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Traditionally, time integration methods within multiphysics simulations have been chosen

to cater to the most restrictive dynamics, sometimes at a great computational cost. Multi-

rate integrators accurately and efficiently solve systems of ordinary differential equations that

exhibit different time scales using two or more time steps. In this thesis, we explore three

classes of time integrators that can be classified as one-step multi-stage multirate methods

for which the slow dynamics are evolved using a traditional one step scheme and the fast dy-

namics are solved through a sequence of modified initial value problems. Practically, the fast

dynamics are subcycled using a small time step and any time integration scheme of sufficient

order. The overall contributions of this thesis fall into two main categories. First, we focus

on the derivation of a novel class of integrators which we call implicit-explicit multirate in-

finitesimal generalized-structure additive Runge–Kutta (IMEX-MRI-GARK) methods. We

present third and fourth order conditions for IMEX-MRI-GARK methods, consider their

stability properties, and apply our derived methods to several test problems. In the second

part, we discuss the numerical implementation of recently developed multirate exponential

Runge–Kutta (MERK) and multirate exponential Rosenbrock (MERB) methods and their

application to various test problems. MERK and MERB methods are to date some of the
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highest order multirate methods, with orders of convergence up to fifth and sixth order re-

spectively. We discuss our selection of test problems for exercising these methods, present

ways to experimentally determine an optimal ratio between the slow and fast time scales,

and compare the performance of several multirate methods.
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Chapter 1

Introduction

1.1. Multiscale nature of multiphysics problems

One of the defining features of multiphysics applications is the coupling of multiple phys-

ical phenomena. Examples of multiphysics processes are ubiquitous in the sciences for exam-

ple in the atmospheric sciences, multiphase fluid flows, material sciences, or cosmological sci-

ences. The simultaneous interaction of multiple physical processes often means multiphysics

applications are multiscale in both space and time. The study of multiscale problems is very

active with efforts focused on both creating multiscale models and accompanying numerical

algorithms. A major driving force in the research of multiscale problems are the advances in

high performance computing which have made it feasible for scientists to explore large-scale

simulations and continue to add complexity to existing models. However, multiscale prob-

lems remain a challenge to many traditional numerical algorithms which were historically

designed to cater to some aspects of the physics but can fail to capture the complete picture

satisfactorily in terms of accuracy, stability, and computational efficiency.

1.2. Multiple temporal scales

In this thesis we focus on the challenge of dynamical systems with components of differing

characteristic timescales. Differing temporal scales can occur as a result of actual differences

in rates of evolution in a system of ordinary differential equations (ODEs), for example, in

the simulation of cloud microphysics which are part of a larger system of climate processes,

condensation (the autoconversion of cloud droplets to form rain) occurs at a slower pace than

sedimentation (the falling of cloud particles relative to air) which can occur at rates up to
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a hundred times faster. Uneven spatial discretizations can also result in a mixture of stable

time steps leading to stiff terms - those that need a small time step for stable integration

and non-stiff terms that can be evolved with a larger time step. Multirate time integration

schemes are numerical algorithms that evolve a system of ODEs using two or more time step

sizes. For many applications of multirate schemes, the main motivation for using a large

time step for the slow dynamics is their computational cost. The less frequently we must

evaluate the slow dynamics, the less the computational cost, additionally, within parallel

implementations, the less the communication costs.

1.3. Motivation for high-order methods

Multirate schemes that are frequently used in multiphysics simulations today are operator

splitting approaches that often have low accuracy (commonly up to order 2 convergence),

limited coupling between different components leading to poor stability, and low compu-

tational efficiency. The case for high-order multirate schemes that have stronger coupling

between components while also providing increased computational efficiency is therefore im-

mediate. The need for these methods is also being propelled by the eminent migration of

many multiphysics simulations from low-order spatial resolutions to high-order resolutions,

this is particularly the case in climate simulations [47] .

1.4. Aim of thesis

The body of work that constitutes this thesis is focused on introducing new classes of

efficient high-order multirate schemes, analysing their convergence and stability properties,

investigating their numerical implementation, and devising ways to rigorously test them.

The methods explored in this body of work can be classified as one-step multi-stage multi-

rate methods for which the slow dynamics are evolved using some base integration scheme

(implicit-explicit additive Runge–Kutta, exponential Runge–Kutta, exponential Rosenbrock

) and the fast dynamics are assumed to be solved exactly through use of modified initial value
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problems (IVPs). Practically, the fast dynamics are subcycled using any integration scheme

of sufficient order. Subcycling with a much smaller time step defines the ‘infinitesimal’ nature

of these methods. Throughout this thesis, we will therefore refer to these methods as multi-

rate infinitesimal step (MIS)-type methods, named after some of the pioneering methods in

the field which we further explore in Section 2.2 .

Remark 1.4.1. The terms ordinary differential equation (ODE) and initial value problem

(IVP) are used interchangeably throughout this thesis.

1.5. Multirate splitting

Throughout this thesis we consider systems of ODEs of the form:

y′(t) = f(t, y) =
N∑
q=1

f {q}(t, y), y(t0) = y0, t ≥ t0, y ∈ Rn, (1.1)

where the right hand side can be split additively into N components, separated by stiffness,

nonlinearity, rate of evolution, or computational cost. We focus on problems with N = 2 or

N = 3. In the case of two components, we have a slow component f {S} and a fast component

f {F}

y′(t) = f {S}(t, y) + f {F}(t, y), y(t0) = y0, t ≥ t0, y ∈ Rn. (1.2)

The slow dynamics are treated with a large time step H while the fast dynamics use a much

smaller time step h = H/m, where m ≥ 1 is the integer timescale separation factor also

known as a subcycling factor. We note that an additive splitting also encompasses the case

of component partitioned systems. A component partitioned system is defined as


y{F}

y{S}


′

=


f {F}(t, y{F}, y{S})

f {S}(t, y{F}, y{S})

 ,

y{F}(t0)

y{S}(t0)

 =


y
{F}
0

y
{S}
0

 (1.3)
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which we can write equivalently in the additive form


y{F}

y{S}


′

=


0

f {S}(t, y{F}, y{S})

+


f {F}(t, y{F}, y{S})

0

 ,

y{F}(t0)

y{S}(t0)

 =


y
{F}
0

y
{S}
0

 . (1.4)

When there are additional variations in stiffness of the slow component, we can further

split the slow component into a slow-stiff component f {I} to be integrated implicitly and a

slow-nonstiff component f {E} to be integrated explicitly:

y′(t) = f {I}(t, y) + f {E}(t, y) + f {F}(t, y), y(t0) = y0, t ≥ t0, y ∈ Rn. (1.5)

The three-way additively split problem provides extra flexibility in how the slow operators

are treated which can be particularly useful for systems that have an advection-diffusion-

reaction like structure. In this scenario, both advection and diffusion constitute the slow

dynamics while quickly evolving reactions are the fast dynamics. We note that similar

mixed implicit+explicit (IMEX) treatment of the fast time scale is immediately possible

with any (MIS)-type method, since these techniques do not place any constraints on how

the modified IVPs at the fast time scale are solved.

1.6. Review of multirate methods

In this section we give a general survey of multirate methods with the intention of fur-

nishing the overall context for methods explored in this thesis. Although we list a variety of

multirate methods, the overall goal of this section is to highlight examples of methods whose

theories we extend, their orders of accuracy, and how flexible they are in treating the fast and

slow time scales. Within the multirate community there has been different terminology for

describing methods that apply two or more time steps to a system of ODEs, with different

fields of application coining separate definitions. In this thesis we almost exclusively use the
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term ‘multirate methods’ which is common in numerical analysis. However, we note that

the literature of multirate methods also includes some other commonly used variations like

multiple time stepping methods, variable time stepping methods, or subcycling algorithms.

1.6.1. Operator splitting approaches

Perhaps the most widely used in application sciences are operator splitting approaches to

multirating. Starting with (1.2) (though the process can be generalized to (1.5) and (1.1)),

the overall idea of operator splitting is to treat the original problem as different subproblems.

In the case of multirate methods, these subproblems allow different time step sizes. Thus,

(1.2) can be broken up into two equations

y′(t) = f {S}(t, y), and y′(t) = f {F}(t, y), (1.6)

that are then solved sequentially, with the solution to the first subproblem serving as an

initial condition in the second problem. The simplest operator splitting approach for (1.2)

is Lie-Trotter, for example as presented in [76]. To advance from tn to tn + H, Lie-Trotter

proceeds as follows:

y
(1)
n+1 = yn +Hf {S}(tn, yn), (1.7)

Solve


v(0) = y

(1)
n+1,

v′(θ) = f {F}(tn + θ, v), for θ ∈ [0, H],

yn+1 = v(H).

Here y
(1)
n+1 is the solution to the slow subproblem, computed with a forward Euler step, that

serves as the initial condition to the fast subproblem that can in turn be solved with another

forward Euler step or otherwise, but with smaller time steps h. The Lie-Trotter approach is
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at most first-order accurate. Another commonly used approach is the second-order accurate

Strang-Marchuk [75, 103] method, e.g.

y
(1)
n+1 = yn + H

4
f {S} (tn, yn) (1.8)

+ H
4
f {S}

(
tn + H

2
, yn + H

2
f {S} (tn, yn)

)
,

Solve


v(0) = y

(1)
n+1,

v′(θ) = f {F} (tn + θ, v) , for θ ∈ [0, H],

y
(2)
n+1 = v(H),

yn+1 = y
(2)
n+1 + H

4
f {S}

(
tn + H

2
, y

(2)
n+1

)
+ H

4
f {S}

(
tn+1, y

(2)
n+1 + H

2
f {S}

(
tn + H

2
, y

(2)
n+1

))
.

We note that here, the updates yn → y
(1)
n+1 and y

(2)
n+1 → yn+1 correspond to using the explicit

Heun method for a half time-step each. Though our presentation here is limited to the case

where the slow dynamics are evolved by an explicit scheme, both approaches are quite flexi-

ble in how they treat both the fast and slow dynamics, allowing implicit, explicit, or IMEX

treatment of both time scales. In fact, to our knowledge, Lie-Trotter and Strang-Marchuk are

the only multirate methods prior to this thesis that have demonstrated application of IMEX

splittings at the slow time scale. A major drawback of both approaches is the low-order of

accuracy. Higher-order operator splitting methods, for example the fourth-order symplectic

integrators by Yoshida [108] that target Hamiltonian systems, are possible. However, many

higher-order operator splitting approaches involve backward in time integration which can

lead to instabilities or inefficiencies in implementation [32].
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1.6.2. General overview of multirate methods

One of the earliest multirate works based on Runge–Kutta methods dates back to Rice

in 1960 [80]. Andrus also investigated multirate Runge–Kutta based methods starting with

[2] and following up with investigations into stability [1]. Other authors that are often

considered among the first to closely look at multirate methods are Gear and Wells, whose

approaches are based off linear multistep methods. In their studies [35, 36] from 1974 and

onwards, Gear and Wells gave detailed theoretical considerations for multirate methods that

evolve the slow and fast time scale separately, but share information between the different

dynamics through linear interpolation. Among these theoretical contributions were advances

in error analysis, linear stability theory, and time adaptivity.

There have been several multirate methods based on traditional time integration tech-

niques in the literature, including linear multistep [36, 89], extrapolation [7, 20, 28, 22],

Runge–Kutta [64, 63, 41] and Rosenbrock approaches [43, 96]. With the exception of ex-

trapolation methods that can theoretically be of arbitrary order, most of these approaches

have been limited to third-order convergence, with explicit slow and fast components, and

little to no flexibility for implicit or IMEX treatment at the slow time scale. Although extrap-

olation based methods can reach arbitrary accuracy, they can be cost prohibitive. In a recent

preprint, Bartel and Günther [5] provide a unified order condition theory for interpolation

and extrapolation multirate methods.

Several multirate methods [21, 90, 41] have also utilized partitioned Runge–Kutta theory

applied to methods of the form (1.3), whose theory is outlined in [45]. The generalized-

structure additive Runge–Kutta (GARK) framework by Sandu and Günther in [92] builds

upon ideas from partitioned Runge–Kutta theory to form a more generalized class of additive

Runge–Kutta methods. Subsequent work from Günther and Sandu in the derivation of

multirate GARK (MRGARK) theory [42] has led to several new multirate methods of higher-

order. The GARK formalism has allowed development of several multirate schemes with up

to fourth-order convergence. Multirate GARK methods from Sarshar et al. [94] are among
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the first of this kind to involve implicit solutions for both the slow and fast time scales and

investigate time step control. Time adaptivity for multirate GARK schemes has also been

investigated by Bremicker-Trübelhorn and Ortleb [8, 9].

A particularly successful recipe to constructing multirate methods is coupling fast and

slow components through the infinitesimal step approach to form what we refer to as MIS-

type methods. Knoth and Wolke [61] originally designed the infinitesimal step approach

with an explicit treatment of the slow time scale and the ‘exact’ solution of the fast time

scale through solving modified ODEs that bring in information from the slow dynamics.

In implementation, the fast time scale can then be solved with any integrator: implicit,

explicit or IMEX, and is typically subcycled using smaller steps than the slow time scale.

Multiple third-order MIS-type methods were constructed using this idea [98, 99, 107], with

the term MIS being coined by Wensch, Knoth, and Galant in [107]. Recently, since the

introduction of GARK and MGARK order theory, several new multirate methods have

used a combination of GARK theory and MIS structure to form fourth-order approaches.

Sexton and Reynolds investigated some of the first fourth-order explicit at slow MIS-type

methods in [102]. Sandu in his 2019 paper [88] introduced the first MIS-type fourth-order

implicit at slow schemes called multirate infinitesimal GARK (MRI-GARK) methods. More

investigations into implicit at slow MIS-type methods, including contributions to stability

analysis followed from Roberts et al. [84, 81]. Bauer and Knoth also extended the original

MIS methods to fourth-order [6]. By leveraging exponential Runge–Kutta theory, Luan,

Chinomona, and Reynolds [68] (included in this thesis) developed the very first fifth-order

MIS-type methods. Some of the most recent work on MIS-type methods is in a preprint by

Chinomona and Reynolds [15] (included in this thesis) and extends MRI-GARK methods to

have a more flexible IMEX treatment of the slow time scale. Preprints from Roberts et al.

[82] and [40] also investigate new MIS-type multirate methods.
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1.7. Thesis outline and summary of contributions

This dissertation is comprised of six chapters, in the structure: introduction (Chapter

1), background theory (Chapter 2), new results (Chapters 3-6), and conclusion (Chapter 7).

The following is a brief summary of contributions:

Chapter 1 motivates the need for high-order multirate schemes, discusses the different

multirate splittings, and gives a general overview of multirate methods.

Chapter 2 introduces some of the building blocks of the classes of methods explored in

this thesis, namely the GARK framework, MIS methods, and multirate infinitesimal GARK

methods.

Chapter 3 advances the theory of multirate methods through the introduction of a new

class of multirate methods that leverage GARK theory and extend the ideas of MIS methods

to three-way additively split ODEs. We develop methods called implicit-explicit multirate

infinitesimal GARK (IMEX-MRI-GARK) that involve an IMEX splitting at the slow time

scale. IMEX-MRI-GARK methods can be expressed within the GARK framework leading

to the derivation of third- and fourth-order conditions. There is currently no consistent

way of analyzing linear stability for multirate methods so we extend the concept of joint

stability which was first applied to two-step Runge–Kutta methods by Zharovsky, Sandu,

and Zhang [111] and apply it to IMEX-MRI-GARK methods. We construct two third-order

methods (with one optimized for joint stability), and one fourth-order method. Numerical

simulations of IMEX-MRI-GARK methods in MATLAB and C confirm convergence rates,

provide insight into the parallel scalability of IMEX-MRI-GARK methods to larger problem

sizes, and demonstrate efficiency and performance in comparison with legacy IMEX multirate

approaches and implicit MRI-GARK methods. This work has been submitted for publication

and is currently in the review process.

Chapter 4 takes a closer look at joint stability and the construction of fourth-order

methods optimized for stability. We derive a new set of fourth-order coefficients, present

stability plots that satisfy a relaxed definition of joint stability, and demonstrate comparable
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orders of convergence and performance to IMEX-MRI-GARK methods in Chapter 3, but

with improved stability at larger step sizes. This corresponds to some of the most recent

work in this thesis and will hopefully form the backbone of another publication.

Chapter 5 introduces a new approach for constructing higher-order (MIS)-type multirate

methods – multirate exponential Runge–Kutta (MERK) methods. MERK methods are built

on a slow base of explicit exponential Runge–Kutta methods and follow the same structure as

MIS methods of evolving the fast dynamics using modified ODEs. Modified ODEs replace the

often costly matrix function evaluations associated with exponential Runge–Kutta methods.

We provide the underlying theory of MERK methods, the MERK algorithm and convergence

results. In addition, we present second-, third-, fourth-, and the very first fifth-order methods

of MIS-type. This chapter contains our published work in the SIAM Journal on Scientific

Computing [68] on this topic, and the contributions to note for the purposes of this thesis are

in the numerical implementations of MERK methods. We investigate test problem choice

for analyzing MERK methods or any multirate method, introduce ways to find the optimal

time scale separation factors for each method and each test problem, and run verification

tests crucial to the overall analysis of the methods.

Chapter 6 introduces another new approach for constructing even higher-order (MIS)-

type multirate methods – multirate exponential Rosenbrock (MERB) methods. MERB

methods are also of MIS-type and closely follow the same ideas in their derivation as MERK

methods, however these start with an exponential Rosenbrock slow base method. We discuss

the derivation of MERB methods and present methods up to sixth-order. As with the MERK

chapter, the overall contributions to this thesis are in the numerical implementations of

MERB methods ; we are currently drafting this manuscript for submission later this Spring.

MERB methods are unlike other MIS-type methods because they dictate the splitting into

fast and slow components through linearization of the right hand side at each time step

(dynamic linearization). We present two test problems that best illustrate the performance

of MERB methods using this somewhat restrictive splitting. We confirm convergence rates
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for MERB methods and show their competitiveness compared to MERK and MRI-GARK

methods. Our approach in comparing efficiency and performance results involves considering

both dynamic linearization and other more common splittings for MERK and MRI-GARK

methods. Another major highlight of our work in this chapter is our demonstration that

MERK methods can be applied to nonlinear problems through the dynamic linearization

approach.

Chapter 7 is the final chapter of this thesis and gives an overall conclusion and discussion

of future works.
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Chapter 2

Background Theory

In this chapter, we introduce some of the fundamental building blocks for the multi-

rate methods we explore in this thesis, particularly those in Chapter 3. First, we describe

generalized-structure additive Runge–Kutta (GARK) theory for representing families of gen-

eral and additive Runge–Kutta methods. Our presentation of GARK methods is geared

towards its use in Chapter 3. Next, we discuss multirate infinitesimal step (MIS) methods,

presenting the unifying idea for all multirate methods explored in this thesis, and making

connections with GARK theory. Lastly, a combination of GARK and MIS theory results in

multirate infinitesimal GARK (MRI-GARK) methods that can handle implicitness at the

slow time scale and can attain fourth-order convergence. We describe their order conditions,

linear stability considerations, and construction. Our work in Chapter 3 directly extends

MRI-GARK methods to allow an IMEX treatment of the slow time scale.

