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Numerical methods have been developed to solve partial differential equations involving
the far-field radiation of waves. In addition, there has been recent interest in uncertainty
quantification- a burgeoning field involving solving PDEs where random variables are used
to model uncertainty in the data. In this thesis we will apply uncertainty quantification
methodology to the 1D and 2D wave equation with nonreflecting boundary. We first derive
a boundary condition for the 1D wave equation assuming several models of the random wave
speed. Later we use our result to compare to an asymptotic SDE approach, and finally we

repeat our analysis for the 2D wave equation, providing numerical results for each.
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Chapter 1

INTRODUCTION

1.1. Far-Field Wave Propagation

Radiation to the far-field is an important feature in many applications of wave phenom-
ena. This arises in many contexts, whether it be acoustic, electromagnetic, or quantum
mechanical, and in many different geometries. The common feature is that the correspond-
ing PDEs which describe these phenomena must be equipped with a boundary condition “at
infinity” describing the eventual behavior of the waves in the far field. This is in conflict
with the need to simulate such problems in a finite domain.

In order to resolve this issue, methods have been developed which introduce an artificial
boundary along the region of interest, and prescribe appropriate boundary conditions to the
artificial boundary. This allows one to simulate in a finite region the behavior of the wave
as if a boundary were not present. Several novel methods have been introduced which limit
the added computational complexity, as well as error that manifests (undesired) reflection
at the artificial interface.

An overview of some of the main developments in the development of nonreflecting bound-
ary conditions is described in detail in [11]. The most ubiquitous model of wave propagation,
the scalar wave equation, is studied in detail for the cases of planar, spherical, and cylindrical
artificial boundaries. Results are extended to other models of wave phenomena, including
the dispersive wave equation, general first-order hyperbolic systems, Maxwell’s equations
and the equations of linear elasticity.

This situation is illustrated by Figure (1.1). In the figure, Q is the finite region where
the solution is to be computed, ¥ is the unbounded region outside of €2, and I' is the

computational “nonreflecting” boundary.



Figure 1.1. Nonreflecting Boundary Scheme

Although no physical boundary is present, it is necessary computationally to develop
conditions on I' such that waves travel through I' without reflection. Given a second order
initial-boundary value problem with Dirichlet data on I' and zero initial conditions and
forcing in the exterior region ¥, a unique causal solution u can be determined. This in turn
uniquely determines the Neumann data % on the boundary I'. This defines the Dirichlet to

Neumann (DtN) map D. First taking the Laplace transform of u, defined for s € C as

d(x,s):/ u(w,t)e”*dt,
0

the DtN map is a linear operator parametrized by s and we write

ol A
a—;‘ - Di, xel. (1.1)



After finding D in the problem of interest, the exact radiation condition to be used or

approximated in the simulation is then obtained by taking the inverse Laplace transform,

8“ 1 iy
e gD = T. 1.2
o, " L7 (DLu) =0, T € (1.2)

The main focus of this thesis is the wave equation, which in one space dimension is given

by

o (5, Ou 0%u
% (C ([L’)@) _W_f(x7t)7 LS [_L7L]7 te [O,T], (13)
with initial conditions
0
u(@,0) = wle),  So(x,0) = vo(a).

The boundary is then the points I' = {—L, L}. In the case of constant coefficients, the DtN
map has a simple form. Taking the Laplace transform in time, we can reduce equation(1.1)

with constant ¢ to an ODE given by

(x,8) — vo(z) — sup(x) (1.4)
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In the far field |z|> L we assume the source term f(z,s) = 0 and the initial conditions

up(z) = vo(x) = 0. Noting that in this simple geometry

@( ot @ B _0u
on N N

Therefore equation (1.1) for the 1D Wave equation is

ou 10u ou 10u
%(L,t) + EE(LJ) =0, %(—L,t) - EE(_L’t) = 0. (1.5)



Exact nonreflecting boundary conditions for the wave equation in two dimensions,
Uy = 2Au (1.6)

have been constructed in [2]. The solution u(z,y,t) satisfies zero initial conditions on the
exterior region

u(z,y,t) = w(z,y,t) =0, t<0, (z,y) €N

and to determine the DtN map we assume that u(z,y,t) is known for (x,y,t) € I'and ¢t > 0.
For the case where the boundary I' (referring to Figure 1.1) are the planes x = +a, we
can write the nonreflecting boundary condition by taking the Fourier transformation in the

variable v,

1 > )
u(z,y,t) = —/ a(z,n, t)edn,

2 J_

and the Laplace transformation in time

a(z,mn, s):/ iz, n,t)e dt.
0

This leads to

D(s,n) = [(s/c)* + 1]/

and therefore

+a, +/(s/e)?+n?u=0, z==a, (1.7)

which upon taking the inverse Laplace transform and inverse Fourier transform is the ana-

logue of equation (1.1) in two dimensions.

1.2. Summary of Results

For the 1D Wave Equation, whose setting is illustrated in Figure (1.2), we have extended
the nonreflecting boundary conditions given by equation (1.1) to equation (2.1), which con-

tains a term which approximates the reflections brought about by small perturbations to the



wave speed in the far field. The stochastic process used to represent the small fluctuations
in the wave speed has expansion given by equation (2.1). Using this boundary condition,
we have devised a numerical experiment to determine the accuracy of the random bound-
ary condition in Section (2.3). In addition, we have performed a preliminary experiment to

determine the mean and variance of some selected functionals of the solution.

Figure 1.2. Setting for 1D Wave Equation

Similarly, for the 2D Wave Equation, whose setting is illustrated in Figure (1.3), we have
extended the nonreflecting boundary condition given by equation (1.1) by calculating an
additional term which approximates reflections made by small perturbations in the wave
speed in the far field. The small perturbations in the far-field are modeled by the expansion
in equation (5.1) and the resulting boundary condition is given by equation (5.1),

Lastly, we have devised an experiment to compare the random boundary approach devel-
oped in this thesis to an asymptotic analysis of wave propagation through a random medium
in [8]. To set up the comparison, we have derived the random boundary condition in equa-
tion (3.1) using a stationary process with expansion derived in Section (3.1). An experiment

to test the accuracy of this method is described in Section (3.2). A proposed experiment to



i FE (L, H) (M, H)

(—L,0) (L,0) (M, 0)

Figure 1.3. Setting for 2D Wave Equation

compare the random boundary to the asymptotic approach is set up in Section (4.5).

1.3. Uncertainty in the Far-Field

All of the results on exact radiation conditions mentioned above, in particular the cal-
culations leading to (1.5) and (1.7), are based on the assumption that ¢ is constant in the
far-field . If this assumption is relaxed very little has been done. Boundary conditions
have been proposed based on high-frequency asymptotics (e.g. [6,7]) or in the case of decay-
ing potentials [18], but there is no general theory. Moreover, in practical applications, for
example wave propagation in the earth or ocean, the wave speed in the exterior region will
be uncertain.

The primary contribution of this thesis is to develop a systematic approach to compute
accurate radiation conditions for the wave equation where the wave speed ¢(x) is variable in
the far field. Since the precise wave speed may be unknown, we may model the wave speed

as a random process ¢(z,w), where w € €; and €); is a sample space.



We assume more specifically that the wave speed takes the following form
(T, w) = e + E(z,w)

where ¢4, is the expected value of the wave speed in the far field and ¢ is a small perturbation.

In particular we assume that almost everywhere and almost surely

clz,w
X

Coo

This in turn implies (again almost everywhere and almost surely) that there are positive
constants ¢y and ¢; such that

co < e(z,w) < ¢.

Moreover we will choose ¢ to be a square-integrable zero-mean stochastic process on a closed
interval [L, M| with covariance function C(s,t) such that it may be represented in a series

of eigenfunctions, see [9].

é(z,w) = Z VVioi ()6 (w)

where v and ¢ are the eigenvalues and normalized eigenfunctions of the operator

To : L*([L, M]) — L*([L, M])

fHﬂﬁzL Cls,)f(s)ds

and §; are zero-mean, uncorrelated random variables given by

1M
§i(w) = \/_V_J/L é(z,w)pj(x)dx.



In the analysis that follows we will truncate the expansion to P terms and consider the

fluctuations to the wave speed as simply a sum of P independent random variables:

o) = 3 V50 (2)6()

1.4. Contents

In Chapter 2, we will find boundary conditions for the one-dimensional wave equation
when there are random small fluctuations in the wave speed in the far-field. A linear and
quadratic approximation to a Ricatti equation will be used to obtain a closed-form result.
Numerical results will then be presented to show consistency of the method and a Monte-
Carlo simulation will be performed to study the variability of the solution with respect to
the choice of the perturbation ¢.

In Chapter 3 we repeat the analysis in Chapter 2 for a different process, which has special
statistical properties.

In Chapter 4 we review results presented by Papanicolaou et al. in [8] which provides
a different approach to the problem of wave propagation and reflection through a random
medium. The design of a numerical experiment is proposed to compare the results of Chapter
3 to the asymptotic approach.

In Chapter 5 we conclude by extending the analysis to the two-dimensional wave equation,

and discuss the challenges thereof.



Chapter 2

1D WAVE EQUATION WITH RANDOM BOUNDARY CONDITIONS

2.1. Derivation of Random Boundary Condition for 1D Wave Equation

We will now develop a boundary condition to account for the far-field radiation of the

1D wave equation with variable wave speed, given by

u u
% (CQ(x)g—a) - ?9? = f(x,t), xe€[-L,L], tel0,T]

with initial conditions given by

u(z,0) = up(x), %(az, 0) = vo(x).

Taking the Laplace transformation in time, we have

d du 5
— c2(x)—u — s = f(x) —vo(x) — sup(z), x€[-L,L]. (2.1)
dx dx

For simplicity we assign a Dirichlet boundary condition at x = —L. Therefore the exterior

region is ¥ = [L,00) and the boundary is the point I' = {L}. See Figure (2.1). We are
interested in computing the DtN map for the case of variable wave speed in ¥. We also treat

the random process with sample space €2; so that

c(r,w) =co +é(z,w), z€X, we



Figure 2.1. Setting for 1D Wave Equation. ¢ = 0 for z € ()

where ¢(x,w) is a small random perturbation and c., is deterministic and constant. The

DtN map D is a scalar function o(L,s,w) of the Laplace parameter s, satisfying
Uz (x, s,w) + o(z, s,w)u(z, s,w) = 0. (2.2)

The outside region ¥ = (L, c0) does not contain the source f, so inserting the expression for
o into the 1D wave equation yields

d 5 2 2 2\ 4

%(c (x,w)o(z,s,w)) — c(z,w)o*(z, s,w) — s~ | u(x,s,w) =0, z€X
for all radiating solutions @. This implies the following Ricatti equation for ¢ in the exterior

domain:

a
dz

(*(z,w)o(z, 5,w)) = (z,w)o?(z,s,w) — §°, €. (2.3)

We wish to linearize this equation in order to obtain a simple closed-form expression for o.

In the case that the wave speed ¢(x) = ¢ is constant, we showed in Chapter 1 that the DtN

10



map takes the form o(s) = s/c. Anticipating that o will be a small perturbation of s/c,

for ¢ small we write

oz, s,w) =s/cew + 7(x,s,w), x € L, M],

for some M > L. Recall from the introduction we have assumed that c¢(z,w) < ¢; almost
everywhere and almost surely. Suppose now we are only interested in simulations up to some
finite time 7. Then if M > L + ¢;1" no wave can reach x = M in the simulation time and
we can assume that ¢ = 0 for x > M. Then 6(M,w) = 0. Following our assumption that
¢ is small compared with c¢,, we will assume that & is small and, to first approximation,
approximate it by linearizing equation (2.1). We seek to find &, the contribution to the DtN
map caused by the small perturbations ¢. Using the above linearization leads to the ODE

for ¢ given by

do 2s 2s dc 25>
d_(l',S,W)—gUCL',S,W) _%d‘x(xaw)—i_gC(x?w)
&(L,w) = &M, w) = (2.4)
a(M,s,w)=0

which has solution

- 252 M —Z—S(Z—L)~
o(L,s,w)=— e oo é(z,w)dz. (2.5)
L

3
C

To complete the analysis, we need to choose a model for the random fluctuations in the
wave speed. In order to obtain an analytical result we choose ¢ to be a stochastic process

having the following expansion.

