψω) ◦ dW1(z) + cos(ψω) ◦ dW2(z))

+
ω
√
γ(0)

2c̄
◦ dW0(z)− ω2γ(s)(ω)

8c̄2
dz,

dψω =
ω
√
γ(ω)√

2c̄ tanh(θω)
(sin(ψω) ◦ dW1(z) + cos(ψω) ◦ dW2(z))

−
ω
√
γ(0)

c̄
◦ dW0(z) +

ω2γ(s)(ω)

4c̄2
dz,

dθω =
ω
√
γ(ω)√
2c̄

(− cos(ψω) ◦ dW1(z) + sin(ψω) ◦ dW2(z)).

Next we wish to convert the above system back to Itô form. To do this, we need to compute

the correction terms in the Itô to Stratonovich formula (4.2) given by

∫ z

0

σip(x(s)) ◦ dWp(s) =

∫ z

0

σip(x(s))dWp(s) +
1

2

3∑
j=1

∫ z

0

σjp(x(s))
∂σip(x(s))

∂xj
ds

where x = (φω, ψω, θω)T and σij, i, j = 0, 1, 2 is the matrix of coefficients in front of the
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dWj(z) terms. For instance, we can find the correction in the dφω equation by calculating

3∑
j=1

σj0
∂σ00

∂xj
= 0,

3∑
j=1

σj1
∂σ01

∂xj
=
ω2γ(ω)

8c̄2
sin(ψ) cos(ψ)

(
2 tanh(θ/2)

tanh(θ)
− 1

cosh2(θ/2)

)
,

3∑
j=1

σj2
∂σ02

∂xj
= −ω

2γ(ω)

8c̄2
sin(ψ) cos(ψ)

(
2 tanh(θ/2)

tanh(θ)
− 1

cosh2(θ/2)

)
.

Thus, the correction terms for the dW1 and dw2 terms cancel, and therefore the dφω line is

unaffected. After calculating the dψω and dθω corrections, we get

dφω = −
ω
√
γ(ω)

2
√

2c̄
tanh

(
θω
2

)
(sin(ψω)dW1(z) + cos(ψω)dW2(z))

+
ω
√
γ(0)

2c̄
dW0(z)− ω2γ(s)(ω)

8c̄2
dz,

dψω =
ω
√
γ(ω)√

2c̄ tanh(θω)
(sin(ψω)dW1(z) + cos(ψω)dW2(z))

−
ω
√
γ(0)

c̄
dW0(z) +

ω2γ(s)(ω)

4c̄2
dz,

dθω =
ω
√
γ(ω)√
2c̄

(− cos(ψω)dW1(z) + sin(ψω)dW2(z))

+
ω2γ(ω)

4c̄2 tanh(θω)
dz.

Finally, we can introduce a pair of new processes (W ∗
1 ,W

∗
2 ) by the orthogonal transformation

W ∗
1 (z)

W ∗
2 (z)

 =

∫ z

0

 sin(ψω) cos(ψω)

− cos(ψω) sin(ψω)

 d
W1(z)

W2(z)

 .

(W ∗
1 ,W

∗
2 ) by the orthogonal transformation remain independent standard Brownian motions.
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With these new processes we have the simplified system

dφω = −
ω
√
γ(ω)

2
√

2c̄
tanh

(
θω
2

)
dW ∗

1 (z) +
ω
√
γ(0)

2c̄
dW0(z) (4.16)

− ω2γ(s)(ω)

8c̄2
dz,

dψω =
ω
√
γ(ω)√

2c̄ tanh(θω)
dW ∗

1 (z)−
ω
√
γ(0)

c̄
dW0(z) +

ω2γ(s)(ω)

4c̄2
dz,

dθω =
ω
√
γ(ω)√
2c̄

dW ∗
2 (z) +

ω2γ(ω)

4c̄2 tanh(θω)
dz.

We therefore conclude that in the monochromatic case, the reflection coefficient is given by

Rε
ω(0, L̂) = −β

ε
ω(0, L̂)

αεω(0, L̂)
= − tanh

(
θω(L̂)

2

)
ei(ψω(L̂)+2φω(L̂)),

where (φω, ψω, θω) satisfy the system (4.2).

In the next section we will continue following [8] to generalize the result to the reflection

of incoherent waves.

4.3. Reflection of Incoherent Waves

We start with the linear 1D wave equation

ρ(z)
∂uε

∂t
+
∂pε

∂z
= 0, (4.17)

1

K(z)

∂pε

∂t
+
∂uε

∂z
= 0.

The medium parameters are given by

1

K(z)
=


1
K

(1 + ν(z/ε2)) for z ∈ [−L̂, 0],

1
K

for z ∈ (−∞,−L̂) ∪ (0,∞),

ρ(z) = ρ̄ for all z.
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The random slab is now on the interval [−L̂, 0] instead of [0, L̂], and the pulse is now

incoming from the right, so that the reflected wave travels to the right as well.

The analysis is performed in the strongly heterogeneous white-noise regime, in which he

takes the pulse width to be of order ε, and the pulse amplitude to have order 1. The pulse

is of the form

1√
ε
f

(
t

ε

)
,

where f is square-integrable so that

∫ ∞
−∞

[
1√
ε
f

(
t

ε

)]2

dt =

∫ ∞
−∞

f(u)2du <∞.