2.1. Generalized-structure additive Runge–Kutta theory

In this section we introduce the GARK framework by Sandu and Günther [92]. The

GARK framework generalizes additive Runge–Kutta theory to allow flexibility in the stage

values passed into different right hand side components. It was designed as a tool upon

which time integration schemes for multiphysics processes like multirate methods can easily

be built. In this thesis we use GARK theory to derive order conditions for the class of

multirate methods we explore in Chapter 3. The GARK formulation applies to ODEs with

additively split right hand sides (1.1). Here we give the GARK representation for the case

when the right hand side is split into three components (1.5).
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One step of a GARK scheme from tn to tn + H is composed of stages Y
{I}
i , Y

{E}
i , Y

{F}
i

and solution update yn+1 represented by

Y
{I}
i = yn +H

s{I}∑
l=1

a
{I,I}
i,l f {I}

(
Y
{I}
l

)
+H

s{E}∑
l=1

a
{I,E}
i,l f {E}

(
Y
{E}
l

)
+H

s{F}∑
l=1

a
{I,F}
i,l f {F}

(
Y
{F}
l

)
,

(2.1a)

Y
{E}
j = yn +H

s{E}∑
l=1

a
{E,E}
j,l f {E}

(
Y
{E}
l

)
+H

s{I}∑
l=1

a
{E,I}
j,l f {I}

(
Y
{I}
l

)
+H

s{F}∑
l=1

a
{E,F}
j,l f {F}

(
Y
{F}
l

)
,

(2.1b)

Y
{F}
k = yn +H

s{F}∑
l=1

a
{F,F}
k,l f {F}

(
Y
{F}
l

)
+H

s{I}∑
l=1

a
{F,I}
k,l f {I}

(
Y
{I}
l

)
+H

s{E}∑
l=1

a
{F,E}
k,l f {E}

(
Y
{E}
l

)
,

(2.1c)

yn+1 = yn +H
s{I}∑
l=1

b
{I}
l f {I}

(
Y
{I}
l

)
+H

s{E}∑
l=1

b
{E}
l f {E}

(
Y
{E}
l

)
+H

s{F}∑
l=1

b
{F}
l f {F}

(
Y
{F}
l

)
,

(2.1d)

This form (2.1) does not assume the use of different time steps. Coefficients for a three

component GARK method for (1.5) can be written in a Butcher tableau:

A{I,I} A{I,E} A{I,F}

A{E,I} A{E,E} A{E,F}

A{F,I} A{F,E} A{F,F}

b{I}T b{E}T b{F}T

(2.2)

where
(
A{q,q},b{q}

)
represents an integration scheme applied to the component q and

A{q,p}, p 6= q are the coupling coefficients between integration schemes. Internal consistency
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conditions within the GARK framework are

c
{q}
i =

s{I}∑
j=1

a
{q,I}
i,j =

s{E}∑
j=1

a
{q,E}
i,j =

s{F}∑
j=1

a
{q,F}
i,j , i = 1, · · · , s{q}, q = I, E, F. (2.3)

It is important to note that though we present GARK schemes in autonomous form, i.e. the

right hand side depends only on the solution as in f(y), we can easily transform to non-

autonomous form f(t, y) by using “t = tn + ciH ” that corresponds to c
{q}
i in the internal

consistency condition.

The order conditions for GARK methods are derived from ordinary Runge–Kutta order

conditions and the use of N-tree theory from Araujo, Murua, and Sanz-Serna [3]. We repro-

duce the matrix-vector form of the GARK order conditions from [91]. The order conditions

for GARK methods up to order 4 (assuming internal consistency) for σ, ν, λ varying over

{I, E, F} are as follows:

b{σ}T1{σ} = 1, ∀σ, (order 1) (2.4a)

b{σ}Tc{σ} =
1

2
, ∀σ, ν, (order 2) (2.4b)

b{σ}Tc{σ}×2 =
1

3
, ∀σ, ν, (order 3) (2.4c)

b{σ}TA{σ,ν}c{ν} =
1

6
, ∀σ, ν, (order 3) (2.4d)

b{σ}Tc{σ}×3 =
1

4
, ∀σ, ν, (order 4) (2.4e)

(
b{σ} × c{σ}

)T
A{σ,ν}c{ν} =

1

8
, ∀σ, ν, (order 4) (2.4f)

b{σ}TA{σ,ν}c{ν}×2 =
1

12
, ∀σ, ν, (order 4) (2.4g)

b{σ}TA{σ,ν}A{ν,λ}c{λ} =
1

24
, ∀σ, ν, λ, (order 4) (2.4h)
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where 1{σ} is vector of ones in Rs{σ}×1, a× b denotes element-wise multiplication while c×k

denotes element-wise exponentiation.

Note that to create a second-order GARK method, the individual component tables

A{q,q} only need to satisfy second order Runge–Kutta conditions and there are no additional

coupling conditions on A{q,p}, p 6= q. Standard Runge–Kutta methods and additive Runge–

Kutta (ARK) methods can all be expressed as GARK methods with their complete set of

order conditions represented in (2.4). Within the GARK framework, one step of an ARK

method applied to (1.2) can be written as

Yi = yn +H
s∑
j=1

a
{S,S}
i,j f {S} (Yj) +H

s∑
j=1

a
{F,F}
i,j f {F} (Yj) , (2.5)

yn+1 = yn +H
s∑
i=1

b{S}f {S}(Yi) +H
s∑
i=1

b{F}f {F}(Yi). (2.6)

2.2. Multirate infinitesimal step methods

The idea behind multirate infinitesimal step methods (MIS) was originally featured in

Knoth and Wolke’s 1998 paper [61] and further developed by Knoth, Wolke and collaborators

in [60, 98, 100, 101, 107]. Here for ease of comparison with other MIS-type methods, we use

the notation for MIS methods used by Sandu [88]. MIS methods in their original form have

an explicit slow base s{S}-stage Runge–Kutta method with coefficients (A{S}, b{S}, c{S}) and

sorted 0 ≤ c
{S}
1 ≤ c

{S}
2 ≤ · · · ≤ c

{S}
s{S}
≤ 1. One step of an MIS method tn to tn + H applied

to the two-way additive problem (1.2) proceeds as follows:

Let : Y
{S}

1 := yn (2.7a)

For i = 2, . . . , s{S} :
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

Let: v(0) := Y
{S}
i−1 ,

Solve: v′ = f {F} (v) +
i−1∑
j=1

a
{S}
i,j −a

{S}
i−1,j

c
{S}
i −c{S}i−1

f {S}(Y {S}j ), for τ ∈ [0, (c
{S}
i − c{S}i−1)H],

Let: Y
{S}
i := v((c

{S}
i − cs{S}i−1 )H),

(2.7b)

Compute step solution:



Let: v(0) = Y
{S}
s{S}+1

,

Solve: v′ = f {F} (v) +
∑s{S}

j=1

b
{S}
j −a{S}

s{S},j

1−c{S}
s{S}

f {S}(Y {S}j ), τ ∈ [0, (1− c{S}
s{S}

)H],

Let: yn+1 := v((1− c{S}
s{S}

)H),

(2.7c)

Here Y
{S}
i are the slow stages and yn+1 is the step solution. The MIS idea which carries on

as a unifying theme in this work is the integration of a modified ODE (2.7b) with small time

steps h � H between each of the slow stages. This modified ODE is a combination of the

fast process with a forcing term which is a linear combination of the slow processes evolved

at previously computed slow stages. The coefficients in this linear combination are constant

terms derived from the coefficients of the slow base Runge–Kutta method. These coefficients

are sometimes referred to as “tendency terms” [107] or “slow tendency terms” [87]. In this

format, the modified ODE can be solved with any method of qualifying order, typically the

same order as the MIS method. The last modified ODE (2.7c) to get the step solution yn+1

is only necessary if the ‘stiffly accurate’ condition, a
{S}
s{S},j

= b
{S}
j for all j = 1, . . . , s{S}, is

not satisfied. For ease of analysis, methods such as multirate infinitesimal GARK methods

which we discuss in the next section, pad the slow table with b
{S}
j ’s in this case, allowing the

entire fast modified ODE solution (2.7c) to be removed.

MIS methods satisfy a number of desirable properties. First, a second-order accurate MIS

method only requires second-order accurate Runge–Kutta methods for the slow base and fast

inner method; no additional conditions are imposed. Second, the work of Günther and Sandu

16



in [42] shows that MIS methods can be cast into the GARK framework, by assuming that

(2.7b) is solved by a Runge–Kutta method
(
A{F}, b{F}, c{F}

)
with s{F} stages, and then

determining the corresponding GARK coefficient matrices
(
A{S,S},b{S}

)
,
(
A{F,F},b{F}

)
,

and coupling matrices
(
A{F,S},A{S,F}

)
. Additionally, assuming we have third-order slow

base and inner fast methods, Günther and Sandu in [42] identified a necessary and sufficient

condition on the slow table (A{S}, b{S}, c{S}) to guarantee that the MIS method is in fact

third order accurate:

s{S}∑
i=2

(ci − ci−1) (ei + ei−1)T A{S}c{S} +
(

1− c{S}
s{S}

)(1

2
+ eTs{S}A

{S}c{S}
)

=
1

3
. (2.8)

It is therefore fairly easy to create MIS methods of up to third-order. Furthermore, MIS

methods can use the same method for the slow base and the inner ODE solve, allowing for

‘telescopic’ multirate methods that nest multiple MIS methods inside one another to achieve

an N -way multirate method. Finally, MIS method only require a single traversal of the time

interval [tn, tn +H] making them highly efficient.

Combining MIS methods and the GARK framework has proved to be a fruitful avenue

for the creation of fourth-order multirate methods. Sexton and Reynolds [102] came up with

their fourth-order relaxed MIS methods (RMIS) from using combinations of f {S}(Y {S}i ) and

f {F}(Y {S}i ) in computing yn+1. Sandu [88] came up with his multirate infinitesimal GARK

(MRI-GARK) methods which introduce a time dependent forcing term to (2.7b) allowing

for fourth-order implicit and explicit multirate methods. MRI-GARK methods form the

backbone of the methods in chapter 3 and are introduced in the next section.

2.3. Multirate infinitesimal GARK methods

Multirate infinitesimal GARK methods were developed by Sandu in 2019 [88] for the

two-way additive problem (1.2). They arise from leveraging MIS theory and GARK theory.

Similar to MIS methods, MRI-GARK methods start with an internally consistent ŝ{S} stage
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slow Runge–Kutta base method
(
Â{S}, b̂{S}, ĉ{S}

)
, but unlike MIS methods this base method

can be explicit or diagonally implicit with explicit first stage (traditionally referred to as

‘EDIRK’). The abscissae for MRI-GARK methods are also ordered to facilitate forward in

time movement. For ease of notation we pad Â{S} with the row b̂{S}T if the Runge–Kutta

table does not meet the stiffly accurate condition. Once the original table is padded, we

have an outer Runge–Kutta method with s{S} stages (equaling either ŝ{S} or ŝ{S} + 1) and

coefficients A{S} ∈ Rs{S}×s{S} and b{S} ∈ Rs{S}×1 with c
{S}
s{S}

= 1. We can define the increments

between the abscissae by:

∆c
{S}
i :=


0, i = 1,

c
{S}
i − c{S}i−1 ≥ 0, i = 2, . . . , s{S}.

(2.9)

Unlike in Sandu’s presentation [88], where ∆c
{S}
1 is not necessarily equal to zero, we define it

as zero here for an easily identifiable structure for implicit MRI-GARK methods. One step

of an MRI-GARK method from tn to tn +H when integrating (1.2) proceeds as follows:

Let : Y
{S}

1 := yn (2.10a)

For i = 2, . . . , s{S} :



Let: v(0) := Y
{S}
i−1 and Ti = tn + c

{S}
i H,

Solve: v′(θ) = ∆c
{S}
i f {F}

(
Ti + ∆c

{S}
i θ, v

)
+

i∑
j=1

γi,j(
θ
H

)f {S}(Tj, Y
{S}
j ), for θ ∈ [0, H],

Let: Y
{S}
i := v(H),

(2.10b)

yn+1 = Y
{S}
s{S}

. (2.10c)
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The slow tendency coefficients which dictate the coupling from the slow to the fast time scale

are time dependent polynomials γi,j(τ) defined as

γi,j(τ) :=
∑
k≥0

γki,jτ
k, (2.11)

where typically 0 ≤ k ≤ 2. Additionally, we define coefficients

γ̄i,j :=
∑
k≥0

γki,j
k + 1

, (2.12)

that are directly related to the slow base method A{S}. The coefficients γi,j(τ) and γ̄i,j can

be populated into matrices of the form

Γ(τ) =
∑
k≥0

Γkτ k, Γ =
∑
k≥0

1

k + 1
Γk.

We note that for our definition of MRI-GARK methods here, Γ(τ) is strictly lower triangular

for explicit MRI-GARK methods and lower triangular for implicit MRI-GARK methods.

The major difference between MIS and MRI-GARK methods are the slow tendency

terms. As we have seen in the last section, the coefficients of the linear combination of

slow function evaluations used in (2.7b) are constants. The extension to time dependent

polynomials provides more degrees of freedom to achieve higher-order methods. An MRI-

GARK is defined when the coefficient matrices Γk and the abscissae c{S} are specified.

2.3.1. Order conditions

Similar to MIS methods, we can derive the MRI-GARK order conditions by apply-

ing to the modified ODEs (2.10b), a single step of an s{F}-stage Runge–Kutta method(
A{F}, b{F}, c{F}

)
that has at least the same order of accuracy as the MRI-GARK method.

We can then identify the GARK slow table and slow-fast coupling coefficient matrices as
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follows

A{S,S} := EΓ = A{S} (2.13a)

b{S} := 1
{S}TΓ = b{S}, (2.13b)

c{S} := EΓ1{S} = A{S}1{S} = c{S}, (2.13c)

A{S,F} :=

[
A{S,F,1}, · · · , A{S,F,s

{S}}

]
= ∆C{S} ⊗ b{F}T ∈ Rs{S}×s. (2.13d)

Here s = s{F}s{S} is the total number of stages of the method, ⊗ is the Kronecker product,

1
{S} ∈ Rs{S} is a column vector of all ones,

E ∈ Rs{S}×s{S} , Ei,j =


1, i ≥ j,

0, otherwise,

, ∆C{S} :=



∆c
{S}
1 0{F}T · · · 0{F}T

∆c
{S}
1 ∆c

{S}
2 · · · 0{F}T

...
...

. . . 0{F}T

∆c
{S}
1 ∆c

{S}
2 · · · ∆c

{S}
s{S}


,

and 0{F} is a column vector of all zeros in Rs{F} . We note that (2.13a) gives a consistency

condition between the slow Runge–Kutta method and the MRI-GARK coefficients Γ.
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The GARK fast table and fast-slow coupling coefficients are as follows:

A{F,F} :=



∆c
{S}
1 A{F} 0s{F}×s{F} · · · 0s{F}×s{F}

∆c
{S}
1 1

{F}b{F}T ∆c
{S}
2 A{F} · · · ...

∆c
{S}
2 1

{F}b{F}T · · ·

...
...

. . .
...

∆c
{S}
1 1

{F}b{F}T ∆c
{S}
2 1

{F}b{F}T · · · ∆c
{S}
s{S}

A{F}



(2.14a)

= diag
(
∆c{S}

)
⊗ A{F} + L∆C{S} ⊗ 1

{F}b{F}T ∈ Rs×s,

c{F} :=



∆c
{S}
1 c{F}

c
{S}
1 1

{F} + ∆c
{S}
2 c{F}

...

c
{S}
s{S}−1

1
{F} + ∆c

{S}
s{S}

c{F}


= Lc{S} ⊗ 1

{F} + ∆c{S} ⊗ c{F} ∈ Rs, (2.14b)

b{F} :=



∆c
{S}
1 b{F}

...

∆c
{S}
s{S}

b{F}


= ∆c{S} ⊗ b{F} ∈ Rs, (2.14c)
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A{F,S} :=



0s{F}×s{S}

1
{F}(eT1A{S})+

∑
k≥0

(
A{F}c{F}×k

)(
eT2 Γ{k}

)
...

1
{F}(eT

s{S}−1
A{S}

)
+
∑
k≥0

(
A{F}c{F}×k

)(
eT
s{S}

Γ{k}
)


(2.14d)

= LA{S} ⊗ 1
{F} +

∑
k≥0

Γ{k} ⊗
(
A{F}c{F}×k

)
∈ Rs×s{S} ,

where diag
(
∆c{S}

)
is the diagonal matrix obtained by taking ∆c{S} as its diagonal entries,

and L ∈ �s{S}×s{S} has entries Li,j := δi,j+1. As expressed by Sandu in [88], once the

GARK table coefficients have been determined, internal consistency conditions for MRI-

GARK methods, c{S} = c{S} and c{F} = c{F,S} hold if and only if

Γ0
1
{S} = ∆c{S} and Γk1{S} = 0 ∀k ≥ 1. (2.15)

It then follows from GARK order conditions that if both the fast and slow methods have order

at least two and satisfy internal consistency conditions, the resulting MRI-GARK method

is second order. Furthermore, the fast and slow conditions for an MRI-GARK method of

order q are satisfied by selecting slow and fast base Runge–Kutta methods that are of order

q. Maintaining our notation in defining MRI-GARK methods, we list the relevant theorems

from [88] on third and fourth order MRI-GARK methods.

Theorem 2.3.1. Third-order coupling condition.

An internally consistent MRI-GARK method has order three if and only if the slow base

method has order at least three and the following third order coupling condition holds:

∆c{S}TA{I,ζ}c{S} =
1

6
, (2.16)
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where

A{S,ζ} = LA{S} +
∑
k≥0

ζkΓ
{k} and ζk = b{F}TA{F}c{F}×k. (2.17)

Theorem 2.3.2. Fourth-order coupling conditions.

An internally consistent MRI-GARK method has order four if and only if the slow base

method has order at least four, satisfies all the third order conditions and the following

coupling conditions hold:

(
∆c{S} × Lc{S}

)T
A{S,ζ}c{S} +

(
∆c{S}×2

)T
A{S,β}c{S} =

1

8
, (2.18a)

∆c{S}TA{S,ζ}c{S}×2 =
1

12
, (2.18b)

(
∆c{S} × (Db{S})

)T
A{ν,ζ}c{S} =

1

24
, (2.18c)

(
∆c{S}×2

)T
A{S,ξ}c{S} + ∆c{S}TL∆C{S}A{S,ζ}c{S} =

1

24
, and (2.18d)

∆c{S}TA{S,ζ}A{S}c{S} =
1

24
, (2.18e)

where

A{S,β} :=
1

2
LA{S} +

∑
k≥0

βkΓ
{k}, A{S,ξ} :=

1

2
LA{S} +

∑
k≥0

ξkΓ
{k}, (2.19)

Li,j = δi,j+1, Di,j =


1, j ≥ i,

0, otherwise,

βk := (b{F} × c{F})TA{F}c{F}×k, and ξk := b{F}TA{F}A{F}c{F}×k. (2.20)
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2.3.2. Linear stability

Linear stability for regular Runge–Kutta methods is concerned with the behavior of the

numerical solution as t→∞ for a fixed step size H. To investigate linear stability the test

problem

y′(t) = λy(t), y(t0) = y0, λ ∈ C, (2.21)

with exact solution y(t) = y0e
λt is considered. Since the stability of (2.21) is guaranteed

for Re(λ) < 0, the idea is to check if the numerical method is also stable for Re(λ) < 0.

