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In this dissertation research, new non-classical models for Kirchhoff and Mindlin plates 

are developed and applied to study band gaps for flexural wave propagation in composite 

plate structures.  

In Chapter 2, a new non-classical model for a Kirchhoff plate resting on an elastic 

foundation is developed using a modified couple stress theory, a surface elasticity theory 

and a two-parameter elastic foundation model. A variational formulation based on 

Hamilton’s principle is employed, which leads to the simultaneous determination of the 

equations of motion and the complete boundary conditions and provides a unified treatment 

of the microstructure, surface energy and foundation effects. The new plate model contains 

a material length scale parameter to account for the microstructure effect, three surface 

elastic constants to describe the surface energy effect, and two foundation moduli to 

represent the foundation effect. The current non-classical plate model reduces to its 

classical elasticity-based counterpart when the microstructure, surface energy and 

foundation effects are all suppressed. In addition, the newly developed plate model 

includes the models considering the microstructure dependence or the surface energy effect 

or the foundation influence alone as special cases and recovers the Bernoulli–Euler beam 
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model incorporating the microstructure, surface energy and foundation effects. To illustrate 

the new model, the static bending and free vibration problems of a simply supported 

rectangular plate are analytically solved.  

In Chapter 3, a new non-classical model for circular Kirchhoff plates subjected to 

axisymmetric loading is presented based on the same modified couple stress theory and 

surface elasticity theory but using cylindrical polar coordinates. The new non-classical 

plate model includes the circular plate models considering the microstructure influence or 

the surface energy effect alone as special cases and recovers the classical elasticity-based 

Kirchhoff plate model when both the microstructure and surface energy effects are 

suppressed. To demonstrate the new model, the static bending problem of a clamped solid 

circular Kirchhoff plate subjected to a uniform normal load is analytically solved.  

In Chapter 4, a new non-classical model for a Mindlin plate resting on an elastic 

foundation is developed in a general form using the modified couple stress theory, the 

surface elasticity theory and the two-parameter Winkler–Pasternak foundation model, 

which are the same as those employed in Chapter 2. It includes all five kinematic variables 

possible for a Mindlin plate and treats the microstructure, surface energy and foundation 

effects in a unified manner. The current non-classical plate model reduces to its classical 

elasticity-based counterpart when the microstructure, surface energy and foundation effects 

are all neglected. In addition, the new model includes the Mindlin plate models considering 

the microstructure dependence or the surface energy effect or the foundation influence 

alone as special cases, and it degenerates to the Timoshenko beam model including the 

microstructure effect. To illustrate the new Mindlin plate model, the static bending and free 
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vibration problems of a simply supported rectangular plate are analytically solved by 

directly applying the general formulae derived.  

In Chapter 5, a new non-classical model for circular Mindlin plates is furnished using 

the modified couple stress theory, the surface elasticity theory, Hamilton’s principle, and 

cylindrical polar coordinates, as was done in Chapter 3. The non-classical model includes 

the circular plate models considering the microstructure influence only and the surface 

energy effect alone as special cases, and it recovers the classical elasticity-based circular 

Mindlin plate model when both the microstructure and surface energy effects are not 

considered. To illustrate the new model, the static bending problem of a clamped circular 

Mindlin plate under a uniform normal load is analytically solved. 

In Chapter 6, a new model for determining band gaps for flexural elastic wave 

propagation in a periodic composite plate structure with square inclusions is developed by 

directly using the non-classical model for Kirchhoff plates presented in Chapter 2. The 

band gaps predicted by the newly developed model depend on the microstructure and 

surface elasticity of each constituent material, the elastic foundation moduli, the unit cell 

size, and the volume fraction of the inclusion phase. To quantitatively illustrate the effects 

of these factors, a parametric study is conducted. 

 In Chapter 7, a new model for predicting band gaps for flexural elastic wave 

propagation in a periodic composite plate structure with square or cruciform inclusions is 

provided by using the non-classical model for Mindlin plates proposed in Chapter 4. The 

band gaps predicted by the new model depend on the microstructure and surface elasticity 

of each consitituent material, the unit cell size, and the volume fraction. To quantitatively 
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illustrate the effects of these factors, a parametric study is conducted for periodic composite 

plate structures containing square and cruciform inclusions.
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Chapter 
 

1. INTRODUCTION 
 

 

Thin plates (such as those used in MEMS and NEMS devices as sensors and probes) 

often exhibit size effects, which cannot be captured by models based on classical 

continuum mechanics due to a lack of any material length scale parameter (e.g., Miller and 

Shenoy, 2000; Lam et al., 2003; Lim and He, 2004; McFarland and Colton, 2005; Li et al., 

2009).  

As atomistic models can be prohibitively expensive, continuum models remain to be 

essential in studying deformations of structural components at the micron scale. Higher-

order continuum theories can capture microstructure effects resulting from non-local 

interactions of material particles at the micron scale. In such a theory, either a continuum 

embedded with microstructures or a non-local medium including long-range material 

interactions is employed. Surface elasticity theories can describe surface energy effects 

arising from the atom arrangements and material properties on a surface that are different 

from those in the bulk. In such a surface elasticity theory, a surface is regarded as a 

membrane or film with a negligible thickness that is perfectly bonded to the bulk material. 

However, very few plate models have been developed by considering both the 

microstructure and surface energy effects. These motivated the current dissertation 

research.  
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In Chapter 2, a new non-classical model for a Kirchhoff plate resting on an elastic 

foundation is provided. In Chapter 3, a new non-classical model for circular Kirchhoff 

plates subjected to axisymmetric loading is presented by using cylindrical polar 

coordinates. In Chapter 4, a new non-classical model for a Mindlin plate resting on an 

elastic foundation is developed. In Chapter 5, a new non-classical model for circular 

Mindlin plates is furnished using cylindrical polar coordinates. In Chapter 6, a new model 

for determining band gaps for flexural elastic wave propagation in a periodic composite 

plate structure is proposed based on the non-classical Kirchhoff plate model presented in 

Chapter 2. In Chapter 7, a new model for predicting band gaps for flexural elastic wave 

propagation in a periodic composite plate structure is developed by employing the non-

classical Mindlin plate model formulated in Chapter 4.
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Chapter 

 

2. A NON-CLASSICAL KIRCHHOFF PLATE MODEL INCORPORATING 

MICROSTRUCTURE, SURFACE ENERGY AND FOUNDATION EFFECTS 

 

2.1 Introduction 

Thin beams and plates widely used in MEMS and NEMS often exhibit microstructure- 

and surface energy-dependent size effects (e.g., Miller and Shenoy, 2000; Lim and He, 

2004; McFarland and Colton, 2005). Classical continuum mechanics cannot be used to 

interpret such size effects because of a lack of any material length scale parameter. Hence, 

models based on higher-order (non-classical) continuum theories that contain 

microstructure-dependent material parameters and can account for surface energy effects 

need to be developed.  

Several higher-order elasticity theories have been applied to develop non-classical plate 

models. Lazopoulos (2004) provided a non-classical von Karman plate model based on a 

simplified strain gradient elasticity theory (SSGET) (e.g., Gao and Park, 2007; Gao and 

Zhou, 2013). This SSGET, which contains only one material length scale parameter, was 

also employed by Papargyri-Beskou and Beskos (2008) and Papargyri-Beskou et al. (2010) 

to derive non-classical equations of motion for Kirchhoff plates of strain gradient materials. 

By using a constitutive relation in non-local elasticity suggested in Eringen (1983), Lu et 

al. (2007) proposed a Kirchhoff plate model and a Mindlin plate model without using a 
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variational formulation. Based on a modified couple stress theory that involves one 

additional material length scale parameter (Yang et al., 2002; Park and Gao, 2008), three 

Kirchhoff plate models were suggested in Tsiatas (2009), Jomehzadeh et al. (2011) and 

Akgöz and Civalek (2013), respectively.  

On the other hand, for solids with a large surface layer to bulk volume ratio, surface 

effects, which cannot be described using classical elasticity, become important (e.g., Miller 

and Shenoy, 2000). Such surface effects can be interpreted using a surface elasticity theory, 

in which the surface of a solid, where the atom arrangements and material properties differ 

from those in the bulk (e.g., Cammarata, 1994), is regarded as a membrane or film with a 

negligible thickness (e.g., Steigmann and Ogden, 1997, 1999).  

The surface elasticity theory (e.g., Gurtin and Murdoch, 1975, 1978) has been used to 

analyze thin plates involving surface effects. For example, Miller and Shenoy (2000) 

developed a model to describe the size dependency of the effective stiffness of a nano-

sized structural element (a bar, beam or plate). Lim and He (2004) presented a 

geometrically nonlinear plate model for nano-scale films based on the Kirchhoff hypothesis 

and the von Karman strains. Lu et al. (2006) constructed a size-dependent thin plate model 

by including the normal stress on and inside the surface of the bulk substrate. Lü et al. 

(2011) developed a non-linear plate model for functionally graded films using the 

Kirchhoff kinematic relations and the von Karman non-linear strains for the bulk material. 

Wang and Wang (2012) provided a model for non-linear free vibrations of a Kirchhoff 

plate and a Mindlin plate using the von Karman strains.  

However, very few models have been developed for thin plates by considering both the 

microstructure and surface energy effects. One non-classical model for Kirchhoff thin 
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plates was provided in Lazopoulos (2009) by employing a strain gradient elasticity theory 

that contains two additional length scale parameters – one related to the bulk strain energy 

and the other linked to the surface energy. Another non-classical Kirchhoff plate model, 

which is based on a modified couple stress theory and a surface elasticity theory, was 

presented in Shaat et al. (2014) without using a variational formulation. The elastic 

foundation effect was not considered in either of these two studies. 

The objective of the this chapter is to develop a non-classical model for a Kirchhoff 

plate resting on a two-parameter elastic foundation characterized by the Winkler and 

Pasternak foundation moduli using the modified couple stress theory (Yang et al., 2002; 

Park and Gao, 2008), the surface elasticity theory (Gurtin and Murdoch, 1975, 1978) and 

Hamilton’s principle. This variational formulation leads to the simultaneous determination 

of the equations of motion and complete boundary conditions and provides a unified 

treatment of the microstructure, surface energy and foundation effects. 

The rest of the Chapter 2 is organized as follows. In Section 2.2, a new non-classical 

model for a Kirchhoff plate on a two-parameter elastic foundation is developed using a 

variational formulation based on Hamilton’s principle. The newly obtained Kirchhoff plate 

model includes the models incorporating the microstructure dependence or the surface 

energy effect or the elastic foundation influence alone as special cases and recovers the 

model for Bernoulli-Euler beams based on the same modified couple stress theory and 

surface elasticity theory. Also, the new plate model reduces to its classical elasticity-based 

counterpart when the microstructure, surface energy and foundation effects are all 

suppressed. In Section 2.3, static bending and free vibration problems of a simply 

supported rectangular plate are analytically solved by directly applying the new model. The 
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numerical results are also presented there to quantitatively show the differences between 

the current non-classical Kirchhoff plate model and its classical counterpart. The chapter 

concludes in Section 2.4 with a summary. 

 

2.2 Formulation 

The Kirchhoff plate theory, also known as the classical plate theory, is the simplest 

theory for analyzing plates. It can be viewed as an extension of the Bernoulli-Euler beam 

theory to three-dimensional deformations.  

Consider a Kirchhoff plate resting on an elastic foundation that can be characterized by 

a two-parameter model including the Winkler foundation modulus kw to represent the 

spring elements and the Pasternak foundation modulus kp to describe the shear layer which 

is incompressible and deforms in transverse shear only (e.g., Selvadurai, 1979; Yokoyama, 

1996), as schematically shown in Fig 2.1. The effect of this two-parameter elastic 

foundation on the plate deformation can be equivalently represented as a vertical body 

force q (in N/m2) given by (Selvadurai, 1979): 

2( , , ) ( , , ) ( , , ),w pq x y t k w x y t k w x y t= − ∇                                       (2.1) 

where ∇2 is the Laplacian, and w is the displacement of point (x, y, 0) on the mid-plane of 

the plate at time t. 

By using the Cartesian coordinate system (x, y, z) shown in Fig 2.2, the displacement 

field in a Kirchhoff plate of uniform thickness h can be written as (e.g., Reddy, 2002) 

1 2 3( , , ) , ( , , ) , ( , , ),w wu u x y t z u v x y t z u w x y t
x y

∂ ∂
= − = − =

∂ ∂
                 (2.2a-c) 

where u1, u2 and u3 are, respectively, the x-, y- and z-components of the displacement vector 

u of a point (x, y, z) in the plate at time t, and u, v and w are, respectively, the x-, y- and z-
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components of the displacement vector of the corresponding point (x, y, 0) on the plate 

mid-plane at time t. 

In Fig 2.2, S+ and S− denote, respectively, the lower and upper surface layers (with zero-

thickness) of the Kirchhoff plate. These two surface layers are taken to be perfectly bonded 

to the bulk plate material at z = ± h/2, respectively. The bulk material satisfies the modified 

couple stress theory (Yang et al., 2002; Park and Gao, 2008), while the surface layers have 

distinct material properties and are governed by the surface elasticity theory (Gurtin and 

Murdoch, 1975, 1978). 

 

 

Fig. 2.1 Plate on a two-parameter elastic foundation 
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Fig. 2.2 Plate configuration and coordinate system 
 

      According to the modified couple stress theory (Yang et al., 2002; Park and Gao, 2008), 

the constitutive equations for an isotropic linear elastic material read  

2 ,ij kk ij ijσ λε δ µε= +                                                   (2.3) 

22 ,ij ijm l µχ=                                                         (2.4) 

where σij are the components of the Cauchy stress tensor, mij are the components of the 

deviatoric part of the couple stress tensor, δij is the Kronecker delta, λ and μ are the Lamé 

constants in classical elasticity, l is a material length scale parameter measuring the couple 

stress effect (e.g., Mindlin, 1963; Park and Gao, 2006), and εij and χij are, respectively, the 
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components of the infinitesimal strain tensor and the symmetric curvature tensor defined 

by  

     ( ), ,
1 ,
2ij i j j iu uε = +                                                    (2.5) 

 ( ), ,
1 ,
2ij i j j iχ θ θ= +                                                    (2.6) 

with ui being the displacement components and θi being the components of the rotation 

vector defined as 

,
1 .
2i ijk k juθ ε=                                                         (2.7) 

According to the surface elasticity theory (e.g., Gurtin and Murdoch, 1975, 1978; 

Steigmann and Ogden, 1997, 1999), the surface layer of a bulk elastic material satisfies 

distinct constitutive equations involving surface elastic constants. The governing equations 

for the surface layer of zero thickness are given by (e.g., Gurtin and Murdoch, 1978; Ru, 

2010; Zhou and Gao, 2013, 2015):  

, , ,ij j i ij i jn n nα α αβ αβσ τ σ τ κ= =                                   (2.8a,b) 

where καβ are the components of the surface curvature tensor, ni are the components of the 

outward-pointing unit normal n ( = niei ) to the surface, and ταβ are the in-plane components 

of the surface stress tensor expressed as (Gurtin and Murdoch, 1975, 1978) 

 ( )0 0 0 , 0 , , 0 ,( ) ,u u u uαβ γ γ αβ α β β α β ατ τ λ τ δ µ τ = + + + + −                        (2.9) 

where μ0 and λ0 are the surface elastic constants, and τ0 is the residual surface stress (i.e., 

the surface stress at zero strain). These three constants μ0, λ0 and τ0 can be determined from 

atomistic simulations (e.g., Miller and Shenoy, 2000; Shenoy, 2005) or experimental 
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measurements (e.g., Jing et al., 2006; Zhang et al., 2013). Clearly, Eq. (2.9) shows that ταβ  

is not symmetric.  

The out-of-plane components of the surface stress tensor read (Gurtin and Murdoch, 

1978) 

3 0 3, .uβ βτ τ=                                                        (2.10) 

Note that in Eqs. (2.3)–(2.10) and throughout the Chapter 2, the summation convention 

and standard index notation are used, with the Greek indices running from 1 to 2 and the 

Latin indices from 1 to 3 unless otherwise indicated. 

It follows from Eqs. (2.2a-c) and (2.5)–(2.7) that in the bulk of the current Kirchhoff 

plate, 

2 2 2

2 2

1, ( 2 ), , 0,
2xx xy yy xz yz zz

u w u v w v wz z z
x x y x x y y y

ε ε ε ε ε ε∂ ∂ ∂ ∂ ∂ ∂ ∂
= − = + − = − = = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

(2.11) 

1 2 3
1, , ( ),
2

w w v u
y x x y

θ θ θ∂ ∂ ∂ ∂
= = − = −
∂ ∂ ∂ ∂

                                   (2.12) 

2 2 2 2

2 2

2 2 2 2

2 2

1, ( ), ,
2

1 1( ), ( ), 0.
4 4

xx xy yy

xz yz zz

w w w w
x y y x x y

v u v u
x x y x y y

χ χ χ

χ χ χ

∂ ∂ ∂ ∂
= = − = −
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= − = − =

∂ ∂ ∂ ∂ ∂ ∂

                       (2.13) 

The total strain energy in the elastically deformed Kirchhoff plate is given by 

( )
2 2 2

1 1 1d d d
2 2 2

1 1 1d ( ) d ( ) d ,
2 2 2

T B S F ij ij ij ij S S

w p pR R R

U U U U m V A A

w wk w A k A k A
x y

αβ αβ αβ αβσ ε χ τ ε τ ε
+ −Ω

= + + = + + +

∂ ∂
+ + +

∂ ∂

∫ ∫ ∫

∫ ∫ ∫
      (2.14) 

where Ω is the region occupied by the plate, S− and S+ represent, respectively, the top and 

bottom surface layers of the plate (see Fig 2.2), R denotes the area occupied by the mid-
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plane of the plate, dV is the volume element, and dA is the area element. In Eq. (2.14), UB 

is the strain energy in the bulk of the plate, which is governed by the modified couple stress 

theory, US is the strain energy in the surface layers S− and S+ satisfying the surface elasticity 

theory, and UF is the strain energy representing the effect of the two-parameter elastic 

foundation. Note that only the first part of UB is considered in the classical Kirchhoff plate 

theory as the total strain energy (i.e., 1 d
2

C
T ij ijU Vσ ε

Ω
= ∫ ) in the plate. 

From Eqs. (2.9)–(2.14), the first variation of the total strain energy in the plate on the 

time interval [0, T] can be obtained as 

( ) 00 0 0

2 2

0 2 20 0 0

0

1d d d ( ) d d
2

1( ) d d d d d d
2

d d ,

ij

T T T

T ij ij ij S

T T T

w pS R R

T

p x yR

U t m V t A t

w wA t k w w A t k w A t
x y

w wk n n w s t
x y

αβ αβ αβ

αβ αβ αβ

δ σ δε δχ τ τ δ δε

τ τ δ δε δ δ

δ

+

−

+ +

Ω

− −

∂

= + + −

 ∂ ∂
+ − + − + ∂ ∂ 

 ∂ ∂
+ + ∂ ∂ 

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

   

(2.15) 

where ∂R is the boundary curve enclosing the area R, ds is the differential element of arc 

length along ∂R, αβτ + and αβτ − represent, respectively, the surface stress components on the 

plate bottom (S+) and top (S−) surfaces. In reaching Eq. (2.15), use has been made of 

Green’s theorem and the fact that ταβ  is non-symmetric. This fact has been overlooked in 

other variational studies employing the surface elasticity theory of Gurtin and Murdoch 

(1975, 1978).  

Note that the volume integral of a sufficiently smooth function D (x, y, z, t) over the 

region Ω occupied by a uniform-thickness plate can be represented by 
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/2

/2
( ,  ,  ,  )d ( ,  ,  ,  )d d ,

h

R h
D x y z t V D x y z t z A

Ω −
=∫ ∫ ∫                             (2.16) 

where h is the plate thickness, and R is the plate mid-plane area. 

Using Eqs. (2.11), (2.13) and (2.16) in Eq. (2.15) gives, with the help of Green’s 

theorem, 

( ) ( )

( ) ( ) ( )

( )

, , , , , , , ,0 0

, , , , , , , , , ,

, , , ,

1 1d
2 2

1 1 1
2 2 2
1 2
2

T T

T xx x xy y xz xy yz yy xx x xx x xy y xy yR

yx y yx y yy y xy x xz xx yz xy yy y yy y xy x xy x

yx x yx x xx xx xy xy yy

U t N N Y Y

u N N Y Y

v M M M

δ τ τ τ τ

τ τ δ τ τ τ τ

τ τ δ

+ − + −

+ − + − + −

+ −

= − + + + + + + +
 + + + + − + + + + +  
+ + + + +

∫ ∫ ∫

( ) {

( ) ( ) ( )

, , , , ,

2 2

2 2, 0

, , , 0

1d d 2 2
2 2

1 2
2

2 2

yy xx xy xy xx xy yy yy xy

T

w p xx x xy yR

xz x y xz y x yz y y xx xx x xy xy yx yx y

xy x yy y xz

Y Y Y Y

h w wk w k w A t N n N n
x y

Y n Y n Y n n n u

N n N n Y

αβ αβ αβ
τ τ δ

τ τ τ τ τ τ τ δ

+ −

∂

+ − + − + −

 − + − +

 ∂ ∂  + − − + + + +  ∂ ∂   
+ + + + + − + + + + 

+ + −

∫ ∫

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

, , , 0

, , , ,

, , , , , ,, ,

, ,

1 2
2

2 2

1 1
2 2

2

x x yz x y yz y x yy yy y

xy xy yx yx x xx x xy y x xy x yy y y

xx yy y xx yy x xx x xy y y xy x x xy y y xy x yy y xx y

p x

n Y n Y n n

n v M M n M M n

Y Y n Y Y n Y Y n Y n Y n Y Y n

wh n k n
xαβ β αβ β α

τ τ τ

τ τ τ τ δ

τ τ

+ −

+ − + −

+ −

 − + + + −
 + + + + + + + +

− − − − − + + − + +

∂ ∂
+ − + +

∂
( )

( ) ( ) ( )

( ) ( )

,

, , ,

12 2 3
2

12 2 2 3
2

1 12
2 2

1 2
2

y xx x xy y xx yy y

xy x xx xx x xy xy y x xy x yy y xx yy x

xy y yx yx x yy yy y y xz y x xz x yz y y

xz x

w n w M n M n Y Y n
y

Y n h n h n w M n M n Y Y n

Y n h n h n w Y n u Y n Y n u

Y n

δ

τ τ τ τ δ

τ τ τ τ δ δ δ

+ − + −

+ − + −

  − + − −  ∂  
+ + − + − − + − − 

 − + − + − − − +   

+ +( ) , ,
1 d d ,
2yz y x yz x yY n v Y n v s tδ δ + 



 

(2.17) 
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where  

/2 /2 /2

/2 /2 /2
/2 /2 /2

/2 /2 /2
/2 /2 /2 /2

/2 /2 /2 /2

d ,    d ,    d ,

d ,  d ,    d ,   

d , d ,  d ,   d ,   

h h h

xx xx yy yy xy xyh h h
h h h

xx xx yy yy xy xyh h h
h h h h

xx xx yy yy xy xy xz xzh h h h

N z N z N z

M z z M z z M z z

Y m z Y m z Y m z Y m z

σ σ σ

σ σ σ

− − −

− − −

− − − −

≡ ≡ ≡

≡ ≡ ≡

≡ ≡ ≡ ≡

∫ ∫ ∫
∫ ∫ ∫
∫ ∫ ∫ ∫

/2

/2
d

h

yz yzh
Y m z

−
≡ ∫

 

(2.18)
 

are the Cauchy stress and couple stress resultants through the plate thickness. Note that in 

reaching Eq. (2.17) use has been made of the relations S+ = R = S−, ∂S+ = ∂R = ∂S− for the 

uniform-thickness plate under consideration in order to facilitate the integral evaluations.   

The kinetic energy of the plate has the form (e.g., Ma et al., 2011; Gao et al., 2013) 

( ) ( ) ( )2 2 2
1 2 3

1 d
2

K u u u Vρ
Ω

 = + + ∫                                        (2.19) 

where ρ is the mass density of the plate material. Note that here and in the sequel the 

overhead “∙” and “∙∙” denote, respectively, the first and second time derivatives (e.g., 

2 2
1 1 1 1/ ,  /u u t u u t= ∂ ∂ = ∂ ∂  ). 

 From Eqs. (2.2a-c), (2.16) and (2.19), the first variation of the kinetic energy, on the 

time interval [0, T], can be obtained as  

0 0 0 2 , , 2 , ,0 0
d ( )d d ,

T T

x x y yR
K t m u u m v v m w w m w w m w w A tδ δ δ δ δ δ= − + + + +∫ ∫ ∫               (2.20) 

where  

3/2 /2 2
0 2/2 /2

d , d .
12

h h

h h

hm z h m z z ρρ ρ ρ
− −

≡ = ≡ =∫ ∫                               (2.21)           

In reaching Eq. (2.20), it has been assumed that the initial (t = 0) and final (t = T) 

configurations of the plate are prescribed so that the virtual displacements vanish at t = 0 
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and t = T. In addition, ρ is taken to be constant along the plate thickness and over the time 

interval [0, T] such that 0,0 20 == mm  .  

From the general expression of the work done by external forces in the modified couple 

stress theory (Park and Gao, 2008) and in the surface elasticity theory (Gurtin and 

Murdoch, 1975, 1978), the virtual work done by the forces applied on the current plate 

over the time interval [0, T] can be written as  

( ) ( ) 3 30 0 0 0
d d d d d ( )d d ,

T T T T s

R R S
W t A t s t u A tδ δ δ δ δ δ

∂
= ⋅ + ⋅ + ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫ ∫ ∫ ∫f u c θ t u s θ t e



(2.22) 

where f and c are, respectively, the body force resultant (force per unit area), body couple 

resultant (moment per unit area) through the plate thickness acting in the area R (i.e., the 

plate mid-plane), t  and s  are, respectively, the Cauchy traction resultant (force per unit 

length) and the surface couple resultant (moment per unit length) through the plate 

thickness acting on ∂R (i.e., the boundary of R), S represents the top and bottom surfaces 

of the plate (with S = S+ ∪ S−), and st is the surface traction that is related to the surface 

stress τ through ,= =s
s i iα ατ∇ ⋅t τ e  (e.g., Gurtin and Murdoch, 1978; Altenbach et al., 

2010). Note that the last term in the virtual work expression in Eq. (2.22) accounts for the 

contribution of the normal stress on the top and bottom plate surfaces 33σ ±  (= 3 ,α ατ ±± from 

the equilibrium equations in Eq. (2.8a)), which is neglected in the classical Kirchhoff plate 

theory that does not consider the surface energy effect.   

Using Eqs. (2.2a-c), (2.8a) and (2.12) in Eq. (2.22) leads to, with the help of Green’s 

theorem, 
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, , , ,0 0

, , , , , ,0

3 , 3 ,0 0

1d ( ) d d
2

1 ( ) d d
2

d d d d ,

T T

x y z x y y x z x yR

T

x y z x x y y x y y x z x yR

T T

S S

W t f u f v f w c w c w c v u A t

t u t v t w M w M w s w s w s v u s t

w A t w A tα α α α

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ δ δ

τ δ τ δ
+ −

∂

+ −

 = + + + − + −  
 + + + − − + − + −  

+ +

∫ ∫ ∫

∫ ∫

∫ ∫ ∫ ∫



            

(2.23) 

where fi, ci, it  and is  (i = x, y, z) are, respectively, the components of f , c , t  and s , and 

xM  and yM  are, respectively, the applied moments per unit length about the y-axis and x-

axis acting on ∂R. Note that the positive directions of  and  are, respectively, 

opposite to those of ∂w/∂x and ∂w/∂y (see Fig 2.2).  

According to Hamilton’s principle (e.g., Reddy, 2002; Ma et al., 2008, 2010, 2011; 

Gao et al. 2013),  

( )
0

d 0.
T

TK U W tδ − − =  ∫                                            (2.24)   

Using Eqs. (2.17), (2.20) and (2.23) in Eq. (2.24) and applying the fundamental lemma of 

the calculus of variations (e.g., Steigmann, 1996, 2007; Gao and Mall, 2001) will result in, 

with the arbitrariness of δu, δv and δw and the relations S+ = R = S−, ∂S+ = ∂R = ∂S− due to 

the uniform thickness of the plate,   

( ) ( ) ( ), , , , , , , , , ,

, 0

1 1 1
2 2 2

1 ,
2

xx x xy y xz xy yz yy xx x xx x xy y xy y yx y yx y

x z y

N N Y Y

f c m u

τ τ τ τ τ τ+ − + − + −+ + + + + + + + +

+ + = 

       (2.25a) 

( ) ( ) ( ), , , , , , , , , ,

, 0

1 1 1
2 2 2

1 ,
2

xy x yy y xz xx yz xy yy y yy y xy x xy x yx x yx x

y z x

N N Y Y

f c m v

τ τ τ τ τ τ+ − + − + −+ − + + + + + + +

+ − = 

       (2.25b) 

xM yM
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2 2

, , , , , , , 2 2

2 2

, 3 , 3 , , , 0 2 22 2

2

( )
2

xx xx xy xy yy yy xx xy xy xx xy yy yy xy w p

z x y y x

w wM M M Y Y Y Y k w k
x y

h w wf c c m w m m
x yαβ αβ αβ α α α ατ τ τ τ+ − + −

 ∂ ∂
+ + − + − + − + + ∂ ∂ 

∂ ∂
+ − + + + − + = − −

∂ ∂
 



       (2.25c) 

as the equations of motion of the Kirchhoff plate for any (x, y) ∈ R and t ∈ (0, T), and 

, , , 00

, ,

, 0

1 1 12 2 2( )
2 2 2

1( ) 2 2 2
2

1 ( ) 2( )
2

T

xx x xy y xz x y xz y x yz y y xx xx xR

xy xy yx yx y z y x xy x yy y xz x x yz x y

yz y x xy xy yx yx x yy yy y

N n N n Y n Y n Y n n

n c n t u N n N n Y n Y n

Y n n n

τ τ τ

τ τ τ τ δ

τ τ τ τ τ τ τ

+ −

∂

+ − + −

+ − + − + −

− + + + + + + −
+ + + + + − + + − − 

− + + + + + + − −

∫ ∫

, , , , , ,

, , , , , ,

, , 2 ,

2

1 12( ) 2( ) ( ) ( )
2 2

( ) ( ) 2

( ) 2 2 2 2 (

z x y

xx x xy y x xy x yy y y xx yy x y xx yy y x

xy x x xy y y xy x yy y x xx x xy y y p x y

x y y x z x x

c n t v

M M n M M n Y Y n Y Y n

w wY n Y n Y Y n Y Y n k n n
x y

h n c n c n t m w nαβ β αβ β α

δ

τ τ+ −

− 
+ + + + − − − −

 ∂ ∂
+ − + + − + + + ∂ ∂ 

+ − − + − +  ,

,

,

,

) 2 2

1 ( 3 ) 2 ( ) ( ) 2 2 2
2

12 (3 ) 2 ( ) ( ) 2 2
2

1 1(
2 2

y y xx x xy y

x yxx yy y xy x xx xx x xy xy y x xy x

y xyy y xx yy x xy y yx yx x yy yy y y

xz y x xz x

w n w M n M n

Y Y n Y n h n h n M s w M n

M n Y Y n Y n h n h n M s w

Y n u Y n

δ

τ τ τ τ δ

τ τ τ τ δ

δ

+ − + −

+ − + −

 + − +
 − − + + − + − − − − 

+ − − − + − + − − + 

− −



, , ,
1 1) ( ) d d 0,
2 2

z zyz y y xz x yz y x yz x yY n s u Y n Y n s v Y n v s tδ δ δ + − + + − + =


 

(2.26) 

which can be further simplified to obtain the boundary conditions. 