Now we transform the wave equation (4.3) by introducing the right- and left-going modes

Aε(t, z) = ζ
1/2
uε(t, z) + ζ

−1/2
pε(t, z), (4.18)

Bε(t, z) = ζ
1/2
uε(t, z)− ζ−1/2

pε(t, z),

where the effective impedance is ζ =
√
Kρ. By calculating the derivatives of equation (4.3),

using equation (4.3), one arrives at the system

∂

∂z

A
B

 = − 1

2c̄

2 + ν(z/ε2) ν(z/ε2)

−ν(z/ε2) −2− ν(z/ε2)


A
B



where the effective speed c̄ =
√
K/ρ̄. Now, we transform coordinates again:

aε(s, z) = Aε(εs+ z/c̄, z),

bε(s, z) = Bε(εs− z/c̄, z).
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Taking the Fourier transform with respect to the time variable s,

â(ω, z) =

∫
eiωsa(s, z)ds, b̂(ω, z) =

∫
eiωsb(s, z)ds,

one arrives at the system

d

dz

âε
b̂ε

 =
1

ε
Hω

(z
ε
, ν
( z
ε2

))âε
b̂ε

 , (4.19)

Hω(z, ν) =
iω

2c̄
ν

 1 −e−2iωz/c̄

e2iωz/c̄ −1

 .
The boundary conditions are

b̂ε(ω, 0) =
1√
ε
f̂(ω), âε(ω,−L̂) = 0.

Once again, we transform the BVP into an IVP by defining the propagator matrix Pε
ω

satisfying âε(ω, z)
b̂ε(ω, z)

 = Pε
ω(−L̂, z)

âε(ω,−L̂)

b̂ε(ω,−L̂)

 .
The propagator matrix is of the form

Pε
ω(−L̂, z) =

αεω(−L̂, z) βεω(−L̂, z)

βεω(−L̂, z) αεω(−L̂, z)

 , (4.20)

where (αεω, β
ε
ω) is a solution of equation (4.3) with the initial conditions

αεω(−L̂, z = −L̂) = 1, βεω(−L̂, z = −L̂) = 0.
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Now define the transmission and reflection coefficients on a slab [−L̂, z] by

Pε
ω

 0

T εω(−L̂, z)

 =

Rε(−L̂, z)

1


In terms of equation (4.3), the reflection coefficient is given by

Rε
ω(−L̂, z) =

βεω(−L̂, z)

αεω(−L̂, z)
. (4.21)

The reflected wave is given in terms of the reflection coefficient as

âε(ω, 0) =
1√
ε
f̂(ω)Rε

ω(−L̂, 0).

Now, by differentiating equation (4.3) and using equation (4.3), we find that the Reflection

coefficient is given by

dRε
ω

dz
=

1

αεω

dβεω
dz
− βεω

(αεω)2

dαεω
dz

= − iω
2c̄ε

ν
( z
ε2

)
(e−2iωz/(c̄ε) − 2Rε

ω + (Rε
ω)2e2iωz/(c̄ε)). (4.22)

with initial condition

Rε
ω(−L̂, z = −L̂) = 0.

The reflected wave at z = 0 then has the representation

Aε(t, 0) = aε
(
t

ε
, 0

)
=

1

2π

∫
âε(ω, 0)e−i

ωt
ε dω =

1

2π
√
ε

∫
Rε
ω(−L̂, 0)f̂(ω)e−i

ωt
ε dω.

We will find the statistical distribution of the reflected wave by finding its moments. The

mean amplitude of the reflected wave is

E[Aε(t, 0)] =
1

2π
√
ε

∫
E[Rε

ω(−L̂, 0)]f̂(ω)e−i
ωt
ε dω.
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The second moment is

Aε(t, 0)2 =
1

4π2ε

(∫
Rε
ω1

(−L̂, 0)f̂(ω1)e−
iω1t
ε dω1

)(∫
Rε
ω2

(−L̂, 0)f̂(ω2)e
iω2t
ε dω2

)
=

1

4π2ε

∫ ∫
Rε
ω1

(−L̂, 0)Rε
ω2

(−L̂, 0)f̂(ω1)f̂(ω2)ei
(ω2−ω1)t

ε dω1dω2.

so that the mean intensity is

E[Aε(t, 0)2] =
1

4π2ε

∫ ∫
E[Rε

ω1
(−L̂, 0)Rε

ω2
(−L̂, 0)]f̂(ω1)f̂(ω2)ei

(ω2−ω1)t
ε dω1dω2.

Introducing the change of variables

ω1 = ω + εh/2, ω2 = ω − εh/2,

we have

E[Aε(t, 0)2] =
1

4π2

∫ ∫
E[Rε

ω+εh/2(−L̂, 0)Rε
ω−εh/2(−L̂, 0)]f̂(ω + εh/2)f̂(ω − εh/2)e−ihtdωdh

We wish to solve the Ricatti equation (4.3) for the Reflection coefficient. To do so, we

introduce

U ε
p,q(ω, h, z) = (Rε

ω+εh/2(−L̂, z))p(Rε
ω−εh/2(−L̂, z))q, p, q ∈ N (4.23)

By using the Ricatti equation (4.3) we see that the family (U ε
p,q)p,q∈N satisfies

∂U ε
p,q

∂z
=
iω

c̄ε
ν(p− q)U ε

p,q +
iω

2c̄ε
νe

2iωz
c̄ε (qe−

ihz
c̄ U ε

p,q−1 − pe
ihz
c̄ U ε

p+1,q)

+
iω

2c̄ε
νe−

2iωz
c̄ε (qe

ihz
c̄ U ε

p,q+1 − pe
−ihz
c̄ U ε

p−1,q), −L̂ ≤ z ≤ 0.