é(x,w) = ; %jrsin (‘%) &i(w), & ~U(-1,1), zel[L M| (2.6)

11



The boundary conditions are trivially satisfied due to the choice of the eigenfunction, and the
process has negative drift, so that with high probability the process stays close to the mean
value of 0. The parameter r controls the regularity of the process. For r = 0 we have white
noise, for r = 1 we have a bridge process which is continuous but nowhere differentiable. In
general, the process ¢(z,w) is r — 1-times differentiable. The process above is therefore a
convenient choice for experimentation since the regularity is controlled by a single parameter
r. Further details are in [9]. Sample paths for different values of r are given below in Figure

(2.2).

r=0 r=1
30 10.15

10.08 e
,// — \‘ B

Figure 2.2. Sample Paths for Process, truncated to P = 1000 terms

12



Inserting the expression for ¢ into the integral in equation (2.1) for & and truncating the

expansion after P terms yields

2

P
1 1 S ;
(L _ Z 1 — (1Y e-25(M=L)/coo)¢. 9
o(L,s,w) 2(M — L)coom j=1 Jrts? +B]2[ (—1)e J6(w) (2.7)

so that, in the Laplace domain, we have

e ORY:
- S,w)+—ul(l, s,w —(—1)%e >¢iw) =
dz 7 Cou 79 2COO7T(M _ L) = jr—l 2 + B]2 J )
where B; = 5772/5j. Since we are in the Laplace domain, we note that the (—1) e 2s(M=L)/ex

term can be neglected, since taking the inverse Laplace transform would invoke the identity
L7 a(x, s)e 2 M=D)/eey — gy (gt — 2(M — L) /cos) = 0. (2.8)

for t < T as by assumption t — 2(M — L)/c, < 0. Therefore, taking the inverse Laplace

transform to return to the time domain, we obtain

1 Ou 1 < 1 u(L,t,w) — ¢;(t,w)

2C00T £ jr—1 M — L

=0, (29

t,w) + Bio;(t,w) = Biu(L,t,w), (2.10)

$;(0) =¢5(0) =0, j=1,2,....

The summation term in equation (2.1) approximates the contribution of the random

fluctuations of the wave speed in the exterior domain to the DtN map.

13



2.2. Quadratic Approximation

We will also derive the DtN map ¢ with a quadratic approximation to the random wave

speed fluctuations. Starting with the Ricatti Equation derived above, equation (2.1)

di(cQ(a:,w)a(x, s,w)) = A(z,w)o*(z,5,w) — s, T EXL.
x

and writing the wave speed and DtN map as above,

c(x,w) = o + &(x,w), o(x,s,w) = 2y o(x,s,w),
COO

and inserting into the Ricatti equation (2.1), this time keeping the quadratic terms we obtain

- 25 _ N 2 (), + s @) 2326+ 28~+4S(~TE s 82,
Op+ —Co+—(C0)p + ——(C)p = ——+—0 o° 4+ —=¢
2 Coo 3, 3. 2, c
Rearranging we introduce the recursion
2s 2s 252 2e5y"  26,6™  4sgMé
~(n+1) - _~(Tl+1) _ 27~ . i - T ~(n)\2 211
s Coo 2, o 3, Coo Coo 2, (™) (2.11)
2
5% s
+ %62 — %(02)1” n>0

starting with (1) satisfying the linearized problem (2.1). In the case n = 0 then, we have

the linear case again
25 (1 25 25 _

5(1) —
o) — —ocV = —¢— —2¢,.
v Coo 3, 2"
with solution given by
252 (M 25
cW(x,5,w) = CT/ e~ 280/ eo (4 W) dz — —¢(7,w)

14



Using the same representation for ¢ used in the previous section

o) =3 5 sin (j”(x__ L>) GW), G ~ULY, zellM]  (212)

we calculate for L < z < M that

P M :
25%¢; gr(z — L) 2s
~ (1) J —2s(z—x)/Coo 1 —__ 7
a' N (x,s,w) = ]E_l Ep /x e sin ( Y dz 2 é(x,w).

Defining A; = jﬂj\(j—:LL),

M . —2s(M—z)/coo ( __1\j+1 g2, CooS o )
— L e (1) Lo sin(A;)
/ 6723(z7:):)/coo sin (]W(Z )) dz = 4(M—-L) 2 J

jmc2
(]M iy cos(4;)

2 j2ﬂ'202
S§° + 4(M—L)2

Thus,
1 jme? [ 'ﬂcgo
b e—QS(M_m)/coo(_1)J+14(JM30L) + 22 sin(A;) + 4(]M_L) cos(A4;) 2s
(z,s,w) Z 57 e - Cgoc(x,w),
where C; = 4 T 2%’2, D; = —jr. Plugging in x = L gives equation (2.1). Now, looking at

the recursion in equation (2.2) for n = 1, we have

3 25 2s 2526 2tV 2z,6M 455
&+ —Ca — . T - +—+ (61)?
Cao Coo c3 Coo Coo Ca
2
Lo S
+ cﬁoc 3, (&)a

15



The solution is after some integration by parts,

92 M
(L, s,w) = i / 6_25(Z_L)/C°°6(z,w)dz—/ e~ 2L e (5(1)2 ¢, (2.13)
Co JL L
2 (M
+ P (z,w)e 2 L/ew g,
Coo JL

The first integral of equation (2.2) has been previously evaluated:

252 52

P
- 6*28(2 L)/coo = &(z,w)dz = 1 Zgj(w) '
3. 21(M — L)coo ‘= 2+ C

The second integral of equation (2.2) is upon expansion

M
/ —25(2 L)/coo( ()) dz =
L

P D24
P

J

M A 2
= E / (Ej cos(A;) + Fssin(A;j) + Ej(—1)7+1e_25(M_z)/c°°) R U
=1
& D;Dys* M . +1_—25(M
+ Z 2 / (Ej cos(A;) + Fssin(A;) + E;(—1)7+1e2s _Z)/C‘X’)
i~k

+02

(s2+ 02)(32 + C}
X (Ek cos(Ay) + Fssin(Ay) + Ep(—1)Fte=2sM —Z>/C°°) e~ 2zl e g7 (2.14)

3 M .
- E 32D]S/ (Ej cos(A4;) + Fssin(A;j) + Ej(—l)j+le_2S(M_$)/C°°> o S P
Is -
j= J

where Dj = 5= ﬂ2 —, E; = 4(3;\;%”, F = %=, Upon integration, the e=2s(M=2)/cx(_1)it1

terms lead to the factor e 2*(M~E)/e= which as in equation (2.1) can be neglected. Therefore,

16



we can simplify equation (2.2) as

P
/M ~2s(z=L)/eoo (5 (Y2, — Z % /M (Ejcos(A;) 4+ Fssin(A;))? e 25G=E/ex g,
L = (s +C5)* Jo

" D;Dys* M '
—l—Z (s2+C?)(s2+C2) Jp, (Ej cos(Aj) + Fssin(4;))
i#k J

x (Ey, cos(Ay) + Fssin(Ay)) e 25G=1/e g (2.15)

P

2D 57 M ; ~ —2s(z—L)/c
- Z W (Ej cos(Aj) + Fssin(A;)) &(z)e ~dz
=1 [e.°]

52 M

2 ~2 *QS(Z*L)/Cood
+c6 g “(z,w)e z

Anticipating that we will use the identity (2.1) upon taking the inverse Laplace transform, we have

with a(j) = ]Cé"jz, b(j) = % the following integral calculations

M .
—QS(Z—L)/(:Oo ( )/4
/L sin(A dz = Zr oA b(;)/A
M
723(z7L)/coo 6005/2
/L cos(A dz = 2/ b))/
M 4 CooS/4
in( A in(A —2s(z—L)/co _ COOS/ o 00
/L sin(A4;(z)) sin(Ag(2))e dz Ry ¥ E A Y
. CooS/4 CooS/4

cos(A;(2) cos(An())e™ D dz = AT+ T

sin(4,(2)) cos(Ay () e Dew s = SRSy St Z IS

. o I a(j+k)/8 alj — k)/8
Sn(Au(2)) cos(4y () s = S

M
4
in2(A —2s(z—L)/co :cﬁ_%
f, s R T S I

M
4
2(A. —2s(2—L)/coo _ Coo COOS/
/L cos™(4;(2))e dZ=3 t s2 + b(27) /4

S

—

!

S

M .
sin(A;(2)) cos(A;(z))e 251 e g, — _a(2j)/8
[ sinta @) costi(ee 6 Diewa: = S

M P
20\ —25(2—L)/con 7, _ &5k CooS/4 CooS /4
/L c(2)e dz j;l kT <52+b(j—k)/4 s2+b(j+k)/4
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/L Me(z)sin(Aj(z))e—%(Z—L)/dez:ij . ( Coos/4 Coo8/4 )

S w2kt \ 52+ b(j — k) /4 24 b(j+k)/4

/M 5(2) COS(Aj(Z))6_2S(Z_L)/c°°dZ _ i gk ( (1(] + k)/S CL(] - k)/8 >

L S w2kt \ s2 4+ 0(j + k) /4 2+ b(j—k)/4

which upon insertion into equation (2.2) gives

M P . . . .
/ 2D e (G0N 2dz = 3 DDy | B E(RY + R + B F (RS — RS
L k=1
P . . . .
+ > D;Dy [EkF(R;““ + RN + S FA(RTN - R{*’“)}
G k=1
P
- . S B R R - R
Gk=1
1 §i€k pi—k  pitk
+ 67 Z 7r4jrkm (R5 o R5 )
0 k=1
where, since b(l)/4 = C?,
R (s) Coos® /4 RL(s) s9a(l)/8 (2.16)
s) = , = .
! (s2+C2)(s2+ C) (s> + CF) 2 (s2+C2)(s2+ C)(s2 + CF)
s3a(l)/8 Coo8”[4 Coos® /4
Ry(s) = 0/ Ri(s) = :

(s2+CO)(s2+CP)’ (s2+C)(s2+ C7)’ ) =2 v
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We reduce the order of s in the numerators of equation (2.2) by

5

S
(s2+C3)(s* + CF)

—(CR+CD)

S

S S

(2 4+ C2)(2+ C}) (2 +C}) >+ C2
4

+C &

+ (CE+Cic? + o

6

+ 0]2)(32 + C2)(s? + C})

S
(824 C)(s2 4+ CF)

S

e,
' (24 C2)(s2+ C2)(s2 + CP)

3

s R s
(s2+CH(s>+CP)  2+C2 1 (24 CH)(s2+ CP)
S S
=s5s—(C?+C cf
2+ CH(2+C) @+ c2+ F(s2+ C)(s2+ CP)
83 s
N O —
52+ C} 524 C?
Using partial fractions, we have
1 . Jl(j> k) JZ(ja k:) JS(ja k)
(2+CH(2+ (2 +CF ) 2+ CF 0 824+ CF 2+ CF
1 . J4(j7 k) J5(j7 k) JG(ja k)
(2 +C2)(2+CY)(2+C2,)  2+C2  2+C2 2+C2,
1 o J?(jv k) J8(ja k)
(2+CH(2+CF) 240 2+ CF
1 _ J9(j7 k) JlO(ja k)
(2+CH)(s*+C3 ) 2407 2407,
1 o Jll(j? k) JlQ(jv k)
(s2+C(2+C2,) 2407 2402
1 1
Jl = 9 J2 —
(C; = CHICE_, = CF) (CF = CCE_, = CF)
1 1
J3 = ;o Ja=
(CF = C)(CRE=CFy) (Ci = C(CFy = CF)
1 1
J5 = ;o Jo=
(CF = CA(CT = CP) (CF = C7L(CF = CFy)
1 1 1
J1= e B= 3 9= 73 2
C; — C; s = Cj Ci =G
1 1 1
Jw= 75— =5 J12= 55—
o, e e
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When j =1, we have

1 _ J13 n J14 J15
(s2+CHA2+CF) (824072 2407 2+ CF
2 4
JlSZ%, J14:1_Ck€1;CjJ3, 15:2;22
C? - C; G707 (€5 =G0
When k = [, we have
_ J16 n Ji7 n Jis
(2 +CR2(s2+CF) (24 CP)? 2407 s2+CF
2 4
Ji6 = 21 2 J17=1_Cj€120kj3» Jig = 21 212
C2 — (7 C3Ct (Ci = C5)

The boundary condition is therefore, in the Laplace domain,

Coo
where
L -1 ZP: & stu(x,s,w)
97 97(M — L)cws r=P AR
P . . . .
+ 3 DDk [BiE((RIT + BRI + B F(REY - BT
Jk=1
P . . . .
+ > DDy [EkF(R§+k +RIFY 4 2F2(RITF - R{*’“)] a
Ji.k=1
P
2 D&k itk ik i~k pitky] o
~ a2 e (B - RS+ PR - R
3
Ji.k=1
1 1) w— &¢
36k J—k G+ ~
4 RI7F _
! (cgo ! c&)%% wjrer o~ I
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Going back to the time domain, we utilize the approach used above in equation (2.1) to deal with

the convolution by introducing the auxiliary ODEs

du d2¢1
o= e O
2 12
u = dt; —I—C’2¢
du d4¢3 ) 2¢3 s
E— 7 +20j pTE +C¢

at the boundary for k=1,...,P, j=1,...,2P.

