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If the Warriors beat the Rockets and the Rockets beat the Spurs, does that mean that 

the Warriors are better than the Spurs? Sophisticated fans would argue that the Warriors 

are better by the transitive property, but could Spurs fans make a legitimate argument that 

their team is better despite this chain of evidence?  

We first explore the nature of intransitive (rock-scissors-paper) relationships with a 

graph theoretic approach to the method of paired comparisons framework popularized by 

Kendall and Smith (1940). Then, we focus on the setting where all pairs of items, teams, 

players, or objects have been compared to one another twice (i.e., home and away). We 

propose a novel linear model (CRSP) whose latent bilinear fixed effect allows us to 

estimate deviations from our transitive model (C). 
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If The University of Texas (UT) beats The Ohio State University (OSU) and OSU 

beats Texas A&M University (A&M), does that mean that UT is better than A&M? 

Sophisticated Longhorn fans would argue UT is better than A&M by the transitive property, 

but could Aggie fans make a legitimate argument that their team is better despite this chain 

of evidence? We attempt to answer these questions and more! 

Our initial focus is on the method of paired comparisons, used in settings where all 

(
𝑛
2
) pairs of 𝑛 items, teams, players, or objects have been compared to one another by one 

judge. We will not be concerned with the aggregation of preferences (or ranks) from 

multiple judges or sources; however, extensions may be considered later.  

Applications of pairwise comparisons reach far beyond sports. Examples include 

ranking political candidates (Borda, 1781), experimentally predicting animal behavior 

(Kendall & Smith, 1940), ranking children’s handwriting quality (Thurstone, 1927), 

measuring utility (May, 1954), and exploring dominance relations within or among animal 

species (Rapoport, 1949). The earliest known application of paired comparisons was 

documented in 1283 by Llull, where he described a method for selecting the pope (1283). 

The most accessible examples and data, however, typically involve sporting competitions.  

CHAPTER 1: 

THE NATURE OF INTRANSITIVITY 
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We first explore the nature of intransitive relationships with a graph theoretic 

approach to the method of paired comparisons framework popularized by M.G. Kendall and 

B.B. Smith (1940). Then, models which measure relationships between objects that have 

been compared pairwise, predominately with the objective of creating ratings and 

subsequently rankings, are discussed. Next, we propose a model known as a Chain Rock-

Paper-Scissors, or CRSP, whose latent bilinear fixed effect allows us to estimate deviations 

from a transitive model. Finally, a method to extend Kendall and Smith’s 𝑑-distribution by 

parallelized computing is proposed.  

The rest of this chapter introduces concepts fundamental to the remaining chapters, 

including the transitive property of inequalities, graph theory, circular triads, and 

adjacency matrices.  

1.1. Transitive Property Introduction 

Let 𝑎, 𝑏, and 𝑐 be real numbers. The transitive property of equality states that if 𝑎 =

𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐. The transitive property of inequality states that if 𝑎 > 𝑏 and 𝑏 > 𝑐, 

then 𝑎 > 𝑐 or alternatively that if 𝑎 < 𝑏 and 𝑏 < 𝑐, then 𝑎 < 𝑐. We will only be concerned 

with the transitive property of inequality. For abstract real numbers like 𝑎, 𝑏, and 𝑐, the 

transitive property is undeniable. Additionally, when measuring the length of physical 

objects — placing them on a measurement scale — it is also clear that the transitive 

property should hold upon comparison. What is more difficult to prove, however, is that 

the transitive property should hold for unobservable, or latent, quantities.  
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One of the earliest attempts to derive a latent measurement scale through 

observation was by a psychologist, L. L. Thurstone (1927). He sought to judge1 the 

seriousness of 19 criminal offenses. His objective was not just to order the offenses by 

seriousness, but to place them on a “psychophysical measurement” scale of “social values”. 

His method assumed stochastic transitivity.  

The weakest condition for stochastic transitivity is (1.1.1), where 𝐴, 𝐵, and 𝐶 are 

specific objects. We will discuss other conditions for stochastic transitivity in Section 2.1.4. 

If 𝑃(𝐴 → 𝐵) ≥ 0.5 and 𝑃(𝐵 → 𝐶) ≥ 0.5, then 𝑃(𝐴 → 𝐶) ≥ 0.5. (1.1.1) 

𝐴 → 𝐵 means that 𝐴 is preferred to 𝐵, that 𝐴 beats 𝐵, or that 𝐴 is stronger than 𝐵, etc. Then 

𝑃(𝐴 → 𝐵) represents the true proportion of comparisons between 𝐴 and 𝐵 where 𝐴 is 

favored over 𝐵. These objects are static either in truth or by simplifying assumption. 

Whether the objects being compared are static or dynamic is a philosophical or practical 

question for the user of a paired comparisons method to justify. Methods themselves treat 

objects as static. What is random, then, is how the objects are judged or perceived or how 

the objects perform or are expressed.  

Thurstone’s model, then, assumed that 𝐴, 𝐵, 𝐶, and any other criminal offense in his 

study could be ordered from least serious to most serious — that the seriousness of all 

criminal offenses could lie on a single scale where individual latent ratings were scalars 

and would follow the transitive property of inequality.  

 
1 As the first known academic pioneer of the method of paired comparisons in English-speaking countries, he 
effectively dictated much of the language surrounding paired comparisons in the literature. We will see, 
however, that many applications of paired comparisons do not involve “judges,” per se. Thurstone was pre-
dated by a Majorcan, a Frenchman, and at least two Germans in the method of paired comparisons literature.  
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In contrast, another psychologist, Amos Tversky (1969), gave empirical evidence 

that single judges could have stochastically intransitive preferences (1.1.2) in various 

experimental settings. These experiments were designed so that stochastically intransitive 

preferences would be reasonable to expect, although Tversky argued that this implied that 

the participants were irrational. In (1.1.2), let �̂� be an empirical probability observation.  

�̂�(𝐴 → 𝐵) ≥ 0.5 and �̂�(𝐵 → 𝐶) ≥ 0.5, but �̂�(𝐴 → 𝐶) < 0.5 (1.1.2) 

1.2. Review of Graph Theory for Tournaments 

We give several graph theory definitions from Tucker (2012) to make our meaning 

clear. “A graph 𝐺 = (𝑉, 𝐸) consists of a finite set 𝑉 of vertices and a set 𝐸 of edges joining 

different pairs of distinct vertices. […] We say that vertices 𝑎 and 𝑏 are adjacent when there 

is an edge (𝑎, 𝑏)”. Directed edges are ordered pairs of vertices, written (𝑎, 𝑏)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. Undirected 

edges are written (𝑎, 𝑏). In Figure 1-1, we see undirected (𝑉1, 𝐸1) and directed (𝑉2, 𝐸2).  

 

 

 

“In a directed graph, all edges are directed.” “A path 𝑃 is a sequence of distinct vertices in 𝑃 

written” 𝑃 = 𝑥1 → 𝑥2 → ⋯ → 𝑥𝑛 when the edges are directed, “with each pair of 

𝑽𝟏 = {𝑨, 𝑩, 𝑪} 

𝑬𝟏 = {(𝑨,𝑩)} 

A

𝑨 

A

𝑪 

A

𝑩 

𝑽𝟐 = {𝑨, 𝑩, 𝑪} 

𝑬𝟐 = ቄ(𝑨,𝑩)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ቅ 

A

𝑨 

A

𝑪 

A

𝑩 

Figure 1-1: An Undirected and Directed Graph 
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consecutive vertices in 𝑃 joined by an edge. If there is an edge (𝑥𝑛, 𝑥1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, the sequence is a 

circuit, written” 𝑥1 → 𝑥2 → ⋯ → 𝑥𝑛 → 𝑥1. “A graph is connected if there is a path between 

every pair of vertices.” “The number of edges incident to a vertex is called the degree of the 

vertex.” “The in-degree [is the] number of edges pointed in toward the vertex and out-

degree [is the] number of edges pointed out.”  

“A graph with 𝑛 vertices in which each vertex is adjacent to all the other vertices is 

called a complete graph on 𝒏 vertices, denoted 𝐾𝑛.” “A tournament is a directed graph 

obtained from a complete (undirected) graph by giving a direction to every edge.” We see 

an example of a tournament in Figure 1-2. The reader should not confuse tournaments, 

complete digraphs, with single-elimination and double-elimination tournaments in tennis 

and other sports. Single-elimination tournaments are trees, which are never graph 

theoretic tournaments (𝑛 > 2). However, a tournament is the same as a round robin 

tournament, as every pair of teams is compared once. “Two graphs 𝐺 and 𝐺′ are called 

isomorphic if there exists a one-to-one correspondence between the vertices in 𝐺 and the 

vertices in 𝐺′ such that a pair of vertices are adjacent in 𝐺 if and only if the corresponding 

pair of vertices are adjacent in 𝐺′.” 

 

 

 

  

 

 

 

𝑨 

𝑪 

𝑻 

𝑨 𝑩 

𝑫 

Figure 1-2: A Tournament and a Vertex with a Loop 
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Loops are edges originating and terminating at the same vertex, (i.e. (𝐴, 𝐴)), an 

example of which is in Figure 1-2. We will generally only be concerned with simple graphs 

(graphs containing no loops and no more than one edge between any two vertices), 

however multigraphs may be of interest in the future. A loop in our setting would only 

occur if an individual or team could be compared to itself.  

We can represent a directed simple graph as a square matrix of zeros and ones, 

called an adjacency matrix. The 𝑖𝑡ℎ row and 𝑗𝑡ℎ column represent the 𝑖𝑡ℎ and 𝑗𝑡ℎ vertices, 

while the 𝑖𝑗𝑡ℎ entry represents directed edge (𝑖, 𝑗)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Since every vertex pair can only share 

one edge in a simple graph, an (𝑖, 𝑗)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   edge necessitates that there is no (𝑗, 𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   edge. In the 

adjacency matrix, this means that if the 𝑖𝑗𝑡ℎ entry is 1, then the 𝑗𝑖𝑡ℎ  entry is 0. Also, since 

there are no loops, the diagonal, or 𝑖𝑖𝑡ℎ, entries of this matrix are 0.  

In Figure 1-3, we see two examples of graphs with their adjacency matrices. The 

graph on the right is an example of a directed graph 𝐾3 = (𝑉, 𝐸) whose vertex set is 𝑉 =

{𝐴, 𝐵, 𝐶} and edge set is 𝐸 = {(𝐴, 𝐶)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, (𝐶, 𝐵)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , (𝐵, 𝐴)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ }. It contains the path 𝐴 → 𝐶 → 𝐵 and 

circuit 𝐴 → 𝐶 → 𝐵 → 𝐴. It is connected. Vertex 𝐴 has a degree of 2, an in-degree of 1, and an 

out-degree of 1. It has no loops and every vertex pair has up to one edge — thus it is a 

𝐴
𝐵
𝐶

0 0 1
1 0 0
0 1 0

൩ 

𝐴
𝐵
𝐶

0 1 0
0 0 1
1 0 0

൩ 

Figure 1-3: Two Circular Triads and Their Adjacency Matrices 
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simple graph. It is isomorphic with the graph on the left — this can be seen by reflecting 

the triangle across its altitude and swapping the labels 𝐶 and 𝐵.  

1.3. Kendall, Smith, and Graph Theory 

Kendall and Smith (1940) describe a method of paired comparisons which requires 

one judge to compare every pair of 𝑛 objects 𝐴, 𝐵, 𝐶, … directly to one another. They 

prescribe this method for cases when an object’s property of interest is not directly 

measurable, or the scale of measurement is unknown. When an object 𝐴 is preferred to an 

object 𝐵, they write that 𝐴 → 𝐵 or 𝐵 ← 𝐴. Kendall and Smith demonstrate two ways to 

describe the (
𝑛
2
) preferences in their Table 1 and their Figure 1 (p. 326).  

The 𝑖𝑗𝑡ℎ entry in the table is read by row label and then column label for a right-

pointing arrow preference. For example, (𝐴, 𝐵) = 1, indicates 𝐴 → 𝐵, while (𝐴, 𝐷) = 0 

indicates 𝐷 → 𝐴. We can see the preference 𝐴 → 𝐵 is depicted as a directed edge between 𝐴 

and 𝐵, (𝐴, 𝐵)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . Also note that when (𝑖, 𝑗) = 1, (𝑗, 𝑖) = 0 ∀ 𝑖 ≠ 𝑗. Thus, we see in Figure 1-4 

that Kendall and Smith’s tabular expression of all (
6
2
) possible pairwise comparisons 

between 6 objects is analogous to the adjacency matrix of a complete graph 𝐾6 that is 

directed and simple. 
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Suppose 𝐴 → 𝐵 and 𝐵 → 𝐶. It is entirely plausible that 𝐶 → 𝐴, but ranking requires 

that 𝐴 is preferred to 𝐶. Pairwise comparison permits this contradiction, while ranking 

denies it. Kendall and Smith identify the case 𝐴 → 𝐵 → 𝐶 → 𝐴 as an “inconsistent” 

preference. In fact, they call every circuit of any size an inconsistent preference. The 

smallest possible circuits in any 𝐾𝑛 are subgraphs with three vertices (since two vertices 

can only have one directed edge in a simple graph). Kendall and Smith call a circuit of size 

three a “circular triad”. Circular triads are the building blocks of larger circuits, which they 

call “circular polyads”. Circuits of size 𝑘 ≥ 4 will always contain at least 𝑘 − 2 circular 

triads. Kendall and Smith use 𝑑, the count of circular triads within 𝐾𝑛, as a unit of 

inconsistence, as circular polyads are more difficult to count2. The more circular triads that 

occur in a graph, the more inconsistent the judge is or the more difficult it is to compare the 

 
2 Since, 1940, however, some advances have been made. Alspach and Tabib (1982) found the maximum 
number of 4-circuits in a tournament and Savchenko (2016) found the maximum number of 5-circuits in a 
tournament. Various other developments have occurred, but we still accept circular triads as a fundamental 
unit of inconsistency. Other measures of inconsistency will be discussed later.  

Figure 1-4: Tabular Expression of Six Compared Objects and Equivalent  𝐾6 
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objects of interest. We leave the more technical details of 𝑑 and its distribution for Chapters 

2 and 6. 

A bilinear form 𝐵 on a vector space 𝑉 is a map 𝑉 × 𝑉 → 𝐾, where 𝐾 is the field of 

scalars. In our case, 𝐾 is usually ℝ. 𝐵 is symmetric if 𝐵(𝒗,𝒘) = 𝐵(𝒘, 𝒗) for all 𝒗,𝒘 ∈ 𝑉. 𝐵 is 

skew-symmetric if 𝐵(𝒗,𝒘) = −𝐵(𝒘,𝒗) for all 𝒗,𝒘 ∈ 𝑉. Consider, for example,  

𝒗 = (
𝑟1
𝑟2
) ,𝒘 = (

𝑠1
𝑠2
), 

where 𝑟1, 𝑟2, 𝑠1, 𝑠2 ∈ ℝ. Then  

𝐵(𝒗,𝒘) = 𝑟1𝑠2 − 𝑠1𝑟2 = −(𝑠1𝑟2 − 𝑟1𝑠2) = −𝐵(𝒘,𝒗). 

 We introduce a model with a skew-symmetric bilinear effect in Chapter 4.  

Virtually every paired comparison method aims to pick an overall winner, create 

ratings, or create a ranking. It is common, then, to discuss the qualities of a final ranking (or 

ordered ratings). Since CRSP does not aim to create a final ranking, this objective is outside 

of scope. Similarly out of scope, paired comparisons is part of a larger rank aggregation 

literature — see for Li et al. (2017) for a treatment of rank aggregation. We restrict 

ourselves specifically to paired comparisons methods for one judge, the relationships 

between the compared objects, and ratings as a side effect.  

 In Chapter 2, we first explore how intransitivity in paired comparisons has been 

addressed in the literature. Then, we explore the standard paired comparison literature 

and provide some categorization for transitive models. Finally, we discuss the existing 

1.4. Bilinear Forms 

1.5. Looking Forward 
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intransitive models in the literature. In Chapter 3, we examine the author’s previous work 

analyzing NBA data. In Chapter 4, our intransitive CRSP model is presented and justified. 

This model is capable of representing interactions between teams which are intransitive, 

but requires 𝑂(𝑛) parameter estimates instead of 𝑂(𝑛2) parameter estimates, thereby 

minimizing the possibility of overfitting. In Chapter 5, we see how the CRSP model could be 

applied, primarily with the NBA. In Chapter 6, we discuss a few ways to enumerate Kendall 

and Smith’s 𝑑-distribution and then extend it further than has been accomplished before. In 

Chapter 7, we discuss opportunities to improve on the methods in Chapter 4 and 6, as well 

as other available avenues of research into intransitivity and sports analytics.  

 If one is interested in understanding our work on the circular triad frequency 

distribution, we recommend reading Chapter 1, Section 2.1, Chapter 6, and Chapter 7.  

 If one is interested in understanding the CRSP method, we recommend reading 

Chapters 1, 4, 5, and 7.  

 If one is interested in sports analytics, we recommend reading Section 2.5.4, Chapter 

3, and Chapter 5.  

 Of course, we hope you read this in its entirety! 
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Here, we study the works of our predecessors. We search the literature for evidence 

that our work in Chapters 4, 5, and 6 is unique and has not been achieved before. Sections 

2.1.2, 2.7, 2.8, and 2.9 provide a review of the work which most closely resembles our own. 

We do not find any evidence of a paper which describes a model for intransitive relations 

like ours, but we do find a few papers that have made progress on enumerating or 

cataloguing Kendall and Smith’s (1940) 𝑑-distribution.  

 In this section, we further describe Kendall and Smith’s work, extensions thereof, 

competitors to 𝑑 and 𝜉, and other work useful in studying the theory of intransitivity.  

2.1.1. More on Kendall and Smith 

In building the distribution of 𝑑 in their Table II which we have recreated in Table 

2-1, Kendall and Smith assume that for any two objects 𝐴 and 𝐵, it is equally likely that 𝐴 →

𝐵 or that 𝐴 ← 𝐵 (i.e., 𝑃(𝐴 → 𝐵) = 𝑃(𝐴 ← 𝐵) = 0.5). Table II determines how probable it is 

CHAPTER 2: 

LITERATURE REVIEW 

2.1. More on the Nature of Intransitivity 
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that the (
𝑛
2
) preferences were made by chance. Someone who is “incapable of making 

judgments” would flip a fair coin to make 
𝑛(𝑛−1)

2
 choices. They would like to test  

𝐻0: 𝑝𝑖𝑗 = 0.5, 𝐻1: 𝑝𝑖𝑗 ≠ 0.5 ∀𝑖, 𝑗 ∈ (1,2, … , 𝑛), 𝑖 ≠ 𝑗. (2.1.1.1) 

 

Table 2-1: Table II from Kendall and Smith (1940) 

𝒏 3 4 5 6 7 

 f P f P f P f P f P 

𝒅
 

0 6 1 24 1 120 1 720 1 5040 1 

1 2 .25 16 .625 120 .883 960 .978 8400 .998 

2 
 

 24 .375 240 .766 2240 .949 21840 .994 

3 
 

 
 

 240 .531 2880 .880 33600 .983 

4 
 

 
 

 280 .297 6240 .792 75600 .967 

5 
 

 
 

 24 .023 3648 .602 90384 .931 

6 
 

 
 

 
 

 8640 .491 179760 .888 

7 
 

 
 

 
 

 4800 .227 188160 .802 

8 
 

 
 

 
 

 2640 .081 277200 .713 

9 
 

 
 

 
 

 
 

 280560 .580 

10 
 

 
 

 
 

 
 

 384048 .447 

11 
 

 
 

 
 

 
 

 244160 .263 

12 
 

 
 

 
 

 
 

 233520 .147 

13 
 

 
 

 
 

 
 

 72240 .036 

14 
 

 
 

 
 

 
 

 2640 .001 

𝐓𝐨𝐭𝐚𝐥 8  64  1024  32768  2097152  

 

 

(1 − 𝑃) in Kendall and Smith’s Table II can be interpreted as a typical 𝑝-value for 

this test — we reject 𝐻0 when 1 − 𝑃 is small (i.e., for small 𝑑). Rejecting 𝐻0 can be 

interpreted as it being “improbable that the observer is completely incapable of judgment. 

We might then be led to suppose that his small deviation from internal consistence is due 

to fluctuation of attention, very close resemblance to the objects giving rise to the 
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inconsistencies, or both.” Mosteller (1958) calls (2.1.1.1) the “nullest of null hypotheses.” 

They also give a coefficient of consistence, which we give in (2.1.1.2). Large values of 𝜉 

indicate a capable judge. Like Kendall’s 𝜏, 𝜉 ∈ [0, 1] and is comparable across 𝑛. 

𝜉 = 1 −
𝑑

max(𝑑)
(2.1.1.2)  

Kendall and Gibbons (1990) suggest approximating the 𝑑 distribution with a 𝜒2 

distribution for hypothesis testing purposes. Given 𝑛 and a particular 𝑑 value, they give the 

test statistic as  

𝑋2 =
8

𝑛 − 4
[
1

4
(
𝑛
3
) − 𝑑 +

1

2
] + 𝜈,where 𝑑𝑓 = 𝜈 =

𝑛(𝑛 − 1)(𝑛 − 2)

(𝑛 − 4)2
. (2.1.1.3) 

Considering the remarkable amount of time needed to enumerate the 𝑑-distribution 

for a given 𝑛 > 10, even with modern computing power, the 𝜒2 approximation is fairly 

useful. 

2.1.2. Counting Circular Triads 

To assess how unusual it would be for a tournament to assume the null hypothesis 

in (2.1.1.1), Kendall and Smith (1940) provide a distribution of 𝑑 in Table II (Table 2-1 

above) under the null hypothesis. We discuss how to calculate the values in this table in 

Chapter 6, where we also extend the table to 𝑛 larger than in Kendall and Smith. Since 

1940, two papers have extended this table to 𝑛 ≤ 10  (Alway, 1962) and 𝑛 ≤ 15 (Knezek, et 

al. 1998).  

Alway produced an algorithm to achieve his result. We find later that one of our 

independently developed algorithms matches his algorithm closely (details in Chapter 6). 

Knezek et al. (1998) also extended the 𝑑 distribution up to 𝑛 = 15; however, they do not 
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provide exact values of 𝑑 for anything other than common critical values. They do show 

anecdotally that as 𝑛 increases, the accuracy of the 𝜒2 approximation improves.  

In describing a method to calculate 𝑑 for a given tournament, Kendall and Smith 

(1940) ‘invent’ a way to summarize the tournaments — with 𝛼-vectors. An 𝛼-vector 𝜶 is a 

score vector of a tournament’s adjacency matrix, where 𝜶 = (𝛼1, 𝛼2, … , 𝛼𝑛). Each element 

of an 𝛼-vector, 𝛼𝑖, represents the number of times an object 𝑖 is preferred over the other 

𝑛 − 1 objects, or the number of wins a team 𝑖 has in a round-robin tournament. So, 𝛼𝑖 ∈

{0,1, … , 𝑛 − 1} and ∑ 𝛼𝑖
𝑛
𝑖=1 =

𝑛(𝑛−1)

2
. By convention, the 𝛼𝑖 are ordered from least to greatest 

or greatest to least and ignore the order of the object labels. Our convention will be to 

order them from least to greatest. 

These 𝛼-vectors are useful for cataloging and keeping track of graphs to count 𝑑. 

Kendall and Smith do not appear to have advanced to using 𝛼-vectors for cataloging 

purposes, and instead use a more fundamental method of counting. However, the original 

method of counting is not described in their 1940 paper in reaching the full 𝑑-distribution 

for 𝑛 = 7. They say, “The principles of [our] method are clear enough and the work may be 

formalized by a number of conventions which we omit to save space. In common with 

many similar combinatorial problems, however, troubles arise from the sheer number of 

possibilities and the difficulty of ensuring that nothing is overlooked.”  

In early animal dominance structure literature regarding ‘peck right,’ a more 

general, not necessarily transitive version of ‘pecking order’ describing tournaments 

among animals, Davis (1954) calls 𝛼-vectors ‘structure sequences.’ He and Rapoport  

(1949) and Landau (1951), (1953) appear to be unaware of Kendall and Smith (1940) — 



15 
 

they calculate probabilities of particular structure sequences for no longer than the 𝑛 = 6 

case.  

Later, David (1959) uses a different notation for 𝛼-vectors. He orders the 𝛼𝑖 from 

greatest to least and uses ‘exponents’ to denote repeated counts. For example, if we had 

𝜶 = (1, 3, 3, 3, 3, 4, 4), he would compactly write this as [42341]. Formally, he calls these 

partitions [𝑥1
𝑟1𝑥2

𝑟2 …𝑥𝑚
𝑟𝑚] where the 𝑟𝑢 are the frequency of the score 𝑥𝑢. In our most 

memory-conscious method of counting the 𝛼-vectors for the 𝑑-distribution, the 𝑟𝑢 play a 

pivotal role. David (1959) is the first to list and count the 𝛼-vectors for the 𝑛 = 8 case, the 

largest 𝑛 for which we have seen the 𝛼-vectors listed. He gives a generating function 

approach to listing all possible outcomes, but this approach amounts to a brute force 

technique with much redundant counting.  

Alway (1962), working in parallel with Slater (1961), produced a computer 

program to enumerate the 𝑑-distribution to the 𝑛 = 10 case. The program is nearly 

identical to the one devised independently by this author in August 2016, documented in 

Section 6.2.4. The method involves building the list of 𝛼-vectors and their counts in 

sequential 𝑛. For each 𝛼-vector of length 𝑛, an additional object is included and compared 

to the previous 𝑛 objects. Each comparison is binary — a win or a loss — so there are 2𝑛 

possible results when expanding the 𝛼-vector by one item. The resulting 𝛼-vectors of 

length 𝑛 + 1 are not necessarily unique, so the redundancy is counted.  

Kadane (1966) devises a method of counting the 𝛼-vector frequencies by 𝑑 working 

largely from the counts David (1959) produces for each 𝛼-vector with the assistance of 

some unexplored conjectures from Kendall and Smith (1940). His proposed method 

appears to reduce some of the redundancy of Alway’s method (1962), but it appears to 
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have gone largely ignored in the literature, including in Knezek et al. (1998) in which the 

authors claim to have extended the 𝑑-distribution to the 𝑛 = 15 case.  

Kadane (1966) has his own notation for alpha vectors. In our notation, we have 𝜶 =

(1, 3, 3, 3, 3, 4, 4) or [42341] in David’s notation. Kadane would write 0-0-2-4-0-1-0, where 

David’s 𝑟𝑢 (i.e., 2, 4, and the implicit exponent 1) are listed in a position placeholder, which 

may or may not include an 𝑥𝑢. Note that in this 𝑛 = 7 case, the largest integer, 6, would 

represent the most preferences an object could have over the other objects. Then Kadane’s 

notation refers to the number of times 6, 5, 4, 3, 2, 1, and 0, respectively, appear in an alpha 

vector. Henceforth, we refer to this notation as Kadane notation.  

Kadane (1966) introduces the concept of simple 𝛼-vectors and compound 𝛼-

vectors, but we refer to simple 𝛼-vectors as atomic 𝛼-vectors. The distinction between 

atomic and compound 𝛼-vectors and their usefulness is most easily seen in Kadane 

notation. A compound 𝛼-vector is one which is composed by juxtaposing two or more 

atomic 𝛼-vectors or by juxtaposing 1s or both, and an atomic 𝛼-vector is an 𝛼-vector which 

cannot be composed by juxtaposing multiple 𝛼-vectors or 1s. Atomic 𝛼-vectors (𝑛 ≥ 3) 

always have a leading and ending 0 in Kadane notation, for example 0-3-0 or 0-2-2-0. If an 

object were added to a circular triad (0-3-0), and won every comparison, we would have 

the compound 𝛼-vector 1-0-3-0. Similarly, if the new object lost every comparison, we 

would have the compound 𝛼-vector 0-3-0-1. All three 𝛼-vectors (0-3-0, 1-0-3-0, and 0-3-0-

1) have 𝑑 = 1, and there are an infinite number of compound 𝛼-vectors with 𝑑 = 1 which 

can be constructed by padding the beginning and end of the atomic 0-3-0 circular triad 𝛼-

vector with 1’s. We can also create compound 𝛼-vectors by pressing two or more atomic 𝛼-

vectors together. For example, 0-3-0-0-3-0 is an 𝑛 = 6 compound 𝛼-vector with 𝑑 = 2. In 
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this example, the first three objects always beat the next three objects, but the first three 

objects are in a circular triad and the second three objects are in a circular triad. In 

adjacency matrix form, this is fairly easy to recognize as well: 

[
 
 
 
 
 
0 1 0 1 1 1
0 0 1 1 1 1
1 0 0 1 1 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0]

 
 
 
 
 

⇒

[
 
 
 
 
 
4
4
4
1
1
1]
 
 
 
 
 

. (2.1.2.1) 

In block form, where 𝑪 is a circular triad matrix, 𝟎 is a matrix of 0’s, and 𝟏 is a matrix of 1’s, 

this adjacency matrix is [
𝑪 𝟏
𝟎 𝑪

], where the top three objects always beat the bottom three 

objects. It is helpful to recognize that a compound 𝛼-vector can always be nontrivially 

represented in a block form adjacency matrix, where the blocks are 𝟎, 𝟏, and adjacency 

matrices corresponding to atomic 𝛼-vectors. Note the row sums of the adjacency matrix in 

(2.1.2.1) are the 𝛼-vector (1, 1, 1, 4, 4, 4), or 0-3-0-0-3-0 in Kadane notation. Finally, 

compound 𝛼-vectors can also be composed of one or more atomic 𝛼-vectors and one or 

more 1s (i.e., the 𝑑 = 2, 𝑛 = 7 𝛼-vector 0-3-0-1-0-3-0).  

 Formally, Kadane (1966) notes that any tournament can be arranged into disjoint 

sets 𝑆1, 𝑆2, … , 𝑆𝑘 (for some 𝑘, 𝑘 ∈ [1,… , 𝑛]) with the following properties: 

a) Each object in 𝑆ℎ is preferred to every object in 𝑆ℎ′  for all ℎ < ℎ′; ℎ, ℎ′ ∈ [1,… , 𝑘]; 

b) For any two objects 𝐴𝑖 , 𝐴𝑗  in the same set 𝑆ℎ, either 𝐴𝑖 → 𝐴𝑗  or there exist other 

objects 𝐴𝑖1 , 𝐴𝑖2 , …, in 𝑆ℎ such that 𝐴𝑖 → 𝐴𝑖1 → 𝐴𝑖2 → ⋯ → 𝐴𝑗 . Such a set is called a 

strong subtournament.  
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So, an atomic 𝛼-vectors represents a tournament where 𝑘 = 1, while compound 𝛼-vectors 

are tournaments where 𝑘 > 1 — a compound 𝛼-vector has two or more strong 

subtournaments and an atomic 𝛼-vector is the only strong subtournament.  

 Kadane’s method uses the frequencies of the less common atomic 𝛼-vectors. He 

provides formulae for up to the 𝑑 = 5 case on page 492. We use Kadane’s method to 

provide the formula for 𝑑 ≤ 13, with 𝑑 ≤ 20 easily achievable with the 𝑑-distribution up to 

𝑛 = 16, and Kadane’s method provides useful insights and notation for our most space-

conscious 𝑑-distribution enumeration algorithm alluded to in Chapter 6.  