Applying a Runge–Kutta method to (2.21) leads to an iteration yn+1 = R(Hλ)yn, for some

stability function R(Hλ). The stability region associated with the Runge–Kutta method is

therefore the set of all z = Hλ ∈ C such that |R(z)| ≤ 1.

Similar notions of linear stability can be formulated for multirate methods, however,

there is currently no standardized approach for assessing linear stability. To assess the

linear stability of MRI-GARK methods, Sandu considers scalar stability analysis and matrix

stability analysis [88]. The scalar stability analysis closely resembles the stability analysis

we describe above for Runge–Kutta methods and considers the scalar test problem

y′ = λ{F}y + λ{S}y, y(t0) = y0, λ{F}, λ{S} ∈ C−. (2.22)

Here we can define z{F} := Hλ{F} and z{S} := Hλ{S}, where H is the slow time step. An

application of the MRI-GARK method to (2.22), including an analytical solve of the modified

ODE (2.10b), leads to the relation yn+1 = R
(
z{F}, z{S}

)
yn. Sandu then defines the scalar

slow stability region as

S1D
ρ,α = {z{S} ∈ C||R

(
z{F}, z{S}

)
| ≤ 1, ∀z{F} ∈ C− : |z{F}| ≤ ρ, |arg(z{F} − π| ≤ α}.

(2.23)

Stability regions of form (2.23) show the slow stability region only given the fast z{F} is in

some wedge of α-degrees that stretches out to ρ in the left complex-plane. For MRI-GARK
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methods, such stability regions are usually smaller than the stability region of the slow base

method and tend to shrink in size as the wedge becomes wider.

Scalar stability analysis has the advantage of being easier to implement and assess given

its parallels to stability analysis of regular Runge–Kutta methods. However, it still relies

on the assumption that the Jacobians of the fast and slow processes are simultaneously

diagonalizable (a property that guarantees that the choice of basis for a system of linear

ODEs does not affect the numerical method’s stability), but does not necessarily hold for

multirate schemes applied to additive systems [36].

Matrix stability analysis relies on the ideas first presented by Gear [35], refined by Kværnø

[63], and later applied to multirate methods in [97, 23, 95, 55, 88, 81] and is applied to a

model problem in component partitioned form


y{F}

y{S}


′

=


λ{F} η{S}

η{F} λ{S}



y{F}

y{S}

 =


λ{F} 1−ξ

α

(
λ{F} − λ{S}

)
−αξ

(
λ{F} − λ{S}

)
λ{S}


︸ ︷︷ ︸

Ω


y{F}

y{S}

 .

(2.24)

By changing variables to form Ω, the eigenvalues of Ω can be expressed as linear combinations

of λ{F} and λ{S} i.e. the two eigenvalues of Ω are ξλ{F}+(1− ξ)λ{S} and (1− ξ)λ{F}+ξλ{S}.

The benefits of studying this test problem are in the parameter ξ which controls the strength

of the coupling between the fast and slow variables. In particular, for |ξ| � 1, the fast weakly

impacts the slow and for |1− ξ| � 1, the slow weakly impacts the fast. Because the system

(2.24) is complex in general, it can often lead to complicated analysis. In analyzing MRI-

GARK methods, Sandu makes the assumptions that α = 1 and ξ ∈ [0, 1]. After defining

z{F} = Hλ{F}, z{S} = Hλ{S}, ω{F} = Hη{F}, and ω{S} = Hη{S}, an application of the
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MRI-GARK method to (2.24) leads to the recurrence relation


y
{F}
n+1

y
{S}
n+1

 = M
(
z{F}, z{S}, ω{F}, ω{S}

)

y
{F}
n+1

y
{S}
n+1

 (2.25)

for some error propagation matrix M. The matrix stability region is therefore defined as

S2D
ρ,β = {z{S} ∈ C | max | eig M

(
z{F}, z{S}

)
| < 1,

∀z{F} ∈ C− : |z{F}| ≤ ρ, |arg(z{F})− π| ≤ β}. (2.26)

Studying the matrix stability region is certainly useful in determining the impact the strength

of the coupling between fast and slow has on stability. However, for ease of analysis, we have

only considered the scalar stability analysis that is quite similar to Sandu’s for our methods

in Chapter 3. Furthermore, our numerical results have shown scalar stability analysis to

have some predictive power on the behavior of our methods on non-trivial test problems.

2.3.3. Construction of MRI-GARK methods

In order to generate an MRI-GARK method, the first step is to pick a slow base method

that satisfies the required conditions on the abscissae and then figure out which Γk matrices

satisfy the GARK order conditions. In [88], Sandu derives several methods up to fourth-

order with some methods allowing implicitness at the slow time scale (decoupled implicit

MRI-GARK). Decoupled/solve-decoupled implicit MRI-GARK methods have implicitness

in either the fast or slow processes but do not involve nonlinear solves that couple both fast

and slow processes. Practically, this means (2.10b) is either a fast evolution solve or a regular

DIRK stage i.e. a solve-decoupled MRI-GARK scheme computes two consecutive stages of
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(2.10) as follows:

For ∆c
{S}
i > 0, solve modified ODE:



Let: v(0) := Y
{S}
i−1 and Ti = tn + c

{S}
i H,

Solve: v′(θ) = ∆c
{S}
i f {F}

(
Ti + ∆c

{S}
i θ, v

)
+

i∑
j=1

γi,j(
θ
H

)f {S}(Tj, Y
{S}
j ), for θ ∈ [0, H],

Let: Y
{S}
i := v(H),

(2.27a)

For ∆c
{S}
i = 0, solve DIRK stage:

Y
{S}
i+1 = Y

{S}
i +H

i∑
j=1

γi,jf
{S}
(
Y
{S}
j

)
. (2.27b)

Solve-decoupled implicit MRI-GARK methods are easier to implement than coupled methods

but have limited stability [88, 81].
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Chapter 3

Implicit-explicit multirate infinitesimal GARK methods

The contents of this chapter have been submitted for publication under the title “Implicit-

explicit multirate infinitesimal GARK methods” in collaboration with Daniel R. Reynolds

[15]

3.1. Introduction

In recent years, there has been a renewed interest in time integration methods, most

notably those that allow both high accuracy and increased flexibility with regard to how

various components of the problem are treated. These methods range from those that apply

a uniform time step size for all components of a problem but vary the algorithms used on

individual terms, to ‘multirate’ methods that evolve separate solution components using

different step sizes.

Methods in the former category have been introduced primarily to handle problems

that couple stiff and nonstiff processes. Here, instead of applying a fully implicit or fully

explicit treatment, that would be ideally suited to only the stiff or nonstiff components of the

problem, respectively, these approaches allow more robust implicit solvers to be applied to

the stiff components, leaving the remaining nonstiff (and frequently nonlinear) components

to be treated explicitly. Various techniques within this category include mixed implicit-

explicit (IMEX) additive Runge–Kutta methods [4, 24, 25, 57, 58, 92], exponential Runge–

Kutta (ExpRK) and exponential Rosenbrock (ExpRB) methods [50, 70, 71, 78, 105, 104]

and general linear methods (GLM) [12, 11, 85, 110, 109].

Multirate methods, on the other hand, evolve separate solution components or dynamical

processes using entirely different time step sizes. These frequently arise due to ‘multiphysics’
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problems wherein separate physical processes evolve on disparate time scales. Either due to

stability or accuracy considerations the ‘fast’ processes must be evolved with small step sizes,

but due to their computational cost the ‘slow’ processes are evolved using sometimes much

larger time steps. While simplistic low-order ‘subcycling’ approaches have been employed

in computational simulations for decades, research into higher-order approaches has seen

dramatic recent advances [6, 23, 36, 42, 68, 84, 81, 88, 98, 101, 102, 107].

In this paper we introduce a hybrid of two of the above techniques: IMEX Runge–Kutta

and multirate methods. While the large majority of recent research on multirate methods

has focused on the two-way, additive initial-value problem (IVP) combining a fast {F} and

a slow {S} process,

y′ = f(t, y) = f {F}(t, y) + f {S}(t, y), y(t0) = y0, t ∈ [t0, tf ], (3.1)

we focus on problems that further break down the slow portion into stiff {I} and nonstiff

{E} components. Thus we consider the three-way additive IVP:

y′ = f {I}(t, y) + f {E}(t, y) + f {F}(t, y), y(t0) = y0, t ∈ [t0, tf ]. (3.2)

Of the various approaches for multirate integration, we focus on those that are agnostic

as to the precise methods applied to the fast dynamics. These are based on ‘infinitesimal’

formulations, including the seminal work on multirate infinitesimal step (MIS) methods

[98, 107] and their more recent extensions to higher temporal order [6, 68, 84, 88, 102]. In

such formulations, the fast dynamics are assumed to be solved ‘exactly’, typically through

evolution of a sequence of modified fast IVPs,

v′(θ) = f {F}(θ, v) + g(θ), v(θ0) = v0, θ ∈ [θ0, θf ],
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where the forcing function g(θ) is determined by the multirate method to incorporate infor-

mation from f {S}. In practice, these fast IVPs are solved using another numerical method

with smaller step size, which in turn could employ further decompositions via an IMEX,

ExpRK, ExpRB, GLM, or multirate approach.

To our knowledge, there exist only two multirate schemes that simultaneously allow IMEX

treatment of the slow dynamics and infinitesimal treatment of the fast dynamics, both of

which have low accuracy and have been shown to demonstrate poor stability [29, 86]. The

first of these is the standard first-order “Lie-Trotter” splitting that performs the time step

yn → yn+1 (here yn ≈ y(tn) and tn+1 − tn = H) [76] via the algorithm:

y
(1)
n+1 = yn +Hf {E}(tn, yn), (3.3)

y
(2)
n+1 = y

(1)
n+1 +Hf {I}(tn+1, y

(2)
n+1),

Solve


v(0) = y

(2)
n+1,

v′(θ) = f {F}(tn + θ, v), for θ ∈ [0, H],

yn+1 = v(H).

The second is a variant of the second-order “Strang” (or “Strang-Marchuk”) splitting for-

mulation [75, 103] ,

y
(1)
n+1 = yn + H

4
f {E} (tn, yn) (3.4)

+ H
4
f {E}

(
tn + H

2
, yn + H

2
f {E} (tn, yn)

)
,

y
(2)
n+1 = y

(1)
n+1 + H

4
f {I}

(
tn, y

(1)
n+1

)
+ H

4
f {I}

(
tn + H

2
, y

(2)
n+1

)
,
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Solve


v(0) = y

(2)
n+1,

v′(θ) = f {F} (tn + θ, v) , for θ ∈ [0, H],

y
(3)
n+1 = v(H),

y
(4)
n+1 = y

(3)
n+1 + H

4
f {I}

(
tn + H

2
, y

(3)
n+1

)
+ H

4
f {I}

(
tn+1, y

(4)
n+1

)
,

yn+1 = y
(4)
n+1 + H

4
f {E}

(
tn + H

2
, y

(4)
n+1

)
+ H

4
f {E}

(
tn+1, y

(4)
n+1 + H

2
f {E}

(
tn + H

2
, y

(4)
n+1

))
.

We note that here, the updates yn → y
(1)
n+1 and y

(4)
n+1 → yn+1 correspond to using the explicit

Heun method for a half time-step each, while the updates y
(1)
n+1 → y

(2)
n+1 and y

(3)
n+1 → y

(4)
n+1

correspond to using the implicit trapezoid rule for a half time-step each. However to our

knowledge, there do not exist multirate methods allowing IMEX treatment of the slow time

scale that have order of accuracy three or higher. The purpose of this paper is to ad-

dress this need, through proposal of a new class of implicit-explicit multirate infinitesimal

generalized-structure additive Runge–Kutta (IMEX-MRI-GARK) methods for problems of

the form (3.2), including derivation of order conditions up to fourth-order, and numerical

tests to demonstrate the benefit of such methods over the legacy approaches (3.3) and (3.4),

as well as to provide comparisons against recent third and fourth-order implicit MRI-GARK

methods.

3.2. Implicit-explicit multirate infinitesimal GARK methods

We base our proposed methods off of the MRI-GARK class of two-component multirate

methods [88]. Just as those methods begin with an explicit or diagonally-implicit Runge–

Kutta method for the slow time scale, we start with an IMEX additive Runge-Kutta scheme
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(IMEX-ARK) of order q and having s̃{S} stages. These methods are characterized by a pair

of Butcher tables:

c{E} A{E}

1 b{E}T

c{I} A{I}

1 b{I}T

Before constructing IMEX-MRI-GARK methods, we place three additional restrictions on

the base IMEX-ARK method: (a) the tables are “internally consistent,” (i.e., c{E} = c{I} :=

c{S}), (b) the tables have explicit slow first stage (i.e., c
{S}
1 = 0), and (c) the tables have non-

decreasing abscissae (i.e., c
{S}
1 ≤ c

{S}
2 ≤ · · · ≤ c

{S}
s̃{S}

). To reduce complexity in our analyses

we follow [84, 88] and write the base IMEX-ARK method in stiffly accurate form, i.e., the

last row of A{E} and A{I} equal b{E}T and b{I}T , respectively. We note that for methods that

do not satisfy this requirement in simplest form, they may easily be converted to the stiffly

accurate form by padding c and A with 1 and bT , respectively:

c{S} A{E} A{I}

1 b{E}T b{I}T

→

c{S} A{E} 0{S} A{I} 0{S}

1 b{E}T 0 b{I}T 0

1 b{E}T 0 b{I}T 0

where 0{S} ∈ Rs̃{S} . Thus for the remainder of this paper, we let A{E,E}, A{I,I} ∈ Rs{S}×s{S}

be the stiffly-accurate versions of the IMEX-ARK Butcher tables A{E} and A{I}, respectively.

We note that this extension of the tables to include the row of b coefficients does not affect

the order conditions of the original IMEX-ARK table, and thus all order conditions satisfied

by the original IMEX-ARK tables remain unchanged. Based on the above assumptions on

the abscissae, the increments between consecutive stages are given by

∆c
{S}
i :=


0, i = 1,

c
{S}
i − c{S}i−1 ≥ 0, i = 2, . . . , s{S}.

(3.5)
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Definition 3.2.1 (IMEX-MRI-GARK methods for additive systems). The following algo-

rithm defines one step from tn to tn+1 = tn + H of an IMEX-MRI-GARK scheme for the

problem (3.2):

Let : Y
{S}

1 := yn (3.6a)

For i = 2, . . . , s{S} : (3.6b)



Let: v(0) := Y
{S}
i−1 and Ti−1 := tn + c

{S}
i−1H,

Solve: v′(θ) = ∆c
{S}
i f {F}

(
Ti−1 + ∆c

{S}
i θ, v(θ)

)
+

i∑
j=1

γi,j
(
θ
H

)
f
{I}
j +

i−1∑
j=1

ωi,j
(
θ
H

)
f
{E}
j , for θ ∈ [0, H],

Let: Y
{S}
i := v(H),

(3.6c)

yn+1 = Y
{S}
s{S}

. (3.6d)

where f
{I}
j := f {I}

(
tn + c

{S}
j H,Y

{S}
j

)
and f

{E}
j := f {E}

(
tn + c

{S}
j H,Y

{S}
j

)
.

Definition 3.2.2 (Slow tendency coefficients). The functions γi,j and ωi,j from equation

(3.6c) are polynomials in time that dictate the couplings from the slow to the fast time scale.

As in [88], γi,j are defined using coefficients
{
γ
{k}
i,j

}
as:

γi,j(τ) :=
∑
k≥0

γ
{k}
i,j τ

k, (3.7)

and the polynomials ωi,j(τ) are defined similarly. Thus the coefficients
{
γ
{k}
i,j

}
,
{
ω
{k}
i,j

}
and

c{S} uniquely define an IMEX-MRI-GARK method. We note that these sums over k ≥ 0

are not infinite, and only involve as many terms as there exist nonzero coefficients (typically

0 ≤ k ≤ 2).
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We group these coefficients into matrices Γ{k},Ω{k},Γ and Ω, that respectively contain{
γ
{k}
i,j

}
,
{
ω
{k}
i,j

}
,
{
γi,j
}

and {ωi,j}, where

γi,j :=
∑
k≥0

γ
{k}
i,j

1

k + 1
and ωi,j :=

∑
k≥0

ω
{k}
i,j

1

k + 1
. (3.8)

We note that Definitions 3.2.1 and 3.2.2 differ slightly from those in [88], in that we

consider these tendency coefficients to be organized into s{S}×s{S} matrices having first row

identically zero.

3.2.1. Order Conditions

We derive order conditions for the slow tendency coefficients by first expressing IMEX-

MRI-GARK methods in GARK form, following similar derivations for other infinitesimal

methods [6, 84, 88, 102]. To express IMEX-MRI-GARK methods in GARK form, we must

identify GARK tables A{σ,ν}, bσ and cσ for σ, ν ∈ {I, E, F}. To this end, we consider the

inner fast modified IVP (3.6c) to be evolved using a single step of an arbitrary s{F}-stage

Runge–Kutta method with Butcher table (A{F,F}, b{F}, c{F}), having order of accuracy q at

least as accurate as the IMEX-MRI-GARK method. Thus the kth fast stage (k = 1, . . . , s{F})

within the ith slow stage (i = 2, . . . , s{S}) is given by:

Y
{F,i}
k = Y

{S}
i−1 +H∆c

{S}
i

s{F}∑
l=1

a
{F,F}
k,l f

{F,i}
l (3.9)

+H
i∑

j=1

s{F}∑
l=1

a
{F,F}
k,l γi,j

(
c
{F}
l

) f
{I}
j

+H
i−1∑
j=1

s{F}∑
l=1

a
{F,F}
k,l ωi,j

(
c
{F}
l

) f
{E}
j ,
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where f
{F,i}
l := f {F}

(
Ti−1 + c

{F}
l ∆c

{S}
i H,Y

{F,i}
l

)
. Similarly, the slow stages in this scenario

become:

Y
{S}
i = Y

{S}
i−1 +H

i∑
j=1

s{F}∑
l=1

b
{F}
l γi,j

(
c
{F}
l

) f
{I}
j (3.10)

+H

i−1∑
j=1

s{F}∑
l=1

b
{F}
l ωi,j

(
c
{F}
l

) f
{E}
j

+H∆c
{S}
i

s{F}∑
l=1

b
{F}
l f

{F,i}
l .