Defining

= )10} + Jatby, + J30;
= 19} + sy, + Jod) i
Sy = Jr; + Jsdy
= Jo; + Jrod;
Y
Se = Jisd" + Jud) + Jisoy,
Sy = Ji6tp + Jizdp + J1s0;
Ss = J190) + Ja®j + Ja1¢y;

So = Jao¢; + Jashs;
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When j # |j — k| and k # |j — k|, then

RI7F 4 RITF — f (20 — (2CF + CF_ + C2,,)S5 + C1_ .St + C.S2)
SR = R = T2 (O = CL)9) + (Ol + GO, = Ol — GRC2,5)S5)
Coo
- 4 (06 kSl +C+k252)
a(j + k)

Ry Ry = LT G (CF 4 C24) S5 + CLySe)

_ @(% — (G} +C2 )85+ CLu5)
Ry = IR oy 02,0804 018
+ WD (021 0208+ 0L
R - R = Mw} - sy - U -2 50

8
RF — R = ((C]+k Cl)d; + Ci_Su = Cj11.S5)

J

. ' cOo
R = Ry™ = (O )k — CF xdj ).
When j = k,

. . oo
RIF 4+ R = (2¢ — (2C% + G195 + C11.Ss)

s (R~ — RI™) = ( Ten®) = (Cipy + CRCL) 85 + CFaySs)
Ry — Ryt = W@s} = (Gi + CLh)¢5 + CjiaSs)
PRItk ik alitk), 2 34

5+ Ry = 3 (¢; — (Cp +C )‘b +k58)
aj + k) + k)

R — RITM = —=——=2(¢} — CF,,.5)
- , Coo
R F o Rfrk (O +k¢ Cj+k¢11‘)

j—k j+k _ COO
R5 - R5 C +k¢]+k
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When j = |j — k| then

R™* + R = T’O(ng — (20} + C2, + C2,1)S3 + O} Se + CF,,.S2)
SR = R = T2 (O = CL)9) + (Ol + GO, = Ol — GRC2,5)S5)

+—( 06 kSﬁ+C+kSQ)

4
L V(e N Ne IR S
- “(j8 K (61— (C2 4 €2 )8 + O ,S%)
Rt = VD (024 02,08+ sy
+ “<' B (61— (C2 4 €2 )8 + O ,S%)

k)

. . aj a j —
RITF — RITF = ( 3 )<¢; — C}Ss5) — (T(¢31 — C19))

R~ RITF = ((C = CF)d) + O Sa — O 465)

J

. . COO
RyH = By = 25 (G — CF i),
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When k = |j — k|, then

R™* + R = T’O(ng — (20} + C2, + C2,,)Ss + CF_,S7 + CF,,.So)
SR = R = T2 (O = CL)9) + (Ol + GO, = Ol — GRC2,5)S5)

+—( 06 kS7+C+kSg)

4
L V(e N Ne IR S
- “(j8 K (61— (C2 4 €2 )8 + O ,5h)
Rt = VD (024 02,08+ sy
+ “<' B (61— (C2 4 €28 + O ,))

‘ - a(y + alj —
R%+k . Ré k _ ( 2 )<¢; - OJ2+kS5) _ %((b]l — 0]27]653)

R — RITF = ((C "= CF)) + CSa— CjyiSs)

J J

. . COO
RyH = By = ZE (G — CF i),

We calculate that

P P

§
97 (M - Lc Z]rjl w(L,t,w) = 83) + Y (Ajd] + Aoy + Ayl + Ald),)
= =l k=1
’ |J?—k|7éj
li—k|#k

»

+ Z (A7) + AJop + A3o)  + Ale]) + ) (Alel + Algy + Afol, . + Alg}) (2.17)
IJ‘] kklij | jlkszlk

- Z (A1} + A36] + Ajoh)

7,k=1
i=k
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where

Al

_ D@E@Cﬁ(z — 2% CF+ O3+ C2 ) e + Clyi + CL )

+DID2EIF’§2(1—(cg+c§+k)J7+c+kJ4 E1Fé1<1_(c,3+c§,k)J7+c )

+ DngEgFéQ (1= (C}+ C2 ) Jr + O Ju) + EQF‘z (1—(CR 4+ CF_y)J7 + Cf 1)
+01D2F2‘L°°((cj+k C2 )+ (Cly + CRCE, — Cloy — CRC2) = CO_y i + C8 )
oDy 2]§f3 @2( ) - él(l—Cf_kJ9)>

—2D1F7r2]§:c3 (O = CFp) = O + Gy Jo)

D1D2E1E2%°(—(2C’,f + O+ C2)Js + Ol + O Ts)

+ DngElF%(—(Cﬁ +C3 ) s+ Cpds) — DngElF%(—(C’,% +CF ) s+ C )
+ DngEgF%(—(Cﬁ +C2 )5+ Clds) + D1D2E2Fé ((C2+C2 ) Js + CL )
+ Dy DyF2E® (O] + CRC} = Oy = CRCT ) Js = CF o + CF i T5)

A A
DlDQElEQ%C.,kJ?, — DID2BVF Oy Js + DDy By F Ly Js — D1D2F2%"C§,kjg

gk Al §k Coo ‘E&c Coo
s —C2 4 Jio — 2D F—>— C;&kJm— g 4 Gk

— 2D1E ri 3 T‘k?"

Coo A, A Coo
DyDy By By =2 CJ+kJ6+D1D2E1F 204, o Jo + D1DyEp P22 C]+kJ6+D1D2F2 CPids

& A &k

Coo
+2D1FE]———— e 3 C+kJ12+2D1F e 3 f]fk 2

coo
C +kJ12 + rk.r Jj+k

D1 Dy By By 52 (2 (2 Ci+C2 . +C2 ) I+ CJu+ C) +kJ4)

As Ay

+ D1DyFEF— 3 (1 — (Ck; + C )J7 + C: +k<]4) E\F— 3 (1 — (Ck + C )J7 + C’;l_k,]M)
As Ay

+ Dy DyFyF—=2 . 2(1—(C? + C? )7+ CfpJs) + By F— < L1 —(c?+ C? )7+ Cf . Jua)

9 Coo
+ DDy F? 7((CJ+,€ C3 )+ (Cf+ CRCF = Cf . — CRC2 1) e = CF_Jia + CF i Jy)

A A
—2D1E; 23? 3 <82(1 — CJZ_,_kJH) — 81>
fk Coo f é-k Coo
— 2D F—-—— 2k" ¢ 3 ((Cj-i-k Cjz—k) B C;—ijll) cb 7-:4 iTET 4 CJQ—k
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Coo
A3 = D1D2E1E2—(—(20,3 +CF o+ CE ) s+ Cf s + Cj )

A A
+ D1 DyE F 82( (Ck 4+ CFp)Js + Cf i J5) — DiDyEYF 81 (—(C + C2 1) Js + Cf . J1s)
A2 Al

+ DiDy By P> (— (C} 4+ CFp)Js + CjyJs) + Dy Dy Ey F— < (- (Ck 4+ CF ) Js + Cf 1 J15)

Coo
+ Dy Dy F? =2 ((04 k CRCiy = Cug, — CRC) s — Oy Tis + CY oy J5)

A A c
A2 = DngElEgﬁC-MJﬁ + D1D2E1F§204+,€J6 + D1D2E2F—204+kJ6 + DDy FR =2 CF T

& Ao &k

C
+2D1F1———— e 3 3 C+kJ12+2D1F ke 3 gjfk Coo ~2

Coo
C +k‘]12 + rkr J+k
2 Coo A A 2Coo ~6
A4 = D1D2E1E2TCj_kJ13 — D1D2E1F C kJ13 + D1D2E2F C kJ13 — DDy F C kJG

e A1 o fk Coo va
+2D1E1W70‘7_k +2D1FWTC]_1€

A3 = D1D2E1EQ%(2 — (2% C}+ C2 + CF )+ Cf_pJis + Cjy )
Ay A
+ DiDyErF= 2(1— (C} + C3) Jr + Chpdy — By 2 L1 (CF+ C2p)Jr + Chy i)
Ay Ay
+ D1D2E2F 8 (1 - (Ck’ + C +k‘)J7 + C +l<:‘]4) + EQF 8 (]. - (Ck; + C?_k)J7 + C‘;‘l_leg)

+ D1 Dy F? 7((C]+k CQ—kz)JF(CJ k+ CROF = Ciy — CRCF) Jr — CF_Tis + C i Ja)

€k A A 2

Rt ol Gl Ui = U= Cid)
&k

ri 5

oDy F ok Z((C = CFp) = Cladu + Gy Jy)

J

Ag:D1D2E1E2ﬁ(—(zc§+cf_k+c WJs + Cj_p it + Cfy o Js)

4
A A
+D1D2E1F§2(—(02+c2 k) s+ Clpds) — D1D2E1F§1(—(C£+02 k) Js + Cl_yir)

A Ay
+D1D2E2F§2(—(C§+C )J8+C+kJ5)+D1D2E2F8( (CE+C2_ ) Js + C_iJir)

Coo
+D1D2F2—((C’4 +CrCr_ —Cfy CkC]+k)J CY_pJir + C2y )

j
§k Ay

—2D1Bi T

2 f 4 é-]gk: Coo ~2
C —kJs —2D1F T2k" 3 Cj—k’Jg T 6 6 mdjTkr 4 Ca—k

As Ay c
A3 = DDy E By C]4+kJ6 + DDy E\F—= c;*+k,]6 + D1 DyEyF—= 0]4+,€J6 + D1DyF?=E T

fk &k

Az 5 S ¢
+2D1F1—— k3. C’+kJ12+2D1F a4 i bk __ 2
o

rk.r Jj+k
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Ay

c Aq
A3 = D\ DyE| By °°C w6 = DiDy By P Lo4 ke + E2P Ci e —DngcmooCﬁ w16

Coo As Coo
Al = DIE?—= L2+ C3;J2) + 2DIELF == 2 (1 + Cy;J2) + DIF? (CQJ + C5;Ja0)

éj A3 2 é- Coo
— 2D1E1m§(1 - 02]"]22) 2D1F 2.77" 3 (CQJ - CQJ'JQQ)
As
A = p?E2°© 0 —2(—(2C% + C3;) + Cyj10) + 2D1E1F§(—(CJZ +C3;) + Cy;J10)
+ DfFZ%((—ng — C3C3;) + C5;19)
Al = DfEf%Céij + 2D%E1F§SC§]J21 + D%FQCTCSij
& Az 53 Coo §2 Coo 2
+2D1 By ——— 7T2jTC3 02] Jog + 2D1F Cgo 02] Jog + W 1
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2.3. Numerical Results

Numerical experiments were performed to compare the stochastic boundary condition
obtained with a solution on the extended domain. The system corresponding to the linear

approximation obtained in section 2.1 is

0?u o (., 0Ou
Ctw) = 5 (H05 et + 0, we L]
u(r,0.) = wo(a), f% (2,0,6) = w(a),
Ju 1 Ou
ou 1 ou
M ntw) — —2Y L tw) =
036( bw) Coo 875( tw) =0,
d2¢j 2 2
e (t,w) + Bi¢;(t,w) = Biu(L,t,w).
where gy (z,t,w) = 5= Zle = 1U(L 109) ¢ (w) and we assume that ¢ = co for z <

—L so that we use the exact boundary condition there. The system corresponding to the

quadratic approximation obtained in Section 2.2 is

%(x,t,w) = % (02(x)%(x,t,w)) + flz,t), wel-L,L]
u(x,0,w) = ug(x), 881;(35 0,w) = vo(z),
%(L,t,w) + é%(ht’w) = g2(L, 1, w),
%(_L,t7 ) — Cio 21;( L.t,w) =0, (2.19)
Y1) = T+ o)
w(L,t,w) = ; j (t,w) + CF¢5(t, w)
1t = S8 ) + 202D (10) + Cloy (1),
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where go(L, t,w) is given by (2.2). Writing the system (2.3) or (2.3) in weak form, we obtain