Note that the integrand of the line integral in Eq. (2.26) is expressed in terms of the 

Cartesian components of the resultants and displacements that are functions of the 

Cartesian coordinates (x, y, z) with the unit base vectors {e1, e2, e3}. This is convenient for 

a rectangular plate whose edges are parallel to the x- and y-axes. However, for a more 

general case of a plate whose boundary is not aligned with the x- or y-axis, as shown in Fig 

2.3, it is more convenient to use a Cartesian coordinate system ( , , )n s z with the unit base 
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vectors },,{ 3eee sn , where en ( 21 ee yx nn += ) and es ( 21 ee xy nn +−= ) are, respectively, the 

unit normal and tangent vectors on the plate boundary ∂R.  

 
Fig. 2.3 Two coordinate systems 

 

It can be shown that the components in the coordinate system ( , , )x y z  are related to 

those in the coordinate system ( , , )n s z through the following transformation expressions:  

{ } [ ]{ } { } [ ]{ }1 , , 1 , ,,  ,  ,  ,  ,  ,
T TT T

n s x y n su v R u v w w R w w= =  

{ } [ ]{ } { } [ ]{ } { } [ ]{ }1 1 1,  ,  , ,  ,  ,  ,  ,  ,
T T TT T T

x y n s x y n s x y n st t R t t s s R s s c c R c c= = =  

{ } [ ]{ } { } [ ]{ }1 1,  ,  ,  ,  ,  ,  
T T T T

x y n s xz yz nz szM M R M M Y Y R Y Y= =  

[ ] [ ] [ ] [ ]1 1 1 1,   ,T Txx xy xx xynn ns nn ns

xy yy xy yyns ss ns ss

N N Y YN N Y Y
R R R R

N N Y YN N Y Y
      

= =      
      

 

[ ] [ ] [ ] [ ], , , ,
1 1 1 1

, , , ,

,  ,T Txx xy xz x xz y nz n nz snn ns

xy yy yz x yz y sz n sz sns ss

M M Y Y Y YM M
R R R R

M M Y Y Y YM M
      

= =      
      

  (2.27) 

[ ] [ ] [ ] [ ], , , ,
1 1 1 1

, , , ,

, ,T Tx y n n n sxx xy nn ns

x y s n s syx yy sn ss

u u u u
R R R R

v v v v
τ τ τ τ
τ τ τ τ

± ± ± ±

± ± ± ±

       
= =       

      
 

{ } [ ]{ }, , , , , , 3 , , , , , ,, , , , , , , , , , , 
T T

xx x xx y xy x xy y yy x yy y nn n nn s ns n ns s ss n ss sM M M M M M R M M M M M M=  

{ } [ ]{ }, , , , , , 3 , , , , , ,, , , , , , , , , , ,
T T

xx x xx y xy x xy y yy x yy y nn n nn s ns n ns s ss n ss sY Y Y Y Y Y R Y Y Y Y Y Y=  
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{ } [ ]{ }, , , , 4 , , , , , , , ,, , , , , , , , , , ,
T T

xx x xy y yx x yy y nn n nn s ns n sn n ns s sn s ss n ss sRτ τ τ τ τ τ τ τ τ τ τ τ± ± ± ± ± ± ± ± ± ± ± ±=  

where 

                   [ ]1  ,x y

y x

n n
R

n n
− 

≡  
 

 

[ ]

3 2 2 2 2 3

2 3 2 2 3 2

2 2 3 2 2 3 2

3

               2         2                 

                   2      2                    

               +    
 

x x y x y x y x y y

x y x x y x y y x y

x y x y x x y x y y x

n n n n n n n n n n

n n n n n n n n n n

n n n n n n n n n n n n
R

− − −

− −

− − − −
≡

2

2 2 2 3 3 2 2 2

2 3 2 2 3 2

3 2 2 2

     

                          

                  2      2                 

                     2         2     

y x y

x y x y x y y x x y x y x y

x y y x y x y x x y

y x y x y x y

n n

n n n n n n n n n n n n n n

n n n n n n n n n n

n n n n n n n

− − − −

− − −
2 3

,

                x y xn n n

 
 
 
 
 
 
 
 
 
 
 

             (2.28a-c) 

 [ ]

3 2 2 2 2 2 2 3

2 2 2 3 3 2 2 2

4 2 2 2

                                         

                                           
 

               

x x y x y x y x y x y x y y

x y x y x y y x x y x y x y

x y x y x y

n n n n n n n n n n n n n n

n n n n n n n n n n n n n n
R

n n n n n n

− − − −

− − − −
≡

− − 3 3 2 2 2

3 2 2 2 2 2 2 3

,
                           

                                                        
x y x y x y x y

y x y x y x y x y x y x y x

n n n n n n n n

n n n n n n n n n n n n n n

 
 
 
 

− − 
 
 

 

with 2 2 1.x yn n+ =  

Using Eqs. (2.27) and (2.28a-c) in Eq. (2.26) yields, after some lengthy algebra, 

) ( )

, 0 , ,0

, , , , , , , ,

, 2 , ,

1 12 2
4 2

12 2 2 2
2

3 2 2 2 2 2
2

T
nnn nz s nn nn n ns nz n sz s ns nsR

ssn sn z s nn n ns s nn n nn n ns s ns s nn s ns n

zss s s n p n

N Y t u N Y Y

c t v M M h Y Y

Y c t m w k w w

τ τ τ δ τ τ

τ τ δ τ τ τ τ

δ

+ − + −

∂

+ − + − + −

   + + + − − − − + + − −   
  

− − + + + + + − + − − +

+ + − + + + −

∫ ∫





( ) ,

, ,

, ,

2 2 2

3 1 12 2 2 ( )
2 2 2

1( ) d d 0.
2

n sns nn nn nn n

s n zns nn ss sn sn s nz n s

znz s n sz s s

Y M h h M s w

M Y Y h h M s w Y s u

Y s v Y v s t

τ τ δ

τ τ δ δ

δ δ

+ −

+ −

− − + + +

 + − + − − + + − + − + 
 

+ − + =


      

(2.29) 

Note that on the closed boundary ∂R, the following identity: 
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, ,d ds sR R
D g s D g sδ δ

∂ ∂
= −∫ ∫ 

                                          (2.30) 

holds, where D, g are two smooth functions. Using Eq. (2.30) in Eq. (2.29) leads to 

    ( ), ,0
d d 0,

T
z snn ss zzn s n s nR

N u N v N w T w T v s tδ δ δ δ δ
∂

+ + + + =∫ ∫                   (2.31) 

where 







,, 0

, ,

, , , , , , , , ,

, ,, , 2

1 12( ),
2 2

2 2 ,

2 4 2 2 2 (

) 2 2 2 2 2

nn z s nnn nz s nn nn

ss sns nz n sz s ns ns sn sn z

zz nn n ns s nn s ns n ss s nn n nn n ns s ns s

s s n s zsn s sn s s

N N Y s t

N N Y Y c t

N M M Y Y Y h

c M s t m w

τ τ τ

τ τ τ τ

τ τ τ τ

τ τ

+ −

+ − + −

+ − + −

+ −

≡ + + + − − −

≡ − − + + + + − −

≡ + − + + + − + −

+ − + − + − + 





, ,2 ,

2 2 2 2 ,

.

n p n

z n sns nn nn nn

s znz

k w

T Y M h h M s

T Y s

τ τ+ −

+

≡ − − − + + +

≡ −

 (2.32a-e) 

The use of the fundamental lemma of the calculus of variations in Eq. (2.31) gives 











, ,

, ,

0   or   ,

0   or    ,

0   or    ,

0    or    ,

0    or    

nn n n

ss s s

zz

z n n

s s n s n

N u u

N v v

N w w

T w w

T v v

= =

= =

= =

= =

= =

                                         (2.33a-e) 

as the boundary conditions for any (x, y) ∈ ∂ R and t ∈ (0, T), where the overhead bar 

defines the prescribed value. 

From Eqs. (2.3), (2.4), (2.11), (2.13) and (2.18), the Cauchy stress and couple stress 

resultants can be expressed in terms of u, v and w as 

         [( 2 ) ],xx
u vN h
x y

λ µ λ∂ ∂
= + +

∂ ∂
 

         [( 2 ) ],yy
v uN h
y x

λ µ λ∂ ∂
= + +

∂ ∂
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         ( ),xy
u vN h
y x

µ ∂ ∂
= +

∂ ∂
 

        
2 2

3
2 2

1 [( 2 ) ],
12xx

w wM h
x y

λ µ λ∂ ∂
= − + +

∂ ∂
 

        
2 2

3
2 2

1 [( 2 ) ],
12yy

w wM h
y x

λ µ λ∂ ∂
= − + +

∂ ∂
 

        
2

31 ,
6xy

wM h
x y

µ ∂
= −

∂ ∂
 

          
2

22 ,xx
wY l h

x y
µ ∂

=
∂ ∂

 

          
2

22 ,yy
wY l h

x y
µ ∂

= −
∂ ∂

 

          
2 2

2
2 2( ),xy
w wY l h

y x
µ ∂ ∂

= −
∂ ∂

 

          
2 2

2
2

1 ( ),
2xz

v uY l h
x x y

µ ∂ ∂
= −

∂ ∂ ∂
 

2 2
2

2

1 ( ).
2yz

v uY l h
x y y

µ ∂ ∂
= −

∂ ∂ ∂
                                                                       (2.34a-k) 

From Eqs. (2.9), (2.10) and (2.2a-c), it follows that the surface stress components are 

given by 

           
2 2

0 0 0 0 02 2( )( ) ( 2 )( ),
2 2xx

v h w u h w
y y x x

τ τ λ τ λ µ± ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂
   

           
2 2

0 0 0 0 02 2( )( ) ( 2 )( ),
2 2yy

u h w v h w
x x y y

τ τ λ τ λ µ± ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂
                                          

             
2

0 0 0 0
1( ) (2 ) ,
2xy

u v v wh
y x x x y

τ µ τ µ τ± ∂ ∂ ∂ ∂
= + − −

∂ ∂ ∂ ∂ ∂
  
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2

0 0 0 0
1( ) (2 ) ,
2yx

u v u wh
y x y x y

τ µ τ µ τ± ∂ ∂ ∂ ∂
= + − −

∂ ∂ ∂ ∂ ∂
  

             3 3 0 ,x x
w
x

τ τ τ+ − ∂
= =

∂
 

3 3 0 .y y
w
y

τ τ τ+ − ∂
= =

∂
                                                                                  (2.35a-f) 

Using Eqs. (2.34a-k) and (2.35a-f) in Eqs. (2.25a-c) then yields the equations of motion 

of the Kirchhoff plate in terms of u, v and w as 

2
, , , , , , ,

0 0 , , 0 0 , , , , 0

1( 2 ) ( ) ( )
4

12( )( ) (2 )(2 ) ,
2

xx yy xy xxyy yyyy xxxy xyyy

xx xy xx yy xy x z y

hu hu hv l h u u v v

u v u u v f c m u

λ µ µ λ µ µ

µ λ µ τ

+ + + + + − − + +

+ + + + − + + + + = 

        (2.36a) 

2
, , , , , , ,

0 0 , , 0 0 , , , , 0

1( 2 ) ( ) ( )
4

12( )( ) (2 )( 2 ) ,
2

yy xx xy xxxy xyyy xxxx xxyy

xy yy xy xx yy y z x

hv hv hu l h u u v v

u v u v v f c m v

λ µ µ λ µ µ

µ λ µ τ

+ + + + + + − −

+ + + + − + + + − = 

       (2.36b) 

3 2 2
0 0 , , ,

2 2

0 , , , , 0 2 22 2

1 1( 2 ) ( 2 ) ( 2 )
12 2

(2 )( ) .

xxxx xxyy yyyy

p xx yy w z x y y x

h l h h w w w

w wk w w k w f c c m w m m
x y

λ µ µ λ µ

τ

 − + + + + + +  
∂ ∂

+ + + − + − + = − −
∂ ∂
 



       (2.36c) 

The boundary-initial value problem for determining u, v and w is defined by the 

differential equations in Eqs. (2.36a–c), the boundary conditions in Eqs. (2.33a–e), and 

given initial conditions at t = 0 and t = T. It is seen from Eqs. (2.36a-c) that the in-plane 

displacements u and v are uncoupled with the out-of-plane displacement w and can 

therefore be obtained separately from solving Eqs. (2.36a,b) subject to prescribed boundary 

conditions of the form in Eqs. (2.33a,b,e) and suitable initial conditions.  

When l = 0, ci = 0, Eqs. (2.36a-c) will reduce to the governing equations for the 

Kirchhoff plate in the absence of the microstructure (or couple stress) effect.   
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When λ0 = µ0 = τ0 = 0, Eqs. (2.36a-c) will become the governing equations for the 

Kirchhoff plate without the surface energy effect.   

When l = 0, ci = 0, and λ0 = µ0 = τ0 = 0, Eqs. (2.36a-c) will degenerate to the classical 

elasticity-based governing equations for the Kirchhoff plate resting on the two-parameter 

elastic foundation.   

When l = 0, ci = 0, λ0 = µ0 = τ0 = 0, and kw = kp =0, Eqs. (2.36a-c) reduce to  

, , , 0( 2 ) ( ) ,xx yy xy xhu hu hv f m uλ µ µ λ µ+ + + + + =                              (2.37a) 

, , , 0( 2 ) ( ) ,yy xx xy yhv hv hu f m vλ µ µ λ µ+ + + + + =                              (2.37b) 

2 2
3

, , , 0 2 22 2

1 ( 2 ) ( 2 ) ,
12 xxxx xxyy yyyy z

w wh w w w f m w m m
x y

λ µ ∂ ∂
− + + + + = − −

∂ ∂
 

            (2.37c) 

which are the governing equations for the Kirchhoff plate based on classical elasticity.  

When u = v = 0, w = w(x, t), fx = fy = 0, and cx = cz = 0, the Kirchhoff plate considered 

here becomes a Bernoulli-Euler beam with a unit width and a height h undergoing only 

bending deformations. For this case, Eqs. (2.36a–c) are simplified as 

3 2 2
0 0 , 0 , ,

2

0 2 2

1 1( 2 ) ( 2 ) (2 )
12 2 xxxx p xx w z y xh l h h w k w k w f c

wm w m
x

λ µ µ λ µ τ − + + + + + + − + +  
∂

= −
∂




     (2.38) 

for any x∈(0, L) and t∈(0, T), where L is the length of the beam (plate). When the elastic 

foundation is not present (i.e., kw = kp = 0), the governing equation in Eq. (2.38) reduces to 

that for the Bernoulli-Euler beam with a unit width and a height h without considering axial 

loading and the surface energy effect on the two side surfaces of the beam (Gao, 2015; Gao 

and Zhang, 2015). That is, the current Kirchhoff plate model recovers the non-classical 

Bernoulli-Euler beam model based on the same modified couple stress theory and surface 

elasticity theory. For static bending, w = w(x), and Eq. (2.38) further reduce to the static 
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equilibrium equation for a Bernoulli-Euler beam without the elastic foundation derived in 

Gao and Mahmoud (2014). 

 

2.3 Examples  

To demonstrate the new Kirchhoff model developed in Section 2.2, static bending and 

free vibration problems of a simply supported rectangular plate (see Fig 2.4) are 

analytically solved herein by directly applying the new model. 

 

Fig. 2.4 Simply supported plate 
 

In view of the general form of the boundary conditions (BCs) in Eqs. (2.33a–e), the 

BCs for this simply supported plate can be identified as 

  0, 0,  0,  0, 0z sssnu N w T T= = = = =                                  (2.39) 

for all (x, y) on the boundaries x = 0, a and y = 0, b. Also, the following applied traction 

resultants vanish on these boundaries: 

0,  0,  0.ns z ss s M t= = = =                                          (2.40) 

For the boundaries x = 0, a, ny = 0 and nx = −1 (on x = 0) or nx = 1 (on x = a), and Eq. 

(2.39) becomes, with the help of Eqs. (2.27), (2.28a), (2.32b,d,e) and (2.40),  
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          (0, ) ( , ) 0,u y u a y= =  

         (0, ) ( , ) 0,w y w a y= =  

    , ,
1 1 1 1( ) 0 on 0 and ,
2 2 2 2xy xz x yz y xy xy yx yx zN Y Y c x x aτ τ τ τ+ − + −− − + + + + − = = =    

         ( ) 0 on 0 and ,
2xx xy xx xx
hM Y x x aτ τ+ −+ + − = = =  

          0 on 0 and .xzY x x a= = =                                                                       (2.41a-e) 

Using Eqs. (2.34c,d,i-k) and (2.35a,c,d) in Eqs. (2.41c-e) gives 

2 2
, , , , , , 0 0 , ,

2 3 2 2
, , , , 0 0 , 0 0 ,

, ,

1 1 1( ) ( ) ( ) (2 )( ) 0,
4 4 2

1 1 1( ) [( 2 ) ] ( 2 ) ( ) 0,
12 2 2

0

y x xyy xxx yyy xyy y x z

xx yy xx yy xx yy

xy xx

h u v l h u v l h u v u v c

l h w w h w w h w h w

u v

µ µ µ µ τ

µ λ µ λ λ µ λ τ

+ + − + − + − + − =

− + − + + − + − + =

− + =

 

(2.42a-c) 

on x = 0 and x = a. 

For the boundaries y = 0, b, nx = 0 and ny = −1 (on y = 0) or ny = 1 (on y = b), and Eq. 

(2.39) now becomes, with the help of Eqs. (2.27), (2.28a), (2.32b,d,e) and (2.40), 

        ( ,0) ( , ) 0,v x v x b= =  

       ( ,0) ( , ) 0,w x w x b= =  

, ,
1 1 1( ) ( ) 0 on 0 and ,
2 2 2xy xz x yz y xy xy yx yx zN Y Y c y y bτ τ τ τ+ − + −− − + − + + + − = = =        (2.43a-e) 

        ( ) 0  on 0 and ,
2yy xy yy yy
hM Y y y bτ τ+ −− + − = = =  

         0  on 0 and .yzY y y b= = =  

Using Eqs. (2.34c,e,i-k) and (2.35b-d) in Eqs. (2.43c-e) results in 
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2 2
, , , , , , 0 0 , ,

2 3 2
, , , , 0 0 , 0 0 ,

, ,

1 1 1( ) ( ) ( ) (2 )( ) 0,
4 4 2

1 1( ) [ ( 2 ) ] [( ) ( 2 ) ] 0,
12 2

0

y x yyy xyy xxy xxx y x z

xx yy xx yy xx yy

yy xy

h u v l h u v l h u v u v c

l h w w h w w h w w

u v

µ µ µ µ τ

µ λ λ µ λ τ λ µ

+ − − − − + − + + =

− − + + − + + + =

− =

 

(2.44a-c) 

on y = 0 and y = b. 

 

2.3.1 Static bending 

For static bending problems, u, v and w are independent of time t so that all of the time 

derivatives involved in Eqs. (2.36a–c) vanish.  

The boundary value problem (BVP) for the static bending of the simply supported plate 

shown in Fig 2.4 is defined by Eqs. (2.36a–c) and the boundary conditions in Eqs. 

(2.41a,b), (2.42a-c), (2.43a,b) and (2.44a-c), with u = u(x, y), v = v(x, y) and w = w(x, y).  

As mentioned in Section 2.2, the in-plane displacements u and v are uncoupled with w. 

They can be obtained from solving the BVP defined by Eqs. (2.36a), (2.36b), (2.41a), 

(2.42a,c), (2.43a) and (2.44a,c). For the current case with fx = fy = 0 and cz = 0, the solution 

of this BVP gives u = v = 0 for any (x, y) ∈ R. 

The out-of-plane displacement w can be obtained from solving the BVP defined by 

Eqs. (2.36c), (2.41b), (2.42b), (2.43b) and (2.44b). 

Consider the following Fourier series solution for w: 

1 1
sin( )sin( ),mn

m n

m x n yw W
a b
π π∞ ∞

= =

=∑∑                                        (2.45) 
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where mnW is the Fourier coefficient to be determined for each pair of m and n. It can be 

readily shown that w in Eq. (2.45) satisfies the boundary conditions in Eqs. (2.41b), (2.42b) 

at x = 0, a and in Eqs. (2.43b), (2.44b) at y = 0, b for any .  

The force fz (x, y) involved in Eq. (2.36c) can also be expanded in a Fourier series as 

1 1
( , ) sin( )sin( ),z mn

m n

m x n yf x y Q
a b
π π∞ ∞

= =

=∑∑                                  (2.46) 

where the Fourier coefficient Qmn is given by 

0 0

4 ( , )sin( )sin( )d d .
a b

mn z
m x n yQ f x y x y

ab a b
π π

= ∫ ∫                           (2.47) 

In the current case (see Fig 2.4), ( , ) ( ) ( ),
2 2z
a bf x y P x yδ δ= − −  where ( )δ ⋅  is the Dirac 

delta function. Using this zf  in Eq. (2.47) yields 

4 sin( )sin( ).
2 2mn

P m nQ
ab

π π
=                                            (2.48) 

Using Eqs. (2.45) and (2.46) in Eq. (2.36c) results in, with 0,x yc c= =  

mn
mn

QW =
∆

                                                        (2.49) 

where 

3 2 2 2 2 2 2 2 2 2
2 2

0 0 02 2 2 2( 2 ) ( 2 ) ( ) (2 )( ) .
12 2

[ ] p w
h h m n m nl h k k

a b a b
π π π πλ µ µ λ µ τ∆ ≡ + + + + + + + + +

(2.50) 

Substituting this mnW  into Eq. (2.45) will give the exact solution w based on the current 

non-classical Kirchhoff plate model for the simply supported plate subjected to the 

concentrated force at the center of the plate shown in Fig 2.4. 

Clearly, Eqs. (2.49) and (2.50) show that the incorporation of the microstructure effect 

(i.e., with l ≠ 0) will always lead to increased plate stiffness (thus reduced deflections), 

mnW
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while the inclusion of the surface energy effect (i.e., with any of { 0µ , 0λ , 0τ } not being 

zero) can result in either increased or decreased plate stiffness, depending on the signs of 

0 02µ λ+  and . It is also seen from Eqs. (2.49) and (2.50) that the presence of the elastic 

foundation (i.e., with kw > 0 and/or kp > 0) will always lead to reduced plate deflection.  

Figure 2.5 displays the variations of the plate deflection w along the line y = b/2 

predicted by the current non-classical Kirchhoff plate model and by its classical elasticity-

based counterpart. The numerical results predicted by the new model are directly obtained 

from Eqs. (2.45) and (2.48)-(2.50), while those by the classical model are computed using 

the same equations but with l = 0, 0λ = 0µ = 0τ = 0, and kw = kp = 0. In generating the 

numerical results shown in Fig 2.5, the shape of the plate is fixed by letting a = b = 20h, 

while the plate thickness h is varying. The plate material is taken to be aluminum with the 

following properties (Liu and Rajapakse, 2010; Gao and Mahmoud, 2014): E = 90 GPa, v 

= 0.23, l = 6.58 μm for the bulk properties, and 0 5.4251µ = −  N/m, = 3.4939 N/m, 

= 0.5689 N/m for the surface layers, where Young’s modulus E and Poisson’s ratio ν are 

related to the Lamé constants λ and μ through (e.g., Timoshenko and Goodier, 1970): 

,  .
(1 )(1 2 ) 2(1 )

Ev E
v v v

λ µ= =
+ − +

                                      (2.51) 

The foundation moduli are non-dimensionalized and taken to be 100, 10w pK K= = , where 

4 2/ , /w w p pK k a D K k a D≡ ≡ , with 3 2/ [12(1 )]D Eh v= −  being the plate flexural rigidity. 

The number of terms included in Eq. (2.45) is controlled by adjusting m and n. The 

numerical results for the plate deflection w obtained with m = 30 and n = 30 are found to 

be the same as those computed with larger m and n values (up to m = 90, n = 90) to the 

0τ

0λ 0τ
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fourth decimal place. This indicates that using m = 30, n = 30 in the expansion is sufficient 

for the convergent numerical solution of w displayed in Fig 2.5.  

 

 
Fig. 2.5 Deflection of the simply supported Kirchhoff plate on y = b/2 with 

 
 

From Fig 2.5, it is clearly seen that the deflection w predicted by the current Kirchhoff 

model with or without the foundation is always lower than that predicted by the classical 

model in all cases considered. It also shows that the differences between the values 

predicted by the new model and the classical model are very large when the thickness of 

the plate h is small (with h = l = 6.58 μm here), but the differences are diminishing when 

the thickness of the plate h becomes large (with h = 5l = 32.9 μm here). This predicted size 

effect agrees with the general trend observed experimentally (e.g., McFarland and Colton, 

2005). In addition, it is observed from Fig 2.5 that the presence of the elastic foundation 

does reduce the plate deflection, as expected (and noted earlier from Eqs. (2.49) and 

100, 10w pK K= =
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(2.50)). This is further shown in Fig 2.6, where more cases with different values of kw and 

kp are compared, including the case without the foundation (as the top curve with kw = kp = 

0). Note that the values of the other parameters are the same as those used in obtaining the 

numerical results shown in Fig 2.5. 

 

 
Fig. 2.6 Deflection of the plate with different values of kw and kp 

 

Both the microstructure and surface energy effects are included in the numerical results 

shown in Figs 2.5 and 2.6. To illustrate the surface energy effect, additional numerical 

results are presented in Fig 2.7 for the deflection of the simply supported plate shown in 

Fig 2.4, which are obtained from Eqs. (2.45) and (2.48)-(2.50) by letting l = 0. For 

comparison purposes, the results predicted by the classical elasticity-based Kirchhoff plate 

model are also plotted in Fig 2.7, which are computed using (2.45) and (2.48)-(2.50) with 

l = 0 and = = = 0. The plate material in this case is taken to be iron with the 

following properties (Gurtin and Murdoch, 1978): E = 177.33 GPa, v = 0.27 for the bulk, 

0λ 0µ 0τ
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and 0µ = 2.5 N/m, 0 8λ = −  N/m, 0τ = 1.7 N/m for the surface layers. The cross-sectional 

shape is kept to be the same by letting a = b = 20h (see Fig 2.4) for all cases. In addition, 

the foundation moduli are set to be kw = kp = 0 to examine only the surface energy effect. 

 

 
Fig. 2.7 Deflection of the simply supported plate predicted by the new model considering 

the surface energy effect alone (i.e., with l = kw = kp = 0) and by the classical model 
 

From Fig 2.7, it is observed that the plate deflection predicted by the current model 

including the surface energy effect alone is always smaller than those predicted by the 

classical model in all cases considered here for the iron plate. Figure 2.7 also shows that 

the differences between the two sets of predicted values are significant only when the plate 

thickness h is very small, but they are diminishing as h increases. This indicates that the 

surface effect is important only when the plate is sufficiently thin. 
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2.3.2 Free vibration 

For free vibration problems, the BVP for the simply supported plate shown in Fig 2.4 

is defined by Eqs. (2.36a–c), (2.41a,b), (2.42a-c), (2.43a,b) and (2.44a-c), with all external 

forces vanished (i.e., 0x y zf f f= = = and 0x y zc c c= = = ). 

For the current case with  fx = fy = 0 and cz = 0, Eqs. (2.36a,b), (2.41a), (2.42a,c), (2.43a) 

and (2.44a,c) give u = u(x, y, t) = 0, v = v(x, y, t) = 0 for any (x, y) ∈ R and t ∈ [0, T ].  

For w = w(x, y, t), consider the following Fourier series expansion: 

1 1
( ,  ,  ) sin( )sin( ) ,ni tV

mn
m n

m x n yw x y t W e
a b

ωπ π∞ ∞

= =

=∑∑                              (2.52) 

where ωn  is the nth natural frequency of vibration of the plate, V
mnW  is the Fourier 

coefficient, and i is the imaginary unit satisfying i2 = −1. It can be readily shown that w in 

Eq. (2.52) satisfies the boundary conditions in Eqs. (2.41b), (2.42b), (2.43b) and (2.44b) 

for any t ∈[0, T]. 

Using Eq. (2.52) in Eq. (2.36c) gives, for a non-trivial solution with V
mnW ≠ 0,  

3 2 2 2 2 2 2 2 2 2
2

0 0 0 2 2 2 2

2 2 2 2
3

2 2

2 ( 2 ) ( 2 )
12 2

,
1

12

w p

n

h h m n m nk k l h
a b a b

m nh h
a b

π π π πτ λ µ µ λ µ
ω

π πρ ρ

      
+ + + + + + + + +     

      =
 

+ + 
 

(2.53) 

where use has been made of Eq. (2.21). From Eq. (2.53), it is seen that the inclusion of the 

microstructure effect (with l ≠ 0) and the presence of the foundation (with kw > 0 and/or kp 

> 0) will always lead to increased values of ωn , while the incorporation of the surface 

energy effect may result in increased or decreased values of ωn , depending on the signs of 

+2  and .  0λ 0µ 0τ
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Figure 2.8 shows the variation of the first natural frequency ω1 obtained from Eq. (2.53) 

(with m = 1, n = 1) with the plate thickness predicted by the current Kirchhoff plate model 

and by the classical model. The results for the current plate model with the Winkler-

Pasternak ( 1000, 100w pK K= = ) or Winkler ( 1000, 0w pK k= = ) or no foundation (kw = 

kp = 0) shown in Fig 2.8 are obtained from Eq. (2.53), while those for the classical plate 

model are computed from the same equation but with l = 0, = = = 0, and kw = kp = 

0. The material properties and geometry of the aluminum plate used here are the same as 

those employed earlier to obtain the numerical results displayed in Figs 2.5 and 2.6. In 

addition, the density for the aluminum plate is taken to be 3 32.7 10 kg/mρ = × , which is 

needed in Eq. (2.53). 

 

 
Fig. 2.8 Natural frequency varying with the plate thickness 

 

From Fig 2.8, it is clearly seen that the natural frequency predicted by the current model 

with or without the foundation is always higher than that predicted by the classical 

0λ 0µ 0τ
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elasticity-based model. The difference between the predictions by the current model (with 

the microstructure and surface energy effects) and the classical model is significant when 

the plate thickness h is very small (with h < 2l = 13.16 μm here if excluding the foundation 

effect). However, the difference is diminishing as h becomes large (with h > 6l = 39.48 μm 

here for the case with kw = kp = 0). This shows that the size effect on the natural frequency 

is important only when the plate thickness is very small. In addition, it is observed from 

Fig 2.8 that the presence of the elastic foundation indeed increases the natural frequency 

and this effect can be significant when the plate thickness is small but diminishes as the 

thickness becomes large. 

 

2.4 Summary 

A new non-classical Kirchhoff plate model is developed using a modified couple stress 

theory, a surface elasticity theory and a two-parameter elastic foundation model via a 

variational formulation based on Hamilton’s principle. The equations of motion and the 

complete boundary conditions are determined simultaneously, and the microstructure, 

surface energy and foundation effects are treated in a unified manner. The new model 

contains a material length scale parameter to describe the microstructure effect, three 

surface elastic constants to account for the surface energy effect, and two foundation 

moduli to represent the foundation effect. The inclusion of the additional material constants 

enables the new model to capture the microstructure- and surface energy-dependent size 

effects.  

It is shown that when the microstructure, surface energy, and foundation effects are all 

ignored, the new plate model recovers its classical elasticity-based counterpart as a limiting 
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case. Also, it is seen that the newly developed plate model includes the models considering 

the microstructure dependence or the surface energy effect or the foundation effect alone 

as special cases and reduces to the Bernoulli–Euler beam model incorporating the 

microstructure, surface energy and foundation effects. 