= yn +H
i∑

λ=1

λ∑
j=1

s{F}∑
l=1

∑
k≥0

γ
{k}
λ,j b

{F}
l c

{F}×k
l

 f
{I}
j

+H
i∑

λ=1

λ−1∑
j=1

s{F}∑
l=1

∑
k≥0

ω
{k}
λ,j b

{F}
l c

{F}×k
l

 f
{E}
j ,

+H
i∑

λ=1

∆c
{S}
λ

s{F}∑
l=1

b
{F}
l f

{F,λ}
l ,

due to (3.7), and where we use the notation c×k to indicate element-wise exponentia-

tion. Then using (3.8) and our assumption that the fast Runge–Kutta method satisfies

b{F}T c{F}×k = 1/(k + 1) for k = 1, . . . , q, we simplify (3.10) to obtain:

Y
{S}
i = yn +H

i∑
j=1

i∑
λ=j

γλ,jf
{I}
j +H

i−1∑
j=1

i∑
λ=j

ωλ,jf
{E}
j (3.11)

+H
i∑

λ=1

s{F}∑
l=1

∆c
{S}
λ b

{F}
l f

{F,λ}
l .
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Recalling that the original IMEX-ARK method had an explicit first stage, (3.11) is equivalent

to the standard GARK formulation,

Y
{S}
i = yn +H

i∑
j=1

a
{I,I}
i,j f

{I}
j +H

i−1∑
j=1

a
{E,E}
i,j f

{E}
j +H

i∑
λ=1

s{F}∑
j=1

a
{S,F,λ}
i,j f

{F,λ}
j , (3.12)

for slow stages i = 1, . . . , s{S}, where we identify the slow-implicit, slow-explicit and slow-fast

coupling coefficients as:

a
{I,I}
i,j :=

i∑
λ=j

γλ,j, a
{E,E}
i,j :=

i∑
λ=j

ωλ,j, a
{S,F,λ}
i,j := ∆c

{S}
λ b

{F}
j . (3.13)

The first two of these may be represented as the GARK tables

A{I,I} := EΓ = A{I,I} and A{E,E} := EΩ = A{E,E}, (3.14)

where

E ∈ Rs{S}×s{S} , Ei,j :=


1, i ≥ j,

0, otherwise.

We note that due to our assumptions on the underlying IMEX-ARK tables, Γ is lower-

triangular and Ω is strictly lower-triangular, with both having zero first row. Additionally,

we note that the conditions EΓ = A{I,I} and EΩ = A{E,E} in (3.14) also ensure consistency

between the IMEX-MRI-GARK method (3.6) and the underlying IMEX-ARK method in

the non-multirate case where f {F} = 0.

Furthermore, since the GARK formulation of standard IMEX-ARK methods satisfies

A{I,E} = A{E,E} and A{E,I} = A{I,I} (see [92]), the GARK formulation of our IMEX-MRI-

GARK method results in the slow-explicit and slow-implicit portions having shared slow-fast

coupling matrix A{E,F} = A{I,F} := A{S,F} ∈ Rs{S}×s with s = s{F}s{S}. From (3.13), we
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have the sub-matrices

A{S,F,λ} := ∆c
{S}
λ gλ b

{F}T , for λ = 1, . . . , s{S}, (3.15)

where gλ ∈ Rs{S} with

(
gλ

)
i

:=


1, i ≥ λ,

0, otherwise.

Combining these into an overall slow-fast coupling matrix, we have

A{S,F} :=

[
A{S,F,1}, · · · , A{S,F,s

{S}}

]
= ∆C{S} ⊗ b{F}T , (3.16)

where

∆C{S} :=



∆c
{S}
1 0{F}T · · · 0{F}T

∆c
{S}
1 ∆c

{S}
2 · · · 0{F}T

...
...

. . . 0{F}T

∆c
{S}
1 ∆c

{S}
2 · · · ∆c

{S}
s{S}


,

and 0{F} is a column vector of all zeros in Rs{F} .

For completeness, we note the corresponding GARK slow-implicit and slow-explicit co-

efficients [88],

b{I} := 1
{S}TΓ = b{I}, (3.17)

c{I} := EΓ1{S} = A{I,I}1{S} = c{S}, (3.18)

b{E} := 1
{S}TΩ = b{E}, (3.19)
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c{E} := EΩ1{S} = A{E,E}1{S} = c{S}, (3.20)

where 1
{S} ∈ Rs{S} is a column vector of all ones, and we have relied on our assumption

of internal consistency in the underlying IMEX-ARK method. From enforcing the row-sum

conditions on A{S,F}, we have

c{S,F} :=
s{S}∑
λ=1

A{S,F,λ}1{F} =
s{S}∑
λ=1

∆cλgλ (3.21)

⇒

c
{S,F}
i =

s{S}∑
λ=1

(c
{S}
λ − c{S}λ−1)(gλ)i =

i∑
λ=1

(c
{S}
λ − c{S}λ−1) = c

{S}
i ,

which ensures internal consistency between each partition of the GARK table (i.e., c{I,I} =

c{E,E} = c{S,F} = c{S}).

To reveal the GARK coefficients for the fast method and fast-slow couplings, we insert

(3.11) into (3.9) to write the kth fast stage (k = 1, . . . , s{F}) within the ith slow stage

(i = 2, . . . , s{S}) as:

Y
{F,i}
k = yn +H

i−1∑
λ=1

s{F}∑
l=1

∆c
{S}
λ b

{F}
l f

{F,λ}
l +H∆c

{S}
i

s{F}∑
l=1

a
{F,F}
k,l f

{F,i}
l (3.22)

+H

i−1∑
j=1

a
{I,I}
i−1,jf

{I}
j +H

i∑
j=1

s{F}∑
l=1

a
{F,F}
k,l γi,j

(
c
{F}
l

)
f
{I}
j



+H

i−2∑
j=1

a
{E,E}
i−1,j f

{E}
j +H

i−1∑
j=1

s{F}∑
l=1

a
{F,F}
k,l ωi,j

(
c
{F}
l

)
f
{E}
j

 .
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The fast method coefficients are therefore:

A{F,F} :=



∆c
{S}
1 A{F,F} 0s{F}×s{F} · · · 0s{F}×s{F}

∆c
{S}
1 1

{F}b{F}T ∆c
{S}
2 A{F,F} · · · ...

∆c
{S}
2 1

{F}b{F}T · · ·

...
...

. . .
...

∆c
{S}
1 1

{F}b{F}T ∆c
{S}
2 1

{F}b{F}T · · · ∆c
{S}
s{S}

A{F,F}



(3.23)

= diag
(
∆c{S}

)
⊗ A{F,F} + L∆C{S} ⊗ 1

{F}b{F}T ∈ Rs×s,

where diag
(
∆c{S}

)
is the diagonal matrix obtained by taking ∆c{S} as its diagonal entries,

and where L ∈ �s{S}×s{S} has entries Li,j := δi,j+1; similarly,

c{F} :=



∆c
{S}
1 c{F}

c
{S}
1 1

{F} + ∆c
{S}
2 c{F}

...

c
{S}
s{S}−1

1
{F} + ∆c

{S}
s{S}

c{F}


= Lc{S} ⊗ 1

{F} + ∆c{S} ⊗ c{F} ∈ Rs (3.24)

and

b{F} :=



∆c
{S}
1 b{F}

...

∆c
{S}
s{S}

b{F}


= ∆c{S} ⊗ b{F} ∈ Rs. (3.25)
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Finally, the fast-implicit and fast-explicit coupling coefficients are

A{F,I} :=



0s{F}×s{S}

1
{F}(eT1A{I,I})+

∑
k≥0

(
A{F,F}c{F}×k

)(
eT2 Γ{k}

)
...

1
{F}(eT

s{S}−1
A{I,I}

)
+
∑
k≥0

(
A{F,F}c{F}×k

)(
eT
s{S}

Γ{k}
)


(3.26)

= LA{I,I} ⊗ 1
{F} +

∑
k≥0

Γ{k} ⊗
(
A{F,F}c{F}×k

)
∈ Rs×s{S}

and

A{F,E} :=



0s{F}×s{S}

1
{F}(eT1A{E,E})+

∑
k≥0

(
A{F,F}c{F}×k

)(
eT2 Ω{k}

)
...

1
{F}(eT

s{S}−1
A{E,E}

)
+
∑
k≥0

(
A{F,F}c{F}×k

)(
eT
s{S}

Ω{k}
)


(3.27)

= LA{E,E} ⊗ 1
{F} +

∑
k≥0

Ω{k} ⊗
(
A{F,F}c{F}×k

)
∈ Rs×s{S} ,

where we have leveraged the fact that Γ{k} and Ω{k} have zero first row. These give rise to

c{F,I} := Lc{S} ⊗ 1
{F} +

∑
k≥0

Γ{k}1{S} ⊗ (A{F,F}c{F}×k), and (3.28)

c{F,E} := Lc{S} ⊗ 1
{F} +

∑
k≥0

Ω{k}1{S} ⊗ (A{F,F}c{F}×k). (3.29)
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Theorem 3.2.1 (Internal consistency conditions). IMEX-MRI-GARK methods fulfill the

“internal consistency” conditions:

c{I,F} = c{E,F} = c{S,F} = c{S} ≡ c{S}, and (3.30)

c{F,I} = c{F,E} = c{F}, (3.31)

for any fast method if and only if the following conditions hold:

Γ{0}1{S} = Ω{0}1{S} = ∆c{S} and Γ{k}1{S} = Ω{k}1{S} = 0 ∀k ≥ 1. (3.32)

Proof. From the definition of c{S,F} in equation (3.21), we have already shown that (3.30) is

satisfied. Now

c{F,I} = c{F} ⇔

Lc{S} ⊗ 1
{F} +

∑
k≥0

Γ{k}1{S} ⊗ (A{F,F}c{F}×k) = Lc{S} ⊗ 1
{F} + ∆c{S} ⊗ c{F},

and similarly

c{F,E} = c{F} ⇔

Lc{S} ⊗ 1
{F} +

∑
k≥0

Ω{k}1{S} ⊗ (A{F,F}c{F}×k) = Lc{S} ⊗ 1
{F} + ∆c{S} ⊗ c{F},

which are equivalent to the conditions (3.32).

3.2.1.1. IMEX-MRI-GARK Order Conditions

Due to the structure of the IMEX-MRI-GARK method (3.6), many of the GARK order

conditions are automatically satisfied. As discussed in [88], since A{I,I} = A{I,I}, A{E,E} =
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A{E,E}, b{I} = b{I}, b{E} = b{E}, c{I} = c{S}, and c{E} = c{S} from (3.14) and (3.17)-(3.20),

and since our base IMEX-ARK method has order q, then all of the GARK order conditions

up to order q corresponding to only the “slow” components (and their couplings) will be

satisfied. Similarly, since ‘infinitesimal’ methods assume that the fast component is solved

exactly (or at least using an approximation of order ≥ q), then the “fast” GARK order

q conditions will similarly be satisfied. Additionally as discussed in [92], if all component

tables have order at least two, then an IMEX-MRI-GARK method (3.6) that satisfies the

internal consistency conditions from Theorem 3.2.1 will be at least second-order accurate.

Therefore, in this section we focus on only the remaining coupling conditions between the

fast and slow components (both implicit and explicit) for orders three and four.

We make use of the following simplifying conditions as listed in Lemma 3.8 of [88],

reproduced here in matrix form, taking into account the structure of our slow base IMEX-

ARK method:

A{S,F}c{F} =
1

2
c{S}×2, (3.33)

b{I}TA{S,F} =
(

(∆c{S} × (Db{I}))⊗ b{F}
)T
, (3.34)

b{E}TA{S,F} =
(

(∆c{S} × (Db{E}))⊗ b{F}
)T
, (3.35)

b{F}TA{F,I} = ∆c{S}TA{I,ζ}, (3.36)

b{F}TA{F,E} = ∆c{S}TA{E,ζ}, (3.37)

A{F,I}c{S} =

(
(LA{I,I})⊗ 1

{F} +
∑
k≥0

Γ{k} ⊗
(
A{F,F}c{F}×k

))
c{S}, (3.38)

A{F,E}c{S} =

(
(LA{E,E})⊗ 1

{F} +
∑
k≥0

Ω{k} ⊗
(
A{F,F}c{F}×k

))
c{S}, (3.39)
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and

A{F,F}c{F} =
1

2
(Lc{S})×2 ⊗ 1

{F} +
(

(Lc{S})×∆c{S}
)
⊗ c{F} (3.40)

+ ∆c{S}×2 ⊗
(
A{F,F}c{F}

)
,

where we use the notation a× b to indicate element-wise multiplication of two vectors, and

where we define

A{I,ζ} = LA{I,I} +
∑
k≥0

ζkΓ
{k}, A{E,ζ} = LA{E,E} +

∑
k≥0

ζkΩ
{k}, (3.41)

Li,j = δi,j+1, Di,j =


1, j ≥ i,

0, otherwise,

and

ζk = b{F}TA{F,F}c{F}×k. (3.42)

Theorem 3.2.2 (Third-order conditions). An internally consistent IMEX-MRI-GARK method

(3.6) has order three iff the base IMEX-ARK method has order at least three, and the coupling

conditions

∆c{S}TA{I,ζ}c{S} =
1

6
and ∆c{S}TA{E,ζ}c{S} =

1

6
(3.43)

hold, where A{I,ζ} and A{E,ζ} are defined in equation (3.41).

Proof. Using (3.33), we have that

b{σ}TA{S,F}c{F} =
1

2
b{S}T c{S}×2 =

1

2

(1

3

)
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for σ ∈ {I, E}, and thus two of the third-order GARK conditions are automatically satisfied.

Similarly, from (3.36) and (3.37) we have

b{F}TA{F,σ}c{S} = ∆c{S}TA{σ,ζ}c{S},

which result in the conditions (3.43).

Theorem 3.2.3 (Fourth-order conditions). An IMEX-MRI-GARK method (3.6) that sat-

isfies Theorem 3.2.2 has order four iff the base IMEX-ARK method has order at least four,

and the following coupling conditions hold for σ, ν ∈ {I, E}:

(
∆c{S} × Lc{S}

)T
A{σ,ζ}c{S} +

(
∆c{S}×2

)T
A{σ,β}c{S} =

1

8
, (3.44a)

∆c{S}TA{σ,ζ}c{S}×2 =
1

12
, (3.44b)

(
∆c{S} × (Db{σ})

)T
A{ν,ζ}c{S} =

1

24
, (3.44c)

(
∆c{S}×2

)T
A{σ,ξ}c{S} + ∆c{S}TL∆C{S}A{σ,ζ}c{S} =

1

24
, and (3.44d)

∆c{S}TA{σ,ζ}A{ν,ν}c{S} =
1

24
, (3.44e)

where we have defined the auxiliary variables

A{I,β} :=
1

2
LA{I,I} +

∑
k≥0

βkΓ
{k}, (3.45)

A{E,β} :=
1

2
LA{E,E} +

∑
k≥0

βkΩ
{k}, (3.46)

A{I,ξ} :=
1

2
LA{I,I} +

∑
k≥0

ξkΓ
{k}, (3.47)
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A{E,ξ} :=
1

2
LA{E,E} +

∑
k≥0

ξkΩ
{k}, (3.48)

βk := (b{F} × c{F})TA{F,F}c{F}×k, and (3.49)

ξk := b{F}TA{F,F}A{F,F}c{F}×k. (3.50)

Proof. Since the GARK representation of our IMEX-MRI-GARK method is internally con-

sistent, there are 26 coupling conditions of order 4. Of these, ten are automatically satisfied

due the IMEX-MRI-GARK method structure and our assumed accuracy of the base IMEX-

ARK method: for σ, ν ∈ {I, E},

(
b{σ} × c{S}

)T
A{S,F}c{F} =

1

8
, (3.51a)

b{σ}TA{ν,ν}A{S,F}c{F} =
1

24
, (3.51b)

b{σ}TA{S,F}c{F}×2 =
1

12
, and (3.51c)

b{σ}TA{S,F}A{F,F}c{F} =
1

24
. (3.51d)

The remaining 16 coupling conditions are

(
b{F} × c{F}

)T
A{F,σ}c{S} =

1

8
, (3.52a)

b{F}TA{F,σ}c{S}×2 =
1

12
, (3.52b)

b{σ}TA{S,F}A{F,ν}c{S} =
1

24
, (3.52c)

b{F}TA{F,F}A{F,σ}c{S} =
1

24
, (3.52d)

b{F}TA{F,σ}A{ν,ν}c{S} =
1

24
, and (3.52e)
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b{F}TA{F,σ}A{S,F}c{F} =
1

24
, (3.52f)

where again σ, ν ∈ {I, E}.

We first prove the automatically-satisfied conditions (3.51). Using (3.33) and our as-

sumption that the base IMEX-ARK method is order four,

(
b{σ} × c{S}

)T
A{S,F}c{F} =

1

2
b{σ}T c{S}×3 =

1

2

(1

4

)

and

b{σ}TA{ν,ν}A{S,F}c{F} =
1

2
b{σ}TA{ν,ν}c{S}×2 =

1

2

( 1

12

)
,

for σ, ν ∈ {I, E}, and hence (3.51a) and (3.51b) are satisfied. Using the definition of c{F}

from (3.24), the simplifying formulas (3.34)-(3.35), and our assumptions that c
{S}
1 = 0, the

fast method is at least third-order, and the IMEX-ARK method is at least fourth-order, we

have for σ ∈ {I, E}:

b{σ}TA{S,F}c{F}×2

=
(
(∆c{S} × (Db{σ}))⊗ b{F}

)T (
Lc{S} ⊗ 1

{F} + ∆c{S} ⊗ c{F}
)×2

=
(
∆c{S} × (Db{σ})

)T (
(Lc{S})×2 + (Lc{S} ×∆c{S}) +

1

3
∆c{S}×2

)

=
(
Db{σ}

)T (
(Lc{S})×2 ×∆c{S} + Lc{S} ×∆c{S}×2 +

1

3
∆c{S}×3

)

=
1

3

(
Db{σ}

)T(
c{S}×3 − (Lc{S})×3

)

=
1

3

s{S}∑
i=2

s{S}∑
l=i

b
{σ}
l

(c{S}×3
i − c{S}×3

i−1

)
=

1

3
b{σ}T c{S}×3 =

1

3

(
1

4

)
,
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which proves the coupling conditions (3.51c). Using the simplifying formulas (3.34), (3.35)

and (3.40), and the same assumptions as in the previous step, for σ ∈ {I, E} we have

b{σ}TA{S,F}A{F,F}c{F}

=
(
(∆c{S} × (Db{σ}))⊗ b{F}

)T (1

2
(Lc{S})×2 ⊗ 1

{F}

+
(
(Lc{S})×∆c{S}

)
⊗ c{F} + ∆c{S}×2 ⊗

(
A{F,F}c{F}

))

=
(
∆c{S} × (Db{σ})

)T (1

2
(Lc{S})×2 +

1

2
(Lc{S})×∆c{S} +

1

6
∆c{S}×2

)

=
1

6

(
Db{σ}

)T (
c{S}×3 − (Lc{S})×3

)
=

1

6
b{σ}T c{S}×3 =

1

6

(
1

4

)
,

and thus the coupling conditions (3.51d) are automatically satisfied as well.