To remove the slow components exp(±ihz/c̄), we take the shifted and scaled Fourier trans-

form with respect to h:

V ε
p,q(ω, τ, z) =

1

2π

∫
e−ih(τ−(p+q)z/c̄)U ε

p,q(ω, h, z)dh.
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The system of equations satisfied by (V ε
p,q)p,q∈N is

∂V ε
p,q

∂z
= −p+ q

c̄

∂V ε
p,q

∂τ
+
iω

c̄ε
ν(p− q)V ε

p,q +
iω

2c̄ε
νe

2iωz
c̄ε (qV ε

p,q−1 − pV ε
p+1,q) (4.24)

+
iω

2c̄ε
νe−

2iωz
c̄ε (qV ε

p,q+1 − pV ε
p−1,q)

with initial condition

V ε
p,q(ω, τ, z = −L̂) =


δ(τ), for p, q = 0

0 otherwise.

Now we apply another diffusion approximation theorem, described in [17], an infinite-

dimensional analogue of equation (4.1) to arrive at the SDE

dVp,q = −q + p

c̄

∂Vp,q
∂τ

dz +
i
√
γω

c̄
(p− q)Vp,qdW0(z) (4.25)

+
i
√
γω

2
√

2c̄
(qVp,q−1 − pVp+1,q + qVp,q+1 − pVp−1,q)dW1(z)

+

√
γω

2
√

2c̄
(qVp,q−1 − pVp+1,q − qVp,q+1 + pVp−1,q)dW2(z)

+
γω2

4c̄2
[pq(Vp+1,q+1 + Vp−1,q−1 − 2Vp,q)− 3(p− q)2Vp,q]dz,

where Wj, j = 0, 1, 2 are three independent Brownian motions and γ is the integrated

covariance of the process ν:

γ =

∫ ∞
0

E[ν(0)ν(z)]dz.

Taking the expectation of equation (4.3), we find that the moments satisfy

∂E[Vp,q]

∂z
= −q + p

c̄

∂E[Vp,q]

∂τ
− 3γω2

4c̄2
(p− q)2E[Vp,q]

+
γω2

4c̄2
pq(E[Vp+1,q+1] + E[Vp−1,q−1]− 2E[Vp,q]).

67



The family of moments fp(ω, τ, z) = E[Vp+1,p(ω, τ, z)], p ∈ N satisfies

∂fp
∂z

= −2p+ 1

c̄

∂fp
∂τ

+
γω2

4c̄2
[p(p+ 1)(fp+1 + fp−1 − 2fp)− 3fp],

starting from fp(ω, τ, z = −L̂) = 0. This is a linear system of transport equations starting

from a zero initial condition, so fp = 0 for all p. The same is true of the family of moments

fp(ω, τ, z) = E[Vp+n0,p(ω, τ, z)], p ∈ N. Therefore,

E[U ε
p,q(ω, h, 0)]→ 0

as ε→ 0 for p 6= q.

The diagonal family of moments gp(ω, τ, z) = E[Vp,p(ω, τ, z)], p ∈ N satisfy

∂gp
∂z

= −2p

c̄

∂gp
∂τ

+
γω2

4c̄2
p2(gp+1 + gp−1 − 2gp)

starting from gp(ω, τ, z = −L̂) = δ(τ) for p = 0, 0 otherwise. If Wp(ω, τ,−L̂, z) denotes the

solution of this system of transport equations, then

E[U ε
1,1(ω, h, z)] = E[Rε

ω+εh/2(−L̂, z)Rε
ω−εh/2(−L̂, z)]

=

∫
E[V ε

11(ω, τ, 0)]eihτdτ →
∫
W1(ω, τ,−L̂, 0)eihτdτ.

To summarize, we have on page 257 of [8],

Proposition 1 The expectation of the product of two reflection coefficients at two nearby

frequencies,

E[(Rε
ω+εh/2(−L̂, 0))p(Rε

ω−εh/2(−L̂,0)
)q],

has the following limit as ε→ 0:

(1) If p 6= q, then it converges to 0.
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(2) If p = q, then it converges to

∫
Wp(ω, τ,−L̂, 0)eihτdτ.

The analysis of higher moments of the reflection coefficient is very similar. The result is on

page 265 of [8]

Proposition 2 The expectation of the product of 2n reflection coefficients

E

[
n∏
j=1

Rε
ωj+εhj/2

(−L̂, 0)Rε
ωj−εhj/2(−L̂, 0)

]
,

where n is a positive integer, (ωj)1≤j≤n ∈ Rn are all distinct, and (hj)1≤j≤n ∈ Rn, converges

as ε→ 0 to the limit
n∏
j=1

∫
eihjτjW1(ωj, τj,−L̂, 0)dτj.