?;2 (2, tyo(x, t)de = — / LL a% (cQ(x)g—Z(w,t)) v(@, t)dz + / LL f(@ tolz, t)de

for test functions v € C*°(—L, L). Using integration by parts,

‘th (z, )v(z, t)dt = —/ Az )gz(x t)(a?;(x,t)dm02(93)%(:5,@@@,15) L,

—i—/_L flz, t)v(x, t)dx
88; (2, tyo(e, t)dt = — / e )22(:5 t)gz(x,t)dx+cgov([/,t) (g—ig—?(gt))

—coov(Lt —L,t)+ /f:z:t (x,t)d

We use the Galerkin approximation

u(z, t,w) Zuk (t, w)p(z (2.20)

where 1, are the Galerkin difference basis functions as in [3]. These are piecewise polynomials
defined by values on a uniform grid whose restriction to any interval bounded by grid points
is the Lagrange interpolant of the nodal data. Near boundaries we simply take the values of
the solution at external ghost points to be free, called the ghost basis method in [3]. Here
we take the local polynomial degrees to be 3 and the grid spacing to be Az = 1/100. This
seems sufficient to resolve the waves to the accuracy provided by the linearized approximate
boundary condition, but some discretization errors are noticeable for the more accurate

quadratic approximation when the amplitude of the perturbation is very small.

e duy, 0
ZMM =S (sult e aun) + oo (o- 250wn) e

k=1
ou

—CooV(—L, t)a(

—L,t)
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where

M= [ v@utan, Si= [ 0T T @

—L

The standard 4th-order Runge-Kutta method is used to discretize the time-variable with
At = 1/10000. We take the source term f(x,t) = 0, and the initial conditions to represent a
pulse uy(z) = e_””2l[_5’5], vo(z) = 0. The wave speed on the domain [—L, L] is ¢(z) = ¢ =
10.

2.3.1. Consistency with Extended Domain

First we will test the accuracy of the method by comparing the solution obtained with the
random boundary condition to the solution obtained by solving the problem on the extended

domain. Let u(z,t) denote the solution to equation (2.3) and ug(z,t) the solution of

0*u o ([, ou
w(xatvw) - % (C (x,w)a—x(x,t,w)) + f(xat)a S [_LaM]
0
u(@,0) = w(@),  So(r,0) = vo(a),
ou 1 Ju
o — (M, t,w) + ;E(M t,w)=0 (2.22)
ou 1 Ou
%(—L,t,w) . 8t( Lit,w)=0

with discretization analogous to equation (2.3). We choose a single sample ¢ scaled by various
amplitudes A so that the solutions are deterministic. We measure the difference between w4

and us at a time ¢t = T by using the maximum norm
err = Iﬂlgf(|u1($, T) — us(z,T)|.
Tr=

In Figure (2.3) we plot err vs A, for the single sample A¢. The parameters r = 6,
P =10, L =10, M = 20, and T = 2. As A increases, the error of the method increases at

second-order rate, as expected.
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5 kiterms = 10, nx = 1000, nt = 30000, r=6
10° T

err

109f

10-10

107! 10? 10

A

Figure 2.3. Error for Linear Approximation

In Figure (2.4) we plot err vs A, for the single sample A¢. As A increases, the error of
the method increases at third-order rate for sufficiently large A, as expected. There is not
3rd order accuracy at small fluctuation values because the error in discretization is larger
than the error in the linearization of the Ricatti equation for these values of A. However, it

is observed that the slope of a sufficiently short tail of the graph is 3.
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klterms=10, nx=1000,nt=30000

107! 10? 10
A

Figure 2.4. Error for Quadratic Approximation

2.3.2. Monte-Carlo

We approximate the mean and variance of the reflected wave at the boundary by using
the Monte-Carlo method. The system (2.3) is solved N times to approximate the statistics
of the solution. Let X;(z,t) = f(ui(x,t)) be a quantity of interest, where u}(z,t) is the

solution using the ith sample. The sample mean m(x,t) and sample variance o?(z,t) are

given by
m(z,t) = — in(x,w
o2(z,t) = ﬁ Z(Xl(x,t) —m(z,t))?

where N is the number of samples.
The first quantity computed is the maximum value of the reflected wave at t = 2, given
by X;(z,t) = max,(Jui(x,t)]). The value t = 2 is selected because this is the value of time

when the wave has passed completely through the random medium. The same parameters
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were chosen as in the previous experiment. The mean m and variance o2

is given below
in Figures (2.5) and (2.6). The small variance is due to small perturbations in the random
medium. We do not expect these quantities to be zero because the small perturbations in
the wave speed should generate reflected wave energy.

The second quantity computed is the mean value of the reflected wave at t = 2, given
by Xi(z,t) = & > (ui(z;,t)). The mean m and variance ¢* is given below in Figures (2.7)
and (2.8). In these preliminary uncertainty quantification experiments we expect the sample
mean and sample variance to converge to their true values as N — oo. A simulation with

several orders of magnitude increase in the number of samples used here is expected to be

necessary to observe convergence.
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Figure 2.5. Mean Maximum of Reflected Wave at Boundary
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variance

1.6

0 100 200 300 400 500 600 VOO BOO 900 1000
number of samples

Figure 2.6. Variance of Maximum of Reflected Wave at Boundary
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2 . . . . . . \ . .
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Figure 2.7. Mean of Average Reflected Wave at Boundary

X}
46 =10 .

variance

3.9

0 100 200 300 400 500 600 VOO BOO 900 1000
number of samples

Figure 2.8. Variance of Average of Reflected Wave at Boundary
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Chapter 3

EXTENSIONS TO A STATIONARY PROCESS

3.1. DtN Map for Whittle-Matérn Covariance Process

In this chapter we will repeat the procedure carried out in Chapter 2 for a stationary
Gaussian process. This will prepare us for Chapter 4 when we will compare the reflection
of the wave at the boundary caused by the random boundary condition obtained here to an
asymptotic calculation carried out in [8]. A class of stationary covariance functions are given

by the Matérn class

Cold) = 2 (m— %)K <\/2_ 5l>, (3.1)

I'(v) p
where ' is the gamma function, K, is the modified Bessel function of the second kind,
d = |z — y| is the distance between points, and p,v are positive parameters. It is shown
in [9] that a Gaussian process with Matérn covariance function is [v]—-times differentiable.
The selection of the Whittle-Matérn covariance function was motivated by the desire to find
an orthogonal expansion which has closed-form eigenfunctions. In the future it would be
interesting to choose a process which is motivated by a physical example.

In the case v = p+ 1/2 equation (3.1) simplifies to

(%/Wd)p_i

. V2 FTId\ P - (o)
o) =0 ( )(%Nigﬂ@ M\,

p P — )]

For p = 0 we have the exponential covariance,

C1ja(d) = exp(—d),
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where we chose p = 1 for simplicity. Here the sample paths are continuous but not differen-

tiable. We will find the eigenfunction expansion for the p = 1 case
Cs2(d) = (1 + v/3d) exp(—Vv/3d).

which is continuous and differentiable. The eigenfunction expansion is given by
éa,w) = co+ Y V70 (@)Gw), &)~ N(0,1)
j=1

where, taking d = | — y|, ¢ and v are the eigenfunctions and eigenvalues of the covariance

operator satisfying

/ a (1+V3lz — y)e V1 ¥o(y)dy = vo(z), =€ [~a,a]

Differentiating under the integral sign gives

a

vl (z) = -3 / ' (x — y)e VP (y)dy + 3 / (y — 2)e VU (y)dy

ve'(w) = / (3V3(a—y) = 3)eV I o(y)dy + / 3V — @) — eI Dg(y)dy

V" (z) = / Z(—Q(x—y)+6\/§)e_ y)dy + / y— 2) — 6v/3)e V30 3 (y)dy

6" (@) = [ OVBa = y) ~ 2 S Dty + [0V~ a) - 200 o)y
+12v36(x)

Thus we see that the integral equation is equivalent to the linear 4th order ODE

5" (@)~ 6" (@) + L2300

¢"(—a) — 2V3¢'(—a) + 3¢(—a) =0, ¢"(—a) —2V3¢"(—a) + 3¢/(—a) =0
¢"(a) +2v3¢/(a) + 3p(a) =0, ¢"(a) +2V3¢"(a) + 3¢'(a) =0
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Solving the ODE gives the characteristic polynomial r* — 672 4 (9 — 124/3/v) = 0, which has

roots
1243
=3+ \/_.
v
The eigenvalues satisfy vy > 15 > ... > 0, so we expect two real and two imaginary roots,

giving the general solution

¢(x) = Aexp(—ri(x 4+ a)) + Bexp(ri(z — a)) + C cos(ra(x 4+ a)) + Dsin(ry(x + a))

with 7, = \/3+ \ 123 /v, ry = \/\/12\/§/u—3.

Applying the boundary conditions leads to

where

All A12 A13 A14 A 0

A =712 4+2V3r +3, Ay = (r2 —2v/3r, + 3) exp(—2ar;)

A3 =3— Tg, Ay = —2\/37“2, Ay = (—rf - 2\/57’% —3ry)

Agy = (r? — 2\/57’% + 3rq) exp(—2ary), Az = 2\/§r§, Agy = (3ry — 1)
Az = (r? — 2v/3r1 + 3) exp(—2ary), Asy =17+ 2V3r, + 3

Ags = (3—13)C — 23S, Az =2V3r,C + (3 —13)S

Ap = (_7“? + 2\/§T% —3r1) exp(—2ary), A= (7‘:1)’ + 2\/§7“% +3r1)

A43 = (7”3 - STQ)S - 2\/§T§C, A44 = (37“2 — rg’)(] — 2\/37“;3

where S = sin(2arq), C' = cos(2ars).
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The eigenvalues v and corresponding eigenvectors ¢ are found numerically by applying

the power method to the eigenvalue problem A¢ = v¢ where A is given in (3.1). The

eigenvectors ¢ are then normalized by enforcing ||¢||o= 1. Sample paths are given in Figure

(3.1), where the process has been truncated to P = 100 terms.

klterms=100

15671

ctilde

15 . . . . . . . )
10 11 12 13 14 15 16 17 18 19 20

Figure 3.1. Sample Paths for Stationary Process

Starting from equation (2.1), we follow the same procedure to obtain the DtN map with

the added complication that there will generally be a jump at the boundary = = L

2s

257 (M o
5(La va) = C%/ 6_0200 (==Dg (Z W)dZ — CTC(L w)
oo J L

282 o0 M 9e . M N .
-3 § :gi(w)\/Vi (Az/ e e 571 _”(Z_L)dz—i-Bi/ e e (2T )erl(Z—M)dZ>
3, 4 . g
Zfz \/VZC/ e e (27 D) cos(ry(z — L))dz

Z& )WViD; / e e CTB sin(ry (2 — L))dz — fTSC(L w).
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Using the following integrals

M
/ 6—%(2’ L)e—rl(z—L)dZ _ COO/2
I S+ Coot1/2

M —(M—L)r
/ 28 L fem gra(e—h) g _ Coc€ NI /2
L

S — CooT1/2
M
2
—2s(z—L)/coo — INdz = Coos/
/L e cos(ro(z ))dz Tt
M
4
—2s(z—L)/coo o3 — INdz = 2 T2/
/L e sin(re(z — L))dz Ry

the DtN map in the Laplace domain is then, in the Laplace domain

257 o0/2 so” ML /2
o) = 5 et (A=l e
s+coo7“1/2 S — CooT1/2

CooS/2 ctrofd 2s
7 ) i D,L = - L, .
Zf v ( s+ cr /4 s2 42 r3/4 2, 2 (L)
Coo SCooT1/2 Coe” M=L)m1 SCooT1/2
3, Zizlg g ( 2 (8 s+coo7“1/2>+ 2 S+s—coor1/2

2 c sc r2/4 A ri/a

= WO s — == 2l D; Coo™" 1 — 2/ "
e dev (05 (- im) -2 (-5 5in)
2
——SC(L w).