We now examine the 16 remaining fourth-order GARK conditions (3.52). Starting with

(3.52a), we use the definitions (3.25) and (3.24), the simplifying formulas (3.38)-(3.39), and

that the fast method is at least second-order to obtain:

1

8
=
(
b{F} × c{F}

)T
A{F,I}c{S}

=
((

∆c{S} ⊗ b{F}
)
×
(
Lc{S} ⊗ 1

{F} + ∆c{S} ⊗ c{F}
))T

(
LA{I,I} ⊗ 1

{F} +
∑
k≥0

Γ{k} ⊗
(
A{F,F}c{F}×k

))
c{S}

=
(
∆c{S} × Lc{S}

)T A{I,ζ}c{S} +
(
∆c{S}×2

)T A{I,β}c{S}.
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A similar argument gives

1

8
=
(
∆c{S} × Lc{S}

)T A{E,ζ}c{S} +
(
∆c{S}×2

)T A{E,β}c{S},
which establishes the conditions (3.44a). Using the simplifying formulas (3.36)-(3.37), the

order conditions (3.52b) become

1

12
= b{F}TA{F,σ}c{S}×2 = ∆c{S}TA{σ,ζ}c{S}×2

for σ ∈ {I, E}, which are equivalent to the conditions (3.44b). For the order conditions

(3.52c), we use simplifying formulas (3.34)-(3.35) and (3.38) to obtain for σ ∈ {I, E}:

1

24
= b{σ}TA{S,F}A{F,I}c{S}

=
(

(∆c{S} × (Db{σ}))⊗ b{F}
)T(

LA{I,I} ⊗ 1
{F} +

∑
k≥0

Γ{k} ⊗ (A{F,F}c{F}×k
)
c{S}

= (∆c{S} × (Db{σ}))TA{I,ζ}c{S}.

Similarly using the simplifying formulas (3.34)-(3.35) and (3.39), we have

1

24
= (∆c{S} × (Db{σ}))TA{E,ζ}c{S},

resulting in the conditions (3.44c). We use the definitions (3.25) and (3.23), and the simpli-

fying formula (3.38) to convert the order condition (3.52d) for σ = I:

1

24
= b{F}TA{F,F}A{F,I}c{S}

=
(
∆c{S} ⊗ b{F}

)T (
diag

(
∆c{S}

)
⊗ A{F,F} + L∆C{S} ⊗ 1

{F}b{F}T
)
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(
LA{I,I} ⊗ 1

{F} +
∑
k≥0

Γ{k} ⊗
(
A{F,F}c{F}×k

))
c{S}

=
((

∆c{S}×2
)T ⊗ (b{F}TA{F,F}) + ∆c{S}TL∆C{S} ⊗ b{F}T

)
(
LA{I,I} ⊗ 1

{F} +
∑
k≥0

Γ{k} ⊗
(
A{F,F}c{F}×k

))
c{S}

=
(
∆c{S}×2

)T A{I,ξ}c{S} + ∆c{S}TL∆C{S}A{I,ζ}c{S}.

Similarly, the simplifying formula (3.39) converts (3.52d) for σ = E to

1

24
=
(
∆c{S}×2

)T A{E,ξ}c{S} + ∆c{S}TL∆C{S}A{E,ζ}c{S},

which establishes the conditions (3.44d). Using the simplifying formulas (3.36) and (3.37),

the order conditions (3.52e) become for σ, ν ∈ {I, E}:

1

24
= b{F}TA{F,σ}A{ν,ν}c{S} = ∆c{S}TA{σ,ζ}A{ν,ν}c{S},

which are the coupling conditions (3.44e). The final order conditions, (3.52f), may be sim-

plified using formulas (3.33) and (3.36)-(3.37) for σ ∈ {I, E}:

1

24
= b{F}TA{F,σ}A{S,F}c{F} =

1

2
∆c{S}A{σ,ζ}c{S}×2,

which are equivalent to the coupling conditions (3.44b).

Remark 3.2.1. For many IMEX-ARK methods the coefficients are chosen so that b{E} =

b{I} to reduce the number of order conditions that must be satisfied. Similarly, when b{E} =

b{I} many of the 3-component GARK order conditions (on which IMEX-MRI-GARK meth-

ods rely) are duplicated. One could then wonder whether the assumption b{E} = b{I} would

significantly reduce the number of order conditions required to derive IMEX-MRI-GARK
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methods. This is not in fact the case, since the large majority of these duplicated GARK

order conditions are already automatically satisfied in (3.51) due to the IMEX-MRI-GARK

structure and our assumptions on the order of the underlying IMEX-ARK method. Of the

remaining 16 GARK order conditions in (3.52) that are not automatically satisfied, only the

conditions (3.52c) (that correspond with the IMEX-MRI-GARK condition (3.44c)) benefit

from an assumption that b{E} = b{I}, causing those 4 conditions to simplify to 2. Thus

although all of the IMEX-MRI-GARK methods presented later in Section 3.4 are derived

from IMEX-ARK methods satisfying b{E} = b{I}, this should by no means be considered as

a requirement when deriving new IMEX-MRI-GARK methods.

3.3. Linear stability

There is no standard theoretical framework for analyzing linear stability of methods for

additive problems (of either form (3.1) or (3.2)). Thus although it relies on an assumption

that the Jacobians with respect to y of f {I}, f {E} and f {F} are simultaneously diagonalizable,

similarly to [88] we analyze linear stability on an additive scalar test problem:

y′ = λ{F}y + λ{E}y + λ{I}y (3.53)

where each of λ{F}, λ{E}, λ{I} ∈ C−, and we define z{F} := Hλ{F}, z{E} := Hλ{E}, and

z{I} := Hλ{I}. Applying the IMEX-MRI-GARK method (3.6) to the scalar model problem

(3.53), the modified fast IVP for each slow stage i = 2, . . . , s{S} becomes:

v′ = ∆c
{S}
i λ{F}v + λ{E}

i−1∑
j=1

ωi,j

(
θ

H

)
Y
{S}
j + λ{I}

i∑
j=1

γi,j

(
θ

H

)
Y
{S}
j

= ∆c
{S}
i λ{F}v + λ{E}

i−1∑
j=1

∑
k≥0

ω
{k}
i,j

θk

Hk
Y
{S}
j + λ{I}

i∑
j=1

∑
k≥0

γ
{k}
i,j

θk

Hk
Y
{S}
j ,
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for θ ∈ [0, H], with initial condition v(0) = Y
{S}
i−1 . We solve for the updated slow stage

Y
{S}
i := v(H) analytically using the variation of constants formula:

Y
{S}
i = e∆c

{S}
i z{F}Y

{S}
i−1 + z{E}

i−1∑
j=1

∑
k≥0

ω
{k}
i,j

(ˆ 1

0

e∆c
{S}
i z{F}(1−t)tkdt

)
Y
{S}
j (3.54)

+ z{I}
i∑

j=1

∑
k≥0

γ
{k}
i,j

(ˆ 1

0

e∆c
{S}
i z{F}(1−t)tkdt

)
Y
{S}
j

= ϕ0

(
∆c
{S}
i z{F}

)
Y
{S}
i−1 + z{E}

i−1∑
j=1

ηi,j(z
{F})Y {S}j + z{I}

i∑
j=1

µi,j(z
{F})Y {S}j ,

where η and µ depend on the fast variable:

ηi,j
(
z{F}

)
=
∑
k≥0

ω
{k}
i,j ϕk+1

(
∆c
{S}
i z{F}

)

µi,j
(
z{F}

)
=
∑
k≥0

γ
{k}
i,j ϕk+1

(
∆c
{S}
i z{F}

)
,

and the family of analytical functions {ϕk} are defined as in [88],

ϕ0(z) = ez, ϕk(z) =

ˆ 1

0

ez(1−t)tk−1dt, k ≥ 1,

or recursively as

ϕk+1(z) =
k ϕk(z)− 1

z
, k ≥ 1.

Concatenating Y =

[
Y
{S}T

1 · · · Y
{S}T
s{S}

]T
, we can write (3.54) in matrix form as

Y = diag
(
ϕ0

(
∆c{S}z{F}

))
LY + ϕ0

(
∆c1z

{F})yne1

+ z{E}η
(
z{F}

)
Y + z{I}µ

(
z{F}

)
Y
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=

(
I − diag

(
ϕ0

(
∆c{S}z{F}

))
L− z{E}η

(
z{F}

)
− z{I}µ

(
z{F}

))−1

yne1,

where

η
(
z{F}

)
=
∑
k≥0

diag
(
ϕk+1

(
∆c{S}z{F}

))
Ω{k} and

µ
(
z{F}

)
=
∑
k≥0

diag
(
ϕk+1

(
∆c{S}z{F}

))
Γ{k}.

Thus the linear stability function for IMEX-MRI-GARK on the problem (3.53) becomes

R
(
z{F}, z{E}, z{I}

)
(3.55)

:= eTs{S}

(
I − diag

(
ϕ0

(
∆c{S}z{F}

))
L− z{E}η

(
z{F}

)
− z{I}µ

(
z{F}

))−1

e1.

Following a similar definition as in [111], we define the joint stability for the slow, nonstiff

region as:

Jα,β :=
{
z{E} ∈ C− : |R(z{F}, z{E}, z{I})| ≤ 1, ∀z{F} ∈ S{F}α , ∀z{I} ∈ S{I}β

}

where Sσα := {zσ ∈ C− : | arg(zσ)− π| ≤ α}. Since such stability regions are not widespread

in the literature, we highlight the role of each component, before plotting these for candidate

IMEX-MRI-GARK methods in the next section. Jα,β provides a plot of the stability region

for the slow explicit component only, under assumptions that (a) z{I} can range throughout

an entire infinitely-long sector S{I}α in the complex left-half plane, and (b) z{F} can range

throughout another [infinite] sector S{F}β in C−. These sectors both include the entire nega-

tive real axis, as well as a swath of values with angle at most α or β above and below this axis,

respectively. As such, one should expect the joint stability region Jα,β to be significantly

smaller than the standard stability region for just the slow explicit table (A{E}, b{E}, c{E}),
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and to shrink in size as both α, β increase. Furthermore, we note that this notion of a joint

stability region is artificially restrictive, since in practice the functions f {I} and f {F} will not

be infinitely stiffer than f {E}.

3.4. Example IMEX-MRI-GARK methods

While our focus in this paper is on the underlying theory regarding IMEX-MRI-GARK

methods of the form (3.2.1), in this section we discuss how IMEX-MRI-GARK methods may

be constructed, and provide methods of orders 3 and 4 to use in demonstrating our numerical

results in Section 3.5.

3.4.1. Third-order Methods

We create two third-order IMEX-MRI-GARK methods, both based on the ‘(3,4,3)’

IMEX-ARK method from Section 2.7 of [4],

0 0 0 0 0 0 0 0 0

η η 0 0 0 0 η 0 0

1+η
2

a3,1 a3,2 0 0 0 1−η
2

η 0

1 1− 2α α α 0 0 b2 b3 η

1 0 b2 b3 η 0 b2 b3 η

where

η = 0.4358665215084589994160194511935568425293,

α = 0.5529291480359398193611887297385924764949,

a3,2 =

(
−15

4
+ 15η − 21

4
η2

)
α + 4− 25

2
η +

9

2
η2,
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a3,1 =

(
15

4
− 15η +

21

4
η2

)
α− 7

2
+ 13η − 9

2
η2,

b2 = −3

2
η2 + 4η − 1

4
,

b3 =
3

2
η2 − 5η +

5

4
.

As the explicit portion of this pair is not ‘stiffly accurate’ we pad the tables as discussed in

Section 3.2. We then convert this to ‘solve-decoupled’ form [88] by inserting additional rows

and columns into the tables to ensure that any stage with a nonzero diagonal value in the

slow implicit table is associated with ∆ci = 0,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

η η 0 0 0 0 0 0 0 η 0 0 0 0 0 0 0

η η 0 0 0 0 0 0 0 0 0 η 0 0 0 0 0

1+η
2

� 0 � 0 0 0 0 0 � 0 � 0 0 0 0 0

1+η
2

a3,1 0 a3,2 0 0 0 0 0 0 0 1−η
2

0 η 0 0 0

1 � 0 � 0 � 0 0 0 � 0 � 0 � 0 0 0

1 1− 2α 0 α 0 α 0 0 0 0 0 b2 0 b3 0 η 0

1 0 0 b2 0 b3 0 η 0 0 0 b2 0 b3 0 η 0

1 0 0 b2 0 b3 0 η 0 0 0 b2 0 b3 0 η 0

where each entry in A{E,E} and A{I,I} above labeled with � need only be chosen to satisfy

internal consistency for the ARK table. We note that although the proposed IMEX-MRI-

GARK methods (3.6) do not require that the implicit portion of the IMEX-ARK table

have this ‘solve-decoupled’ pattern, we create tables with this structure due to their ease

of implementation. Specifically, if the corresponding IMEX-MRI-GARK method included a

‘solve-coupled’ stage i (i.e., both γi,i 6= 0 and ∆ci 6= 0), then the stage solution Y
{S}
i must

both define the fast IVP right-hand side (3.6c),

v′(θ) = ∆c
{S}
i f {F}

(
Ti−1 + ∆c

{S}
i θ, v(θ)

)
+

i−1∑
j=1

(
γi,j
(
θ
H

)
f
{I}
j + ωi,j

(
θ
H

)
f
{E}
j

)
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+ γi,i
(
θ
H

)
f {I}

(
tn + c

{S}
i H, Y

{S}
i

)
, θ ∈ [0, H],

and be the solution to this fast IVP, Y
{S}
i = v(H). Solve-decoupled methods, on the other

hand, may be performed by alternating between standard implicit solves for each implicit

stage, followed by fast evolution for non-implicit stages. However, as noted in [81, 84],

while the solve-decoupled approach makes for easier implementation of MRI methods, it

also results in methods with diminished stability.

The first IMEX-MRI-GARK that we built from the table above is “IMEX-MRI-GARK3a”.

We simultaneously found the 10 � values to complete the IMEX-ARK table, the 24 unknown

Γ{0} coefficients and the 20 unknown Ω{0} coefficients by solving the ARK consistency con-

ditions (3.14), the internal consistency conditions (3.32), and the third-order conditions

(3.56). Since this only constitutes 50 unique conditions that depend linearly on 54 unknown

entries, the corresponding linear system of equations was under-determined. For IMEX-

MRI-GARK3a we used the particular solution returned by MATLAB (a basic least-squares

solution). The resulting nonzero coefficients c{S}, Γ{0} and Ω{0} are provided in Appendix

A.1.

Our second IMEX-MRI-GARK constructed from this same base IMEX-ARK table is

“IMEX-MRI-GARK3b”. Here, beginning with the IMEX-MRI-GARK3a particular solution

above, we then used the four remaining free variables to maximize the extent of the joint

stability region along the negative real-axis. The nonzero coefficients c{S}, Γ{0} and Ω{0} for

the resulting method are given in Appendix A.2.

Remark 3.4.1. An alternative approach for creating solve-decoupled third-order IMEX-

MRI-GARK methods is to take advantage of the free � variables within the extended IMEX-

ARK table, plus assumptions that Γ = Γ{0} and Ω = Ω{0}. Here, one may select the � values

to ensure that the IMEX-ARK is internally consistent and satisfies

∆c{S}T
(
L+ 1

2
E−1

)
A{E,E}c{S} =

1

6
, ∆c{S}T

(
L+ 1

2
E−1

)
A{I,I}c{S} =

1

6
, (3.56)
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as these are equivalent to the third-order coupling conditions (3.43), with equation (3.14)

providing one-to-one correspondences between A{I,I} and Γ{0}, and between A{E,E} and Ω{0}.

We note that the conditions (3.56) each correspond to the previously-discovered third-order

condition for MIS methods introduced in [61].

In Figure 3.1 we plot the joint stability regions Jα,β for both the IMEX-MRI-GARK3a

and IMEX-MRI-GARK3b methods, for the fast time scale sectors S{F}α , α ∈ {10o, 45o} and

for the slow implicit sectors S{I}β , β ∈ {10o, 30o, 45o, 60o, 80o, 90o}. In these figures we also

plot the joint stability region for the slow base IMEX-ARK method, taken using the implicit

slow wedge S{I}90o (black dotted line). These results indicate that the joint stability regions for

IMEX-MRI-GARK3a at each fast and implicit sector angle is significantly smaller than the

base IMEX-ARK stability region. Furthermore, these stability regions shrink considerably

as the implicit sector angle β grows from 10o to 80o. In contrast, the joint stability regions for

IMEX-MRI-GARK3b are much larger, encompassing the majority of the base IMEX-ARK

stability region for both fast sector angles α = 10o and 45o, and for implicit sector angles

β ≤ 60o, including a significant extent along the imaginary axis. We therefore anticipate

that this method should provide increased stability for IMEX multirate problems wherein

advection comprises the slow explicit portion, as the corresponding Jacobian eigenvalues

typically reside on the imaginary axis.

3.4.2. Fourth-order method

We also constructed a fourth-order IMEX-MRI-GARK method using a base IMEX-ARK

method of our own design (since we knew of no existing fourth-order method that satisfied

our ‘sorted abscissae’ requirement, 0 ≤ c
{S}
1 ≤ · · · ≤ c

{S}
s{S}
≤ 1). To obtain IMEX-MRI-

GARK4 we first converted our IMEX-ARK table to solve-decoupled form and then obtained

the missing coefficients by satisfying internal consistency of the IMEX-ARK method. We

then found the unknowns in Γ{0}, Γ{1}, Ω{0} and Ω{1} by solving the linear system resulting

from (3.14), (3.32), (3.43) and (3.44) in MATLAB. The nonzero coefficients c{S}, Γ{0}, Γ{1},
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(c) J45o,β for IMEX-MRI-GARK3a
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Figure 3.1: Joint stability regions Jα,β for both IMEX-MRI-GARK3a (left) and IMEX-MRI-
GARK3b (right), at fast sector angles α = 10o (top) and α = 45o (bottom), for a variety of
implicit sector angles β. Each plot includes the joint stability region for the base IMEX-ARK
table (shown as “Base”). The benefits of simultaneously optimizing the IMEX-MRI-GARK
coefficients Γ{0} and Ω{0} are clear, as Jα,β for IMEX-MRI-GARK3b are significantly larger
than those for IMEX-MRI-GARK3a.
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Ω{0} and Ω{1} for this method, again accurate to 36 decimal digits, are given in Appendix

A.3.

While this method indeed satisfies the full set of ARK consistency conditions (3.14), inter-

nal consistency conditions (3.32), third-order conditions (3.43), and fourth-order conditions

(3.44), we have not yet been successful at optimizing its joint stability region Jα,β. In fact,

even when ignoring the slow-explicit portion by setting z{E} = 0 in our stability function

(3.55), the implicit+fast joint stability region is very small, rendering the full joint stability

regions Jα,β empty. While we have already noted that this definition of joint stability is

overly restrictive, and thus there may indeed be applications in which IMEX-MRI-GARK4

is suitable, we do not promote its widespread use, but include it here to demonstrate the

predicted fourth-order convergence in our multirate example problems.