Moran (1947), Davis (1954), and Narayana and Bent (1964) provide important 

results useful for contextualization and error checking. Moran proves that the first four 

moments of the 𝑑-distribution conjectured by Kendall and Smith are correct. Davis creates 

a method to count the number of isomorphic tournament graphs for any 𝑛. The On-Line 

Encyclopedia of Integer Sequences (2017) has stored this sequence as A000568. Narayana 

and Bent (1964) derive a formula to count the number of unique score vectors for any 𝑛, 

which is sequence A000571 in the OEIS. We list this sequence in Table 2-2. Note that one 

would need to use a 259,451,116 × 20 matrix to simply store all 𝛼-vectors for the 𝑛 = 20 

case on a computer. 
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Table 2-2: Number of Unique Score Vectors for 𝑛 ∈ (3,… ,32) 

𝑛 Number of unique 𝛼-vectors  𝑛 Number of unique 𝛼-vectors 
3 2  18 21,258,104 
4 4  19 73,996,100 
5 9  20 259,451,116 

6 22  21 951,695,102 
7 59  22 3,251,073,303 
8 167  23 11,605,141,649 
9 490  24 41,631,194,766 

10 1,486  25 150,021,775,417 
11 4,649  26 542,875,459,724 

12 14,805  27 1,972,050,156,181 
13 48,107  28 7,189,259,574,618 
14 158,808  29 26,295,934,251,565 
15 531,469  30 96,478,910,768,821 
16 1,799,659  31 354,998,461,378,719 
17 6,157,068  32 1,309,755,903,513,480 

 

 

2.1.3. Moon on Tournaments and Related Graph Theory 

Moon (1968) provides an excellent collection of results regarding tournaments, 

including most of the preceding papers. Moon appears to be one of the first mathematicians 

that has discovered paired comparisons contributions from other fields, like animal 

behavior. For example, he notes contributions from Davis (1954) and Landau (1953), 

which provide earliest versions of some proofs regarding tournaments. Most importantly, 

Moon (1968) introduces an exhaustive collection of non-isomorphic tournaments for 𝑛 ∈

{1, 2, … , 6}. In Figure 2-1, unconnected vertices stacked vertically imply strictly transitive 

relationships. For example, the chain (0, 1, 2) includes three undrawn vertices — two 

vertices pointing from the top object to the two lower objects, and a vertex pointing from 

the middle object to the bottom object. We call the initial appearance of a form a canonical 



20 
 

form. For example, a circular triad (1, 1, 1) is the only canonical form for 𝑑 = 1. The 

tournaments below, corresponding to (0, 2, 2, 2), (1, 1, 1, 3), (0, 1, 3, 3, 3), (0, 2, 2, 2, 4), (1, 

1, 1, 3, 4), and the similar graphs for 𝑛 = 6, are all 𝑑 = 1 graphs which feature a circular 

triad in an otherwise strictly ordered set of objects.  

Figure 2-1: Non-Isomorphic Matrices from Moon (1968) 
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Kernan (1967) delivers the first explicitly graph theoretic interpretation of Kendall 

and Smith (1940) to an audience of marketing researchers and casts doubt on the efficacy 

of the method of paired comparisons. As evidence, he cites another marketing paper titled 

“Let’s Bury Paired Comparisons” by Blankenship (1966), who claims that paired 

comparisons do not reflect reality — consumers purchase one item of many. Additionally, 

paired comparison methods do not determine an actual location of item strength, just 

relative strengths. In their setting, that means that product 𝐴 may be preferred to product 

𝐵, but that does not mean that product 𝐴 will sell well. He advocates additional research to 

address that issue but concedes that paired comparison methodology gives good additional 

information.  

Burns (1980) produced a FORTRAN IV algorithm which performs an exhaustive 

search of all three-object combinations for circular triads in a set of 𝑛 objects. Later, Gass  

(1998) gives a linear programming solution to identifying circular triads in a shipping 

network represented by an adjacency matrix. Brown and Peterson (2009) introduce the 

concept of double-sorting a tournament adjacency matrix — the matrix is sorted by both 

row sums (𝛼-vectors) in descending order and column sums in ascending order. Since a 

strictly transitive double-sorted tournament matrix should have all 1s in the upper right 

triangle, it should be easy to begin to recognize which relationships are circular triads since 

entries below the diagonal should be 0, not 1.  

In animal dominance studies, near-transitive orderings are often converted to the 

closest transitive ordering, but Appleby (1983) re-introduces the field to Kendall and 

Smith’s method (1940) and cautions that this practice is presumptive and recommends 

testing for transitivity first. Shader (1992) gives a theorem bounding the spectral radius of 
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the possible adjacency matrices for a given 𝛼-vector. Füredi (2010) describes some open 

mathematical problems in tournament matrices.  

2.1.4. Stochastic Transitivity Conditions 

In Section 1.1, we introduced the weak stochastic transitivity (WST) condition 

(1.1.1), and repeat it here — if 𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶) ≥ 0.5, then 𝑃(𝐴 → 𝐶) ≥ 0.5, where 𝐴, 

𝐵, and 𝐶 are specific objects. However, there are dozens of other testable conditions for 

stochastic transitivity. David (1988) provides an excellent overview of the paired 

comparisons literature and lists three conditions — the SST, MST, and WST. However, 

Morrison (1962), (1963) and Fishburn (1973) list, prove, discuss, and relate over a dozen 

more.  

The partial stochastic transitivity (PST) condition is 

If 𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶) > 0.5, then 𝑃(𝐴 → 𝐶) ≥ min(𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶)). 

The moderate stochastic transitivity condition (MST) is 

If 𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶) ≥ 0.5, then 𝑃(𝐴 → 𝐶) ≥ min(𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶)) .  

The strong stochastic transitivity condition (SST) is 

If 𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶) ≥ 0.5, then 𝑃(𝐴 → 𝐶) ≥ max(𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶)) .  

The strict stochastic transitivity condition (SSST) is  

If 𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶) > 0.5, then 𝑃(𝐴 → 𝐶) > max(𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶)) .  

 Additionally, there can be a continuum between the SST and MST with 𝜆 ∈ [0,1] as 

well as between the MST and WST. If the condition met is again that 𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶) ≥

0.5, then the SST-𝜆-MST (2.1.4.1) and MST-𝜆-WST (2.1.4.2) implications follow, 

respectively 
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𝑃(𝐴 → 𝐶) ≥ (𝜆max(𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶)) + (1 − 𝜆)min(𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶))) (2.1.4.1) 

𝑃(𝐴 → 𝐶) ≥ (0.5𝜆 + (1 − 𝜆)min(𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶))). (2.1.4.2) 

The triangular stochastic transitivity condition (TST) is 

𝑃(𝐴 → 𝐵) + 𝑃(𝐵 → 𝐶) ≥ 𝑃(𝐴 → 𝐶). 

The multiplicative stochastic transitivity condition (MuST) is  

𝑃(𝐴 → 𝐵) ∙ 𝑃(𝐵 → 𝐶) ≤ 𝑃(𝐴 → 𝐶). 

The disjunctive hypothesis multiplicative stochastic transitivity condition (DMuSt), 

which requires either 𝑃(𝐴 → 𝐵) ≥ 0.5 or 𝑃(𝐵 → 𝐶) ≥ 0.5 is 

𝑃(𝐴 → 𝐵) ∙ 𝑃(𝐵 → 𝐶) ≤ 𝑃(𝐴 → 𝐶). 

 The conjunctive hypothesis multiplicative stochastic transitivity condition (CMuSt), 

which requires 𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶) ≥ 0.5 is 

𝑃(𝐴 → 𝐵) ∙ 𝑃(𝐵 → 𝐶) ≤ 𝑃(𝐴 → 𝐶). 

 The symmetric intransitive triad condition (SIT) is 

𝑃(𝐴 → 𝐵) ∙ 𝑃(𝐵 → 𝐶) ∙ 𝑃(𝐶 → 𝐴) = 𝑃(𝐵 → 𝐴) ∙ 𝑃(𝐴 → 𝐶) ∙ 𝑃(𝐶 → 𝐵). 

 The acyclic stochastic transitivity (AST) condition is  

If 𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶),… , 𝑃(𝑌 → 𝑍) > 0.5, then 𝑃(𝐴 → 𝑍) ≥ 0.5. 

 The negative stochastic transitivity (NST) condition is 

If 𝑃(𝐴 → 𝐶) > 0.5, then 𝑃(𝐴 → 𝐶) ≤ max(𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶)). 

The interval stochastic transitivity (IST) condition is 

max(𝑃(𝐴 → 𝐵), 𝑃(𝐶 → 𝐷)) ≥ min(𝑃(𝐴 → 𝐷), 𝑃(𝐶 → 𝐵)). 

The just noticeable difference stochastic transitivity (JST) condition is 

max(𝑃(𝐴 → 𝐵), 𝑃(𝐵 → 𝐶)) ≥ min(𝑃(𝐴 → 𝐷), 𝑃(𝐷 → 𝐶)). 

 The K stochastic transitivity (KST) condition, so named because K follows I and J, is 
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𝑃(𝐴 → 𝐵) > max(𝑃(𝐵 → 𝐶), 0.5) ⇒ min(𝑃(𝐴 → 𝐷), 𝑃(𝐷 → 𝐶)) ≥ 𝑃(𝐵 → 𝐷). 

 The substitutable stochastic transitivity (SubST) condition is  

𝑃(𝐴 → 𝐶) > 𝑃(𝐵 → 𝐶) ⇔ 𝑃(𝐴 → 𝐵) > 0.5. 

Fishburn (1973) lists a few more esoteric probabilistic stochastic transitivity 

conditions, which we will not add to the 18 conditions above (WST, PST, MST, SST, SSST, 

SST-λ-MST, MST-λ-WST, TST, MuST, DMuST, CMuST, SIT, AST, NST, IST, JST, KST, SubST). 

Additionally, Iverson and Falmagne (1985) give likelihood ratio tests for some of the 

stochastic transitivity conditions in this section.  

2.1.5. Measures of Intransitivity 

Kendall and Smith introduced 𝑑, the number of circular triads in a tournament, in 

1940. They considered counting cycles of lengths greater than three as well, but there are 

several reasons circular triads made more sense at the time. First and foremost, every 

circuit with 𝑛 > 3 nodes is guaranteed to have at least 𝑛 − 2 circular triads. Circular triads 

account for larger circuits, then. Second, the mathematical theory behind circuits of size 

𝑛 = 4 or greater is an open area of research to this day. Alspach and Tabib (1982) found 

the maximum number of 4-circuits in a tournament of size 𝑛 and Savchenko (2016) found 

the maximum number of 5-circuits in a tournament of size 𝑛. Wormald (2004) finds the 

asymptotic lower bound for the maximum number of Hamilton circuits (length 𝑛 circuits) 

in a tournament. In short, it was entirely reasonable for circular triads to be considered the 

fundamental unit of inconsistency. They also favored discussing 𝜉, the coefficient of 

consistence, which is 

𝜉 = 1 −
24𝑑

𝑛3 − 𝛾𝑛
{
𝛾 = 1 if 𝑛 is odd
𝛾 = 4 if 𝑛 is even

 . (2.1.5.1) 
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𝜉 is standardized on [0, 1] for all 𝑛 ≥ 3. 

However, there were many other attempts to make a measure of inconsistency, 

starting with Landau (1951), who did not appear to be aware of Kendall and Smith (1940). 

Following the work of Rapoport, he called 𝛼-vectors “hierarchy structures” instead of 

“structure sequences”. He defined his measure of intransitivity, ℎ, the hierarchy index.  

ℎ =
12

𝑛3 − 𝑛
∑(𝛼𝑖 −

𝑛 − 1

2
)
2𝑛

𝑖=𝑖

(2.1.5.2) 

However, this is virtually identical to Kendall and Smith’s 𝜉. We provide a proof for 

(2.5.1.3) in Chapter 6, but also David (1988) reports that 𝑑 can be calculated as a function 

of 𝜶 and 𝑛, 

𝑑 =
𝑛3 − 𝑛

24
−
1

2
∑(𝛼𝑖 −

𝑛 − 1

2
)
2𝑛

𝑖=𝑖

. (2.5.1.3) 

Let 𝑇 = ∑ (𝛼𝑖 −
𝑛−1

2
)
2

𝑛
𝑖=𝑖 . Then we can see from (2.1.5.2) and (2.5.1.3) that 

𝑑 =
𝑛3 − 𝑛

24
−
1

2
𝑇, 

ℎ =
12

𝑛3 − 𝑛
𝑇, 

𝑑 =
𝑛3 − 𝑛

24
(1 − ℎ), and 

ℎ = 1 −
24𝑑

𝑛3 − 𝑛
. (2.5.1.4) 

We can see from inspection of (2.5.1.1) and (2.5.1.4) that 𝜉 = ℎ when 𝑛 is odd, but they are 

not the same when 𝑛 is even. Note that, when 𝑛 is even, max(𝑑) =
𝑛3−4𝑛

24
, which gives that 

min(ℎ) = 1 −
𝑛2−4

𝑛2−1
=

3

𝑛2−1
.  
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Landau knew that min(ℎ) differed when 𝑛 is odd and even. In short, Kendall and 

Smith’s 𝜉 and Landau’s ℎ are virtually identical and have a one-to-one mapping which are 

both directly related to the 𝑑-distribution.  

 Slater (1961) introduced a novel way of describing intransitivity. His measure is 𝑖, 

the minimum number of edge direction swaps required to get an entirely transitive 

ordering. While heuristic approaches can give a close estimate of 𝑖, to guarantee the 

minimum is found, all 𝑛! fully transitive orders must be compared to the observed 

adjacency matrix. The order which minimizes the number of swaps required is called the 

nearest adjoining order. Slater’s primary concern is, 

 “Triads ought not to be treated as elements. They are compound events not 

conceivably independent of one another, for the total number of triads in a schedule 

exceeds the number of responses by a factor of (𝑛 − 2)/3 and each response 

features in 𝑛 − 2 triads. Moreover, there is no 1:1 relationship between 𝑖 and 𝑑; 

schedules from the same 𝑛 with the same 𝑖 may differ in 𝑑, and vice versa.”  

Consider, for example, a perfect ordering, where a single swap occurs; 𝑖 = 1. If the 

formerly third-ranked object is preferred over the formerly first-ranked object, then 𝑑 = 1. 

If instead the formerly lowest-ranked object is preferred over the formerly first-ranked 

object, then 𝑑 = 𝑛 − 2. While Slater is critical of 𝑑, he still relates 𝑖 to Kendall’s 𝜏 by  

max(𝜏) = 1 −
2𝑖

(
𝑛
2
)
. (2.1.5.5) 

Kendall and Smith (1940) note that 𝑑 can be calculated by counting the number of adjacent 

swaps required to break all ties (elements of 𝜶 that are equal) in an 𝛼-vector. Similarly, 

Kendall’s 𝜏 is calculated by counting reversals in one set of ranks to match another set of 
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ranks as well. We discuss the notion of reversals further in proofs in Chapter 6. David 

(1988) notes that since 𝑑 can be obtained from an 𝛼-vector by restricted reversing, 𝑖 ≤ 𝑑. 

For 𝑛 ∈ (4,… , 8), Slater (1961) demonstrates that corr(𝑖, 𝑑) ≈ 0.9. He also gives 

enumerated distributions for 𝑖 when 𝑛 ∈ (4,… , 8) and equations to enumerate small 𝑖 for 

all 𝑛. We note that the distribution of 𝑖 could be calculated with unique adjacency matrices, 

but 𝛼-vectors may not have enough information for 𝑖 to be calculated. This warrants 

further, future examination.  

Remage and Thompson (1966) give a heuristic method to enumerate only 𝑛2𝑛−1 

tournaments instead of the 𝑛! Slater proposed. Abeles (1979) notes that C.L. Dodgson 

(better known as Lewis Carroll) anticipated the approach Remage and Thompson give in 

three pamphlets on voting published between 1873 and 1876. We also note that by double-

sorting an adjacency matrix of interest, it is possible to calculate 𝑖 by counting the non-zero 

lower triangle entries in at least some cases. This may provide for a faster solution to 

calculating 𝑖 than Remage and Thompson propose by reducing the space of possibilities. 

Finally, Nurmi (2014) studies Slater’s nearest adjoining order, generalizes the method, and 

compares it to other orders popular in social choice theory.  

 Bezembinder (1981) is critical of both Kendall and Smith’s 𝑑 and Slater’s 𝑖 as 

measures of inconsistency and introduces his own measure, 𝜌. His measure is calculable 

when graphs are incomplete and “accounts” for circular polyads of any size (i.e., in 

[3, 4, … , 𝑛]). Bezembinder was not aware of Kadane (1966), however, his method is most 

easily elucidated in Kadane notation. Continuing with Kadane’s notation for strong 

subtournaments in Section 2.1.2, where 𝑘 is the number of strong subtournaments, 𝑆 =

{𝑆1, 𝑆2, … , 𝑆𝑘} is the set of strong subtournaments, 𝑛𝑗  is the number of nodes in strong 
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subtournament 𝑆𝑗 , and 𝑁𝑗  is the number of edges in 𝑆𝑗  (𝑁𝑗 = (
𝑛𝑗
2
) in our setting — a 

tournament), Bezembinder gives 

𝜌 = 𝑘 − 𝑛 +∑𝑁𝑗

𝑘

𝑗=1

. (2.1.5.6) 

Note that ∑ 𝑁𝑗
𝑘
𝑗=1  is the number of edges in the tournament that are included in any cycle. 

When a node is completely transitive in relation to all strong subtournaments, it is itself a 

strong subtournament of size 1. If a tournament is fully transitive, then there are 𝑘 = 𝑛 

strong subtournaments and ∑ 𝑁𝑗
𝑘
𝑗=1 = 0 edges included in any cycle. Thus, 𝜌 = 0 when 𝑑 =

0. Meanwhile, if the tournament can be represented by an atomic 𝛼-vector, or rather, when 

a tournament is strong and 𝑘 = 1, then every node is included in a cycle — ∑ 𝑁𝑗
𝑘
𝑗=1 = (

𝑛
2
) 

and 𝜌 = 1 − 𝑛 + (
𝑛
2
) =

1

2
(𝑛 − 1)(𝑛 − 2).  

 Consider Bezembinder’s tournament example, where 𝛼 = (1, 1, 1, 4, 4, 5, 5, 7) and 

𝑛 = 8. In Kadane notation, this is 0-3-0-0-2-2-0-1, which we may recognize a compound 𝛼-

vector composed of the circular triad 0-3-0, the 𝑑 = 2 and 𝑛 = 4 atomic 𝛼-vector 0-2-2-0, 

and a node transitive in relation to the rest of the nodes, 1. There are then 𝑘 = 3 strong 

subtournaments with 𝑛1 = 3, 𝑛2 = 4, 𝑛3 = 1, ∑ 𝑁𝑗
𝑘
𝑗=1 = 3 + 6 + 0 = 9. Then 𝜌 = 3 − 8 +

9 = 4. Meanwhile, we can see that 𝑑 = 3 by adding the number of circular triads in each 

strong subtournament. Also, note that we can calculate Slater’s 𝑖 in the same way. In a 

circular triad, 𝑖 = 1. In the 𝑛 = 4 atomic 𝛼-vector, 𝑖 = 2. So Slater’s 𝑖 in this tournament is 

𝑖 = 3.  

 Bezembinder does implicitly give a nice way to calculate 𝑘 from the 𝛼-vector: 
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𝑘 =∑𝕀[(
𝑖
2
) =∑𝛼𝑗

𝑖

𝑗=1

]

𝑛

𝑖=1

. (2.1.5.7) 

The calculation for ∑ 𝑁𝑗
𝑘
𝑗=1  using the 𝛼-vector is a bit more involved, but simply requires 

finding the size 𝑛𝑗  of each strong subtournament after which ∑ 𝑁𝑗
𝑘
𝑗=1 = ∑ (

𝑛𝑗
2
)𝑘

𝑗=1 . However, 

Bezembinder’s 𝜌 can be calculated with only knowledge of the 𝛼-vector and a short 

algorithm.  

 The more interesting measure Bezembinder introduces, but later neglects, is 𝛿, the 

proportion of edges in the tournament that are included in a cycle: 

𝛿 =
∑ 𝑁𝑗
𝑘
𝑗=1

(
𝑛
2
)

. (2.1.5.8) 

This measure is in [0, 1] and is approximately comparable across all 𝑛. 

 Bezembinder also introduces the concepts of internal and external consistency. An 

external measure of consistency is one which compares a given ranking with another 

ranking. Examples include Kendall’s 𝜏, Pearson’s 𝑟, and two measures Bezembinder 

introduces, and Lundh’s tournament stability index (2006). An internal measure of 

consistency is one in which a set of comparisons are consistent with themselves. We are 

concerned with internal measures of intransitivity in this section, 2.1.5, including 𝑑, 𝑖, 𝜌, 

and 𝛿.  

Bezembinder claims that his internal consistency measures accounts for cycles of 

any size, however, no quantity in 𝜌 or 𝛿 explicitly does that. ∑ 𝑁𝑗
𝑘
𝑗=1  does represent the 

number of edges that are embedded in a cycle, but we do not know much about the size of 

these cycles. As we know from Kendall and Smith (1940), every cycle of size 𝑛 includes 𝑛 −
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2 circular triads. Bezembinder’s 𝜌 accounts for cycles of any size no more than 𝑑 does. 

Interestingly, Bezembinder’s student Maas introduced a measure of circularity where he 

modified Kendall and Smith’s 𝑑 for tournaments where some preferences are known a 

priori (1993).  

Monsuur and Storcken (1997) survey 𝑑, 𝑖, 𝜌, and 𝛿 and introduce their own measure 

𝜈 which can be calculated by finding the ℓ1 norm (or Manhattan distance) between an 𝛼-

vector 𝜶 and the 𝛼-vector of a fully transitive tournament of size 𝑛:  

𝜈 =
1

2
‖𝜶 − (0, 1, 2, … , 𝑛 − 1)‖1. (2.1.5.9) 

They also introduce a framework to characterize measures of intransitivity. Monsuur later 

(2005) discusses another measure of intransitivity, although it appears to be an external 

measure in Bezembinder’s framework (1981). Cropper (2011) explores powers of 𝛼-

vectors as a way to rank 𝛼-vectors. Reid and Santana (2015) discuss a method to check if a 

vector is a valid 𝛼-vector. Finally, Kulakowski (2017) introduces a measure of 

inconsistency extending Kendall and Smith’s 𝜉 to the case where ties are allowed.  

2.1.6. Returning to Order 

Many authors consider intransitivities as things that need to be “solved”. The first 

such author was Patrick Slater (1961). His method was to find the minimum number of 

inconsistent responses, denoted as 𝑖, and then to swap those responses in the adjacency 

matrix to give a fully transitive tournament which he called the “nearest adjoining order.” 

However, this method required enumerating all 𝑛! transitive tournaments. Remage and 

Thompson (1966) improve on the search method by enumerating only 𝑛2𝑛−1 tournaments. 

Later, Flueck and Korsh (1975) introduce an improvement on Remage and Thompson’s 
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method with a branch search algorithm. They also attempt to generalize methods which 

summarize paired comparisons as rankings. Maas, et. al (1995) incorporate the strength of 

preferences to solve intransitivities. Charon and Hudry (2006) (2007) classify all these 

methods and introduce a branch-and-bound algorithm to solve the linear ordering problem 

for weighted tournaments. Koczkodaj et. al (2015) and Koczkodaj and Szybowski (2016) 

suggest reducing inconsistency in the pairwise comparison matrix in order to use 

conventional models.  

Siffert (2005) disagrees with inconsistency so much that he removes all 

inconsistencies in his Beatpaths model. He starts by removing all pairs of inconsistent 

dyads, followed by all circular triads, further followed by all circular tetrads, and so on until 

all Hamilton circuits have been removed from the tournament. The remaining edges in the 

graph have no inconsistencies; however, teams are often tied.  

2.1.7. Missing Values and Circular Triads 

Jiang et al. (2011) give an interesting example on p. 217 where an incomplete graph 

has no circular triads, but does have a circular polyad of size 6: 𝐴 → 𝐵 → 𝐶 → 𝐷 → 𝐸 → 𝐹 →

𝐴. However, we know that if a complete graph has a circular polyad of size 𝑘, then it must 

contain at least 𝑘 − 2 circular triads. In this example, the reader can see that the incomplete 

graph would be locally inconsistent (i.e., have at least one circular triad) if it were 

completed. This can be seen by construction. First, add an edge on (𝐵, 𝐸). Now, if 𝐵 → 𝐸, 

then we have the circular triad 𝐴 → 𝐵 → 𝐸 → 𝐴. If 𝐸 → 𝐵, then we get a circular tetrad in 

𝐵 → 𝐶 → 𝐷 → 𝐸 → 𝐵. From Figure 2-2: All Tetrads Containing Two Circular Triads (𝑑 = 2) 

on the next page, we can see that this must contain two circular triads.  
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Figure 2-2: All Tetrads Containing Two Circular Triads (𝑑 = 2) 
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There is a reasonable amount of literature describing how to address tournaments 

with missing edges. For example, Beineke and Harary (2001) study digraphs on 𝑛 nodes 

and 𝑚 ≤ (
𝑛
2
) edges to find the maximum number of circular triads in those graphs, 

reaching 𝑚 < 33. Shizuka and McDonald (2012) randomly generate the missing 

preferences and give measures of intransitivity. They repeat this procedure 10,000 times 

and explore the distributions of the measures of intransitivity. Bozóki et al. (2013) study 

both missing preferences and fixing inconsistent matrices to achieve a transitive order. 

Bauer (1978) begins work on a method to count circular triads when not every comparison 

has been made.  

2.1.8. Related Kendall Work 

Kendall introduced non-parametric correlation coefficient based on ranks 

commonly called Kendall’s 𝜏 (1938) (1945). The method used here primes the reader for a 

counting mechanism we encounter in Chapter 6. Consider the toy example in Figure 2-3, 

where two judges 𝑋 and 𝑌 have ranked items 𝐴, 𝐵, 𝐶, and 𝐷. Without loss of generality, 𝑋 is 

in ascending order or the items are relabeled to match 𝑋’s order.  

 

Figure 2-3: Kendall's Rank Correlation Coefficient Toy Example 

 𝐴 𝐵 𝐶 𝐷 

𝑋 1 2 3 4 

𝑌 2 4 3 1 
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A score, 𝑠, can be calculated by comparing the rankings of two objects 𝐴 and 𝐵 by 

two rankers — 𝑋 and 𝑌. If they are in the same direction, then the pair 𝐴 and 𝐵 has a 

positive contribution. If they are different, they have a negative contribution. All 

contributions are weighted equally (+1 or −1) and they are then summed over all pairs of 

objects. However, since we want all scores to be on the same scale (−1 to 1) as Pearson’s 

correlation, 𝑟, we divide this score 𝑠 by the maximum score of (𝑛
2
) =

𝑛(𝑛−1)

2
, which is also 

the absolute value of the minimum score. This is Kendall’s 𝜏 =
2𝑠

𝑛(𝑛−1)
.  

 

Table 2-3: Kendall’s Rank Correlation Coefficient Sign Calculation Version 

𝑖  𝑗  sgn(𝑥𝑗 − 𝑥𝑖) − sgn(𝑦𝑗 − 𝑦𝑖) 

𝐴 𝐵 sgn(3 − 1) − sgn(3 − 2) = 1 

𝐴 𝐶 sgn(4 − 1) − sgn(1 − 2) = −1 

𝐴 𝐷 sgn(2 − 1) − sgn(4 − 2) = 1 

𝐵 𝐶 sgn(4 − 3) − sgn(1 − 3) = −1 

𝐵 𝐷 sgn(2 − 3) − sgn(4 − 1) = −1 

𝐶 𝐷 sgn(2 − 4) − sgn(4 − 1) = −1 

𝑠 =  ∑(sgn(𝑥𝑗 − 𝑥𝑖) − sgn(𝑦𝑗 − 𝑦𝑖)) = −2 

 

 

If one considers the count of the positive and negative scores, 𝑃 and 𝑄 respectively, 

one observes that 𝑃 + 𝑄 = (𝑛
2
). Then, an alternative expression for 𝜏 is 

𝜏 =
2(𝑃 − 𝑄)

𝑛(𝑛 − 1)
= 1 −

4𝑄

𝑛(𝑛 − 1)
=

4𝑃

𝑛(𝑛 − 1)
− 1 (1.4.1) 
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One can calculate 𝑃 by first sorting the two sets of rankings 𝑋 and 𝑌 by 𝑋, ascending. 

Then, examining only the vector of rankings 𝑌 = 〈𝑦1, 𝑦2, … 𝑦𝑛〉, one counts the number of 

ranks to the right of each rank 𝑦𝑖 that are greater than 𝑦𝑖. This number is called 𝑃. That is,  

𝑃 =  ∑ ∑ 𝕀[𝑦𝑗>𝑦𝑖]

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

, 

where 𝑖 ∈ (1,… , 𝑛 − 1) since 𝕀[𝑦𝑛>𝑦𝑛] = 0. 

𝑄 = (𝑛
2
) − 𝑃 can be thought of as the minimum number of neighbor swaps that need 

to be made to obtain the natural order, or it can be thought of as the number of mistakes 

made in ranking. Consider again the second judge’s preference order 𝑌 = 〈2, 4, 3, 1〉. To 

achieve a natural order, the 1 would have to swap three times to the left, giving us 𝑌∗ =

〈1, 2, 4, 3〉. Then, 3 and 4 would have to swap places, 𝑌∗∗ now matches 𝑋, 𝑄 = 4, and it 

follows that 𝑃 = 2 and 𝑠 = −2 as in Table 2-3. Kendall calls these swaps “interchanges.” 

These same interchanges inform one version of the algorithm to enumerate the circular 

triad frequency distribution in Chapter 6.  

Kendall and Smith (1940) also developed a pairwise comparisons procedure for two 

or more judges. Every one of the 𝑚 judges must make all (
𝑛
2
) comparisons. Kendall and 

Smith develop a measure of agreement, 𝑢, for these judges. It goes from −1 to 1 when 𝑚 =

2 and when 𝑚 gets large, the minimum of 𝑢 approaches 0 from the negative side. This is 

because two judges can be in perfect disagreement when making a choice between 𝐴 and 𝐵, 

but three or more judges cannot all disagree when there are only two choices. Three or 

more judges, however, could be in perfect agreement, so the upper bound of 𝑢 remains 1. 

The formula for 𝑢 is given in (2.1.8.1), where 𝛾𝑖𝑗 is the number of judges who preferred 𝑖 to 

𝑗:  
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𝑢 =
2∑ (

𝛾𝑖𝑗
2
)𝑖,𝑗,𝑖≠𝑗

(
𝑛
2
) (
𝑚
2
)

− 1. (2.1.8.1) 

When 𝑚 = 2, 𝑢 is Kendall’s rank correlation coefficient, 𝜏. 

𝑢 =
2∑ (

𝛾𝑖𝑗
2
)𝑖,𝑗,𝑖≠𝑗

(
𝑛
2
)

− 1

=
(# 𝑜𝑓 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠) − (# 𝑜𝑓 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠)

(
𝑛
2
)

= 𝜏 (2.1.8.2)

 

When 𝑚 is even, the lower bound of 𝑢 is −
1

𝑚−1
, and while when 𝑢 is odd, the lower 

bound is −
1

𝑚
. While building an exact significance test, Kendall and Smith found that 

calculating the variance of 𝑢, which depends on the number of possible preferences, 2
𝑚(

𝑛
2
)
, 

to be virtually impossible to enumerate for large values of 𝑚 or 𝑛. An approximation could 

be accomplished by simulation. Kendall and Smith do, however, derive a 𝜒2-approximation 

based on the distribution of 𝑢, or rather, ∑ (
𝛾𝑖𝑗
2
)𝑖,𝑗,𝑖≠𝑗 . By fitting the moments of ∑ (

𝛾𝑖𝑗
2
)𝑖,𝑗,𝑖≠𝑗  

to the moments of the 𝜒2 distribution, they get the test statistic 

𝑋2 = (
4

𝑚 − 2
) ∑ (

𝛾𝑖𝑗
2
)

𝑖,𝑗,𝑖≠𝑗

−
1

2
(
𝑛
2
) (
𝑚
2
) ∙
𝑚 − 3

𝑚 − 2
~𝜒2 (𝜈 =

(
𝑛
2
)𝑚(𝑚 − 1)

(𝑚 − 2)2
) . (2.1.8.3) 

They give exact critical values for ∑ (
𝛾𝑖𝑗
2
)𝑖,𝑗,𝑖≠𝑗  in their Table III, IV, V, and VI for 

small values of 𝑚 and 𝑛.  