C2
-2 ;siﬁi (45 + S o)
+ é 2&\/72' (—Ai%o%;—m (1 B %))
. % Zio;fz\/z (Bi cooe—(;W—L)m 0027’1 (1 + S ioz:fﬂ))

2 Coo C2T5 s 27’2 2 ra/4
e : ; _Ci;OO o’ 2 Cso 1 — 2
+c§o Zzlg\/;( 2 4 (32+02 /4> < s2+c2r /4))

2
— —SE(L,w).

2
C%
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Define

2 — c Cooe”M=LIm c
h=— Vi | Ai—+ Bi———— + C;—
Ty e (aGen g rat)
2= Coo CooT1 CooT1/2
== ivVVi | Ai— l———
g 3, ;g\/?( 2 2 < 3—1—0007“1/2))
2 — Cone~ M=L)r1 o o CooT1/2
2N e (B oolt [, CeoT1/2
Ty e (a1 50

B (o (i )
C
=1

Y2 824 c2r2/4 s2+ 2 ri/4

The boundary condition is then

Coo  C2

dii 1 2 )
d—Z+s(———5(L)+h>a:g

In the time domain,

du 1 2 du
o BT § h) 2 =
v (coo cgoc( Y+ ) at 7
Where
- Coo CooT Cove~M=L)r1 o
1= 26T (A SR o2 - BEE SR ki)

(3.3)

2
CoT2

2 = Coo
T3 Zéz\/z (_Ci7cgng¢3/4 + D; 1 (U - Cgorg¢4/4)>
=1
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and

u(t,w) = % + CooT1001/2
u(t,w) = % — CooT102/2
1) = T 1 2101
u(t,w) = % + A rig,/4

with zero initial conditions for ¢;, j = 1,2, 3,4.

3.2. Numerical Results

Numerical experiments were performed to compare the solution computed with the

stochastic boundary condition to a solution computed on the extended domain. The system

18

o2  Ox ox
ou
u(ac,O) —UQ(J}), a(xao) UO(J:)7
ou 1 ou
w5 g(xz,t,w), z=1L (3.4)
ou 1 Ou
e S — _J
0xr  co Ot 0, =z
d?¢;
d;zj + BJQ-@ = Bfu

where g(z,t,w) is given by (3.1). Writing the system (3.2) in weak form, we obtain

O e o, ) = — /L 9 (c%)%(%t)) v(w, t)dz + /LL f(@,tyola, t)de
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for test functions v € C*°(—L, L). Using integration by parts,

th (, t)v(z, t)dt = —/ Az )gg(x t)g;(x,t)dx+c2(x)%(x,t)v(x,t) L,

/ flz, t)v(z, t)dx
L 52,

plete (x,t)dt:—/ 2(g )22(:;; t)gv(x t)dz + (L, t)( _ Lo t))

—coov(Lt —L,t)+ /fa:t (x,t)d

We use the Galerkin approximation

u(z, t,w) Zuk (t, w)p(z (3.5)

where 1, are the Galerkin difference basis functions as in [3]. These are piecewise polynomials
defined by values on a uniform grid whose restriction to any interval bounded by grid points
is the Lagrange interpolant of the nodal data. Near boundaries we simply take the values of
the solution at external ghost points to be free, called the ghost basis method in [3]. Here
we take the local polynomial degrees to be 3 and the grid spacing to be Az = 1/100. This
seems sufficient to resolve the waves to the accuracy provided by the linearized approximate
boundary condition, but some discretization errors are noticeable for the more accurate

quadratic approximation when the amplitude of the perturbation is very small.

o Pup, & duy, 1 Ou
§ Mj—— = § — M 2 v(L — ——(L .
=t Jk dt2 — ( S dt + ]k-fk) + Coov( 7t) (g at( t)) (3 6)

ou

—CooV(—L, ) at(

L,t)

where

M= [ i Si= [ @05
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The standard 4th-order Runge-Kutta method is used to discretize the time-variable with
At = 1/10000. We take the source term f(x,t) = 0, and the initial conditions to represent a
pulse uy(z) = e‘$2f[_5’5], vo(z) = 0. The wave speed on the domain [—L, L] is ¢(z) = ¢ =

10.

3.2.1. Consistency with Extended Domain

First we will test the accuracy of the method by comparing the solution obtained with the
random boundary condition to the solution obtained by solving the problem on the extended

domain. Let u(z,t) denote the solution to equation (2.3) and ug(z,t) the solution of

0*u o ([, ou
w(xataw) - % (C (x>w)a_x(x7taw)) + f(xat)a S [_LaM]
0
w(z,0) = uo(2), 8—:’:(:5, 0) = vo(a),
ou 1 Ou
ou 1 Ou
g(—Lﬂf,w) - aa(—[at, w) =10

with discretization analogous to equation (4.5). We choose a single sample ¢ scaled by various
amplitudes A so that the solutions are deterministic. We measure the difference between u;

and us at a time ¢t = T by using the maximum norm
err = Iﬂléf(|u1($, T) — us(z,T)|.
r=

In Figure (3.2) we plot err vs A, for the single sample A¢. The parameters are r = 6,
P =100, L =10, M =20, and T = 2. As A increases, the error of the method increases at

second-order rate, as expected.
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klterms=100,nx=2000,nt=30000

102

10°3
107! 100 10"
A

Figure 3.2. Error for Linear Approximation
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Chapter 4

COMPARISON WITH ASYMPTOTIC RESULTS

In this section we will summarize an alternative approach developed in [8] to study the
transmission and reflection of waves through a random medium. In the final section we will
compare the method obtained in previous chapters to an asymptotic one developed here.

Preliminary results are obtained.

4.1. Scaling Regimes of Wave Propagation through Random Medium

Three parameters of interest in the random layer wave propagation problem are the
random layer size [, the typical wavelength of the propagating pulse Ay, and the propagation
distance L. See Figure (4.1). The relative magnitude of these parameters determines the
qualitative behavior of the wave as it passes through the random slab. First we would like
to nondimensionalize the problem in order to introduce our scaling parameters. We start

with the 1D wave equation written in the form

ou Jp
1 Op  Ou
K)ot " ox

where p and K are the density and permissibility of the medium. Upon differentation and

substitution this system is equivalent to

p(z)% = % (K(z)%) + aa—];(z,t) (4.2)

with ¢?(2) = K(2)/p(z). We will go through the asymptotic analysis using the first order

system (4.1), keeping equation (4.1) in mind when we do the comparison in Section 4.5. The
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Figure 4.1. Scaling regime of asymptotic approach

random fluctuations are modeled in the form

(14 vk(z,w)) for z € [0, L],

—
==

for z € (—00,0) U (L, 00),

==

This corresponds to

=—(1+vg(z,w))

We therefore assume for simplification that the properties of the medium on either side of

the random slab are the same, so that in the absence of random perturbations there is no

reflection.

The randomness is therefore contained in the zero-mean stationary process vg(z,w). A

process being stationary means that the (transition) probability of vk (zg + z,w) = y given
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Vi (20,w) = x, z > 0 does not depend on z,. We write the process vk (z,w) in scaled form as
vi(z,w) = ov(z/l,w).
The source is F'(t, z) is a point source given by
F(t,2) = C%g(t)6(z — ),

where ( = \/Kp is the impedance, so that the right-going wave that travels to the random

slab has the form

A(t,z):g(t—z__z()), z < 0.
C

¢ is the wave speed given by ¢ = 1/ K /p.

One can define a pulse width Tj by root mean square

S -Trgmde [ teP()de

, =1
e T T I @0

so that the typical frequency is wy = 27/T; and the typical wavelength is A\g = 27¢/wy. We

can write the source term in terms of these variables as
F(t,2) = CY2 f(wot)d(z — ).

Now we define the dimensionless space and time variables

where Lg is a typical propagation distance and ¢ is a reference speed of propagation. We
introduce a reference impedance (, and take the normalized pressure and velocity fields to

be
) ) L . L
Pt 2) = p (t—o, 2L0> C o ald2) = (t—o, 2L0> (4.3)
Co

Co
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and the normalized source and fluctuation terms as

- _ L
F(i,%) = Ly, "*F (t—o, 2L0> . (2 =v(ZLo).
Co
Then the wave equation (4.1) is given by
ouw Jp  ~ -
— + — = F(t,z

1 (. Ly Jp 0u
— (1 V) ===
( —l—ay(z ] >) 8t+35 0,
with p = ¢(7/¢o) and K = K /(coCo). The source is of the form

F(i,2) = (P2 (tﬂ) 5(z — ).

Co

where

CNZ —f(ﬁzf/Cm 50220/[/0-
Now we introduce our scaling parameters € and ¢ as

LO 1 Wo LO 0

l €2’ o €

The ratio d/e is thus the propagation distance measured in terms of the wavelength. Invert-

ing, we have

=]t 9 =L /IL,.

Ly’ o
€ < 1 obviously in all cases of interest. When 6 ~ €, we are in the effective medium
regime. Here, there is not enough wave interaction with the medium to cause much random
scattering, and homogenization can be used to find effective medium parameters. When
0 ~ ¢! and o ~ €, we are in the weakly heterogeneous regime. It is weak because the
variations in the random medium are small, but the propagation distance is large enough

to experience significant scattering nonetheless. When 6 ~ 1, 0 ~ 1, we are in the strongly
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heterogeneous regime.

The scaled and dimensionless wave equation in terms of these parameters has the form

out  Opt - 0t
p U I P <1/2f (?) 5(2,_20)7

o 9z
(e (3)) % o

Decomposing the wave into right- and left-going modes via the transformation

pE

e P
A _m

_ m +€71/2ue,

+ 61/2,&6’ B¢ —

The boundary conditions correspond to a right-going wave

0 c
b(s,z) = B (gs — i,z) ,

and taking the Fourier transform with respect to the time variable s,

~

a‘(w, z) = /eiwsae(s,z)ds, b (w, z) = /ei“’sbe(s,z)ds,

d ac iBuo - 1 _672i9wz/(66) ac
)
dz l;e 2ce € 6+2i0wz/(eé) -1 Be
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with boundary conditions given by

a(w,0) = /ei“’SA6 (gs,0> ds = /eiwsf(s)ds = f(w),

b (w, L) =

4.2. Reflection of Monochromatic Waves

Now we are ready to derive the reflection of monochromatic waves through a random
slab on [0, L] in the weakly heterogeneous regime, where the frequency of the waves is w/€2,
the fluctuations in the random medium are of order €2, and the size of the slab is order 1.
We will take L = M — L so that the width of the slab is consistent with other chapters.

The right-going and left-going modes a“ and b satisfy the BVP

d |@ 1 z z ar
ANEE e :
dz | . € 2 \a . (44)
be b¢
1 _efinz/E
Hw(z,y)zgy
2c o
622wz/c -1
with boundary conditions
@(w,0)=1,  b(w,L)=0. (4.5)

The reflection and transmission coefficients are given by

RE(0,L) = b(w,0),  T<(0,L) = a(w, L).
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First, we convert the above BVP into an IVP by using the propagator P, a 2 x 2 complex

matrix function satisfying

d%Pw(O, 2) = Hy(z,2/IP,(0,2),  Po(0,0)=T.

The matrix P, (0, ) is of the form

an Bu
P, — | (4.6)

fw

This is seen by using Jacobi’s formula for the derivative of a determinant

ddet(P,,) . dpP,,
— = Adj(P
dz tr( dj(P.) dz >

where the adjugate matrix P,Adj(P,) = det(P,,)I, so that

ddet(P,)

S = Te(Adj(PL)HLP,) = Tr(HLPLAd)(P,)
z

= Tr(H,,) det(P,,) = 0.

Thus
det(P,) = det(H,) = 1.