If there is one or several unmatched frequencies in the product of reflection coefficients, then

the limit of the moment is zero.

The mean amplitude of the reflected wave is

E[Aε(t, 0)] =
1

2π
√
ε

∫
E[Rε

ω(−L̂, 0)]f̂(ω)e−i
ωt
ε dω

We have

E[Aε(t, 0)]→ 0

as ε→ 0.
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The mean intensity of the reflected wave is

I(t) = lim
ε→0

E[Aε(t, 0)2] = lim
ε→0

1

4π2

∫ ∫
E[U ε

11(ω, h, 0)]f̂(ω + εh/2)f̂(ω − εh/2)e−ihtdωdh

(4.26)

=
1

4π2

∫ ∫ ∫
W1(ω, τ,−L̂, 0)|f̂(ω)|2eih(τ−t)dhdτdω (4.27)

=
1

2π

∫
W1(ω, t,−L̂, 0)|f̂(ω)|2dω. (4.28)

4.4. Monte Carlo Solution of the Transport Equation

In the previous section, the reflected wave was shown to have intensity given by

I(t) =
1

2π

∫
W1(ω, t,−L̂, 0)|f̂(ω)|2dω.

W1 is the solution of the transport equation

∂Wp

∂z
+

2p

c̄

∂Wp

∂τ
= (LωW)p, z ≥ −L̂, τ ∈ R, p ∈ N, (4.29)

(Lωφ)p =
1

Lloc(ω)
p2(φp+1 + φp−1 − 2φp),

starting from

Wp(ω, τ,−L̂, z = −L̂) = δ(τ)10(p),

where Lloc(ω) is the localization length defined by

Lloc(ω) =
4c̄2

γω2
,

and γ is the autocovariance of the process describing the random medium fluctuations, given

by

γ =

∫ ∞
−∞

E[ν(0)ν(z)]dz. (4.30)

To solve the equations (4.4), [8] uses the following probabilistic representation.
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First, introduce the jump Markov process (Nz)z≥−L̂ with state space N and infinitesi-

mal generator Lω given by equation (4.4). A Markov jump process is a piecewise-constant

stochastic process, with a state transition matrix and a time process governing the times

the process jumps to a new state. The transition time process {Tk}k∈N is given by a sum of

exponential random variables

Tk+1 = Tk + τk

where τk is an exponential random variable with parameter λ, so that its density, defined on

the positive reals, is given by

f(s) = λe−λs

The value of λ may depend on the current state. The transition matrix K describes the

probability of going to another state, given the current state, so that the Jump Markov

process is given by

X(t) = KN(t).

The jump Markov process has infinitesimal generator A given by

A(x, y) =


−λ(x) x = y

λ(x)K(x, y) x 6= y

where λ(x) is the parameter λ for state x. Thus, the jump Markov process (Nz)z≥−L̂ can be

constructed to have infinitesimal generator Lω if λ(n) = 2n2/Lloc(ω) and for x, y ≥ 1,

K(x, y) =


2, x = y

−1, |x− y|= 1

0, otherwise.

The state n = 0 is an absorbing state, so that when the process reaches it, it remains at that

state for all further time.
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Now, define the process

∂Tz
∂z

= −2

c̄
Nz,

with T−L̂ = τ . The process (Nz, Tz)z≥−L̂ is a Markov process with generator

Lω −
2n

c̄

∂

∂τ
.

The backward Kolmogorov equation, after the transformation z → −z is

∂u

∂z
=

(
Lω −

2n

c̄

∂

∂τ

)
u, z > −L̂, u(n, τ, z = −L̂) = u0(n, τ). (4.31)

The solution of the Kolmogorov equation is

u(n, τ, z) = E[u0(Nz, Tz) | N−L̂ = n, T−L̂ = τ ]

= E
[
u0

(
Nz, τ −

2

c̄

∫ z

−L̂
Nz′dz

′
)
| N−L̂ = n

]
.

The Kolmogorov equation (4.4) is the same form as equations (4.4), so after integrating in

τ , we have

∫ τ1

τ0

Wp(ω, τ,−L̂, 0)dτ = P
(
N0 = 0,

2

c̄

∫ 0

−L̂
Nz′dz

′ ∈ [τ0, τ1] | N−L̂ = p

)

Therefore, Wp can be calculated by running Monte Carlo to the Markov jump process (Nz)

described above.

W1 is plotted below in Figure (4.2).

4.5. Comparison of Analytical Results with Random Boundary Condition

Now we will compare the analytical reflected wave intensity, given by

I(t) =
1

2π

∫
W1(ω, t,−L̂, 0)|f̂(ω)|2dω. (4.32)
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Figure 4.2. Decay of Reflection Coefficient

to the reflected wave intensity found by solving the wave equation with random boundary

condition derived in Chapter 3. The quantity W1 is the solution of the stochastic transport

equations (4.4). We select the stochastic process ν to be the Whittle-Matérn process with

p = 3/2, given by equation (4.1). For this process, the autocovariance (4.4) is calculated to

be γ = 1.26. Using the following form of the incoming pulse f(t):

f(t) = (2c4
∞t

2 − c2
∞) exp(−(c∞t)

2) (4.33)

|f̂(ω)|2 =
πω4

4c2
∞
e−ω

2/(2c2∞),

the asymptotic result I(t) is given in Figure (4.3), calculated by the method presented in

the previous section with 100000 Monte Carlo samples and 1000 terms for τ evenly spaced

on the interval [0, 2].