Finally, Kendall and Smith comment that 𝜉 can be large (a judge can be internally 

consistent), but the judge may not be accurate. When possible, the judge’s preferences 

should be compared to known preferences by Kendall’s 𝜏. In their examples, they use the 

distribution of the 𝑚 counts of 𝑑 in reference to the expected value of 𝑑 to assess whether 
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the judges were internally consistent. Kendall and Smith also recover the ranks of the 𝑛 

objects from this procedure by sorting the ∑ (
𝛾𝑖
2
)𝑖  in descending order, although they make 

no comment on these ranks or that choice. They may have done this to sort the sum of the 

adjacency matrices, therefore minimizing the 𝛾𝑖𝑗 in the lower triangle. Their calculation of 

𝑢 uses the equivalence in (2.1.8.4) which benefits from small 𝛾𝑖𝑗 in the lower triangle — 

∑ (
𝛾𝑖𝑗
2
)

𝑖,𝑗,𝑖≠𝑗

=∑(𝛾𝑖𝑗
2 −𝑚𝛾𝑖𝑗)

𝑖>𝑗

+ (
𝑛
2
) (
𝑚
2
) . (2.1.8.4) 

Basak (1993) and Raghavachari (2004) attempt to improve Kendall and Smith’s 𝑚 

judge procedure.  

2.1.9. The Favorability of Intransitivity  

One of the earliest hypothetical discussions giving validity to intransitivity in 

preferences or strategies comes from von Neumann’s version of game theory; for example, 

see von Neumann and Morgenstern (1944). Social choice theory, as founded in Arrow 

(1950), (1951) and Bergson (1954) and further developed in Kemeny (1962), Arrow 

(1974), Sen (1970) (1999), Young and Levenglick (1978), Young (1988), Heiser and 

D’Ambrosio (2013), and Nurmi (2014), involves the aggregation of voters’ candidate 

preference orders. Since this involves rank aggregation, it is generally out of scope for our 

work. However, since social choice theory generally involves assuming individual voters 

have transitive preferences, it follows that researchers in and around the field question the 

validity of this assumption.  

For example, May (1954) openly supports intransitive preferences. He describes an 

experiment in which 62 college students were asked to choose a hypothetical marriage 

partner 𝐴, 𝐵, or 𝐶 based on three attributes alone — in intelligence they ranked 𝐴 → 𝐵 → 𝐶, 
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in appearance they ranked 𝐵 → 𝐶 → 𝐴, and in wealth they ranked 𝐶 → 𝐴 → 𝐵. Every 

hypothetical marriage partner was described as least acceptable in all the attributes. If 

these three attributes were equally weighted in importance and there were three voters 

who each valued a different attribute most, then this is exactly the simplest case of 

Condorcet’s Voting Paradox (see, for example, Young and Levenglick (1978)). Participants 

were repeatedly faced with unlabeled alternatives 𝐴, 𝐵, and 𝐶 a pair at a time until the 

experimenter was certain the student meant the choices that they had made. As a result, 

𝐴 → 𝐵 39/62 times, 𝐵 → 𝐶 57/62 times, and 𝐶 → 𝐴 33/62 times, and so the aggregated 

preferences were intransitive. Additionally, 17/62 individual preference orders were 

intransitive. Here, May essentially argues that unless one preference criterion dominates, 

intransitive relationships may appear.  

May (1954) also gives examples of non-transitive relations in game theory, 

including examples of combat superiority:  

Battleship → Destroyer → Submarine → Battleship, 

Mongoose → Cobra → Cat → Mongoose, and 

Tank → Machine Gunner → Bazookaman → Tank. 

He also cites McCulloch’s (1948) experiment in which rats are starved and are shown to 

prefer food to sex, sex to pain avoidance, and pain avoidance to food. May says, “[…] the 

question is no longer ‘Are preferences transitive?’ but rather ‘Under what conditions does 

transitivity fail?’”  

Meanwhile, Tversky (1969) lists seven studies, including May (1954), that “failed to 

detect any significant violation of WST” (although it seems to this author that May’s 

aggregated preferences demonstrated intransitivity, while the individual preferences 
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provide weak evidence of intransitivity). Nevertheless, Tversky seeks to create situations 

under which the condition of transitivity fails and he succeeds, to an extent. Tversky’s 

paper is often cited as giving validity to the notion that intransitivity is sometimes 

appropriate. See also Krantz et al. (1971), Fishburn (1984), Suppes et al. (1989), Luce et al.  

(1990), Gehrlein (1989), Laird and Schamp (2009), Linares (2009), Regenwetter et al. 

(2011), and Elias et al. (2012) for more examples of intransitive experiments and games.  

Koczkodaj and Wajch (2015) give a logical, philosophical, and mathematical take on 

intransitivity in paired comparisons. To the notions of returning an inconsistent adjacency 

matrix to a transitive order (as discussed in Section 2.1.6) they say,  

“Inconsistent assessments are considered as inaccurate but, after their 

approximation, they may reflect values that are useful for us. It must be stressed 

that there is no way to find the ideal values for the inconsistent input. In practice, 

every consistent approximation of an inconsistent [preference] matrix 𝑀 differs 

from 𝑀 and has an error. The ideal approximation, without an error, is only a 

product of our imagination.”  

Meanwhile, there are clearly times when transitivity in measurements should 

absolutely be assumed or maintained as an ideal. When we guess physical measurements 

like weight, length, or volume, there should be no question that inconsistent errors need to 

be adjusted. Consider, for example, a set of medical studies comparing a pair of treatments 

at a time, where a treatment is found to have a significant effect, say 𝛿𝑖𝑗 = 𝑑𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 , 

relative to the other treatment in each study. We should expect that if 𝑑12 = 5, 𝑑23 = 3, and 

𝑑34 = 6 that 𝑑13 ≈ 𝑑12 + 𝑑23 = 8 and 𝑑14 ≈ 𝑑12 + 𝑑23 + 𝑑34 = 14. This is the exact kind of 
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“network meta-analysis” performed in Higgins and Whitehead (1996), whose methodology 

was later described in Schmid and Mengersen (2013), and Mengersen and Schmid (2013). 

This network meta-analysis methodology validly assumes that the true effects 𝛿𝑖𝑗 should be 

transitive and uses the 𝑑𝑖𝑗  in the aggregate to produce a scale, not unlike Kaiser and Serlin 

(1978) do (as we see in Section 2.3.2).  

  

With many research topics, who first discovered the topic or made a particular 

contribution is often not known until later. Consider, for example, the Binomial Theorem, 

often attributed to Blaise Pascal. However, as Coolidge (1949) demonstrates, Pascal is not 

the first. Instead, the earliest documented work is from Zhu Shijie in 1303, but even he 

claims his triangle diagram is based on another Chinese mathematician’s work in 1050.  

Similarly, Thurstone (1927) was thought to be [one of] the earliest examples of a 

paired comparisons methodology. However, it should be noted that French mathematician 

Borda (1781) described a method of voting on one pair of candidates at a time, although he 

dismissed this notion almost immediately after proposing it in favor of the voting 

procedure he is now famous for (and this method pre-dates him, too). Even then, a method 

of voting on one pair of candidates at a time pre-dates even Borda, as noted in McLean and 

Lorrey (2007). Here, we learn that Majorcan and Franciscan tertiary Ramon Llull 

developed a method for selecting a pope for the Catholic Church in Llull (1283), (1299) . In 

this method with 𝑛 cardinals who are candidates for pope, one pair of cardinals would 

leave the room at a time. The other 𝑛 − 2 cardinals would cast votes for their cardinal of 

2.2. The Obscured History of Paired Comparisons 
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choice outside of the room. This process was repeated for all (
𝑛
2
) pairs of cardinals, at 

which point, the cardinal with the most votes overall would be selected as the new pope. 

The votes were recorded in a preference matrix as in Figure 2-4.  

Figure 2-4: Llull's Preference Matrix from Ars Electionis (An Electoral System) (1299) 

 

 

 

While Bradley and Terry (1952) were believed to be the first to implement their 

method, Luce (1959) independently developed the method and it is often called the 

Bradley-Terry-Luce model out of courtesy. However, even the work of Bradley, Terry, and 

Luce was anticipated by German mathematician Zermelo (1929). Additionally, the Kendall-

Wei method (Wei (1952) and Kendall (1955)) was anticipated by German mathematician 

Landau (1895) (1914) and the matrix theory on which the Kendall-Wei method is based, 

and indeed all spectral methods (Section 2.5.2), was proven by Perron (1907) and 

Frobenius (1908), (1909), (1912). 
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In 1927, a psychologist named L. L. Thurstone published his Law of Comparative 

Judgment through which he wished to identify a scale for stimuli, qualitative judgments, 

opinions, intelligence, handwriting or drawing quality, or anything else which is physically 

unmeasurable but plausibly on a single continuum. A subject would be prompted by pairs 

of stimuli, 𝑋𝑖 and 𝑋𝑗, and would then make a comparison — either 𝑋𝑖 > 𝑋𝑗 or 𝑋𝑖 < 𝑋𝑗. This 

would be repeated many times, potentially with multiple subjects, for all (
𝑛
2
) pairs of 𝑛 

stimuli so that an empirical proportion that the first stimulus was greater than the second, 

�̂�𝑖>𝑗 , could be calculated. From this information, he could solve for location parameter 𝑆𝑖 of 

each stimulus’s distribution as well as its variance 𝜎𝑖
2 using what he called his law of 

comparative judgment, but is the statistical model in (2.3.1): 

𝑆𝑖 − 𝑆𝑗 = 𝑏𝑖𝑗 ∙ √𝜎𝑖
2 + 𝜎𝑗

2 − 2𝑟𝜎𝑖𝜎𝑗 (2.3.1)

Here, 𝑋𝑖~(𝑆𝑖, 𝜎𝑖
2) and 𝑟 = 𝑐𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑗) ∀𝑖 ≠ 𝑗. 𝑏𝑖𝑗 is then the number of standard deviations 

𝑋𝑖 and 𝑋𝑗 are apart. He found that 𝑏𝑖𝑗 fit best when the 𝑋𝑖 were assumed to be normally 

distributed as opposed to uniformly distributed. Thus, 𝑏𝑖𝑗 was a 𝑧-score corresponding to 

�̂�𝑖>𝑗  as a probability in a normal area table since (2.2.1) can be re-expressed as in (2.3.2): 

𝑧 = 𝑏𝑖𝑗 =
(𝑆𝑖−𝑆𝑗)−0

√𝜎𝑖
2+𝜎𝑗

2−2𝑟𝜎𝑖𝜎𝑗

=
(𝑥𝑖−𝑥𝑗)−𝐸[𝑋𝑖−𝑋𝑗]

𝑆𝐷[𝑋𝑖−𝑋𝑗]
(2.3.2)

This led to a system of 
1

2
𝑛(𝑛 − 1) equations to solve for 2𝑛 − 1 values (he let 𝑆1 = 0). In the 

literature, it appears that the set of simplifying assumptions he called “Case V” were the 

most appealing to later researchers, including Horst (1932). Thurstone let 𝜎𝑖 = 1 ∀𝑖 and set 

2.3. Thurstone’s Model 
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𝑟 = 0. This simplified the calculations considerably as √𝜎𝑖
2 + 𝜎𝑗

2 − 2𝑟𝜎𝑖𝜎𝑗 = √2 in (2.3.2) 

and thus a system of only 𝑛 − 1 equations for the estimates of 𝑆𝑖 are needed. His original 

study creates a scale of on which to compare the severity of crimes. Thurstone (1927b), 

(1931) explain his estimation procedure in greater depth.  

2.3.1. Mosteller Improves the Thurstonian Model  

Mosteller (1951) noted that it was not necessary to assume 𝑟 = 0, just that 

√𝜎𝑖
2 + 𝜎𝑗

2 − 2𝑟𝜎𝑖𝜎𝑗 = 𝑐 = 1 by constant correlation and equal variances. Mosteller (p. 4) 

made the crucial point that in order to get an idea of how close 𝑆1 and 𝑆2 were, for example, 

there would have to be times where 𝑋2 < 𝑋1. That is, the method works best when there 

are a minority of non-transitive paired observations. He illustrated this point in the 

following image (p. 4):  

 

But Mosteller’s most notable contribution to the Thurstonian method of paired 

comparisons was his least squares solution. Letting 𝐷𝑖𝑗 = 𝑆𝑖 − 𝑆𝑗 , the �̂�𝑖𝑗 are then estimates 

of 𝐷𝑖𝑗 . As in Thurstone (1927), the �̂�𝑖𝑗 = 𝑏𝑖𝑗 ∙ 𝑐 = 𝑏𝑖𝑗 . He also makes the important 

distinction that while the true location differences need to be transitive in this framework, 

𝐷𝑖𝑗 + 𝐷𝑗𝑘 = (𝑆𝑖 − 𝑆𝑗) + (𝑆𝑗 − 𝑆𝑘) = 𝐷𝑖𝑘 (2.3.1.1)

the observed differences �̂�𝑖𝑗  do not need to maintain transitivity as it is almost never true 
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that �̂�𝑖𝑗 + �̂�𝑗𝑘 = �̂�𝑖𝑘 . Then, we seek to minimize 𝑄 in (2.3.1.2) with respect to �̂�𝑖: 

𝑄 = ∑ [�̂�𝑖𝑗 − (�̂�𝑖 − �̂�𝑗)]
2

𝑖,𝑗 (2.3.1.2)

While Horst (1932) gave a solution by setting �̂�̅ = 0, Mosteller (1951) solved this by 

setting �̂�1 = 0 as Thurstone (1927) had done before him. Thus, this gives a solution for the 

other −1 �̂�𝑖: 

�̂�𝑖 =
1

𝑛
∑ (�̂�𝑗1 − �̂�𝑗𝑖)
n
j=1 (2.3.1.3)

Mosteller (1951) lamented that large values of �̂�𝑖𝑗  occur when �̂�𝑖>𝑗  is close to 0 or 1 and 

recommends the ad hoc fix of bounding |�̂�𝑖𝑗| by 2.  

Gulliksen (1956) also gives an ad hoc correction which includes converting all 

�̂�𝑖>𝑗 =
0

𝑚
 to 

0.5

𝑚
 and �̂�𝑖>𝑗 =

𝑚

𝑚
 to 

𝑚−0.5

𝑚
, where 𝑚 is the number of times 𝑋𝑖 and 𝑋𝑗 have been 

compared. Gulliksen also gives a solution for the incomplete case where not all (
𝑛
2
) 

comparisons are made. However, since he sets �̂�1 = 0, his solution does not match Kaiser 

and Serlin’s solution. His solution is equivalent to Mosteller’s (1951) solution in the 

complete case. Finally, Schӧnemann (1970) showed that Gulliksen’s solution for the 

incomplete case was unique when every row in the skew-symmetric matrix, 𝑫 = (�̂�𝑖𝑗), has 

nonzero entries in at least half of the non-diagonal cells.  

2.3.2. Kaiser and Serlin and Extensions 

In the literature discussed so far, the Thurstone-Mosteller model has only been used 

in cases where proportions of comparisons are mapped to normal deviates to build a scale 

of measurement. Kaiser and Serlin (1978) examine the Thurstonian model without the 

assumption that the 𝐷𝑖𝑗  are normally distributed, although they still build a scale of 
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measurement with their 𝐷𝑖𝑗 , which is defined in a college football game as +1, 0, or −1 for a 

win, tie, or loss, respectively. The resulting scale, unadjusted, has no practical 

interpretation other than to rank the football teams in the group and give a sense of quality. 

If they had used point differential as proposed, the resulting ratings of the teams could be 

used to predict point differential in future games.  

As in (2.3.1.2), they seek to minimize 𝑄 = ∑ (𝐷𝑖𝑗 − (𝑥𝑖 − 𝑥𝑗))
2

𝑛𝑖
𝑗  with respect to 𝑥𝑖 , 

where 𝑛𝑖  is the number of games team 𝑖 has played. Here, 𝑥𝑖  plays the role of the location 

parameter, previously 𝑆𝑖. 𝐷𝑖𝑗 = 0 in games not played, and 𝑄 is not minimized over these 

pairs of 𝑖 and 𝑗. They let 𝐷𝑖 = ∑ 𝐷𝑖𝑗
𝑛𝑖
𝑗 , which can be interpreted as team 𝑖’s wins minus their 

losses. This is colloquially called “games over .500,” a common phrase in sports reporting. 

They also choose their solutions for 𝑥𝑖  such that ∑ 𝑥𝑖𝑖 = 0, as in Horst (1932). This makes 

the 𝑥𝑖  interpretable as “team 𝑖 is better than average” when 𝑥𝑖 > 0. Then, this gives a 

system of linear equations which can be expressed as 

(𝑛𝑖 + 1)𝑥𝑖 + ∑ 𝑥𝑗
𝑛−1−𝑛𝑖
𝑗 = 𝐷𝑖 (2.3.2.1)

In the summation in (2.3.2.1), only the teams 𝑗 that did not play team 𝑖 are summed over, of 

which there are 𝑛 − 1 − 𝑛𝑖 . Using team 𝑖 = 2 in their example, Army, this is read as  

8𝑥2 + (𝑥5 + 𝑥7 + 𝑥9 + 𝑥12) = −1 (2.3.2.2)

since Army did not play teams 𝑗 = 5,7,9, and 12. This suggests that Kaiser and Serlin’s 

method implicitly considers strength of schedule. If ∑ 𝑥𝑗
𝑛−1−𝑛𝑖
𝑗 > 0, then this means that the 

teams 𝑖 hasn’t played are better than average, and thus the teams 𝑖 has played are worse 

than average. Team 𝑖 is penalized in this case, while they benefit when ∑ 𝑥𝑗
𝑛−1−𝑛𝑖
𝑗 < 0. We 

can re-express (2.3.2.2) as 
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0𝑥1 + 8𝑥2 + 0𝑥3 + 0𝑥4 + 1𝑥5 + 0𝑥6 + 1𝑥7 + 0𝑥8 + 1𝑥9 + 0𝑥10 + 0𝑥11 + 1𝑥12 = −1(2.3.2.3)

From (2.3.2.3), it is easy to see that the coefficients 𝑘𝑖𝑗  on the 𝑥𝑖𝑗  are 1, 0, or (𝑛𝑖 + 1) when 𝑖 

hasn’t played 𝑗, 𝑖 has played 𝑗, or 𝑖 = 𝑗, respectively. The matrix of these coefficients, 𝑲, 

multiplied by the vector of team ratings, 𝑥, are equal to the vector of 𝐷 = (𝐷𝑖), giving 𝑲𝑥 =

𝐷. The solution for the team ratings is then 𝑥 = 𝑲−1𝐷.  

Kaiser and Serlin give a necessary and sufficient condition for a solution. Intuitively, 

every team can be compared directly or indirectly to every other team, even if the shortest 

list of comparisons goes through 𝑛 − 2 teams. In a four-team example, if team 𝑖 and 𝑗 play, 𝑗 

and 𝑘 play, and 𝑘 and 𝑙 play and there are no other games among them, then team 𝑖 could 

be compared to team 𝑙 through teams 𝑗 and 𝑘. After all, this is the reasoning behind a 

single-elimination tournament (the first and third games listed above would be the first 

round, which would give a championship game between 𝑗 and 𝑘, without loss of 

generality). They prove that this intuitive condition is equivalent to 𝑲 being nonsingular. 

Alternatively, since 𝑲 = 𝑓(𝑫), an equivalent condition for the existence of a solution is that 

the skew-symmetric matrix 𝑫 cannot be row operated into the form [
𝑫11 𝑫12
𝑫21 𝑫22

] where 

𝑫12 = 𝑫21 = 𝟎. This is comparable to equation [9] in Kaiser and Serlin, since 𝑘𝑖𝑗 = 1 ⇒

𝐷𝑖𝑗 = 0. In their example, they have 24 of a possible 66 games, well under the 36 games 

Schӧnemann required.  

Checking 𝑲 or 𝑫 as above would be an important condition for a schedule-maker 

(which is often automated to some extent). It would also be useful for an analyst (or fan) to 

decide at which point in a season’s schedule they would be able to justify making a 

definitive statement about which team is the best in the league. John Hollinger, formerly of 
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ESPN, would not publish his team ratings until every team in the NBA had played at least 

20 games. With 30 teams in the league that play each other two to four times a season, this 

would likely meet Kaiser and Serlin’s condition.  

Kaiser and Serlin develop a formula for 𝑅2, 

𝑅2 =
∑ 𝑥𝑖𝐷𝑖𝑖

∑ 𝐷𝑖𝑗
2

𝑖>𝑗
(2.3.2.4)

but by their own admission, this does not give quite the same meaning as in other least 

squares settings. Finally, to make their ratings more interpretable, they rescale the 𝑥𝑖  to 

closely match the score differential, 𝑝𝑖𝑗, or point spread (points score by team 𝑖 minus 

points scored by team 𝑗). They minimize 𝑔 with respect to 𝑐 in (2.3.2.5): 

𝑔(𝑐) = ∑ ∑ (𝑝𝑖𝑗 − 𝑐(𝑥𝑖 − 𝑥𝑗))
2

𝑗𝑖 (2.3.2.5)

This gave 𝑐 = 22.7. They added 100 to the 𝑐𝑥𝑖  to give ratings similar to an index (that also 

are not as negative to readers as the unscaled 𝑐𝑥𝑖  are).  

Kaiser and Serlin debate whether 𝑝𝑖𝑗 should have been used in lieu of their 𝐷𝑖𝑗 . As 

we will see later in Barrow et al. (2013), it is almost always the case that point differential 

is a better predictor of team success than wins and losses.  

Kaiser and Serlin (1978) extended the least squares solution for the Thurstonian 

model to cases where there are a small number of paired comparisons. They identify the 

minimum number of comparisons to be made as well as introduce a theorem which 

identifies under what conditions the least squares solution to the Thurstonian model can 

be used. This technique, they claim, suggests that Schӧnemann’s lower bound (1970) of 

half of all (
𝑛
2
) comparisons is too conservative. They then apply their method to the games 

played between 12 major college football teams as a demonstration. 
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The model we introduce here is from the classic paper by Bradley and Terry (1952). 

Luce independently developed the same model a few years later and so it is often referred 

to as the Bradley-Terry-Luce Model. The earliest work on this model, however, is believed 

to be that of Zermelo (1929), a German; although his work was not discovered until much 

later. We refer to this model as the Bradley-Terry model or BTM. Many of the methods in 

Chapter 2 can be related to the BTM. However, the BTM only uses wins and losses and 

classically gives transitive ratings and does not take the strength of victory into account.  

Suppose we have 𝑛 teams with true ratings 𝑝1, 𝑝2, … , 𝑝𝑛 where 𝑝𝑖 ≥ 0 ∀𝑖 and ∑𝑝𝑖 =

1. Bradley and Terry claim that when teams 𝑖 and 𝑗 play each other (or as they say, “appear 

in the same block”), then they assume (2.4.1). They also denote 𝑟𝑖𝑗𝑘 as the ranking of the 𝑖th 

team in the 𝑘th game against team 𝑗, and it follows that 𝑟𝑖𝑗𝑘 = 3 − 𝑟𝑗𝑖𝑘. They let 𝑛𝑖𝑗  be 

constant for all 𝑖, 𝑗, that is, every pair of teams plays the same number of times. 

𝑝𝑖𝑗 =
𝑝𝑖

𝑝𝑖 + 𝑝𝑗
(2.4.1) 

They then give a likelihood function (2.4.2) which assumes the 𝑝𝑖𝑗 are independent 

∀𝑖, 𝑗.  

𝐿 =∏𝑝
𝑖

2𝑛𝑖𝑗(𝑛−1)−∑ ∑ 𝑟𝑖𝑗𝑘𝑘𝑖≠𝑗

𝑖

∏(𝑝𝑖 + 𝑝𝑗)
𝑛𝑖𝑗

𝑖<𝑗

(2.4.2) 

And a hypothesis test for equality of strength in (2.4.3):  

𝐻0: 𝑝𝑖 =
1

𝑛
 ∀𝑖, 𝐻1: 𝑝𝑖 ≠

1

𝑛
 ∃𝑖. (2.4.3) 

2.4. Bradley-Terry Model 
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They give maximum likelihood estimates for the 𝑝𝑖 on page 326. We note that the 

model is more commonly described as in (2.4.4), where 𝛽𝑖 is the strength of team 𝑖 and 

thus 𝛽𝑖 − 𝛽𝑗 is the amount team 𝑖 is better than team 𝑗. 

logit(𝑝𝑖𝑗) = log (
𝑝𝑖
𝑝𝑗
) = 𝛽𝑖 − 𝛽𝑗 (2.4.4) 

Also of note is their table, The generation of treatment sums of ranks and 

probabilities for three treatments and two repetitions. Here, if we have that 𝐵 → 𝐴, 𝐶 → 𝐴, 

and 𝐶 → 𝐵, then we have a transitive triple, 𝐶 → 𝐵 → 𝐴. Bradley and Terry would express 

this as 𝑟𝑎𝑏1 = 𝑟𝑎𝑐1 = 𝑟𝑏𝑐1 = 2 and 𝑟𝑏𝑎1 = 𝑟𝑐𝑎1 = 𝑟𝑏𝑐1 = 1. This would give rank sums for the 

first round of 𝑟𝑐1 = 2, 𝑟𝑏1 = 3, and 𝑟𝑎1 = 4, where 𝑟𝑖 = ∑ 𝑟𝑖𝑗1𝑗 . Then 𝑟1 = (2, 3, 4) is the same 

as the score vector (or alpha vector) in the Kendall and Smith (1940) setting, 𝛼 = (2, 1, 0). 

We will explore score vectors more in Chapter 6. Bradley and Terry’s table resembles that 

of David (1959).  

2.4.1. Extensions and Improvements on the Bradley-Terry Model 

The Bradley-Terry model is incredibly popular. Many have made attempts to 

improve it. Dykstra (1960) introduces an unbalanced version of the BTM. Rao and Kupper  

(1967) introduce a way to deal with ties, which they define as indistinguishable results or 

comparisons, i.e., |𝛽𝑖 − 𝛽𝑗| ≤ 𝜀 for some small 𝜀. Leonard (1977) introduces an early 

Bayesian approach to the BTM, where the priors on the 𝛽𝑖 might depend on one another or 

depend on some explanatory variables. Simons and Yao (1999) prove a maximum 

likelihood estimator for the 𝛽𝑖 is asymptotically normal. Hunter (2004) gives an iterative 

minorization-maximization algorithm to estimate the 𝛽𝑖 which converge asymptotically to 

the maximum likelihood estimates for the 𝛽𝑖. Adams (2005) compares and contrasts 
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Bayesian and non-parametric approaches to the BTM. Usami (2010) gives a BTM for 

multiple judges where the judges may be externally inconsistent. Cattelan et al. (2013) 

gives a dynamic BTM with an exponentially weighted moving average process for the 𝛽𝑖. All 

of these models produce transitive ratings, 𝛽𝑖.  

Mallows (1957) introduces a variation on the BTM based on the differences in ranks 

between teams 𝑖 and 𝑗, labeled 𝑘. 𝜃 and 𝜙 are parameters which are 𝜃 = 𝜙 = 1 under the 

null hypothesis, and the model is 

𝑝𝑖𝑗 =
1

2
+
1

2
tanh(𝑘 log 𝜃 + log𝜙) (2.4.4.1) 

2.4.2. Connecting Thurstone-Mosteller and Bradley-Terry Models 

The Thurstone-Mosteller and Bradley-Terry model are remarkably similar. Here, 

Tsukida and Gupta (2011) note (2.4.2.1), or that Thurstone uses the probit link function 

instead of the logit link function as in the BTM.  

Φ−1(�̂�𝑖𝑗) = 𝛽�̂� − 𝛽�̂� (2.4.2.1) 

Then, the relationship between the BTM and the TMM is nicely summarized with 

Figure 4 in Tsukida and Gupta (2011) and below.  
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Noether (1960) gives some early connections between the BTM and TMM. Andrews 

and David (1990) extend and continue Gulliksen’s (1956) ideas on using incomplete or 

unbalanced data, but in a nonparametric fashion. Stern (1990)and Critchlow and Fligner  

(1991) introduce general linear model frameworks that unify the BTM and TMM.  

Here, we discuss other popular models whose goal is to estimate ratings with the 

assumption that a strict order exists. In the absence of any written discussion of these 

methods, see Barrow et al. (2013) for a comprehensive look within the application of sport 

rankings. All the methods they explore are fully transitive. They show empirically that 

average margin of victory3 is more predictive of future success than winning percentage. 

Their survey builds on the survey of work in Chartier et al. (2011).  

Barrow et al. (2013) discuss winning percentage, rating percentage index, least 

squares pairwise comparisons (i.e., Thurstone-Mosteller, Bradley-Terry, and HodgeRank), 

maximum posterior, Keener’s direct method, PageRank, random walker, and Elo’s method. 

These ranking methods are applied to six different sports leagues (National Basketball 

Association (NBA), Major League Baseball, National League, American League, NCAA Men’s 

Basketball, and NCAA Football) on a season by season basis.  

In the NBA, the least squares pairwise comparison, maximum posterior, Keener’s 

direct, and the random walker methods give the best predictions. The Elo and least square 

pairwise comparison methods are noted to have a probabilistic interpretation. This is an 

important feature for consumers of sports rankings.  

 
3 Here, margin of victory is the point differential divided by the total number of points scored in the game.  

2.5. Other Transitive Ratings Models 
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Barrow et al. performed this analysis at the end of each season. However, most fans 

and gamblers alike want to know how their team is doing midseason. An interesting 

question then, might be to identify at which point in the season point differential is a better 

predictor of success than wins and losses. Barrow et al. inferred from the NCAA men’s 

Basketball and NCAA Football data, which have substantially shorter seasons than the 

other leagues, that win/loss is more predictive during shorter seasons. Alternatively, this 

discrepancy could be tied to the youth of these athletes — they are collegiate athletes with 

few to no veteran athletes surrounding them, and the roster turnover at the collegiate level 

is high.  

2.5.1. HodgeRank and the State of the Art 

Jiang, et al., (2011) offer an improvement on the Thurstonian model seen in Kaiser 

and Serlin (1978) which incorporates the idea of circular triads and circular polyads in 

Kendall and Smith (1940). HodgeRank can be used in cases with great imbalance, including 

missing pairwise comparisons, solo pairwise comparisons, and many pairwise 

comparisons. The underlying scale values of the objects are recovered through least 

squares minimization. Hodge Theory is used to decompose the aggregated rank 

information into measures of consistency — local inconsistency and global inconsistency. 

HodgeRank has the drawback of producing the Borda winner, which is not necessarily the 

Condorcet winner when it exists. However, unlike Kemeny optimization (1959), it is not 

𝑁𝑃-hard but is instead 𝑂(𝑛) due to the least squares solution. HodgeRank draws on results 

from graph theory, linear algebra, vector calculus, topology, ranking, decision theory, 

financial economics, machine learning, and social choice theory. We will focus on the graph 

theory, ranking, and least squares aspects in our examination of HodgeRank.  
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In the diction of Saaty (1980) and other decision scientists, the purpose of 

HodgeRank is to rank a set of 𝑛 alternatives by 𝑚 voters. Each of the 𝑚 voters only needs to 

rank, pairwise compare, or score a relatively small number of alternatives. Judgments by 

the 𝛼𝑡ℎ voter between the 𝑖𝑡ℎ and 𝑗𝑡ℎ objects in the 𝛼𝑡ℎ matrix 𝑌𝛼  are recorded as 𝑌𝑖𝑗
𝛼 . They 

let 𝑌𝑖𝑗
𝛼 = −𝑌𝑗𝑖

𝛼 , producing a skew-symmetric matrix. If the alternatives are scored (for 

example, on the Likert scale), they are converted to ranks. If the alternatives are ranked, 

then if 𝑖 → 𝑗, 𝑌𝑖𝑗
𝛼 = 1. They expect alternatives that are closely ranked to display 

inconsistency, but alternatives that are ranked far apart to display inconsistency 

infrequently.  