As direct applications of the new model, the static bending and free vibration problems 

of a simply supported rectangular plate are analytically solved, with the solutions compared 

to those based on the classical Kirchhoff plate theory. The numerical results show that the 

deflection of the simply supported plate with or without the elastic foundation predicted by 

the current model is smaller than that predicted by the classical model. Also, it is observed 

that the difference in the deflection predicted by the two plate models is very large when 

the plate thickness is sufficiently small, but it is diminishing with the increase of the plate 

thickness. In addition, it is found that the natural frequency predicted by the new plate 

model with or without the foundation is higher than that predicted by the classical plate 

model, and the difference is significant for very thin plates. These predicted size effects at 

the micron scale agree with the general trends observed in experiments. Finally, both the 

analytical formulas and the numerical results show that the plate deflection is reduced and 

the plate natural frequency is increased in the presence of the elastic foundation, as 

expected.   
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Chapter 

 

3. A NON-CLASSICAL MODEL FOR CIRCULAR KIRCHHOFF PLATES 
INCORPORATING MICROSTRUCTURE AND SURFACE ENERGY 

EFFECTS 
 

3.1 Introduction 

Thin plates have been experimentally observed to exhibit microstructure-dependent 

size effects at the micron and nanometer scales (e.g., Lam et al., 2003; McFarland and 

Colton, 2005; Li et al., 2009). Such size effects cannot be interpreted using classical 

elasticity due to the lack of a material length scale parameter. This motivated the 

development of non-classical plate models based on higher-order elasticity and surface 

elasticity theories that contain microstructure- and/or surface energy-dependent material 

length scale parameters.  

Several higher-order elasticity theories have been applied to develop non-classical plate 

models. Based on a modified couple stress theory that involves one additional material 

length scale parameter (Yang et al., 2002; Park and Gao, 2008), Reddy and Berry (2012) 

studied axisymmetric bending of functionally graded circular plates employing the modified 

couple stress theory. Recently, three new models for Mindlin plates and third-order shear 

deformation plates have been developed by Ma et al. (2011), Gao et al. (2013) and Zhou 

and Gao (2014) using the modified couple stress theory and Hamilton’s principle.  
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The surface elasticity theory (e.g., Gurtin and Murdoch, 1975, 1978) has been used to 

analyze thin plates involving surface effects. For example, Miller and Shenoy (2000) 

developed a model to describe the size dependency of the effective stiffness of a nano-

sized structural element (a bar, beam or plate. Lu et al. (2006) constructed a size-dependent 

thin plate model by including the normal stress on and inside the surface of the bulk 

substrate. Wang and Wang (2012) provided a model for non-linear free vibrations of a 

Kirchhoff plate and a Mindlin plate using the von Karman strains. Liu and Rajapakse 

(2013) presented a size-dependent continuum model for thin and thick circular plates.  

However, very few models have been developed for thin plates by considering both the 

microstructure and surface energy effects. One non-classical model for Kirchhoff thin 

plates was provided in Lazopoulos (2009) by employing a strain gradient elasticity theory 

that contains two additional length scale parameters – one related to the bulk strain energy 

and the other linked to the surface energy. Another non-classical Kirchhoff plate model, 

which is based on a modified couple stress theory and a surface elasticity theory, was 

presented in Shaat et al. (2014) without using a variational formulation. Recently, a non-

classical model for Kirchhoff plates was developed by Gao and Zhang (2016) using 

Cartesian coordinates and a variational formulation based on Hamilton’s principle, a 

modified couple stress theory and a surface elasticity theory.  

This chapter aims is to develop a non-classical model for circular Kirchhoff plates using 

cylindrical polar coordinates. Circular plates are widely used in various industries as key 

components, which include cover plates for cylindrical pressure vessels, thrust-bearing 

plates, speaker diaphragms, piston heads, and compact discs for data storage.  
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The rest of the Chapter 3 is organized as follows. In Section 3.2, the new non-classical 

model for a circular Kirchhoff plate subjected to axisymmetric loading is developed using 

a variational formulation based on Hamilton’s principle. This leads to the simultaneous 

determination of the equations of motion and complete boundary conditions and provides 

a unified treatment of the microstructure and surface energy effects. It is shown that the 

newly obtained model includes the models considering the microstructure influence or the 

surface energy effect alone as special cases and recovers the Kirchhoff plate model based 

on classical elasticity. In Section 3.3, the static bending problem of a clamped solid circular 

plate subjected to a uniform normal load is analytically solved by directly applying the 

general formulas derived. The numerical results are also presented there to quantitatively 

illustrate the differences between the current non-classical plate model and its classical 

counterpart. The chapter concludes in Section 3.4 with a summary. 

 

3.2 Formulation 

Consider a flat thin circular plate of inner radius a, outer radius b and uniform thickness 

h, as shown in Fig 3.1, where the cylindrical coordinate system (r, θ, z) is adopted, with 

the rθ-plane being coincident with the geometrical mid-plane of the undeformed plate.  

According to the Kirchhoff plate theory (also known as the classical plate theory), the 

displacement field in a thin circular plate undergoing axisymmetric deformations can be 

written as (e.g., Reddy, 2002; Zhou and Gao, 2014) 

( , )( , , , ) ( , ) ,  ( , , , ) 0,  ( , , , ) ( , ),r z
w r tu r z t u r t z u r z t u r z t w r t

r θθ θ θ∂
= − = =

∂
       (3.1a-c)                                                               

where ur, uθ and uz are, respectively, the radial, tangential and transverse components of 

the displacement vector u of a point (r, θ, z) in the plate at time t, u and w are, respectively, 
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the radial and transverse components of the displacement vector of the corresponding point 

(r, θ, 0) on the plate mid-plane at time t. 

In Fig 3.1, S+ and S− denote, respectively, the upper and lower surface layers of the 

circular Kirchhoff plate. These two surface layers are of zero-thickness and are perfectly 

bonded to the bulk plate material at z = ± h/2, which have distinct material properties from 

the bulk material. The bulk material satisfies the modified couple stress theory (Yang et 

al., 2002; Park and Gao, 2008), while the surface layers are governed by the surface 

elasticity theory (Gurtin and Murdoch, 1975, 1978). 

 

 
Fig. 3.1 Plate geometry and coordinate system 

 

According to the modified couple stress theory (Yang et al., 2002; Park and Gao, 2008), 

the constitutive equations and geometrical equations are given by 

2tr( ) 2 , 2 ,lλ µ µ= + =σ ε I ε  m χ                                      (3.2a,b) 

( ) ( )1 1, ,
2 2

T T   = ∇ + ∇ = ∇ + ∇   ε u u  χ ψ ψ                          (3.3a,b) 

where σ is the Cauchy stress tensor, ε is the infinitesimal strain tensor, m is the deviatoric 

part of the couple stress tensor, χ is the symmetric curvature tensor, I is the second-order 
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identity tensor, λ and μ are the Lamé constants in classical elasticity, l is a material length 

scale parameter measuring the couple stress effect (e.g., Mindlin, 1963; Park and Gao, 

2006), ∇  denotes the gradient, the superscript T represents the transpose, u is the 

displacement vector, and ѱ is the rotation vector defined by 

1
2

curl=ψ u .                                                       (3.4) 

According to the surface elasticity theory (e.g., Gurtin and Murdoch, 1975, 1978), the 

surface layer of a bulk elastic material satisfies distinct constitutive equations involving 

surface elastic constants, and the equilibrium equations for the surface layer of zero 

thickness read 

,Sdiv =τ σn                                                       (3.5) 

where n is the outward-pointing unit normal vector to the surface, Sdiv  represents the 

surface divergence, and τ is the in-plane surface stress tensor given by (Gurtin and 

Murdoch, 1978; Zhou and Gao, 2015) 

( ) ( )0 0 0 0 0( )(tr ) ,T Ts
S S S Sτ λ τ µ τ  = + + + + −   τ ε I u u u∇ ∇ ∇          (3.6) 

where μ0 and λ0 are the surface elastic constants, τ0 is the residual surface stress (i.e., the 

surface stress at zero strain), IS is the projection tensor with S = − ⊗I I n n , S∇  is the 

surface gradient operator defined by ( ) ( ( )S = − ⊗I n n) ∇ ∇ , and εS is the surface strain 

tensor given by 

 ( )1 1( ) ( ) ,
2 2

S T T
S S   = ∇ + ∇ = − ⊗ ∇ + ∇   u u I n n u uε                 (3.7) 

in which I is the second-order identity tensor. Note that the three surface elastic constants 

μ0, λ0 and τ0 introduced in Eq. (3.6) can be obtained from atomistic simulations or 
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experimental measurements (e.g., Shenoy, 2005; Zhang et al., 2013). Clearly, Eq. (3.6) 

indicates that τ is not a symmetric tensor. 

The out-of-plane components of the surface stress tensor read (Gurtin and Murdoch, 

1978) 

3 0 3, .uβ βτ τ=                                                         (3.8) 

It follows from Eqs. (3.1a-c), (3.3a,b) and (3.4) that the geometrical equations in the 

bulk of the current axisymmetric circular Kirchhoff plate are given by 

2

2

1, ( ), 0,rr zz r z zr
u w wz u z
r r r rθθ θ θε ε ε ε ε ε∂ ∂ ∂

= − = − = = = =
∂ ∂ ∂

                     (3.9) 

, 0,r z
w
rθψ ψ ψ∂

= − = =
∂

                                               (3.10) 

1 1 , 0.
2r r rr zz rz z

wr
r r rθ θ θθ θχ χ χ χ χ χ χ∂ ∂ = − = = = = = = ∂ ∂ 

                  (3.11) 

The total strain energy in the elastically deformed circular Kirchhoff plate, UT, can be 

expressed as 

( )1 1 1d d d ,
2 2 2T B S ij ij ij ij S S

U U U m V A Aαβ αβ αβ αβσ ε χ τ ε τ ε
+ −Ω

= + = + + +∫ ∫ ∫          (3.12) 

where Ω is the region occupied by the plate, dV is the volume element, and dA is the area 

element. In Eq. (3.12), UB is the strain energy in the bulk of the plate, which is governed 

by the modified couple stress theory, and US is the strain energy in the surface layers S+ 

and S− satisfying the surface elasticity theory. It should be mentioned that only the first part 

of UB is considered in the classical Kirchhoff plate theory as the total strain energy (i.e., 

1 d
2

C
T ij ijU Vσ ε

Ω
= ∫ ) in the plate. 
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Note that in Eq (3.12) and throughout the Chapter 3 the summation convention and 

standard index notation are used, with the Greek indices taking r or θ (i.e., α ∈{ r, θ}) and 

the Latin indices taking r, θ or z (i.e., i ∈{ r, θ, z}) unless otherwise indicated. 

From Eqs. (3.6), (3.7), (3.9), (3.11) and (3.12), the first variation of the total strain 

energy in the circular Kirchhoff plate over the time interval [0, T] can be obtained as (Zhou 

and Gao, 2014; Gao and Zhang, 2015) 

0 0

0 00

0 00

d ( 2 )d d

1 1  ( ) ( ) d d
2 2
1 1( ) ( ) d d ,
2 2

T T

rr rr r r

T

rr rrS

T

rr rrS

U t m V t

A t

A t

θθ θθ θ θ

θθ θθ

θθ θθ

δ σ δε σ δε δχ

τ τ δε τ τ δε

τ τ δε τ τ δε

+

−

Ω

+ + + +

− − − −

= + +

+ − + −  
 + − + −  

∫ ∫ ∫

∫ ∫

∫ ∫

                    (3.13) 

where αβτ +  and αβτ − represent, respectively, the surface stress components on the plate top 

(S+) and bottom (S−) surfaces. In reaching Eq. (3.13) use has been made of the fact that ταβ  

is non-symmetric. This fact has been overlooked in some variational studies employing the 

surface elasticity theory of Gurtin and Murdoch (1975, 1978).  

Note that the volume integral of a sufficiently smooth function F (x, y, z, t) over the 

region Ω occupied by a uniform-thickness plate can be represented by 

/2

/2
( ,  ,  ,  )d ( ,  ,  ,  )d d ,

h

R h
F x y z t V F x y z t z A

Ω −
=∫ ∫ ∫                         (3.14) 

where h is the plate thickness, and R is the plate mid-plane area. 

Using Eqs. (3.9), (3.11) and (3.14) in Eq. (3.13) yields, with the help of Green’s 

theorem, 
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where  

/2 /2 /2

/2 /2 /2
/2 /2

/2 /2

d ,    d ,   d ,  

d ,  d

h h h

rr rr rr rrh h h
h h
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M z z Y m z

θθ θθ

θθ θθ θ θ

σ σ σ

σ

− − −

− −

= = =

= =

∫ ∫ ∫
∫ ∫

                 (3.16) 

are the Cauchy stress and couple stress resultants through the plate thickness. Note that in 

reaching Eq. (3.15) use has been made of the relations S+ = R = S−, ∂S+ = ∂R = ∂S− for the 

uniform-thickness plate under consideration in order to facilitate the integral evaluations.   

The kinetic energy of the plate has the form (e.g., Ma et al., 2011; Gao et al., 2013) 

( ) ( ) ( )2 2 2
1 2 3

1 d ,
2

K u u u Vρ
Ω

 = + + ∫                                     (3.17) 

where ρ is the mass density of the plate material. Here and in the sequel the overhead “∙” 

and “∙∙” denote, respectively, the first and second time derivatives (e.g., 

2 2
1 1 1 1/ ,  /u u t u u t= ∂ ∂ = ∂ ∂  ). 

From Eqs. (3.1a-c), (3.14) and (3.17), the first variation of the kinetic energy for the 

axisymmetric plate, over the time interval [0, T], can be obtained as (e.g., Ma et al., 2011; 

Zhou and Gao, 2014) 
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1d ( ) d d d ,
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w wK t m u u w w m r w r r t
r r r

π
δ δ δ δ θ

  ∂ ∂
= − + − +  ∂ ∂  

∫ ∫ ∫ ∫
 

            (3.18) 

where  

3/2 /2 2
0 2/2 /2

d ,     d .  
12

h h

h h

hm z h m z z ρρ ρ ρ
− −

≡ = ≡ =∫ ∫                           (3.19) 

In reaching Eq. (3.18), it has been assumed that the initial (t = 0) and final (t = T) 

configurations of the plate are prescribed so that the virtual displacements vanish at t = 0 

and t = T. In addition, ρ is taken to be constant along the plate thickness and over the time 

interval [0, T] such that 0,0 20 == mm  . 

From the general expression of the work done by external forces in the modified couple 

stress theory (Park and Gao, 2008) and in the surface elasticity theory (Gurtin and 

Murdoch, 1975, 1978), the virtual work done by the forces applied on the current circular 

plate over the time interval [0, T] can be written as (e.g., Zhou and Gao, 2014; Gao and 

Zhang, 2016)   

( ) ( ) 3 30 0 0 0
d d d d d ( )d d ,

T T T T s

R R S
W t A t s t u A tδ δ δ δ δ δ

∂
= ⋅ + ⋅ + ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫ ∫ ∫ ∫f u c t u s t e



ψ ψ  

(3.20) 

where f and c are, respectively, the body force resultant (force per unit area), body couple 

resultant (moment per unit area) through the plate thickness acting in the area R (i.e., the 

plate mid-plane), t  and s  are, respectively, the Cauchy traction resultant (force per unit 

length) and the surface couple resultant (moment per unit length) through the plate 

thickness acting on ∂R (i.e., the boundary of R), S represents the top and bottom surfaces 

of the plate (with S = S+ ∪ S−), and st is the surface traction that is related to the surface 
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stress τ through ,= =s
s i iα ατ∇ ⋅t τ e  (e.g., Gurtin and Murdoch, 1978; Altenbach et al., 

2010). Note that the last term in the virtual work expression in Eq. (3.20) accounts for the 

contribution of the normal stress on the top and bottom plate surfaces 33σ ±  (= 3 ,α ατ ±± from 

the equilibrium equations in Eq. (3.5)), which is neglected in the classical Kirchhoff plate 

theory that does not consider the surface energy effect.   

Using Eqs. (3.1a-c), (3.5) and (3.10) in Eq. (3.20) leads to, with the help of Green’s 

theorem, 
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∂ ∂

∫ ∫ ∫ ∫

∫ ∫

∫ ∫ ∫ ∫

           (3.21) 

where fi, ci, it  and is  (i ∈{ r, θ, z}) are, respectively, the components of f , c , t  and s , 

and Mθ is the applied moment per unit arc length along the circular boundary. Note that the 

positive directions of Mθ , which is along the eθ-direction, is opposite to that of ∂w/∂r (see 

Fig 3.1).  

According to Hamilton’s principle (e.g., Reddy, 2002; Ma et al., 2008; Gao et al. 2013), 

( )
0

d 0.
T

K U W tδ − − =  ∫                                          (3.22) 

Using Eqs. (3.15), (3.18) and (3.21) in Eq. (3.22) gives 
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Applying the fundamental lemma of the calculus of variations to Eq. (3.23) results in, 

with the arbitrariness of δu and δw (e.g., Gao and Mall, 2001; Ma et al., 2010), 
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as the equations of motion of the circular Kirchhoff plate for any (r, θ) ∈ R and t ∈ (0, T), 

and 

0    or     at      and   ,rr rr rr rN t u u r a r bτ τ τ+ −+ + − = = = =                         (3.25a) 
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∂ ∂
            (3.25c) 

as the boundary conditions. 
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From Eqs. (3.2a), (3.9) and (3.16), the Cauchy stress resultants can be expressed in 

terms of u and w as 
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u uN h h
r r

λ µ λ∂
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                                         (3.26a) 

( 2 ) ,u uN h h
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                                        (3.26b) 
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                          (3.26d) 

From Eqs. (3.2b), (3.11) and (3.16), the couple stress resultant can be written in terms 

of w as 

2
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1 .r
w wY l h

r r rθ µ
 ∂ ∂

= − − ∂ ∂ 
                                          (3.27) 

From Eqs. (3.1a-c) and (3.6)–(3.8), it follows that the surface stress components are 

given by 

2
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Substituting Eqs. (3.26a-d), (3.27) and (3.28a-c) into Eqs. (3.24a,b) then leads to the 

equations of motion for the circular Kirchhoff plate in terms of u and w as 
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          (3.29b) 

From Eqs. (3.29a, b), it can be seen that the radial displacement (stretching) u(r, t) is 

uncoupled with the deflection w(r, t). Therefore, u(r, t) can be obtained from solving Eq. 

(3.29a) subject to prescribed boundary conditions of the form in Eqs. (3.25a) and suitable 

initial conditions. Note that the material length scale parameter l is not involved in Eq. 

(3.29a) or (3.25a). As a result, the radial displacement u(r, t) will not be affected by the 

microstructure of the plate material. The deflection w(r, t) can be determined from solving 

the boundary-initial value problem defined by the differential equation in Eq. (3.29b), the 

boundary conditions in Eqs. (3.25b,c) and given initial conditions at t = 0 and t = T.  

When l = 0 and cθ = 0 (i.e., with the microstructure effect ignored), Eqs. (3.29a,b) 

reduce to  
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(3.30b) 

which are the governing equations for the circular Kirchhoff plate that incorporate the 

surface energy effect alone. Note that Eq. (3.30a) is the same as Eq. (3.29a) because of the 

microstructure-independence of u(r, t), as observed earlier. 

When λ0 = µ0 = τ0 = 0 (i.e., with the surface energy effect neglected), Eqs. (3.29a,b) 

become  
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where 
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Equations (3.31a) and (3.31b) are the governing equations for the circular Kirchhoff plate 

incorporating the microstructure effect alone, which are identical to those derived in Zhou 

and Gao (2014) using the modified couple stress theory. Note that the Young’s modulus E 

and Poisson’s ratio ν in Eq. (3.32a) are related to the Lamé constants λ and μ through (e.g., 

Timoshenko and Goodier, 1970): 
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                                       (3.33) 

Furthermore, when l = 0, cθ = 0 and λ0 = µ0 = τ0 = 0 (i.e., with both the microstructure 

and surface energy effects suppressed), Eqs. (3.29a,b) reduce to, with the help of Eqs. 

(3.32a-c),  
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which are the same as the equations of motion for the circular Kirchhoff plate subjected to 

axisymmetric loading based on classical elasticity (e.g., Reddy, 2002; Zhou and Gao, 

2014). That is, the classical Kirchhoff plate model is included in the current model as a 

special case. 

 

3.3 Example 

To further demonstrate the new circular Kirchhoff plate model developed in Section 

3.2, the static bending problem of a solid circular plate (with a = 0) clamped at its edge r = 

b and subjected to a uniformly distributed normal load fz = − q = constant (with the negative 

sign here indicating that the normal load q ( > 0) is pointing downward) is analytically 

solved herein by directly applying the new model. 

In view of the general boundary conditions (BCs) in Eqs. (3.25a–c), the BCs for the 

current solid circular Kirchhoff plate clamped at its edge r = b can be identified as 

0,    0,    0.
r b r b

r b

wu w
r= =

=

∂
= = =

∂
                                 (3.35a-c) 

In addition, the following symmetry conditions need to be satisfied  

0 0
0

0,    , 0.
r r

r

wu w
r= =

=

∂
= < ∞ =

∂
                                (3.36a-c) 

Note that Eq. (3.36b) indicates that the plate deflection is finite at r = 0.   

For static bending problems, u and w are independent of time t so that all of the time 

derivatives involved in Eqs. (3.29a,b) vanish. As a result, the governing equations for static 

problems with fr = 0 = cθ are given by  

[ ]
2

0 0 2 2
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                             (3.37b) 

The radial displacement u, which is uncoupled with w, can be obtained from solving 

the boundary value problem (BVP) defined by Eqs. (3.35a), (3.36a) and (3.37a). It can be 

readily shown that the solution of this BVP gives u(r) = 0 for any (r, θ) ∈ R. 

The deflection w can be obtained from solving the BVP defined by Eqs. (3.35b,c), 

(3.36b,c) and (3.37b). Note that Eq. (3.37b) can be rewritten as 

                  4 2
02 0,zL w w fτ− ∇ + ∇ + =                                         (3.38) 

where ∇2 and ∇4 are, respectively, the operators given in Eqs. (3.32b) and (3.32c), and L 

is defined as 

      
23

2 0 0( 2 )( 2 ) ,
12 2

hhL l h λ µλ µ µ ++
≡ + +                            (3.39) 

which is the plate bending stiffness accounting for both the microstructure (through l) and 

surface energy effects (via λ0 and µ0). When l = 0 and λ0 = µ0 = 0 (i.e., in the absence of 

both the microstructure and surface energy effects), L reduces to the bending stiffness D in 

the classical plate theory defined in Eq. (3.32a). Equation (3.38) can be expressed in a non-

dimensional form as 

                  
3

4 2 2( ) ( ) 0,zf bw r w r
L

ω∇ − ∇ − =                                  (3.40) 

where  
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When ω ≠ 0 (i.e., τ0 ≠ 0) and fz = − q = constant, the general solution of Eq. (3.40) can 

be analytically obtained as 

2

1 0 2 0 3 42
0

1( ) ( ) ( ) ( ln ) ,
8

qbrw r c I r c K r c r cω ω
ω τ

= + + + +                   (3.42) 

where I0 and K0 are, respectively, the modified Bessel functions of the first and second kind 

of the zeroth order, and c1~c4 are four constants to be determined from the boundary 

conditions. 

When ω = 0 (i.e., τ0 = 0) and fz = − q = constant, the general solution of Eq. (3.40) can 

be readily shown to be 

             
3 4

2 2
1 2 3 4( ) ln ln ,

64
qb rw r d r r d r d r d

L
= + + + −                         (3.43) 

where d1~d4 are four integration constants. 

The boundary and symmetry conditions listed in Eqs. (3.35b,c) and (3.36b,c) can be 

expressed in non-dimensional forms as 

1 0
1 0

0,    0, ,    0.
r r

r r

w ww w
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= =
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= = < ∞ =
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                  (3.44a-d) 

Using Eq. (3.42) in Eqs. (3.44a-d) leads to 
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Substituting Eqs. (3.45a-d) into Eq. (3.42) then yields 

       [ ] 2
0 0

0 1 0

( ) ( ) ( ) (1 ),
4 ( ) 8

qb qbw r I r I r
I

ω ω
τ ω ω τ

= − − − −                  (3.46) 

which can be converted to the dimensional form as, with the help of Eqs. (3.41a,b), 
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                   (3.47) 

where ω is defined in Eq. (3.41c). Equation (3.47) gives the exact solution of the clamped 

solid circular Kirchhoff plate subjected to a uniform normal load − q when ω ≠ 0 (i.e., τ0 ≠ 

0). 

For the case with ω = 0 (i.e., τ0 = 0) and fz = − q = constant, the solution for the 

deflection of the clamped solid circular Kirchhoff plate under consideration can be readily 

obtained from Eqs. (3.43) and (3.44a-d) as 

224

( ) 1 ,
64
qb rw r

L b
  = − −  
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                                        (3.48) 

where use has been made of Eqs. (3.41a,b). 

When both the microstructure and surface energy effects are suppressed by setting l = 

0 and λ0 = µ0 = τ0 = 0, Eq. (3.48) reduces to, with the help of Eqs. (3.32a), (3.33) and (3.39),  

224

( ) 1 ,
64 (1 )

C qb rw r
D bν

  = − −  −    
                                  (3.49) 

which is the classical elasticity-based exact solution for the solid circular Kirchhoff plate 

under the uniformly distributed load − q. It can be readily shown that the deflection 

obtained in Eq. (3.49) will be the same as that based on classical elasticity for a clamped 

solid circular Kirchhoff plate under a uniform normal load − q (e.g., Reddy, 2002) if the 

two-dimensional plane stress Hooke’s law is used (so that D(1−ν) here will be replaced by 

Eh3/[12(1−ν2)]) (Zhou and Gao, 2014). That is, the current solution for the clamped solid 

circular Kirchhoff plate includes the classical solution as a special case. 
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Finally, it should be mentioned that the example problem considered here can also be 

analytically solved by using the Fourier-Bessel series method, as was done in Zhou and 

Gao (2014). 

To illustrate the newly derived solution for the clamped solid circular Kirchhoff plate, 

some numerical results are obtained and shown in Figs 3.2 and 3.3. Figure 3.2 displays the 

variation of the plate deflection w along the radial direction. The numerical results 

predicted by the new model are directly obtained from Eq. (3.47), while those by the 

classical model are determined using Eq. (3.49). In generating the numerical results shown 

in Fig 3.2, the radius of the circular plate is fixed at b = 20h, while the plate thickness h is 

varying. The circular plate material is taken to be aluminum with the following properties 

(e.g., Liu and Rajapakse, 2010; Gao and Mahmoud, 2014; Gao, 2015): E = 90 GPa, v = 

0.23, l = 6.58 μm for the bulk properties, and 0 5.4251µ = −  N/m, 0λ = 3.4939 N/m, 0τ = 

0.5689 N/m for the surface layers. In addition, the circular plate is subjected to a uniform, 

downward-pointing normal load of q = 1 MPa.  

 

 
Fig. 3.2 Deflection of the clamped circular Kirchhoff plate 
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From Fig 3.2, it is clearly seen that the deflection w (magnitude) predicted by the new 

circular Kirchhoff plate model is always smaller than that predicted by the classical model 

in all cases considered. Figure 3.2 also shows that the differences between the deflection 

values predicted by the new model and those predicted by its classical counterpart are very 

large when the plate thickness h is small (with h = l = 6.58 μm here), but the differences 

are diminishing when h increases. This predicted size effect agrees with the general trend 

observed experimentally (e.g., McFarland and Colton, 2005).  

As the numerical results shown in Fig 3.2 include both the microstructure and surface 

energy effects, one additional set of values are obtained for the deflection of the clamped 

solid circular plate to illustrate the surface energy effect alone. The numerical results 

displayed in Fig 3.3 are determined from Eq. (3.47) by letting l = 0 through Eqs. (3.41c) 

and (3.39). For comparison, the results predicted by the classical solid circular Kirchhoff 

plate model are also plotted in Fig 3.3, which are obtained from Eq. (3.49). The plate 

material in this case is taken to be iron with the following properties (Gurtin and Murdoch, 

1978; Gao and Zhang, 2015): E = 177.33 GPa, v = 0.27 for the bulk, and 0µ = 2.5 N/m, 

0 8λ = − N/m, 0τ = 1.7 N/m for the surface layers. The radius of the circular plate is fixed 

at b = 20h, and the uniform, downward-pointing normal load is taken to be q = 1 MPa, as 

was done in obtaining the numerical results shown in Fig 3.2.  

From Fig 3.3, it is seen that the plate deflection (magnitude) predicted by the current 

model including the surface energy effect is always smaller than that predicted by the 

classical model in all cases considered here. Figure 3.3 also shows that the differences 

between the deflection values predicted by the current model including the surface energy 
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effect and those predicted by the classical model are significant when the plate thickness h 

is very small. However, the differences are diminishing when the thickness h increases. 

This indicates that the surface energy effect is important only when the plate is very thin. 

 

 
Fig. 3.3 Deflection of the clamped circular Kirchhoff plate predicted by the new model 

considering the surface energy effect alone. 
 

3.4 Summary  

A new non-classical model is developed for circular Kirchhoff plates subjected to 

axisymmetric loading by using a modified couple stress theory, a surface elasticity theory 

and Hamilton’s principle. The equations of motion and boundary conditions are 

simultaneously obtained by employing a variational formulation. The new model contains 

a material length scale parameter to account for the microstructure effect and three surface 

elasticity constants to represent the surface energy effect.  

It is shown that the newly obtained model degenerates to the Kirchhoff plate model 

considering the surface energy effect alone when the microstructure effect is ignored and 

reduces to the Kirchhoff plate model including the microstructure effect only when the 
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surface energy effect is neglected. In addition, the new model recovers the classical 

elasticity-based model when both the microstructure and surface energy effects are not 

considered. 

To illustrate the new model, the static bending problem of a clamped solid circular 

Kirchhoff plate subjected to a uniform normal load is analytically solved by directly 

applying the new model. The numerical results show that the deflection predicted by the 

new model is always smaller than that predicted by the classical model when the plate 

thickness is very small, but the former approaches the latter as the plate thickness increases. 

It is also observed that the difference between the plate deflection predicted by the model 

including the surface energy effect and that predicted by the classical model is significant 

when the plate thickness is sufficiently small. However, the difference is diminishing with 

the increase of the plate thickness. The trends of these predicted size effects are in 

agreement with experimental observations. 
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Chapter 

 

4. A NON-CLASSICAL MINDLIN PLATE MODEL INCORPORATING 
MICROSTRUCTURE, SURFACE ENERGY AND FOUNDATION EFFECTS 

 

4.1 Introduction 

Thin plates resting on elastic foundations have been widely used in nano- and micro-

scale devices and systems. As size effects play a significant role in nano- and micro-scale 

applications and classical continuum theories are unable to capture such effects, higher-

order continuum theories, which contain material length-scale parameters and can account 

for the microstructure and surface energy effects, have recently been used to develop new 

models for thin beams and plates resting on elastic foundations. 

Khajeansari et al. (2012) studied the bending deformation of an Euler-Bernoulli beam 

lying on a Winkler-Pasternak foundation by using a surface elasticity theory (e.g., Gurtin and 

Murdoch, 1978; Eremeyev and Lebedev, 2016) to incorporate the surface energy effect. 