3.5. Numerical results

In this section we demonstrate the expected rates of convergence for the IMEX-MRI-

GARK methods from Section 3.4. Additionally, we compare the efficiency of the proposed

methods against the legacy Lie–Trotter and Strang–Marchuk splittings (3.3) and (3.4), as

well as against two implicit MRI-GARK schemes from [88] of orders 3 and 4, respectively:

MRI-GARK-ESDIRK34a and MRI-GARK-ESDIRK46a. We consider two test problems: in

Section 3.5.1 we use a small Kværno-Prothero-Robinson (KPR) test problem to demonstrate

the convergence of our methods, and in Section 3.5.2 we use a more challenging stiff ‘brus-

selator’ test problem to investigate computational efficiency. Computations for the KPR

problem were carried out in MATLAB while computations for the brusselator test were car-

ried out in C using infrastructure from ARKODE, an ODE integration package within the

SUNDIALS suite which provides explicit, implicit, and IMEX Runge–Kutta methods as well

as MRI-GARK methods [34]. MATLAB implementations of both test problems are available

in the public GitHub repository [16].
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3.5.1. Kværno-Prothero-Robinson (KPR) Test

We first consider the KPR test problem adapted from Sandu [88],


u

v


′

= Λ


−3+u2−cos(βt)

2u

−2+v2−cos(t)
2v

−

β sin(βt)

2u

sin(t)
2v

 , t ∈
[
0, 5π

2

]
,

where

Λ =


λ{F} 1−ε

α
(λ{F} − λ{S})

−αε(λ{F} − λ{S}) λ{S}

 ,
and with initial conditions u(0) = 2, v(0) =

√
3, corresponding to the exact solutions

u(t) =
√

3 + cos(βt) and v(t) =
√

2 + cos(t). Here, u and v correspond to the “fast” and

“slow” solution variables, respectively. We use the parameters λ{F} = −10, λ{S} = −1,

ε = 0.1, α = 1, β = 20. While this problem does not inherently require IMEX methods at

the slow time scale, it is both nonlinear and non-autonomous, and has an analytical solution.

Thus this serves as an excellent problem to assess the convergence rates for the proposed

IMEX-MRI-GARK methods.

We split this problem into the form (3.2) by setting each portion of the right hand side

to be

f {E} =


0

sin(t)
2v

 , f {I} =


0 0

0 1

Λ


−3+u2−cos(βt)

2u

−2+v2−cos(t)
2v

 , and

f {F} =


1 0

0 0

Λ


−3+u2−cosβt

2u

−2+v2−cos(t)
2v

−

β sin(βt)

2u

0

 .
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The slow component for implicit MRI-GARK methods is the sum of f {E} and f {I} which is

then treated implicitly.

For the fast time scale of each method we use a step of size h = H
20

, where we match

the order of the inner solver with the overall method order: IMEX-MRI-GARK3 (a, b)

and MRI-GARK-ESDIRK34a use the third-order explicit “RK32” from equation (233f) of

[10], IMEX-MRI-GARK4 and MRI-GARK-ESDIRK46a use the popular fourth-order explicit

“RK4” method from [62], Strang–Marchuk uses the second-order explicit Heun method, and

Lie–Trotter uses the explicit forward Euler method. For the implicit slow components of each

method we use a standard Newton-Raphson nonlinear solver with dense Jacobian matrix and

linear solver.

10−310−210−1

H

10−11

10−9

10−7

10−5

10−3

10−1

M
ax

E
rr

or

Lie-Trotter (0.99)

Strang-Marchuk (1.98)

IMEX-MRI3a (3.10)

IMEX-MRI3b (3.14)

MRI-GARK34a (3.06)

IMEX-MRI4 (4.15)

MRI-GARK46a (3.93)

Figure 3.2: Convergence for the KPR test problem from Section 3.5.1. The measured con-
vergence rates (given in parentheses) for each method match their theoretical predictions.

In Figure 3.2 we plot the maximum solution error over a set of 20 evenly-spaced temporal

outputs in [0, 5π/2] for each method, at each of the slow step sizesH = π/2k, for k = 3, . . . , 10

with IMEX-MRI-GARK and MRI-GARK methods and k = 3, . . . , 13 for the legacy methods.

In the legend parentheses we show the overall estimated convergence rate, computed using a
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least-squares best fit of the log(Max Error) versus log(H) results for each method. For each

method the theoretical order of convergence is reproduced.

3.5.2. Brusselator Test

Our second, and more strenuous, test problem focuses on an advection-diffusion-reaction

system of partial differential equations, as these are pervasive in computational physics and

are typically solved using one of the two legacy methods (3.3) or (3.4). Here, both advection

and diffusion may be evolved at the slow time scale, but due to their differential structure

advection is typically treated explicitly, while diffusion is implicit. Chemical reactions, how-

ever, frequently evolve on much faster time scales than advection and diffusion, and due to

their nonlinearity and bound constraints (typically these are mass densities that must be

non-negative), often require subcycling for both accuracy and stability.

We therefore consider the following example which is a stiff variation of the standard

“brusselator” test problem [45, 46]:

ut = αu∇2u+ ρu∇u+ a− (w + 1)u+ u2v,

vt = αv∇2v + ρv∇v + wu− u2v,

wt = αw∇2w + ρw∇w +
b− w
ε
− wu,

solved on t ∈ [0, 3] and x ∈ [0, 1], using stationary boundary conditions,

ut(t, 0) = ut(t, 1) = vt(t, 0) = vt(t, 1) = wt(t, 0) = wt(t, 1) = 0,

and initial values,

u(0, x) = a+ 0.1 sin(πx),
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v(0, x) = b/a+ 0.1 sin(πx),

w(0, x) = b+ 0.1 sin(πx),

with parameters αj = 10−2, ρj = 10−3, a = 0.6, b = 2, and ε = 10−2. We discretize these

in space using a second-order accurate centered difference approximation with 201 or 801

grid points. As we do not have an analytical solution to this problem, we compute error by

comparing against a reference solution generated using the same spatial grid, but that uses

ARKODE’s default fifth-order diagonally implicit method with a time step of H = 10−7.

We split this problem into the form (3.2) by setting each portion of the right hand side

to be the spatially-discretized versions of the operators

f {E} =



ρu∇u

ρv∇v

ρw∇w


, f {I} =



αu∇2u

αv∇2v

αw∇2w


, and f {F} =



a− (w + 1)u+ u2v

wu− u2v

b−w
ε
− wu


.

The slow component for implicit MRI-GARK methods is the sum of f {E} and f {I} which is

then treated implicitly.

We note that although this test problem indeed exhibits the same differential structure as

large-scale advection-diffusion-reaction PDE models, a significant majority of those models

are based on the compressible Navier–Stokes equations, wherein the ‘slow explicit’ oper-

ator f {E} would be nonlinear, would dominate the transport of reactants throughout the

domain, and would be treated using a shock-capturing or essentially non-oscillatory spatial

discretization. Thus our results which follow should serve as only a simplified test problem

for such scenarios, since in reality one would instead expect f {E} to require a significantly

larger share of the overall computational effort. As a result, our subsequent results show

only a ‘best case’ scenario for implicit MRI-GARK methods, as implicit treatment of f {E}
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in such large-scale applications is typically avoided due to its extreme cost and potential for

nonlinear solver convergence issues.

For the subcycling portions of each method, we use a fast time step of h = H/5. With

the exception of Lie–Trotter we use fast implicit methods having accuracy equal to their

corresponding multirate method: IMEX-MRI-GARK3 (a, b) and MRI-GARK-ESDIRK34a

use the diagonally-implicit method from Section 3.2.3 of [18] with β = (3 +
√

3)/6, IMEX-

MRI-GARK4 and MRI-GARK-ESDIRK46a use the diagonally-implicit (5,3,4) method from

[13], while Lie-Trotter and Strang–Marchuk use an implicit second-order method given by the

Butcher table

1 1 0

0 −1 1

1/2 1/2

. For both the implicit slow stages and the implicit fast stages

we use a standard Newton-Raphson nonlinear solver with a banded direct linear solver.

For each spatial grid size in Figure 3.3, we plot the runtimes and maximum solution

error over a set of 10 evenly-spaced temporal outputs in [0, 3] for each method, at each of

the slow step sizes H = 0.1 · 2−k for k = 0, . . . , 10. We compute least squares fit convergence

rates only on points within the asymptotic convergence regime, discarding points at larger

H values with higher than expected errors and points at smaller H values where errors

have already reached our reference solution accuracy. We first note that as expected when

applying Runge–Kutta methods to stiff applications, the measured convergence rates are

slightly deteriorated from their theoretical peaks. In addition to the challenges presented

by stiffness, the reduced convergence for IMEX-MRI-GARK4 and MRI-GARK-ESDIRK46a

is likely due to the limited reference solution accuracy of around 10−11. Additionally, the

higher-order methods experience order reduction when we increase the spatial grid size from

201 points to 801 points.

Furthermore, we point out that this problem highlights the reduced joint stability re-

gion for both the IMEX-MRI-GARK4 and MRI-GARK-ESDIRK46a methods, as the IMEX
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Figure 3.3: Efficiency for the stiff brusselator test problem from Section 3.5.2, using
201 grid points (left) and 801 grid points (right). Best fit convergence rates on the
201 grid are 0.91, 1.92, 2.86, 2.92, 2.94, 3.12, 2.94 for (Lie–Trotter, Strang–Marchuk, IMEX-
MRI3a, IMEX-MRI3b, MRI-GARK34a, IMEX-MRI4, and MRI-GARK46a, resp.) and
0.90, 1.87, 2.41, 2.47, 3.02, 2.69, 2.42 for the 801 grid. MRI-GARK46a and IMEX-MRI4 have
limited stability on this test problem, with their curves missing for H > 1/40 and H > 1/80
respectively on the 201 grid, and H > 1/80 and H > 1/160 on the 801 grid.
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method was unstable for time step sizes larger than H = 1/80 for 201 spatial grid points

and larger than H = 1/160 for the 801 spatial grid, while the implicit method was unstable

for step sizes larger than H = 1/40 and H = 1/80 for 201 and 801 spatial grids respectively.

All of the other methods were stable (if inaccurate) at even the largest step sizes tested.

Focusing our discussion on efficiency, at all accuracy levels shown in Figure 3.3, IMEX-

MRI-GARK and implicit MRI-GARK schemes are more efficient for this application than

legacy approaches. This is hardly surprising, due to their increased convergence rates and

tighter coupling between the operators at the fast and slow time scales. Comparing the

third and fourth-order IMEX-MRI-GARK methods, the third-order methods are clearly

more efficient for this test, which we believe results from three primary factors. First, the

third-order methods require fewer slow-implicit solves per step (3 vs 5). Second, the fast-

scale implicit Runge–Kutta methods used for both schemes have significantly different costs,

with the third and fourth-order fast methods requiring 2 and 5 implicit stages per step,

respectively. Both of these cost differences should be expected due to their differing method

order; however the IMEX-MRI-GARK4 also experienced more severe order reduction for

this problem, precluding those increased costs from being balanced by a significantly higher

achievable convergence rate.

Expanding our consideration to include the full range of higher-order MRI-GARK ap-

proaches, MRI-GARK-ESDIRK46a is the most efficient at achieving tight desired accura-

cies (below 10−8), while all of the third-order methods were comparably efficient for larger

accuracy levels. For the 201 grid, there is no discernible difference in runtime between

our IMEX-MRI-GARK3 a/b methods and MRI-GARK-ESDIRK34a; however MRI-GARK-

ESDIRK34a achieves better efficiency for the 801 grid. We recall, however, that due to the

simple linear advection model in this problem, the results shown here represent a best case

scenario for implicit MRI-GARK methods, whereas the IMEX-MRI-GARK results should

more accurately reflect their expected performance on large-scale reactive flow problems. We

thus anticipate that when applied to the targeted large-scale applications, the IMEX-MRI-
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GARK3 a/b methods will prove to be significantly more efficient, due to their combination

of excellent convergence and flexibility in allowing explicit treatment of f {E}.

We finally note that of the methods that allow the originally-desired IMEX + multirate

treatment of this problem (i.e., not including the implicit MRI-GARK methods), the pro-

posed IMEX-MRI-GARK methods enable accuracies that would otherwise be intractable

with legacy splitting approaches.

3.6. Conclusions

In this paper we have introduced a new class of multirate integration methods that sup-

port implicit-explicit treatment of the slow time scale. These IMEX-MRI-GARK methods

are highly-flexible: in addition to supporting IMEX treatment of the slow time scale, the fast

time scale is only assumed to be solved using another sufficiently-accurate approximation,

thereby allowing for the fast time scale to be further decomposed into a mix of implicit and

explicit components, or even into a multirate method itself. As with their related non-IMEX

MRI-GARK counterparts [88], the coupling from slow to fast time scale occurs through

modification of the fast time-scale function f {F}(t, y) to include a polynomial forcing term,

g(t), that incorporates slow time scale tendencies into the fast time scale dynamics.

In addition to defining IMEX-MRI-GARK methods, we have provided rigorous derivation

of conditions on their coefficients to guarantee orders three and four. Furthermore, we have

provided the corresponding linear stability function for IMEX-MRI-GARK methods, and

extended the definition of “joint stability” from Zharovsky et al. [111] to accommodate a

three-component additive splitting.

With these theoretical foundations, we have presented three specific IMEX-MRI-GARK

methods, two third-order methods derived from Ascher, Ruuth and Spiteri’s ‘(3,4,3)’ ARK

method [4], and one fourth-order method of our own design.

We then provided asymptotic convergence results for the three proposed methods, using

the standard Kværno-Prothero-Robinson (KPR) multirate test problem, where each method
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exhibited its expected convergence rate. To assess method efficiency, we utilized a more

challenging stiff brusselator PDE test problem, which showed that the proposed methods

were uniformly more efficient than the legacy Lie–Trotter and Strang–Marchuk methods

at all accuracy levels tested. Moreover, although such methods cannot allow for IMEX

treatment of the slow time scale (and thus efficiency comparisons are somewhat artificial),

we also compared against recently-proposed implicit MRI-GARK methods [88]. Here, our

third-order IMEX-MRI-GARK methods proved competitive, and the higher cost per step of

our fourth-order IMEX-MRI-GARK method rendered it the least efficient of the group.

We note that much work remains. For starters, we plan to derive a new fourth-order

IMEX-MRI-GARK method with an optimal linear stability region and with a decreased

cost per step. We anticipate that this will require simultaneous derivation of both the base

IMEX-ARK method and its IMEX-MRI-GARK extension, due to the tight interplay be-

tween these methods and their joint stability. An obvious (yet tedious) extension of this

work would be to derive the order conditions for fifth-order IMEX-MRI-GARK methods,

and to construct tables to implement such approaches. Additionally, we would like to cre-

ate new IMEX-MRI-GARK methods that include embeddings, thereby allowing for robust

temporal adaptivity at both the slow and fast time scales. While extension of the IMEX-

MRI-GARK algorithm to include an alternate set of IMEX-ARK embedding coefficients is

straightforward, creation of optimal embedded multirate methods and fast/slow temporal

adaptivity controllers have barely been touched in the literature. Finally, we anticipate the

creation of ‘solve-coupled’ IMEX-MRI-GARK and MRI-GARK methods, and the accompa-

nying work on efficient nonlinear solvers, to allow a tighter coupling between implicit and

fast processes in these multirate approaches.
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Chapter 4

Stability optimized fourth order methods

In this chapter we further investigate linear stability of IMEX-MRI-GARK methods

with the intention of constructing a fourth-order method with better stability properties

compared to the one introduced in Chapter 3. We achieve this task by relaxing our definition

of joint stability from Chapter 3, after which we create a new stability optimized fourth-

order method. We plot stability regions for our IMEX-MRI-GARK methods under the

relaxed definition of joint stability. Numerical experiments on the brusselator test problem

from Chapter 3 demonstrate significant improvement in stability for the new fourth order

method.

4.1. Relaxed definition of joint stability

Our discussion is a continuation of Section 3.3 in Chapter 3. Starting with the expression

of the stability function

R
(
z{F}, z{E}, z{I}

)
(4.1)

:= eTs{S}

(
I − diag

(
ϕ0

(
∆c{S}z{F}

))
L− z{E}η

(
z{F}

)
− z{I}µ

(
z{F}

))−1

e1.

we defined the joint stability region following Zharovsky and collaborators in [111], to be

Jα,β :=
{
z{E} ∈ C− :

∣∣R(z{F}, z{E}, z{I})
∣∣ ≤ 1, ∀z{F} ∈ S{F}α , ∀z{I} ∈ S{I}β

}
(4.2)

where Sσα := {zσ ∈ C− : | arg(zσ)− π| ≤ α}. This gives the stability region for the slow-

explicit component only, assuming z{I} and z{F} can range throughout entire infinitely-long
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sectors S{I}α and S{F}β in C−. Under this definition of joint stability, we can plot regions

for our third order methods IMEX-MRI-GARK3a and IMEX-MRI-GARK3b. However,

this requirement of stability over infinitely-long sectors resulted in our IMEX-MRI-GARK4

method having no region of joint stability, making it difficult for optimization utilities to

improve.

Considering both z{I} and z{F} to be infinitely-long sectors in the left complex plane is

rather restrictive. For the purposes of maximizing the joint stability region, we can loosen

this restriction by considering z{F} to be in a smaller sector, akin to assuming the fast time

scale to be non-stiff. We therefore refine our definition of the joint stability region (4.2) to

be

J ρ
α,β :=

{
z{E} ∈ C− :

∣∣R(z{F}, z{E}, z{I})
∣∣ ≤ 1, ∀z{F} ∈ S{F}ρ,α , ∀z{I} ∈ S{I}β

}
(4.3)

with S{I}β defined as before and

S{F}ρ,α :=
{
z{F} ∈ C− : |z{F}| ≤ ρ, | arg(z{F})− π| ≤ α

}
(4.4)

We note that this in fact matches Sandu’s definitions of scalar stability regions in [88].

Following his lead, we thus consider the fast sector to have extent ρ = 1 in (4.4), which

allows us to create a new fourth order method that demonstrates better stability properties.

4.2. Fourth-order method with improved joint stability

We create a fourth-order IMEX-MRI-GARK method based on an IMEX-ARK of our de-

sign starting with a 6-stage stiffly accurate ESDIRK method
(
A{I}, b{I}, c{I}

)
from Kennedy

and Carpenter [56],
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0 0 0 0 0 0 0

2γ γ γ 0 0 0 0

c
{S}
3 (c

{S}
3 − a{I}32 − γ) a

{I}
32 γ 0 0 0

c
{S}
4 (c

{S}
4 − a{I}42 − a

{I}
43 − γ) a

{I}
42 a

{I}
43 γ 0 0

c
{S}
5 (c

{S}
5 − a{I}52 − a

{I}
53 − a

{I}
54 − γ) a

{I}
52 a

{I}
53 a

{I}
54 γ 0

1 (1− b{S}2 − b{S}3 − b{S}4 − b{S}5 − γ) b
{S}
2 b

{S}
3 b

{S}
4 b

{S}
5 γ

1 (1− b{S}2 − b{S}3 − b{S}4 − b{S}5 − γ) b
{S}
2 b

{S}
3 b

{S}
4 b

{S}
5 γ

and build a corresponding explicit Runge–Kutta method
(
A{E}, b{E}, c{E}

)
with c{I} =

c{E} ≡ c{S} and b{I} = b{E} ≡ b{S}. We note that this is the same table we started with

when constructing our fourth-order IMEX-MRI-GARK method in Chapter 3. Leaving the

derivation of embedding coefficients for future work, there are 14 degrees of freedom.

We use symbolic MATLAB to find the free variables in the following several steps:

To satisfy L-stability for the ESDIRK table, we choose γ = 1
4
, and we set the remaining c{S}

coefficients so that they are nondecreasing and equidistant from each other. Next, we choose

b
{S}
2 , b

{S}
3 , b

{S}
4 to satisfy the conditions

b{S}T c{S} =
1

2
, b{S}T c{S}×2 =

1

3
, b{S}T c{S}×3 =

1

4
.