They define the weight function: 

𝑤𝑖𝑗
𝛼 = {

1 if 𝛼 made a pairwise comparison for {𝑖, 𝑗}

0 did not make comparison
. (2.5.1.1) 

However, 𝑤𝑖𝑗
𝛼  may also be the number of pairwise comparisons between 𝑖 and 𝑗 

voter 𝛼. 𝑊𝛼  is symmetric. The true scale values are denoted 𝑠𝑖 and their true differences 

are 𝑋𝑖𝑗 = 𝑠𝑗 − 𝑠𝑖 in the ℳ𝐺  model class as Kaiser and Serlin (1978) had them. The 𝑠𝑖 are 

used to extract a global ranking which is Borda-optimal. The 𝑋𝑖𝑗, and in turn the 𝑠𝑖, are 

estimated by minimizing 𝑋 ∈ ℳ𝐺  in (2.5.1.2): 

∑ 𝑤𝑖𝑗
𝛼(𝑋𝑖𝑗 − 𝑌𝑖𝑗

𝛼)
2

𝛼,𝑖,𝑗 (2.5.1.2) 

The ℳ𝐾  model class is an alternative to ℳ𝐺  that produces analogous results to the 

binary adjacency matrix in Kendall and Smith (1940), although the 𝑌𝑖𝑗
𝛼 ∈ {−1,1} when 

𝑤𝑖𝑗
𝛼 > 0 and 𝑌𝑖𝑗

𝛼 = 0 otherwise. In this special case, 𝑋𝑖𝑗 = sign(𝑠𝑗 − 𝑠𝑖) and the resulting 

global ranking of the 𝑠𝑖 gives the Kemeny-optimal solution. This has the benefit of 

producing the Condorcet winner if it exists. They define the pairwise comparison graph 
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𝐺 = (𝑉, 𝐸) as an undirected graph whose vertex set is 𝑉 = {1,… , 𝑛} and whose edge set is 

(2.5.1.3). Here, edges can have weights 𝑤𝑖𝑗 = ∑ 𝑤𝑖𝑗
𝛼

𝛼  : 

𝐸 = ቄ{𝑖, 𝑗} ∈ 𝑉x𝑉 such that ∑ 𝑤𝑖𝑗
𝛼

𝛼 > 0ቅ (2.5.1.3)  

Now, they given an alternative to (2.5.1.2) to minimize 𝑋 ∈ ℳ𝐺  in (2.5.1.4) where 

�̅�𝑖𝑗 =
∑ 𝑤𝑖𝑗

𝛼𝑌𝑖𝑗
𝛼

𝛼

∑ 𝑤𝑖𝑗
𝛼

𝛼
 : 

∑ 𝑤𝑖𝑗(𝑋𝑖𝑗 − �̅�𝑖𝑗)
2

{𝑖,𝑗}∈𝐸 (2.5.1.4) 

If 𝑋𝑖𝑗 is a pairwise ranking (comparison), then Φ𝑖𝑗𝑘 is a triplewise ranking 

(comparison). The former is the edge flow and the latter is the triangular flow. The 

triangular flow carries the same information as a subgraph on vertices 𝑖, 𝑗, and 𝑘 and 

requires the subgraph be complete — 𝐾3. Calculating the curl is analogous to counting the 

number of circular triads in the ordinal setting. However, the curl can also be calculated in 

the cardinal setting. Here, they cite a formula comparable to (6.1.1), which we derived from 

Kendall and Smith’s work (1940) in Section 2.1.1. Formula 6.1.1 gives the fastest method to 

count the number of circular triads in a complete graph. (2.5.1.5) may then merit further 

investigation. 

𝑑 =
𝑛

24
(𝑛2 − 1) −

1

8
∑ (∑ 𝑋𝑖𝑗𝑗 )

2
𝑖 (2.5.1.5) 

HodgeRank goes beyond the scope of our work as it allows for rank aggregation and 

multiple judges. However, it is the state of the art in paired comparisons and is a frequently 

cited paper. See, for example, Csató (2015a), (2015b), (2016), Csató and Rónyai (2016), 

and Rajkumar (2015).  
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2.5.2. Spectral Ranking Methods 

Wei’s dissertation (1952), which must be read via microfiche, introduces a method 

for paired comparisons based on the Perron-Frobenius Theorem. Kendall (1955) gave Wei 

credit for the model (see pages 92–108 in Wei (1952)), but without Kendall, the method 

might have languished in obscurity as Wei’s dissertation was convoluted and Kendall 

greatly simplified the model. It is widely called the Kendall-Wei model. Their method 

requires an adjacency matrix (which they call 𝑃) with non-negative entries and with 

positive diagonal elements (the diagonal elements are usually 0.5 to indicate a tie between 

object 𝐴𝑖  and 𝐴𝑖). Then by the Perron-Frobenius theorem, there exists a unique simple 

positive root of the equation |𝐴 − 𝜆𝐼| = 0. Then, let 𝜆1 be the largest root and 𝑌1 the 

corresponding [ratings] vector, where we have the relation 𝑃𝑌 = Λ𝑌. Then, by using a 

successive powering, we get 𝑃𝑘𝑌1 = 𝜆1
𝑘𝑌1. We converge on a solution for 𝑌1 as 𝑘 → ∞. More 

intuitively, we can think of this process as weighting each object gaining the strength of the 

objects it beats. We demonstrate this with an example where the diagonal entries are 0, the 

row sums are 𝜶, and the relative strength vector is 𝒖 =
𝜶

∑ 𝛼𝑖𝑖
: 

𝑃 =

𝐴1
𝐴2
𝐴3
𝐴4

[

0 1 1 0
0 0 1 1
0 0 0 1
1 0 0 0

] ⇒ 𝜶(1) = [

2
2
1
1

] ⇒ 𝒖(1) = [

0. 3̅
0. 3̅
0.16̅
0.16̅

]. 

Then, for every 𝐴𝑖 , we assign the number of wins from objects 𝐴𝑖  has beaten. So, object 𝐴1 

beat 𝐴2 and 𝐴3, for 1(2), and 1(1) points, respectively, and a total of 𝛼1 = 1(2) + 1(1) = 3 

points. This gives 𝜶(2) = (3, 2, 3, 3) and 𝒖(2) = (0. 27̅̅̅̅ , 0. 18̅̅̅̅ , 0. 27̅̅̅̅ , 0. 27̅̅̅̅ ). Now, this process is 

repeated until the relative strength vector converges to 𝒖(∞) ≈ (0.321, 0.283, 0.165, 0.230), 
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which gives the ranking (𝐴1, 𝐴2, 𝐴4, 𝐴3). This method takes into account the strength of 

schedule and victories and results in a fully transitive strength vector.  

 David (1971) is critical of Kendall and Wei’s powering matrix method — strong 

teams losing to weak teams are punished more heavily than weak teams. Instead, he favors 

other methods, including Slater’s (1961) nearest adjoining order, as it is the maximum 

likelihood weak stochastic order.  

 Jech (1983) provides a similar method which Stob (1984) identifies. David (1987) 

provides an update on the Kendall-Wei method for unbalanced data. Keener (1993) is one 

of the early authors to notice that there are dozens of methods which are similar to the 

Kendall-Wei method. Later, Vigna (2019) produces an excellent overview of “spectral 

ranking methods” that arose independently over the last century, and gives Landau (1895) 

credit for the earliest version of this. Consider as well Redmond (2003). Meanwhile, 

PageRank by Google founders Brin et al. (1998) falls in this class of spectral ranking 

methods albeit by perturbation. They label their method a network-based stochastic 

method which rank webpages. Since then, the literature on PageRank has grown quickly 

including, for example, Langville and Meyer (2004), Callaghan et al. (2007), Govan (2008), 

Govan et al. (2009), Sargolzaei and Soleymani (2010), Radicchi (2011), London et al. 

(2014), Fogel et al. (2014), and Goodman et al. (2015). Some of these methods are time-

dynamic.  

 Vigna (2019) also includes Saaty’s Analytic Hierarchy Process (1980) among these 

spectral ranking methods. The difference is that entries in the paired comparison matrix 

are ratios, i.e., 𝑥𝑖𝑗 = 1/𝑥𝑗𝑖  instead of strength differences or win counts. Saaty and his legion 

of business world followers have never heard of paired comparisons. His work continues, 
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with Takahashi (1990), Nishizawa (1995), Kwiesielewicz and van Uden (2004), Ma (2006), 

Iida (2009), and Koczkodaj et al. (2016), among others. Koczkodaj et al. (2015) demystifies 

the connections between paired comparisons and the analytic hierarchy process. 

Koczkodaj introduces a measure of consistency in the AHP (1993). 

2.5.3. Dynamic Ratings Models 

Elo (1978) discusses the theory and implementation of his time-dynamic rating 

system for chess players, which had been in use by the US Chess Federation (USCF) since 

1960 and was first published in 1961. The international chess federation, FIDE, began 

using the system in 1970 to assign international titles. FIDE uses various versions of the 

model in different settings. That is, there is a ratings method that is used on an annual 

basis, one on a continuous basis, and one for a round robin (i.e., a simultaneous method), 

for example. It is, however, the continuous rating formula (2.5.3.1) that is of interest. It 

requires that some rating scale has been established, with players rated on that scale, and 

who will continue to be compared to newer, untested players. The rating system has 

become synonymous with Elo, to the point that most assume “ELO” to be an acronym of 

some sort.  

Elo assumes player performances are normally distributed. Here, a player 𝑖’s new 

rating after a competition, 𝛽𝑖′, is given by 

𝛽𝑖
′ = 𝛽𝑖 +𝐾(𝑊𝑖𝑗 − 𝐸[𝑊𝑖𝑗]), (2.5.3.1) 

where 𝛽𝑖 is the pre-competition rating; 𝐾 is a fixed rating point value for a single 

competition score, 𝐾 ∈ [10, 32]; 𝑊𝑖𝑗 is the actual game score with wins being 1, draws 

being ½, and losses being 0; 𝐸[𝑊𝑖𝑗] is the expected game score based on 𝛽𝑖 and 𝛽𝑗; and 𝛽𝑖
′ is 

rounded to the nearest integer by convention. The method assumes that 𝛽𝑖 − 𝛽𝑗 is normally 
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distributed like in the TMM, and so is considered an extension of the TMM. Note that 𝜎𝑖𝑗 =

√𝜎𝑖
2 + 𝜎𝑗

2 = 𝜎𝑖√2, 𝜎𝑖 = 𝜎𝑗  ∀ 𝑖, 𝑗. Additionally, 𝜎𝑖 ≔ 200, much like 𝜎 ≔ 100 for a single SAT 

exam, which gives 𝜎𝑖𝑗 = 200√2  ≈ 282.84. Thus, 𝛽𝑖 − 𝛽𝑗~𝑁(𝜇 = 0, 𝜎𝑖𝑗 ≈ 282.84). Then, it 

follows that  

𝐸[𝑊𝑖𝑗] = 𝑃 (𝑧 <  
𝛽𝑖 − 𝛽𝑗

𝜎𝑖𝑗
) = Φ(

𝛽𝑖 − 𝛽𝑗

𝜎𝑖𝑗
). 

Note that 𝐾 represents the number of points that are at stake in a particular match. The 

most stable leagues usually have 𝐾 = 10 while cohorts of unknown competitors have 𝐾 =

32. 𝐾(𝑊𝑖𝑗 − 𝐸[𝑊𝑖𝑗]), then, are the points that change owners. So, if 𝑖 beats 𝑗, then 𝑖 collects 

𝐾(𝑊𝑖𝑗 − 𝐸[𝑊𝑖𝑗]) points while 𝑗 loses 𝐾(𝑊𝑖𝑗 − 𝐸[𝑊𝑖𝑗]) points. Draws are still an increase in 

𝛽′ for the lower rated player and a decrease for a higher rated plater.  

Elo (1978) also provides a tier list separated by individual player standard 

deviation 𝜎𝑖 = 200.  

 

Table 2-4: Chess Player Tier List by Elo Rating 

Rating 𝛽𝑖 Player Classification 
𝛽𝑖 ≥ 2600 World Championship Contenders 

2400 ≤ 𝛽𝑖 ≤ 2599 
Most Grandmasters 

Most International Masters 
2200 ≤ 𝛽𝑖 ≤ 2399 Most National Masters 

⋮ ⋮ 
1200 ≤ 𝛽𝑖 ≤ 1399 Amateurs Class D/Category 4 

𝛽𝑖 ≤ 1199 Novices 
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 Elo (1978) also provides suggestions and solutions to maintain the model. For 

example, since ratings are zero-sum, there need to be methods to minimize “deflation.” Elo 

applies his ratings to historical data to retrieve “historical Grand Masters” and studies age-

related ratings, both of which Silver (2019) incorporates in his CARM-Elo model. Elo also 

notes that white, the first player to move, has a 57% chance of winning a game, which 

equates to about a 50-point rating increase. Interestingly, this is not taken into account 

when calculating 𝐸[𝑊𝑖𝑗]. 

 In Mark Glickman’s dissertation (1993), he introduces an Elo-like model with 𝜎𝑖(𝑡) 

called Glicko. The individual player variance decreases over time if the player is active but 

increases with inactivity. He continues work on time-dynamic models, including, but not 

limited to, Glickman and Stern (1998), (2016) and Glickman (2001). Glickman has served 

as the USCF ratings committee chairman since 1992.  

Herbrich et al. (2007) introduce a live ratings system for online gaming under 

Microsoft called TrueSkill, which can take more than two players into account. Due to the 

scale of online gaming systems (sometimes millions of players in a single game), how to 

balance calculation speed and degree of approximation is a consideration. Leiva et al. 

(2008) discuss the role of competition observation timeframe from an animal dominance 

and social choice perspective a la Appleby (1983) and Tufto (1998). In short, this 

observation timeframe should be as brief as possible.  

2.5.4. Rating and Ranking Models Used in Sports 

Plackett (1975) models finishing order. He seeks to predict, for example 

𝑃(𝐴𝑖 → 𝐴𝑗 → 𝐴𝑘), where the 𝐴(∙) are racehorses and the finishing order of three particular 
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horses is relevant. Each horse some probability of winning, where ∑ 𝑝𝑖
𝑛
𝑖=1 = 1, so he would 

say 𝑃(𝐴𝑖 → 𝐴𝑗 → 𝐴𝑘) = 𝑝𝑖 (
𝑝𝑗

1−𝑝𝑖
) (

𝑝𝑘

1−𝑝𝑖−𝑝𝑗
).  

From 1998 to 2013, the college football championship game participants were 

determined by the Bowl Championship Series (BCS), an ensemble model that took into 

account two polls and up to six statistical ranking methods. Not all of these methods have 

been made public, but they include Massey (1997) and Colley (2002), a Kendall-Wei 

method, as well as a BTM implementation and an Elo method. See Stern et al. (2004) for 

more on the BCS. Mease (2003) gives a Bayesian penalized maximum likelihood model that 

outperforms the methods used for the BCS.  

For the NCAA, West (2006) introduces an ordinal logistic regression method. The 

NCAA selection committee is also known for using RPI (2.5.4.1), or the Ratings Percentage 

Index, where �̂�𝑖 is team 𝑖’s winning percentage, �̂�𝑖 is the average winning percentage of all 

of the teams team 𝑖 has played, and �̂�𝑖 is the average winning percentage of all of the teams 

team 𝑖’s opponents have faced. It takes into account the same information the first two 

iterations of the Kendall-Wei method, albeit in an arbitrary weighting.  

𝑅𝑃𝐼𝑖 = 0.25�̂�𝑖 + 0.5�̂�𝑖 + 0.25�̂�𝑖 (2.5.4.1) 

Multi-Dimensional Scaling (MDS) takes observed pairwise [Euclidean] distance (or 

similarity) measures 𝑑𝑖𝑗  between 𝑛 objects, (𝑖, 𝑗 ∈ [1, 2, … , 𝑛]), and uses them to create a 𝐾-

dimensional mapping by minimizing a loss function. Consider the classic example where 

the desire is to take flying distances between 𝑛 American cities and produce a flat, 2-

dimensional map of the contiguous United States. There is no perfect map (in non-trivial 

2.6. Multi-Dimensional Scaling 
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sets of cities) or distances 𝛿𝑖𝑗 since we cannot represent points on a sphere with a plane. 

However, we can still produce estimates 𝛿𝑖𝑗 by, for example, by minimizing  

𝑆𝑆 =∑(𝛿𝑖𝑗 − 𝑑𝑖𝑗)
2

𝑖𝑗

. (2.6.1) 

If we were, for example, taking in a round-robin tournament’s worth of score 

differentials 𝑌𝑖𝑗, then we could estimate 𝜇𝑖𝑗 with an MDS method, and it would be less 

restrictive about intransitive outcomes. The larger 𝐾, the fewer restrictions there would be 

on intransitive outcomes.  

Kruskal (1978) provides an excellent introduction to MDS. Sjöberg (1968) 

considers MDS to be an extension to the unidimensional latent scale of Thurstone to 𝐾 

dimensions. Havlena and DeSarbo (1991) and Wedel and DeSarbo (1993) gives example 

applications of MDS and Stigler (1994) provides interesting data for MDS purposes. 

Tufto et al. (1998) describes four models which account for intransitivities in paired 

comparisons data. First, he alludes to Lahti et al. (1994) where each of the comparisons are 

simply modeled by the empirical proportions in (2.7.1), where 𝑋𝑖𝑗 is the observed number 

of successes 𝑖 > 𝑗 and 𝑛𝑖𝑗  is the number of times items 𝑖 and 𝑗 are judged.  

�̂�𝑖𝑗 =
𝑋𝑖𝑗

𝑛𝑖𝑗
(2.7.1)

However, Lahti et al. do no theoretical examination of this model; it is only used 

descriptively. Lahti et al. do, however, identify three circular triads in their data.  

Tufto et al. also introduce three models with an intransitive interaction term for 

covariates in a Bradley-Terry framework with the logit choice of link-function. For a 

2.7. Tufto, Modeling Intransitivity, and Dominance Hierarchies 
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comparison to a transitive model, they introduce (2.7.2), where individuals 𝑖 and 𝑗 have 

trait vectors < 𝑥𝑖 , 𝑦𝑖 > and fitted constants 𝑎, 𝑏. Here, 𝛽𝑖 = 𝑎𝑥𝑖 + 𝑏𝑦𝑖.  

logit(𝑝𝑖𝑗) = 𝑎(𝑥𝑖 − 𝑥𝑗) + 𝑏(𝑦𝑖 − 𝑦𝑗) = (𝑎𝑥𝑖 + 𝑏𝑦𝑖) − (𝑎𝑥𝑗 + 𝑏𝑦𝑗) = 𝛽𝑖 − 𝛽𝑗 (2.7.2) 

They modify (2.7.2) with a cross-product interaction 𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖  in (2.7.3), whose 

strength is measured with fitted constant 𝑐.  

logit(𝑝𝑖𝑗) = 𝑎(𝑥𝑖 − 𝑥𝑗) + 𝑏(𝑦𝑖 − 𝑦𝑗) + 𝑐(𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖) (2.7.3) 

The cross-product interaction term is remarkably similar to the term we introduce 

in Chapter 4, 𝑟𝑖𝑠𝑗 − 𝑟𝑗𝑠𝑖, except here the traits 𝒙 (age) and 𝒚 (sex) are observed, while 𝒓 and 

𝒔 are not observed. The strength of 𝒓 and 𝒔 is accounted for in their fitting. Finally, CRSP in 

Chapter 4 models observed differences in strength, not win or preference probabilities. In 

(2.7.3), 𝑥𝑖𝑦𝑗 − 𝑥𝑗𝑦𝑖  is treated as a single observed covariate. This would not be 

unreasonable in a sports ranking setting if 𝒙 and 𝒚 were offensive efficiency and defensive 

efficiency measures as in Govan (2008); however, these terms would need to be centered 

at zero. 

Tufto et al. also introduce an additional intransitive model in (2.7.4) as an extension 

of (2.7.2), where 𝑑 is a fitted constant and 𝑖 and 𝑗 may be related. This is likely not 

applicable in a sports ranking setting as teams do not usually beget other teams in the 

biblical sense. A similar model is given in Sinervo and Lively (1996). 

logit(𝑝𝑖𝑗) = 𝑎(𝑥𝑖 − 𝑥𝑗) + 𝑏(𝑦𝑖 − 𝑦𝑗) + 𝑑𝑟𝑖𝑗, where 𝑟𝑖𝑗 = {
1 𝑖 is 𝑗′𝑠 offspring

−1 𝑗 is 𝑖′𝑠 offspring
0 otherwise

 (2.7.4) 

Finally, Tufto et al. informally allude to an extension of (2.7.3) in (2.7.5), where 

more than two pairs of covariates could introduce intransitivity. Tufto’s student 

Kristiansen formally states (2.7.5) in his thesis, where there are 𝐾 traits 𝒙𝑘, the 𝑎𝑘 and 𝑎𝑢𝑣 
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are fitted constants, and 𝑎𝑢𝑣 = 0 if no interaction for trait pair 𝑢, 𝑣 is desired  (2011). 

Kristiansen explores a set of models where ‖𝑎𝑢𝑣 ≠ 0‖ = 2.  

logit(𝑝𝑖𝑗) = ∑(𝑎𝑘(𝑥𝑖𝑘 − 𝑥𝑗𝑘) + ∑ 𝑎𝑢𝑣(𝑥𝑖𝑢𝑥𝑗𝑣 − 𝑥𝑗𝑢𝑥𝑖𝑣)

𝑢,𝑣∈(1,𝐾)

)

𝐾

𝑘=1

(2.7.5) 

Generally, animal behavior and dominance structures are rife with intransitive 

relationships. For example, Broom and Cannings (2002) provide an interesting study in 

which dominance structure is not necessarily based purely on wins and losses, but of 

strategies of either sharing or competing resources. This is called the Hawk-Dove game. 

Hawks always takes a dove’s resources, doves always split their resources equally, and 

hawks compete with other hawks for a resource, but at some cost, 𝐶. The Hawk-Dove game 

allows for intransitivities to occur, as hawks are stronger than doves, but hawks may perish 

if 𝐶 is large. A difference between the Hawk-Dove game and our setting is that preferences 

and the outcomes of sports contests are usually not life and death. De Vries (1998) 

provides a nice overview of models that attempt to return empirically intransitive 

adjacency matrices to their nearest order and provides a modification on Slater’s method.  

In Tsai and Böckenholt’s (2006) variation on Thurstone-Mosteller framework, 

intransitive preferences are allowed by the model. These intransitive preferences are 

explained by the variability of the 𝑋𝑖𝑗 (as in (2.7.1)), which are dependent on the pair of 

items being compared — other models assume the variation in judgment to be the same 

across all pairs. Their reasoning is that some comparisons are more difficult to make than 

2.8. Random Effects Models Embracing Intransitivity 
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others. However, the final model still results in transitive ordering. They do not believe that 

one is able to model deviations from final ratings, just that the errors are random.  

Crispino et al. (2016) propose a Bayesian version of Tsai's (2006) model, where 

intransitive preferences occur with some probability. They are unaware of Tsai, but this 

model is sufficiently different by way of Bayesian Mallows framework. They propose a 

second kind of model where multiple users that make judgments which are clustered by 

their level of intransitivity. In both models, the goal is a transitive ordering. Also see 

Crispino et al. (2017) and Vitelli et al. (2017) for more on their Bayesian Mallows 

approaches. If the true model is a transitive ranking, but there is much variability in making 

paired comparisons, observed intransitive preferences would still occur, especially as 𝑛 

increases. The models of Tsai and Crispino are quite reasonable.  

In a BTM framework, Shuo Chen and Thorsten Joachims (2016a),  (2016b) 

introduce the Blade-Chest-Inner model that allows intransitivities with a pair of vectors. 

These vectors represent latent values. However, their solution is iterative and does not rely 

on an eigendecomposition4 as ours does. Most models dealing with intransitivity are either 

identified in Chen’s work or reference Chen’s work. Chen and Joachims (2016) is Chapter 5 

of Chen’s dissertation (2016) while Chen and Joachims (2016) is Chapter 6 of Chen’s 

dissertation (2016). 

 
4 The benefits of eigendecomposition chiefly include well-known and finely-tuned algorithms.  

2.9. The Blade-Chest Family of Models 
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2.9.1. Chen and Joachims 

As Chen (2016) notes, Tufto et al. (1998) modeled intransitivity, but required 

covariates to do so. In Chapter 5, Chen (2016) introduces two5 models (2.9.2, 2.9.3, 2.9.4) 

which use only wins and losses or binary preferences but nevertheless allow intransitivity. 

The entries of Chen’s matchup matrix, 𝑀(𝑎, 𝑏), are defined in (2.9.1.1), where 𝑎 = 𝑖 and 

𝑏 = 𝑗 are items or teams as we have previously defined. It is a more general version of the 

logit link function (2.4.4) in the BTM as it does not enforce stochastic transitivity, only that 

𝑝𝑖𝑗 = 1 − 𝑝𝑗𝑖 .  

𝑀(𝑎, 𝑏) = log (
𝑝𝑎𝑏

1 − 𝑝𝑎𝑏
) (2.9.1.1) 

In these models, each player (i.e., player 𝑎) is represented by a pair of 𝑘-dimensional 

vectors 𝒂𝑐ℎ𝑒𝑠𝑡 and 𝒂𝑏𝑙𝑎𝑑𝑒 . The blade-chest-dist model (2.9.1.2) is then an extension of the 2-

dimensional model in Causeur and Husson (2005). Notably in the blade-chest family of 

models, 𝑘 ≠ 1. 

𝑀(𝑎, 𝑏) = ‖𝒃𝑏𝑙𝑎𝑑𝑒 − 𝒂𝑐ℎ𝑒𝑠𝑡‖2
2 − ‖𝒂𝑏𝑙𝑎𝑑𝑒 − 𝒃𝑐ℎ𝑒𝑠𝑡‖2

2 (2.9.1.2) 

They add two “bias” terms in (2.9.1.3) to modify the model in (2.9.1.2) and relate it 

to the BTM. 

𝑀(𝑎, 𝑏) = ‖𝒃𝑏𝑙𝑎𝑑𝑒 − 𝒂𝑐ℎ𝑒𝑠𝑡‖2
2 − ‖𝒂𝑏𝑙𝑎𝑑𝑒 − 𝒃𝑐ℎ𝑒𝑠𝑡‖2

2 + 𝛾𝑎 − 𝛾𝑏 (2.9.1.3) 

Finally, the blade-chest-inner model (2.9.1.4) is similar to the 𝑘-dimensional model 

in Tufto et al. (1998) and Kristiansen (2011) in (2.7.5), except the blade and chest vectors 

are not observed.  

𝑀(𝑎, 𝑏) = 𝒂𝑐ℎ𝑒𝑠𝑡 ∙ 𝒃𝑏𝑙𝑎𝑑𝑒 − 𝒃𝑐ℎ𝑒𝑠𝑡 ∙ 𝒂𝑏𝑙𝑎𝑑𝑒 + 𝛾𝑎 − 𝛾𝑏 (2.9.1.4) 

 
5 Nominally two models, actually three models.  
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Also note that (2.9.1.4) has strength parameters which are independent of the blade 

and chest vectors, as Chen proves. He shows that the chest-blade-dist model (2.9.1.2) can 

be related to (2.9.1.4) with (2.9.1.5), where 𝛾𝑎
′ = (‖𝒂𝑐ℎ𝑒𝑠𝑡‖2

2 − ‖𝒂𝑏𝑙𝑎𝑑𝑒‖2
2)/2 and 𝛾𝑏

′  is 

defined similarly.  

𝑀(𝑎, 𝑏) = 2(𝒂𝑐ℎ𝑒𝑠𝑡 ∙ 𝒃𝑏𝑙𝑎𝑑𝑒 − 𝒃𝑐ℎ𝑒𝑠𝑡 ∙ 𝒂𝑏𝑙𝑎𝑑𝑒 + 𝛾𝑎
′ − 𝛾𝑏

′ ) (2.9.1.5) 

They then give the likelihood in (2.9.1.6) where 𝑆(𝑥) = (1 + 𝑒−𝑥)−1 and 𝐷 is the 

training dataset consisting of 4-tuples (𝑎, 𝑏, 𝑥𝑎𝑏 , 𝑛𝑎𝑏). 

∏ 𝑆(𝑀(𝑎, 𝑏))
𝑥𝑎𝑏

∙ (1 − 𝑆(𝑀(𝑎, 𝑏)))
𝑛𝑎𝑏−𝑥𝑎𝑏

(𝑎,𝑏,𝑥𝑎𝑏,𝑛𝑎𝑏)∈𝐷

 (2.9.1.6) 

To fit the models, he samples 𝐷, computes the sub-gradients of the local log-

likelihood over the parameters, and repeats until the parameters converge. He uses a 

regularization parameter6 to prevent over-fitting; however, this may bias the intransitive 

components. If the regularization parameter is too strong, the model devolves into the 

BTM. Their intransitive vectors are always of length 2 or more — they never consider 

scalars. Empirically, (2.9.1.4) performs better than (2.9.1.2), and both are usually better 

than the BTM. Notably, neither take score differential into account, and whether a contest is 

home or away is also not considered.  

In Chapter 6, Chen (2016) uses context covariates, like whether a game is played at 

home or away. The context covariates are usually not related to a team’s or player’s 

production. In both chapters, datasets related to Street Fighter VI, Defense of the Ancients 

2, StarCraft II, and ATP Tennis are used as they involve only two competitors at a time. That 

 
6 The orthogonality the 𝒓𝒔 pairs in the CRSP model may not be orthogonal under such a regularization 
parameter. Need to explore this as well as the relationship between CRSP and Blade-Chest-Inner.  
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is, NBA data is not examined. Player and context covariates are incorporated with NOACT 

and TANH activation functions in Chen and Joachims (2016) and Chen (2016) Chapter 6.  

2.9.2. Works Related to Chen and Joachims 

Causeur and Husson (2005) introduce a 2-dimensional extension (2.9.2.1) of the 

Bradley-Terry model which Chen and Joachims (2016) generalize to 𝑘-dimensional in 

(2.9.1.2). Causeur and Husson also call this a MDS approach to estimating team strength 

parameters with win and loss counts.  

logit(𝑝𝑖𝑗) = 𝜎𝑖𝑗√(𝜆𝑖1 − 𝜆𝑗1)
2
+ (𝜆𝑖2 − 𝜆𝑗2)

2
(2.9.2.1) 

 Bilmes et al. (2002) explicitly takes cycles into account, but ultimately finds 

transitive ratings. Meanwhile, Pahikkala et al. (2010) introduce a kernel which permits 

intransitivity. They give two interesting synthetic experiments, one which extracts 

strategies from a 𝑘 = 2 simplex design (i.e., an equilateral triangle whose vertices are rock, 

paper and scissors) and one which is not unlike the Hawk-Dove game. Volkovs and Zemel 

(2014) introduce the Multinomial Preference model which is a rank aggregation method 

that takes intransitive preferences into account.  

The Blade-Chest models are wildly popular. Pelechrinis et al. (2016) introduce two 

models, SportsNetRank and SportsTensoRank. Like Slater (1961), SportsNetRank removes 

the minimum number of edges to make the graph acyclic. Meanwhile, SportsTensoRank 

utilizes a 3-dimensional tensor decomposition. Ragain and Ugander (2016) introduce a 

Pairwise Choice Markov Chain Model. Aoki et al. (2017) introduce a method to “separate 

skill from luck.” However, this is accomplished primarily by comparing margin of victory to 

winning percentage. Niranjan and Rajkumar (2017) introduce a model which they claim 
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subsumes BTM, TMM, Blade-Chest, and other models. Chen et al. (2017) give an example of 

the Blade-Chest model to preferences of images — a paired comparisons application to 

something other than sporting competition with intransitivity.  

Yang et al. (2016) introduce a model which provides live win probabilities for 

sports, games, and eSports. Live models at some point during a competition may produce 

win probabilities that are intransitive when compared to pre-match probabilities. 

Additionally, two line-up models are introduced by Huang et al. (2006) and Pelechrinis 

(2016), (2018), the latter of which appears to have at the very least inspired Nate Silver et 

al.’s CARM-Elo model, 2.0 and on (2019).  