Şimşek and Reddy (2013) proposed a model for a functionally graded micro-beam embedded 

in an elastic medium by applying a modified couple stress theory (e.g., Yang et al., 2002; Park 

and Gao, 2008) and the Winkler-Pasternak foundation model. Limkatanyu et al. (2014) 

provided a model for an Euler-Bernoulli beam resting on a Winkler-Pasternak foundation 

by including both the microstructure and surface energy effects, which extends the non-

classical beam model of Gao and Mahmoud (2014). 
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However, very few models have been developed for thin plates that incorporates the 

elastic foundation effect in addition to the microstructure and surface energy effects. 

Recently, a general non-classical model that considers the microstructure, surface energy 

and foundation effects was provided by Gao and Zhang (2016) for Kirchhoff plates using 

a variational formulation.  

The objective of the current chapter is to develop a new model for Mindlin plates in a 

most general form involving all five possible kinematic variables (rather than three for 

Kirchhoff plates) by including the microstructure, surface energy and foundation effects in 

a unified manner.  

The rest of the Chapter 4 is organized as follows. In Section 4.2, a new non-classical 

model for a Mindlin plate resting on an elastic foundation is developed using a modified 

couple stress theory (Yang et al., 2002; Park and Gao, 2008), a surface elasticity theory 

(Gurtin and Murdoch, 1975, 1978) and a two-parameter Winkler-Pasternak foundation 

model (e.g., Selvadurai, 1979; Yokoyama, 1996) through a variational formulation based 

on Hamilton’s principle. It is shown that the new Mindlin plate model reduces to its 

classical elasticity-based counterpart when the microstructure, surface energy and 

foundation effects are all suppressed. In addition, the new model includes the Mindlin plate 

models considering the microstructure dependence or the surface energy effect or the 

foundation influence alone as special cases, recovers the counterpart non-classical model 

for Kirchhoff plates, and degenerates to the Timoshenko beam model incorporating the 

microstructure effect. In Section 4.3, the static bending and free vibration problems of a 

simply supported rectangular plate are analytically solved by directly applying the new 

model. The numerical results are also presented there to quantitatively show the differences 
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between the current non-classical Mindlin plate model and its classical counterpart. The 

chapter concludes in Section 4.4 with a summary.  

 

4.2 Formulation 

The Mindlin plate theory, also known as the first-order shear deformation plate theory, 

is the simplest plate theory including transverse shear strains. By using the Cartesian 

coordinate system (x, y, z) shown in Fig 4.1, where the xy-plane is coincident with the 

geometrical mid-plane of the undeformed plate, the displacement field in a Mindlin plate 

of uniform thickness h can be written as (e.g., Reddy, 2002; Ma et al., 2011) 

1 2 3( , , , ) ( , , ) ( , , ), ( , , , ) ( , , ) ( , , ), ( , , , ) ( , , )x yu x y z t u x y t z x y t u x y z t v x y t z x y t u x y z t w x y tφ φ= − = − =  

(4.1a-c) 

where u1, u2 and u3 are, respectively, the x-, y- and z-components of the displacement vector 

u of a point (x, y, z) in the plate at time t, u, v and w are, respectively, the x-, y- and z-

components of the displacement vector of the corresponding point (x, y, 0) on the plate 

mid-plane at time t, and φx and φy are, respectively, the rotation angles of a transverse 

normal about the y-axis and x-axis (see Fig 4.1). Note that in Eqs. (4.1a-c) there are five 

independent kinematic variables, i.e., u, v, w, φx and φy, which will need to be determined 

in order to fully describe the displacement field in the Mindlin plate. 

In Fig 4.1, S+ and S− are two surface layers of zero thickness that are taken to be 

perfectly bonded to the bulk plate material at z = ± h/2, respectively. The bulk material 

satisfies a modified couple stress theory (Yang et al., 2002; Park and Gao, 2008), while the 

two surface layers are governed by a surface elasticity theory (Gurtin and Murdoch, 1975, 

1978). 
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Fig. 4.1 Plate configuration and coordinate system 

 

Figure 4.2 shows a Mindlin plate resting on a Winkler-Pasternak foundation. The 

Winkler-Pasternak foundation model contains two parameters, namely, the Winkler 

foundation modulus kw for the spring elements and the Pasternak foundation modulus kp 

for the shear layer (e.g., Selvadurai, 1979; Yokoyama, 1996). The effect of this two-

parameter elastic foundation on the plate can be treated as a vertical body force q (in N/m2) 

given by (Selvadurai, 1979): 

    2( , , ) ( , , ) ( , , ),w pq x y t k w x y t k w x y t= − ∇                                 (4.2) 

where ∇2 is the Laplacian, and w is the plate mid-plane deflection first introduced through 

Eq. (4.1c). 
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Fig. 4.2 Plate on a Winkler-Pasternak foundation 

 

According to the modified couple stress theory (Yang et al., 2002; Park and Gao, 2008), 

the constitutive equations for an isotropic linear elastic material read 

   2 ,ij kk ij ijσ λε δ µε= +                                                (4.3) 

     22 ,ij ijm l µχ=                                                       (4.4) 

where σij, mij and δij are, respectively, the components of the Cauchy stress tensor, the 

components of the deviatoric part of the couple stress tensor and the Kronecker delta, λ and 

μ are the Lamé constants in classical elasticity, l is a material length scale parameter 

measuring the couple stress effect (e.g., Mindlin, 1963; Park and Gao, 2006), and εij and χij 

are, respectively, the components of the infinitesimal strain tensor and the symmetric 

curvature tensor given by 

     ( ), ,
1 ,
2ij i j j iu uε = +                                                (4.5) 

 ( ), ,
1 ,
2ij i j j iχ θ θ= +                                                (4.6) 

with ui being the displacement components and θi being the components of the rotation 

vector defined by 

,
1 .
2i ijk k juθ ε=                                                    (4.7) 



 
 

62 

According to the surface elasticity theory (e.g., Gurtin and Murdoch, 1975, 1978; 

Steigmann and Ogden, 1997, 1999; Altenbach et al., 2010; Eremeyev and Lebedev, 2016), 

the zero-thickness surface layer of a bulk elastic material has distinct elastic properties and 

satisfies the following governing equations (e.g., Gurtin and Murdoch, 1978; Zhou and 

Gao, 2013, 2015):  

           , , ,ij j i ij i jn n nα α αβ αβσ τ σ τ κ= =                               (4.8a,b) 

where καβ are the components of the surface curvature tensor, ni are the components of the 

outward-pointing unit normal n ( = niei ) to the surface (with nβ being the two in-plane 

components of n), ταβ are the in-plane components of the non-symmetric surface stress 

tensor given by (Gurtin and Murdoch, 1978) 

( )0 0 0 , 0 , , 0 ,( ) ,u u u uαβ γ γ αβ α β β α β ατ τ λ τ δ µ τ = + + + + −   
           (4.9a) 

and 3βτ are the out-of-plane components of the surface stress tensor expressed as (Gurtin 

and Murdoch, 1975, 1978) 

 
            3 0 3, ,uβ βτ τ=                                                    (4.9b) 

where μ0 and λ0 are the surface elastic constants, and τ0 is the residual surface stress (i.e., 

the surface stress at zero strain). These three constants μ0, λ0 and τ0 can be determined from 

either atomistic simulations or experimental measurements (e.g., Miller and Shenoy, 2000; 

Jing et al., 2006; Zhang et al., 2013).   

Note that in Eqs. (4.3)–(4.9a,b) and throughout the Chapter 4, the summation 

convention and standard index notation are used, with the Greek indices running from 1 to 

2 and the Latin indices from 1 to 3 unless otherwise indicated. 
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From Eqs. (4.1a-c) and (4.5)–(4.7), it follows that in the bulk of the current Mindlin 

plate, 

1 1,  ( ),  ( ),
2 2

1,  ( ),  0,
2

yx x
xx xy xz x

y
yy yz y zz

u u v wz z z
x x y x y x x

v wz
y y y

φφ φε ε ε φ

φ
ε ε φ ε

∂ ∂ ∂∂ ∂ ∂ ∂
= − = + − − = − ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂∂ ∂ = − = − = ∂ ∂ ∂ 

         (4.10)                   

1 2 3
1 1 1( ),  ( ),  ( ),
2 2 2

yx
y x

w w u v z z
y x y x y x

φφθ φ θ φ θ
∂∂∂ ∂ ∂ ∂

= + = − + = − + + −
∂ ∂ ∂ ∂ ∂ ∂

          (4.11) 

   

2 2 2

2 2

222 2 2

2 2

222 2

2 2

1 1( ),  ( ),  
2 4

1 1( ),  ( ),  
4 2

1 1( ),  ( ).
4 2

y yx
xx xy

yx x
xz yy

y yx x
yz zz

w w w
x y x x y x y

u v wz z
x y x x y x x y y

u v z z
y x y y x y y x

φ φφχ χ

φφ φχ χ

φ φφ φχ χ

∂ ∂ ∂∂ ∂ ∂
= + = − + − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂∂ ∂∂ ∂ ∂ = − + + − = − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∂ ∂∂ ∂∂ ∂

= − + + − = −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 




         (4.12) 

The total strain energy in the elastically deformed Mindlin plate is given by 

( ) 2
, ,

1 1 1 1 1d d d d d ,
2 2 2 2 2

T B S F

ij ij ij ij w pS S R R

U U U U

m V A A k w A k w w Aαβ αβ αβ αβ α ασ ε χ τ ε τ ε
+ −Ω

= + +

= + + + + +∫ ∫ ∫ ∫ ∫
 

(4.13) 

where Ω is the region occupied by the plate, S+ and S− represent, respectively, the bottom 

and top surface layers at z = ± h/2 of the Mindlin plate (see Fig 4.1), R denotes the area 

occupied by the mid-plane of the plate, dV is the volume element, and dA is the area 

element. In Eq. (4.13), UB is the strain energy in the bulk of the plate which is governed by 

the modified couple stress theory, US is the strain energy in the surface layers S+ and S− 

satisfying the surface elasticity theory, and UF is the strain energy representing the effect 

of the two-parameter Winkler-Pasternak foundation. 
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The first variation of the total strain energy in the Mindlin plate over the time interval 

[0, T] can be obtained from Eqs. (4.9a,b)–(4.13) as 

( ) 00 0 0

0 , ,0 0 0

1d d ( ) d d
2

1( ) d d d d d d ,
2

ij

T T T

T ij ij ij S

T T T

w pS R R

U dt m V t A t

A t k w w A t k w w A t

αβ αβ αβ

αβ αβ αβ α α

δ σ δε δχ τ τ δ δε

τ τ δ δε δ δ

+

−

+ +

Ω

− −

= + + −

+ − + +

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫
   (4.14) 

where ∂R is the boundary curve enclosing the area R, ds is the differential element of arc 

length along ∂R, and αβτ +  and αβτ −  represent, respectively, the surface stress components 

on the plate bottom (S+) and top (S−) surfaces. 

Note that the volume integral of a sufficiently smooth function D (x, y, z, t) over the 

region Ω can be written as 

/2

/2
( ,  ,  ,  )d ( ,  ,  ,  )d d ,

h

R h
D x y z t V D x y z t z A

Ω −
=∫ ∫ ∫                          (4.15) 

where h is the (uniform) plate thickness, and R is the area occupied by the mid-plane of the 

plate. 

From Eqs. (4.10) and (4.15), it follows that, with the help of Green’s theorem,  

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

, , , , , ,0 0

, , , ,

0

d d

   d d

   

   

T T

ij ij xx x xy y xy x yy y xz x yz yR

xz xx x xy y x yz xy x yy y y

T

xx x xy y xy x yy y xz x yz yR

xx x xy y x xy x yy y

V t N N u N N v N N w

N M M N M M A t

N n N n u N n N n v N n N n w

M n M n M n M n

σ δε δ δ δ

δφ δφ

δ δ δ

δφ δ

Ω

∂

= − + + + + +
− − + + − − + + 

+ + + + + +

− + − +

∫ ∫ ∫ ∫

∫ ∫
d d ,y s tφ 

 (4.16) 

where 

/2 /2 /2 /2

/2 /2 /2 /2
/2 /2 /2

/2

/2
/2 /2 /2

d ,    d ,    d ,    d ,

d ,    d ,    d ,  d ,   

h h h h

xx xx xy xy xz xz yy yyh h h h
h h h

h

yz yz xx xx xy xy yy yyh
h h h

N z N z N z N z

N z M z z M z z M z z

σ σ σ σ

σ σ σ σ

− − − −

−
− − −

≡ ≡ ≡ ≡

≡ ≡ ≡ ≡

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
     (4.17)
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are the Cauchy stress resultants through the plate thickness. 

Similarly, the use of Eqs. (4.12) and (4.15) and Green’s theorem yields 

( ) ( ) (
) ( ) (

)

, , , , , , ,0 0

, , , , , , , , , ,

, ,0

1d d
2

   

1 1 1   d d
2 2 2

T T

ij ij xz xy yz yy xz xx yz xy xx xy xy xx xy yyR

yy xy xy x yy y zz y xz xy yz yy x xx x xy y zz x xz xx

T

yz xy y xz x yR

m V t Y Y u Y Y v Y Y Y

Y w Y Y Y H H Y Y Y H

H A t Y n Y

δχ δ δ

δ δφ

δφ

Ω

∂

= − + − + − − +

− − + − + + − − − + −

− + + 

∫ ∫ ∫ ∫

∫ ∫

(

, , , ,

, , , , , , ,

, , ,

1
2

1 1 1 1 1  
2 2 2 2 2

1 1  
2 2

  

xz y x yz y y xz x x yz x y

yz y x xx x y xx y x xy x x xy y y yy x y yy y x
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 
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  

 + − − + − − − + + − 
 

+ (, , , , ,

, , , ,

,

1 1 1 1
2 2 2 2

1 1 1 1 1 1  
2 2 2 2 2 2
1 1  
2 2

xz x x yz x y yz y x y xz y x xz x yz y y xz x

yz y x yz x y xx y xy x yy y x xx x xy y yy x y

xz y x x xz x yz y

H n H n H n Y n u Y n Y n u Y n

Y n v Y n v Y n Y n Y n w Y n Y n Y n w
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δφ δ δ

δ δ δ δ

δφ

  + + − − + +  
  

    + + + − − + + −    
    

+ + +


, , ,
1 1 d d ,
2 2x y xz x yz y y x yz x y yH n H n H n s tδφ δφ δφ   − + −        

(4.18) 

where 

/2 /2 /2 /2

/2 /2 /2 /2
/2 /2 /2 /2

/2 /2 /2 /2

d ,  d , d , d ,   

d , d ,  d ,   d   

h h h h

xx xx xy xy xz xz yy yyh h h h
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− − − −

− − − −

≡ ≡ ≡ ≡

≡ ≡ ≡ ≡

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

          (4.19) 

are the couple stress resultants through the plate thickness. 

Also, it follows from Eqs. (4.10) and (4.15) and Green’s theorem that  
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(4.20) 

Note that in reaching Eq. (4.20) use has been made of the relations S+ = R = S−, ∂S+ =  ∂R 

= ∂S− for the uniform-thickness plate under consideration in order to facilitate the integral 

evaluations. 

In addition, using Green’s theorem gives 

( ) ( )
, ,0 0

, , , ,0 0 0

d d d d

d d d d d d .

T T

w pR R
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α αδ δ

δ δ δ
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+

= − + + +

∫ ∫ ∫ ∫
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(4.21) 

The kinetic energy of the Mindlin plate can be written as (e.g., Ma et al., 2011) 

( ) ( ) ( )2 2 2
1 2 3

1 d ,
2

K u u u Vρ
Ω

 = + + ∫                                  (4.22) 



 
 

67 

where ρ is the mass density of the plate material. Note that here and in the sequel, the 

overhead “∙” and “∙∙” denote, respectively, the first and second time derivatives (e.g., 

2 2
1 1 1 1/ ,  /u u t u u t= ∂ ∂ = ∂ ∂  ). 

 The first variation of the kinetic energy, over the time interval [0, T], can be obtained 

from Eqs. (4.1a-c), (4.15) and (4.22) as  

          0 0 0 2 20 0
d ( )d d ,

T T

x x y yR
K t m u u m v v m w w m m A tδ δ δ δ φ δφ φ δφ= − + + + +∫ ∫ ∫  

       (4.23) 

where  

      
3/2 /2 2

0 2/2 /2
d , d .

12
h h

h h

hm z h m z z ρρ ρ ρ
− −

≡ = ≡ =∫ ∫                        (4.24)           

In reaching Eq. (4.23), it has been assumed that the initial (t = 0) and final (t = T) 

configurations of the plate are prescribed so that the virtual displacements vanish at t = 0 

and t = T. In addition, ρ is taken to be constant along the plate thickness and over the time 

interval [0, T] such that 0 20, 0.m m= =   

From the general expression of the work done by external forces in the modified couple 

stress theory (e.g., Park and Gao, 2006, 2008) and in the surface elasticity theory (e.g., 

Gurtin and Murdoch, 1975, 1978), the virtual work done by the forces applied on the 

current Mindlin plate over the time interval [0, T] can be expressed as 
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where fi and ci (i = x, y, z) are, respectively, the components of the body force resultant 

(force per unit area) and the body couple resultant (moment per unit area) through the plate 

thickness acting in the area R (i.e., the plate mid-plane), it  and is  (i = x, y, z) are, 

respectively, the components of the Cauchy traction resultant (force per unit length) and 

the surface couple resultant (moment per unit length) through the plate thickness acting on 

∂R (i.e., the boundary of R), and xM  and yM  are, respectively, the applied moments per 

unit length about the y-axis and x-axis acting on ∂R. Note that the positive directions of 

xM  and yM  are, respectively, opposite to those of ϕx and ϕy (see Fig 4.1). Also, in 

reaching Eq. (4.25), use has been made of Green’s theorem. It should be mentioned that 

the last two terms in the virtual work expression in Eq. (4.25) account for the contribution 

of the normal stress on the top and bottom plate surfaces 33σ ±  (= 3 ,α ατ ±± from the 

equilibrium equations in Eq. (4.8a)), which is neglected in the Mindlin plate models that 

do not consider the surface energy effect (e.g., Ma et al., 2011; Zhou and Gao, 2014). 

According to Hamilton’s principle (e.g., Reddy, 2002; Ma et al., 2008, 2010, 2011; 

Gao et al. 2013; Gao and Zhang, 2015, 2016), 

  ( )
0

d 0.
T

TK U W tδ − − =  ∫                                        (4.26)   

Using Eqs. (4.14), (4.16), (4.18), (4.20), (4.21), (4.23) and (4.25) in Eq. (4.26) and applying 

the fundamental lemma of the calculus of variations (e.g., Gao and Mall, 2001; Steigmann, 

2007; Gao, 2015) will lead to, with the arbitrariness of δu, δv, δw, δφx and δφy and the 

relations S+ = R = S−, ∂S+ =  ∂R = ∂S− due to the uniform thickness of the plate,  
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, ,
, , , , , , , , , 0

1 1 1 1 1 ,
2 2 2 2 2 2

xz xy yz yy
xx x xy y xx x xy y yx y xx x xy y yx y x z y

Y Y
N N f c m uτ τ τ τ τ τ+ + + − − −+

+ + + + + + + + + + =   

(4.27a) 

, ,
, , , , , , , , , 0

1 1 1 1 1 ,
2 2 2 2 2 2

xz xx yz xy
xy x yy y xy x yx x yy y xy x yx x yy y y z x

Y Y
N N f c m vτ τ τ τ τ τ+ + + − − −+

+ − + + + + + + + − =   

(4.27b) 

, , , , 2
, , 3 , 3 , , , 0

1 1 ,
2 2 2

xx xy xy xx xy yy yy xy
xz x yz y w p z x y y x

Y Y Y Y
N N k w k w f c c m wα α α ατ τ+ −− + −

+ − + + − + ∇ + − + =   

                             (4.27c) 

(

)

, , , , ,
, , , , , ,

, , 2

2 2
2 4

1 ,
2

xy x yy y zz y xz xy yz yy
xz xx x xy y xx x xy y yx y xx x

xy y yx y y x

Y Y Y H H hN M M

c m

τ τ τ τ

τ τ φ

+ + + −

− −

+ − + +
− + + + + + + −

− − + = − 

  

        (4.27d) 

(

)

, , , , ,
, , , , , ,

, , 2

2
2 4

1        2
2

xx x xy y zz x xz xx yz xy
yz xy x yy y xy x yx x yy y xy x

yx x yy y x y

Y Y Y H H hN M M

c m

τ τ τ τ

τ τ φ

+ + + −

− −

− − + − −
− + + + + + + −

− − − = − 

 

   (4.27e) 
as the equations of motion of the current Mindlin plate for any (x, y) ∈ R and t ∈ (0, T), 

and 

, , , 00

, , ,
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1 12 2 2( ) (
2 2

1 1  ) 2 2 2 (
2 2

  ) 2( )

T

xx x xy y xz x y xz y x yz y y xx xx x xy xyR

yx yx y z y x xy x yy y xz x x yz x y yz y x xy
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N n N n Y n Y n Y n n

n c n t u N n N n Y n Y n Y n
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τ τ δ τ

τ τ τ τ τ τ
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∂

+ − +

− + − + −

 + + + + + + − + +
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+ + + + + −

∫ ∫
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,
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12 2 2 ( )
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1  ( ) 2 2 2
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2 2 2
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xx yy y x xy x x xy y y p x x y y x y y x z xx x

xy y xy x yy y zz y xz x y xz y x yz y y xx xx x xy

c n t v N n N n Y Y n

Y Y n Y n Y n k w n w n c n c n t w M n

hM n Y n Y n Y n H n H n H n h n

δ

δ

τ τ τ+ − +

− − + + − − 
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70 

]

, , ,

, , ,
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1 1   ( ) ( )
2 2 2

1 1 1   2
2 2 2

1 1   ( )
2 2

xz x x yz x y yz y x yy yy y xy xy yx yx x

z zy x y xz y x xz x yz y y xz x yz y x

yyz x y xx yy y xy x x

hH n H n H n h n n

M s Y n u Y n Y n s u Y n Y n s v

Y n v Y Y n Y n s w

τ τ τ τ τ τ

δφ δ δ δ

δ δ

+ − + − + −− − − + − + − + −

   − + − − + − + + −   
   

 + + − − + +  
,

, , , ,

1 ( )
2

1 1 1 1   d d 0,
2 2 2 2

xxx yy x xy y y

xz y x x xz x yz y x y xz x yz y y x yz x y y

Y Y n Y n s w

H n H n H n H n H n H n s t

δ

δφ δφ δφ δφ

 − + −  
    + + + − + − =   
    

 

 (4.28) 

which can be further simplified to obtain the boundary conditions. 

Note that the integrand of the line integral in Eq. (4.28) is expressed in terms of the 

Cartesian components of the resultants and displacements that are functions of the 

Cartesian coordinates (x, y, z) with the unit base vectors {e1, e2, e3}. This is convenient for 

a rectangular plate whose edges are parallel to the x- and y-axes. However, for a more 

general case of a plate whose boundary is not aligned with the x- or y-axis, as shown in Fig 

4.3, it is more convenient to use a Cartesian coordinate system ( , , )n s z with the unit base 

vectors 3{ , , }n se e e , where en ( x yn n= +1 2e e ) and es ( y xn n= − +1 2e e ) are, respectively, the 

unit normal and tangent vectors on the plate boundary ∂R.  

 

 
Fig. 4.3 Two coordinate systems 
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It can be shown that the components in the coordinate system ( , , )x y z  are related to 

those in the coordinate system ( , , )n s z through the following transformation expressions: 

     { } [ ]{ } { } [ ]{ } { } [ ]{ }1 1 , , 1 , ,,  ,  ,  ,  ,  ,  ,  ,  ,
T T TT T T

n s x y n s x y n su v R u v R w w R w wφ φ φ φ= = =      

     { } [ ]{ } { } [ ]{ } { } [ ]{ }1 1 1,  ,  , ,  ,  ,  ,  ,  ,
T T TT T T

x y n s x y n s x y n st t R t t s s R s s c c R c c= = =  

     { } [ ]{ } { } [ ]{ }1 1,  ,  ,  ,  ,  ,   
T TT T

x y n sxz yz nz szN N R N N M M R M M= =  

     { } [ ]{ } { } [ ]{ }1 1,  ,  ,  ,  ,  ,
T TT T

xz yz nz sz xz yz nz szY Y R Y Y H H R H H= =  

 [ ] [ ] [ ] [ ]1 1 1 1,   ,T Txx xy xx xynn ns nn ns

xy yy xy yyns ss ns ss

N N Y YN N Y Y
R R R R

N N Y YN N Y Y
      

= =      
      

              (4.29) 

     [ ] [ ] [ ] [ ], , , ,
1 1 1 1

, , , ,

,  ,T Txx xy xz x xz y nz n nz snn ns

xy yy yz x yz y sz n sz sns ss

M M Y Y Y YM M
R R R R

M M Y Y Y YM M
      

= =      
      

 

     [ ] [ ] [ ] [ ], , , ,, , , ,
1 1 1 1

, , , ,, , , ,
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H H H H
R R R R
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φ φ φ φ
φ φ φ φ
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R R R R
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       
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      
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xx x xx y xy x xy y yy x yy y nn n nn s ns n ns s ss n ss sY Y Y Y Y Y R Y Y Y Y Y Y=       
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[ ]1  ,x y
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R

n n
− 
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                                                   (4.30a) 
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− − −
2 3

,

                x y xn n n
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 
 
 
 
 
 
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       (4.30b) 

with 2 2 1.x yn n+ =  
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Using Eqs. (4.29) and (4.30a,b) in Eq. (4.28) yields, after some lengthy algebra,  

)

, 0 , ,0

, ,
, ,

, , ,

1 12 2
4 2

2 2 2 2
2
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Y Y
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δ δ

+ − + −

∂

+ −
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− 

+ + − − + − + + + − 
 

− − − + − − + + 
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)
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,
,

, , , , ,
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2 2 2 2 2
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2 2 2
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nz sz nz
z zs n s n s nz s n s s n s nz s n
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h h

H h h h hM s M Y Y H

Y Y HM s s u Y s v v H

H s t

τ τ

δφ τ τ τ τ

δφ δ δ δ δφ δφ
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


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
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 
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(4.31) 

Note that on the closed boundary ∂R the following identity:  

, ,d ds sR R
D g s D g sδ δ

∂ ∂
= −∫ ∫ 

                                     (4.32) 

holds, where D, g are two smooth functions. With the help of Eq. (4.32), Eq. (4.31) 

becomes 

       ( ), , ,0
d d 0,

T
n s z s snn ss zzn s n s n s n s nR

N u N v N w M M T w T v Z s tδ δ δ δφ δφ δ δ δφ
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(4.33) 
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where 
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Z H
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≡ − +

≡ −

≡ −

   (4.34a-h) 

Using the fundamental lemma of the calculus of variations in Eq. (4.33) then gives 
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T v v
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φ φ

φ φ

φ φ
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= =

= =
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= =

= =

= =

= =

                                     (4.35a-h) 

as the boundary conditions for any (x, y) ∈ ∂ R and t ∈ (0, T), where the overhead bar 

indicates the prescribed value. 

From Eqs. (4.3), (4.10) and (4.17), the Cauchy stress resultants can be expressed in 

terms of the five kinematic variables u, v, w, xφ  and yφ  as 

, ,( 2 ) ,xx x yN h u vλ µ λ = + +   

, ,( ),xy y xN h u vµ= +  
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,( ),xz s x xN k h wµ φ= −  

, ,( 2 ) ,yy x yN h u vλ λ µ = + +   

,( ),yz s y yN k h wµ φ= −  

3
, ,

1 ( 2 ) ,
12xx x x y yM h λ µ φ λφ = − + +   

3
, ,

1 ( ),
12xy x y y xM hµ φ φ= − +  

                                                3
, ,

1 ( 2 ) ,
12yy x x y yM h λφ λ µ φ = − + +                     (4.36a-h) 

where ks is a shear correction factor introduced to account for the non-uniformity of the 

shear strain components xzε  and yzε  over the plate thickness (e.g., Wang et al., 2001; Liu 

and Soh, 2007). 

From Eqs. (4.4), (4.12) and (4.19), the couple stress resultants through the plate 

thickness can be expressed in terms of u, v, w, xφ  and yφ  as 

2
, ,( ),xx xy y xY l h wµ φ= +  

2
, , , ,

1 ( ),
2xy xx yy x x y yY l h w wµ φ φ= − + − +  

2
, ,

1 ( ),
2xz xy xxY l h u vµ= − +  

2
, ,( ),yy xy x yY l h wµ φ= − +  

2
, ,

1 ( ),
2yz yy xyY l h u vµ= − +  

2
, ,( ),zz x y y xY l hµ φ φ= −  
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2 3
, ,

1 ( ),
24xz x xy y xxH l hµ φ φ= −  

2 3
, ,

1 ( ).
24yz x yy y xyH l hµ φ φ= −                                   (4.37a-h) 

Also, from Eqs. (4.1a-c) and (4.9a,b), it follows that the surface stress components can 

be expressed in terms of u, v, w, xφ  and yφ as 

0 0 0 , , 0 0 , ,( 2 )( ) ( )( ),
2 2xx x x x y y y
h hu vτ τ λ µ φ λ τ φ± = + + + + 

          

( )0 , , 0 , 0 , 0 , 0 ,
1( ) ,
2xy y x x x y y x y xu v v hτ µ τ µ φ µ φ τ φ± = + − + −

     

( )0 , , 0 , 0 , 0 , 0 ,
1( ) ,
2yx y x y x y x y y xu v u hτ µ τ µ φ τ φ µ φ± = + − − +

 

0 0 0 , , 0 0 , ,( )( ) ( 2 )( ),
2 2yy x x x y y y
h hu vτ τ λ τ φ λ µ φ± = + + + + 

 

3 3 0 , ,x x xwτ τ τ+ −= =  

                                                          3 3 0 , .y y ywτ τ τ+ −= =                                             (4.38a-f) 
The equations of motion of the Mindlin plate in terms of the five kinematic variables 

u, v, w, xφ  and yφ  can then be obtained by using Eqs. (4.36a-h), (4.37a-h) and (4.38a-f) in 

Eqs. (4.27a-e) as 
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0 0 , 0 0 , 0 0 0 , , 0
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4
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 (4.39d) 
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x xyyy y xxxx y xxyy xxy yyy x xy y xx y yy
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h h h k h w l h

l h w w

h c

λ µ φ µ φ λ µ φ µ φ µ φ

φ φ φ µ φ φ φ

λ µ τ φ µ τ φ λ µ φ
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 − + + + − + + −  2x ym φ= − 

      

(4.39e) 

for any (x, y) ∈ R and t ∈ (0, T ). 

The differential equations in Eqs. (4.39a–e), the boundary conditions in Eqs. (4.35a–h) 

(along with Eqs. (4.34a-h), (4.29) and (4.30a,b)), and the given initial conditions at t = 0 

and t = T define the boundary-initial value problem for determining u, v, w, xφ  and yφ . It 

is seen from Eqs. (4.39a-e) that the in-plane displacements u and v are uncoupled with the 

out-of-plane displacement w and the rotations xφ  and yφ . Therefore, u and v can be 

obtained separately from solving Eqs. (4.39a,b) subject to prescribed boundary conditions 

of the form in Eqs. (4.35a,b,g) and suitable initial conditions. 

When kw = kp =0, Eqs. (4.39a-e) will reduce to the governing equations for the Mindlin 

plate without the foundation (but incorporating the microstructure and surface energy 

effects).  
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When l = 0 and ci = 0, Eqs. (4.39a-e) will become the governing equations for the 

Mindlin plate in the absence of the microstructure (or couple stress) effect (but including 

the surface energy and foundation effects).  