For the ESDIRK table we solve

b{S}TA{I}c{S} =
1

6
,

(
b{S} × c{S}

)T
A{I}c{S} =

1

8
,

b{S}TA{I}c{S}×2 =
1

12
, b{S}TA{I}A{I}c{S} =

1

24
,
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to obtain a
{I}
43 , a

{I}
52 , a

{I}
53 , a

{I}
54 . We then satisfy b

{S}
5 , a

{E}
42 , a

{E}
52 , a

{E}
62 from conditions

b{S}TA{E}c{S} =
1

6
,

(
b{S} × c{S}

)T
A{E}c{S} =

1

8
,

b{S}TA{E}c{S}×2 =
1

12
, b{S}TA{E}A{E}c{S} =

1

24
.

The coupling conditions

b{S}TA{I}A{E}c{S} =
1

24
, b{S}TA{E}A{I}c{S} =

1

24
,

lead to values for a
{E}
63 , a

{E}
64 . Finally a

{I}
42 is chosen to satisfy L-stability.

Upon solving each of the above conditions using the stated variables, we are guaranteed

that the IMEX-ARK method satisfies fourth-order conditions, and we are left with 6 free

variables: a
{I}
32 , a

{E}
32 , a

{E}
43 , a

{E}
53 , a

{E}
54 , and a

{E}
65 . We then transform the resulting IMEX-

ARK table based on these 6 free variables into solve-decoupled form as described in Section

3.4. The new variables introduced by rewriting IMEX-ARK tables in solve-decoupled form

are inconsequential to the coefficients in the Γk and Ωk matrices, as they can be uniquely

determined by enforcing internal consistency of the IMEX-ARK table. This makes it so that

all of the IMEX-MRI-GARK order conditions that remain to be satisfied are linear in the

unknown variables from Γ0,Γ1,Ω0,Ω1 from the IMEX-MRI-GARK table, and our remaining

free variables a
{I}
32 , a

{E}
32 , a

{E}
43 , a

{E}
53 , a

{E}
54 and a

{E}
65 from the IMEX-ARK table. This linear

system of equations is under-determined, leaving 51 free variables to modify in an attempt

to maximize the joint stability region. We choose our objective function to be the largest

real-valued z{E} that is on the boundary of the joint stability region, i.e. given guesses of

the free variables, we solve the root-finding problem

f
(
z{E}

)
= 1− max

z{F}∈(−1,0),

z{I}∈(−108,0)

|R
(
z{F}, z{I}, z{E}

)
| = 0
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with the bisection method, and return z{E} as the value of the objective function. We use

MATLAB’s fmincon algorithm to carry out the optimization process of minimizing this

objective function. We name the resulting fourth-order IMEX-MRI-GARK method to be

IMEX-MRI-GARK4s, and its coefficients are provided in Appendix A.4.

Figure 4.1 shows the joint stability regions J 1
α,β for the IMEX-MRI-GARK4 method from

Section 3.4 in Chapter 3 and IMEX-MRI-GARK4s for fast wedges S{F}ρ=1,α with α ∈ {10◦, 45◦}

and for slow implicit wedges S{I}β with β ∈ {10◦, 30◦, 45◦, 60◦, 80◦, 90◦}. Included in our plots

is the joint stability region for IMEX-ARK given the slow implicit wedge S{I}90◦ shown by the

black dotted line. We note that for IMEX-MRI-GARK4, J 1
α,β deteriorates with increasing

α and β from the base. In fact, there is no joint stability region for sectors with fast α = 45◦

at all β values. For IMEX-MRI-GARK4s, the joint stability region is broken into two, a

larger region closer to the imaginary axis and a much smaller region centered around −8

on the real-axis. Having disjointed stability regions is not ideal since a numerical method

can potentially be stable in two independent regions, with a region of instability between

them, making it hard to capture the threshold values for stable time steps. For the regions

centered around −8, the base IMEX-ARK joint stability region is the largest and IMEX-

MRI-GARK4s regions shrink with increasing α and β. However for the regions closest to

the imaginary axis, the base IMEX-ARK joint stability region is smaller than IMEX-MRI-

GARK4s regions with α-β pairs: 10◦-60◦ and 45◦-45◦. Overall, the benefits of optimizing

are still clear as IMEX-MRI-GARK4s has larger J 1
α,β than IMEX-MRI-GARK4 at all values

of α and β. Additionally, we note that IMEX-MRI-GARK4s includes significantly more of

the imaginary axis within J 1
α,β.

4.3. Numerical results

In this section we extend our results of the brusselator test problem of Section 3.5.2 from

Chapter 3 which introduces IMEX-MRI-GARK methods. Everything from that problem

remains the same including comparisons with legacy approaches and MRI-GARK methods,
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Figure 4.1: Joint stability regions J 1
α,β for both IMEX-MRI-GARK4 (left) and IMEX-MRI-

GARK4s (right), at fast sector angles α = 10o (top) and α = 45o (bottom), for a variety of
implicit sector angles β. Each plot includes the joint stability region for the base IMEX-ARK
table (shown as “Base”). Stability optimized IMEX-MRI-GARK4s has larger J 1

α,β for all α
and β.
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we only add results for IMEX-MRI-GARK4s and present error versus H plots. IMEX-MRI-

GARK4s is shortened to IMEX-MRI4s in the plot legends.
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Figure 4.2: Convergence of methods applied to the brusselator problem of Chapter 3, Section
3.5.2. MRI-GARK46a and IMEX-MRI4 have limited stability on this test problem, their
curves are missing for H > 1

40
and H > 1

80
respectively on the 201 grid, and H > 1

80
and

H > 1
160

on the 801 grid. The stability optimized IMEX-MRI4s and the rest of the methods
are stable at largest value of H tested.

In Figure 4.2 we plot the convergence results for legacy approaches Lie-Trotter and

Strang–Marchuk, IMEX-MRI-GARK3a/3b, IMEX-MRI-GARK4, MRI-GARK-ESDIRK34a/46a,

and the new IMEX-MRI-GARK4s method. We extend our discussion of the brusselator test

problem from Section 3.5.2, focusing on IMEX-MRI-GARK4s. We note that IMEX-MRI-

GARK4s is stable for the largest slow time step H = 1
10

on both the 201 and 801 grid; in

contrast to IMEX-MRI-GARK4 which is only stable for H > 1
80

and H > 1
160

on the 201

and 801 grids respectively. We also point out that the new IMEX-MRI-GARK4s is even

more stable than the MRI-GARK-ESDIRK46a method by Sandu at large step sizes, which

is even more notable due to the fact that MRI-GARK-ESDIRK46a treats the entire slow
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time scale implicitly. These results confirm the the larger joint stability region we observed

for IMEX-MRI-GARK4s. The accuracy of IMEX-MRI-GARK4s is however equivalent to

IMEX-MRI-GARK4 for the step sizes that IMEX-MRI-GARK4 is stable for.

Despite being rather simplistic, there are some merits to studying the scalar test problem

(3.53) from Chapter 3 and plotting joint stability plots for IMEX-MRI-GARK methods.

Limiting our discussion to the refined joint stability in this chapter, IMEX-MRI-GARK4

has a smaller joint stability region than the stability optimized IMEX-MRI-GARK4s. This

seemingly predicts the behavior of both methods on the brusselator test problem. Ideally,

we need fourth-order methods with decent joint stability for infinite slow implicit and fast

wedges, however, as demonstrated here, relaxed definitions for the joint stability can be a

useful tool in constructing methods with better stability properties.
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Chapter 5

Multirate exponential Runge–Kutta methods

The contents of this chapter have been published in SIAM J. Sci. Comput., 42(2), pp.

A1245–A1268 under the title “A new class of high-order methods for multirate differential

equations” in collaboration with Vu Thai Luan and Daniel R. Reynolds [68].

5.1. Introduction

In this paper, we focus on the construction, analysis, and implementation of efficient,

highly accurate, multirate time stepping algorithms, based on explicit exponential Runge–

Kutta methods. These algorithms may be applied to initial value problems (IVPs) of the

form

u′(t) = F (t, u(t)) = Lu(t) +N (t, u(t)), u(t0) = u0, (5.1)

on the interval t0 < t ≤ T , where the vector field F (t, u(t)) can be decomposed into a linear

part Lu(t) comprising the “fast” time scale, and a nonlinear part N (t, u(t)) comprising the

“slow” time scale. Such systems frequently result from so-called “multi-physics” simulations

that couple separate physical processes together, or from the spatial semi-discretization of

time-dependent partial differential equations (PDEs). Our primary interest in this paper lies

in the case where the fast component is much less costly to compute than the slow component,

thereby opening the door for methods that evolve each component with different time step

sizes – so-called multirate (or multiple time-stepping, MTS) methods. This case is common

in practice when using a non-uniform grid for the spatial semi-discretization of PDEs, or in

parallel computations where the fast component is comprised of spatially-localized processes

but the slow component requires communication across the parallel network.
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In recent years, there has been renewed interest in the construction of multirate time in-

tegration methods for systems of ODEs. Generally, these efforts have focused on techniques

to achieve orders of accuracy greater than two, since second-order methods may be obtained

through simple interpolation between time scales. These recent approaches broadly fit into

two categories: methods that attain higher-order through deferred correction or extrapola-

tion of low-order methods [7, 19, 23], and methods that directly satisfy order conditions for

partitioned and/or additive Runge–Kutta methods [31, 41, 42, 59, 60, 63, 87, 93, 98, 100,

101, 102, 107]. Of these, the latter category promises increased efficiency due to the need to

traverse the time interval only once. However, only very recently have methods of this type

been constructed that can achieve full fourth-order accuracy [87, 102, 83], and we know of

no previous methods having order five or higher.

Among numerical methods that use the same time step for all components of (5.1),

exponential integrators have shown great promise in recent years [26, 48, 49, 50, 51, 52, 69,

70, 71, 73, 66, 74]. Most such methods require the approximation of products of matrix

functions with vectors, i.e., φ(L) v, for L ∈ Rd×d and v ∈ Rd.

Inspired by recent results on local-time stepping methods for problems related to (5.1) [33,

37, 38, 39], and motivated by the idea in [53, Sect. 5.3] that establishes a multirate procedure

for exponential multistep methods of Adams-type, here we derive multirate procedures for

exponential one-step methods. Starting from an s-stage explicit exponential Runge–Kutta

(ExpRK) method applied to (5.1), we employ the idea of backward error analysis to define

s−1 modified differential equations whose exact solutions coincide with the ExpRK internal

stages. These modified differential equations may then be evolved using standard ODE

solvers at the fast time scale. We name the resulting methods as Multirate Exponential

Runge–Kutta (MERK) methods.

The ability to construct modified ODEs for each slow ExpRK stage is dependent on the

form of the ExpRK method itself, and we identify these restrictions within this manuscript.

Using this approach, we derive a general multirate algorithm (Algorithm 1) that can be
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interpreted as a particular implementation (without matrix functions) of explicit exponential

Rung–Kutta methods. With this algorithm in hand, we perform a rigorous convergence

analysis for the proposed MERK methods. We additionally construct MERK schemes with

orders of accuracy two through five, based on some well-known ExpRK methods from the

literature.

We note that the resulting methods show strong similarities to the MIS methods in

[59, 60, 98, 100, 101, 107] and the follow-on RMIS methods [102] and MRI-GARK methods

[87, 83], in that the MERK algorithm requires the construction of a set of modified “fast”

initial-value problems that must be solved to proceed between slow stages, and where these

modifications take the form of polynomials based on “slow” function data. While these

approaches indeed result in similar algorithmic structure, (R)MIS and MRI-GARK methods

are based on partitioned and generalized-structure additive Runge–Kutta theory [92], and

as such their derivation requires satisfaction of many more order conditions than MERK

methods, particularly as the desired method order increases, to the end that no MIS method

of order greater than three, and no RMIS or MRI-GARK methods of order greater than

four, have ever been proposed. Additionally, to obtain an overall order p method, all fast

IVPs for (R)MIS and MRI-GARK methods must be solved to order p, whereas the internal

stages in MERK methods may use an order p − 1 solver. Finally, both (R)MIS and the

MRI-GARK methods from [87] require sorted abcissae c1 ≤ c2 ≤ · · · ≤ cs, a requirement

that is not present for MERK methods or for the SPC-MRI-GARK method in [83].

The outline of this paper is as follows: in Section 5.2, we derive the general class of expo-

nential Runge–Kutta methods in a way that facilitates construction of MERK procedures.

In Section 5.3, we then derive the general MERK algorithm for exponential Runge–Kutta

methods, and provide a rigorous convergence analysis for these schemes. In Section 5.4, we

derive specific MERK methods based on existing exponential Runge–Kutta methods. We

present a variety of numerical examples in Section 5.5 to illustrate the efficiency of the new

MERK schemes with order of accuracy up to five. The main contributions of this paper are
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Algorithm 1, convergence analysis for MERK methods (Theorem 5.3.2), and the proposed

MERK schemes with order of accuracy up to five.

5.2. Motivation

We begin with a general derivation of exponential Runge–Kutta methods [50, 52], which

motivates a multirate procedure for solving (5.1).

5.2.1. Exponential Runge–Kutta methods

When deriving ExpRK methods, it is crucial to represent the exact solution of (5.1) at

time tn+1 = tn +H using the variation-of-constants formula,

u(tn+1) = u(tn +H) = eHLu(tn) +

ˆ H

0

e (H−τ)LN (tn + τ, u(tn + τ))dτ. (5.2)

The integral in (5.2) is then approximated using a quadrature rule having nodes ci and

weights bi(HL) (i = 1, . . . , s), which yields

u(tn+1) ≈ eHLu(tn) +H
s∑
i=1

bi(HL)N (tn + ciH, u(tn + ciH)). (5.3)

By applying (5.2) (with ciH in place of H), the unknown intermediate values u(tn + ciH) in

(5.3) can be represented as

u(tn + ciH) = eciHLu(tn) +

ˆ ciH

0

e (ciH−τ)LN (tn + τ, u(tn + τ))dτ. (5.4)

Again, one can use another quadrature rule with the same nodes ci as before (to avoid the

generation of new unknowns) and new weights aij(HL) to approximate the integrals in (5.4).

This gives

u(tn + ciH) ≈ eciHLu(tn) +H
s∑
j=1

aij(HL)N (tn + cjH, u(tn + cjH)). (5.5)
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Now, denoting the approximations un ≈ u(tn) and Un,i ≈ u(tn + ciH), then from (5.3) and

(5.5) one may obtain the so-called exponential Runge–Kutta methods

Un,i = eciHLun +H
s∑
j=1

aij(HL)N (tn + cjH,Un,j), i = 1, . . . , s, (5.6a)

un+1 = eHLun +H

s∑
i=1

bi(HL)N (tn + ciH,Un,i). (5.6b)

The formula (5.6) is considered explicit when aij(HL) = 0 for all i ≤ j (thus c1 = 0

and consequentially Un,1 = un). Throughout this paper we restrict our attention to explicit

exponential Runge–Kutta methods, which can be reformulated as (see [70, 72]):

Un,i = un + ciHϕ1(ciHL)F (tn, un) +H
i−1∑
j=2

aij(HL)Dn,j, i = 2, . . . , s, (5.7a)

un+1 = un +Hϕ1(HL)F (tn, un) +H
s∑
i=2

bi(HL)Dn,i, (5.7b)

where

Dn,i = N (tn + ciH,Un,i)−N (tn, un), i = 2, . . . , s. (5.8)

Here, the coefficients aij(HL) and bi(HL) are often linear combinations of the functions

ϕk(ciHL) and ϕk(HL), respectively, wherein ϕk(z) are given by

ϕk(z) =

ˆ 1

0

e (1−θ)z θk−1

(k − 1)!
dθ, k ≥ 1, (5.9)

and satisfy the recurrence relations

ϕk(z) =
ϕk−1(z)− ϕk−1(0)

z
, ϕ0(z) = ez. (5.10)
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5.2.2. Adopting the idea of backward error analysis

Motivated by the idea of [53, Sect. 5.3], and recalling the equations (5.2) and (5.4), we

note that u(tn+1) and u(tn + ciH) are the exact solutions of the differential equation

v′(τ) = Lv(τ) +N (tn + τ, u(tn + τ)), v(0) = u(tn), (5.11)

evaluated at τ = H and τ = ciH, respectively. In other words, solving (5.11) exactly (by

means of using the variation-of-constants formula) on the time intervals [0, H] and [0, ciH]

shows that v(H) = u(tn+1) and v(ciH) = u(tn+ciH). Unfortunately, explicit representations

of these analytical solutions are generally impossible to find, since u(tn) and u(tn + τ) are

unknown values. This observation, however, suggests the use of backward error analysis (see,

for instance [44, Chap. IX]).

Given an exponential Runge–Kutta method (5.6), we therefore search for modified dif-

ferential equations of the form (5.11), such that their exact solutions at τ = ciH and τ = H

coincide with the ExpRK approximations Un,i (i = 2, . . . , s) and un+1, respectively. We may

then approximate solutions to these modified equations to compute our overall approxima-

tion of (5.1).

5.3. Multirate exponential Runge–Kutta methods

In this section, we construct a new multirate procedure based on approximation of Ex-

pRK schemes; we call the resulting algorithms Multirate Exponential Runge-Kutta (MERK)

methods. Following this derivation, we present a rigorous convergence analysis.

5.3.1. Construction of modified differential equations

We begin with the construction of MERK methods, through definition of modified dif-

ferential equations corresponding with the ExpRK stages Un,i (i = 2, . . . , s) and solution

un+1.
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Theorem 5.3.1. Assuming that the coefficients aij(HL) and bi(HL) of an explicit exponen-

tial Runge–Kutta method (5.7) may be written as linear combinations

aij(HL) =

`ij∑
k=1

α
(k)
ij ϕk(ciHL), bi(HL) =

mi∑
k=1

β
(k)
i ϕk(HL) (5.12)

for some positive integers `ij and mi, and where the functions ϕk(ciHL) and ϕk(HL) are

given in (5.9), then Un,i and un+1 are the exact solutions of the linear differential equations

v′n,i(τ) = Lvn,i(τ) + pn,i(τ), vn(0) = un, i = 2, . . . , s, (5.13a)

v′n(τ) = Lvn(τ) + qn(τ), vn(0) = un (5.13b)

at the times τ = ciH and τ = H, respectively. Here pn,i(τ) and qn(τ) are polynomials in τ

given by

pn,i(τ) = N (tn, un) +
i−1∑
j=2

( `ij∑
k=1

α
(k)
ij

ckiH
k−1(k − 1)!