If (v, Bw)” satisfies equation (4.2) with initial condition (1,0)7, then (B,,a,)" satisfies the

same equation with initial condition (0,1)”. Thus, we get equation (4.2) with

| [P =] Bu*= 1. (4.7)
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Using the identity

By using Euler’s identity e = cos(x) + isin(z), we get the ODE

ﬂV(i) b P: (0, 2)

d €
2P0, 2) = >
0 —1

dz ¥ 2¢ec

~ 2y (5)sm (2_(”_22> M Pey

2ce  \¢€2 ce
1 0

The ODE is of the form

in,(O,Z) — %F (P6 (0,2),v <:2> ’é)

dz
where
2
w
= )
F(P,v, 1) 26291) v,7)h
b=
h() = l'(Eg, h1 = —0ey, hQ = 0eq,
0 1 0 —2 1 0
e = ) 5 €3 =
10 i 0 0 —1

53
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2 2
JOwr) = ) =wsin (22) g = veos (%)
c c
We are interested in the limiting stochastic process as € — 0. We will use the following

Theorem from [8], page 140:

Theorem 4.1 Let the process X¢(z) be defined by the system of random ordinary differential
equations

T ey (3).5)

starting from X¢(0) = zo € RY. Assume that Y (2) is a z-homogeneous Markov process on S

with generator Ly satisfying the Fredholm alternative, and the R*-valued function F satisfies
the centering condition E[F(x,Y (0))] = 0, where E[-] denotes expectation with respect to the
invariant probability distribution of Y (z). Assume also that F(x,y,7) and G(z,y,T) are at
most linearly growing and smooth in x and that F(x,y,7) and G(x,y,T) are periodic with

respect to T with period Zy where F satisfies the centering condition

/OZO E[F(z,Y(0),7)]dr =0

for all z. Then the random processes X(z) converge in distribution to the diffusion process

X(z) with generator

Lo(x) = Zio /O 0 /0 CE[F(2, Y (0),7) - Vo(F(, Y (2), 7 + 2) - Vaola)dzdr.  (4.9)

Inserting the F' below
2

F(P,v,7)= ;@ Zg(p)(l/, 7)h,P
p=0

into the expression for the generator gives
1 2 2 00
Lo(P) = =3 [ [T Bl w00 )+ )z
2T =00 0
x h;P - Vp(h;P - Vpo(P))
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where P - Q = Z” P;;Q;;. Define the correlation integrals Cj; by

= 2—/ / )g(j)(y(z), T+ 2)|dzdr, p,q=0,1,2

and expanding out the dot product terms:

hP - Vp(bP - Veo(P)) = 3 (hiP)u- ( 2 (1P azﬂ?)

2 2
- (h;P)g—
a,bz—l m;:l OF g, OPmn
-y 5% (P)
+ > (hiP)ab(th)mnm

Then, the infinitesimal generator is

8¢
Z Z Cii (i P) 4 (h; P)m"ap,,a(’P)

1] 0 a,b,m,n=1

1o o O, P),y, OH(P)
T30 2 CulbiPla—gnrmn—

1,j=0 a,b,m,n=1

(4.10)

Recall that a general diffusion process with diffusion matrix a;;(z) and drift vector b;(z)

has infinitesimal generator given by

d

1 02 0
Lo=3 3 aule)z g+ Lo
i1 UL g : 7

Moreover, if the diffusion coefficients a;;(z) can be factored as

a'm E Uzk U]k

%)

(4.11)

(4.12)



then the diffusion process X (z) is the solution of the SDE
d
dXi(z) = bi(X(2))dz + Y 03;(X(2))dW;(2), i=1,....d,
j=1

where the W; are independent Brownian motion processes. Comparing equation (4.2) with

equation (4.2), we see that for our case the diffusion and drift coefficients are given by

Now we just need to factor a.q(x) as in equation (4.2) to derive our SDE. First, we shall

compute the components of C:

qmzzémmmmm@u%

2m oo
Oy = 2i/ / E[v(0)v(2)]dz sin(x) sin (x + QW—Z> dx
2T 0 0
1 2

C

:;A gﬁ@mgémmwmm@m%(%ﬁ)@
+lé%gm@oﬁum@4wmmmm@hm<%f)m

™ C

:Awmmmw@wm<%f)m.

C

The other entries are computed similarly and we have

~0) 0 0

C=10 1lyw -$9Ww)
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where

1) =2 [ B cos (&) .

C

) () = /0 T Ep(0)v(2)] sin (2“’—2) dz.

Cc

We decompose C into its symmetric and antisymmetric parts

~0) 0 0 0 0 0
c®=1 g W) 0 | cW =1y 0 176 (w)
I 0 0 57(@0)_ _O 1y (w) 0 |

7(0) 0 0
®=1 0 FHVrlw 0
00 v

Then, taking
2
iji(P) =Y G1,(h,P);;
p=0
o;j1(x) satisfies equation (4.2) so P(0, z) satisfies the (It6) SDE
P, (0, 2) Zam (0, 2))dWi(2) + by (P, (0, 2))dz, i,j =1,2. (4.13)

In the Ito Calculus, the ordinary chain rule does not hold. One must use It6’s Lemma.

However, if we convert this SDE to Stratonovich form, the ordinary chain rule applies. The
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relationship between the It6 and Stratonovich integral above is

/OZ Uijl(P)dVVl(S) :/0 le( )O dVVl - = Z / abl g;jé P)ds (414)

where o dW;(s) denotes Stratonovich integration. Using the fact that

2 2 2 2
1 a(h P) b 1 Jo bl
_ (S) B S el o ZTab
DI WL LTS o) pettcs

p,q=01,5=1

2 2
1 Jdo;
dP;je Z oiji 0 dWi(z) — 5 Z Z O bl aP:; dz + bj;dz
1=0 1=0 a,b=1
2 2 2 2
N 1 S 0(h,P);
=3 Gp(,P);; 0 dWi(z) — 5 > (0P a;ab Lt bydz
=0 p=0 ,9=0 a,b=0
2 2 12
— 51p(1,P)s 0 AWi(2) + 5 S ¢ (hyh,P),;dz
=0 p=0 p,q=0
In matrix form, we have
dP,,( Z Guh,P o dWi(z Z C{Mhyh,Pdz
=0 pq 0
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which upon expansion and using the fact that hoh; = hg in the dz term gives

de(o,z)zw—VQZ@ b P (0, 2) 0 dWy(z) (4.15)

BEAVATCON L R

2v2¢
Ve
0 1
iwy/7(w)
- P.(0,2) o dWs(z
e (0,2) 0 diW(2)
-1 0
Z(.U2’)/(S)(UJ) 1 0
BT P,(0,2)dz
0 —1

We saw earlier in equation (4.2) that P,(0, z) is of the form

a,(0,2)  B,(0,2)
P,(0,2) =
Bu(0,2) (0, 2).

It follows that (a, 5,) satisfies the system

w . v(w) .
da, = - (2\/7(0)% @ dWo(2) = X7 0 (dWA(z) + zdwz)))

124 (5)
_ W) g
8¢2

a, = (—z«/woww oaiiz) = Yo o (ai(z) - z'dm(z)))

2
1wy (w)
822

Bodz

and satisfies |a,|?—|8,]*= 1. Also each matrix in equation (4.2) has trace equal to zero, so
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we can parameterize (o, () as

(0, z) = cosh (Q‘UT(Z)) ¢ide(?).

5&)(07 Z) = Sinh <6(JJT<Z)) ei(¢w(z)+¢w(z))7

where 0,(z) € [0,00), ¥,(2), ¢u(2) € R. Since we are in the Stratonovich framework, we
can use the ordinary chain rule of calculus and select a branch 6,,(z) € [0,00) to obtain the

system

do, = ~ V@)

\/_c ( > (sin(e)y,) 0 dW1(z) + cos(1h,) o dWs(2))

/A0 Wy w)
+ —2F ° dWo(z) — sz,
_ w/w)
dy, = m(31n(¢w) o dWi(z) + cos(th,) o dWa(2))
_ W_W

w9 (w)
dW()(Z) + sz,

g, =2 V — cos(ih,) o Wi (2) + sin(y,) o dWa(z)).

Next we wish to convert the above system back to It6 form. To do this, we need to compute

the correction terms in the It6 to Stratonovich formula (4.2) given by

[ty o awys) = [ ayxnamo + 53 [ ol s

where x = (¢, Y, 0,)" and oy, 4,7 = 0,1,2 is the matrix of coefficients in front of the
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dW,(z) terms. For instance, we can find the correction in the d¢, equation by calculating

80'00
00~ —
Z 7 Ox; 0

3

dogr  wy(w) . 2 tanh(60/2) 1
jZIO'jl o, 8@ sin(¢) cos(¢)< tanh(0) cosh2(0/2))’

3 2

dogy  wy(w) . 2tanh(6/2) 1
Z;WE;_-Sgsmwmmw(wm@ —wm%pg.

Thus, the correction terms for the dWW; and dw, terms cancel, and therefore the d¢,, line is

unaffected. After calculating the di,, and df,, corrections, we get

_ Wy 7 (w) Os .
do, = "o tanh (;) (sin(thy,)dWi(2) + cos(1h,)dWa(2))
+ w—gz(())dWO(z) - %d
N

m(sinww)dﬂﬁ(z) + cos(1h,)dWs(2))
_ W—\W(O)dW (2) + Md
— 452
9, = & V

2,

2,

— cos(1hy, )dW1(2) + sin(t,,)dWs(2))

7w

)
—d
4¢2 tanh(6,) =

Finally, we can introduce a pair of new processes (W, W) by the orthogonal transformation

Wi (z) | sin(e)  cos(th) ; Wi(z)

Wi(z)| 70 | —cos(t) sin(wy) | |Wal2)

(Wi, W5) by the orthogonal transformation remain independent standard Brownian motions.
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With these new processes we have the simplified system

d, = — 2NV ( )dwl() VIO (4.16)

2\/‘ 2¢ 2¢
A, = f“’c tazl(h() )dW*( 2) — @d%(zﬂ%d@
db,, = C"\/_dw*( )+ W) .

\/_c 4¢2 tanh(@w)

We therefore conclude that in the monochromatic case, the reflection coefficient is given by

R (0,£) - _ 5 (0, L) — _tanh <M> 6i(ww(ﬁ)+2¢w(ﬁ)),
ag (0, L) 2

w

where (¢, ¥, 0,) satisfy the system (4.2).

In the next section we will continue following [8] to generalize the result to the reflection

of incoherent waves.

4.3. Reflection of Incoherent Waves

We start with the linear 1D wave equation

out  Op°
o) 5 + S =0, (4.17)
1 8p ouf
( ) o + = 5 = 0.

The medium parameters are given by

(1+v(z/e?)) for z € [—L,0],

==

1
K(z)

for z € (—oo, —L) U (0, o0),

==

p(z)=p forall z.
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The random slab is now on the interval [—L,0] instead of [0, L], and the pulse is now
incoming from the right, so that the reflected wave travels to the right as well.
The analysis is performed in the strongly heterogeneous white-noise regime, in which he

takes the pulse width to be of order ¢, and the pulse amplitude to have order 1. The pulse

1 t
Ve \e)’
where f is square-integrable so that

/Z {%f (z)rdt = /Z F(u)2du < oo.

Now we transform the wave equation (4.3) by introducing the right- and left-going modes

is of the form

A(t,2) = C Pus(t, 2) + ¢ Ppe(t, 2), (4.18)

B(t,2) = C Pus(t,2) = € Pp(t, 2),

where the effective impedance is { = v/ Kp. By calculating the derivatives of equation (4.3),

using equation (4.3), one arrives at the system

9 |A 1 [2+v(z/€) v(z/€*) A

0z 2¢c
B —v(z/e) —2-v(z/e*)| | B

where the effective speed ¢ = y/ K /p. Now, we transform coordinates again:

a‘(s,z) = A(es+ z/¢, z),

b(s,z) = B(es — z/¢, z).
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Taking the Fourier transform with respect to the time variable s,

a(w, z) = /eiwsa(s,z)ds, b(w, z) = /eiwsb(s,z)ds,

d | 1 z z ar
LT = Il (_, (_>> , 4.19
dz | . € U\ . ( )
bE bE
. 1 _672iwz/é
H,(z,v) = ;—Ciy
¢ e2iwz/5 -1
The boundary conditions are
(.0 = < fw),  (w. L)
9 \/E J 7

Once again, we transform the BVP into an IVP by defining the propagator matrix P,
satisfying
a‘(w, z) a(w, —L)

b (w, 2) b (w, —L)

The propagator matrix is of the form

P (—L,z)=| , (4.20)
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~

Now define the transmission and reflection coefficients on a slab [—L, z] by

P, =
Te(—L, 2) 1

In terms of equation (4.3), the reflection coefficient is given by

Re(—f, ) = 2l2b2) (4.21)
as(—L,z)

The reflected wave is given in terms of the reflection coefficient as

a%wﬁ)z;%f@»Rm—ﬁx»

Now, by differentiating equation (4.3) and using equation (4.3), we find that the Reflection

coefficient is given by

w

dR, 1dp5 B dag

dz  af dz  (af)? dz
_ ﬂ i —2iwz/(Ce€) € €\2 2iwz/(ce)
W P S

with initial condition

The reflected wave at z = 0 then has the representation

T 21

t ]. - wt 1 A ~ s wt
AG = ¢ - = — a¢ 71? = ¢ —L 71? .
(t,0) =a <€,0) 5 /a (w,0)e™" e dw \/E/Rw( ,0)f(w)e™ e dw

We will find the statistical distribution of the reflected wave by finding its moments. The

mean amplitude of the reflected wave is

1

ELA(0) = 5

/ E[RS,(—L,0)]f(w)e "% dw.
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The second moment is

A(,0)* = ;%—(/iﬁx—ﬁx»ﬂwnez?tmg)( e, (- L0) e d

wo—w1)t

o [ [ R CLORCLO ) fwa)e ™ dord

47T€

so that the mean intensity is

jwa— W1)

(Cdg ) dwl dw2

kkn

\_/
>

E[A(t, L € (—
207 = o [ [ IR, (LR, (“L 0} e
Introducing the change of variables

w =w+e€h/2, wy=w—eh/2,

we have

E[AS(t,0)> =1 / / rensa(— L 0)RS_y o(—L,0)] f(w + €h/2) f(w — eh/2)e " dwdh

We wish to solve the Ricatti equation (4.3) for the Reflection coefficient. To do so, we

introduce
U;,q(wv h’ Z) = (Rz—i-eh/Q( L? )) (Rfu eh/2( L7 Z))q> D, q € N (423)
By using the Ricatti equation (4.3) we see that the family (Uf ), qen satisfies
aUE Zw ZUJ 2iwz zhz ihz
p,q S € — — — €
5, = Ey(p - q)Uy , + 5a Ve (ge < Upy1—pecUsyy,)
ZW 2iwz ihz € —ihz € 2
+ 2—ceye e (qe e Uy —pe e Uy ), —L <z<0.