When λ0 = µ0 = τ0 = 0, Eqs. (4.39a-e) will degenerate to the governing equations for 

the Mindlin plate without considering the surface energy effect (but accounting for the 

microstructure and foundation effects). 

When l = 0, ci = 0 and λ0 = µ0 = τ0 = 0, Eqs. (4.39a-e) will be simplified as the classical 

elasticity-based governing equations for the Mindlin plate resting on the two-parameter 

Winkler-Pasternak elastic foundation. 

When kw = kp = 0 and λ0 = µ0 = τ0 = 0, Eqs. (4.39a-e) become 

2
, , , , , , , , 0

1 1( 2 ) ( ) ( ) ,
4 2xx yy xy xxyy yyyy xxxy xyyy x z yhu hu hv l h u u v v f c m uλ µ µ λ µ µ+ + + + + − − + + + + =   

(4.40a) 

2
, , , , , , , , 0

1 1( ) ( 2 ) ( ) ,
4 2xy xx yy xxxy xyyy xxxx xxyy y z xhu hv hv l h u u v v f c m vλ µ µ λ µ µ+ + + + + + − − + − =   

 (4.40b) 

2
, , , , , , , , , , ,

, , 0

1( ) ( 2 )
4

1 1 ,
2 2

s xx yy x x y y xxxx xxyy yyyy x xxx x xyy y xxy y yyy

z x y y x

k h w w l h w w w

f c c m w

µ φ φ µ φ φ φ φ+ − − − + + + + + +

+ − + = 

 

(4.40c) 

3 3 3 2 3
, , , , ,

2
, , , , , , , , 2

1 1 1 1( 2 ) ( ) ( ) (
12 12 12 48

1 1) ( 4 3 ) ,
4 2

x xx x yy y xy s x x x xxyy

x yyyy y xxxy y xyyy xxx xyy x xx x yy y xy y x

h h h k h w l h

l h w w c m

λ µ φ µ φ λ µ φ µ φ µ φ

φ φ φ µ φ φ φ φ

− + − − + − − − −

− + + + − − − − + + = − 

   

(4.40d) 
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3 3 3 2 3
, , , , ,

2
, , , , , , , , 2

1 1 1 1( ) ( 2 ) ( ) (
12 12 12 48

1 1) ( 3 4 ) ,
4 2

x xy y xx y yy s y y x xxxy

x xyyy y xxxx y xxyy xxy yyy x xy y xx y yy x y

h h h k h w l h

l h w w c m

λ µ φ µ φ λ µ φ µ φ µ φ

φ φ φ µ φ φ φ φ

− + − − + − − −

+ − − + − − + − − − = − 

   

(4.40e) 

which are the governing equations for the Mindlin plate incorporating the microstructure 

effect alone. These equations are identical to those derived in Ma et al. (2011) using the 

same modified couple stress theory. By setting l = 0 and ci = 0, Eqs. (4.40a-e) will be further 

reduced to the governing equations for the Mindlin plate based on classical elasticity, as 

shown in Ma et al. (2011). 

When /x w xφ = ∂ ∂  and /y w yφ = ∂ ∂ , Eqs. (4.39a-e) are simplified as 

2
, , , , , , ,

0 0 , 0 0 , 0 0 0 , , 0

1( 2 ) ( ) ( )
4

12(2 ) (2 ) (2 2 ) ,
2

xx yy xy xxyy yyyy xxxy xyyy

xx yy xy x z y

hu hu hv l h u u v v

u u v f c m u

λ µ µ λ µ µ

µ λ µ τ µ λ τ

+ + + + + − − + +

+ + + − + + + + + = 

          (4.41a) 

2
, , , , , , ,

0 0 0 , 0 0 , 0 0 , , 0

1( ) ( 2 ) ( )
4

1(2 2 ) (2 ) 2(2 ) ,
2

xy xx yy xxxy xyyy xxxx xxyy

xy xx yy y z x

hu hv hv l h u u v v

u v v f c m v

λ µ µ λ µ µ

µ λ τ µ τ µ λ

+ + + + + + − −

+ + + + − + + + − = 

         (4.41b) 

( )

3 2 2
0 0 , , ,

2 2

0 , , , , 0 2 22 2

1 1( 2 ) ( 2 ) ( 2 )
12 2

    2 ( ) ,

xxxx xxyy yyyy

p xx yy w z x y y x

h l h h w w w

w wk w w k w f c c m w m m
x y

λ µ µ λ µ

τ

 − + + + + + +  
∂ ∂

+ + + − + − + = − −
∂ ∂
 



          (4.41c) 

which are the same as the governing equations first derived in Gao and Zhang (2016) for 

the non-classical Kirchhoff plate model incorporating microstructure, surface energy and 

foundation effects and involving three independent kinematic variables u, v and w. That is, 

the newly developed Mindlin plate model reduces to the non-classical Kirchhoff plate 

model when the normality assumption is reinstated. 



 
 

79 

When v = 0, yφ = 0, u = u(x, t), w = w(x, t), xφ = xφ (x, t), fy = 0, cx = 0 and cz = 0, the 

Mindlin plate considered here becomes a Timoshenko beam. For this case, Eqs. (4.39a-e) 

reduce to, by setting kw = kp = 0 and λ0 = µ0 = τ0 = 0 additionally,   

        , 0( 2 ) ,xx xhu f m uλ µ+ + =                                                (4.42a) 

2
, , , , , 0

1 1( ) ( ) ,
4 2s xx x x xxxx x xxx z y xk h w l h w f c m wµ φ µ φ− − + + + =                 (4.42b) 

3 2
, , , , 2

1 1 1( 2 ) ( ) ( ) ,
12 4 2x xx s x x xxx x xx y xh k h w l h w c mλ µ φ µ φ µ φ φ+ + − + + − =               (4.42c) 

which are identical to the equations of motion for a Timoshenko beam with a unit width 

and a height h derived in Ma et al. (2008). That is, the current Mindlin plate model recovers 

the non-classical Timoshenko beam model based on the same modified couple stress theory 

as a special case. 

 

4.3 Examples 

To further demonstrate the new non-classical Mindlin plate model developed in Section 

4.2, the static bending and free vibration problems of a simply supported rectangular plate 

(see Fig 4.4) are analytically solved in this section by directly applying the general forms 

of the governing equations and boundary conditions of the new model. 

 
Fig. 4.4 Simply supported plate 
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In view of the general form of the boundary conditions (BCs) in Eqs. (4.35a–h), the 

BCs for this simply supported plate can be identified as 

               0,  0,  0,  0,  0,  0,  0,  0n z s sssn su w N M T T Zφ= = = = = = = =         (4.43) 

for all (x, y) on the boundaries x = 0, a and y = 0, b. Also, the following applied traction 

resultants vanish on these boundaries: 

                     0,  0,  0.nn s z ss s s M t= = = = =                                   (4.44) 

For the boundaries x = 0 and x = a, ny = 0 and nx = −1 (on x = 0) or nx = 1 (on x = a), 

and Eq. (4.43) becomes, with the help of Eqs. (4.29), (4.30a), (4.34b,d,f,g,h) and (4.44), 

, ,

,

(0, ) ( , ) 0,
(0, ) ( , ) 0,
(0, ) ( , ) 0,

1 1 1 1( ) 0 on 0 and ,
2 2 2 2

2 ( ) 0 on 0 and ,
0 on 0 and ,
0 on 0 and 

y y

xy xz x yz y xy xy yx yx z

xx xy xz y xx xx

xy

xz

u y u a y
w y w a y

y a y

N Y Y c x x a

M Y H h x x a
Y x x a
Y x x

φ φ

τ τ τ τ

τ τ

+ − + −

+ −

= =
= =
= =

− − + + + + − = = =

+ + + − = = =

= = =

= = ,
0 on 0 and .xz

a
H x x a

=
= = =

      (4.45a-h) 

Using Eqs. (4.36b,f), (4.37b,c,e,g) and (4.38a-c) in Eqs. (4.45d-h) yields 

2
, , , , , , 0 0 , ,

3
2 3 2

, , , , , ,

2
, , 0 0 , 0 0 ,

, , , ,

1 1( ) ( ) (2 )( ) 0,  
4 2

1 1( 2 ) ( ) (
6 24 2

) ( 2 ) ( ) 0,

y x xxy yyy xxx xyy y x z

x x y y x xyy y xxy xx yy

x x y y x x y y

xx yy x x y y

h u v l h u u v v u v c

h l h l h w w

h

w w

µ µ µ τ

λ µ φ λφ µ φ φ µ

φ φ λ µ φ λ τ φ

φ φ

+ − − − + + + − + − =

 + + − − − − + 

 − + + + + + = 
− + −

, ,

, ,

0,
0,  

0,  
xy xx

x xy y xx

u v
φ φ

=

− =

− =

(4.46a-e) 

on x = 0 and x = a. 
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For the boundaries y = 0 and y = b, nx = 0 and ny = −1 (on y = 0) or ny = 1 (on y = b), 

and Eq. (4.43) becomes, with the help of Eqs. (4.29), (4.30a), (4.34b,d,f,g,h) and (4.44), 

, ,

,

( ,0) ( , ) 0,
( ,0) ( , ) 0,
( ,0) ( , ) 0,

1 1 1 1( ) 0 on 0 and ,
2 2 2 2

2 ( ) 0 on 0 and ,
0 on 0 and ,
0 on 0 and 

x x

yx xz x yz y xy xy yx yx z

yy yx yz x yy yy

yx

yz

v x v x b
w x w x b

x x b

N Y Y c y y b

M Y H h y y b
Y y y b
Y y y

φ φ

τ τ τ τ

τ τ

+ − + −

+ −

= =
= =
= =

+ + + + + + + = = =

− − + − = = =

= = =

= = ,
0 on 0 and .yz

b
H y y b

=

= = =

     (4.47a-h) 

Using Eqs. (4.36b, h), (4.37b,c,e,h) and (4.38b-d) in Eqs. (4.47d-h) gives 

      

( )

2
, , , , , , 0 0 , ,

3 2 3 2
, , , , , , , ,

2
0 0 , 0 0 ,

, , , ,

1 1( ) ( ) (2 )( ) 0,  
4 2

1 1 12 ( ) ( )
6 24 2

( ) ( 2 ) 0,

y x xxy yyy xxx xyy y x z

x x y y x xyy y xxy xx yy x x y y

x x y y

xx yy x x y y

h u v l h u u v v u v c

h l h l h w w

h

w w

µ µ µ τ

λφ λ µ φ µ φ φ µ φ φ

λ τ φ λ µ φ

φ φ

+ + − − + + + − + + =

 + + + − + − + − + 

 + + + + = 
− + − =

, ,

, ,

0,
0,  

0,  
yy xy

x yy y xy

u v
φ φ

− =

− =

  

(4.48a-e) 

on y = 0 and y = b. 

 
4.3.1 Static bending 

For static bending problems, u, v, w, xφ  and yφ  are independent of time t so that all of 

the time derivatives involved in Eqs. (4.39a–e) vanish. 

The boundary value problem (BVP) for the static bending of the simply supported plate 

shown in Fig 4.4 is defined by the governing equations in Eqs. (4.39a–e) and the boundary 
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conditions in Eqs. (4.45a-c), (4.46a-e), (4.47a-c) and (4.48a-e), with u = u(x, y), v = v(x, y), 

w = w(x, y) xφ = xφ (x, y) and yφ = yφ (x, y).  

As mentioned in Section 4.2, the in-plane displacements u and v are uncoupled with w, 

xφ  and yφ . Therefore, u and v can be obtained from solving the BVP defined by Eqs. 

(4.39a,b), (4.45a), (4.46a,d), (4.47a) and (4.48a,d). For the current case with fx = fy = 0 and 

cz = 0, the solution of this BVP gives u = v = 0 for any (x, y) ∈ R. 

The out-of-plane displacement w and rotations xφ  and yφ  can be obtained from solving 

the BVP defined by Eqs. (4.39c-e), (4.45b,c), (4.46b,c,e), (4.47b,c) and (4.48b,c,e), as 

shown next.  

Consider the following Fourier series solutions for w, xφ  and yφ : 

1 1

1 1

1 1

sin( )sin( ),

cos( )sin( ),

sin( ) cos( ),

mn
m n

x
x mn

m n

y
y mn

m n

m x n yw W
a b

m x n yΦ
a b

m x n yΦ
a b

π π

π πφ

π πφ

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

=

=

=

∑∑

∑∑

∑∑

                                (4.49) 

where mnW , x
mnΦ  and y

mnΦ  are the Fourier coefficients to be determined for each pair of m 

and n. It can be readily shown that w, xφ  and yφ  in Eq. (4.49) satisfy the boundary 

conditions in Eqs. (4.45b,c), (4.46b,c,e) at x = 0, a and in Eqs. (4.47b,c), (4.48b,c,e) at y = 

0, b for any mnW , x
mnΦ  and y

mnΦ . 

The resultant force fz (x, y) can also be expanded as a Fourier series: 

     
1 1

( , ) sin( )sin( ),z mn
m n

m x n yf x y Q
a b
π π∞ ∞

= =

=∑∑                          (4.50) 

where the Fourier coefficient Qmn is given by 
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0 0

4 ( , )sin( )sin( )d d .
a b

mn z
m x n yQ f x y x y

ab a b
π π

= ∫ ∫                     (4.51) 

In the current case (see Fig 4.4), ( , ) ( ) ( ),
2 2z
a bf x y P x yδ δ= − −  where ( )δ ⋅  is the Dirac 

delta function. Using this zf  in Eq. (4.51) yields 

4 sin( )sin( ).
2 2mn

P m nQ
ab

π π
=                                         (4.52) 

Substituting Eqs. (4.49) and (4.50) into Eq. (4.39c-e) results in, with 0,x yc c= =  

[ ] [ ], , ,0,0 ,
T Tx y

mn mn mn mnC W Φ Φ Q  = −                               (4.53) 

where [ ]C  is a 3-by-3 matrix whose components are 

      
2 2 2 2 2 2 2 2 2

2
11 0 2 2 2 2( 2 )( ) ( ) ,

4s p w
m n l h m nC k h k k

a b a b
π π µ π πµ τ= − + + + − + −  

      
2 3 3 2 3

12 3 2( ),
4s

m l h m mnC k h
a a ab
π µ π πµ= − +  

      
2 2 3 3 3

13 2 3( ),
4s

n l h m n nC k h
b a b b
π µ π πµ= − +  

      

3 2 2 3 2 2 2 3 2 2 4 4 4

22 2 2 2 2 4

2 22 2 2 2 2 2 2 2 2
0 0 0 0

2 2 2 2

( 2 ) ( )
12 12 48

(2 ) (2 )4     ( ) ,
4 2 4

s
h m h n l h m n nC k h

a b a b b
h hl h m n m n

a b a b

λ µ π µ π µ π πµ

µ λ µ τµ π π π π

+
= + + + +

+ −
+ + + +

 

3 2 2 3 3 4 3 4 2 2

23 3 3

2 2
0 0 0

( ) 3( )
12 48 4

(2 2 )     ,
4

h mn l h m n mn l h mnC
ab a b ab ab

h mn
ab

λ µ π µ π π µ π

µ λ τ π

+
= − + −

+ +
+

                          (4.54) 

      

3 2 2 3 2 2 2 3 2 2 4 4 4

33 2 2 2 2 4

2 22 2 2 2 2 2 2 2 2
0 0 0 0

2 2 2 2

( 2 ) ( )
12 12 48

(2 ) (2 )4     ( ) ,
4 2 4

s
h n h m l h m n mC k h

b a a b a
h hl h m n n m

a b b a

λ µ π µ π µ π πµ

µ λ µ τµ π π π π

+
= + + + +

+ −
+ + + +

 

      21 12 31 13 32 23,  ,  .C C C C C C= − = − =  
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Solving the linear algebraic equation system in Eq. (4.53) will yield mnW , x
mnΦ and y

mnΦ . 

Then, substituting them into Eq. (4.49) will give the exact solutions w, xφ  and yφ  based on 

the current non-classical Mindlin plate model for the simply supported plate subjected to 

the concentrated force at the center of the plate (see Fig 4.4). 

Figures 4.5 and 4.6 display, respectively, the variations of the plate deflection w and 

the rotation xφ  along the line y = b/2 predicted by the newly developed Mindlin plate model 

(with or without the Winkler-Pasternak foundation) and by the classical Mindlin plate 

model. The numerical results for the plate with the Winkler-Pasternak foundation (solid 

lines) are directly obtained from Eqs. (4.49) and (4.52)-(4.54), while those for the plate 

without the foundation (dash lines) are computed using the same equations but with kw = 

kp = 0. The values for the classical Mindlin plate (dot lines) are determined from Eqs. (4.49) 

and (4.52)-(4.54) by setting  l = 0, 0λ  = 0µ  = 0τ  = 0, and kw = kp = 0.  

For illustration purposes, in the numerical analysis presented herein, the plate material 

is taken to be aluminum with the following properties (Liu and Rajapakse, 2010; Gao and 

Mahmoud, 2014): E = 90 GPa, v = 0.23, l = 6.58 μm for the bulk properties, and  

0 5.4251µ = −  N/m, 0λ  = 3.4939 N/m, 0τ  = 0.5689 N/m for the surface layers, where 

Young’s modulus E and Poisson’s ratio ν are related to the Lamé constants λ and μ by (e.g., 

Timoshenko and Goodier, 1970): 

      (3 2 ) ,  .
2( )

E vµ λ µ λ
λ µ λ µ
+

= =
+ +

                                  (4.55) 

The shear correction factor ks is taken to be 0.8 (e.g., Wang et al., 2001; Liu and Soh, 2007; 

Ma et al., 2011). In addition, the shape of the plate is fixed by letting a = b = 20h, while 

the plate thickness h is varying.  
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In Figs 4.5 and 4.6, the foundation moduli are non-dimensionalized and taken to be 

100, 10w pK K= = , where 4 2/ , /w w p pK k a D K k a D≡ ≡ , with 3 2/ [12(1 )]D Eh v= −   

being the plate flexural rigidity. The number of terms included in Eq. (4.49) is controlled 

by adjusting m and n. The numerical results for w, xφ  and yφ  obtained with m = 30 and n 

= 30 are found to be the same as those computed with larger m and n values (up to m = 60, 

n = 60) to the third decimal place. This indicates that using m = 30, n = 30 in the expansions 

is sufficient for the convergent numerical solutions of w and xφ  displayed in Figs 4.5 and 

4.6. Note that the values of yφ  along the line x = a/2 are the same as those of xφ along the 

line y = b/2 due to the loading and geometrical symmetry of the square plate under 

consideration. Hence, yφ  is not plotted here. 

From Figs 4.5 and 4.6, it is clearly seen that both the deflection w and the rotation xφ

predicted by the current Mindlin plate model with or without the foundation are always 

smaller than those predicted by the classical model in all cases considered. It is also 

observed that the differences between the values predicted by the new model (with or 

without the foundation) and those by the classical model are very large when the plate 

thickness h is small (with h = l = 6.58 μm here), but the differences are diminishing when 

h becomes large (with h = 5l = 32.9 μm here). This predicted size effect agrees with the 

general trend observed experimentally (e.g., McFarland and Colton, 2005). In addition, it 

is observed from Figs 4.5 and 4.6 that the presence of the elastic foundation does reduce 

the plate deflection and rotation, as expected. The foundation effect on the deflection of 

the simply supported plate (see Fig 4.4) is further shown in Fig 4.7, where more cases with 

different values of kw and kp, including the case without the foundation (as the top curve 
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with kw = kp = 0) and the case with the Winkler foundation (as the red dash curve with kp = 

0), are compared. Note that the values of the other parameters remain the same as those 

used in obtaining the numerical results shown in Fig 4.5. 

 
Fig. 4.5 Deflection of the simply supported Mindlin plate on y = b/2 

with 100, 10w pK K= =  

 
Fig. 4.6 Rotation of the simply supported Mindlin plate on y = b/2 

with 100, 10w pK K= =  
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Fig. 4.7 Deflection of the plate with different values of kw and kp 

 

Both the microstructure and surface energy effects are included in the numerical results 

shown in Figs 4.5–4.7. To illustrate the surface energy effect separately, additional 

numerical results are presented in Fig 4.8 for the deflection of the simply supported plate, 

which are obtained from Eqs. (4.49) and (4.52)-(4.54) by letting l = 0. For comparison 

purposes, the results predicted by the classical elasticity-based Mindlin plate model are 

also plotted in Fig 4.8, which are computed using Eqs. (4.49) and (4.52)-(4.54) with l = 0 

and λ0 = μ0 = τ0 = 0. In addition, the foundation moduli are set to be kw = kp = 0 to examine 

only the surface energy effect. Note that the plate material properties used here remain the 

same as those employed earlier, and the plate shape is kept to be the same by letting a = b 

= 20h (see Fig 4.4) for all cases (with different values of h).  
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Fig. 4.8 Deflection of the simply supported plate predicted by the new model considering 
the surface energy effect alone (i.e., with l = kw = kp = 0) and by the classical model (with 

l = kw = kp = 0 and λ0 = μ0 = τ0 = 0) 
 

From Fig 4.8, it is clearly seen that the plate deflection predicted by the current model 

including the surface energy effect alone is always smaller than those predicted by the 

classical model in all cases considered here. Figure 4.8 also illustrates that the differences 

between the two sets of predicted values are significant only when the plate thickness h is 

very small, but they are diminishing as h increases. This indicates that the surface energy 

effect is important only when the plate is sufficiently thin. 

 

4.3.2 Free vibration 

For free vibration problems, the boundary-initial value problem for the simply 

supported plate shown in Fig. 4.4 is defined by Eqs. (4.39a-e), (4.45a-c), (4.46a-e), (4.47a-
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c) and (4.48a-e), with all external forces vanished (i.e., 0x y zf f f= = = and 

0x y zc c c= = = ).  

For the current case with  fx = fy = 0 and cz = 0, Eqs. (4.39a,b), (4.45a), (4.46a,d), (4.47a) 

and (4.48a,d) give u = u(x, y, t) = 0, v = v(x, y, t) = 0 for any (x, y) ∈ R and t ∈ [0, T ].  

For w, xφ  and yφ , consider the following Fourier series expansions: 

1 1

,

1 1

,

1 1

( , , ) sin( )sin( ) ,

( , , ) cos( )sin( ) ,

( , , ) sin( ) cos( ) ,

n

n

n

i tV
mn

m n

i tx V
x mn

m n

i ty V
y mn

m n

m x n yw x  y  t W e
a b
m x n yx  y  t Φ e

a b
m x n yx  y  t Φ e

a b

ω

ω

ω

π π

π πφ

π πφ

∞ ∞

= =

∞ ∞

= =

∞ ∞

= =

=

=

=

∑∑

∑∑

∑∑

                         (4.56) 

where ωn  is the nth natural frequency of vibration of the plate, V
mnW , ,x V

mnΦ  and ,y V
mnΦ  are the 

Fourier coefficients, and i is the imaginary unit satisfying i2 = −1. It can be readily shown 

that the expressions of w, xφ  and yφ  in Eq. (4.56) satisfy the boundary conditions in Eqs. 

(4.45b,c), (4.46b,c,e) at x = 0, a and in Eqs. (4.47b,c), (4.48b,c,e) at y = 0, b for any t ∈[0, 

T]. 

Using Eq. (4.56) in Eq. (4.39c-e) gives, with the help of Eq. (4.24),           

[ ] [ ]
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3
, , 2 , ,

3
2

0 0

, , 0 0 , , 0, 0, 0 ,
12

0 0
12
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mn mn mn n mn mn mn

n

h                
hC W Φ Φ          W Φ Φ   

h                

ρ ω

ρ ω

ρ ω

 
 
 
    + − =    
 
 −  

 

      (4.57) 

where [C] is the 3-by-3 matrix whose components are defined in Eq. (4.54). 
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Let  

11 11 12 12 13 13

21 21 22 22 23 233 3 3

31 31 32 32 33 333 3 3

1 1 1, , ,

12 12 12, , ,

12 12 12, , .

D C D C D C
h h h

D C D C D C
h h h

D C D C D C
h h h

= = =

= − = − = −

= − = − = −

                       (4.58) 

Using Eq. (4.58) in Eq. (4.57) yields 

[ ] [ ] [ ]2 , ,( ) , , 0, 0, 0 ,
T TV x V y V

n mn mn mnD I W Φ Φ   ρω  + =                         (4.59) 

where [I] is the 3-by-3 identity matrix. For a non-trivial solution of 0V
mnW ≠ , , 0x V

mnΦ ≠ and 

, 0y V
mnΦ ≠  simultaneously, it is required that the determinant of the coefficient matrix of Eq. 

(4.59) vanish. That is, 

[ ] [ ]2  0,nD Iρω+ =                                          (4.60) 

which can be expanded to obtain 

                   2 3 2 2 2( ) ( ) ( ) 0,n D n D n DI II IIIρω ρω ρω+ + + =                       (4.61) 

where 

11 22 33

11 22 22 33 33 11 12 21 23 32 13 31

1 2 3 11 22 33 11 23 32 12 21 33 12 23 31 13 21 32 13 31 22

,
1 ( ) ,
2

,

D ii

D ii jj ij ji

D ijk i j k

I D D D D

II D D D D D D D D D D D D D D D D

III D D D D D D D D D D D D D D D D D D D D Dε

≡ =

+ + − − −

−

+ +

≡ − =

≡ = + −− +

 

                                             (4.62) 

are the three invariants of the [D] matrix whose components Dij are defined in Eq. (4.58).  

Equation (4.61) is a cubic equation in 2
nω . The smallest (positive) root of Eq. (4.61) 

gives the nth natural frequency, ωn, for the free vibration of the plate. 

With ωn determined from Eq. (4.61), V
mnW , ,x V

mnΦ  and ,y V
mnΦ (with two being 

independent) can then be obtained from solving Eq. (4.59), which will then lead to the 



 
 

91 

determination of w(x, y, t), ( , , )x x y tφ and ( , , )y x y tφ  through Eq. (4.56), and thereby 

completing the solution. 

Figure 4.9 shows the variation of the first natural frequency ω1, obtained from Eq. 

(4.61) (with m = 1, n = 1 in Eq. (4.54)), with the plate thickness, which is predicted by the 

current Mindlin plate model with the Winkler-Pasternak ( 1000, 100w pK K= = ) or 

Winkler ( 1000, 0w pK k= = ) or no foundation (kw = kp = 0) and by the classical model (i.e., 

with l = 0, 0λ = 0µ = 0τ = 0, and kw = kp = 0). The material properties and geometry of the 

aluminum plate used here are the same as those employed earlier to obtain the numerical 

results shown in Figs 4.5–4.8. In addition, the density for the aluminum plate is taken to be 

3 32.7 10 kg/mρ = × , which is needed in Eq. (4.61). 

 
Fig. 4.9 Natural frequency varying with the plate thickness 

 

From Fig. 4.9, it is clearly seen that the natural frequency predicted by the current 

model with or without the foundation is always higher than that predicted by the classical 
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elasticity-based model. The difference between the predictions by the current model 

without the foundation and the classical model is significant when the plate thickness h is 

very small (with h < 2l = 13.16 μm here), while the difference is diminishing as h becomes 

large (with h > 6l = 39.48 μm here for the case with kw = kp = 0). This shows that the size 

effect on the natural frequency is important only when the plate thickness is very small. In 

addition, it is observed from Fig 4.9 that the presence of the elastic foundation indeed 

increases the natural frequency, and this effect can be significant when the plate thickness 

is small but diminishes as the thickness becomes large. The effect of the foundation on the 

natural frequency of the simply supported plate (see Fig 4.4) is further illustrated in Fig 

4.10, where more cases with different values of kw and kp, including the case with the 

Winkler foundation (as the bottom curve with kp = 0), are compared. Note that the values 

of the other parameters remain the same as those used in obtaining the numerical results 

shown in Fig 4.9. 

 
Fig. 4.10 Natural frequency of the plate with different values of kw and kp 
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Clearly, Fig 4.10 shows that the larger the value of kw or kp is, the larger the natural 

frequency ω1 is, which supports what is observed from Fig 4.9.  

 

4.4 Summary  

A new non-classical Mindlin plate model is developed in a most general form by using 

a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler-

Pasternak elastic foundation model and by including all five kinematic variables possible 

for a Mindlin plate. The equations of motion and the complete boundary conditions are 

determined simultaneously through a variational formulation based on Hamilton’s 

principle, and the microstructure, surface energy and foundation effects are treated in a 

unified manner. The inclusion of the additional material constants enables the new model 

to capture the microstructure- and surface energy-dependent size effects.  

It is shown that when the microstructure, surface energy, and foundation effects are all 

ignored, the new plate model recovers the classical elasticity-based Mindlin plate model as 

a limiting case. Also, it is seen that the newly developed plate model includes the Mindlin 

plate models considering the microstructure dependence or the surface energy effect or the 

foundation effect alone as special cases. In addition, the new Mindlin plate model reduces 

to the non-classical Kirchhoff plate model incorporating the microstructure, surface energy 

and foundation effects and degenerates to the Timoshenko beam model including the 

microstructure effect. 

As direct applications of the new Mindlin plate model, the static bending and free 

vibration problems of a simply supported rectangular plate are analytically solved, with the 
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solutions compared to those based on the classical Mindlin plate theory. The numerical 

results show that the deflection and rotations predicted by the current Mindlin plate model 

with or without the elastic foundation are smaller than those predicted by the classical 

model. Also, it is observed that the difference in the deflection or rotation predicted by the 

two plate models is very large when the plate thickness is sufficiently small, but it is 

diminishing with the increase of the plate thickness. In addition, it is found that the natural 

frequency predicted by the new plate model with or without the Winkler-Pasternak 

foundation is higher than that predicted by the classical model, and the difference is 

significant for very thin plates. These predicted size effects at the micron scale agree with 

the general trends observed in experiments. Finally, the numerical results show 

quantitatively that the plate deflection is reduced and the plate natural frequency is 

increased in the presence of the elastic foundation, as expected. 
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Chapter 

 

5. A NON-CLASSICAL MODEL FOR CIRCULAR MINDLIN PLATES 

INCORPORATING MICROSTRUCTURE AND SURFACE ENERGY 

EFFECTS 

 

5.1 Introduction 

Thin plates have been widely used in microelectromechanical systems and devices. It 

has been experimentally observed that these plates exhibit microstructure-dependent size 

effects at the micron scales (e.g., McFarland and Colton, 2005), which cannot be explained 

using classical elasticity due to the lack of a material length scale parameter. Hence, efforts 

have been made to develop non-classical plate models based on higher-order elasticity and 

surface elasticity theories.  

Lazopoulos (2004) provided a non-classical von Karman plate model based on a 

simplified strain gradient elasticity theory (SSGET) (e.g., Gao and Park, 2007). This 

SSGET was also employed by Papargyri-Beskou and Beskos (2008) and Papargyri-Beskou 

et al. (2010) to derive non-classical equations of motion for Kirchhoff plates. By using a 

constitutive relation in non-local elasticity suggested in Eringen (1983), Lu et al. (2007) 

proposed a Kirchhoff plate model and a Mindlin plate model without using a variational 

formulation. Reddy and Berry (2012) studied axisymmetric bending of functionally graded 

circular plates employing the modified couple stress theory. Recently, three models for 
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Mindlin plates and third-order shear deformation plates have been developed by Ma et al. 

(2011), Gao et al. (2013) and Zhou and Gao (2014) using the modified couple stress theory 

and Hamilton’s principle.  