In order to compare the computation using the random boundary condition given by
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Figure 4.3. Asymptotic Result for Reflected Wave Intensity
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(3.1) we must make sure that the scaling of the incoming pulse and random fluctuations of

the wave speed are scaled properly. The scaling regime in the asymptotic analysis above is

such that the random medium ν(z) is scaled as ν(z/ε2), the incoming pulse f(t) is scaled

as (1/ε)f(t/ε), the width of the incoming pulse is ε, and the amplitude of the random

perturbations is ν ∼ 1.

The system to be solved with these scalings in mind is

∂2u

∂t2
=

∂

∂x

(
c2(x)

∂u

∂x

)
+ f(x, t), x ∈ [−L,L]

u(x, 0) =
1

ε
u0(x/ε),

∂u

∂t
(x, 0) = 0,

∂u

∂x
+

1

c∞

∂u

∂t
= g(x/ε2, t, ω), x = L (4.34)

∂u

∂x
− 1

c∞

∂u

∂t
= 0, x = −L

d2φj
dt2

+B2
jφj = B2

ju.

where g(x, t, ω) is given by (3.1). Writing the system (4.5) in weak form, we obtain

∫ L

−L

∂2u

∂t2
(x, t)v(x, t)dx = −

∫ L

−L

∂

∂x

(
c2(x)

∂u

∂x
(x, t)

)
v(x, t)dx+

∫ L

−L
f(x, t)v(x, t)dx

for test functions v ∈ C∞(−L,L). Using integration by parts,

∫ L

−L

∂2u

∂t2
(x, t)v(x, t)dt = −

∫ L

−L
c2(x)

∂u

∂x
(x, t)

∂v

∂x
(x, t)dx+ c2(x)

∂u

∂x
(x, t)v(x, t) |L−L

+

∫ L

−L
f(x, t)v(x, t)dx∫ L

−L

∂2u

∂t2
(x, t)v(x, t)dt = −

∫ L

−L
c2(x)

∂u

∂x
(x, t)

∂v

∂x
(x, t)dx+ c2

∞v(L, t)

(
g − 1

c∞

∂u

∂t
(L, t)

)
− c∞v(−L, t)∂u

∂t
(−L, t) +

∫ L

−L
f(x, t)v(x, t)dx
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We use the Galerkin approximation

u(x, t, ω) ≈
nx∑
k=0

uk(t, ω)ψk(x) (4.35)

where ψk are the Galerkin difference basis functions as in [3]. These are piecewise polynomials

defined by values on a uniform grid whose restriction to any interval bounded by grid points

is the Lagrange interpolant of the nodal data. Near boundaries we simply take the values of

the solution at external ghost points to be free, called the ghost basis method in [3]. Here

we take the local polynomial degrees to be 3 and the grid spacing to be ∆x = 1/100. This

seems sufficient to resolve the waves to the accuracy provided by the linearized approximate

boundary condition, but some discretization errors are noticeable for the more accurate

quadratic approximation when the amplitude of the perturbation is very small.

nx∑
k=1

Mjk
d2uk
dt2

=
nx∑
k=1

(
−Sjk

duk
dt

+Mjkfk

)
+ c2
∞v(L, t)

(
g − 1

c∞

∂u

∂t
(L, t)

)
(4.36)

−c∞v(−L, t)∂u
∂t

(−L, t)

where

Mjk =

∫ L

−L
ψj(x)ψk(x)dx, Sjk =

∫ L

−L
c2(x)

dψj
dx

(x)
dψk
dx

(x)dx

The standard 4th-order Runge-Kutta method is used to discretize the time-variable with

∆t = 1/10000. The source term f(x, t) = 0, and the initial condition 1
ε
u0(x/ε) = 1

ε
f(x/ε)

to match the asymptotic calculation, where f is as in equation (4.5). Results have not yet

been obtained which match the asymptotic result given in Figure (4.3).
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Chapter 5

APPROXIMATION TO THE DTN MAP IN TWO DIMENSIONS

5.1. DtN Map 2D

In this chapter we will derive an approximation to the nonreflecting boundary condition

for the 2D wave equation with a computational boundary at x = a and Neumann conditions

in y. See Figure (5.1).