To remove the slow components exp(+ihz/c), we take the shifted and scaled Fourier trans-

form with respect to h:

€ 1 —th(T— z/c)TTE
Vi w,7,2) = —/e (r=@rD=/Ayc (w, h, 2)dh.

21
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The system of equations satisfied by (V,; ) geN 18

8‘/6 p + q ave Zw € Zw 2iwz €
Be T T e o T Ot e @ ) (429
ZOJ 2iwz €
+ 2—06’/6 « (Vg1 —PVpo1,4)

with initial condition

d(r), for p,g=0

A

Vi, m,2=~L)=
0 otherwise.

Now we apply another diffusion approximation theorem, described in [17], an infinite-

dimensional analogue of equation (4.1) to arrive at the SDE

q+p3V, i/ YW
dVy,, = G:de + \/E_ (p — @)V, dWo(2) (4.25)
Iy/YW
2\/\/_— (@Vpa—1 = PVpr1g + @Vpgr1 — PVpo1,0)dWi(2)
NRALeY A— V,_1q)dW.
2\/— (@Vpq—1 = PVor1,g — @Vpgr1 + PVpo1,0)dWa(2)
yw? 2
+ F[ PA(Vpr1,g+1 + Vom1g-1 — 2Vpq) = 3(p — @)V qldz,
where W;, j = 0,1,2 are three independent Brownian motions and ~ is the integrated

covariance of the process v:

v = / E[v(0)v(z)]d=.
0
Taking the expectation of equation (4.3), we find that the moments satisfy

OE[V, 4] q+pIOE[V,,]  3yw?

— ) . o 2
0z ¢ or 4¢2 (= @) E[Vy]
Yw?
+ A2 PYEVpi1g+1] + E[Vpo1,4-1] — 2E[V}, 4]).
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The family of moments f,(w, 7, 2) = E[V41,(w, T, 2)],p € N satisfies

ofy _ 2p+10f, yw?

C z E—I—TEQ (p+1)(fp+1+fp—1_2fp)_3fp]a

starting from f,(w, 7,2 = —[:) = 0. This is a linear system of transport equations starting
from a zero initial condition, so f, = 0 for all p. The same is true of the family of moments

fo(w, 7, 2) = E[Vyine p(w, 7, 2)],p € N. Therefore,
E[US,(w, ,0)] = 0

as € = 0 for p # q.

The diagonal family of moments g,(w, 7, 2) = E[V,,,(w, 7, 2)], p € N satisty

dg, 2pdg, yw? ,

Zdp _ _2PZIp T .9
B c or + 452]7 (9p+1+gp 1 gp)

starting from g,(w, 7,2 = —[A/) = 0(7) for p =0, 0 otherwise. If W, (w, T, —L, z) denotes the

solution of this system of transport equations, then

E[Ule,l(w7 h’7 Z)] = E[RE +eh/2(_za Z)szfgh/Q(_[A’a Z)]

w

= /E[Vﬁ(w’ T, O)]eithT — /Wl(w7 T, _j;y O)eithT_

To summarize, we have on page 257 of [§],

Proposition 1 The expectation of the product of two reflection coefficients at two nearby

frequencies,

~

E[( fu+eh/2(_L7 0))p(RZ_€h/2(_LO))q]a

has the following limit as € — 0:

(1) If p # q, then it converges to 0.
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(2) If p = q, then it converges to

/Wp(w, T, —L, 0)e"dr.

The analysis of higher moments of the reflection coefficient is very similar. The result is on

page 265 of [8]

Proposition 2 The expectation of the product of 2n reflection coefficients

H wjteh; /2 ~L O>Rw] eh; /2( [A/ﬂ 0)

where n is a positive integer, (w;)i1<j<n € R™ are all distinct, and (hj)1<j<n € R", converges

as € — 0 to the limit
H/eihﬂle(wj,Tj,—[A/,O)de.
j=1

If there is one or several unmatched frequencies in the product of reflection coefficients, then

the limit of the moment is zero.

The mean amplitude of the reflected wave is

E[A*(t, 0)] Wf/ (R (£, 0)]f(w)e % du

We have
E[A(t,0)] — 0

as € — 0.
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The mean intensity of the reflected wave is

I(t) = limE[A(t,0)%] = hm—// [US (w, h, 0)]f (w + €h)2) f(w — eh/2)e” " dwdh

e—0 e—0 4772
(4.26)
=12 ///W1 7, —L,0)|f(w) "™ dhdrdw (4.27)
s
— Q—/Wl(w,t, —L,0)|f(w)[*dw. (4.28)
s
4.4. Monte Carlo Solution of the Transport Equation
In the previous section, the reflected wave was shown to have intensity given by
- [ Wit ~L0) )P
= — w — w W.
o 1 ) )
W; is the solution of the transport equation
oW,  2p0W, -
- = > — .
P + . (LW),, z>—-L, TeR, peN, (4.29)
(£w¢)p = p2(¢p+1 + pr—l - 2¢p>’

starting from

Lloc (w)

~ ~

Wy(w, 7, —L,z = —L) = 6(7)1o(p),

where Ljo.(w) is the localization length defined by

and 7 is the autocovariance of the process describing the random medium fluctuations, given

by

v = /OO E[v(0)v(2)]d=. (4.30)

—00

To solve the equations (4.4), [8] uses the following probabilistic representation.
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First, introduce the jump Markov process (NZ)zz— ; with state space N and infinitesi-
mal generator £, given by equation (4.4). A Markov jump process is a piecewise-constant
stochastic process, with a state transition matrix and a time process governing the times
the process jumps to a new state. The transition time process {T} }ren is given by a sum of
exponential random variables

Thir =Tk + 11

where 7, is an exponential random variable with parameter A, so that its density, defined on
the positive reals, is given by

f(s) = e ™

The value of A may depend on the current state. The transition matrix K describes the
probability of going to another state, given the current state, so that the Jump Markov

process is given by

The jump Markov process has infinitesimal generator A given by

Az)K(z,y) z#y

where A(z) is the parameter A for state x. Thus, the jump Markov process (NV,),._; can be

constructed to have infinitesimal generator £, if A(n) = 2n?/Lj,.(w) and for z,y > 1,

2, T =1y
K(z,y) =< -1, |z —yl=1
0, otherwise.

\

The state n = 0 is an absorbing state, so that when the process reaches it, it remains at that

state for all further time.

71



Now, define the process

The backward Kolmogorov equation, after the transformation z — —z is

¢ Or

&:

The solution of the Kolmogorov equation is

u(n,7,2) =Elug(N,, T2) | N_j =n,T_; =7

2 z
=K |:u0 (NZ,T— j/ Nz/dz') | Nfll = n} .
cJ-i

Ou (ﬁw — 2n2> w, z>—L, u(n,7,2z=—L)=uy(n,7).

(4.31)

The Kolmogorov equation (4.4) is the same form as equations (4.4), so after integrating in

T, we have

0

T1 . 2 0
[ Witer Lo = (M=0.2 [ Mot € un)| Ny =)
T CJ-L

Therefore, W, can be calculated by running Monte Carlo to the Markov jump process (NN,)

described above.

W; is plotted below in Figure (4.2).

4.5. Comparison of Analytical Results with Random Boundary Condition

Now we will compare the analytical reflected wave intensity, given by

I@=%/MWmemw%k
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Figure 4.2. Decay of Reflection Coefficient

to the reflected wave intensity found by solving the wave equation with random boundary
condition derived in Chapter 3. The quantity W; is the solution of the stochastic transport
equations (4.4). We select the stochastic process v to be the Whittle-Matérn process with
p = 3/2, given by equation (4.1). For this process, the autocovariance (4.4) is calculated to

be v = 1.26. Using the following form of the incoming pulse f():

ft) = (20i0t2 — cgo) exp(—(csot)?) (4.33)
fo)f = e,

the asymptotic result (t) is given in Figure (4.3), calculated by the method presented in
the previous section with 100000 Monte Carlo samples and 1000 terms for 7 evenly spaced
on the interval [0, 2].

In order to compare the computation using the random boundary condition given by
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Reflected Wave Intensity, samples=100000

10°

102
1073 1072

Figure 4.3. Asymptotic Result for Reflected Wave Intensity
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(3.1) we must make sure that the scaling of the incoming pulse and random fluctuations of
the wave speed are scaled properly. The scaling regime in the asymptotic analysis above is
such that the random medium v(z) is scaled as v(z/e?), the incoming pulse f(t) is scaled
as (1/e)f(t/e), the width of the incoming pulse is ¢, and the amplitude of the random
perturbations is v ~ 1.

The system to be solved with these scalings in mind is

Pu_ 0 <62(1~)%) + f(m,t), v € [-L,L]

ot? Ox ox

u(z,0) = —up(x/e), %(CU,O) =0,
ou 1 Ou 9
M o ywfe ), a=t (1.34)
ou 1 Ou
gu_ 2 ou_ — L
0xr  co Ot 0, @
25,
o 50

where g(z,t,w) is given by (3.1). Writing the system (4.5) in weak form, we obtain

‘2; (2, tyo(x, t)de = — / LL a% (c%)%(%t)) v(@,t)dz + / LL f(@ oz, t)de

for test functions v € C*°(—L, L). Using integration by parts,

T byl t)dt = —/ Az )gz(x t)gZ(a:,t)dm+02(x)%(x,t)v(x,t) L,

/ flz, t)v(z, t)dx

th (z,t)v(x, t)dt = —/ *(x )gz(:p t)gz(x t)dz + 2 v(L,t) ( - ia—u(L t))

62
5, Ot?

- coov(—L,t)%(—L,t) + /_L flz, t)v(z, t)dx

5



We use the Galerkin approximation

u(z, t,w) Zuk t, w)p(x (4.35)

where 1, are the Galerkin difference basis functions as in [3]. These are piecewise polynomials
defined by values on a uniform grid whose restriction to any interval bounded by grid points
is the Lagrange interpolant of the nodal data. Near boundaries we simply take the values of
the solution at external ghost points to be free, called the ghost basis method in [3]. Here
we take the local polynomial degrees to be 3 and the grid spacing to be Az = 1/100. This
seems sufficient to resolve the waves to the accuracy provided by the linearized approximate
boundary condition, but some discretization errors are noticeable for the more accurate

quadratic approximation when the amplitude of the perturbation is very small.

- Pup & duy, ) 1 Ou
ZMW=Z( S M) + o) (9= Z5HL0) (@30
ou

—coov(—L,t)E

(_L= t)

where

M= [ ot Si= [ G0

—L

The standard 4th-order Runge-Kutta method is used to discretize the time-variable with
At = 1/10000. The source term f(z,t) = 0, and the initial condition 1ug(z/€) = 1f(z/e)
to match the asymptotic calculation, where f is as in equation (4.5). Results have not yet

been obtained which match the asymptotic result given in Figure (4.3).
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Chapter 5

APPROXIMATION TO THE DTN MAP IN TWO DIMENSIONS

5.1. DtN Map 2D

In this chapter we will derive an approximation to the nonreflecting boundary condition
for the 2D wave equation with a computational boundary at + = @ and Neumann conditions
in y. See Figure (5.1).