The surface elasticity theory (e.g., Gurtin and Murdoch, 1975, 1978; Steigmann and 

Ogden, 1997, 1999; Altenbach et al., 2010) has also been used to develop non-classical 

models for thin plates involving surface effects. For example, Lim and He (2004) presented 

a geometrically nonlinear plate model for nano-scale films based on the Kirchhoff 

hypothesis and the von Karman strains. Lu et al. (2006) constructed a size-dependent thin 

plate model by including the normal stress on and inside the surface of the bulk substrate. 

Wang and Wang (2012) provided a model for non-linear free vibrations of a Kirchhoff 

plate and a Mindlin plate using the von Karman strains. Liu and Rajapakse (2013) 

presented a size-dependent continuum model for thin and thick circular plates.  

However, very few models have been developed for thin plates by considering both the 

microstructure and surface energy effects. A non-classical Kirchhoff plate model, which is 

based on a modified couple stress theory and a surface elasticity theory, was presented in 

Shaat et al. (2014) without using a variational formulation. Recently, non-classical models 

for Kirchhoff plates were developed by Zhang et al. (2015) and Gao and Zhang (2016) 

using a variational formulation, a modified couple stress theory and a surface elasticity 

theory.  

In the Chapter 5, a non-classical model for circular Mindlin plates is provided by using 

the modified couple stress theory (Yang et al., 2002; Park and Gao, 2008), the surface 

elasticity theory (Gurtin and Murdoch, 1975, 1978), and the Hamilton’s principle. The rest 

of the Chapter 5 is organized as follows. In Section 5.2, the new non-classical model for a 
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circular Mindlin plate subjected to axisymmetric loading is developed using a variational 

formulation based on Hamilton’s principle. In Section 5.3, the static bending problem of a 

clamped solid circular plate subjected to a uniform normal load is analytically solved by 

directly applying the general formulas derived. The chapter concludes in Section 5.4 with 

a summary. 

 

5.2 Formulation 

Consider a flat thin circular plate of inner radius a, outer radius b and uniform thickness 

h, as shown in Fig 5.1, where the cylindrical coordinate system (r, θ, z) is adopted, with 

the rθ-plane being coincident with the geometrical mid-plane of the undeformed plate.  

According to the Mindlin plate theory, the displacement field in a thin circular plate 

undergoing axisymmetric deformations can be written as (e.g., Reddy, 2002; Zhou and 

Gao, 2014) 

  ( , , , )  ( , ) ( , ),  ( , , , ) 0,  ( , , , )  ( , ),r r zu r z t u r t z r t u r z t u r z t w r tθθ φ θ θ= − = =         (5.1a-c)                                                                                                  

where ur, uθ and uz are, respectively, the radial, tangential and transverse components of 

the displacement vector u of a point (r, θ, z) in the plate at time t, u and w are, respectively, 

the radial and transverse components of the displacement vector of the corresponding point 

(r, θ, 0) on the plate midplane at time t, and rφ  is the rotation angle of a transverse normal 

line about the eθ direction (see Fig 5.1). 
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Fig. 5.1 Plate geometry and coordinate system 

 

In Fig 5.1, S+ and S− denote, respectively, the upper and lower surface layers of the 

circular Mindlin plate. These two zero-thickness surface layers are perfectly bonded to the 

bulk plate material at z = ± h/2 and have distinct material properties from the bulk material. 

The bulk material satisfies the modified couple stress theory (Yang et al., 2002; Park and 

Gao, 2008), while the surface layers are governed by the surface elasticity theory (Gurtin 

and Murdoch, 1975, 1978). 

According to the modified couple stress theory (Yang et al., 2002; Park and Gao, 2008),  

          2tr( ) 2 , 2 ,lλ µ µ= + =σ ε I ε  m χ                                        (5.2a,b)                                                                               

        ( ) ( )1 1, ,
2 2

T T   = ∇ + ∇ = ∇ + ∇   ε u u  χ ψ ψ                          (5.3a,b)                                                                     

where σ is the Cauchy stress tensor, m is the deviatoric part of the couple stress tensor, I is 

the second-order identity tensor, λ and μ are the Lamé constants in classical elasticity, l is 

a material length scale parameter measuring the couple stress effect (e.g., Mindlin, 1963; 

Park and Gao, 2006), ε is the infinitesimal strain tensor, χ is the symmetric curvature tensor, 



 
 

99 

∇ denotes the gradient, the superscript T represents the transpose, u is the displacement 

vector, and ѱ is the rotation vector defined by 

1
2

curl=ψ u .                                                         (5.4)                                                                                                                              

According to the surface elasticity theory (Gurtin and Murdoch, 1975, 1978), the zero-

thickness surface layer of a bulk elastic material has distinct constitutive equations 

involving surface elastic constants and satisfies the governing equations given by 

                                             div ,S =τ σn                                                         (5.5)                                                                                                                            

where n is the outward-pointing unit normal vector to the surface, divS represents the 

surface divergence, and τ is the in-plane surface stress tensor given by (e.g., Gurtin and 

Murdoch, 1975, 1978; Gao and Mahmoud, 2014; Gao, 2015) 

0 0 0 0 0( )(tr ) 2 ,s s
S Sτ λ τ µ τ = + + + − ∇ τ ε I ε u                                      (5.6)                                                                             

where μ0 and λ0 are the surface elastic constants, τ0 is the residual surface stress (i.e., the 

surface stress at zero strain), SI  is the projection tensor with S = − ⊗I I n n , S∇  is the 

surface gradient operator defined by ( ) ( ( )S ⋅ = − ⊗ ⋅I n n)∇ ∇ , and sε  is the surface strain tensor 

given by 

( )1 .
2

Ts
S S

 = ∇ + ∇ ε u u                                                 (5.7)                                                                                                            

Note that the three constants μ0, λ0 and τ0 can be determined from atomistic simulations or 

experimental measurements (e.g., Shenoy, 2005; Jing et al., 2006; Zhang et al., 2013). 

Clearly, Eq. (5.6) indicates that τ is not a symmetric tensor. 

The out-of-plane components of the surface stress tensor read (Gurtin and Murdoch, 

1978) 
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3 0 3, .uβ βτ τ=                                                          (5.8)          

It follows from Eqs. (5.1a-c), (5.2a,b) and (5.4) that the geometrical equations in the 

bulk of the current axisymmetric circular Mindlin plate are given by 

1 1,  ( ),  , 0,
2

r
rr r zr r zz r z

u wz u z
r r r rθθ θ θ

φε ε φ ε φ ε ε ε∂∂ ∂ = − = − = − = = = ∂ ∂ ∂ 
    (5.9) 

1 , 0,
2 r r z

w
rθψ φ ψ ψ∂ = − + = = ∂ 

                               (5.10)

1 1 , 0.
4r r r rr zz rz z

wr
r r rθ θ θθ θχ φ χ χ χ χ χ χ∂  ∂  = − + = = = = = =  ∂ ∂  

        (5.11) 

The total strain energy in the elastically deformed circular Kirchhoff plate, UT, can be 

expressed as 

( )1 1 1d d d ,
2 2 2T B S ij ij ij ij S S

U U U m V A Aαβ αβ αβ αβσ ε χ τ ε τ ε
+ −Ω

= + = + + +∫ ∫ ∫    (5.12) 

where Ω is the region occupied by the plate, dV is a differential volume, and dA is a 

differential area. In Eq. (5.12), UB is the strain energy in the bulk of the plate, which is 

governed by the modified couple stress theory, and US is the strain energy in the surface 

layers S+ and S− satisfying the surface elasticity theory. It should be mentioned that only 

the first part of UB is considered in the classical Mindlin plate theory as the total strain 

energy (i.e., 1 d
2

C
T ij ijU Vσ ε

Ω
= ∫ ) in the plate. 

Note that in Eq. (5.12) and throughout the paper the summation convention and 

standard index notation are used, with the Greek indices taking r or θ (e.g., α ∈ {r, θ}) and 

the Latin indices taking r, θ or z (e.g., i ∈ {r, θ, z}) unless otherwise indicated.  
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From Eqs. (5.6), (5.7) and (5.9)–(5.12), it follows that the first variation of the total 

strain energy in the circular Mindlin plate over the time interval [0, T] can be obtained as 

(e.g., Zhou and Gao, 2014; Zhang et al., 2015) 

       

0 0

0 00

0 00

d ( 2 2 )d d

1 1  ( ) ( ) d d
2 2
1 1( ) ( ) d d ,
2 2

T T

rr rr zr zr r r

T

rr rrS

T

rr rrS

U t m V t

A t

A t

θθ θθ θ θ

θθ θθ

θθ θθ

δ σ δε σ δε σ δε δχ

τ τ δε τ τ δε

τ τ δε τ τ δε

+

−

Ω

+ + + +

− − − −

= + + +

+ − + −  
 + − + −  

∫ ∫ ∫

∫ ∫

∫ ∫

           (5.13) 

where αβτ +  and αβτ − represent, respectively, the surface stress components on the plate top 

(S+) and bottom (S−) surfaces. In reaching Eq. (5.13), use has been made of the fact that ταβ 

is non-symmetric. This fact has been overlooked in some variational studies employing the 

surface elasticity theory of Gurtin and Murdoch (1975, 1978).  

Note that the volume integral of a sufficiently smooth function D (x, y, z, t) over the 

region Ω occupied by a uniform-thickness plate can be represented by 

            
/2

/2
( ,  ,  ,  )d ( ,  ,  ,  )d d ,

h

R h
D x y z t V D x y z t z A

Ω −
=∫ ∫ ∫                     (5.14) 

where h is the plate thickness, and R is the plate mid-plane area. 

Using Eqs. (5.9), (5.11) and (5.14) in Eq. (5.13) yields, with the help of Green’s 

theorem, 
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    (5.15) 

where  

/2 /2 /2

/2 /2 /2
/2 /2 /2

/2 /2 /2

d ,    d ,    d ,    

d ,  d ,  d ,

h h h

rr rr zr zrh h h
h h h

rr rr r rh h h

N z N z Q z

M z z M z z Y m z

θθ θθ

θθ θθ θ θ

σ σ σ

σ σ

− − −

− − −

= = =

= = =

∫ ∫ ∫
∫ ∫ ∫

                       (5.16) 

are the Cauchy stress and couple stress resultants through the plate thickness. Note that in 

reaching Eq. (5.15) use has been made of the relations S+ = R = S−, ∂S+ = ∂R = ∂S− for the 

uniform-thickness plate under consideration in order to facilitate the integral evaluations.   

The kinetic energy of the plate has the form (e.g., Ma et al., 2011; Gao et al., 2013) 

                 ( ) ( ) ( )2 2 2
1 2 3

1 d ,
2

K u u u Vρ
Ω

 = + + ∫                                     (5.17) 

where ρ is the mass density of the plate material. Here and in the sequel the overhead “∙” 

and “∙∙” denote, respectively, the first and second time derivatives (e.g., 

2 2
1 1 1 1/ ,  /u u t u u t= ∂ ∂ = ∂ ∂  ). 

From Eqs. (5.1a-c), (5.14) and (5.17), the first variation of the kinetic energy for the 

axisymmetric plate, over the time interval [0, T], can be obtained as (e.g., Zhou and Gao, 

2014) 
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2

0 20 0 0
d ( ) d d d ,

T T b

r ra
K t m u u w w m r r t

π
δ δ δ φ δφ θ = − + + ∫ ∫ ∫ ∫ 

                    (5.18) 

where  

             
3/2 /2 2

0 2/2 /2
d ,     d .  

12
h h

h h

hm z h m z z ρρ ρ ρ
− −

≡ = ≡ =∫ ∫                      (5.19) 

In reaching Eq. (5.18), it has been assumed that the initial (t = 0) and final (t = T) 

configurations of the plate are prescribed so that the virtual displacements vanish at t = 0 

and t = T. In addition, ρ is taken to be constant along the plate thickness and over the time 

interval [0, T] such that 0,0 20 == mm  . 

From the general expression of the work done by external forces in the modified couple 

stress theory (Park and Gao, 2008) and in the surface elasticity theory (Gurtin and 

Murdoch, 1975, 1978), the virtual work done by the forces applied on the current circular 

plate over the time interval [0, T] can be written as (e.g., Zhou and Gao, 2014; Gao and 

Zhang, 2016)  

( ) ( )
0 0 0

3 30

d d d d d

( )d d ,

T T T

R R
T s

S

W t A t s t

u A t

δ δ δ δ δ

δ

∂
= ⋅ + ⋅ + ⋅ + ⋅

+ ⋅

∫ ∫ ∫ ∫ ∫
∫ ∫

f u c t u s

   t e



ψ ψ
          (5.20) 

where f  and c  are, respectively, the body force resultant (force per unit area), body couple 

resultant (moment per unit area) through the plate thickness acting in the area R (i.e., the 

plate mid-plane), t  and s  are, respectively, the Cauchy traction resultant (force per unit 

length) and the surface couple resultant (moment per unit length) through the plate 

thickness acting on ∂R (i.e., the boundary of R), st is the surface traction that is related to 

the surface stress τ through ,= =s
s i iα ατ∇ ⋅t τ e  (e.g., Gurtin and Murdoch, 1978; Altenbach 

et al., 2010), and ds is a differential arc length along ∂R,. Note that the last term in the 
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virtual work expression in Eq. (5.20) accounts for the contribution of the normal stress on 

the top and bottom plate surfaces 33σ ±  (= 3 ,α ατ ±± from the equilibrium equations in Eq. (5.5)), 

which is neglected in the classical Mindlin plate theory that does not consider the surface 

energy effect.   

Using Eqs. (5.1a-c), (5.5) and (5.10) in Eq. (5.20) leads to, with the help of Green’s 

theorem, 

  

2 3 3
0 0 0
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0 0

( ) ( ) ( )1 1d d d d
2 2

1 1 1     ( ) ( ) ( ) d d ,
2 2 2

T T b r r
r z ra

T r b
r z r r a

rc r rW t rf u rf w rc r t
r r r

wrt u rc rt w rM rs rs t
r

π
θ

θ

π

θ θ θ θ

τ τδ δ δ δφ θ

δ δ δφ δ θ

+ −

=
=

  ∂ ∂ ∂ = + + + + −  ∂ ∂ ∂   
∂ + + − + − + − ∂ 

∫ ∫ ∫ ∫

∫ ∫
(5.21) 

where fi, ci, it  and is  (i ∈{ r, θ, z}) are, respectively, the components of f , c , t  and s , 

and Mθ is the applied moment per unit arc length along the circular boundary. Note that the 

positive directions of Mθ , which is along the eθ direction, is opposite to the positive 

direction of rφ  (see Fig 5.1).  

According to Hamilton’s principle (e.g., Reddy, 2002; Ma et al., 2008), 

    ( )
0

d 0.
T

K U W tδ − − =  ∫                                        (5.22) 

Substituting Eqs. (5.15), (5.18) and (5.21) into Eq. (5.22) gives 
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Applying the fundamental lemma of the calculus of variations to Eq. (5.23) then yields, 

with the arbitrariness of δu, δw and rδφ  (e.g., Gao and Mall, 2001; Ma et al., 2008), 
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as the equations of motion of the circular Mindlin plate for any (r, θ) ∈ R and t ∈ (0, T), 

and 
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as the boundary conditions. 

From Eqs. (5.2a,b), (5.9), (5.11) and (5.16), the Cauchy stress and couple stress 

resultants can be expressed in terms of u, w and rφ , the three kinematic variables, as 
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                   (5.26f) 

where Ks is the shear correction factor to account for the non-uniformity of the shear strain 

along the plate thickness. 

From Eqs. (5.5)–(5.7) and (5.8a-c), the surface stress components can be written in 

terms of u, w and rφ  as 

    0 0 0 0 0(2 ) ( ) ,
2 2
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u h u h
r r r r

φτ τ µ λ λ τ φ± ∂∂   = + + + +   ∂ ∂   
              (5.27a) 



 
 

107 

   0 0 0 0 0(2 ) ( ) ,
2 2

r
r

u h u h
r r r rθθ

φτ τ µ λ φ λ τ± ∂∂  = + + + +   ∂ ∂   
           (5.27b) 

                               3 3 0 .r r
w
r

τ τ τ+ − ∂
= =

∂
                                                                         (5.27c) 

Using Eqs. (5.26a-f) and (5.27a-c) in Eqs. (5.24a-c) then leads to the equations of 

motion of the circular Mindlin plate in terms of u, w and rφ  as 
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From Eqs. (5.28a-c), it can be seen that the radial displacement (stretching) u(r, t) is 

uncoupled with the deflection w(r, t) and rotation angle ( , )r r tφ . Therefore, u(r, t) can be 

obtained from solving Eq. (5.28a) subject to prescribed boundary conditions of the form in 

Eq. (5.25a) and suitable initial conditions. Note that the material length scale parameter l 

is not involved in Eq. (5.28a) or (5.25a). As a result, the radial displacement u(r, t) will not 

be affected by the microstructure of the plate material.  

When l = 0 and cθ = 0 (i.e., with the microstructure effect ignored), Eqs. (5.28a-c) 

reduce to  
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which are the governing equations for the circular Mindlin plate with the surface energy 

effect alone. 

When λ0 = µ0 = τ0 = 0 (i.e., with the surface energy effect neglected), Eqs. (5.28a-c) 

become  
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Equations (5.30a-c) are the governing equations for the circular Mindlin plate 

incorporating the microstructure effect alone, which are identical to those derived in Zhou 

and Gao (2014) using the modified couple stress theory. 

When l = 0, cθ = 0 and λ0 = µ0 = τ0 = 0 (i.e., with both the microstructure and surface 

energy effects suppressed), Eqs. (5.28a-c) simplifies to 
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Equations (5.31a-c) are the classical elasticity-based equations of motion for the circular 

Mindlin plate. That is, the classical Kirchhoff plate model is included in the current model 

as a special case. Note that the three-dimensional Hooke’s law in Eq. (5.2a) used here is 

different from the two-dimensional Hooke’s law for the plane stress state employed in 

classical Mindlin plates theories (e.g., Reddy, 2002).  

When /r w rφ = ∂ ∂  (i.e., with the normality assumption reinstated), Eqs. (5.1a-c) 

reduce to the displacement field in a thin circular Kirchhoff plate undergoing axisymmetric 

deformations, and Eqs. (5.28a-c) become  
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              (5.32b) 

Equations (5.32a) and (5.32b) are the equations of motion of the circular Kirchhoff plate 

derived in Zhang and Gao (2015) based on the modified couple stress theory and the 

surface elasticity theory, which is included in the current circular Mindlin plate model as a 

special case. 
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5.3 Example 

To further demonstrate the new circular Mindlin plate model developed in Section 5.2, 

the static bending problem of a clamped circular plate subjected to a uniformly distributed 

normal load fz = − q (with the negative sign here indicating that the normal load q ( > 0) is 

pointing downward) by directly applying the new model. 

In view of the general boundary conditions (BCs) in Eqs. (5.24a–d), the BCs for the 

current solid circular Mindlin plate (with a = 0) clamped at its edge r = b can be identified 

as 

0,    0,    0,    0.rr b r b r b
r b

wu w
r

φ
= = =

=

∂
= = = =

∂
                  (5.33a-d) 

In addition, the following symmetry conditions need to be satisfied at r = 0: 

0 0
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∂
                               (5.34a-c) 

For static bending problems, u, w and rφ  are independent of time t so that all of the 

time derivatives involved in Eqs. (5.27a-c) vanish. The governing equations for static 

problems with fr = 0 = cθ are given by  
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As mentioned in Section 5.2, the radial displacement u is uncoupled with w and rφ . It 

can be obtained from solving the boundary value problem (BVP) defined by Eqs. (5.33a), 

(5.34a) and (5.35a). The solution of this BVP gives u(r) = 0 for any (r, θ) ∈ R. 

The deflection w and the rotation angle rφ  can be obtained from solving the BVP 

defined by Eqs. (5.33b–d), (5.34b,c) and (5.35b,c). 

Consider the following Fourier-Bessel series solutions for w and rφ : 

       1 1
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( ),n n
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w W J r
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∂
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∂ ∑                                               (5.36a) 

       1 1
1

( ),r n n
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J rφ Φ λ
∞

=

=∑                                               (5.36b) 

where J1 is the Bessel function of the first kind of the first order, 1 1 /n n bλ λ= , 1nλ  is the nth 

positive root of J1(r) = 0, and Wn  and nΦ   are coefficients to be determined. It can be readily 

shown that the expressions in Eqs. (5.36a,b) automatically satisfy the boundary conditions 

in Eqs. (5.33c,d) and the symmetry conditions in Eqs. (5.34b,c) for any Wn and nΦ .  

Integrating Eq. (5.36a) with respect to r yields, upon using Eq. (5.33b) (the only 

remaining boundary condition), 

0 1 0 1
1 1

1 [ ( ) ( )],n n n
n n

w W J J rλ λ
λ

∞

=

= −∑                                  (5.37) 

where J0 is the Bessel function of the first kind of the zeroth order. 
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The axisymmetrically distributed force fz (r) involved in Eq. (5.34b) can also be 

expanded in a Fourier–Bessel series as 

0 1
1

( ),z n n
n

f F J rλ
∞

=

=∑                                                (5.38) 

where the coefficient Fn can be determined as (e.g., Zhou and Gao, 2014) 

2 1

,
( )n

n

qF
J λ

= −                                                     (5.39) 

for fz (r) = − q, where J2 is the Bessel function of the first kind of the second order. 

Using Eqs. (5.36a,b)–(5.38) in Eq. (5.35b,c) results in  
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Solving the linear algebraic equation system in Eq. (5.40) then yields 

                     22 21
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, .
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λ λ
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     (5.42a, b)                                         

Then, substituting Wn and nΦ  obtained in Eqs. (5.42a) and (5.42b), respectively, into 

Eqs. (5.37) and (5.36b) will give the exact solutions of the deflection w and the rotation 

angle rφ  based on the current non-classical circular Mindlin plate model for the clamped 
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plate subjected to the axisymmetrically distributed load, while the classical elasticity-based 

exact deflection wc and the rotation angle c
rφ  solution are computed using the same 

equations but with l = 0, 0λ = 0µ = 0τ = 0 (i.e., with both the microstructure and surface 

energy effects suppressed). 

To illustrate the newly derived solution for the clamped solid circular Mindlin plate, 

some numerical results are shown in Figs 5.2 and 5.3. Figure 5.2 displays the variation of 

the plate deflection w along the radial direction, and Figure 5.3 shows the change of the 

rotation angle rφ  with the radial coordinate r for the clamped circular Mindlin plate. The 

numerical results predicted by the new model are obtained from Eqs. (5.36b), (5.37), (5.41) 

and (5.42a, b), while those by the classical model are determined using the same equations 

with l = 0, 0λ = 0µ = 0τ = 0.  

 
Fig. 5.2 Deflection of the clamped circular Mindlin plate 
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Fig. 5.3 Rotation angle of the clamped circular Mindlin plate 

 

In generating the numerical results shown in Figs 5.2 and 5.3, the radius of the circular 

plate is fixed at b = 20h, while the plate thickness h is varying. The circular plate material 

is taken to be aluminum with the following properties (e.g., Liu and Rajapakse, 2010; Gao, 

2015): E = 90 GPa, v = 0.23, l = 6.58 μm for the bulk, and 0 5.4251µ = − N/m, 0λ = 3.4939 

N/m, 0τ = 0.5689 N/m for the surface layers. Note that the Lamé constants λ and μ involved 

in Eq. (5.41) can be calculated from the identified Young’s modulus E and Poisson’s ratio 

ν using the following relations (e.g., Timoshenko and Goodier, 1970): 

          ,  .
(1 )(1 2 ) 2(1 )

Ev E
v v v

λ µ= =
+ − +

                                    (5.43) 

The shear correction factor Ks used here is 0.8 (e.g., Liu and Soh, 2007; Ma et al., 2011). 

In addition, the uniform, downward-pointing normal load is taken to be q = 1 MPa.  

From Figs 5.2 and 5.3, it is clearly seen that both the deflection w and rotation angle rφ

predicted by the current non-classical circular Mindlin model are always smaller than those 

predicted by the classical model in all cases considered. It also shows that the differences 

in the deflection and rotation values predicted by the new model and the classical model 
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are very large when the thickness of the plate h is small (with h = l = 6.58 μm here), but 

the differences are diminishing when the thickness of the plate h increases. This predicted 

size effect agrees with the general trend observed experimentally (e.g., McFarland and 

Colton, 2005). 

 

5.4 Summary  

A new non-classical circular Mindlin plate model is provided, which is based on a 

modified couple stress theory, a surface elasticity theory and Hamilton’s principle. The 

equations of motion and the boundary conditions are derived simultaneously by using a 

variational formulation. The newly developed model includes the circular Mindlin plate 

models considering the microstructure effect only or the surface energy effect alone as 

special cases. In addition, the current Mindlin plate model recovers the classical elasticity-

based circular Mindlin plate model when both the microstructure and surface energy effects 

are ignored. As an example, the static bending problem of a clamped circular Mindlin plate 

subjected to a uniform normal load is analytically solved by directly applying the new plate 

model. 
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Chapter 

 

6. BAND GAPS FOR FLEXURAL ELASTIC WAVE PROPAGATION IN 
PERIODIC COMPOSITE PLATE STRUCTURES USING A NON-
CLASSICAL KIRCHHOFF PLATE MODEL INCORPORATING 

MICROSTRUCTURE, SURFACE ENERGY AND FOUNDATION EFFECTS 
 

6.1 Introduction 

Band gaps for elastic wave propagation in periodic composite beam and plate structures 

have received increasing attention (e.g., Sigalas and Economou, 1994; Hsu and Wu, 2006; 

Liu and Hussein, 2012; Xiao et al., 2012; Yu et al., 2012; Han et al., 2013; Piccolroaz and 

Movchan, 2014; Trainiti et al., 2015; Liu et al., 2016; Zhang and Parnell, 2017; Piccolroaz 

et al., 2017; Chen et al., 2017; Zhang et al., 2018a). Such periodic composite structures can 

attenuate or stop wave propagation in certain frequency ranges (i.e., band gaps) and are 

finding important applications in wave filtering, vibration isolating and energy harvesting. 

Two major mechanisms responsible for band gaps, Bragg scattering and local resonance 

(e.g., Liu and Hussein, 2012; Chen and Wang, 2014; Madeo et al., 2016), can both be 

present in such composite structures. At the micron and nanometer scales, thin beams and 

plates often exhibit size effects (e.g., Lam et al., 2003; McFarland and Colton, 2005). 

Hence, band gaps for elastic wave propagation in micro- or nano-structured composite 

beams and plates are also size-dependent, which cannot be described using the classical 

elasticity-based wave equations due to a lack of any material length scale parameter. As a 

result, wave equations based on higher-order continuum theories that contain 
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microstructure-dependent material constants are needed to determine band gaps at small 

length scales. 

Wave equations built upon higher-order elasticity theories have been derived and 

applied to study band gaps. Liu et al. (2012) investigated surface energy effects on band 

gaps for 2-D phononic crystals using the wave equations satisfying the surface elasticity 

theory of Gurtin and Murdoch (1975, 1978). Li et al. (2016) analyzed band gaps in 1-D 

phononic crystals applying the equation of motion based on the dipolar gradient elasticity 

theory, which is also known as the simplified strain gradient elasticity theory (e.g., Gao 

and Park, 2007; Gao and Ma, 2010). Madeo et al. (2016) employed the wave equations 

built upon a relaxed micromorphic elasticity theory to explore frequency band gaps in 

metamaterials. Bacigalupo and Gambarotta (2017) analyzed dispersion functions of wave 

propagation to detect band gaps for periodic materials through a micropolar continuum 

theory. Band gaps for flexural elastic wave propagation in periodic composite beam 

structures were recently studied in Zhang et al. (2018a) and Gao et al. (2018) by using non-

classical Bernoulli–Euler and Timoshenko beam models based on a modified couple stress 

theory (Yang et al., 2002; Park and Gao, 2008) and a surface elasticity theory (Gurtin and 

Murdoch, 1975, 1978). However, wave equations for plates built upon such higher-order 

elasticity theories have not been utilized to determine band gaps in periodic composite plate 

structures. This motivated the present work. 

In this chapter, band gaps for flexural elastic wave propagation in a periodic composite 

plate structure resting on a Winkler-Pasternak elastic foundation are studied by directly 

using the non-classical model for Kirchhoff plates presented in Chapter 2. The rest of 

Chapter 6 is organized as follows. In Section 6.2, the equations of motion for a Kirchhoff 
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plate incorporating the microstructure, surface energy and foundation effects derived in 

Gao and Zhang (2016) are applied to study flexural elastic wave propagation in a periodic 

composite plate structure. The plane wave expansion method and Bloch’s theorem for 

periodic structures are used in the formulation. In Section 6.3, numerical results are 

provided to quantitatively illustrate the band gaps for flexural elastic wave propagation 

predicted by the current non-classical model and those by its classical elasticity-based 

counterpart. The effects of the foundation moduli, plate thickness, unit cell length and 

volume fraction on the band gaps are studied there. The chapter concludes in Section 6.4 

with a summary. 

 

6.2 Formulation 

Based on the modified couple stress theory (Yang et al., 2002; Park and Gao, 2008), 

the surface elasticity theory (Gurtin and Murdoch, 1975, 1978) and a two-parameter 

Winkler-Pasternak elastic foundation model (e.g., Selvadurai, 1979; Yokoyama, 1996), the 

equations of motion for a Kirchhoff plate are derived in Chapter 2 (i.e., Eqs. (2.36a-c)), 

which incorporate the microstructure, surface energy and elastic foundation effects. When 

only the deflection is considered (i.e., w = w(x, y, t), u = 0, v = 0), the equations of motion 

reduce to    

3 2 2
0 0 , , ,

2 2

0 , , , , 0 2 22 2

1 1( 2 ) ( 2 ) ( 2 )
12 2

(2 )( ) ,

xxxx xxyy yyyy

p xx yy w z x y y x

h l h h w w w

w wk w w k w f c c m w m m
x y

λ µ µ λ µ

τ

 − + + + + + +  
∂ ∂

+ + + − + − + = − −
∂ ∂
 



   (6.1a) 

which can be rewritten as 
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( )

2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2

, , 1 2 22 2 2 2 2 2 2 ,w p z x y y x

w w w w w w wD C D C B S S
x x y y y x x y x y x x y y

w w w wk w k f c c Pw P P
x y t t x t y

       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ − + − + − + +        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
     ∂ ∂ ∂ ∂ ∂ ∂ ∂

− + + + − + = − −     ∂ ∂ ∂ ∂ ∂ ∂ ∂     

  (6.1b) 

where w = w(x, y, t) is the deflection (or z-displacement) of point (x, y, 0) on the plate mid-

plane at time t (see Fig. 6.1(a)), and  

2
3 2 2 3 2

0 0 0 0
1 1 1( 2 ) ( 2 ) , ( ),

12 2 12 2
hD h l h h C h l hλ µ µ λ µ λ µ λ τ= + + + + = − + +   (6.2a,b) 

3
3 2 2

0 0 0 1 2
1 4 (2 ), 2 , , .
3 12

hB h l h h S P h P ρµ µ µ τ τ ρ= + + − = = =         (6.2c-f) 

In Eqs. (6.1a,b) and (6.2a-f), λ and μ are the Lamé constants in classical elasticity, l is a 

material length scale parameter measuring the couple stress effect (e.g., Mindlin, 1963; 

Park and Gao, 2006), μ0, λ0 and τ0 are the surface elastic constants, ρ is the mass density of 

the plate material, h is the uniform thickness of the plate, fz is the z-component of the body 

force resultant (force per unit area) through the plate thickness acting on the plate mid-

plane occupying the area R, cx and cy are, respectively, the x- and y- components of the 

body couple resultant (moment per unit area) through the plate thickness acting in the area 

R, kw is the Winkler foundation modulus, and kp is the Pasternak foundation modulus (e.g., 

Selvadurai, 1979; Yokoyama, 1996). The plate on the two-parameter elastic foundation is 

schematically shown in Fig. 6.1(b). 
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                             (a)                                                                   (b) 

Fig. 6.1 (a) Plate configuration and coordinate system; (b) plate on a two-parameter 
elastic foundation 

 

Note that Eq. (6.1a) is obtained using the Cartesian coordinate system (x, y, z) shown 

in Fig. 6.1(a). The lower and upper surface layers (with zero-thickness) are taken to be 

perfectly bonded to the bulk plate material at z = ± h/2, respectively. The bulk material 

satisfies the modified couple stress theory (Yang et al., 2002; Park and Gao, 2008), while 

the surface layers have distinct material properties and are governed by the surface 

elasticity theory (Gurtin and Murdoch, 1975, 1978). 