The 2D Wave Equation is

∂

∂x

(
c2(x, y, ω)

∂u

∂x

)
+

∂

∂y

(
c2(x, y, ω)

∂u

∂y

)
− ∂2u

∂t2
= f(x, y, t)

u(x, y, 0, ω) = u0(x, y),
∂u

∂t
(x, y, 0, ω) = v0(x, y)

∂u

dy
(x, 0, t, ω) =

∂u

dy
(x,H, t, ω) = 0.

for (x, y) ∈ (−L,M)× (0, H) and t ∈ (0, T ). In the exterior region Σ = (L,M)× (0, H) the

wave speed is given by

c(x, y, ω) = c∞ + c̃(x, y, ω)

where c∞ is a constant deterministic quantity and c̃ is a mean-zero stochastic process satis-

fying

c0 ≤ c(x, y, ω) ≤ c1

almost everywhere and almost surely. Taking the Laplace transform and using the fact that

u0(x, y) = v0(x, y) = f(x, y, t) = 0 in the exterior region, we have

∂

∂x

(
(c∞ + c̃(x, y, ω))2∂û

∂x

)
+

∂

∂y

(
(c∞ + c̃(x, y, ω))2∂û

∂y

)
− s2û = 0
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Figure 5.1. Setting of 2D Problem. c̃ = 0 for (x, y) ∈ Ω, random perturbations in wave

speed in region Σ. Neumann boundary conditions for y = 0, H.

for (x, y) ∈ (L,M)× (0, H).

Assuming c̃ = 0 for x > M we have that the DtN map at x = M can be directly written

using a Fourier cosine series in y (or more properly diagonalized in the Fourier basis):

û(M, y, ω) =
∞∑
k=1

uk cos

(
kπy

H

)
,

∂û

∂x
(M, y, ω) = −

∞∑
k=1

γkuk cos

(
kπy

H

)
,

γk =

(
s2

c2
∞

+
k2π2

H2

)1/2

and the branch is chosen so that Rγk > 0 if Rs > 0.
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To represent the DtN map at x = L we can rewrite the system in (infinite) matrix form

by introducing

Ck`(x) =
4

c∞H

∫ H

0

c̃(x, y) cos

(
kπy

H

)
cos

(
`πy

H

)
dy,

Pk`(x) =
2

c2
∞H

∫ H

0

c̃2(x, y) cos

(
kπy

H

)
cos

(
`πy

H

)
dy,

Bk`(x) = − 4π`

c∞H2

∫ H

0

∂c̃

∂y
(x, y) cos

(
kπy

H

)
sin

(
`πy

H

)
dy,

Qk`(x) = − 4π`

c2
∞H

2

∫ H

0

∂c̃

∂y
(x, y)c̃(x, y) cos

(
kπy

H

)
sin

(
`πy

H

)
dy.

If we now define

uk(x) =
2

H

∫ H

0

û(x, y) cos

(
kπy

H

)
dy

then we have the equation:

d2uk
dx2
− γ2

kuk +
∑
`

(Ck` + Pk`)

(
d2u`
dx2
− `2π2

H2
u`

)
+
∑
`

(
dCk`
dx

+
dPk`
dx

)
du`
dx

+
∑
`

(Bk` +Qk`)u` = 0.

Similarly we write the DtN map in matrix form:

duk
dx

= −γkuk −
∑
`

Gk`(x)u`.

Then we differentiate and deduce:

d2uk
dx2

= γ2
kuk +

∑
`

(
(γk + γ`)Gk` −

dGk`

dx

)
u` +

∑
`m

GkmGm`u`.
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Substituting these expressions into the equation we derive the Ricatti equation for Gk`:

dGk`

dx
+
∑
m

(Ckm + Pkm)
dGm`

dx
= (γk + γ`)Gk` +

∑
m

GkmGm` + γ2
` (Ck` + Pk`)

+
∑
m

(Ckm + Pkm)(γm + γ`)Gm`

+
∑
m,j

(Ckj + Pkj)GjmGm` − γ`
(
dCk`
dx

+
dPk`
dx

)
−
∑
m

(
dCkm
dx

+
dPkm
dx

)
Gm`

+Bk` +Qk` − `2(Ck` + Pk`).

If we linearize the problem we can compute a first approximation to Gk`. Note that in

the linearization both P and Q are removed:

dG
(1)
k`

dx
= (γk + γ`)G

(1)
k` + γ2

`Ck` − γ`
dCk`
dx

+Bk` − `2Ck`.

Since Gk`(M) = 0 we can write down G
(1)
k` (L) as an integral:

G
(1)
k` = −

∫ M

L

e(γk+γ`)(L−x)

(
s2

c2
∞
Ck` +Bk` − γ`

dCk`
dx

)
dx.

To acquire a closed-form expression for the DtN map, we will choose the following two-

dimensional analogue of the process (2.1) which vanishes at x = L,M and y = 0, H:

c̃(x, y) =
∞∑

i,j=1

ξij
π4irjr

sin

(
iπ(x− L)

M − L

)
sin

(
jπy

H

)
(5.1)
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Then we have

Ckl =
∞∑

i,j=1

ξij
c∞π5irjr

sin

(
iπ(x− L)

M − L

)
Ajkl

Bkl = 0

dCk`
dx

=
∞∑

i,j=1

ξij/(M − L)

c∞π4ir−1jr
cos

(
iπ(x− L)

M − L

)
Ajkl

Ajkl =

(
1− (−1)j+k+`

j + k + `
+

1− (−1)j+k−`

j + k − `
+

1− (−1)j−k+`

j + k − `
+

1− (−1)j−k−`

j − k − `

)

Furthermore,

∫ M

L

e−(νk+ν`)(x−L) sin

(
iπ(x− L)

M − L

)
dx =

iπc2
∞/(2(M − L))

s2 + π2c2∞(k2+`2)
2H2 + c2

∞γkγ` + i2π2

(M−L)2∫ M

L

e−(νk+ν`)(x−L) cos

(
iπ(x− L)