Gabriel (1998) generalizes linear methods and bilinear models by “criss-cross 

regression.” Gill and Swartz (2001) introduce methods to analyze round robin interaction 

data in a GLM framework. Hoff (2005) introduces bilinear mixed-effects models for dyadic 

data on which McCormick and Zheng (2015) build. Weston et al. (2011), Aizenberg et al.  

(2012), and Mikolov et al. (2013) introduce models with inner product effects, i.e. 

symmetric bilinear forms. Duan et al. (2017) introduce a generalized model for 

multidimensional intransitivity which has connections to MDS, Causeur and Husson  

(2005), and the Blade-Chest model. 
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The author has done a fair amount of modeling with NBA data. Examining it may 

facilitate conversation about how to proceed in describing relationships between NBA 

teams, as well as how covariates might be used in the CRSP model.  

The author drew inspiration from Nate Silver’s PECOTA (2003), CARM-Elo (2015), 

and DRAYMOND (2019) player and team prediction systems, as well as from Dean Oliver 

— engineer, former basketball scout, former statistician for the Seattle Supersonics and 

Sacramento Kings, and an assistant coach for the Washington Wizards as of August 2019. In 

Basketball on Paper (2004) and Roboscout (2004), Oliver defines his four factors for 

success in basketball games: a high “shooting percentage from the field, getting offensive 

rebounds, [not] committing turnovers, and going to the foul line a lot and making the 

shots.” 

In 2012, the author compared season-long count statistics to winning percentages 

for a SAS-based graduate regression course. Every observation was an NBA team’s 

statistical summary for a season (counts of every action performed by an NBA team, 

CHAPTER 3: 

PREVIOUS APPLICATIONS 

3.1. Covariates Predictive of Winning NBA Games 
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tracked and published by the NBA). The data includes the 32 most recent seasons (1979-

1980 through 2010-2011), the only seasons to incorporate the three-point shot.  

Several models were produced and discussed, although the most promising was a 

logistic regression using stepwise variable selection:  

�̂�𝑖 = 
𝑒−(2.1562−25.1735∙𝑤𝑖𝑛𝑙𝑜𝑠𝑠𝑖+15.0924∙𝐷𝑃𝑃𝐴𝑖)

1 + 𝑒−(2.1562−25.1735∙𝑤𝑖𝑛𝑙𝑜𝑠𝑠𝑖+15.0924∙𝐷𝑃𝑃𝐴𝑖)
. (3.1.1) 

Here, 𝐷𝑃𝑃𝐴 is calculated by dividing the number of points a team’s opponents scored in a 

season by the number of field goals attempted. This variable is better than opponent field 

goal percentage (number of field goals made divided by field goals attempted) since it 

accounts for all types of offense generated by a shot attempt, including foul shots and three 

point shooting — both considered to be more efficient than regular two point shots. This is 

a measure of defensive efficiency. The team’s winning percentage is 𝑤𝑖𝑛𝑙𝑜𝑠𝑠. 

 Using the 2011-2012 season statistics, the author sought to predict the eventual 

champion later that summer. The top four teams by �̂�𝑖 are listed in Table 3-1. Note that 

∑ �̂�𝑖𝑖 > 1 for the top four 2011-2012 teams since ∑ �̂�𝑖𝑖 = 32 across all 32 seasons. Some 

seasons had stronger teams that others. The Bulls prediction fell flat almost immediately as 

Derrick Rose tore his ACL in the first game of the playoffs. The Spurs lost to a team 

featuring three future league MVPs (Durant, Harden, and Westbrook). 

Table 3-1: 2012 Logistic Regression Prediction 

Team  𝒘𝒊𝒏𝒍𝒐𝒔𝒔𝒊 𝑫𝑷𝑷𝑨𝒊 �̂�𝒊 
Chicago Bulls 0.75758 1.07362 0.67066 
San Antonio Spurs 0.75758 1.14532 0.40829 
Oklahoma City Thunder 0.71212 1.13661 0.20039 
Miami Heat 0.69697 1.15910 0.10864 
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In 2015, the author used the same dataset as in the 2012 project with the three 

additional seasons (2011-2012 through 2013-2014) to complete a group project for a 

regression course. The work that follows is exclusively his, with the exception that 

Zhengyang Zhou suggested to difference offensive and defensive statistics. Principle 

components analysis was used to summarize the variation in the covariates. The five 

principal components corresponding to the four largest eigenvalues were interpreted. A 

logistic regression model to rate teams on their championship-caliber-ness was built 

selecting from the principal components and a time lag championship indicator.  

There are two components to a game of basketball: offense and defense. In offense, a 

team tries to get good shots by being close to the basket, without defenders close by, and 

easy to make. Furthermore, teams should not turn the ball over before they shoot, create 

open space by moving, trick their opponents, and use all members of the team.  

In defense, teams should stay between their opponents and the basket, eliminate space 

between themselves and a shooter, be aware of where the ball is, and help other members 

of their team. They should not let the opponents rebound.  

3.2.1. NBA Subject Introduction 

A team wins a game of basketball by scoring more points than their opponent. Shots 

known as field goals are worth 2 points; however, shots taken behind the 3-point line are 

worth 3 points. Free throws are worth 1 point. Over the 1980-1981 through 2013-2014 

NBA seasons, teams can expect to score 0.966 points per 2 point attempt, 1.047 points per 

3 point attempt, and 1.506 points per free throw. 

3.2. Logistic Regression on PCAs to Predict NBA Championships  
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The National Basketball Association (NBA) was founded in 1946-1947 season. The 

last substantial rule change in occurred in the 1979-1980 season, when league officials 

added the 3-point line. The NBA tracks several count statistics on the player level; however, 

the data used here is aggregated by team and season over 35 seasons (1980-2014). This is 

probably a disadvantage — it would be better to look at the data by game so that we could 

tie performance in each category to a win-loss outcome.  

We divided by number of games team played that season, and found the difference 

of totals for each category to find a per game categorical difference. For example, team 𝑖 

had an average of 52 rebounds per game and their opponents had an average of 49.5 

rebounds per game against team 𝑖. Then the resulting average per game difference was 2.5.  

3.2.2. Principle Components 

The variables included in the PCA are in Table 3-2.  

 

Table 3-2: PC Analysis Variables Included 

Abbreviation Variable  Abbreviation Variable 
𝐹𝐺𝑀 Field Goals Made  𝐴 Assists 
𝐹𝐺𝐴 Field Goals Attempted  𝑃𝐹 Personal Fouls 
𝐹𝑇𝑀 Free Throws Made  𝑆 Steals 
𝐹𝑇𝐴 Free Throws Attempted  𝑇 Turnovers 
𝐷𝑅 Defensive Rebound  𝐵 Blocks 
𝑂𝑅 Offensive Rebound  𝑇𝑃𝑀 Three Pointers Made 
𝑇𝑅 Total Rebound  𝑃𝑇 Points 

 

 

In Figure 3-1, we see that the first four principal components explain 84% of the 

variation in the covariates. We selected the first four components for interpretation.  
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Figure 3-1: PCA Scree Plot and Proportion of Variation Explained 

 

 

To interpret the principle components, we found all factor loadings greater than 

0.28 (an arbitrary threshold). Then, we identified the driving factor, and related all other 

factors to that factor. We interpreted these as either roster abilities or coaching strategies, 

found an exemplar of that principle component, and identified why that team was high in 

that principle component and what percent of games it won. We refer to the vector of 

described factor loadings as 𝜷+ and the ones we do not describe as 𝜷−, and similarly, the 

vector of observed covariates chosen and not as 𝑿+ and 𝑿−. Note that the observed 

covariates are centered and scaled.  

The first principal component was “Foul Choices;” 

𝑃𝐶1 ≈ 0.357𝐹𝑇𝑀 + 0.355𝐹𝑇𝐴 + 0.396𝐷𝑅 + 0.291𝑇𝑅 − 0.340𝑃𝐹 + 0.385𝑃𝑇 + 𝜷−
𝑇𝑿−. 
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It describes teams who foul less than their opponents. This may cause them to make or 

attempt more free throws, have more opportunities for defensive rebounds, and score 

more overall points. Fouling more is a symptom of bad defense, which means a team is 

more likely to suffer from their poor performance. This principal component should have a 

positive relation with winning percentage. An exemplar of the Foul Choices principal 

component is the 2009-10 Cleveland Cavaliers. Their observed Foul Choice principal 

component is  

𝑃𝐶1𝐶𝐿𝐸10 ≈ 𝜷+
𝑇 [0.6 1.1 1.8 1.4 −0.8 1.4] + 𝜷−

𝑇𝑿− ≈ 3.56. 

This team featured 25 year-old LeBron James entering his prime. He was virtually 

unguardable, opposing teams gave him an average of 10.2 free throw attempts per game 

(an amount typically only two to five players take in a given NBA season), and he was still 

making a consistent effort on defense. They won 74% of their games that year.  

The second principal component was “Possession Completion;”  

𝑃𝐶2 ≈ 0.457𝐹𝐺𝑀 + 0.385𝐹𝐺𝐴 + 0.331𝐴 + 0.340𝑆 − 0.346𝑇 + 0.283𝑃𝑇 + 𝜷−
𝑇𝑿−. 

It describes teams who have fewer turnovers or more steals, giving them more 

opportunities to score, which means the team makes more field goals and has more assists, 

therefore scoring more points overall. Turnovers are often indicative of a poor point guard 

or playmaker. This principal component should also have a positive relation with winning 

percentage. An exemplar of the Possession Completion principal component is the 2003-04 

Los Angeles Clippers. Their observed Possession Completion principal component is  

𝑃𝐶2𝐿𝐴𝐶04 ≈ 𝜷+
𝑇 [−1.6 −0.5 −1.1 −1.1 1.7 −1] + 𝜷−

𝑇𝑿− ≈ −2.89. 
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This team had no true point guard and instead was run by players like Corey Maggette, a 

shooting guard/small forward. His assist to turnover ratio was 224/207 ≈ 1.08, but point 

guards usually average 2 assists per turnover or more. The team won 34% of their games.  

 The third principal component was “Forcing Turnovers;”  

𝑃𝐶3 ≈ 0.301𝑂𝑅 + 0.324𝐷𝑅 + 0.420𝑇𝑅 − 0.417𝑆 + 0.485𝑇 + 𝜷−
𝑇𝑿−. 

It describes teams who have fewer steals or more turnovers. This subsequently gives them 

more opportunities to rebound, since they take fewer shots. Forcing turnovers is indicative 

of a good wing defender. This principal component should have a negative relation with 

winning percentage. An exemplar of the Forcing Turnovers principal component is the 

2005-06 Detroit Pistons. Their observed Forcing Turnovers principal component is 

𝑃𝐶3𝐷𝐸𝑇06 ≈ 𝜷+
𝑇 [−1.1 0.6 −0.1 1.1 −1.7] + 𝜷−

𝑇𝑿− ≈ 2.66. 

They had an excellent wing defender Tayshaun Prince and had historically great 

rebounders in Rasheed Wallace and Ben Wallace. The team won 78% of their games.  

The fourth principal component was “Return Strategy;”  

𝑃𝐶4 = 0.555𝑂𝑅 + 0.284𝑇𝑅 − 0.340𝐵 − 0.326𝑇𝑃𝑀 + 𝜷−
𝑇𝑿−. 

Teams low in this principal component attempt 3-pointers frequently and immediately run 

back on defense, meaning they will have fewer opportunities to get offensive rebounds, get 

blocked less on their shot attempts since they are taking 3s, and get more blocks on 

defense. This is a common strategy for older teams. This principal component should have 

a negative relation with winning percentage. An exemplar of the Return Strategy principal 

component is the 2012-13 San Antonio Spurs. Their observed Return Strategy principal 

component is  

𝑃𝐶4𝑆𝐴𝑆13 ≈ 𝜷+
𝑇 [−2 −0.5 0.4 1.4] + 𝜷−

𝑇𝑿− ≈ −2.22. 
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This Spurs team was uniquely equipped with all-time 3-point shooters like Danny Green, 

Marco Bellinelli, Patty Mills, and Matt Bonner and skilled big men like Tim Duncan and 

Tiago Splitter to earn blocks and rebounds. The Spurs won 71% of their games.  

The principal components are summarized in Table 3-3. 

 

Table 3-3: Principal Components Summary 

Principal Component Name Sign 
𝑃𝐶1 Foul Choices + 
𝑃𝐶2 Possession Completion + 
𝑃𝐶3 Forcing Turnovers − 
𝑃𝐶4 Return Strategy − 

 

 

3.2.3. Modeling Championship Probability with PCAs 

To predict the probability of winning a championship, we fit a logistic regression 

model using the principal components as well as winning percentage 𝑌𝑖 and a binary 

variable for championship won in the previous year, 𝑊𝑖−1. Several of the PCs are collinear 

with these additional variables, and so do not show up in the model. The variables were 

selected with forward stepwise selection. The model, which had the lowest AIC and largest 

AUC among candidate models, is  

ln (
𝑝𝑖

1−𝑝𝑖
) = −19.03 + 23.47𝑌𝑖 − .66𝑊𝑖−1 − 1.40𝑃𝐶𝑖9 − 1.08𝑃𝐶𝑖8 + .46𝑃𝐶𝑖6 + .26𝑃𝐶𝑖1 + 𝜀𝑖. 

And thus, the probability of winning can be formally expressed as 

�̂�𝑖 =
1

1 + 𝑒19.03−23.47𝑌𝑖+.66𝑊𝑖−1+1.40𝑋𝑖9+1.08𝑋𝑖8−.46𝑋𝑖6−.26𝑋𝑖1+𝜀𝑖  
. 

This model gave the highest rating to the eventual champion in 20 of the 35 seasons. 



79 
 

Here, we introduce the CRSP model (pronounced “crisp”), whose latent interaction 

structure is novel in an expected score differential setting. We discuss the mathematical 

details of the models in this chapter. Simulations and an application of the generalized 

CRSP model are discussed in Chapter 5, while Section 7.2 discusses ongoing and future 

work regarding CRSP.  

We introduce a few basic models for 𝑌𝑖𝑗, the score of home team 𝑖 minus the score of 

away team 𝑗. All the models in Section 4.1 are of the form 𝑌𝑖𝑗 = 𝜇𝑖𝑗 + 𝜀𝑖𝑗, where errors are 

assumed independent with constant variance and 𝜇𝑖𝑗 is the true point differential. The first 

model (4.1.1) is that all teams are equal and that outcomes are purely random. 

𝜇𝑖𝑗 = 0 (4.1.1) 

The second model (4.1.2) is that teams have equal strength, but that the home team 

has some advantage ℎ, which is the same for all pairs of teams.  

 𝜇𝑖𝑗 = ℎ (4.1.2) 

The third model (4.1.3) is a purely transitive model where each team 𝑖 has a 

CHAPTER 4: 

INTRODUCING THE CRSP MODEL 

4.1. A Basic Intransitive Interaction Model 
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strength parameter 𝛼𝑖. In the complete and balanced case, the strength estimate is 

equivalent to average point differential, a measure displayed in most league standings 

summaries.  

𝜇𝑖𝑗 = ℎ + 𝛼𝑖 − 𝛼𝑗 (4.1.3) 

We also introduce an intransitive model (4.1.4) with a fixed interaction effect 𝛽𝑖𝑗 

between every pair of teams 𝑖 and 𝑗 in addition to the parameters in (4.1.3) to serve as a 

reference point later.  

𝜇𝑖𝑗 = ℎ + 𝛼𝑖 − 𝛼𝑗 + 𝛽𝑖𝑗 (4.1.4) 

We assume 𝛽𝑖𝑗 = −𝛽𝑗𝑖, which is similar to the assumption in the BTM that 𝑝𝑖𝑗 = 1 −

𝑝𝑗𝑖. We also note that in such a model, the 𝛼𝑖 are estimated first to center the data, i.e., they 

are subject to ∑ 𝛼𝑖𝑖 = 0. Asymptotically, (4.1.4) fits one parameter for every two 

observations, producing an overfit model. We offer a generalization of the previous two 

models where 𝛽𝑖𝑗 ∀𝑖, 𝑗 is multiplied by a fitted constant 𝑤. When 𝑤 = 0, (4.1.5) becomes 

(4.1.3) and when 𝑤 = 1, (4.1.5) becomes (4.1.4).  

𝜇𝑖𝑗 = ℎ + 𝛼𝑖 − 𝛼𝑗 + 𝑤𝛽𝑖𝑗 (4.1.5) 

A simple approach might be to find 𝑤 ∈ [0,1] such that (4.1.5) is not overfit but still 

contains as much intransitivity as the data allow. In this sense, 𝑤 could be considered a 

shrinkage parameter. This fails, however, when some interactions between team 𝑖 and 

team 𝑗, 𝛽𝑖𝑗, are truly nonzero and others (𝛽𝑖∗𝑗∗) are truly zero. We believe CRSP can strike a 

middle ground where systemic relationships can be identified between teams which 

explain why 𝛽𝑖𝑗 is nonzero in some cases but not in others.  
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Remember that in Kendall and Smith (1940), a circular triad was when 𝐴 → 𝐵 →

𝐶 → 𝐴 and could be expressed as 
0 1 0
0 0 1
1 0 0

൩. As in HodgeRank, if we let a loss be indicated 

by a −1 instead of a 0, then a circular triad would be expressed as in (4.2.1) 

𝐀 = 
0 1 −1

−1 0 1
1 −1 0

൩ . (4.2.1) 

We could propose an alternative to 𝑤𝛽𝑖𝑗 in (4.1.5) where we let teams 𝑖 and 𝑗 

interact via some function of additional parameters 𝜷𝑖 = (𝑟𝑖, 𝑠𝑖 , 𝑝𝑖) and 𝜷𝑗 , say 𝑓(𝜷𝑖, 𝜷𝑗) =

𝜷𝑖
𝑇𝑨𝜷𝑗. Then we get  

𝜷𝑖
𝑇𝑨𝜷𝑗 = [𝑟𝑖 𝑠𝑖 𝑝𝑖] 

0 1 −1
−1 0 1
1 −1 0

൩ 

𝑟𝑗
𝑠𝑗
𝑝𝑗
൩ = 𝑟𝑖𝑠𝑗 − 𝑠𝑖𝑟𝑗 + 𝑟𝑖𝑝𝑗 − 𝑝𝑖𝑟𝑗 + 𝑠𝑖𝑝𝑗 − 𝑝𝑖𝑠𝑗 . (4.2.2) 

We impose the restriction  

𝑟𝑖 + 𝑠𝑖 + 𝑝𝑖 = 0, ∀𝑖. (4.2.3) 

Substituting 𝑝𝑖 = − 𝑟𝑖 − 𝑠𝑖 into (4.2.2), we get 

𝜷𝑖
𝑇𝑨𝜷𝑗 = 3(𝑟𝑖𝑠𝑗 − 𝑠𝑖𝑟𝑗). (4.2.4) 

Without loss of generality, we let our 𝑓(𝜷𝑖, 𝜷𝑗) = 𝑟𝑖𝑠𝑗 − 𝑠𝑖𝑟𝑗 . This could also have 

been accomplished by removing 𝑝𝑖 from 𝜷𝑖 and getting that 

𝑓(𝜷𝑖, 𝜷𝑗) = [𝑟𝑖 𝑠𝑖] [
0 1

−1 0
] [
𝑟𝑗
𝑠𝑗
] = 𝑟𝑖𝑠𝑗 − 𝑠𝑖𝑟𝑗  

or similarly det |
𝑟𝑖 𝑠𝑖
𝑟𝑗 𝑠𝑗

| = 𝑟𝑖𝑠𝑗 − 𝑠𝑖𝑟𝑗. However, the determinant analogy falls apart with the 

addition of 𝑝𝑖 and 𝑝𝑗 .  

4.2. Callback to Kendall and Smith 
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So, we propose the CRSP model in (4.2.5), 

𝜇𝑖𝑗 = ℎ + 𝛼𝑖 − 𝛼𝑗 + 𝑟𝑖𝑠𝑗 − 𝑠𝑖𝑟𝑗. (4.2.5) 

We also propose the generalized CRSP model in (4.2.6), where 𝐾 ∈ ቄ1,… , ⌊
𝑛−1

2
⌋ቅ, 

𝜇𝑖𝑗 = ℎ + 𝛼𝑖 − 𝛼𝑗 +∑(𝑟𝑖𝑘𝑠𝑗𝑘 − 𝑠𝑖𝑘𝑟𝑗𝑘)

𝐾

𝑘=1

. (4.2.6) 

We now discuss some relevant facts about matrices.  

4.3.1. Facts About Skew-Symmetric Matrices 

1. A square matrix 𝑨 is skew-symmetric if 𝑨𝑇 = −𝑨. 

2. If a skew-symmetric matrix consists of all real numbered entries, then its 

eigenvalues are all purely imaginary (or zero).  

a. The non-zero eigenvalues come in pairs ±𝑖𝜆𝑘, 𝑘 = 1, 2, …, where all 𝜆𝑘 are real. This 

implies that if the matrix is 𝑛 × 𝑛 with 𝑛 odd, at least one eigenvalue is 0. We will let 

𝑑 be the number of pairs of non-zero eigenvalues.  

b. Any real skew-symmetric matrix can be decomposed into diagonal form 

(eigenvector decomposition), as follows: 

𝑨 = 𝑼𝑫𝑼† = [𝒖1 𝒖2  𝒖3  𝒖4 … ]

[
 
 
 
 
𝑖𝜆1 0 0 0 ⋯
0 −𝑖𝜆1 0 0 ⋯
0 0 𝑖𝜆2 0 ⋯
0 0 0 −𝑖𝜆2 ⋯
⋮ ⋮ ⋮ ⋮ ⋱]

 
 
 
 

[
 
 
 
 
 𝒖1 

†

𝒖2 
†

𝒖3 
†

𝒖4 
†

⋮ ]
 
 
 
 
 

   

=∑𝑖𝜆𝑘(𝒖2𝑘−1 𝒖2𝑘−1
† − 𝒖2𝑘 𝒖2𝑘

† )

𝐾

𝑘=1

. 

4.3. Some Matrix Algebra 
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In this decomposition, the 𝒖𝑘 are complex orthogonal eigenvectors, and “†” denotes 

the conjugate transpose.  

3. Any real skew-symmetric matrix can be decomposed into block-diagonal form as 

follows7 

𝑨 = 𝑸𝚺𝑸𝑇 = [𝒒1  𝒒2  𝒒3  𝒒4 … ]

[
 
 
 
 
0 𝜆1 0 0 ⋯
−𝜆1 0 0 0 ⋯
0 0 0 𝜆2 ⋯
0 0 −𝜆2 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ]

 
 
 
 

[
 
 
 
 
𝒒1 
𝑇

𝒒2
𝑇

𝒒3 
𝑇

𝒒4 
𝑇

⋮ ]
 
 
 
 

. 

In this decomposition, the 𝜆𝑘 are the same as in 2.a. above, and the 𝒒𝑘  are real, 

orthogonal column vectors (not the eigenvectors of 𝐴). Note without loss of 

generality 𝒒1
𝑇𝒒1 = 1. This reduces to  

𝑨 =  −𝜆1𝒒2𝒒1 
𝑇 + 𝜆1𝒒1𝒒2 

𝑇 − 𝜆2𝒒4𝒒3 
𝑇 + 𝜆2𝒒3𝒒4 

𝑇 +⋯ 

=∑𝜆𝑘

𝐾

𝑘=1

(𝒒2𝑘−1𝒒2𝑘
𝑇 − 𝒒2𝑘𝒒2𝑘−1

𝑇 ). 

Now define 𝜆𝑘
1
2⁄ 𝒒2𝑘−1 = 𝒓𝑘 and 𝜆𝑘

1
2⁄ 𝒒2𝑘 = 𝒔𝑘 (so 𝒓𝑘

𝑇𝒓𝑘 = 𝜆𝑘 = 𝒔𝑘
𝑇𝒔𝑘). Then,  

𝑨 =∑𝒓𝑘𝒔𝑘
𝑇 − 𝒔𝑘𝒓𝑘

𝑇

𝐾

𝑘=1

. (4.3.1.1) 

4.3.2. Other Facts About Matrices 

1. If a square matrix is of the form 𝑩𝑩𝑇 , then it is positive semi-definite, which means 

that all eigenvalues are greater than or equal to 0.  

2. We have that a matrix of the form 𝑩𝑩𝑇 can be decomposed as follows, where the 𝒖𝑘 

are real orthogonal eigenvectors and 𝜆𝑘 ≥ 0 are the eigenvalues of 𝑩𝑩𝑇 . 

 
7 Standard result in matrix theory.  
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𝑩𝑩𝑇 = [𝒖1 𝒖2  𝒖3  𝒖4 … ]

[
 
 
 
 
𝜆1 0 0 0 ⋯
0 𝜆2 0 0 ⋯
0 0 𝜆3 0 ⋯
0 0 0 𝜆4 ⋯
⋮ ⋮ ⋮ ⋮ ⋱]

 
 
 
 

[
 
 
 
 
 𝒖1 

†

𝒖2 
†

𝒖3 
†

𝒖4 
†

⋮ ]
 
 
 
 
 

=∑𝜆𝑘
𝑘

𝒖𝑘𝒖𝑘 
𝑇  

4.3.3. Relationship Between Skew-Symmetric  and  

From (4.3.1.1), we can write 𝑨𝑨𝑇 as 

𝑨𝑨𝑇 = ∑ (𝒓𝑘𝒔𝑘
𝑇 − 𝒔𝑘𝒓𝑘

𝑇)𝐾
𝑘=1 (∑ (𝒓𝑘𝒔𝑘

𝑇 − 𝒔𝑘𝒓𝑘
𝑇)𝐾

𝑘=1 )𝑇. 

Since the 𝒓𝑘 and 𝒔𝑘 are all orthogonal, we have  

𝑨𝑨𝑇 =∑(𝒓𝑘𝒔𝑘
𝑇𝒔𝑘𝒓𝑘

𝑇 + 𝒔𝑘𝒓𝑘
𝑇𝒓𝑘𝒔𝑘

𝑇)

𝐾

𝑘=1

=∑𝜆𝑘(𝒓𝑘𝒓𝑘
𝑇 + 𝒔𝑘𝒔𝑘

𝑇)

𝐾

𝑘=1

. (4.3.3.1) 

Careful examination of this shows us that the 𝒓𝑘 and 𝒔𝑘 are eigenvectors of 𝑨𝑨𝑇; 

furthermore, these eigenvectors come in pairs. That is, each of the non-zero eigenvalues 

has multiplicity 2.  

4.3.4. Perfect Fit for Double Round Robin 

Our data consists of a square 𝑛 × 𝑛 matrix 𝒀 which consists of score differentials 

(home score − away score) for all match-ups between 𝑛 teams. We may or may not have 

zeroes on the diagonal, and for now we ignore this. Now let 𝒁 = 𝒀/2 and define  

𝑫 =
(𝒀 − 𝒀𝑇)

2
= 𝒁 − 𝒁𝑇 .  

Let �̂�𝑛×1 =
1

𝑛
𝑫𝟏 be the estimate of the "main effects" or strength values for the 𝑛 

teams, and define 𝑨 = �̂�𝟏𝑇 =
1

𝑛
(𝒁 − 𝒁𝑇)𝟏𝟏𝑇 (note that 𝑨 is singular). Now define 𝑩 = 𝒁 −

𝑨; this is a square matrix, but is not symmetric or skew-symmetric.  

Finally define 𝑪 = 𝑩− 𝑩𝑇 = 𝑫−𝑴, where 𝑴 = 𝑨− 𝑨𝑇 represents the fitting of 

𝑨 𝑨𝑨𝑇  
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main effects to the data. This matrix 𝑪 can be termed the "interaction matrix;" it is what is 

left over after fitting the main effects (overall strength). If the data are perfectly modeled 

by a transitive strength relationship, we will have 𝑪 = 𝟎. Note that 𝑪𝑇 = −𝑪, so 𝑪 is skew-

symmetric. Thus by (4.3.1.1), where 𝒓𝑘 and 𝒔𝑘 are the eigenvectors of 𝑪𝑪𝑇, we have  

𝑪 =∑𝒓𝑘𝒔𝑘
𝑇 − 𝒔𝑘𝒓𝑘

𝑇

𝐾

𝑘=1

. (4.3.4.1) 

We see that a perfect fit to 𝑪 can be found by using all 𝐾 components in (4.2.6), 

where 𝐾 = ⌊
𝑛−1

2
⌋. We will prove the eigenvector pair corresponding to the largest 

eigenvalue pair explains the most variation in the deviations from the transitive model in 

Section 4.5. Subsequently, we prove that each of the remaining largest eigenvalue pairs give 

us the eigenvector pair that explains the most variation in the deviations from the 

transitive model. The 𝐾 = ⌊
𝑛−1

2
⌋ model is equivalent to fitting the interaction term 𝛽𝑖𝑗 in 

(4.1.4) and thus undesirable in the (balanced) 𝑛𝑖𝑗 = 1 ∀𝑖, 𝑗 case. 
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4.3.5. The Trace of  

Consider a square matrix 𝑨4×4,  

𝑨4×4 = [

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

]. 

Additionally, consider  

𝑨𝑨𝑇 = [

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

] [

𝑎11 𝑎12 𝑎31 𝑎41
𝑎12 𝑎22 𝑎32 𝑎42
𝑎13 𝑎23 𝑎33 𝑎43
𝑎14 𝑎24 𝑎34 𝑎44

]. 

Then, where [𝑿](𝑖𝑗) is the (𝑖, 𝑗) entry of a matrix 𝑿,  

trace(𝑨𝑨𝑇) = [𝑨𝑨𝑇](11) + [𝑨𝑨
𝑇](22) + [𝑨𝑨

𝑇](33) + [𝑨𝑨
𝑇](44) 

= (𝑎11
2 + 𝑎12

2 + 𝑎13
2 + 𝑎14

2 ) 

+(𝑎12
2 + 𝑎22

2 + 𝑎23
2 + 𝑎24

2 ) 

+(𝑎13
2 + 𝑎23

2 + 𝑎33
2 + 𝑎34

2 ) 

+(𝑎14
2 + 𝑎24

2 + 𝑎34
2 + 𝑎44

2 ) 

=∑∑𝑎𝑖𝑗
2

4

𝑗=1

4

𝑖=1

. 

In general, then, for any 𝑨𝑛×𝑛, 

𝑨𝑨𝑇 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] [

𝑎11 𝑎21 ⋯ 𝑎𝑛1
𝑎12 𝑎22 ⋯ 𝑎𝑛2
⋮ ⋮ ⋱ ⋮
𝑎1𝑛 𝑎2𝑛 ⋯ 𝑎𝑛𝑛

], 

and  

trace(𝑨𝑨𝑇) =∑∑𝑎𝑖𝑗
2

𝑛

𝑗=1

𝑛

𝑖=1

. (4.3.5.1) 

  

𝑨𝑨𝑇  
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Also, note that for a vector 𝒂, 

trace(𝒂𝒂𝑇) = 𝒂𝑇𝒂 =∑𝑎𝑖
2

𝑖

. (4.3.5.2) 

We will fit models using minimization of 𝑆𝑆. In non-matrix form, we wish to 

minimize 

𝑆𝑆 =  ∑ ∑ (𝑦𝑖𝑗 − 𝜇𝑖𝑗)
2𝑛

𝑗=1

𝑛

𝑖=1
. (4.4.1) 

The equations to be solved are of the form (4.4.2):  

𝜕𝑆𝑆

𝜕𝜃
= (−2)∑ ∑ (𝑦𝑖𝑗 − 𝜇𝑖𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

𝜕𝜇𝑖𝑗

𝜕𝜃
= 0. (4.4.2) 

We can write (4.4.2) as (4.4.3):  

∑∑𝑦𝑖𝑗
𝜕𝜇𝑖𝑗

𝜕𝜃

𝑛

𝑗=1

𝑛

𝑖=1

=∑∑𝜇𝑖𝑗
𝜕𝜇𝑖𝑗

𝜕𝜃

𝑛

𝑗=1

.