The 2D Wave Equation is

J [, ou o (, ou Pu
% (C (xava)%) + a_y (C (xvva)ay> 12 - f(xayvt)
0
u(:l:,y,O,w) :Uo(l',y), a_?:(xayv()?w) :Uo(-T,y)
ou ou

d—y(m,O,t,w) = d—y(x,H,t,w) = 0.

for (z,y) € (=L, M) x (0,H) and t € (0,7). In the exterior region ¥ = (L, M) x (0, H) the
wave speed is given by

c(x,y,w) = o + ¢(z,y,w)

where ¢4, is a constant deterministic quantity and ¢ is a mean-zero stochastic process satis-
fying

Co S C(xava) S 8]

almost everywhere and almost surely. Taking the Laplace transform and using the fact that

uo(z,y) = vo(z,y) = f(x,y,t) = 0 in the exterior region, we have

) ) 00\ 0 ) 00
% <(Coo+c(x7y7w>) ax> + ay ((COO —|—c(m,y,w)) ay) s‘u=0
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[~ ) (L, H) (M, H)

(—L,0) (L, 0) (M, D)

Figure 5.1. Setting of 2D Problem. ¢ = 0 for (z,y) € Q, random perturbations in wave
speed in region Y. Neumann boundary conditions for y = 0, H.

for (z,y) € (L, M) x (0, H).
Assuming ¢ = 0 for x > M we have that the DtN map at © = M can be directly written

using a Fourier cosine series in y (or more properly diagonalized in the Fourier basis):

o0

k
@(M,y,w) = Zuk COS (%y) )
k=1

ou - kmy
%(M,ZU,W) - —Z’qukCOS (7) )

k=1
B 52 k272 1/2
Ve = g + 2

and the branch is chosen so that Z~, > 0 if Zs > 0.
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To represent the DtN map at © = L we can rewrite the system in (infinite) matrix form

by introducing

4 " k (r
Chre(x) = C—H/O ¢(x,y) cos (Fy) cos (?y) dy,

2 i km T
Pro(z) = N /0 & (x,y) cos (?y) Ccos <Fy> dy,
drt (7 9e kry\ . ({lmy
Bre(z) = it ) By —(z,y) cos (?> sin (7) dy,

I 24 oc . kry\ . [({my
Qutr) =~ [ S twetecos (2 ) s (22 ) ay

If we now define

then we have the equation:
d2uk 2 d2Ug deg deg dUJg
W—%““;(CWPW(W— )+Z(dx &
+ Z(BM + QM)Ug = 0.
‘

Similarly we write the DtN map in matrix form:

du
dmk = —klk — Z Gre(x

Then we differentiate and deduce:

d2uk

dG
dr? - ’leuk + Z ((’Yk’ + 7€)Gk€ - dwld) Uy + Z GremGmetiy.
¢ Im

79



Substituting these expressions into the equation we derive the Ricatti equation for Gy,:

dGie
dx

dGmK
dx

+) " (Chm + Prm) = (T +%)Gre + Y _ GrmGume + 72 (Cre + Pie)

+ Z(Ckm + Prn) (Y + 70) G

dCre | dPg
* Z Crj + Pij) GjmGme — e ( i %)

P
dx

+ B + Qre — 52(CM + Pyy).

If we linearize the problem we can compute a first approximation to Gy,. Note that in

the linearization both P and () are removed:

dG\Y dC
d;e = (1 + W)G;(glg) + 7 Cre — e—f + By — *Chy.

Since Gpe(M) = 0 we can write down G\ (L) as an integral:
M 2 dC
L 2 dz

To acquire a closed-form expression for the DtN map, we will choose the following two-

dimensional analogue of the process (2.1) which vanishes at x = L, M and y = 0, H:

&a,y) = i %sin (%) sin (J%y) (5.1)
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Then we have

&ij . (im(z — L)
Chy = A
Kl Z; T sin | —r— Kl
By =0
de@ §ij/(M - L) im(x — L)
B 2—21 Coo 7r4zr 1y C\Tw -1 Ajw
A — 1 — (_1)]+k+€ 1— (_1)j+kf€ 1— (_1)jfk+f 1— (_1)jfkf£
T o k+0 jtk—1¢ itk—1¢ j—k—1¢
Furthermore,
/M o)D) g (z'm - L)) e imc2 /(2(M — L))
- 202 (k2
L M—L 82_’_%4_62,}%7@_’_@4[&
YD) im(z — L) _ (W +70)/2
e COS M L dx — 9 72¢2 (k2+‘€2) 2 272
L N S+03T+Coofyk7£+m
Thus,
A Pm? [ H? + v
= D S 0
k:€ ijke G ey
”Z:l s % + Cgoﬁ)/k’}% + ﬁ
where

§ijAjke/ (2(M —

L))

Dijre =
The DtN map is then

duk

cooﬂ-4ir—ljr

2 0P H? + A vy

it L Z Dijjreus

1,5,0

o

s2

The square root operator

82

2
C

81

722 (k24 02)

2H?

k272
2

>1/2

+ Cgo'Ykﬂ/Z + (]\sz)z



is approximated via the least-squares algorithm given in [1].

Q 2 213 Q
s schia; — c“And; s sA;;, — B;
D D < e L - NP
5% — scA\gbj + 2L g; Coo 5% — sCji, + Djy,

Coo

j=1 j=1

where Aj; = cooMiaj, Bjx = 2 A\3d;, Cir = cooib;, and Dy, = 2 Aig;. The values of
aj,b;,d;, g; are given in table. As shown in [1], the approximation (5.1) gives for () = 31 an

error less than 1076 for 7' < 10*. Thus,

j a; b d; 9;

1 -1.44973E-7 -4.59136E-5 -1.45333E-7  1.0000000005
2 -7.52363E-7 -2.04653E-4  -7.53785E-7 0.99999989
3 -2.52811E-6 -5.48932E-4  -2.53264E-6 0.9999997
4 -7.47593E-6 -1.23706E-3 -7.511476E-6  0.99999919
5 -2.10610E-5 -2.58602E-3  -2.12561E-6 0.9999963
6 -5.80557E-5 -5.21498E-3 -5.882134E-6 0.9999889
7 -1.58151E-4 -1.03277E-2 -1.6120948E-5  0.9999737
8 -4.27342E-4 -2.02676E-2 -4.402573E-4 0.9999418
9 -1.14369E-3 -3.95893E-2  -1.20115E-3 0.9998850
10 -3.00129E-3 -7.71083E-2 -3.286218E-3 0.9997697
11 -7.55569E-3  -0.149759  -9.049647E-3 0.9994074
12 -1.72246E-2  -0.28939 -2.513037E-2 0.9981144
13 -2.87246E-2  -0.55146 -6.98155E-2 0.9938616
14 1.02309E-2 -1.00527 -0.184833E-2 0.9817475
15 0.27071 -1.60827 -0.398150 0.95722285
16 0.27739 -0.969474 0 0

Table 5.1. Coefficients of 31-pole Approximation of ~y

dr ' o §2 — SCooAkbj + 2 N2y,

Q I
du s SCooN2a; — 2 N3d. 1 21y — Jye + Xie(8) — Gr2py
k+_uk:§ k™) o'k _55 Dijk)ﬂuf 1+ ( )
i7j7€

252 4 Jké —+ Xu(S) —+ ﬁ
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where Iy = 2 (?m2/H?, Jyy = 72 (k* + (%) /(2H?) and

X(s) = s 3 SCoo M — AN 5 $Coo N — N3,
ke — 52 — 8Coo A\kbm + cgo)\%gm ~ s2 — scooM\eb,, + Cgo&%gm

N Z SCoo ity — AN, SCoo A2 — A N3,
§2 — $Coo by, + 2 A2gy, 82 — SCooAkbim + A AEgm,

Taking the inverse Laplace Transform we have

Coo Ci;;k dUk = Cxo Z ¢]k - = Z Coo ijkt (Ug + ¢M ) (53)

1j€

where qSﬁ) satisfies the auxiliary ODE

d2¢(~6) ¢(6) du
dt;k = bjcoo i 02)\z ( g]@k + (ljd—k — coo)\kdjuk)

and gb% satisfies the auxiliary ODE

o0

2 112 + (JM + m) Pie — Coo Z Api((¢ zke — wp) + ¢kem — Co Z Ane((o zke — ug) + ¢um)

i2m?
+c2 Z A At (ke + Bhomn) = (QIe — Jpe — =1Ly L)Q) Uy

m,n

where we have

2o d dol)  du
—Zk;m — Chng; Zktlm + Dyicdygr, = (Conte — Buie/ At —?tke — ; — Dy (Pre — )
¢ o) Aol dug

dt];l - Cm dktl + Dmﬁgb](g?l)zn = (Cmﬁ - BmZ/AmZ) dtké - dt - Dmﬁ(gbkﬁ - Ug)

d2¢g§)m - C kdgbkfm

4 1
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d4 (5) 43 (5) d2 (5) d
An Bm + Akané d'Ll,g BkanZ
Do D) = (Clppy — 220k — — Dy,
* g £¢kémn ( g AmkAnE ) dt AmkAné k)

5.2. Galerkin Discretization in Two Space Dimensions

The system that we are solving is

aQu 0 9 ou 0 9 ou
=2 (i) + 2 () + s

(z,y) € (=L, L) x (0, H), 0<t<T,

ou
u(l'7ya0aw) :u()(xay)7 a(x7y707w) :UO(xay)
ou ou ou ou
2,0, t,w) = 2, H t,w) = ULyt ULy tw) =
ay(xaov ,W) ay(xy ) ,(,U) 07 at( Y, aw)_’_cax( 'Y, 7(*‘)) g,
ou ou
6t( L yat w) ax(_Lay7taw) = h7

with auxiliary ODEs ¢ — ¢ given above with zero initial conditions. ¢ is the inverse

Fourier transform of the right-hand side of equation (5.1) and & is the inverse Fourier trans-
Q (6

form of coo 3257, 05y,

To discretize we use the Galerkin difference approximation

Na

u(z,y, t,w) ~ Zzukrthk ¥ (y)

=0 r=0

where (g, ), are Galerkin difference basis functions. This leads to the system of ordinary

differential equations

Ny d ) N )
Z Z M]k ‘17’ d?;k Z Z jkqrUkr + M](k)Még)fkr)

k=0 r=0 k=0 r=0

i du r dunwr
+ 5j0 Z BO,qT <90,r - 0 ) ]nz Z Bl ,qr <gl r dt ) )

r=0
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for j =0,...,n,, ¢=0,...,n,. Here we have

L H
MY = / G, MY - / bul)r (9)dy,

S = [ [ e (0T @000 0) + G060 0G0 ) dyds

Bogr = / (w0 )W) W)y, Bug = / (1,1 a (1) (1) dy.

In the future we plan to carry out experiments analogous to those in Section (2.3).
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Chapter 6

CONCLUSION

We have derived random boundary conditions for the 1D and 2D wave equations with
nonreflecting boundary by solving the DtN map with variable wave speed given by an or-
thogonal expansion. The method converged with expected linear and quadratic rates for
the 1D experiments when the resulting Ricatti equation is given a linear and quadratic
approximation, respectively.

We have also completed the same procedure using a stationary stochastic process with
properties consistent with analysis done by Papanicolaou and his co-authors in [8]. We
propose a numerical experiment to compare the asymptotic result in [8] to the random
boundary condition derived in Chapter 3.

Possible improvements in the future would include a more extensive uncertainty quan-
tification experiment using the method, and an implementation of an algorithm to improve
the efficiency of the method. Omne possibility would be the inclusion of a pole-reduction
algorithm to compress the boundary condition.

Least-squares pole-reduction algorithms are given in [2], [1]. Balanced truncation algo-
rithms for pole-reduction are found in [14], [21], and pole-reduction algorithms using Prony’s
method are found in [13] and [4].

In future work we will also conduct a more extensive analysis of the effect of truncation on
the eigenfunction expansion, complete the numerical experiments in 2D proposed in Chapter

5, and complete the comparison with the asymptotic results proposed in Chapter 4.
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