M − L

)
dx =

c2
∞(γk + γ`)/2

s2 + π2c2∞(k2+`2)
2H2 + c2

∞γkγ` + i2π2

(M−L)2

Thus,

G
(1)
k` =

∞∑
i,j=1

Dijk`
c2
∞`

2π2/H2 + c2
∞γ`γk

s2 + π2c2∞(k2+`2)
2H2 + c2

∞γkγ` + i2π2

(M−L)2

where

Dijk` =
ξijAjk`/(2(M − L))

c∞π4ir−1jr

The DtN map is then

duk
dx

= −γkuk −
∑
i,j,`

Dijk`u`
c2
∞`

2π2/H2 + c2
∞γ`γk

s2 + π2c2∞(k2+`2)
2H2 + c2

∞γkγ` + i2π2

(M−L)2

The square root operator

γk =

(
s2

c2
∞

+
k2π2

H2

)1/2
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is approximated via the least-squares algorithm given in [1].

γk =
s

c∞
−

Q∑
j=1

scλ2
kaj − c2λ3

kdj
s2 − scλkbj + c2λ2

kgj
:=

s

c∞
−

Q∑
j=1

sAjk −Bjk

s2 − sCjk +Djk

(5.2)

where Ajk = c∞λ
2
kaj, Bjk = c2

∞λ
3
kdj, Cjk = c∞λkbj, and Djk = c2

∞λ
2
kgj. The values of

aj, bj, dj, gj are given in table. As shown in [1], the approximation (5.1) gives for Q = 31 an

error less than 10−6 for T ≤ 104. Thus,

j aj bj dj gj

1 -1.44973E-7 -4.59136E-5 -1.45333E-7 1.0000000005

2 -7.52363E-7 -2.04653E-4 -7.53785E-7 0.99999989

3 -2.52811E-6 -5.48932E-4 -2.53264E-6 0.9999997

4 -7.47593E-6 -1.23706E-3 -7.511476E-6 0.99999919

5 -2.10610E-5 -2.58602E-3 -2.12561E-6 0.9999963

6 -5.80557E-5 -5.21498E-3 -5.882134E-6 0.9999889

7 -1.58151E-4 -1.03277E-2 -1.6120948E-5 0.9999737

8 -4.27342E-4 -2.02676E-2 -4.402573E-4 0.9999418

9 -1.14369E-3 -3.95893E-2 -1.20115E-3 0.9998850

10 -3.00129E-3 -7.71083E-2 -3.286218E-3 0.9997697

11 -7.55569E-3 -0.149759 -9.049647E-3 0.9994074

12 -1.72246E-2 -0.28939 -2.513037E-2 0.9981144

13 -2.87246E-2 -0.55146 -6.98155E-2 0.9938616

14 1.02309E-2 -1.00527 -0.184833E-2 0.9817475

15 0.27071 -1.60827 -0.398150 0.95722285

16 0.27739 -0.969474 0 0

Table 5.1. Coefficients of 31-pole Approximation of γ

duk
dx

+
s

c∞
uk =

Q∑
j=1

sc∞λ
2
kaj − c2

∞λ
3
kdj

s2 − sc∞λkbj + c2
∞λ

2
kgj
− 1

2

∑
i,j,`

Dijk`u`

(
1 +

2I` − Jk` +Xk`(s)− i2π2

(M−L)2

2s2 + Jk` +Xk`(s) + i2π2

(M−L)2

)
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where I` = c2
∞`

2π2/H2, Jk` = π2c2
∞(k2 + `2)/(2H2) and

Xk`(s) = −s
∑
m

sc∞λ
2
kam − c2

∞λ
3
kdm

s2 − sc∞λkbm + c2
∞λ

2
kgm
− s

∑
m

sc∞λ
2
`am − c2

∞λ
3
`dm

s2 − sc∞λ`bm + c2
∞λ

2
`gm

+
∑
m,n

sc∞λ
2
`an − c2

∞λ
3
`dn

s2 − sc∞λ`bn + c2
∞λ

2
`gn

sc∞λ
2
kam − c2

∞λ
3
kdm

s2 − sc∞λkbm + c2
∞λ

2
kgm

Taking the inverse Laplace Transform we have

c∞
duk
dx

+
duk
dt

= c∞

Q∑
j=1

φ
(6)
jk −

1

2

∑
i,j,`

c∞Dijk`

(
u` + φ

(1)
k`

)
(5.3)

where φ
(6)
jk satisfies the auxiliary ODE

d2φ
(6)
jk

dt2
= bjc∞λk

dφ
(6)
jk

dt
+ c2λ2

k

(
−gjφ(6)

jk + aj
duk
dt
− c∞λkdjuk

)

and φ
(1)
ik` satisfies the auxiliary ODE

2
d2φ

(1)
ik`

dt2
+

(
Jk` +

i2π2

(M − L)2

)
φ

(1)
ik` − c∞

∑
m

Amk((φ
(1)
ik` − u`) + φ

(2)
k`m)− c∞

∑
m

Am`((φ
(1)
ik` − u`) + φ

(3)
k`m)