𝑛

𝑖=1

(4.4.3) 

These equations can be written in matrix form fairly easily (unlike the 𝑆𝑆 itself). For 

example, consider the model in (4.1.2), then we have 

∑∑𝑦𝑖𝑗
𝜕𝜇𝑖𝑗

𝜕ℎ

𝑛

𝑗=1

𝑛

𝑖=1

=∑∑𝜇𝑖𝑗
𝜕𝜇𝑖𝑗

𝜕ℎ

𝑛

𝑗=1

.

𝑛

𝑖=1

(4.4.4) 

Now, since 
𝜕𝜇𝑖𝑗

𝜕ℎ
= 1, ∀𝑖, 𝑗, we have ∑ ∑ 𝑦𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 = ∑ ∑ ℎ𝑛

𝑗=1
𝑛
𝑖=1  or 

ℎ̂ = �̅�∙∙ . (4.4.5) 

Note that (4.4.5) could also be written as (4.4.6), (4.4.7), or (4.4.8), 

ℎ̂ =
1

2𝑛2
𝟏𝑇(𝒀 + 𝒀𝑇)𝟏, or (4.4.6) 

4.4. CRSP Model Fitting 
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ℎ̂(𝟏𝑇(𝟏𝟏𝑇)𝟏) = 𝟏𝑇
(𝒀 + 𝒀𝑇)

2
𝟏, or (4.4.7) 

𝟏𝑇 [
(𝒀 + 𝒀𝑇)

2
− ℎ̂𝟏𝟏𝑇] 𝟏 = 0. (4.4.8) 

Let us revisit the equations under the CRSP model we proposed in (4.2.5), 

𝜇𝑖𝑗 = ℎ + 𝛼𝑖 − 𝛼𝑗 + 𝑟𝑖𝑠𝑗 − 𝑠𝑖𝑟𝑗 . 

Note we need 
𝜕𝜇𝑖𝑗

𝜕𝜃
 for each 𝜃.  

𝜕𝜇𝑖𝑗

𝜕ℎ
= 1 

𝜕𝜇𝑖𝑗

𝜕𝛼1
= {

1 𝑖 = 1, 𝑗 ∈ {2,3, … , 𝑛}

−1 𝑗 = 1, 𝑖 ∈ {2,3, … , 𝑛}

0 otherwise

 

𝜕𝜇𝑖𝑗

𝜕𝑟1
= {

𝑠𝑗 𝑖 = 1, 𝑗 ∈ {2,3, … , 𝑛}

−𝑠𝑗 𝑗 = 1, 𝑖 ∈ {2,3, … , 𝑛}

0 otherwise

 

𝜕𝜇𝑖𝑗

𝜕𝑠1
= {

−𝑟𝑗 𝑖 = 1, 𝑗 ∈ {2,3, … , 𝑛}

𝑟𝑗 𝑗 = 1, 𝑖 ∈ {2,3, … , 𝑛}

0 otherwise

 

This gives us a set of fitting equations.  

For ℎ, we get  

∑∑𝑦𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

= ∑∑𝜇𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

=∑∑ℎ+ 𝛼𝑗 − 𝛼𝑗 + 𝑟𝑖𝑠𝑗 − 𝑠𝑖𝑟𝑗 = 𝑛2ℎ.

𝑛

𝑗=1

𝑛

𝑖=1

(4.4.9) 

From (4.4.9) we get (4.4.6) again;  

ℎ̂ =  
1

2𝑛2
𝟏𝑇(𝒀 + 𝒀𝑇)𝟏 = �̅�∙∙ . 
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For 𝛼1, we have  

∑𝑦1𝑗

𝑛

𝑗=1

−∑𝑦𝑖1

𝑛

𝑖=1

=∑𝜇1𝑗

𝑛

𝑗=1

−∑𝜇𝑖1

𝑛

𝑖=1

 . (4.4.10) 

This gives  

𝑦1∙ − 𝑦∙1 =∑(ℎ + 𝛼1 − 𝛼𝑗 + 𝑟1𝑠𝑗 − 𝑠1𝑟𝑗)

𝑛

𝑗=1

−∑(ℎ + 𝛼𝑖 − 𝛼1 + 𝑟𝑖𝑠1 − 𝑠𝑖𝑟1)

𝑛

𝑖=1

. (4.4.11) 

And (4.4.11) reduces to  

𝑦1∙ − 𝑦∙1 = ℎ + 𝛼1 − 𝛼𝑗 + 𝑟1𝑠𝑗 − 𝑠1𝑟𝑗. (4.4.12) 

Now, we know 𝛼. = 0 by requirement of constraints. In addition, it is a usual 

constraint that any interaction parameter 𝛽𝑖𝑗 sum to zero over 𝑗 for fixed 𝑖 and sums to zero 

over 𝑖 for fixed 𝑗. For us, 𝛽1𝑗 = 𝑟1𝑠𝑗 − 𝑠1𝑟𝑗, so 𝛽1∙ = 𝑟1𝑠∙ − 𝑠1𝑟∙ = 0 with similar algebra 

showing that 𝛽∙1 = 𝑠1𝑟∙ − 𝑟1𝑠∙ = 0. The result is that all terms except 𝛼1 disappear, and so 

we get (4.4.13): 

�̂�1 =
1

2
(�̅�1. − �̅�.1). (4.4.14) 

In general, this gives (4.4.15). As claimed earlier, the �̂� are the average score 

differential in the balanced case 

�̂� =  
1

2𝑛
[𝒀 − 𝒀𝑇]𝟏. (4.4.15) 

For 𝑟1, we have (4.4.16):  

∑𝑦1𝑗𝑠𝑗

𝑛

𝑗=1

−∑𝑦𝑖1𝑠𝑖

𝑛

𝑖=1

=∑𝜇1𝑗𝑠𝑗

𝑛

𝑗=1

−∑𝜇𝑖1𝑠𝑖

𝑛

𝑖=1

. (4.4.16) 
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This gives  

∑𝑦1𝑗𝑠𝑗

𝑛

𝑗=1

−∑𝑦𝑖1𝑠𝑖

𝑛

𝑖=1

=∑(ℎ + 𝛼1 − 𝛼𝑗 + 𝑟1𝑠𝑗 − 𝑠1𝑟𝑗)𝑠𝑗

𝑛

𝑗=1

−∑(ℎ + 𝛼1 − 𝛼𝑗 + 𝑟𝑖𝑠1 − 𝑠𝑖𝑟1)𝑠𝑖

𝑛

𝑖=1

. 

And the RHS of (4.4.16) is  

ℎ∑𝑠𝑗 + 𝛼1∑𝑠𝑗

𝑛

𝑗=1

−∑𝛼𝑗𝑠𝑗

𝑛

𝑗=1

+∑𝑠𝑗
2

𝑛

𝑗=1

− 𝑠1∑𝑟𝑗𝑠𝑗

𝑛

𝑗=1

− ℎ∑𝑠𝑖

𝑛

𝑖=1

𝑛

𝑗=1

−∑𝛼𝑖𝑠𝑖 + 𝛼1∑𝑠𝑖

𝑛

𝑖=1

+ 𝑠1∑𝑟𝑖𝑠𝑖 + 𝑟𝑖∑𝑠𝑖
2

𝑛

𝑖=1

𝑛

𝑖=1

𝑛

𝑖=1

 

= 2𝛼1∑𝑠𝑖

𝑛

𝑖=1

− 2∑𝛼𝑖𝑠𝑖

𝑛

𝑖=1

+ 2𝑟1∑𝑠𝑖
2

𝑛

𝑖=1

− 2𝑠1∑𝑟𝑖𝑠𝑖

𝑛

𝑖=1

. 

Now we will assume that the last term is zero, that is ∑ 𝑟𝑖𝑠𝑖
𝑛
𝑖=1 = 0. This is because we will 

show that the solutions are orthogonal eigenvectors. Now, we have 

∑𝑦1𝑗𝑠𝑗

𝑛

𝑗=1

−∑𝑦𝑖1𝑠𝑖

𝑛

𝑖=1

= 2𝛼1∑𝑠𝑖

𝑛

𝑖=1

− 2∑𝛼𝑖𝑠𝑖

𝑛

𝑖=1

+ 2𝑟1∑𝑠𝑖
2

𝑛

𝑖=1

. (4.4.17) 

Using 𝜆𝑠𝑠 = ∑ 𝑠𝑖
2𝑛

𝑖=1 , we have  

𝜆𝑠𝑠𝑟1 = 
1

2
∑(𝑦1𝑖 − 𝑦𝑖1)𝑠𝑖 + 𝜶

𝑇𝒔 − 𝛼1(𝟏
𝑇𝒔).

𝑛

𝑖=1

(4.4.18) 

We get similar equations for 𝑟2, … , 𝑟𝑛, so we have (4.4.19): 

𝜆𝑠𝑠𝒓 =  
1

2
[𝒀 − 𝒀𝑇]𝒔 + 𝟏𝜶𝑇𝒔 −  𝜶𝟏𝑇𝒔. (4.4.19) 

In the notation from Section 4.3, (4.4.19) is 

𝜆𝑠𝑠𝒓 =  𝑫𝒔 − 𝑨𝒔 + 𝑨𝑇𝒔 = (𝑫 −𝑴)𝒔. (4.4.20) 

Similarly, we get  

𝜆𝑟𝑟𝒔 = (𝑫 −𝑴)
𝑇𝒓. (4.4.21) 
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Putting these together we see 

𝜆𝑟𝑟𝜆𝑠𝑠𝒓 = (𝑫 −𝑴)(𝑫 −𝑴)𝑇𝒓. (4.4.22) 

Inspection of (4.4.22) shows us that indeed 𝒓 is an eigenvector of (𝑫 −𝑴)(𝑫 −𝑴)𝑇, with 

eigenvalue 𝜆 = 𝜆𝑟𝑟𝜆𝑠𝑠. The eigenvector needs to be properly scaled so that 𝟏𝑇𝒓 =  𝜆
1
2⁄ .  

Define 𝑌𝑖𝑗 as home team 𝑖’s score minus away team 𝑗’s score, i.e., 𝑌𝑖𝑗 is the home 

team’s score differential, where 𝑖, 𝑗 ∈ {1,2, … , 𝑛}. 

Define 𝑧𝑖𝑗 = 𝑌𝑖𝑗 − ℎ̂, where ℎ̂ = �̅�∙∙ =
∑ 𝑌𝑖𝑗𝑖𝑗

𝑛2
 (i.e., when 𝑛𝑖𝑗 = 1 ∀𝑖, 𝑗; all teams play one 

game at home and one game away against all other teams, including themselves).  

Define 𝑑𝑖𝑗 =
1

2
(𝑌𝑖𝑗 − 𝑌𝑗𝑖) =

1

2
(𝑧𝑖𝑗 − 𝑧𝑗𝑖), since  

𝑧𝑖𝑗 − 𝑧𝑗𝑖 = (𝑌𝑖𝑗 − ℎ̂) − (𝑌𝑗𝑖 − ℎ̂) = 𝑌𝑖𝑗 − 𝑌𝑗𝑖. 

Let 𝜇𝑖𝑗 = −𝜇𝑗𝑖, which gives skew-symmetry.  

Also, 𝑫 ≔ {𝑑𝑖𝑗} and 𝑴≔ {𝜇𝑖𝑗}. �̂� = {�̂�𝑖𝑗}, where �̂� = �̂�𝟏𝑇 − 𝟏�̂�𝑇 with �̂�𝑖 =

1

2
(�̅�𝑖∙ − �̅�∙𝑖). 

Now, our models are of the form 𝐸[𝑌𝑖𝑗] = ℎ + 𝜇𝑖𝑗 .  

Consider models which have 𝜇𝑖𝑗 = −𝜇𝑗𝑖, that is, a skew-symmetric 𝑴.  

𝜇𝑖𝑗 = 𝛼𝑖 − 𝛼𝑗 (4.5.1) 

𝜇𝑖𝑗 = 𝛼𝑖 − 𝛼𝑗 + 𝑟𝑖𝑠𝑗 − 𝑠𝑖𝑟𝑗 (4.5.2) 

𝜇𝑖𝑗 = 𝛼𝑖 − 𝛼𝑗 +∑𝑟𝑖𝑘𝑠𝑗𝑘 − 𝑠𝑖𝑘𝑟𝑗𝑘

𝐾

𝑘=1

(4.5.3) 

 

4.5. Largest Eigenvalue Proof 
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We want to show 

1. in all models, (4.5.1–.3), �̂�𝑖 =
1

2
(�̅�𝑖∙ − �̅�∙𝑖) is the least squares estimator, 

2. the least squares estimator of 𝒓, 𝒔 in (4.5.2) is an eigenvector pair from 𝑪𝑪𝑇, and 

3. once we have shown 2., this result can be extended to the 2nd, 3rd, … pair. 

First,  

𝑆𝑆 =∑(𝑌𝑖𝑗 − ℎ̂ − �̂�𝑖𝑗)
2

𝑖𝑗

 

=∑(𝑧𝑖𝑗 − �̂�𝑖𝑗)
2

𝑖𝑗

 

=∑(𝑧𝑖𝑗 − 𝑑𝑖𝑗 + 𝑑𝑖𝑗 − �̂�𝑖𝑗)
2

𝑖𝑗

 

=∑(𝑧𝑖𝑗 − 𝑑𝑖𝑗)
2

𝑖𝑗

+∑(𝑑𝑖𝑗 − �̂�𝑖𝑗)
2

𝑖𝑗

+ 2∑(𝑧𝑖𝑗 − 𝑑𝑖𝑗)(𝑑𝑖𝑗 − �̂�𝑖𝑗)

𝑖𝑗

. 

Note that  

∑(𝑧𝑖𝑗 − 𝑑𝑖𝑗)(𝑑𝑖𝑗 − �̂�𝑖𝑗)

𝑖𝑗

=∑(𝑧𝑖𝑗 − 𝑑𝑖𝑗)𝑑𝑖𝑗 −∑(𝑧𝑖𝑗 − 𝑑𝑖𝑗)�̂�𝑖𝑗
𝑖𝑗𝑖𝑗

 

=
1

2
∑(𝑧𝑖𝑗 −

1

2
(𝑧𝑖𝑗 − 𝑧𝑗𝑖)) (𝑧𝑖𝑗 − 𝑧𝑗𝑖)

𝑖𝑗

−∑(𝑧𝑖𝑗 −
1

2
𝑧𝑖𝑗 +

1

2
𝑧𝑗𝑖) �̂�𝑖𝑗

𝑖𝑗

 

=
1

4
∑(𝑧𝑖𝑗 + 𝑧𝑗𝑖)(𝑧𝑖𝑗 − 𝑧𝑗𝑖)

𝑖𝑗

−
1

2
∑(𝑧𝑖𝑗 + 𝑧𝑗𝑖)�̂�𝑖𝑗
𝑖𝑗

 

=
1

4
(∑𝑧𝑖𝑗

2

𝑖𝑗

−∑𝑧𝑗𝑖
2

𝑖𝑗

) −
1

2
(∑𝑧𝑖𝑗�̂�𝑖𝑗

𝑖𝑗

−∑𝑧𝑗𝑖�̂�𝑗𝑖
𝑗𝑖

) 

=
1

4
(0) −

1

2
(0) = 0. 
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So, while 𝜇𝑖𝑗 = −𝜇𝑗𝑖  in the balanced case (𝑛𝑖𝑗 = 1 ∀𝑖, 𝑗), 

𝑆𝑆 =∑(𝑧𝑖𝑗 − �̂�𝑖𝑗)
2

𝑖𝑗

=∑(𝑧𝑖𝑗 − 𝑑𝑖𝑗)
2

𝑖𝑗

+∑(𝑑𝑖𝑗 − �̂�𝑖𝑗)
2

𝑖𝑗

. (4.5.4) 

Note here that 𝑑𝑖𝑗 =
1

2
(𝑌𝑖𝑗 − 𝑌𝑗𝑖) represents the average strength differential between 

teams 𝑖 and 𝑗. So, ∑ (𝑧𝑖𝑗 − 𝑑𝑖𝑗)
2

𝑖𝑗  represents the variation from individual games with 

respect to the mean difference between the teams after taking home court advantage into 

account and 

∑(𝑑𝑖𝑗 − �̂�𝑖𝑗)
2

𝑖𝑗

(4.5.5) 

represents the variation we seek to model.  

If we define 𝑫 = {𝑑𝑖𝑗}, then 𝑫 is skew-symmetric, as  

𝑑𝑖𝑗 =
1

2
(𝑌𝑖𝑗 − 𝑌𝑗𝑖) = −

1

2
(𝑌𝑗𝑖 − 𝑌𝑖𝑗) = −𝑑𝑗𝑖  ∀𝑖, 𝑗. 

Additionally, we have skew-symmetric matrix �̂� = {�̂�𝑖𝑗} and let 𝑪 = 𝑫 − �̂�. We also know 

that the scalar multiple of a skew symmetric matrix (i.e., −1 × �̂�), as well as the sum of 

skew-symmetric matrices (i.e., 𝑫+ (−1 × �̂�)), result in a skew-symmetric matrix. So, 𝑪 =

𝑫 − �̂� is skew-symmetric.  

In Section 4.3.4, we prove that the least squares solution for �̂�𝑖 is �̂�𝑖 =
1

2
(�̅�𝑖∙ − �̅�∙𝑖) 

and that �̂�𝑘, �̂�𝑘 pairs must be paired eigenvectors of (𝑫 − �̂�)(𝑫 − �̂�)
𝑇
= 𝑪𝑪𝑇 with �̂� =

�̂�𝟏𝑇 − 𝟏�̂�𝑇 . Now, consider fitting one pair of eigenvectors of 𝑪𝑪𝑇 called 𝒓ℓ and 𝒔ℓ. We want 

to show that these are the eigenvectors corresponding to the largest eigenvalue pair, 𝜆1, 𝜆1. 

Without loss of generality, let 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐾 where 𝐾 = ⌊
𝑛−1

2
⌋.  
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Now, notice that 𝑫− �̂� = {𝑑𝑖𝑗 − �̂�𝑖𝑗} and from (4.3.5.1) we know that  

∑(𝑑𝑖𝑗 − �̂�𝑖𝑗)
2

𝑖𝑗

= trace ((𝑫 − �̂�)(𝑫 − �̂�)
𝑇
) = trace(𝑪𝑪𝑇). (4.5.6) 

We also know that 𝒓𝑘
𝑇𝒓ℓ = 𝒓𝑘

𝑇𝒔ℓ = 𝒔𝑘
𝑇𝒓ℓ = 𝒔𝑘

𝑇𝒔ℓ = 0 ∀𝑘, ℓ, 𝑘 ≠ ℓ, and from (4.3.4.1) we have 

𝑪 = ∑ 𝒓𝑘𝒔𝑘
𝑇 − 𝒔𝑘𝒓𝑘

𝑇𝐾
𝑘=1 . Then, letting 𝐿 = 𝐾,  

trace(𝑪𝑪𝑇) = trace((∑𝒓𝑘𝒔𝑘
𝑇 − 𝒔𝑘𝒓𝑘

𝑇

𝐾

𝑘=1

)(∑𝒓𝑙𝒔𝑙
𝑇 − 𝒔𝑙𝒓𝑙

𝑇

𝐿

𝑙=1

)

𝑇

) 

= trace((∑𝒓𝑘𝒔𝑘
𝑇 − 𝒔𝑘𝒓𝑘

𝑇

𝐾

𝑘=1

)(∑𝒔𝑙𝒓𝑙
𝑇 − 𝒓𝑙𝒔𝑙

𝑇

𝐿

𝑙=1

)) 

= trace(∑ (𝒓𝑘𝒔𝑘
𝑇 − 𝒔𝑘𝒓𝑘

𝑇)(𝒔𝑙𝒓𝑙
𝑇 − 𝒓𝑙𝒔𝑙

𝑇)

𝐾,𝐿

𝑘,𝑙=1

) 

= trace(∑ 𝒓𝑘𝒔𝑘
𝑇𝒔𝑙𝒓𝑙

𝑇 − 𝒓𝑘𝒔𝑘
𝑇𝒓𝑙𝒔𝑙

𝑇 − 𝒔𝑘𝒓𝑘
𝑇𝒔𝑙𝒓𝑙

𝑇 + 𝒔𝑘𝒓𝑘
𝑇𝒓𝑙𝒔𝑙

𝑇

𝐾,𝐿

𝑘,𝑙=1

) 

= trace(∑𝒓𝑘𝒔𝑘
𝑇𝒔𝑘𝒓𝑘

𝑇 + 𝒔𝑘𝒓𝑘
𝑇𝒓𝑘𝒔𝑘

𝑇

𝐾

𝑘=1

) 

= trace(∑𝒓𝑘𝜆𝑘𝒓𝑘
𝑇 + 𝒔𝑘𝜆𝑘𝒔𝑘

𝑇

𝐾

𝑘=1

) 

=∑𝜆𝑘(trace(𝒓𝑘𝒓𝑘
𝑇) + trace(𝒔𝑘𝒔𝑘

𝑇))

𝐾

𝑘=1

 

=∑𝜆𝑘(𝒓𝑘
𝑇𝒓𝑘 + 𝒔𝑘

𝑇𝒔𝑘)

𝐾

𝑘=1

 

=∑𝜆𝑘(𝜆𝑘 + 𝜆𝑘)

𝐾

𝑘=1
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= 2∑𝜆𝑘
2

𝐾

𝑘=1

 

 

So, now we have  

∑(𝑑𝑖𝑗 − �̂�𝑖𝑗)
2

𝑖𝑗

= 2∑𝜆𝑘
2

𝐾

𝑘=1

. (4.5.7) 

Since 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐾, we have that 𝜆1
2 ≥ 𝜆2

2 ≥ ⋯ ≥ 𝜆𝐾
2 . Clearly, choosing the eigenvector 

pair, 𝑟1 and 𝑠1, corresponding to the largest eigenvalue of 𝑪𝑪𝑇, 𝜆1, maximizes the amount of 

variation explained. 

 We can show this alternatively. We want to pick ℓ such that 𝒓ℓ and 𝒔ℓ maximize the 

amount of variation explained in 𝑪𝑪𝑇.  

𝑅𝑆𝑆 =∑(𝑑𝑖𝑗 − (�̂�𝑖 − �̂�𝑗) − (𝑟𝑖ℓ𝑠𝑗ℓ − 𝑠𝑖ℓ𝑟𝑗ℓ))
2

𝑖𝑗

 

Note that we can re-express 𝒓ℓ𝒔ℓ
𝑇 − 𝒔ℓ𝒓ℓ

𝑇 as 

𝒓ℓ𝒔ℓ
𝑇 − 𝒔ℓ𝒓ℓ

𝑇 = [

𝑟1ℓ
𝑟2ℓ
⋮
𝑟𝑛ℓ

] [𝑠1ℓ 𝑠2ℓ … 𝑠𝑛ℓ] − [

𝑠1ℓ
𝑠2ℓ
⋮
𝑠𝑛ℓ

] [𝑟1ℓ 𝑟2ℓ … 𝑟𝑛ℓ] 

= [

𝑟1ℓ𝑠1ℓ 𝑟1ℓ𝑠2ℓ … 𝑟1ℓ𝑠𝑛ℓ
𝑟2ℓ𝑠1ℓ 𝑟2ℓ𝑠2ℓ … 𝑟2ℓ𝑠𝑛ℓ
⋮ ⋮ ⋱ ⋮

𝑟𝑛ℓ𝑠1ℓ 𝑟𝑛ℓ𝑠2ℓ … 𝑟𝑛ℓ𝑠𝑛ℓ

] − [

𝑠1ℓ𝑟1ℓ 𝑠1ℓ𝑟2ℓ … 𝑠1ℓ𝑟𝑛ℓ
𝑠2ℓ𝑟1ℓ 𝑠2ℓ𝑟2ℓ … 𝑠2ℓ𝑟𝑛ℓ
⋮ ⋮ ⋱ ⋮

𝑠𝑛ℓ𝑟1ℓ 𝑠𝑛ℓ𝑟2ℓ … 𝑠𝑛ℓ𝑟𝑛ℓ

] 

= [

0 𝑟1ℓ𝑠2ℓ − 𝑠1ℓ𝑟2ℓ … 𝑟1ℓ𝑠𝑛ℓ − 𝑠1ℓ𝑟𝑛ℓ
𝑟2ℓ𝑠1ℓ − 𝑠2ℓ𝑟1ℓ 0 … 𝑟2ℓ𝑠𝑛ℓ − 𝑠2ℓ𝑟𝑛ℓ

⋮ ⋮ ⋱ ⋮
𝑟𝑛ℓ𝑠1ℓ − 𝑠𝑛ℓ𝑟1ℓ 𝑟𝑛ℓ𝑠2ℓ − 𝑠𝑛ℓ𝑟2ℓ … 0

]. 
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Here, we see that 𝒓ℓ𝒔ℓ
𝑇 − 𝒔ℓ𝒓ℓ

𝑇 = {𝑟𝑖ℓ𝑠𝑗ℓ − 𝑠𝑖ℓ𝑟𝑗ℓ} and that 𝒓ℓ𝒔ℓ
𝑇 − 𝒔ℓ𝒓ℓ

𝑇 is a square, skew-

symmetric matrix. From earlier, we have that 𝑫 = {𝑑𝑖𝑗}, �̂� = {�̂�𝑖𝑗}, and 𝑪 = 𝑫 − �̂� =

{𝑑𝑖𝑗 − �̂�𝑖𝑗} where �̂�𝑖𝑗 = �̂�𝑖 − �̂�𝑗.  

So, now we have that  

𝑅𝑆𝑆 =∑(𝑑𝑖𝑗 − (�̂�𝑖 − �̂�𝑗) − (𝑟𝑖ℓ𝑠𝑗ℓ − 𝑠𝑖ℓ𝑟𝑗ℓ))
2

𝑖𝑗

 

= trace ((𝑪 − (𝒓ℓ𝒔ℓ
𝑇 − 𝒔ℓ𝒓ℓ

𝑇)) (𝑪 − (𝒓ℓ𝒔ℓ
𝑇 − 𝒔ℓ𝒓ℓ

𝑇))
𝑇

) 

= trace

(

 
 
(∑ 𝒓𝑘𝒔𝑘

𝑇 − 𝒔𝑘𝒓𝑘
𝑇

𝐾

𝑘=1,
𝑘≠ℓ

)(∑𝒓𝑙𝒔𝑙
𝑇 − 𝒔𝑙𝒓𝑙

𝑇

𝐿

𝑙=1,
𝑙≠ℓ

)

𝑇

)

 
 

 

= 2∑ 𝜆𝑘
2

𝐾

𝑘=1,
𝑘≠ℓ

 

= 2((∑𝜆𝑘
2

𝐾

𝑘=1

) − 𝜆ℓ
2). 

Clearly, choosing ℓ = 1 reduces 𝑅𝑆𝑆 by 2𝜆1
2, thereby maximizing the variation explained by 

𝒓ℓ and 𝒔ℓ.  
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We can decompose all of the variation in the data, 𝒀, into parts. The first step is to 

identify how much variation the home advantage constant ℎ explains.  

𝑆𝑆𝑇𝑂𝑇∗ =∑𝑌𝑖𝑗
2

𝑖𝑗

 

=∑(𝑌𝑖𝑗 − ℎ̂ + ℎ̂)
2

𝑖𝑗

 

=∑(𝑌𝑖𝑗 − ℎ̂)
2

𝑖𝑗

− 2ℎ̂∑(𝑌𝑖𝑗 − ℎ̂)

𝑖𝑗

+ ℎ̂2∑1

𝑖𝑗

 

=∑(𝑌𝑖𝑗 − ℎ̂)
2

𝑖𝑗

+ 𝑛2ℎ̂2 

= 𝑆𝑆𝑇𝑂𝑇 + 𝑆𝑆ℎ̂ 

Specifically, we have 

𝑆𝑆𝑇𝑂𝑇 =∑(𝑌𝑖𝑗 − ℎ̂)
2

𝑖𝑗

(4.6.1) 

and 

𝑆𝑆ℎ̂ = 𝑛
2ℎ̂2. (4.6.2) 

 We leave the decomposition of ∑ (𝑌𝑖𝑗 − ℎ̂)
2

𝑖𝑗  into ∑ (𝑌𝑖𝑗 − ℎ̂ − �̂�𝑖𝑗)
2

𝑖𝑗  and a 

remainder as well as identifying the degrees of freedom for later.  

  

4.6. Analysis of Variance 
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Here, we see the CRSP model in action, performed on individual NBA seasons. The 

league is composed of two 15-team conferences, each of which is composed of three 5-team 

divisions. Special circumstances8 excluded, every team plays 82 games in a regular season. 

Specifically, each team plays 

• four games against all four opponents within a team’s division;  

• two games against every opponent in the other conference; and  

• 36 games against the ten teams in the other two conference divisions (where four 

teams are randomly assigned to only three games).  

Our current CRSP solution requires exactly two inputs per pair of teams. Ideally then, 

the method in its current form would be used for a double round-robin. To fit the data into 

the required structure, we have averaged replications of matchups in the same location. If 

needed, one could also use a single replication for every matchup. The effects on the 

variability of the parameter estimates requires further study in cases where ∃𝑛𝑖𝑗 ≠ 1.  

 
8 The 2010-2011 season was shortened to 66 games by the lockout and in 2013, a game to be played in 
Boston at the very end of the regular season was cancelled because of the Boston Marathon bombing and 
was not rescheduled. 

CHAPTER 5: 

AN APPLICATION OF THE CRSP MODEL IN THE NBA 
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We begin by looking at a single season — 2016-2017. Here, we model expected 

score differentials 𝜇𝑖𝑗, where 𝜇𝑖𝑗 = 𝛼𝑖 − 𝛼𝑗 − 𝑟𝑖𝑠𝑗 − 𝑟𝑗𝑠𝑖; that is, the home effect ℎ̂ has been 

removed. We find that ℎ̂ = 2.887. The remaining parameter estimates are in Table 5-1. 

How are we to interpret this? For one, the strength parameters should be like the point 

differential in a standings table one might find in a newspaper or on the internet, as these 

are calculated as in (5.1.1) where 𝐺𝑖 is the number of games team 𝑖 has played and 𝑋𝑖𝑔 is 

team 𝑖’s score differential in the 𝑔th game of the season,  

�̂�𝑖 =
∑ 𝑋𝑖𝑔
𝐺𝑖
𝑔=1

𝐺𝑖
. (5.1.1) 

Then, if team 𝑖 were to hypothetically play the same schedule over and over, �̂�𝑖 would be 

biased by the schedule while �̂�𝑖 would not.  

 

 

 

 

 

 

 

 

 

5.1. A Simple Worked Example 
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Table 5-1: k=1 Parameter Estimates for each Team, 2016-2017 Season 

Team (𝑖) Location �̂� �̂�1 �̂�1 

76ers Philadelphia −5.725 −0.014 2.503 

Blazers Portland −0.425 0.592 −0.717 

Bucks Milwaukee −0.458 −0.434 0.227 

Bulls Chicago −0.558 −2.032 −3.039 

Cavaliers Cleveland 2.542 1.330 0.374 

Celtics Boston 2.417 −2.172 0.023 

Clippers Los Angeles 4.333 0.136 −3.014 

Grizzlies Memphis 0.283 0.713 1.223 

Hawks Atlanta −1.400 1.668 2.864 

Heat Miami 0.558 1.767 0.647 

Hornets Charlotte −0.008 −1.135 0.345 

Jazz Utah 4.858 2.352 −2.891 

Kings Sacramento −3.708 0.164 1.025 

Knicks New York −3.808 −0.791 1.093 

Lakers Los Angeles −5.525 0.391 −1.368 

Magic Orlando −6.658 0.852 −2.696 

Mavericks Dallas −2.900 −2.606 −0.408 

Nets Brooklyn −6.483 1.728 −0.510 

Nuggets Denver 0.975 −2.558 2.603 

Pacers Indiana −0.600 −1.404 −2.691 

Pelicans New Orleans −1.708 2.382 0.703 

Pistons Detroit −0.483 3.644 0.987 

Raptors Toronto 3.083 −0.386 −0.705 

Rockets Houston 4.933 −0.138 0.792 

Spurs San Antonio 7.908 0.860 1.100 

Suns Phoenix −5.067 −1.478 1.123 

Thunder Oklahoma City 1.492 0.736 −1.192 

Timberwolves Minnesota −0.950 −1.027 1.737 

Warriors Golden State 11.267 −3.397 0.288 

Wizards Washington 1.817 0.252 −0.424 

  

 

Also, consider for example the matchups between the Golden State Warriors (GSW), 

the San Antonio Spurs (SAS), and the Houston Rockets (HOU). Here, we see that the Chain 
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model (i.e., strength rating only; 𝑘 = 0) is entirely transitive as �̂�𝐺𝑆𝑊 − �̂�𝐻𝑂𝑈 could be 

calculated by �̂�𝐺𝑆𝑊 − �̂�𝑆𝐴𝑆 and �̂�𝑆𝐴𝑆 − �̂�𝐻𝑂𝑈, 

�̂�𝐺𝑆𝑊 − �̂�𝐻𝑂𝑈 = (�̂�𝐺𝑆𝑊 − �̂�𝑆𝐴𝑆) + (�̂�𝑆𝐴𝑆 − �̂�𝐻𝑂𝑈) ≈ 6.34. 