Consider a periodic two-phase composite plate structure containing through-thickness 

square inclusions (as Phase I) embedded periodically in a host matrix (as Phase II) which 

is infinitely large in the xy-plane, as shown in Fig. 6.2. The unit cell for this periodic 

composite plate structure with a uniform thickness h is taken to be a square of edge length 

a containing a square inclusion of edge length d at its center, as illustrated in Fig. 6.3, where 

the corresponding irreducible first Brillouin zone is also provided. 
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                                                  (a)                                                         (b) 

Fig. 6.2 Periodic two-phase composite plate structure with a through-thickness square 
inclusion phase and a matrix phase: (a) the composite plate structure; (b) the unit cell. 

 
               
 
 
 
 
 
 
 
 
 
 
                                        (a)                                                            (b) 
Fig. 6.3 (a) Unit cell of the periodic composite plate with a square inclusion (phase I); (b) 

the irreducible first Brillouin zone in the reciprocal lattice. 
 

Based on the plane-wave expansion method and Bloch theorem for periodic media, the 

deflection w can be written as a Fourier series of the following form (e.g., Kittel, 1986; 

Sigalas, 1997; Suzuki and Yu, 1998; Zhang et al., 2018b; Zhang and Gao, 2018): 

  ( , )

( , )
( , )

( , ) m n

m n
m n

ii i tw t e w e e ω′ ⋅⋅ −
′

′

 
=  

  
∑ G rk r

G
G

r ,                                 (6.3) 

where 
( , )m n

w ′G are the Fourier coefficients, r = (x, y) is the position vector, k = (kx, ky) is the 
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2-D Bloch wave vector, ( , ) (2 / , 2 / ) ( , )m n x ym a n a G Gπ π′ ′ ′= =G  is the 2-D reciprocal lattice 

vector for a square lattice with m and n being integers ranging from −∞ to +∞ and a being 

the lattice constant which is equal to the unit cell edge length here (see Fig. 6.3), ω is the 

angular frequency (in rad/s), and i is the imaginary unit satisfying 2 1i = − .  

Due to the periodicity of the composite plate structure, each of the material parameters 

D(r), C(r), B(r), S(r), P1(r), P2(r), kw(r) and kp(r) involved in the wave equation given in 

Eq. (6.1b) can also be expanded in a Fourier series as 

( , )

( , )
( , )

( ) M N

M N
M N

ieα α ⋅= ∑ G r
G

G
r ,                                        (6.4) 

where α represents D, C, B, S, P1, P2, kw or kp, ( , ) (2 / , 2 / ) ( , )M N x yM a N a G Gπ π= =G  is 

the 2-D reciprocal lattice vector with M and N being integers ranging from −∞ to +∞, and 

αG is the Fourier coefficient given by 

( , )

( , )

1 ( ) ,M N

M N

ie d
A

α α − ⋅

Ω
= ∫∫ G r

G r r                                     (6.5) 

where Ω denotes the 2-D domain on the plate mid-plane occupied by the unit cell, and A is 

the area of Ω. For a two-phase composite, αG can be shown to have the form:  

(I) (I)
I II ( , )

I II ( , ) ( , )

(1 ) for 0,
( ) ( ) for 0,

f f M N

M N M N

V V
F

α α
α

α α

 + − == 
− ≠

G

         G
G      G

                     (6.6) 

where Iα  and IIα  are, respectively, the property values for materials I and II (see Fig. 6.3), 

(I) (I) /fV A A=  is the volume fraction of material I, with (I)A  being the area of material I on 

the plate mid-plane in the unit cell, and ( , )( )M NF G  is the shape function defined by  

( , )

I
( , )

1( ) ,M Ni
M NF e d

A
− ⋅

Ω
= ∫∫ G rG r                                 (6.7) 
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where ΩI is the domain occupied by material I (the inclusion phase) on the plate mid-plane 

in the unit cell.  

For a square domain ΩI (see Fig. 6.3(a)), the shape function ( , )F( )M NG is given by (e.g., 

Susa, 2002): 

2

( , ) 2

2

2 sin( ) for 0, 0;
2

2F( ) sin( ) for 0, 0;
2

4 sin( )sin( ) for 0, 0,
2 2

x
x y

x

y
M N x y

y

yx
x y

x y

G dd G G
a G

G dd G G
a G

G dG d G G
a G G


≠ =


= = ≠


 ≠ ≠


   

G    

   

            (6.8) 

where d is the edge length of the square region ΩI, and a is the edge length of the square 

unit cell Ω (see Fig. 6.3(a)). 

Using Eqs. (6.3) and (6.4) in Eq. (6.1b) (with fz = cx = cy = 0) results in, with the help 

of Laurent’s rule for finding the Fourier coefficients of a product of two periodic functions 

(e.g., Li, 1996; Cao et al., 2004), 

         ( ) ( )
( , ) ( , )( , ) ( , ) ( , ) ( , )

2
m n m nM N m n M N m n

M w R wω′ ′′ ′− −
=G GG G G G                        (6.9) 
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in which  

( , ) ( , )( )1 ,M N m nie d
A

α α ′− − ⋅
′− Ω
= ∫∫ G G r

G G r                                  (6.13) 

where α ′−G G  represents D −G G' ,C −G G' , B −G G' , S −G G' , ( )1P
−G G' , ( )2P

−G G' , ( )wk
−G G'  or ( )pk

−G G'
. 

When w and α (representing D, C, B, S, P1, P2, kw or kp) are approximated by truncated 

Fourier series expansions with m, n, M and N ranging from − L to L, with L being an integer, 

Eq. (6.9) gives (2L+1)2 equations, which can be assembled to yield the following system: 

[ ]{ } [ ]{ }2( ) ( ) ,M w R wω′ ′− −=G G G' G G G'                             (6.14) 

Where 
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(6.16) 

are two (2L+1)2 × (2L+1)2 matrices, and 
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is a (2L+1)2 × 1 column matrix. 

Note that for a non-trivial solution of 
( , )

0
m n

w ′ ≠G , it is required that the determinant of 

the coefficient matrix vanish, i.e.,   

[ ] [ ]2 0ω− =T I ,                                              (6.18) 

where  

[ ] [ ] [ ]1( ) ( ) ,R M−
′ ′− −= G G G GT                                    (6.19) 

and I is the (2L+1)2×(2L+1)2 identity (unit) matrix. Equation (6.18) is the characteristic 

equation of the eigenvalue problem defined in Eq. (6.14), which is a polynomial equation 

in ω2 of degree (2L+1)2. By increasing the value of the integer L, the convergent solution 

can be obtained. For a given wave vector k = (kx, ky) in the first Brillouin zone shown in 

Fig. 6.3, the corresponding eigen-frequenciesω can be obtained from the roots of Eq. (6.18). 

The ranges of ω over which there exists no real-valued wave vector k will give band gaps. 

It is seen from Eqs. (6.18), (6.19), (6.15), (6.16), (6.10), (6.11), (6.13), (6.6), (6.8) and 

(6.2a-f) that the value of ω depends on the material constants λ, µ, l, λ0, µ0, τ0 and ρ, the 

foundation moduli kw and kp, and the geometrical parameters a, d and h.  

The classical elasticity-based band gaps for flexural elastic wave propagation in the 

periodic composite plate structure resting on the Winkler-Pasternak elastic foundation can 

be obtained as a special case by setting l = 0 and 0λ = 0µ = 0τ = 0 in the relevant equations 
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(i.e., with both the microstructure and surface energy effects suppressed).  

 

6.3 Numerical Results and Discussion 

To quantitatively illustrate the new non-classical model developed in Section 6.2, some 

numerical results are presented in this section. In generating these results, material I is 

taken to be iron with the following properties (e.g., Gurtin and Murdoch, 1978): E(I) = 

177.33 GPa, v(I) = 0.27, l(I) = 6.76 µm, ρ = 7 g/cm3 for the bulk, and (I)
0µ = 2.5 N/m, (I)

0λ = 

−8 N/m, (I)
0τ = 1.7 N/m for the surface layer. Note that the value of the length scale 

parameter l(I) listed above is computed using / 3(1 )hl b v= −  (e.g., Lam et al., 2003; Park 

and Gao, 2006) with Poisson’s ratio v(I) = 0.27 and the higher-order bending parameter bh
(I) 

= 10 µm (e.g., Wang, 2010). Material II is chosen to be epoxy with the following properties 

(Chen and Wang, 2014): E(II) = 3.3 GPa, v(II) = 0.33, l(II) = 16.93 μm, ρ(II) = 1.18 g/cm3 for 

the bulk, and 
(I I)
0µ = 0.12406 N/m, (II)

0 0.16376λ = N/m, (II)
0τ = 0.045 N/m for the surface 

layer. Note that the value of the length scale parameter l(II) given here is also computed 

using / 3(1 )hl b v= −  but with Poisson’s ratio v(II) = 0.33 and the higher-order bending 

parameter bh
(II) = 24 µm (e.g., Lam et al., 2003). The values of the surface elastic constants 

(I I)
0µ and 

(II)
0λ  listed above are estimated using (II) (II)

0
Shµ µ= and

(II) (II) (II) (II) (II)
0 2 / ( )Shλ λ µ λ µ= + (Sharma and Ganti, 2004), where 

Sh is the thickness of 

transition zone and is taken to be 1 Angstrom (e.g., Miller and Shenoy, 2000), and λ(II), µ(II) 

are the Lamé constants of the bulk epoxy given by 

(II) (II) (II) (II) (II) (II) (II) (II)/ [(1 )(1 2 )],  / [2(1 )].E Eλ ν ν ν µ ν= + − = +  In addition, (II)
0τ  is the 



 
 

127 

surface tension for epoxy having a value of 45 mN/m (e.g., George, 1993; Lewin et al., 

2005). The foundation moduli kw and kp are non-dimensionalized to obtain 4 (I)/ ,w w CK k a D≡

2 (I)/p p CK k a D≡ , with (I) (I) 3 (I) 2/ {12[1 ( ) ]}CD E h v= −  being the plate flexural rigidity of 

material I. Moreover, the edge length of the square inclusion is taken to be d = 0.4a (i.e.,

I 2 2/ 0.16fV d a= = ) in all the calculations for simplicity. In Figs. 6.4-6.7, the blue dot lines 

represent the wave frequency curves obtained from solving Eq. (6.18). In all the cases, the 

convergent solutions are reached with L = 7. 

Note that in the numerical analysis presented here, the first band gap in each case is 

defined to be that between the fourth and fifth frequency curves, which is first observed for 

the periodic composite plate structure without the elastic foundation (see Fig. 6.4(a)). This 

corresponds to the lowest range of ω that prohibits flexural wave propagation in the 

periodic composite plate structure without including the foundation effect. In addition, the 

first band gap for the composite plate structure with the elastic foundation, called the first 

foundation band gap, is identified and discussed. The other band gaps for each periodic 

composite plate structure with specified geometrical and material parameters can be found 

by following the same procedure.  

 
6.3.1 Effects of the elastic foundation on band gaps 

Figure 6.4 shows the band gaps for the periodic composite plate structure with square 

inclusions (see Fig. 6.2), where f = ω/(2π) is the wave frequency. The unit cell length a is 

taken to be 1 mm and the plate thickness h = 15 µm.  

Figure 6.4(a) illustrates the first band gap frequency range predicted by the current non-

classical model without the foundation (i.e., 0, 0w pK K= = ), which is 175.42−190.50 kHz 
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(marked in orange). Figures 6.4(c) and 6.4(e) display the band gap frequency ranges 

predicted by the new non-classical model with the Winkler foundation (i.e., 0pk = ): the 

first band gap and the first foundation band gap of 177.33−192.17 kHz and 0−20.66 kHz 

for the case with 10 and 0w pK K= = ; 193.67−206.85 kHz and 0−62.97 kHz for the case 

with 100wK =  and 0pK = . Figures 6.4(b), 6.4(d) and 6.4(f) show the band gap frequency 

ranges predicted by the current non-classical model with the Winkler-Pasternak 

foundation: the first band gap and the first foundation band gap of 186.82−199.32 kHz and 

0−20.69 kHz for the case with 10 and 1w pK K= = ; 202.33−213.52 kHz and 0−63.18 kHz 

for the case with 100wK =  and 1pK = . For the case with 100wK =  and 10pK = , the first 

foundation band gap frequency range is 0−64.17 kHz, but there is no band gap existing 

between the fourth and fifth frequency curves (which would be called the first band gap to 

be consistent with that in the other cases), even though a band gap appears at a lower 

frequency (between the first and second frequency curves, as indicated in green in Fig. 

6.4(f). This is called the second foundation band gap, which also exists in the cases with 

100, 1w pK K= =  and 100, 0w pK K= = , as shown in Figs. 6.4(d) and 6.4(e). The band 

gaps calculated from these frequency ranges are listed in Table 6.1.  
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Table 6.1 Band gaps for the periodic composite plate structure with different values of 
the foundation moduli wK and pK predicted by the current model (with a = 1 mm, h = 15 

μm) 

Foundation moduli   
wK           pK  

First band gap (kHz) 
 First foundation 

band gap (kHz) 
Second foundation 

band gap (kHz) 
0 0 15.08  NA NA 
10 0 14.84  20.66 NA 
10 1 12.50  20.69 NA 
100 0 13.18  62.97 14.85 
100 1 11.19  63.18 14.89 
100 10 NA  64.17 16.76 

 

From Fig. 6.4 and Table 6.1, it is observed that the first band gap frequency ranges 

predicted by the current non-classical model decrease with the increase of either wK  or pK . 

However, the first foundation band gap frequency ranges predicted by the new non-

classical model increase with these two foundation moduli. In addition, it is observed from 

Fig. 6.4 that the presence of the Winkler-Pasternak foundation reduces the first band gap 

size, and this effect is more significant than that of the Winkler foundation (i.e., 0pk = ). 

 
                                         (a)                                                               (b) 
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                                          (c)                                                              (d) 

       
                                    (e)                                                               (f) 

Fig. 6.4 Band gaps for the periodic composite plate structure predicted by the current 
model with: (a) 0, 0w pK K= = (i.e., without foundation), (b) 10, 1w pK K= = , (c) 

10, 0w pK K= = , (d) 100, 1w pK K= = , (e) 100, 0w pK K= = , and (f) 

100, 10w pK K= = . The Bloch wave vector k = (kx, ky) at Γ, X and M is, respectively, (0, 
0), (π/a, 0) and (π/a, π/a) (see Fig. 6.3(b)). 

 
 

6.3.2 Effects of the microstructure and surface energy on band gaps 

Figure 6.5 displays the band gaps for the periodic composite plate structure predicted 

by the current model with a = 1 mm and 10, 1w pK K= = . Figures 6.5(a), 6.5(c), 6.5(e) and 

6.5(g) show the first band gap frequency ranges (in orange ) and the first foundation band 

gap frequency ranges (in grey) predicted by the current non-classical model for different 

values of the plate thickness: 186.82−199.32 kHz and 0−20.69 kHz for h = 15 μm; 
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322.81−355.31 kHz and 0−55 kHz for h = 40 μm; 581.07−638.05 kHz and 0−109.86 kHz 

for h = 80 μm; and 841.20−923.78 kHz and 0−164.73 kHz for h = 120 μm. 

Figures 6.5(b), 6.5(d), 6.5(f) and 6.5(h) illustrate the first band gap frequency ranges 

(in orange) and the first foundation band gap frequency ranges (in grey) predicted by the 

classical elasticity-based model for different values of the plate thickness: 106.28−116.50 

kHz and 0−20.59 kHz for h = 15 μm: 282.65−309.87 kHz and 0−54.9 kHz for h = 40 μm; 

560.00−614.20 kHz and 0−109.8 kHz for h = 80 μm; 827.20−907.90 kHz and 0−164.68 

kHz for h = 120 μm. The band gaps calculated from these frequency ranges are listed in 

Tables 6.2 and 6.3 respectively, where the relative difference is defined to be the difference 

between the two band gap values over the value based on the classical model in each case. 

 
                                            (a)                                                              (b) 

   
                                             (c)                                                            (d) 
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                                            (e)                                                              (f) 

   
                                            (g)                                                               (h)                     

Fig. 6.5 Band gaps for the periodic composite plate structure (with a = 1 mm,
10, 1w pK K= = ) predicted by: (a) the current model with h = 15 µm, (b) the classical 

model with h = 15 µm, (c) the current model with h = 40 µm, (d) the classical model with 
h = 40 µm, (e) the current model with h = 80 µm, (f) the classical model with h = 80 µm, 
(g) the current model with h = 120 µm, and (h) the classical model with h = 120 µm. The 

Bloch wave vector k = (kx, ky) at Γ, X and M is, respectively, (0, 0), (π/a, 0) and (π/a, 
π/a) (see Fig. 6.3(b)). 

 
Table 6.2 First band gaps for the periodic composite plate structure with different values 

of the plate thickness h 

h (μm) Band gap (kHz) 
Current model 

Band gap (kHz) 
Classical model Relative difference (%) 

15 12.50 10.22 22.31 

40 32.50 27.22 19.40 

80 56.98 54.20 5.13 

120 82.58 80.70 2.33 
 



 
 

133 

 
Table 6.3 First foundation band gaps for the periodic composite plate structure with 

different values of the plate thickness h 

h (μm) Band gap (kHz) 
Current model 

Band gap (kHz) 
Classical model Relative difference (%) 

15 20.69 20.59 0.49 

40 55.00 54.90 0.18 

80 109.86 109.80 0.05 

120 164.73 164.68 0.03 
 

It is observed from Fig. 6.5 and Table 6.2 that the first band gap predicted by the current 

non-classical model is always larger than that predicted by the classical model. Also, when 

the plate thickness h is small (with h = 15 µm here), the difference between the two band 

gap values is large, with the band gap predicted by the current non-classical model being 

1.22 times as large as that predicted by the classical model (giving a relative difference of 

22.31%). However, the difference is diminishing with the increase of the plate thickness h. 

When h = 120 µm, the band gap predicted by the current model is only 1.02 times of that 

predicted by the classical model, with the relative difference being only 2.33%. This 

indicates that the microstructure and surface energy effects on the first band gap are 

significant only when the plate thickness is very small. 

From Fig. 6.5 and Table 6.3, it is clearly seen that the first foundation band gap 

predicted by the current non-classical model is always larger than that predicted by the 

classical model. However, the difference decreases with the increase of the plate thickness 

h. In addition, this difference is negligibly small compared to the difference between the 

two first band gap values. This shows that the microstructure and surface energy effects on 

the first foundation band gap are insignificant. 
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6.3.3 Effect of the unit cell length on band gaps     

 Figure 6.6 displays the first band gap (in orange) and the first foundation band gap (in 

grey) for the periodic composite plate structure predicted by the current model for different 

values of the unit cell length a. The plate thickness is h = 15 µm, and the elastic foundation 

moduli are 10, 1w pK K= = in all cases. 

The first band gap frequency range and the first foundation band gap frequency range 

are, respectively, 2065.9−2204.6 kHz and 0−229.89 kHz for the case with a = 20h shown 

in Fig. 6.6(a); 518.45−553.19 kHz and 0−57.48 kHz for the case with a = 40h displayed in 

Fig. 6.6(b); 83.07−88.63 kHz and 0−9.20 kHz for the case with a = 100h depicted in Fig. 

6.6(c); and 20.80−22.18 kHz and 0−2.30 kHz for the case with a = 200h illustrated in Fig. 

6.6(d). The band gaps calculated from these frequency ranges are listed in Table 6.4.  

 

 
                                          (a)                                                             (b) 
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                                        (c)                                                              (d) 

 
Fig. 6.6 Band gaps for the periodic composite plate structure with h = 15 µm, 
10, 1w pK K= = predicted by the current model for (a) a = 20h, (b) a = 40h, (c) a = 100h, 

and (d) a = 200h. The Bloch wave vector k = (kx, ky) at Γ, X and M is, respectively, (0, 
0), (π/a, 0) and (π/a, π/a) (see Fig. 6.3(b)). 

 
Table 6.4 Band gaps for the periodic composite plate structure with different values of 

the unit cell length a predicted by the current model (with h = 15 μm, 10wK = and 1pK = ) 

a First band gap (kHz) First foundation 
band gap (kHz) 

20h 138.7 229.89 

40h 34.74 57.48 

100h 5.56 9.20 

200h 1.38 2.30 
 

From Fig. 6.6 and Table 6.4, it is seen that the frequency for producing the first band 

gap or the first foundation band gap becomes lower as the unit cell length a gets larger and 

the band gap size decreases with the increase of a. To further illustrate the effect of the unit 

cell length on band gaps, Fig. 6.7 shows that the first band gap for the periodic composite 

plate structure with h = 1 mm, which is much larger than h = 12 µm used in getting the 

results shown in Fig. 6.6 or h = 120 µm identified in Section 6.3.2 to be a plate thickness 

above which the microstructure and surface energy effects on band gaps are negligible. 
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                                  (a)                                                                 (b) 

     
                                        (c)                                                                 (d) 

Fig. 6.7 Band gaps for the periodic composite plate structure with h = 1mm, 
10, 1w pK K= = predicted by the current model for (a) a = 20h, (b) a = 40h, (c) a = 100h, 

and (d) a = 200h. The Bloch wave vector k = (kx, ky) at Γ, X and M is, respectively, (0, 
0), (π/a, 0) and (π/a, π/a) (see Fig. 6.3(b)). 

 

Figure 6.7 illustrates the first band gap frequency ranges (in orange) predicted by the 

current model for the composite plate structure with h = 1 mm, 10,wK = 1pK =  and 

different values of the unit cell length: 17639−19339 Hz for a = 20h, 4426.1−4851.9 Hz 

for a = 40h, 708.93−777.08 Hz for a = 100h, and 177.27−194.30 Hz for a = 200h. Also, 

Figure 6.7 displays the first foundation band gap frequency ranges for different values of 

the unit cell length: 0−3431 MHz, 0−857.9 MHz, 0−137.26 MHz and 0−34.32 MHz for 

the cases with a = 20h, 40h, 100h and 200h, respectively. The band gaps calculated from 
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these frequency ranges are listed in Table 6.5. It is found that for this plate thickness of h 

= 1 mm the band gap frequency ranges and band gap sizes predicted by the classical 

elasticity-based model are the same as the corresponding ones predicted by the current non-

classical model and shown in Figs. 6.7(a)–(d). 

 
Table 6.5 Band gaps for the periodic composite plate structure with different values of 

the unit cell length a predicted by the current model (with h = 1mm and 10, 1w pK K= = ) 

a First band gap (Hz) First foundation band gap (Hz) 
20h 1700 3431 

40h 425.8 857.9 

100h 68.15 137.26 

200h 17.03 34.32 
 

It is clear from comparing the numerical values shown in Fig. 6.7 and Table 6.5 that 

both the frequency for producing the first band gap and the sizes of the first band gap and 

the first foundation band gap decrease with the increase of the unit cell length a, which is 

the same as that observed from Fig. 6.6 for the cases with h = 15 µm. Moreover, the fact 

that the trends of both the first band gap and the first foundation band gap changing with 

the unit cell length predicted by the classical model are the same as those predicted by the 

non-classical model indicates that the effect of the unit cell length on band gaps is present 

at all length scales. 

 

6.3.4 Effects of the volume fraction on band gaps 

The variations of the first band gap and the first foundation band gap with the volume 

fraction of material I are shown in Figs. 6.8 and 6.9, respectively. For comparison purposes, 
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the first band gap and the first foundation band gap variations predicted by the classical 

elasticity-based model are also plotted in Figs. 6.8 and 6.9. The numerical values for wave 

frequency shown in Figs. 6.8 and 6.9 are obtained from solving Eq. (6.18). In all the cases, 

the convergent solutions are reached with L = 7. The properties for materials I and II used 

here are the same as those employed earlier to obtain the numerical results shown in Figs. 

6.4–6.7. Here the unit cell length a is taken to be 1 mm, the plate thickness h is chosen to 

be 15 μm, and the foundation moduli are specified as 10 and 1w pK K= = . 

 

 
Fig. 6.8 First band gap changing with Vf

(I) predicted by the current and classical models 
for the periodic composite plate structure (with a = 1 mm, h = 15 μm, 

10 and 1w pK K= = ). 
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Fig. 6.9 First foundation band gap changing with Vf

(I) predicted by the current and 
classical models for the periodic composite plate structure (with a = 1 mm, h = 15 μm, 

10 and 1w pK K= = ). 
 

From Fig. 6.8, it is clearly seen that the first band gap predicted by the current model 

for the periodic composite plate structure starts at Vf
(I) = 9.5% and gradually increases with 

the increase of Vf
(I) before reaching its maximum of 13.82 kHz at Vf

(I) = 20%, after which 

the first band gap decreases with Vf
(I) until it disappears at Vf

(I) = 30%. Also, the first band 

gap predicted by the classical elasticity-based model increases from zero to its maximum 

value 13.31 kHz as the volume fraction Vf
(I) increases from 9% to 21%, then it decreases 

with the increase of Vf
(I) until it vanishes at Vf

(I) = 30%. 

From Fig. 6.9, it is observed that the first foundation band gap predicted by the current 

non-classical model or the classical elasticity-based model gradually decreases with the 

increase of Vf
(I) from 0% to 100%, and the first foundation band gap values predicted by 

the current non-classical model and the classical elasticity-based model are very close. 
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Once again, these indicate that the microstructure and surface energy effects on the first 

foundation band gap are not significant. 

From Figs. 6.8 and 6.9, it is clear that the volume fraction does have a significant effect 

on the first band gap and the first foundation band gap for the periodic composite plate 

structure according to both the current non-classical model and its classical elasticity-based 

counterpart. These results indicate that large band gaps can be attained by tailoring the 

volume fraction. 

 

6.4 Summary  

A new model for predicting band gaps for elastic wave propagation in a periodic 

composite plate structure is provided by employing a non-classical Kirchhoff plate model, 

the plane wave expansion method and the Bloch theorem. The current non-classical model 

recovers the classical elasticity-based model when the microstructure and surface energy 

effects are both suppressed. The band gaps predicted by the new model incorporate the 

microstructure, surface energy and elastic foundation effects and vary with the unit cell 

size and volume fraction of the inclusion phase.  

Numerical results are included to illustrate the newly developed model and compare it 

with the classical elasticity-based model. It is found that the first band gap predicted by the 

current model with the foundation is smaller than that without the foundation, and the first 

foundation band gap increases with the elastic foundation moduli. In addition, the first band 

gap predicted by the new non-classical model is seen to be always larger than that based 

on the classical model, with the difference being significant for very thin plates. It is also 

observed that the first band gap frequency and the band gap size decrease with the increase 
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of the unit cell length for both the first band gap and the first foundation band gap. Finally, 

the numerical results reveal that the band gap size varies significantly with the volume 

fraction of the inclusion phase, indicating that large band gaps can be achieved by tailoring 

the volume fraction and constituent properties. 
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Chapter 

 

7. BAND GAPS FOR FLEXURAL ELASTIC WAVE PROPAGATION IN 
PERIODIC COMPOSITE PLATE STRUCTURES USING A NON-

CLASSICAL MINDLIN PLATE MODEL INCORPORATING 
MICROSTRUCTURE AND SURFACE ENERGY EFFECTS 

 

7.1 Introduction 

Band gaps for elastic waves propagating in periodic composite plate structures have 

been extensively studied using classical elasticity (e.g., Sigalas and Economou, 1994; Hsu 

and Wu, 2006; El-Naggar et al., 2012; Cheng et al., 2015; Liu et al., 2016). Such composite 

plate structures can stop elastic wave propagation in certain frequency ranges (known as 

band gaps) and are finding applications in elastic wave filters, vibration isolators and 

energy harvesters. Band gaps for wave propagation in these periodic composite structures 

arise from Bragg scattering and local resonance (e.g., Chen and Wang, 2014) and are 

inherently microstructure-dependent, which cannot be accurately described using the 

classical elasticity-based wave equations due to a lack of any material length scale 

parameter. Hence, non-classical, higher-order elasticity theories containing microstructure-

dependent material parameters need to be employed in studying band gaps. 

Wave equations based on several higher-order elasticity theories have been applied to 

determine band gaps. Liu et al. (2012) used wave equations built upon a surface elasticity 

theory (Gurtin and Murdoch, 1975, 1978; Steigmann and Ogden, 1997, 1999; Altenbach 

et al., 2010; Eremeyev and Lebedev, 2016) to investigate surface energy effects on band 
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gaps. Madeo et al. (2015) employed the wave equations based on a relaxed micromorphic 

elasticity theory (Neff et al., 2014) to study band gaps in metamaterials. Li et al. (2016) 

studied band gaps in 1-D phononic crystals by using the equation of motion built upon the 

dipolar gradient elasticity theory (e.g., Gourgiotis and Georgiadis, 2009), which is also 

known as the simplified strain gradient elasticity theory (e.g., Gao and Park, 2007; Gao 

and Ma, 2010). Bacigalupo and Gambarotta (2017) utilized a micropolar continuum theory 

(e.g., Eremeyev et al., 2013) to determine band gaps in periodic materials. Zhang et al. 

(2018a) and Gao et al. (2018) investigated band gaps for flexural elastic wave propagation 

in periodic composite beam structures by using non-classical Bernoulli–Euler and 

Timoshenko beam models based on a modified couple stress theory (Yang et al., 2002; 

Park and Gao, 2008) and a surface elasticity theory (Gurtin and Murdoch, 1975, 1978). 

Band gaps for elastic wave propagation in 2-D and 3-D periodic composite materials were 

studied in Zhang et al. (2018b) and Zhang and Gao (2018) by employing the wave 

equations built upon the modified couple stress theory. However, band gaps in periodic 

composite plate structures have not been explored through applying non-classical 

elasticity-based wave equations for plates that include both the microstructure and surface 

energy effects. 

In Chapter 7, the band gaps of flexural elastic wave propagation in periodic composite 

plate structures are studied by using the non-classical Mindlin plate model formulated in 

Chapter 4. The rest of this chapter is organized as follows. In Section 7.2, the non-classical 

equations of motion for a Mindlin plate are reduced from the general equations derived in 

Gao and Zhang (2016) and applied to investigate flexural elastic wave propagation in 

periodic composite plate structures. The plane wave expansion method and Bloch’s 
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theorem for periodic media are used to determine the band gaps. In Section 7.3, numerical 

results are provided to quantitatively illustrate the band gaps for flexural elastic wave 

propagation predicted by the current model and those by its classical elasticity-based 

counterpart. The effects of plate thickness, unit cell length, and volume fraction on the band 

gaps are studied there. The chapter concludes in Section 7.4 with a summary. 