+c2
∞

∑
m,n

AmkAn`(φ
(4)
mk` + φ

(5)
k`mn) =

(
2I` − Jk` −

i2π2

(M − L)2

)
u`

where we have

d2φ
(2)
klm

dt2
− Cmk

dφ
(2)
klm

dt
+Dmkφ

(2)
klm = (Cmk −Bmk/Amk)

(
dφ

(1)
ik`

dt
− du`

dt

)
−Dmk(φk` − u`)

d2φ
(3)
klm

dt2
− Cm`

dφ
(3)
klm

dt
+Dm`φ

(3)
klm = (Cm` −Bm`/Am`)

(
dφ

(1)
ik`

dt
− du`

dt

)
−Dm`(φk` − u`)

d2φ
(4)
k`m

dt2
− Cmk

dφ
(4)
k`m

dt
+Dmkφ

(4)
k`m = φ

(1)
ik` − u`
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d4φ
(5)
k`mn

dt4
− (Cmk + Cn`)

d3φ
(5)
k`mn

dt3
+ (CmkCn` +Dn` +Dmk)

d2φ
(5)
k`mn

dt2
− (Cn`Dmk + CmkDn`)

dφ
(5)
k`mn

dt

+DmkDn`φ
(5)
k`mn = (Cmk −

An`Bmk + AmkBn`

AmkAn`
)
du`
dt

+

(
BmkBn`

AmkAn`
−Dmk

)
u`

5.2. Galerkin Discretization in Two Space Dimensions

The system that we are solving is

∂2u

∂t2
=

∂

∂x

(
c2(x, y)

∂u

∂x

)
+

∂

∂y

(
c2(x, y)

∂u

∂y

)
+ f(x, y, t)

(x, y) ∈ (−L,L)× (0, H), 0 < t < T,

u(x, y, 0, ω) = u0(x, y),
∂u

∂t
(x, y, 0, ω) = v0(x, y)

∂u

∂y
(x, 0, t, ω) =

∂u

∂y
(x,H, t, ω) = 0,

∂u

∂t
(L, y, t, ω) + c

∂u

∂x
(L, y, t, ω) = g,

∂u

∂t
(−L, y, t, ω)− c∂u

∂x
(−L, y, t, ω) = h,

with auxiliary ODEs φ(1) − φ(6) given above with zero initial conditions. g is the inverse

Fourier transform of the right-hand side of equation (5.1) and h is the inverse Fourier trans-

form of c∞
∑Q

j=1 φ
(6)
jk .

To discretize we use the Galerkin difference approximation

u(x, y, t, ω) ≈
nx∑
k=0

ny∑
r=0

ukr(t, ω)ζk(x)ψr(y)

where ζk, ψr are Galerkin difference basis functions. This leads to the system of ordinary

differential equations

nx∑
k=0

ny∑
r=0

M
(x)
jk M

(y)
qr

d2ukr
dt2

=
nx∑
k=0

ny∑
r=0

(Sjkqrukr +M
(x)
jk M

(y)
qr fkr)

+ δj0

ny∑
r=0

B0,qr

(
g0,r −

du0r

dt

)
+ δjnx

ny∑
r=0

B1,qr

(
g1,r −

dunxr
dt

)
,
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for j = 0, . . . , nx, q = 0, . . . , ny. Here we have

M
(x)
jk =

∫ L

−L
ζj(x)ζk(x)dx, M (y)

qr =

∫ H

0

ψq(y)ψr(y)dy,

Sjkqr =

∫ L

−L

∫ H

0

c2(x, y)

(
dζj
dx

(x)
dζk
dx

(x)ψq(y)ψr(y) + ζj(x)ζk(x)
dψq
dy

(y)
dψr
dy

(y)

)
dydx,

B0,qr =

∫ H

0

c(x0, y)ψq(y)ψr(y)dy, B1,qr =

∫ H

0

c(x1, y)ψq(y)ψr(y)dy.

In the future we plan to carry out experiments analogous to those in Section (2.3).
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Chapter 6

CONCLUSION

We have derived random boundary conditions for the 1D and 2D wave equations with

nonreflecting boundary by solving the DtN map with variable wave speed given by an or-

thogonal expansion. The method converged with expected linear and quadratic rates for

the 1D experiments when the resulting Ricatti equation is given a linear and quadratic

approximation, respectively.

We have also completed the same procedure using a stationary stochastic process with

properties consistent with analysis done by Papanicolaou and his co-authors in [8]. We

propose a numerical experiment to compare the asymptotic result in [8] to the random

boundary condition derived in Chapter 3.

Possible improvements in the future would include a more extensive uncertainty quan-

tification experiment using the method, and an implementation of an algorithm to improve

the efficiency of the method. One possibility would be the inclusion of a pole-reduction

algorithm to compress the boundary condition.

Least-squares pole-reduction algorithms are given in [2], [1]. Balanced truncation algo-

rithms for pole-reduction are found in [14], [21], and pole-reduction algorithms using Prony’s

method are found in [13] and [4].

In future work we will also conduct a more extensive analysis of the effect of truncation on

the eigenfunction expansion, complete the numerical experiments in 2D proposed in Chapter

5, and complete the comparison with the asymptotic results proposed in Chapter 4.
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