As we can see in Figure 5-1, we can represent the relationships between the 𝑛 teams with 

only 𝑛 − 1 quantities, i.e., �̂�(2) − �̂�(1), �̂�(3) − �̂�(2), … , �̂�(𝑛) − �̂�(𝑛−1).  

 

 

 

We can also look at the intransitive contribution between GSW and SAS, for 

example, in the CRSP model, 

�̂�𝐺𝑆𝑊�̂�𝑆𝐴𝑆 −  �̂�𝑆𝐴𝑆�̂�𝐺𝑆𝑊 ≈ −3.40(1.10) − 0.86(0.29) ≈ −3.98. 

Then, the estimated strength differential between GSW and SAS is  

�̂�𝐺𝑆𝑊 − �̂�𝑆𝐴𝑆 + �̂�𝐺𝑆𝑊�̂�𝑆𝐴𝑆 −  �̂�𝑆𝐴𝑆�̂�𝐺𝑆𝑊 = 3.36 + (−3.98) = −0.62. 

For the top teams from the Chain example visualization, we see that in the 𝑘 = 1 CRSP 

example in Figure 5-2 that all the directional relationships remain the same, except 

between GSW and SAS. Here, the direction switches and now SAS is favored over GSW, 

albeit with a strength differential that can be overcome by home court advantage.   

 

 

Figure 5-1: Chain Example, Subset Visualization 
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 Now, if we decide to use the generalized CRSP model and pick 𝑘 = 4 𝒓, 𝒔 pairs , then 

we get, for example, that GSW are favored over SAS by 8.02 points, where the parameter 

estimates can be found in Table 5-2. We do not show the 𝒓 and 𝒔 parameter estimates for 

𝑘 ∈ {5, . .14}.  

�̂�𝐺𝑆𝑊 − �̂�𝑆𝐴𝑆 +∑ �̂�𝐺𝑆𝑊,𝑘�̂�𝑆𝐴𝑆,𝑘 − �̂�𝐺𝑆𝑊,𝑘�̂�𝑆𝐴𝑆,𝑘

4

𝑘=1

 

= �̂�𝐺𝑆𝑊 − �̂�𝑆𝐴𝑆 + �̂�𝐺𝑆𝑊,1:4
𝑇 �̂�𝑆𝐴𝑆,1:4 − �̂�

𝑇
𝐺𝑆𝑊,1:4�̂�𝑆𝐴𝑆,1:4 

≈ 3.36 + [

−3.40
0.23

−2.27
1.59

]

𝑇

[

1.10
2.18

−0.97
1.32

] − [

0.29
0.87

−1.27
0.69

]

𝑇

[

0.86
−2.10
2.07
0.90

] ≈ 3.36 + 4.66 ≈ 8.02. 

 

 

Figure 5-2: CRSP Example, Subset Visualization 
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Table 5-2: Generalized CRSP r,s Parameter Estimates for k=4 

Team �̂�1 �̂�2 �̂�3 �̂�4 �̂�1 �̂�2 �̂�3 �̂�4 

76ers −0.014 −1.349 0.014 −0.067 2.503 −0.153 −0.623 −2.111 

Blazers 0.592 1.185 0.490 −0.046 −0.717 1.698 −0.367 0.402 

Bucks −0.434 −3.092 −2.291 −0.581 0.227 −2.386 −0.684 −0.779 

Bulls −2.032 −2.405 0.940 1.131 −3.039 1.251 −0.770 1.484 

Cavaliers 1.330 2.125 −1.772 0.477 0.374 2.349 0.513 −1.468 

Celtics −2.172 2.272 −0.763 −0.891 0.023 −0.093 0.278 −1.052 

Clippers 0.136 −2.149 0.568 −1.637 −3.014 1.096 0.597 −0.761 

Grizzlies 0.713 −1.100 0.323 −1.297 1.223 −0.870 −0.599 1.164 

Hawks 1.668 −0.967 0.375 3.318 2.864 −1.548 0.146 0.490 

Heat 1.767 0.333 −0.656 0.922 0.647 −2.080 −1.194 1.116 

Hornets −1.135 0.372 0.907 0.386 0.345 1.127 1.971 0.978 

Jazz 2.352 0.336 −0.393 1.210 −2.891 −1.307 −0.830 0.827 

Kings 0.164 −1.837 −0.218 −0.587 1.025 2.556 1.273 −0.074 

Knicks −0.791 0.308 −0.419 −1.496 1.093 −1.940 1.438 1.086 

Lakers 0.391 1.748 0.064 −1.703 −1.368 −1.828 −2.553 1.694 

Magic 0.852 0.010 1.425 −0.478 −2.696 −1.138 0.189 −0.465 

Mavericks −2.606 1.405 2.416 −1.824 −0.408 −1.071 0.213 −0.876 

Nets 1.728 0.331 −1.497 −1.790 −0.510 0.725 −1.937 −2.002 

Nuggets −2.558 1.279 −0.124 0.711 2.603 0.700 −2.506 −0.946 

Pacers −1.404 −0.019 −2.692 2.236 −2.691 −1.516 3.249 −0.501 

Pelicans 2.382 0.622 −2.230 −1.516 0.703 0.372 0.445 0.864 

Pistons 3.644 1.384 0.780 −0.196 0.987 0.979 2.265 0.182 

Raptors −0.386 2.500 1.424 1.466 −0.705 0.910 −0.073 −0.994 

Rockets −0.138 −2.121 1.275 −0.411 0.792 −1.100 1.219 −3.444 

Spurs 0.860 −2.103 2.078 0.903 1.100 2.181 −0.970 1.317 

Suns −1.478 0.108 −0.962 −1.564 1.123 1.914 1.394 2.717 

Thunder 0.736 1.518 1.301 1.773 −1.192 0.020 −0.693 −1.054 

Timberwolves −1.027 0.718 1.901 −0.182 1.737 −2.874 1.224 1.234 

Warriors −3.397 0.225 −2.278 1.595 0.288 0.869 −1.270 0.690 

Wizards 0.252 −1.638 0.015 0.134 −0.424 1.156 −1.346 0.281 
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So how do we choose 𝑘 in the generalized CRSP model? This question has endured 

some amount of discussion and will not be resolved here. Methods include using a 

graphical elbow, like a scree plot in PCA or using 𝑅2 in regression, picking a percentage of 

variation cutoff in advance, using an information criterion like AIC or BIC, and using an 

ANOVA method and perform 𝐹-tests. In some way or another, we will want to use the 

information in Table 5-3.  

 

Table 5-3: Variation Explained by each r, s pair 

𝑘 
Intransitive 

Variation 
Explained by Pair 

Cumulative 
Proportion of Total 

Intransitive Variation 

Pair 
Signs 

1 12633 0.264 1 

2 9426 0.461 -1 

3 5972 0.586 -1 

4 5383 0.699 -1 

5 3930 0.781 1 

6 3035 0.844 -1 

7 2722 0.901 1 

8 1692 0.937 -1 

9 1309 0.964 1 

10 774 0.98 1 

11 539 0.991 -1 

12 290 0.997 1 

13 76 0.999 -1 

14 47 1 -1 
 

We arbitrarily chose to represent 70% of the intransitive variation (that is, the 

variation from pairs of teams that disagrees with the transitive Chain model) and got 𝑘 = 4.  

5.2. Selecting the Number of 𝒓, 𝒔 Pairs 

0

.

9
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We also examined the generalized CRSP model for each season from 2004-2005 to 

2016-2017. Interestingly, the 2016-2017 NBA season given as an example in Section A 

Simple Worked Example5.1 had the most intransitive variation. This could be because the 

league was in a state of flux at the time — the GSW revolutionized “small ball” basketball 

which involved zero or one big men (generally, players 6’10” or taller) while other teams 

were stuck in the old NBA and played with two “big men.” 

 

Table 5-4: Generalized CRSP by NBA Season 

Year 
Percent of Total Intransitive Variation 

Explained by up to 𝑘 𝑟, 𝑠 pairs 
Total 

Intransitive 
Variation 𝑘 ≤ 1 𝑘 ≤ 2 𝑘 ≤ 3 𝑘 ≤ 4 𝑘 ≤ 5 

2005 0.237 0.415 0.564 0.674 0.769 36241 

2006 0.259 0.447 0.566 0.674 0.762 40992 

2007 0.256 0.437 0.569 0.691 0.778 43142 

2008 0.233 0.429 0.569 0.676 0.762 40949 

2009 0.22 0.387 0.521 0.634 0.723 40300 

2010 0.231 0.413 0.582 0.701 0.78 42898 

2011 0.222 0.404 0.556 0.671 0.756 39759 

2012 0.261 0.444 0.59 0.699 0.791 36823 

2013 0.241 0.412 0.549 0.669 0.765 46119 

2014 0.201 0.381 0.527 0.648 0.744 36680 

2015 0.209 0.375 0.53 0.645 0.736 41558 

2016 0.218 0.392 0.527 0.635 0.734 42725 

2017 0.264 0.461 0.586 0.699 0.781 47829 
 

 

 We also see in Figure 5-3: Comparison of Cumulative Intransitive Variation over k 

and by YearFigure 5-3 that the eigendecomposition is remarkably consistent in the amount 

of variation explained across years. It is not clear whether that is due to the nature of the 
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NBA, some properties of the eigendecomposition, or both. The year used as the example, 

2017, is represented using pink dots.  

Figure 5-3: Comparison of Cumulative Intransitive Variation over k and by Year 

 

 

We can represent the intransitive relationship between every team in a fairly simple 

plot. At least, the visual representation is simple for the basic CRSP model (𝑘 = 1). First, 

note that each team 𝑖’s intransitive pair, 𝑟𝑖 and 𝑠𝑖 , can be plotted on a Cartesian plane with 

orthogonal axes 𝑅 and 𝑆. Then, the magnitude of the resulting vector (𝑟𝑖, 𝑠𝑖) is  

‖𝑣i‖ = √�̂�i
2 + �̂�i

2 (5.3.1) 

and the vector’s counter-clockwise rotation from the positive 𝑅 axis is  

5.3. Cartesian Coordinate Representation of 𝒓, 𝒔 Pairs 



108 
 

𝜃i = tan
−1 (

𝑠i
𝑟i
) . (5.3.2) 

Now, continuing the example from Section 5.1, we examine the top four teams from 

the 2016-2017 season. The teams are described in Table 5-5 and plotted in Figure 5-4.  

 

Table 5-5: Small Cartesian Example, 2016-2017 NBA Season 

𝑖 �̂�𝒊 �̂�𝑖 ‖𝑣𝑖‖ 𝜃𝑖  

𝐺𝑆𝑊 −3.40 0.29 2.10 175° 

𝑆𝐴𝑆 0.86 1.10 0.86 52° 

𝐻𝑂𝑈 −0.13 0.79 0.49 99° 

𝐿𝐴𝐶 0.13 −3.01 1.86 272° 
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Figure 5-4: Small Cartesian Example, 2016-2017 NBA Season 

 

We notice that 𝑟𝑖𝑠𝑗 − 𝑟𝑗𝑠𝑖 ≥ 0  ∀𝑗 where 0° < 𝜃𝑗 − 𝜃𝑖 < 180°. That is, team 𝑖 gets a 

positive intransitive contribution to its strength differential estimate from any team 𝑗 

within 180° counter-clockwise of team 𝑖. So, for example, SAS gets a positive intransitive 

contribution from the Houston Rockets and GSW, but gets a negative intransitive 

contribution from the Los Angeles Clippers. Notice also that 𝑟𝑖𝑠𝑗 − 𝑟𝑗𝑠𝑖  maximized when 

𝜃𝑗 − 𝜃𝑖 = 90° (when holding ‖𝑣𝑖‖ and ‖𝑣𝑗‖ constant). So, the largest contributions come 

from ‖𝑣𝑖‖ and ‖𝑣𝑗‖ large and 𝜃𝑗 − 𝜃𝑖 ≈ 90°. This is why SAS got such a large contribution 

from GSW.  
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Figure 5-4 is easy to read with only four teams, however there were 30 teams in the 

model. We used one color per vector to distinguish the four teams in Figure 5-4, but with 

30 teams (many choosing red or blue as their primary color), we need to find a way to 

distinguish the teams’ vectors. To address this, we added a secondary (or tertiary) team 

color to the vector in Figure 5-5. 

Observe that the original relationships and positions of the four teams from Figure 

5-4 are still in Figure 5-5. Also, observe that the teams with the largest positive 

contribution from intransitive components in relation to the GSW (i.e., about 90° clockwise 

of GSW and have large ||𝑣𝑖||) were teams that notoriously played their “big men” — Atlanta 

Hawks (Dwight Howard), Memphis Grizzlies (Marc Gasol and Zack Randolph), Sacramento 

Kings (DeMarcus Cousins), Philadelphia 76ers (Joel Embiid), and San Antonio Spurs 

(LaMarcus Aldridge and Pau Gasol). The Warriors had a strength rating of �̂�𝐺𝑆𝑊 = 11.27, 

which was substantially larger than every other team. They were incredibly fast and 

athletic (and relatively short) and were able to overwhelm other teams in those ways. 

However, against the aforementioned larger teams, this was less of an advantage and is 

thus reflected as a modeled decrease between those teams. It might also be helpful to 

display subsets of teams, like in Eastern and Western Conferences as in Figure 5-6 and 

Figure 5-7. 
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Figure 5-5: Complete Cartesian Example, 2016-2017 NBA Season 
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Figure 5-6: Complete Cartesian Example, Eastern Conference 
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Figure 5-7: Complete Cartesian Example, Western Conference 
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Our initial goal was to recreate the enumerated distribution of circular triads, 𝑑, 

found in Table II (Kendall and Smith, 1940, p. 333, included in Chapter 2), which goes to 

𝑛 = 7. We will examine details that we skipped in Section 2.1.1, prove select statements, 

and apply that knowledge to write a speedy algorithm to replicate Table II to 𝑛 = 13. We go 

beyond the 𝑛 = 10 case in Kendall and Gibbons’ fifth edition of their book (1990), 

originally published in 1948.  

The algorithm independently developed here is remarkably similar to Alway 

(1962). Also, we run into space constraints in the 𝑛 = 14 case. Knezek et al. (1998) explore 

up to the 𝑛 = 15 case, but do not explicitly publish the 𝑑 distribution in their work. To 

address the issues of space and to extend the 𝑑 distribution to cases larger than 𝑛 = 15, we 

propose modifying the algorithm with parallelization and smaller matrices of new edges.  

Kendall and Smith define the “alpha numbers” (𝛼-numbers) as the number of edges 

leaving a vertex in a graph. In graph theory, this is called the out-degree. An 𝛼-number for 

item 𝑟 is the number of directed edges leaving item 𝑟, or the number of times item 𝑟 was 

CHAPTER 6: 

CIRCULAR TRIAD COUNT DISTRIBUTION FOR LARGER 𝒏 

6.1. Theoretical Examination of Kendall and Smith 
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preferred to other items. Then, 𝛼 ∈ (0,1, … , 𝑛 − 1). Since there are (
𝑛
2
) pairs to compare, 

∑ 𝛼𝑟
𝑛
𝑟=1 = (

𝑛
2
) =

𝑛(𝑛−1)

2
. Kendall then gives the mean and variance of the 𝛼-vectors, but calls 

the latter 𝑇. We derive these here:  

𝐸[𝛼𝑟] =
∑ 𝛼𝑟
𝑛
𝑟=1

𝑛
=
𝑛(𝑛 − 1) 2⁄

𝑛
=
𝑛 − 1

2
 

𝑇 = 𝑉𝑎𝑟(𝛼𝑟) 

=∑(𝛼𝑟 − 𝐸[𝛼𝑟])
2

𝑛

𝑟=1

 

=∑(𝛼𝑟 −
𝑛 − 1

2
)
2𝑛

𝑟=1

 

=∑(𝛼𝑟)
2

𝑛

𝑟=1

− (𝑛 − 1)𝛼𝑟 +
1

4
(𝑛 − 1)2 

=∑(𝛼𝑟)
2

𝑛

𝑟=1

− (𝑛 − 1)∑𝛼𝑟

𝑛

𝑟=1

+
1

4
(𝑛 − 1)2∑1

𝑛

𝑟=1

 

=∑(𝛼𝑟)
2

𝑛

𝑟=1

− (𝑛 − 1) ∙
𝑛 − 1

2
 +
1

4
(𝑛 − 1)2𝑛 

=∑(𝛼𝑟)
2

𝑛

𝑟=1

−
𝑛(𝑛 − 1)2

4
 

We also note that max (𝑇) is achieved when the judge gives one of the 𝑛! perfect 

rankings and the 𝛼-numbers are 0,1, … , 𝑛 − 1. In a perfect ranking, 𝑑 = 0 — there are no 

inconsistencies. Then the minimum of 𝑇 is achieved when the 𝛼-numbers are most alike—

that is, when max (𝑑) is achieved. Then, as 𝑑 increases, 𝑇 decreases, and vice versa. So, we 

show: 
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max(𝑇) =∑ 𝑖2
𝑛−1

𝑖=0
−
𝑛(𝑛 − 1)2

4
 

= 0 +
(𝑛 − 1)𝑛(2𝑛 − 1)

6
−
𝑛(𝑛 − 1)2

4
 

= (𝑛 − 1) (
4𝑛2 − 2𝑛

12
−
3𝑛2 − 3𝑛

12
) 

=
𝑛(𝑛 − 1)

12
(𝑛 + 1) 

=
𝑛3 − 𝑛

12
 

By inspecting 𝑇 = ∑ (𝛼𝑟 −
𝑛−1

2
)
2

𝑛
𝑟=1 , we can see that the closer the 𝛼𝑟 are to the 

mean 
𝑛−1

2
, the smaller 𝑇 becomes. Kendall and Smith show what graph configuration would 

minimize 𝑇, but we simply note that the 𝛼𝑟 are subject only to the constraints 𝛼𝑟 ∈

(0,1, … , 𝑛 − 1) and ∑ 𝛼𝑟
𝑛
𝑟=1 =

𝑛(𝑛−1)

2
. So, if 𝑛 is odd, 𝛼𝑟 =

𝑛−1

2
 ∀𝑟, meets those conditions 

and 𝑇 = 0. If 𝑛 is even, then 
𝑛−1

2
 is not an integer, but we can have half of the 𝛼𝑟 half a unit 

below the mean and have the other half of the 𝛼𝑟  half a unit above the mean. Then the 𝛼𝑟 

meet the constraints and 𝑇 will be as small as possible. When 𝑛 is even, without loss of 

generality, this gives us: 

min(𝑇) =∑ (
𝑛 − 2

2
−
𝑛 − 1

2
)
2𝑛

2

𝑟=1
+∑ (

𝑛

2
−
𝑛 − 1

2
)
2𝑛

𝑟=
𝑛
2
+1

=
1

4
∑ (−1)2

𝑛
2

𝑟=1
+
1

4
∑ (1)2

𝑛

𝑟=
𝑛
2
+1

=
1

4
∑ 1

𝑛

𝑟=1
=
𝑛

4
 

We have shown max(𝑇) =
𝑛3−𝑛

12
 and min(𝑇) = {

0
𝑛

4

if 𝑛 odd
if 𝑛 even

. We return to Kendall 

and Smith’s (1940) argument to find max(𝑑), beginning by examining the example in 
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Figure 6-1. Here, we let 𝛼 = 𝛼1 be the number of edges leaving vertex 𝐴 and 𝛽 = 𝛼2 be the 

number of edges leaving vertex 𝐵. We are assuming that 𝐴 → 𝐵, and have selected an 

arbitrary number of other vertices with arbitrarily directed edges for demonstration 

purposes. We are only interested in what will happen to the number of circular triads when 

we flip 𝐴 → 𝐵 to 𝐴 ← 𝐵. The only edges that matter, then, are the edge between 𝐴 and 𝐵, 

and all the edges connected to 𝐴 and 𝐵. Including 𝐴 → 𝐵, 𝛼 = 3 + 1 = 4. Including 𝐴 → 𝐵, 

𝛽 = 3 + 0 = 3. We note that there are (𝑛 − 2) vertices outside of 𝐴 and 𝐵 for which we 

must eventually account.  

Figure 6-1: Edge Count Example 

Let 𝑝 be the number of triads of type 1 (Figure 6-1). Triads of type 3 are the same as 

type 1, except the (𝐵, 𝑋) edge has been flipped. Edges of triad types 1 and 3 as well as 𝐴 →

𝐵 are included in 𝛼. Then the number of triads of type 3 is 𝛼 − 𝑝 − 1. Similarly, triads of 

type 4 are the same as type 1, except the (𝐴, 𝑋) edge has been flipped. 𝛽 currently only 

includes edges of triad types 1 and 4. Then the number of triads of type 4 is 𝛽 − 𝑝. Lastly, 

though not strictly necessary, the number of triads of type 2 can be counted by subtracting 

the number of edges we have counted so far from 𝑛 − 2. That is, there are (𝑛 − 2) −

(𝑝 + (𝛼 − 𝑝 − 1) + (𝛽 − 𝑝)) = 𝑛 + 𝑝 − (𝛼 + 𝛽 + 1) edges of type 2. Triads containing 𝐴 →

Type Triad Form Figure example list 
1 𝐴 → 𝑋 ← 𝐵 𝑋 = 𝐶, 𝐷 
2 𝐴 ← 𝑋 → 𝐵 𝑋 = 𝐹 
3 𝐴 → 𝑋 → 𝐵 𝑋 = 𝐺 
4 𝐴 ← 𝑋 ← 𝐵 𝑋 = 𝐸 
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𝐵 are only circular in type 4. Now, if we change 𝐴 → 𝐵 to 𝐴 ← 𝐵, triads of type 4 stop being 

circular, and triads of type 3 start being circular. So, the number of circular triads involving 

the edge (𝐴, 𝐵) increases by the new amount of inconsistencies (𝛼 − 𝑝 − 1) minus the old 

amount of inconsistencies (𝛽 − 𝑝). That is, 

Δ𝑑 = (𝛼 − 𝑝 − 1) − (𝛽 − 𝑝) = 𝑎 − 𝛽 − 1. 

Also, note that 𝑇 = ∑ (𝛼𝑟)
2𝑛

𝑟=1 −
𝑛(𝑛−1)2

4
= ∑ (𝛼𝑟)

22
𝑟=1 + ∑ (𝛼𝑟)

2𝑛
𝑟=3 −

𝑛(𝑛−1)2

4
= 𝑇1 +

𝑇2, where 𝑇1 = ∑ (𝛼𝑟)
22

𝑟=1 . So, the only term in 𝑇 affected by changing the direction of the 

edge between 𝐴 and 𝐵 is 𝑇1. From earlier, 𝑇1 = 𝛼1
2 + 𝛼2

2 = 𝛼2 + 𝛽2. So when 𝐴 → 𝐵 changes 

to 𝐴 ← 𝐵, 𝛼 decreases by one, 𝛽 increases by one, and 𝑇1 (and subsequently 𝑇) changes by 

Δ𝑇 = (𝛼 − 1)2 + (𝛽 + 1)2 − (𝛼2 + 𝛽2) = −2𝛼 + 1 + 2𝛽 + 1 = −2(𝛼 − 𝛽 − 1) = −2Δ𝑑 

That is, Δ𝑇 = −2Δ𝑑. This is true for any change in 𝑑 or change in 𝑇. Maximizing Δ𝑇 

gives us: 

max(𝑇) − min(𝑇) = 2(max(𝑑) − min(𝑑)) 

⇒ max(𝑑) =
𝑛3−𝑛−12∙min(𝑇)

24
. 

We substitute what we know, solve for max(𝑑), and reiterate that min(𝑇) =

{
0
𝑛

4

if 𝑛 odd
if 𝑛 even

. Then 

max(𝑑) =

{
 

 
𝑛3 − 𝑛

24
if 𝑛 odd

𝑛3 − 4𝑛

24
if 𝑛 even.

 

Finally, we note that for some 𝑑, 

max(𝑇) − 𝑇 = 2(𝑑 − min(𝑑)). 
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⇒ 𝑑 =
1

2
(
𝑛3 − 𝑛

12
− (∑(𝛼𝑟)

2

𝑛

𝑟=1

−
𝑛(𝑛 − 1)2

4
) )

=
1

2
(
𝑛(𝑛 − 1)

4
(
𝑛 + 1

3
+
3(𝑛 − 1)

3
) −∑(𝛼𝑟)

2

𝑛

𝑟=1

) 

𝑑 =
𝑛(𝑛 − 1)(2𝑛 − 1)

12
−
1

2
∑(𝛼𝑟)

2

𝑛

𝑟=1

. (6.1.1) 

That is, we do not need to count the 𝑑 directly anymore; we simply need 𝑛 and an 𝛼 

vector to calculate 𝑑! Furthermore, the order of the 𝛼 vector does not affect 𝑑, only the 

counts 𝛼𝑖, 𝑗. Thus, (6.1.1) gives the number of circular triads for the score vector of any 

tournament.  

We propose various algorithms to extend the 𝑑 distribution.  

6.2.1. Exhaustive Tournament Search Algorithm 

 

Figure 6-2: All Possible Triads 

 

6.2. Algorithm to Extend to n=13 
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These triads can be represented with adjacency matrices and only Case 3 and Case 6 

are circular triads. In their adjacency matrix form, they can be represented as: 


0 1 0
0 0 1
1 0 0

൩  and 
0 0 1
1 0 0
0 1 0

൩ , respectively. (6.2.1.1) 

If we check any given triad in a larger adjacency matrix, they should be equivalent to 

one of the two forms in (6.2.1.1). However, this is slow even in bit-vectorized form as there 

are 2
(
𝑛
2
)
 checks to be made. A preliminary exhaustive search algorithm was timed and 

recorded in Table 6-1. Notice that the 𝑛 = 8 case alone took 7099 minutes (just under 5 

days). It would take on the order of 4 million years under current computing conditions to 

obtain the result for the 𝑛 = 11 case and about 2 years for the 𝑛 = 10—certainly not 

satisfactory.  
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Table 6-1: Replication of Kendall and Gibbons (1990) Appendix Table II - Exhaustive 
Algorithm with Adjacency Matrices 

n 3 4 5 6 7 8 

Minutes elapsed 1.67E-05 2.00E-04 0.005933 0.3307 34.80 7099.72 

Total 8 64 1024 32768 2097152 268435456 

𝒅
 

0 6 24 120 720 5040 40320 

1 2 16 120 960 8400 80640 

2 
 

24 240 2240 21840 228480 

3 
  

240 2880 33600 403200 

4 
  

280 6240 75600 954240 

5 
  

24 3648 90384 1304576 

6 
   

8640 179760 3042816 

7 
   

4800 188160 3870720 

8 
   

2640 277200 6926080 

9 
    

280560 8332800 

10 
    

384048 15821568 

11 
    

244160 14755328 

12 
    

233520 24487680 

13 
    

72240 24514560 

14 
    

2640 34762240 

15 
     

29288448 

16 
     

37188480 

17 
     

24487680 

18 
     

24312960 

19 
     

10402560 

20 
     

3230080 

 

 

6.2.2. Tournament Simulation 

Since 4 million years for the 𝑛 = 11 case is obviously too long, we attempted a 

simulation instead. Instead of exhaustively searching all 2
(
𝑛
2
)
 cases, we can just examine 𝑀 

cases which are randomly generated. To do this, we simply need to generate 𝑀 random 

binary vectors of length (
𝑛
2
) — one bit for every edge whose direction we need to simulate. 

In Kendall and Gibbons’ 1990 book, a 𝜒2 approximation to the 𝑑 distribution is given. For 
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the simulation to have utility, it would have to improve upon the 𝜒2 approximation. In 

Appendix Table 9, Kendall and Gibbons (1990) give the 𝜒2 approximation for the 𝑛 = 10 

case. The probabilities are within 0.005 for 𝑃 > 0.90. So, we chose 𝑀 = 106 for greater 

precision than the 𝜒2 approximation. In Table 6-2, we see that as 𝑛 increases, so too does 

the amount of time elapsed.  

Table 6-2: Simulation Performance 

In Table 6-3, we examine the results of the 𝑛 = 10 case. The first column contains 

the frequencies of the 𝑑 from the simulation, the second column contains the 

corresponding 𝑃 values, calculated by finding the probability of 𝑑 or more circular triads, 

and the third column contains the exact 𝑃 values, obtained with the final algorithm. In the 

fourth column, we determine if the simulation’s absolute error is smaller than the 𝜒2 

approximation’s absolute error. In all but one case, 𝑑 = 28, the simulation was closer than 

the 𝜒2 approximation.  

 

 

 

 

 

Table 𝒏 8 9 10 11 12 

Minutes elapsed 29.33 42.48 60.15 78.88 105.13 

Number of unique 
adjacency matrices 

998158 999996 1000000 1000000 1000000 
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Table 6-3: Replication of Kendall and Gibbons (1990) Appendix Table II - Simulation with 
Adjacency Matrices; 𝑛 = 10 

d Simulated Freq Simulated 𝑷 ~̇𝝌𝟐 𝑷 Exact 𝑷 Sim Closer than ~̇𝝌𝟐 

0 0 1 0.999994 1 TRUE 

1 0 1 0.999991 1 TRUE 

2 0 1 0.999986 1 TRUE 

3 2 1 0.999977 0.999999 TRUE 

4 3 0.999998 0.999963 0.999997 TRUE 

5 14 0.999995 0.999942 0.999992 TRUE 

6 22 0.999981 0.999909 0.999983 TRUE 

7 34 0.999959 0.999858 0.999963 TRUE 

8 72 0.999925 0.999779 0.999929 TRUE 

9 126 0.999853 0.999657 0.999861 TRUE 

10 217 0.999727 0.999473 0.999753 TRUE 

11 286 0.99951 0.999194 0.999542 TRUE 

12 548 0.999224 0.998776 0.999242 TRUE 

13 764 0.998676 0.998153 0.998687 TRUE 

14 1299 0.997912 0.997234 0.997903 TRUE 

15 1822 0.996613 0.99589 0.996564 TRUE 

16 3057 0.994791 0.993941 0.994744 TRUE 

17 3822 0.991734 0.991144 0.99169 TRUE 

18 6270 0.987912 0.987174 0.987869 TRUE 

19 7720 0.981642 0.981601 0.981646 TRUE 

20 11840 0.973922 0.973875 0.973907 TRUE 

21 14234 0.962082 0.963308 0.96204 TRUE 

22 21292 0.947848 0.949059 0.947997 TRUE 

23 23330 0.926556 0.930146 0.926872 TRUE 

24 34243 0.903226 0.905467 0.903289 TRUE 

25 38086 0.868983 0.873856 0.869118 TRUE 

26 50832 0.830897 0.834188 0.831187 TRUE 

27 53292 0.780065 0.785518 0.78077 TRUE 

28 71052 0.726773 0.727275 0.727371 FALSE 

29 67710 0.655721 0.659489 0.656412 TRUE 

30 86154 0.588011 0.58302 0.588002 TRUE 

31 80815 0.501857 0.499736 0.501827 TRUE 

32 89696 0.421042 0.412592 0.421078 TRUE 

33 78145 0.331346 0.3255 0.331085 TRUE 

34 81771 0.253201 0.242973 0.253115 TRUE 

35 60031 0.17143 0.169504 0.171323 TRUE 

36 52184 0.111399 0.108776 0.111357 TRUE 

37 31753 0.059215 0.062884 0.059058 TRUE 

38 19488 0.027462 0.031828 0.027531 TRUE 

39 6589 0.007974 0.013544 0.007928 TRUE 

40 1385 0.001385 0.00456 0.001371 TRUE 
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6.2.3. Isomorphic Tournament Algorithm 

A faster algorithm involving isomorphisms was developed. Being isomorphic means 

that all adjacency matrices that are isomorphic can be re-expressed (ignoring labels) as 

one another. This is an improvement over the simulation, but requires costly isomorphism 

checks. The distribution of unique adjacency matrices is documented in Table 6-6: 

Performance Results of 𝛼-vector Algorithm. While we do not describe this in detail, the 

rationale behind this approach is the same as the following score vector approach.  