 

7.2 Formulation 

Based on the modified couple stress theory (Yang et al., 2002; Park and Gao, 2008), 

the surface elasticity theory (Gurtin and Murdoch, 1975, 1978) and a two-parameter 

Winkler–Pasternak elastic foundation model, the equations of motion for a Mindlin plate 

incorporating the microstructure, surface energy and elastic foundation effects have been 

derived in Chapter 4 (i.e., Eqs. (4.39a-e)). When the stretching is not considered (i.e., u = 

0, v = 0) and the foundation effect is suppressed (i.e., kw = kp = 0), the equations of motion 

for the Mindlin plate of uniform thickness h and mid-plane area R reduce to 
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for any (x, y) ∈ R, where w = w(x, y, t) is the z-displacement (or deflection) of point (x, y, 

0) on the plate mid-plane at time t, xφ  and yφ  are, respectively, the rotation angles of a 

transverse normal about the y- and x-axes (see Fig. 7.1), and   
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In Eqs. (7.1a-c)-(7.2a-l), λ and μ are the Lamé constants in classical elasticity, l is a material 

length scale parameter measuring the couple stress effect (e.g., Park and Gao, 2006), μ0 

and λ0 are the surface elastic constants, τ0 is the residual surface stress (i.e., the surface 
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stress at zero strain), ρ is the density of the plate material, h is the thickness of the plate, fz 

is the z-component of the body force resultant (force per unit area) through the plate 

thickness acting in the plate mid-plane area R, cx and cy are, respectively, the x- and y-

components of the body couple resultant (moment per unit area) through the plate thickness 

acting in the area R. 

 
Fig. 7.1 Plate configuration and coordinate system 

 

Note that Eqs. (7.1a-c) are obtained using the Cartesian coordinate system (x, y, z) 

shown in Fig. 7.1, where the xy-plane is coincident with the geometrical mid-plane of the 

undeformed plate. The lower S+ and upper S− surface layers (with zero-thickness) are taken 

to be perfectly bonded to the bulk plate material at z = ± h/2, respectively. The bulk material 

satisfies the modified couple stress theory (Yang et al., 2002; Park and Gao, 2008), while 

the surface layers are governed by the surface elasticity theory (Gurtin and Murdoch, 1975, 

1978). 

Consider a periodic two-phase composite plate structure containing inclusions (as 

Phase I) in the shape of a square or a square with connecting rods embedded periodically 
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in a host matrix (as Phase II) which is infinitely large in the xy-plane, as shown in Fig. 7.2. 

The latter represents a co-continuous or interpenetrating phase composite (e.g., Ai and Gao, 

2016, 2017; Zhang and Gao, 2018). The unit cell for this periodic composite plate structure 

is taken to be a square of edge length a containing a square inclusion of edge length d at its 

center or a center square inclusion of edge length d with connecting rods of rectangular 

cross section having a width g and a height h, as illustrated in Fig. 7.3, where the 

corresponding irreducible first Brillouin zone is also provided. For brevity, the second type 

of inclusion is called a cruciform inclusion hereafter.  

 

 
(a) 

 
(b) 

Fig. 7.2 Periodic two-phase composite plate structure with an inclusion phase and a 
matrix phase: (a) square inclusions; (b) cruciform inclusions. 
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                     (a)                                         (b)                                             (c) 

Fig. 7.3 Unit cell of the periodic composite plate structure: (a) square inclusion; (b) 
cruciform inclusion; (c) irreducible first Brillouin zone in the reciprocal lattice. 

 

Based on the plane-wave expansion method and Bloch theorem for periodic media, w, 

xφ  and yφ  can each be written as a Fourier series (e.g., Kittel, C., 1986; Hsu and Wu, 

2006): 

  ( , )

( , )
( , )

( , ) m n

m n
m n

ii i tw t e w e e ω′ ⋅⋅ −
′

′

 
=  

  
∑ G rk r

G
G

r ,                            (7.3a) 

( ) ( , )

( , )
( , )

( , ) m n

m n
m n

ii i t
x xt e e e ωφ φ ′ ⋅⋅ −

′
′

 
=  

  
∑ G rk r

G
G

r ,                       (7.3b) 

( ) ( , )

( , )
( , )

( , ) m n

m n
m n

ii i t
y yt e e e ωφ φ ′ ⋅⋅ −

′
′

 
=  

  
∑ G rk r

G
G

r                         (7.3c) 

where 
( , )m n

w ′G , ( )
( , )m n

xφ ′G
and ( )

( , )m n
yφ ′G

 are the Fourier coefficients, r = (x, y) is the position 

vector, k = (kx, ky) is the 2-D Bloch wave vector which is confined to the first Brillouin 

zone shown in Fig. 7.3(c), ( , ) (2 / , 2 / ) ( , )m n x ym a n a G Gπ π′ ′ ′= =G  is the 2-D reciprocal 

lattice vector for a square lattice with m and n being integers ranging from −∞ to +∞ and a 

being the lattice constant which is equal to the unit cell edge length here (see Fig. 7.3), ω 
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is the angular wave frequency, and i is the imaginary unit satisfying 2 1i = − .  

Due to the periodicity of the composite plate structures under consideration, each of 

the material parameters D(r), D1(r), D2(r), K(r), C(r), C1(r), S(r), P1(r), P2(r), B1(r), B2(r) 

and B3(r), defined in Eqs. (7.2a-l) and involved in the wave equations given in Eqs. (7.1a-

c), can also be expanded in a Fourier series as 

( , )

( , )
( , )

( ) M N

M N
M N

ieα α ⋅= ∑ G r
G

G
r ,                                       (7.4) 

where α represents D, D1, D2, K, C, C1, S, P1, P2, B1, B2 or B3, 

( , ) (2 / , 2 / ) ( , )M N x yM a N a G Gπ π= =G  is the 2-D reciprocal lattice vector with M and N 

being integers also ranging from −∞ to +∞, and 
( , )M N

αG  is the Fourier coefficient given by 

( , )

( , )

1 ( ) ,M N

M N

ie d
A

α α − ⋅

Ω
= ∫∫ G r

G r r                                   (7.5) 

where Ω denotes the 2-D domain on the plate mid-plane by the unit cell, and A is the area 

of Ω. For a two-phase composite, 
( , )M N

αG  has the form (e.g., Zhang et al., 2018b)  

( , )

I I
I II ( , )

I II ( , ) ( , )

(1 ) for 0,
( ) ( ) for 0,M N

f f M N

M N M N

V V
F

α α
α

α α

 + − == 
− ≠

G

         G
G      G

                      (7.6) 

where Iα  and IIα  are the property values for materials I and II (see Fig. 7.3) respectively, 

I I /fV A A=  is the volume fraction of material I, with IA  being the area of material I on the 

plate mid-plane in the unit cell, and ( , )( )M NF G  is the shape function defined by  

( , )

I
( , )

1( ) ,M Ni
M NF e d

A
− ⋅

Ω
= ∫∫ G rG r                                    (7.7) 

where ΩI is the domain on the plate mid-plane occupied by material I on the plate mid-

plane in the unit cell.  
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For a square domain ΩI (see Fig. 7.3(a)), the shape function ( , )F( )M NG  is given by 

(e.g., Susa, 2002; Zhang et al., 2018b): 

2

( , ) 2

2

2 sin( ) for 0, 0;
2

2F( ) sin( ) for 0, 0;
2

4 sin( )sin( ) for 0, 0,
2 2

x
x y

x

y
M N x y

y

yx
x y

x y

G dd G G
a G

G dd G G
a G

G dG d G G
a G G


≠ =


= = ≠


 ≠ ≠


   

G    

   

            (7.8) 

where d is the edge length of the square region ΩI, and a is the edge length of the square 

unit cell Ω (see Fig. 7.3(a)). 

For the cruciform inclusion shown in (see Fig. 7.3(b)), the shape function ( , )F( )M NG  

has been obtained as (see Appendix A for derivations) 

        
2

( , ) 2 2F( ) ( ) ( ),M N x y x y x y x y x y
g d dgA F F A f f f F F f
a a a

= + + − +G           (7.9) 

where 

1, 0,

2 sin , 0;
2

G

F G g
G

G g

β

β β
β

β

=


=  
≠ 

 

                        

  
                               (7.10a) 

1, 0,

2 sin , 0;
2

G

f G d
G

G d

β

β β
β

β

=


=  
≠ 

 

                       

 
                               (7.10b) 

1, 0,
0, 0.

G
A

G
β

β
β

==  ≠

     
                                               (7.10c) 

Note that the subscript β in Eqs. (7.10a-c) represents x and y, respectively. 
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Using Eqs. (7.3a-c) and (7.4) in Eqs. (7.1a-c) yields, with fz = 0, cx = cy = 0 and upon 

using Laurent’s rule for finding the Fourier coefficients of a product of two periodic 

functions (e.g., Li, 1996; Cao et al., 2004), 

( )
( , )( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

11 12 13

21 22 23

31 32 33

( ) )
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) ) )

m nM N m n M N m n M N m n

M N m n M N m n M N m n m n
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x
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M M M
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φ
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′ ′ ′− − − ′
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 
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 
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GG G G G G G

G G G G G G G

G G G G G G

) ( (

) ( (

( ( ( ( )

( )
( )

( )
( )

( )

( , )

( , )( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )
( , )

1

2
2

2

0 0

0 0

0 0

m n

m nM N m n

M N m n m n

M N m n
m n

y

x

y

wP

P

P

φ

ω φ

φ

′

′′−
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′−
′

 
 
 
 
 
 
 
  −      =           

G

GG G

G G G

G G
G

      (7.11) 

where  

( , ) ( , )11

2 2

2 2 2 2

2 2

( ( )( ) ( )( )

1( )( )( )( ) ( ) ( )
4

1 1( ) ( ) ( ) ( )
4 4
1 ( ) ( )
4

M N m n x x x x y y y y

x x y y x x y y x x x x

x x y y y y x x

y y y y

M K k G k G K k G k G

C k G k G k G k G C k G k G

C k G k G C k G k G

C k G k G S

′ ′ ′− − −

′ ′− −

′ ′− −

′−

′ ′= − + + − + +

′ ′ ′− + + + + − + +

′ ′+ + + + + +

′− + + −

G G G G G G

G G G G

G G G G
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)
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( )( ),

x x x x

y y y y

k G k G

S k G k G

′−

′−

′+ +

′− + +

G G
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      (7.12a) 

( , ) ( , )12

2 2

1) ( ) ( )( )( )
2

1 1( ) ( ) ( ) ( ),
4 4

M N m n x x x x y y y y

x x x x y y x x

M iK k G iC k G k G k G

iC k G k G iC k G k G
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2 2
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2
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x x y y y y y y
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( , ) ( , )

2
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2

1( ( ) ( )( )
4

1 1( )( ) ( )( )( ),
4 2

M N m n x x x x x x

x x y y y y x x y y
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( ) ( )( , )
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1 ,m n
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i
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A
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G
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in which  

( , ) ( , )( )1 ,M N m nie d
A

α α ′− − ⋅
′− Ω
= ∫∫ G G r

G G r                                  (7.16) 

where α ′−G G  represents D −G G' , ( )1D
−G G' , ( )2D

−G G' , K −G G' , C −G G' , ( )1C
−G G' , S −G G' , 

( )1P
−(G G')

, ( )2P
−(G G')

, ( )1B
−G G' , ( )2B

−G G'  or ( )3B
−G G' .  

When w, xφ , yφ  and α (representing D, D1, D2, K, C, C1, S, P1, P2, B1, B2 or B3) are 

approximated by truncated Fourier series expansions with m, n, M and N ranging from − L 

to L, with L being an integer, Eq. (7.11) gives 3(2L+1)2 equations, which can be assembled 

to obtain 
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where 
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 (7.18) 

is a (2L+1)2 × (2L+1)2 matrix representing, respectively, [ ]11M , [ ]12M , [ ]13M , [ ]21M , [ ]22M

, [ ]23M , [ ]31M , [ ]32M  and [ ]33M  for each (i, j) combination (with i, j ∈ {1, 2, 3}), 
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(7.19)   

is a (2L+1)2 × (2L+1)2 matrix representing, respectively, [ ]1P , [ ]2P  and [ ]3P  (with i ∈ {1, 

2, 3}),, and 
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are three (2L+1)2 × 1 column matrices. 
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Note that for a non-trivial solution of 
( , )

0
m n

w ′ ≠G , ( )
( , )

0
m n

xφ ′ ≠
G

 and ( )
( , )

0
m n

yφ ′
≠

G
, it is 

required that the determinant of the coefficient matrix vanish, i.e.,   

[ ] [ ]2 0ω− =T I ,                                            (7.21) 

where      
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(7.22) 

and I is the [3(2L+1)2] × [3(2L+1)2] identity (unit) matrix. Equation (7.21) is the 

characteristic equation of the eigenvalue problem defined in Eq. (7.17), which is a 

polynomial equation in ω2 of degree 3 × (2L+1) × (2L+1). By increasing the value of the 

integer L, the convergent solution can be obtained. For a given wave vector k = (kx, ky) in 

the first Brillouin zone, the corresponding eigen-frequencies ω  can be obtained from the 

roots of Eq. (7.21). The band gaps are the ranges of ω over which there exists no real-

valued wave vector k.  

The classical elasticity-based band gaps of the flexural elastic wave propagation in the 

periodic composite plate structure can be obtained as a special case by setting l = 0 and 0λ

= 0µ = 0τ = 0 in the relevant equations (i.e., with both the microstructure and surface energy 

effects suppressed).  

 

7.3 Numerical Results and Discussion 

To quantitatively illustrate the current non-classical model, numerical results for 
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sample cases are presented in this section. In generating these results, material I is taken to 

be iron with the following properties (e.g., Gurtin and Murdoch, 1978; Gao and Zhang, 

2016): E(I) = 177.33 GPa, v(I) = 0.27, l(I) = 6.76 µm, ρ = 7 g/cm3 for the bulk, and (I)
0µ = 2.5 

N/m, (I)
0 8λ = − N/m, (I)

0τ = 1.7 N/m for the surface layer. Note that the value of the length 

scale parameter l(I) listed above is computed using / 3(1 )hl b v= −  (e.g., Lam et al., 2003; 

Park and Gao, 2006) with Poisson’s ratio v(I) = 0.27 and the higher-order bending parameter 

bh
(I) = 10 µm (e.g., Wang, 2010). Material II is chosen to be epoxy with the following 

properties (Chen and Wang, 2014; Lam et al., 2003; Sharma and Ganti, 2004): E(II) = 3.3 

GPa, v(II) = 0.33, l(II) = 16.93 μm, ρ(II) = 1.18 g/cm3 for the bulk, and (II)
0µ = 0.12406 N/m, 

(II)
0 0.16376λ =  N/m, (II)

0τ = 0.045 N/m for the surface layer. Note that the value of l(II) is 

also computed using / 3(1 )hl b v= − but with v(II) = 0.33 and bh
(II) = 24 µm for epoxy (e.g., 

Lam et al., 2003). The values of the surface elastic constants 
(I I)
0µ and 

(II)
0λ listed above are 

computed using 
(II) (II)
0

Shµ µ= and (II) (II) (II) (II) (II)
0 2 / ( )Shλ λ µ λ µ= +  (Sharma and Ganti, 

2004), where 
Sh is the thickness of transition zone and is taken to be 1 Angstrom (e.g., 

Miller and Shenoy, 2000), and λ(II) and µ(II) are the Lamé constants of the bulk epoxy given 

by (II) (II) (II) (II) (II)/ [(1 )(1 2 )]Eλ ν ν ν= + − ,  (II) (II) (II)/ [2(1 )].Eµ ν= + In addition, the value of 

the surface elastic constant (II)
0τ for epoxy is 45 mN/m (e.g., George, 1993; Lewin et al., 

2005). 

Note that in the numerical analysis presented herein, only the first band gap (marked in 

orange) is identified and discussed in each case, which corresponds to the lowest range of 

ω that prohibits flexural wave propagation. The other band gaps for each periodic 
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composite plate structure with specified geometrical and material parameters can be found 

by following the same procedure. In all the cases, the convergent solutions are reached with 

L = 7. 

 

7.3.1 Effects of the microstructure and surface energy on band gaps 

Figure 7.4 shows the band gaps for the periodic composite plate structure with square 

inclusions (see Fig. 7.3(a)), where f = ω/(2π) is the wave frequency. In obtaining the 

numerical results shown in Fig. 7.4, the unit cell length a = 1mm and the volume fraction  

I
fV  = 16% are used. Figures 7.4(a), 7.4(c) and 7.4(e) display the first band gap frequency 

ranges predicted by the current non-classical model for different values of the plate 

thickness h: 189.14−213.27 kHz for h = 20 μm, 344.70−391.68 kHz for h = 60 μm and 

557.27−617.63 kHz for h = 120 μm. Figures 7.4(b), 7.4(d) and 7.4(f) show the first band 

gap frequency ranges predicted by the classical elasticity-based model: 110.44−127.19 kHz 

for h = 20 μm, 311.39−355.64 kHz for h = 60 μm, and 541.40−599.50 kHz for h = 120 μm. 

The first band gaps calculated from these frequency ranges are listed in Table 7.1, where 

the relative difference is defined to be the difference between the two band gap values over 

the value based on the classical model in each case.  
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                                      (a)                                                                  (b) 

           
(c)                                                                  (d) 

       
(e)                                                                   (f) 

Fig. 7.4 First band gaps for the periodic composite plate structure with square inclusions 
predicted by the current model with: (a) h = 20 μm, (c) h = 60 μm, (e) h = 120 μm, and by 
the classical model with: (b) h = 20 μm, (d) h = 60 μm, (f) h = 120 μm. The Bloch wave 
vector k = (kx, ky) at Γ, X and M is, respectively, (0, 0), (π/a, 0) and (π/a, π/a) (see Fig. 

7.3(c)). 
 

 

Table 7.1 First band gaps for the periodic composite plate structure containing square 
inclusions with different values of the plate thickness h 

h (μm) Band Gap (kHz) 
Current Model 

Band Gap (kHz) 
Classical Model Relative difference (%) 

20 24.13  16.75 44.06 
60 46.98 44.25 6.17 
120 60.36 58.1 3.89 
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It is observed from Fig. 7.4 and Table 7.1 that the first band gap value increases with 

the increase of the plate thickness h according to both the current non-classical and classical 

models. In addition, when h is smaller, the difference between the two first band gap values 

is significantly larger. However, the difference is diminishing with the increase of h. This 

indicates that the microstructure effect on the band gap as measured by h is significant only 

when the plate is very thin. 

Figure 7.5 shows the band gaps for the periodic co-continuous composite plate structure 

with cruciform inclusions (see Fig. 7.3(b)). The values of a and 
(I)
fV  used here are the same 

as those employed earlier to obtain the numerical results displayed in Fig. 7.4. Note that in 

the numerical analysis presented herein and in the sequel, the width of the rectangular cross 

section of each connecting rod is taken to be g = d /10 for the periodic co-continuous 

composite plate structure. 

Figures 7.5(a), 7.5(c) and 7.5(e) display the first band gap frequency ranges predicted 

by the current non-classical model for different values of the plate thickness h: for h = 20 

μm, 60 μm and 120 μm, the first band gap frequency range is 195.54−201.49 kHz, 

388.94−405.13 kHz and 647.34−654.72 kHz, respectively. Figures 7.5(b), 7.5(d) and 7.5(f) 

show the first band gap frequency ranges predicted by the classical elasticity-based model: 

for h = 20 μm, 60 μm and 120 μm, the first band gap frequency range is 127.62−131.97 

kHz, 359.05−371.85 kHz and 624.72−632.01 kHz, respectively. The first band gaps 

calculated from these frequency ranges are listed in Table 7.2. 
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                                         (a)                                                              (b) 

       
  (c)                                                                (d) 

      
                                        (e)                                                                 (f) 

Fig. 7.5 First band gaps for the periodic co-continuous composite plate structure with 
cruciform inclusions predicted by the current model with: (a) h = 20 μm, (c) h = 60 μm, 

(e) h = 120 μm, and by the classical model with: (b) h = 20 μm, (d) h = 60 μm, (f) h = 120 
μm. The Bloch wave vector k = (kx, ky) at Γ, X and M is, respectively, (0, 0), (π/a, 0) and 

(π/a, π/a) (see Fig. 7.3(c)). 
Table 7.2 First band gaps for the periodic co-continuous composite plate structure 

containing cruciform inclusions with different values of the plate thickness h 

h (μm) Band Gap (kHz) 
Current Model 

Band Gap (kHz) 
Classical Model Relative difference (%) 
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20 5.95  4.35 36.78 
60 16.19 12.8 26.48 
120 7.38 7.29 1.23 

 

From Fig. 7.5 and Table 7.2, it is observed that the relative difference between the two 

band gap values predicted by the current non-classical and classical models is large when 

the plate is thin (with h = 20 μm here). However, the difference is diminishing with the 

increase of the plate thickness (with h > 120 μm here). 

In addition, it is seen from Tables 7.1 and 7.2 that the band gap size predicted by both 

the current and classical models depends on the inclusion shape. For each plate thickness 

considered, the first band gap size for the composite plate with square inclusions is always 

larger than that for the co-continuous composite with cruciform inclusions for the same 

value of (I)
fV  according to both the current non-classical model and its classical elasticity-

based counterpart. 

 

7.3.2 Effect of the unit cell length on band gaps     

Figure 7.6 displays the first band gap for the periodic composite plate structure with 

square inclusions (see Fig. 7.3(a)) predicted by the current model for different values of 

the unit cell length a. The values of h = 20 µm and 
(I) 16%fV =  are used in obtaining the 

numerical results presented here. 



 
 

162 

  
                                            (a)                                                             (b) 

    
                                             (c)                                                             (d) 

Fig. 7.6 Band gaps for the periodic composite plate structure (with h = 20 µm and 

(I) 16%fV = ) containing square inclusions predicted by the current model for (a) a = 20h, 
(b) a = 40h, (c) a = 100h, and (d) a = 200h. The Bloch wave vector k = (kx, ky) at Γ, X 

and M is, respectively, (0, 0), (π/a, 0) and (π/a, π/a) (see Fig. 7.3(c)). 
 

For the cases with a = 20h, 40h, 100h and 200h, the first band gap frequency range is 

1126.7−1255.5 kHz, 293.74−330.85 kHz, 47.713−53.861 kHz and 11.977−13.512 kHz, 

respectively. The first band gaps calculated from these frequency ranges are listed in Table 

7.3.  
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Table 7.3 First Band gaps for the periodic composite plate structure with square 
inclusions for different values of the unit cell length a predicted by the current model 

(with h = 20 μm) 

a Band Gap (kHz) 
20h 128.8  
40h 37.11 
100h 6.148 
200h 1.535 

 

From Fig. 7.6 and Table 7.3, it is seen that the first frequency for producing the band 

gap becomes lower as the unit cell length a gets larger and the band gap size decreases with 

the increase of a.  

Figure 7.7 displays the first band gap for the periodic co-continuous composite plate 

structure (with h = 20 µm and (I) 16%fV = ) containing cruciform inclusions (see Fig. 7.3(b)) 

predicted by the current model for different values of the unit cell length a. 

 

  
                                        (a)                                                               (b) 



 
 

164 

   
                                         (c)                                                              (d) 

Fig. 7.7 Band gaps for the periodic co-continuous composite plate structure containing 
cruciform inclusions with h = 20 µm predicted by the current model for (a) a = 20h, (b) a 
= 40h, (c) a = 100h, and (d) a = 200h. The Bloch wave vector k = (kx, ky) at Γ, X and M 

is, respectively, (0, 0), (π/a, 0) and (π/a, π/a) (see Fig. 7.3(c)). 
 

For the cases with a = 20h, 40h, 100h and a = 200h, the first band gap frequency range 

is 1171.2−1209.3 kHz, 303.81−313.09 kHz, 49.331−50.811 kHz and 12.395−12.749 kHz, 

respectively. The first band gaps calculated from these frequency ranges are listed in Table 

7.4. 

 
Table 7.4 First Band gaps for the periodic co-continuous composite plate structure with 

cruciform inclusions predicted by the current model (with h = 20 μm) for different values 
of the unit cell length a 

a Band Gap (kHz) 
20h 38.1  
40h 9.28 
100h 1.48 
200h 0.354 

 

From Fig. 7.7 and Table 7.4, it is seen that the band gap size for the periodic co-

continuous composite plate structure decreases with the increase of unit cell length a. From 

Tables 7.3 and 7.4, it is observed that for each unit cell length considered, the first band 

gap size for the composite plate with square inclusions is always larger than that for the 
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composite plate with cruciform inclusions.  

To further illustrate the effect of the unit cell length on band gaps, Fig. 7.8 displays the 

first band gap for the periodic composite plate structure containing square inclusions with 

h = 2 mm, which is much larger than h = 20 µm used in getting the results shown in Fig. 

7.6 or h = 120 µm identified in Section 7.3.1 to be a plate thickness above which the 

microstructure and surface energy effects on band gaps are negligible. The volume fraction 

(I)
fV  remains to be 16%. 

   
                                   (a)                                                               (b) 

      
                                          (c)                                                               (d) 
Fig. 7.8 Band gaps for the periodic composite plate structure containing square inclusions 
with h = 2 mm predicted by the current model for (a) a = 20h, (b) a = 40h, (c) a = 100h, 
and (d) a = 200h. The Bloch wave vector k = (kx, ky) at Γ, X and M is, respectively, (0, 

0), (π/a, 0) and (π/a, π/a) (see Fig. 7.3(c)). 
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Figure 7.8 show the first band gap frequency ranges predicted by the current model for 

the periodic composite plate structure (with h = 2 mm) containing square inclusions with 

different values of the unit cell length: 6616.1−7579.2 Hz for a = 20h, 1717.3−1976.7 Hz 

for a = 40h, 278.04−320.40 Hz for a = 100h, and 69.63−80.25 Hz for a = 200h. The band 

gaps calculated from these frequency ranges are listed in Table 7.5.  

 
Table 7.5 First Band gaps for the periodic composite plate structure with square 

inclusions for different values of the unit cell length a predicted by the current model 
(with h = 2 mm) 

a Band Gap (Hz) 
20h 963.1  
40h 259.4 
100h 42.36 
200h 10.62 

 

It is clear from comparing the numerical values shown in Fig. 7.8 and Table 7.5 that 

both the first frequency for producing the band gap and the band gap size decrease with the 

increases of the unit cell length a, which is the same as that observed from Fig. 7.6 for the 

cases with h = 20 µm. Moreover, as the band gap frequency ranges and band gap sizes 

predicted by the classical elasticity-based model are found to be the same as the 

corresponding ones predicted by the current non-classical model and shown in Figs. 7.8(a)–

(d), which indicates that the effect of the unit cell length on band gaps is present at both 

micro- and macro-length scales. 

 

7.3.3 Effects of the volume fraction on band gaps 

The variations of the first band gap size with the volume fraction of material I are shown 

in Fig. 7.9 for the two different inclusion shapes. For comparison purposes, the first band 
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gap variations predicted by the classical elasticity-based model are also plotted in Fig. 7.9. 

The materials I and II used here are the same as those employed earlier to obtain the 

numerical results displayed in Figs. 7.4-7.8.  

 
Fig. 7.9 First band gap size changing with Vf

(I) predicted by the current and classical 
models for the periodic composite plate structures with square and cruciform inclusions 

(with a = 1 mm, h = 20 μm). 
 

From Fig. 7.9, it is clearly seen that the first band gap size for the periodic composite 

plate structure with square inclusions predicted by the current non-classical model (i.e., the 

pink area) gradually increases with the increase of Vf
(I) from 9% before reaching its 

maximum of 27.94 kHz at Vf
(I) = 20%, after which the first band gap size decreases with 

Vf
(I) until it disappears at Vf

(I) = 31%. Similarly, the first band gap size for the periodic 

composite plate structure with square inclusions predicted by the classical elasticity-based 

model (i.e., the red area) increases from zero to its maximum of 20.99 kHz as Vf
(I) increases 

from 9% to 20% and then decreases with the increase of Vf
(I) until it vanishes at Vf

(I) = 31%. 

For the periodic co-continuous composite plate structure with cruciform inclusions, the 
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size of the first band gap predicted by the current model (i.e., the black area) is gradually 

increasing with Vf
(I) from 14.5% until reaching the maximum value of 19.39 MHz at Vf

(I) = 

24%, and it then decreases with Vf
(I) until it vanishes at Vf

(I) = 33%. However, the first band 

gap predicted by the classical model (i.e., the blue area) increases with Vf
(I) from 14.5% to 

its maximum value of 20.74 MHz at Vf
(I) = 27%, and it is then decreasing with the increase 

of Vf
(I) until it disappears when Vf

(I) becomes 37.5%. These variation trends are similar for 

the periodic composite plate structures with square and cruciform inclusions. However, the 

ranges of the first band gap are different for these two composite plate structures. The 

maximum first band gap size for the composite plate structure with square inclusions is 

larger than that for the co-continuous composite plate structure with cruciform inclusions 

according to both the current and classical models.  

From Fig. 7.9, it is clearly seen that the volume fraction does have a significant effect 

on the first band gap for the two periodic composite plate structures as predicted by both 

the current non-classical model and its classical elasticity-based counterpart. In addition, 

the inclusion shape has a large influence on the band gap. These indicate that large band 

gaps can be attained by tailoring the volume fraction and shape of the inclusion phase. 

 

7.4 Summary  

A new model for predicting band gaps for elastic wave propagation in periodic 

composite plate structures is provided, which is based on the modified couple stress theory 

and surface elasticity theory. The wave equations including the microstructure and surface 

energy effects are solved by using the plane wave expansion method and Bloch theorem to 

determine band gaps. The current non-classical model reduces to its classical elasticity-
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based counterpart when the microstructure and surface energy effects are both suppressed.  

Numerical results are included to illustrate the new model and compare it with the 

classical model for periodic composite plate structures with square or cruciform inclusions. 

It is found that for both the composite structures the microstructure and surface energy 

effects are significant for very thin plates. In addition, the first band gap frequency and the 

band gap size are seen to decrease with the increase of the unit cell length for both the 

inclusion shapes at all length scales. Moreover, the numerical results reveal that the band 

gap size varies significantly with the volume fraction and inclusion shape. 

 

Appendix A 

It is shown here that the shape function ( , )F( )M NG  for the cruciform inclusions 

displayed in Fig. 7.3(b) has the form: 

  
2

( , ) 2 2F( ) ( ) ( ),M N x y x y x y x y x y
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These are listed in Eqs. (7.9) and (7.10a-c) in Section 7.2. 
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Proof. Note that the unit cell of the cruciform inclusion (see Fig. 7.3(b)) can be divided 

into three parts: a large cross structure (part I), a center square inclusion (part II) and a 

small cross structure 3 (part III), as shown in Fig. 7.10. 

When G(M,N) ≠ 0, the shape function for the cruciform inclusion can be obtained from 

Eq. (7.7) as, with the help of the decomposition shown in Fig. 7.10, 
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Fig. 7.10 Decomposition of the cruciform inclusion into three parts 

 

Using Eqs. (A4)–(A6) in (A3) then gives, noting that 

( , )
2 2( , ) ( , )M N x y

M NG G
a a
π π

= =G  and M ≠ 0, N ≠ 0 needed for G(M,N) ≠ 0, 

( , )

2
sin( ) sin( ) sin( ) sin( ) sin( ) sin( )1 2 2 2 2 2 2 .

2 2 22 2 2

M N

y y yx x x

x y x y x y

G d G c G dG d G d G c

F d dc dcG d G d G d G c G c G dA

 
 

= − − 
 
  

G   
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When G(M,N) = 0, Eq. (7.7) yields 

(I)
(I)

( , )( ) .M N f
AF V
A

= =G                                           (A8) 

Combining Eqs. (A7) and (A8) then leads to the shape function listed in Eqs. (A1) and 

(A2a-c), thereby completing the proof. 
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