6.2.4. Score Vector Interchange Algorithm 

We could go about collecting 𝛼 vectors, 𝜶 = (𝛼1, 𝛼2, … 𝛼𝑛), in a variety of ways. In 

the 𝑛 = 3 case, we can calculate all the 𝜶𝑖  by summing over the rows of each adjacency 

matrix. There are eight of them. The six with 𝑑 = 0 are isomorphic and the two with 𝑑 = 1 

are isomorphic. In other words, when 𝜶 is calculated, it will be the same for two graphs that 

are isomorphic. Then, we do not need to do an exhaustive search of all possible 𝜶. We 

simply need to keep track of the 𝜶𝑖  and their corresponding 𝑐𝑖 — count of times the alpha 

vector occurs. Additionally, the number of unique score vectors is smaller for larger 𝑛, as 

we know by comparing Beineke and Harary (1974) and Davis (1954).  

We examine the 𝑛 = 3 to 𝑛 + 1 = 4 step in Table 6-4. We start with 𝜶1 =

(0, 1, 2), 𝜶2 = (1, 1, 1), 𝑐1 = 6, and 𝑐2 = 2. The 𝒗𝑗 , 𝑗 ∈ 1, 2, … , 2
3, represent a new vertex 

being added. A new vertex will have 𝑛 directed edges either entering or leaving. Then, there 

are 2𝑛 possible combinations of edges entering (𝑣𝑗𝑘 = 1) or leaving (𝑣𝑗𝑘 = 0) that (𝑛 + 1)𝑡ℎ 

vertex. These are listed in the first grand column in Table 6-4. For all 𝐼 = 2 and 𝐽 = 2𝑛 = 8 

pairs of 𝜶𝑖  and 𝒗𝑗 , we need to add the vectors — these are listed in the second grand 

column. We must also account for the edges which are leaving the (𝑛 + 1)𝑡ℎ vertex. These 
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can be found by summing over the 𝒗𝑗  to count the number of edges entering old vertices 

and subtracting that from the number of edges a new vertex must have: 𝛼𝑖,(𝑛+1) = 𝑛 −

∑ 𝑣𝑗𝑘
𝑛
𝑘=1 . This is in the fourth column of the second grand column. In the third grand 

column, we show that the prior counts of the 𝜶𝑖  are tracked. For every new 𝒗𝑗  that is added 

to an 𝜶𝑖 , we are tracking 𝑐𝑖 of those 𝜶𝑖 . We then combine the 𝜶𝑖 + 𝒗𝑗  and 𝑎𝑖,(𝑛+1) into a new 

vector of length (𝑛 + 1) and call them the 𝜶𝑖𝑗
∗  — these are in the fourth grand column. 

Lastly, we identify the 𝐼∗ unique 𝜶 among the 𝜶𝑖𝑗
∗ , count the number of times they occur in 𝑖, 

multiply that count by 𝑐𝑖, and add all the counts corresponding to a unique 𝜶𝑖∗
∗ together. At 

the point that one has the 𝜶𝑖∗
∗  and 𝑐𝑖∗

∗ , you may want to count the number of circular triads 

in all 𝐼∗of the 𝜶𝑖∗
∗  using (6.1.1), 𝑑 =

(𝑛+1)𝑛(2(𝑛+1)−1)

6
−
1

2
∑ (𝛼𝑟)

2𝑛+1
𝑟=1  (where 𝑛 → 𝑛 + 1). This 

calculation is equivalent to counting the number of interchanges that need to be made to 

return an 𝜶 to (0, 1, … , 𝑛). For example, in 𝜶2∗
∗ , if one moves an edge from a vertex with 

𝛼𝑟 = 2 to a different vertex with 𝛼𝑟 = 2, then the first vertex loses an edge, and a different 

vertex gains an edge. At that point, after sorting, you would have 𝜶 = (0, 1, 2, 3). So, with 

one interchange, the graph achieves the perfect rank state, and 𝑑 = 1. The 𝑑 distribution 

need not be passed on to the next iteration of the algorithm, but the list of unique 𝜶𝑖∗
∗  and 

their counts 𝑐𝑖∗
∗  do need to be passed on to the next step of the algorithm. 
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Table 6-4: Keeping Track of 𝜶𝑖  and 𝑐𝑖 

𝑖   𝜶𝑖   𝑐𝑖         

1 0 1 2 6  

2 1 1 1 2  

           

𝑖 𝑗 𝒗𝑗 𝜶𝑖 + 𝒗𝑗 𝛼𝑖4 𝑐𝑖 𝜶𝑖𝑗
∗  𝜶𝑖∗

∗  𝑐𝑖∗
∗  𝑖∗ 

1 1 1 1 1 1 2 3 0 6 0 1 2 3 0 1 2 3 4 ∙ 6=24 1 

1 2 1 1 0 1 2 2 1 6 1 1 2 2 0 2 2 2 1 ∙ 6 + 1 ∙ 2 = 8 2 

1 3 1 0 1 1 1 3 1 6 1 1 1 3 1 1 1 3 1 ∙ 6 + 1 ∙ 2 = 8 3 

1 4 0 1 1 0 2 3 1 6 0 1 2 3 1 1 2 2 2 ∙ 6 + 6 ∙ 2 = 24 4 

1 5 1 0 0 1 1 2 2 6 1 1 2 2  
 

  

1 6 0 1 0 0 2 2 2 6 0 2 2 2  

1 7 0 0 1 0 1 3 2 6 0 1 2 3  

1 8 0 0 0 0 1 2 3 6 0 1 2 3  

2 1 1 1 1 2 2 2 0 2 0 2 2 2  

2 2 1 1 0 2 2 1 1 2 1 1 2 2  

2 3 1 0 1 2 1 2 1 2 1 1 2 2  

2 4 0 1 1 1 2 2 1 2 1 1 2 2  

2 5 1 0 0 2 1 1 2 2 1 1 2 2  

2 6 0 1 0 1 2 1 2 2 1 1 2 2  

2 7 0 0 1 1 1 2 2 2 1 1 2 2  

2 8 0 0 0 1 1 1 3 2 1 1 1 3  

 

We were able to run this algorithm up to and including 𝑛 = 12 in under 19 minutes. 

To get to the 𝑛 = 8 distribution, the calculation had run for a grand total of 1.88 seconds — 

the same distribution that took 5 days to create with the exhaustive algorithm! In the 

process, we see that every pair of adjacency matrices that are isomorphic have exactly one 

corresponding 𝜶, but there are many non-isometric matrix pairs that share an 𝜶. For 

example, when 𝑛 = 8, there are 6880 unique adjacency matrices, but only 167 unique 𝛼 

𝜶𝑖∗
∗   𝑖∗ 𝑐𝑖∗

∗   d  d Frequency 

0 1 2 3 1 24 0 0 24 

0 2 2 2 2 8 1 1 16 

1 1 1 3 3 8 1 2 24 

1 1 2 2 4 24 2   
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vectors. This means a lot less computation when comparing the last two algorithms. The 

frequencies obtained for 𝑛 = 9 to 12 can be seen in Table 6-5.  

Table 6-5: Replication and Extension of Kendall and Gibbons (1990) Appendix Table II: 𝛼-
Vector Algorithm 

𝒅 9 10 11 12 

0 362880 3628800 39916800 479001600 

1 846720 9676800 119750400 1596672000 

2 2580480 31449600 412473600 5801241600 

3 5093760 68275200 972787200 1.4725E+10 

4 12579840 175392000 2594592000 4.0721E+10 

5 19958400 311592960 5054353920 8.5709E+10 

6 44698752 711728640 1.178E+10 2.0464E+11 

7 70785792 1193794560 2.1574E+10 4.0036E+11 

8 130032000 2393475840 4.3543E+10 8.4202E+11 

9 190834560 3784596480 7.5821E+10 1.5283E+12 

10 361525248 7444104192 1.4891E+11 3.0979E+12 

11 443931264 1.0527E+10 2.3655E+11 5.2334E+12 

12 779950080 1.9534E+10 4.3892E+11 9.9713E+12 

13 1043763840 2.761E+10 6.902E+11 1.6505E+13 

14 1529101440 4.7107E+10 1.1997E+12 2.9828E+13 

15 1916619264 6.4016E+10 1.8061E+12 4.7204E+13 

16 2912257152 1.0745E+11 3.0868E+12 8.406E+13 

17 3078407808 1.3447E+11 4.3987E+12 1.2659E+14 

18 4506485760 2.1894E+11 7.2564E+12 2.1709E+14 

19 4946417280 2.723E+11 1.0369E+13 3.2737E+14 

20 6068256768 4.1751E+11 1.6133E+13 5.3664E+14 

21 6160876416 4.9408E+11 2.212E+13 7.7575E+14 

22 7730384256 7.4328E+11 3.4508E+13 1.2766E+15 

23 6292581120 8.2974E+11 4.5536E+13 1.7905E+15 

24 6900969600 1.2023E+12 6.7968E+13 2.8301E+15 

25 5479802496 1.3346E+12 8.9403E+13 3.9612E+15 

26 4327787520 1.7739E+12 1.2878E+14 6.082E+15 

27 2399241600 1.8788E+12 1.6343E+14 8.2653E+15 

28 1197020160 2.4966E+12 2.3395E+14 1.271E+16 

29 163094400 2.407E+12 2.8543E+14 1.6653E+16 

30 3230080 3.032E+12 3.9366E+14 2.4896E+16 

31  2.8411E+12 4.8061E+14 3.2917E+16 

32  3.1664E+12 6.3705E+14 4.7515E+16 

33  2.7433E+12 7.422E+14 6.0739E+16 

34  2.8778E+12 9.811E+14 8.8543E+16 

35  2.1099E+12 1.1054E+15 1.1008E+17 

36  1.8401E+12 1.395E+15 1.5501E+17 

37  1.1093E+12 1.547E+15 1.9325E+17 
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𝒅 9 10 11 12 

38  6.8972E+11 1.8755E+15 2.6517E+17 

39  2.3068E+11 1.9892E+15 3.2173E+17 

40  4.8252E+10 2.3719E+15 4.4177E+17 

41   2.3625E+15 5.1745E+17 

42   2.6585E+15 6.9156E+17 

43   2.5956E+15 8.1838E+17 

44   2.6948E+15 1.0543E+18 

45   2.4315E+15 1.2012E+18 

46   2.3909E+15 1.5593E+18 

47   1.9246E+15 1.7239E+18 

48   1.6548E+15 2.1549E+18 

49   1.17E+15 2.3756E+18 

50   8.2854E+14 2.8715E+18 

51   4.2707E+14 3.0572E+18 

52   1.981E+14 3.6686E+18 

53   5.2098E+13 3.7349E+18 

54   3.9226E+12 4.3032E+18 

55   4.8252E+10 4.3536E+18 

56    4.7516E+18 

57    4.5358E+18 

58    4.8678E+18 

59    4.373E+18 

60    4.3533E+18 

61    3.7222E+18 

62    3.3856E+18 

63    2.614E+18 

64    2.1569E+18 

65    1.4112E+18 

66    9.4877E+17 

67    4.9169E+17 

68    2.2303E+17 

69    5.9991E+16 

70    9.3077E+15 

 

 

In R, they are stored as exact values. The 𝑛 = 13 case was also calculated but is not 

shown. When calculating the 𝑛 = 14 case, the 𝒗 matrix (i.e., all possible additional edges) 

was too large for the memory on the author’s PC. Plans to address this issue follow. 

 



130 
 

Table 6-6: Performance Results of 𝛼-vector Algorithm 

𝑛 
Number of unique Runtime in 

seconds 
Total 

adjacency matrices 𝛼 vectors 

4 4 4 0.01 64 

5 12 9 0.03 1,024 

6 56 22 0.1 32,768 

7 456 59 0.39 2,097,152 

8 6880 167 1.35 268,435,456 

9 - 490 4.4 68,719,476,736 

10 - 1486 24.68 35,184,372,088,832 

11 - 4639 150.45 36,028,797,018,963,968 

12 - 14805 936.9 73,786,976,294,838,206,464 

 

First, the space constraint needs to be handled to reach larger 𝑛,. Fortunately, the 

planned way to address this has a side effect which is especially parallelizable. We know 

from Narayana and Bent (1974) the total number of unique score vectors for every 𝑛. 

These counts match our counts up to 𝑛 = 12. Even with the modifications to space we 

suggest, we likely cannot reach the 𝑛 = 30 case with the current algorithm, as it would 

require storing a minimum of 96,478,910,768,821 unique score vectors9, each of length 30.  

In our best method in 6.2, we combine all 2𝑛−1 binary vectors 𝒗 with each of the 

unique score vectors stored from the previous iteration. When adding the binary vectors, 

we currently store a 2𝑛−1 by 𝑛 binary matrix including all possible binary vectors of length 

𝑛. Alternatively, we propose storing only a matrix of 2𝑘𝑗  binary vectors, where ∑𝑗=1
𝐽 𝑘𝑗 =

𝑛 − 1, 𝐽 is the number of partitions, and 𝑘𝑗 ∈ ቄ⌊
𝑛−1

𝐽
⌋ , ⌈

𝑛−1

𝐽
⌉ቅ. For small 𝑛, for example, 𝐽 = 2. 

 
9 No back of the envelope calculation has been made to estimate how much space such a matrix would 
require.  

6.3. Reaching Larger n 
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Then, the algorithm would loop through all combinations of the first and second partitions, 

concatenate the rows on the fly, and then add them to the score vectors as before. This 

would easily be adjusted with parallelization by sending the entire second partition and the 

score vectors to each of the nodes, but dividing the first partition close to evenly among the 

nodes. However, there would be a bottleneck at the end of each 𝑛th iteration as the results 

would have to be combined. Additionally, now that we know the number of unique score 

vectors from Narayana and Bent (1974), a row count check should be performed.  

The algorithm in 6.2.4 could run to 𝑛 = 15 in a serial computation on ManeFrame in 

under 3 days (assuming no space constraints) and the algorithm in 6.3 could potentially 

run to 𝑛 = 20 using parallel computation on one thousand nodes on ManeFrame in about a 

month.
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We briefly list some open problems and questions which we are working on and 

plan to work on in the future.   

7.1.1. Monte Carlo CRSP Simulations 

Since it is commonplace to assume transitivity is guaranteed, analysts who believe 

in the transitivity assumption might not want to use a model that does not. To assuage 

these people, we could generate data from various transitive structures and show when 

(and when not) CRSP does a good job of recovering the transitive structure. Additionally, 

for the more open-minded, we would like to explore the intransitive capabilities of the 

CRSP and Generalized CRSP models.  

In order to accomplish this, we need to designate, in advance, methods to monitor 

CRSP performance: 

1. Under transitive structure: 

a. 𝑑 ≈ 0, and 

b. Kendall’s 𝜏 ≈ 1. 

CHAPTER 7: 

ONGOING AND FUTURE WORK 

7.1. Further CRSP Exploration 
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2. Under intransitive structure: 

a. �̂� ≈ 𝑑, 

b. ∑ 𝑁𝑖�̂� ≈ ∑ 𝑁𝑖𝑖 , number of edges in at least one cycle, 

c. Number of edges directionally correct under true structure, and 

d. Number of 𝑟𝑠 pairs required to represent directionality 

3. 𝐸[𝜃 − 𝜃] ≈ 0 

4. Variation accounted for by the model 

7.1.1.1. Strictly Transitive Lattice 

Our first transitive structure should be a transitive lattice. Of interest here would be 

the effect of variation on the ability to observe the transitive structure. Here,  

𝑋𝑖~𝑁 (𝜇 = 𝑖 −
𝑛 + 1

2
, 𝜎 = 𝑐) ,where 𝑖 ∈ [1, 2, … , 𝑛] and 𝑐 ∈ {

1

10
, 1, 10}, 

𝐸[�̂�𝑖] = 1 −
𝑛 + 1

2
, 

𝐸[ℎ̂] = 0, and 

𝑑 ≈ 0. 

Note that 𝑌𝑖𝑗 = 𝑋𝑖 − 𝑋𝑗, 𝑖 plays 2(𝑛 − 1) games, and �̂�𝑖 =
1

2
(�̅�𝑖∙ − �̅�∙𝑖). Then,  

Var(�̂�𝑖) =
1

4
Var(�̅�𝑖∙) +

1

4
Var(�̅�∙𝑖) =

1

4
(
2𝜎2

𝑛 − 1
) +

1

4
(
2𝜎2

𝑛 − 1
) =

𝜎2

𝑛 − 1
. 

It follows then that SD(�̂�𝑖 − 𝜇𝑖) =
𝜎

√𝑛−1 
.  

 Additionally, it would be interesting to see what happens if one circular triad is 

introduced, as well as a particularly large reversal. Would such a large reversal dominate 

the intransitive parameters? 
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7.1.1.2. Strength Ratings Randomly Distributed 

We could then examine ratings which are randomly distributed, i.e., the ratings 

𝑋𝑖~𝐹(𝑥). Then, unlike the transitive lattice, some teams could be remarkably close in truth. 

Example distributions could include the Uniform distribution, Normal distribution, and 

Gamma distribution. Again, could we find the true transitive structure? What kind of 

intransitivities are liable to occur when they should not?  

7.1.1.3. Randomly Generated Tournament Matrices, with Replications 

We could also fit CRSP to randomly generated tournament matrices with 𝜎 = 0 — 

just 1’s and corresponding −1’s in the off-diagonal entries (a la Kendall and Smith). This 

way, ℎ = 0, and we should be able to see how many eigenvector pairs are required to fit 

“perfectly intransitive” data and be directionally correct. This may give us some insight into 

how large 𝑘 should be to adequately describe certain intransitive structures, or any 

intransitive structure.  

In Figure 7-1, we have already examined the 𝑛 = 8 case as an example (with 𝑀 =

10,000 replications). Here, we see that we can typically represent about 17 out of 28 

relationships in the correct direction (i.e., if 𝐴 → 𝐵, then 𝜇𝐴𝐵 > 0) with just the strength 

vector 𝜶. However, with just one 𝒓, 𝒔 pair, we can get 26 directionally correct relationships. 

With two 𝒓, 𝒔 pairs, we can represent all 28 relationships correctly 98% of the time.   
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Figure 7-1: 𝑛 = 8 Tournament Simulation 

 

 

7.1.2. Super Smash Brothers Application 

Another application might be to rank players in the Nintendo 64 version of Super 

Smash Brothers. There are many factors that can introduce intransitivities and a linear 

ordering of players may not sufficiently describe the hierarchy of players. Such predictive 

factors may include character usage, counter-picking, player matchup history, and players 

who stream and are well known by the community versus those who are not. However, 

these things are often not known, and covariate data is scarce. But to answer this question, 

we will likely need to modify the CRSP model to handle missing observations.  

Fortunately, this author helped run a 30-person round-robin tournament with 

players who traveled from around the world (London, California, Colorado, New York). The 

data needs to be cleaned but is otherwise ready. Each set was best-of-3, where the third 
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game was not played if a player won twice. Each game, the players’ characters were 

recorded. This should enable us to model both player and character strengths, as well as 

character intransitivities. Then, our model might be 

𝜇𝑙𝑚𝑖𝑗 = 𝛾𝑙 − 𝛾𝑚 + 𝛼𝑖 − 𝛼𝑗 + 𝑟𝑖𝑠𝑗 − 𝑠𝑖𝑟𝑗 , (7.2.1) 

where 𝛾𝑙 are player strengths, 𝛼𝑖 are character strengths, and 𝑟𝑖𝑠𝑗 − 𝑠𝑖𝑟𝑗  is character 

intransitivity.  

 It is widely believed that the top tier (left, Figure 7-2) of characters has a rock-

paper-scissors relationship, while some believe the lowest tier of characters also includes a 

rock-paper-scissors relationship.  

 

 

Figure 7-2: Intransitivities in Characters in Super Smash Brothers N64 
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7.1.3. NBA Applications 

With a start on the NBA example, we might want to explore more specific questions. 

First, we could examine the claim made during a 2017 MITSSAC talk that, on average, only 

one team that should have made the playoffs in a strict top-16 format does not. By using 

the CRSP model, we identified an average of two teams per season that should have made 

the playoffs in a strict top-16 format. We also found that most playoff series are closer in 

such an optimal top-16 format. Thus, the series take more games to complete and thus 

draw more revenue. Finally, an optimal top-16 format features the top two teams in the 

NBA more often than previous formats. 

Second, we could examine the gambling scandal that shook the NBA more than ten 

years ago which Eden (2019) documented recently. The NBA, after the scandal broke in the 

news, hired a private law firm to investigate. In Pedowitz’s report to the NBA (2008), 17 

games are identified which the legal team believed may have involved point-fixing by the 

referee. CRSP is well-situated to examine point differentials on which wagers are made 

(called point spreads).  

The subsections on CRSP are ordered by importance.  

7.2.1. CRSP EM Algorithm 

In cases where games have not been played yet or the schedule is imbalanced, an 

EM Algorithm solution could be used. 

7.2. CRSP-Related Future Work 
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7.2.2. Clustered Line-Ups 

Instead of looking at entire teams, we could examine individual line-ups. Since these 

line-ups are usually scarce, we would have to do something like cluster them.  

7.2.3. CRSP Standard Error Estimates 

For which point estimates do we need standard errors? The standard errors for the 

home effect ℎ and the team strength parameters 𝛼𝑖 should not be difficult to calculate. But 

what about the 𝒓𝒔 pairs? How do we go about calculating the standard errors of 𝑟𝑖 and 𝑠𝑗 , 

𝑟𝑖𝑠𝑗 , 𝑟𝑖𝑠𝑗 − 𝑠𝑖𝑟𝑗, or ∑ 𝑟𝑖𝑘𝑠𝑗𝑘 −
𝐾
𝑘=1 𝑠𝑖𝑘𝑟𝑗𝑘?  

7.2.4. CRSP Eigenvector Pair Exploration 

How many 𝒓𝒔 pairs should we include in the model? Should we default to the 

transitive model? Should we use some kind of penalty (i.e., AIC), to determine the number 

of 𝒓𝒔 pairs? Would finding the elbow in a plot of the variation explained by number of 𝒓𝒔 

pairs be sufficient (i.e., in LSR, 𝑅2 and the number of covariates, or in PCA, the number of 

PCs)? Would a cross-validation type of procedure work better? Since sports data is broken 

up by seasons, would it make sense to pick the number of 𝒓𝒔 pairs by using a rule of thumb 

learned from modeling previous regular seasons and comparing the models for each 

number of 𝒓, 𝒔 pairs by their playoff prediction accuracy?  

How do our eigenvector pairs relate to the blade and chest vectors in Chen and 

Joachim’s model? Is there a simple solution like ours in a Bradley-Terry setting?  
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7.2.5. CRSP Model and Graph Theory 

We would like the CRSP model to be able to identify any possible digraph. It can be 

seen that10 if all ⌊
𝑛−1

2
⌋ 𝒓𝒔 pairs are included in the model, then the 𝛽𝑖𝑗 (where 𝛽𝑖𝑗 = 𝛽𝑗𝑖) can 

be fully recovered and thus any theoretical tournament could be recovered. We believe this 

would typically lead to overfitting, especially in cases of a small number of games. So, the 

question is what kind of tournaments could be recovered as the number of 𝒓𝒔 pairs 

increase. One way to do this would be to generate random tournaments, simulate games 

with extremely low variance, build models for all possible 𝒓𝒔 pairs, and then count the 

number of correctly recovered edges. If the results are satisfactory, then the same 

procedure could be repeated with larger variances. Additionally, it would be interesting to 

keep track of the number of circular triads, 𝑑, and other measures of intransitivity as the 

number of 𝒓𝒔 pairs increase.  

7.2.6. CRSP Model Cases and Extensions 

Currently, the model only deals with a double round robin. We would like to explore 

cases of imbalance — where every pair is compared, but some more than twice. The 

analysis in 5.1 on NBA data uses a method of moments approach to estimate each edge 

between teams 𝑖 and 𝑗. The least squares method would reduce variance in the strength 

estimates. However, it is unclear how this would affect the 𝒓𝒔 pairs. Next, we would 

examine the case of missing data — that is, where not every pair of teams have played or 

have played just once.  

 
10 Also, we have not proven this.  
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We have seen many interesting modifications of ranking models in the literature. 

For example, the composition of the team should be considered. If an NBA team plays a 

game without their best player, does the outcome really represent the team? Additionally, 

some teams go through states of change — they trade their players, younger players get in 

a groove and replace older players, rookies hit a wall at about half of the way through the 

season, etc. This could be taken into account by treating each lineup separately, as in 

LinNet (Pelechrinis, 2017). Alternatively, games weights could be introduced for each 

game. This would be a natural extension of the unbalanced and missing cases. More recent 

games could also be weighed more heavily. Generally, weights could be a function of player 

minutes (i.e., of the top seven most important players).  

7.2.7. CRSP Visualization 

A graphical (visual) representation of the model should also be explored. For 

example, Monsuur and Storcken (1997) give a couple of nice pictures. Here, vertical 

position implies overall strength. Team 𝑎1 is the strongest, while team 𝑎6 is the weakest. 

The arrows, then, show inconsistent edges. For example, in graph 𝑅3, team 𝑎5 upsets team 

𝑎1. This type of picture poses a few problems. If the number of teams is large and there are 

a lot of teams whose strength ratings are close, then we may expect to see many edge 

reversals in the middle. This may not be desirable. To address this, one might select only a 
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subset of edges to display. One could display the biggest upsets or produce only the 

reversals for one team at a time. This could be implemented in a browser by hovering over 

a team/node with all reversals appearing (both jumps up and jumps down). In this case, a 

graph with no intersecting edges would be guaranteed if all reversals to lower rated teams 

are drawn on the left, and all reversals to higher rated teams are drawn on the right. Also, 

the strength of a reversal could be illustrated by varying the edge width or the edge length 

(larger reversals would protrude further from the graph).  

7.2.8. Dynamic CRSP Model 

It would be quite useful to be able to make predictions in the middle of the season. 

This is related to the missing games problem. However, an additional question is whether 

the entire model needs to be re-calculated, or can it can be updated on a per-game basis. 

Elo’s model, for example, can update just two teams at a time. This makes it a bit more 

interpretable, as well — some amount of rating points is directly transferred from one 

team to the other upon completion.  

7.2.9. CRSP with Covariates 

Additionally, covariates should eventually be considered for inclusion in the model. 

As seen in Chapter 3, season-long covariates (total defensive rebounds, three point 

percentage, opponent field goal percentage, et cetera) can also be used to predict success. A 

simple course of action might be to measure the overall strengths of teams first, using the 

covariates and point differential. Then any deviations from a transitive model could be 

modeled as before with 𝒓𝒔 pairs.  
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7.3. Kendall and Smith’s Circular Triad Distribution 

See Section 6.3. We have extended the circular triad distribution past the 𝑛 = 15 

case, but this work is unfortunately not documented here. We took advantage of Kadane’s 

work to accomplish this, but synthesized findings from other researchers. 

  

Table 7-1: Progress on Circular Triad Distribution 

𝒏 Number of Isomorphic 
Graphs, 𝑇(𝑛) 

Number of Unique 
Score Vectors, 𝑆(𝑛) 

Year Reached 

3 2 2 1940 

7 456 59 1940 

8 6880 167 1961 

11 9.0 × 108 4639 ‘98, ‘16 

13 4.9 × 1013 48107 ‘9811, ‘17 
16 6.4 × 1022 1799659 201812 
19 2.5 × 1034 73996100 –  

 

Figure 7-3: Limitations of the Chi-Squared Approximation 

 

 
11 Knezek et al. (1998) do not publish the full distribution.  
12 The 𝑛 = 16 case is currently only partially complete.  
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7.4. Probabilistic Extensions of the Circular Triad Distribution 

Regarding Kendall and Smith’s Table II (1940), it would be interesting, instead, to 

see how this distribution would change under different circumstances. In this distribution, 

it is assumed that every preference is equally likely — P(𝐴 → 𝐵) = 𝑃(𝐴 ← 𝐵) = .5. For 

example, if it were known that dogs tend to prefer objects placed on their left, what would 

happen to that distribution? What if 𝑃(𝐴 → 𝐵) > 𝑃(𝐴 ← 𝐵)?  

Teams playing in their own stadium are known to have a higher chance of winning 

(sometimes this chance is slight). Across sports and leagues, this home team advantage 

varies. For many established leagues, a general home court advantage is known and can be 

expressed as a point spread or as a probability. In the NBA, for example, during the 2014-

2015 season, the home team won 57.4% of the time. In the situation where there are three 

teams playing each other once, ignoring team strength, the probability of a circular triad 

increases as home team advantage increases. In general, if 𝑝 is the probability of winning at 

home, then 𝑃(𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑡𝑟𝑖𝑎𝑑) = 𝑃(3 ℎ𝑜𝑚𝑒 𝑤𝑖𝑛𝑠) + 𝑃(3 𝑟𝑜𝑎𝑑 𝑤𝑖𝑛𝑠) = 𝑝3 + (1 − 𝑝)3 = 1 −

3𝑝 + 3𝑝2. In the NBA, the probability of a circular triad would then increase to .267 from 

.25.  

The problem becomes even more interesting if we assign different probabilities to 

each pair’s outcome. To model this, perhaps we could use a graph with weighted edges 

where the weights are probabilities or measures of (relative) team strength. Or perhaps, 

the graph of interest would have a corresponding matrix of probabilities that the team in 

the left column would win, and so each of the 2
(
𝑛
2
)
 possible outcomes are not equally 

weighted.  
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7.5. Alpha Vectors and Other Distributions 

Can Slater’s 𝑖 be calculated with only 𝛼-vectors? If so, we could fully describe Slater’s 

𝑖-distribution using our already-calculated 𝛼-vector distribution. If not, can we find a way 

to reverse-engineer all adjacency matrices that relate to a particular 𝛼-vector? If so, this 

might be a convenient way to solve the Slater’s 𝑖-distribution problem, but may also allow 

us to explore adjacency matrices for larger 𝑛 than previously possible. One way might be to 

explore the 𝑛 − 1 to 𝑛 step in our newest 𝛼-vector generating algorithm.  

We can also enumerate any distribution for a measure that is a function of an alpha 

vector — we have all alpha vectors for 𝑛 ≤ 15. We can examine the relationship between 𝑑 

and Bezembinder’s 𝜌 as well as between 𝑘 and ∑ 𝑁𝑗
𝑘
𝑗=1 . We expect the latter to be curved; 

as 𝑘 decreases, ∑ 𝑁𝑗
𝑘
𝑗=1  increases rapidly.  

We can also continue exploring the forms described in Moon (1968) and Goldberg 

(1966, 1972).  

 

 

 

 

 

 

 

7.6. Further Graph Theory 
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Figure 7-4: All Unique (Non-isomorphic) 𝐾5  Graphs with Directed Edges 
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Figure 7-5: All Unique (Non-isomorphic) 𝐾6  Graphs with Directed Edges 
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