τ k−1
)
Dn,j, (5.14a)

qn(τ) = N (tn, un) +
s∑
i=2

( mi∑
k=1

β
(k)
i

Hk−1(k − 1)!
τ k−1

)
Dn,i. (5.14b)

Proof. By changing the integration variable to τ = Hθ in (5.9), we obtain

ϕk(z) =
1

Hk

ˆ H

0

e (H−τ) z
H

τ k−1

(k − 1)!
dτ, k ≥ 1. (5.15)

Substituting z = ciHL and z = HL into (5.15) and inserting the obtained results for

ϕk(ciHL) and ϕk(HL) into (5.12) shows that

aij(HL) =

ˆ ciH

0

e (ciH−τ)L
`ij∑
k=1

α
(k)
ij

(ciH)k(k − 1)!
τ k−1dτ, (5.16a)
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bi(HL) =

ˆ H

0

e (H−τ)L
mi∑
k=1

β
(k)
i

Hk(k − 1)!
τ k−1dτ. (5.16b)

Using the fact that F (tn, un) = Lun +N (tn, un) and

ϕ1(Z) =
1

H

ˆ H

0

e (H−τ) Z
H dτ = (eZ − I)Z−1. (5.17)

we can write (5.7) in an equivalent form,

Un,i = eciHLun + ciHϕ1(ciHL)N (tn, un) +H

i−1∑
j=2

aij(HL)Dn,j, (5.18a)

un+1 = eHLun +Hϕ1(HL)N (tn, un) +H
s∑
i=2

bi(HL)Dn,i, (5.18b)

for i = 2, . . . , s. We now insert the integral form of ϕ1(Z) in (5.17) (with Z = ciHL and

Z = HL) and (5.16) into (5.18) to get

Un,i = eciHLun +

ˆ ciH

0

e (ciH−τ)Lpn,i(τ)dτ, i = 2, . . . , s, (5.19a)

un+1 = eHLun +

ˆ H

0

e (h−τ)Lqn(τ)dτ (5.19b)

with pn,i(τ) and qn(τ) as shown in (5.14). Clearly, these representations (variation-of-

constant formulas) show the conclusion of Theorem 5.3.1. In particular, Un,i = vn,i(ciH)

and un+1 = vn(H). Thus one can consider (5.13) as modified differential equations with

identical solutions as the ExpRK approximations to (5.11).

We note that the idea of using an ODE to represent a linear combination of matrix-vector

ϕk(A)vk was also used in [77].
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5.3.2. MERK methods and a multirate algorithm

We now present an algorithm to solve the modified ODEs (5.13a) and (5.13b) numerically.

For later use, we first denote the numerical solutions of (5.13a) on [0, ciH] and (5.13b)

on [0, H] by Ûn,i and ûn+1, respectively. This means that Ûn,i ≈ vn,i(ciH) = Un,i and

ûn+1 ≈ vn(H) = un+1.

Clearly, the polynomials pn,i(τ) and qn(τ) in (5.14) are not given analytically since Dn,i

are unknowns; however, these polynomials can be numerically determined as follows. For

simplicity, we illustrate our procedure by starting with n = 0 and i = s = 2. In this case we

know u0 = u(t0) and p0,2(τ) = N (t0, u0), so one can solve the ODE (5.13a) on [0, c2H] to

get an approximation to U0,2, Û0,2 ≈ U0,2 = v0,2(c2H). Then replacing the unknown U0,2 in

(5.14b) by Û0,2, we have

q̂0(τ) = N (t0, u0) +

mi∑
k=1

β
(k)
2

Hk−1(k − 1)!
τ k−1D̂0,2,

where D̂0,2 = N (t0 + c2H, Û0,2)−N (t0, u0). Since q̂0(τ) ≈ q0(τ), we may then solve the ODE

(5.13b) on [0, H] with q̂0(τ) in place of q0(τ) to obtain an approximation û1 ≈ u1 = v0(H).

This general process may be extended to larger numbers of stages s ≥ 2 and for subse-

quent time steps n ≥ 0. Approximating ûn ≈ un (with û0 = u0), then for i = 2, . . . , s, we

define the following perturbed linear ODEs over τ ∈ [0, ciH]:

y′n,i(τ) = Lyn,i(τ) + p̂n,i(τ), yn,i(0) = ûn, (5.20)

with

p̂n,i(τ) = N (tn, ûn) +
i−1∑
j=2

( `ij∑
k=1

α
(k)
ij

ckiH
k−1(k − 1)!

τ k−1
)
D̂n,j, (5.21)

D̂n,i = N (tn + ciH, Ûn,i)−N (tn, ûn), (5.22)
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that provide the approximations

Ûn,i ≈ yn,i(ciH) ≈ vn,i(ciH) = Un,i.

With these in place, we then solve the linear ODE

y′n(τ) = Lyn(τ) + q̂n(τ), yn(0) = ûn (5.23)

over τ ∈ [0, H], with

q̂n(τ) = N (tn, ûn) +
s∑
i=2

( mi∑
k=1

β
(k)
i

Hk−1(k − 1)!
τ k−1

)
D̂n,i, (5.24)

to obtain the approximate time-step solutions,

ûn+1 ≈ yn(H) ≈ vn(H) = un+1.

Since the above procedure uses a “macro” time step H to integrate the slow process, and a

“micro” time step h to integrate the fast process (via solving the ODEs (5.20) and (5.23)), we

call the resulting methods (5.20)-(5.22) Multirate Exponential Runge–Kutta (MERK) meth-

ods. By construction, these MERK methods offer several interesting features. They reduce

the solution of nonlinear problems (5.1) to the solution of a sequence of linear differential

equations (5.20) and (5.23), using very few evaluations of the nonlinear operator N . Thus

they can be more efficient for problems where the linear part is much less costly to compute

than the nonlinear part. Additionally, they do not require the computation of matrix func-

tions, as is the case with ExpRK methods. Moreover, these methods do not require a starting

value procedure as in multirate algorithms for exponential multistep methods [27, 53].

We provide the following Algorithm 1 to give a succinct overview of the implementation

of our MERK methods.
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• Input: L; N (t, u); t0; u0; s; ci (i = 1, . . . , s); H

• Initialization: Set n = 0; ûn = u0.

While tn < T

1. Set Ûn,1 = ûn.

2. For i = 2, . . . , s do

(a) Find p̂n,i(τ) as in (5.21).

(b) Solve (5.20) on [0, ciH] to obtain Ûn,i ≈ yn,i(ciH).

3. Find q̂n,s(τ) as in (5.24)

4. Solve (5.23) on [0, H] to get ûn+1 ≈ yn(H).

5. Update tn+1 := tn +H, n := n+ 1.

• Output: Approximate values ûn ≈ un, n = 1, 2, . . . (where un is the numerical

solution at time tn obtained by an ExpRK method).

Algorithm 1: MERK method

5.3.3. Convergence analysis

Since MERK methods are constructed to approximate ExpRK methods, we perform

their error analysis in the framework of analytic semigroups on a Banach space X, under

the following assumptions (see e.g., [51, 70]).

Assumption 1. The linear operator L is the infinitesimal generator of an analytic semi-

group e tL on X. This implies that

‖e tL‖X←X ≤ C, t ≥ 0 (5.25)

and consequently ϕk(HL), aij(HL) and bi(HL) are bounded operators.
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Assumption 2 (for high-order methods). The solution u : [t0, T ] → X of (5.1) is suf-

ficiently smooth with derivatives in X, and N : [t0, T ] × X → X is sufficiently Fréchet

differentiable in a strip along the exact solution. All derivatives occurring in the remainder

of this section are therefore assumed to be uniformly bounded.

We analyze the error in MERK methods starting with the local error of ExpRK methods.

Therefore, we first consider (5.6) (in its explicit form) with exact initial value u(tn):

Ŭn,i = eciHLu(tn) +H
i−1∑
j=1

aij(HL)N (tn + cjH, Ŭn,j), i = 2, . . . , s, (5.26a)

ŭn+1 = eHLu(tn) +H
s∑
i=1

bi(HL)N (tn + ciH, Ŭn,i) (5.26b)

and thus the MERK methods (5.13)–(5.14) are considered with polynomials

p̆n,i(τ) = N (tn, u(tn)) +
i−1∑
j=2

( `ij∑
k=1

α
(k)
ij

ckiH
k−1(k − 1)!

τ k−1
)
D̆n,j, (5.27a)

q̆n(τ) = N (tn, u(tn)) +
s∑
i=2

( mi∑
k=1

β
(k)
i

Hk−1(k − 1)!
τ k−1

)
D̆n,i, (5.27b)

where D̆n,i = N (tn + ciH, Ŭn,i)−N (tn, u(tn)).

Error notation. Since MERK methods consist of approximations to approximations, we

must clearly isolate the errors induced at each approximation level. To this end, we let

ên+1 = ûn+1−u(tn+1) denote the global error at time tn+1 of a MERK method (5.20)-(5.22).

Let ĕn+1 = ŭn+1 − u(tn+1) denote the local error at tn+1 of the base ExpRK method. Let

ε̂n,i = Ûn,i−yn,i(ciH) and ε̂n+1 = ûn+1−yn(H) denote the (global) errors of the ODE solvers

when integrating (5.20) on [0, ciH] and (5.23) on [0, H] (note that ε̂n,1 = ûn − yn,i(0) = 0

since c1 = 0).
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First, we may write total error as the sum of the errors in each approximation,

ên+1 = ε̂n+1 + (yn(H)− ŭn+1) + ĕn+1. (5.28)

Applying the variation-of-constants formula to (5.24) and using (5.16b), we then write

yn(H) = eHLûn +H
s∑
i=1

bi(HL)N (tn + ciH, Ûn,i). (5.29)

Inserting yn(H) and ŭn+1 from (5.29) and (5.26b) into (5.28) gives

ên+1 = eHLên + ε̂n+1 +HSn,s + ĕn+1, (5.30)

where

Sn,s =
s∑
i=1

bi(HL)
(
N (tn + ciH, Ûn,i)−N (tn + ciH, Ŭn,i)

)
. (5.31)

Next, we prove some preliminary results.

Lemma 5.3.1. Denoting Ên,i = Ûn,i − Ŭn,i and N̆n,i = ∂N
∂u

(tn + ciH, Ŭn,i), we have

Ên,i = ε̂n,i + eciHLên +H
i−1∑
j=1

aij(HL)(N̆n,jÊn,j + R̂n,j) (5.32)

with

R̂n,j =

ˆ 1

0

(1− θ)∂
2N
∂u2

(tn + cjH, Ŭn,j + θÊn,j)(Ên,j, Ên,j)dθ. (5.33)

Furthermore, under Assumption 2, the bound

‖R̂n,j‖ 6 C‖Ên,j‖2, i.e., R̂n,j = O(‖Ên,j‖2) (5.34)

is held as long as Ên,j remains in a sufficiently small neighborhood of 0.
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Proof. We first rewrite

Ên,i = Ûn,i − yn,i(ciH) + (yn,i(ciH)− Ŭn,i) = ε̂n,i + (yn,i(ciH)− Ŭn,i). (5.35)

Here yn,i(ciH) is the exact solution of (5.20), which can be represented by the variation-of-

constants formula and then rewritten by using (5.16a) and (5.21) as:

yn,i(ciH) = eciHLûn +H

i−1∑
j=1

aij(HL)N (tn + cjH, Ûn,j). (5.36)

Subtracting (5.26a) from (5.36) and inserting the obtained result into (5.35) gives

Ên,i = ε̂n,i + eciHLên +H
i−1∑
j=1

aij(HL)
(
N (tn + cjH, Ûn,j)−N (tn + cjH, Ŭn,j)

)
. (5.37)

Using the Taylor series expansion of N (t, u) at (tn + cjH, Ŭn,j), we get

N (tn + cjH, Ûn,j)−N (tn + cjH, Ŭn,j) = N̆n,jÊn,j + R̂n,j (5.38)

with the remainder R̂n,j given in (5.33), which clearly satisfies (5.34) due to Assumption 2.

Inserting (5.38) into (5.37) shows (5.32).

Lemma 5.3.2. Under Assumptions 1 and 2, there exist bounded operators Tn,i(ε̂n,i) and

Bn(ên) on X such that

Sn,s =
s∑
i=2

(
bi(HL)N̆n,i +HTn,i(ε̂n,i)

)
ε̂n,i + Bn(ên)ên. (5.39)

Note that Tn,i also depends on H, ε̂n,j, aij(HL), N̆n,j (j = 2, . . . , i− 1), and ên; and Bn also

depends on H, bi(HL), aij(HL), ci, and N̆n,i.
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Proof. Inserting (5.38) (with i in place of j) into (5.31) gives

Sn,s =
s∑
i=1

bi(HL)
(
N̆n,iÊn,i + R̂n,i

)
. (5.40)

Using the recursion (5.32) from Lemma 5.3.1, we further expand Ên,i as

Ên,i = ε̂n,i +H

i−1∑
j=1

aij(HL)N̆n,j ε̂n,j +H2

i−1∑
j=1

aij(HL)N̆n,j

j−1∑
k=1

ajk(HL)N̆n,kÊn,k

+H
i−1∑
j=1

aij(HL)R̂n,j +H2

i−1∑
j=1

aij(HL)N̆n,j

j−1∑
k=1

ajk(HL)R̂n,k

+
(

eciHL +H
i−1∑
j=1

aij(HL)N̆n,je
cjHL

)
ên.

(5.41)

Using (5.32) and (5.34) (R̂n,i = O(‖Ên,i‖2) and proceeding by induction, one can complete

the recursion (5.41) for Ên,i. Inserting this recursion into (5.40) (and noting that ε̂n,1 = 0)

yields (5.39). Based on the structure of (5.41) and (5.40), under the given assumptions

it is clear that the boundedness of Tn,i(ε̂n,i) and Bn(ên) follow from the boundedness of

aij(HL), bi(HL), N̆n,i, and R̂n,i.

We now present the main convergence result for MERK methods.

Theorem 5.3.2. Let the initial value problem (5.1) satisfy Assumptions 1–2. Consider for

its numerical solution a MERK method (5.20)–(5.22) that is constructed from an ExpRK

method of global order p. We further assume that the “fast” ODEs (5.20) and (5.23) asso-

ciated with the MERK method are integrated with micro time step h = H/m by using ODE

solvers that have global order of convergence q and r, respectively, and where m is the number
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of fast steps per slow step. Then, the MERK method is convergent, and has error bound

‖un − u(tn)‖ ≤ C1H
p + C2Hh

q + C3h
r (5.42)

on compact time intervals t0 ≤ tn = t0 + nH ≤ T . Here, the constant C1 depends on

T − t0, but is independent of n and H; and the constants C2 and C3 also depend on the error

constants of the choosen ODE solvers.

Proof. We first note that since we only employ the fast ODE solvers on time intervals [0, ciH]

and [0, H], then our assumption regarding their accuracies of order q and r is typically

equivalent to [45, Thm. 3.6]

ε̂n,i =
c̃2

Λi

hq
(
eΛiciH − 1

)
= c̃2ciϕ1(ΛiciH)Hhq = c2Hh

q, (5.43a)

ε̂n =
c̃3

Λ
hr
(
eΛH − 1

)
= c̃3ϕ1(ΛH)Hhr = c3Hh

r, (5.43b)

(due to (5.17)) where Λi,Λ are the Lipschitz constants for the increment functions of the

ODE solvers applied to the problems (5.20) and (5.23), respectively.

For simplicity of notation, we denote Bn,i = bi(HL)N̆n,i +HTn,i(ε̂n,i).

Clearly, Bn,i is a bounded operator and thus (5.39) becomes

Sn,s =
s∑
i=2

Bn,iε̂n,i + Bn(ên)ên. (5.44)

Inserting this into (5.30) gives

ên+1 = eHLên +HBn(ên)ên + ĕn+1 +H

(
s∑
i=2

Bn,iε̂n,i + ε̂n+1

)
. (5.45)
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Solving recursion (5.45) and using ê0 = 0 (since û0 = u0 = u(t0)) finally yields

ên = H

n−1∑
j=0

e (n−1−j)HLBj(êj)êj +
n−1∑
j=0

ejHL
(
ĕn−j +H

s∑
i=2

Bn−1−j,iε̂n−1−j,i + ε̂n−j
)

(5.46)

Since the ExpRK method has global order p, we have the local error ĕn−j = O(Hp+1), and

from (5.43) we have ε̂n−1−j,i = O(Hhq), ε̂n−j = O(Hhr). Using (5.25) we derive from (5.46)

that

‖ên‖ ≤ H
n−1∑
j=0

C‖êj‖+
n−1∑
j=0

C
(
c1H

p+1 + c2H
2hq + c3Hh

r
)
. (5.47)

An application of a discrete Gronwall lemma to (5.47) results in the bound (5.42).

Remark 5.3.1. Under the assumption of a fixed time-scale separation factor, m = H/h,

Theorem 5.3.2 implies that for a MERK method (5.20)–(5.22) to converge with order p, the

inner ODE solvers for (5.20) and (5.23) must have orders q ≥ p− 1 and r ≥ p, respectively.

Remark 5.3.2. Alternately, Theorem 5.3.2 shows that MERK methods may in fact use a

method of any order to integrate the modified fast ODEs, as long as m is adjusted accordingly.

Specifically, if methods of order q and r are used to solve the modified “fast” ODEs (5.20) and

(5.23), then an overall order p MERK method may be retained by use of m ≥ C1H
(q−p+1)/q

for (5.20) and m ≥ C2H
(r−p)/r for (5.23), for appropriate constants C1 and C2.

5.4. Derivation of MERK methods

Based on the theory presented in Section 5.3, we now derive MERK schemes up to

order 5, relying heavily on ExpRK schemes that fit the assumption of Theorem 5.3.1. As

we are interested in problems with significant time scale separation H � h, we primarily

focus on stiffly-accurate ExpRK schemes. Since MERK methods involve linear ODEs (5.20)

and (5.23) with a fixed coefficient matrix L for the fast portion, they are characterized by

the polynomials defined in (5.21) and (5.24). Therefore, when deriving MERK schemes we

display only their corresponding polynomials p̂n,i(τ) and q̂n(τ).
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5.4.1. Second-order methods

When searching for stiffly-accurate second-order ExpRK methods, we find the following

scheme that uses s = 2 stages (see [50, Sect. 5.1]) and satisfies Theorem 5.3.1:

Un,2 = un + c2Hϕ1(c2HL)F (tn, un)

un+1 = un +Hϕ1(HL)F (tn, un) + h 1
c2
ϕ2(HL)Dn,2.

(5.48)

From this, using the conclusion of Theorem 5.3.1, we derive the corresponding family of

second-order MERK methods, which we call MERK2:

p̂n,2(τ) = N (tn, ûn), τ ∈ [0, c2H]

q̂n(τ) = N (tn, ûn) + τ
c2H

D̂n,2, τ ∈ [0, H].

(5.49)

Since we do not use this scheme in our numerical experiments, we do not specify a value

for c2. We note that for these methods, the fast time scale must be evolved a duration of

(1 + c2)H for each slow time step.

5.4.2. Third-order methods

Also from [50, Sect. 5.2] we consider the following family of third-order, three-stage,

ExpRK methods that satisfy Theorem 5.3.1:

Un,2 = un + c2Hϕ1(c2HL)F (tn, un)

Un,3 = un + 2
3
Hϕ1(2

3
HL)F (tn, un) + 4

9c2
ϕ2(2

3
HL)Dn,2,

un+1 = un +Hϕ1(HL)F (tn, un) + h3
2
ϕ2(HL)Dn,3.

(5.50)
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From these, we construct the following third-order MERK3 scheme:

p̂n2(τ) = N (tn, ûn), τ ∈ [0, c2H]

p̂n3(τ) = N (tn, ûn) + τ
c2H

D̂n,2, τ ∈ [0, 2
3
H]

q̂n(τ) = N (tn, ûn) + 3τ
2H
D̂n,3, τ ∈ [0, H].

(5.51)

In our numerical experiments with this scheme, we choose c2 = 1
2
. Hence, the fast time scale

must be evolved a duration of 13
6
H for each slow time step.

5.4.3. Fourth-order methods

To the best of our knowledge, the only 5 stage, stiffly-accurate ExpRK method of order

four was given in [50, Sect. 5.3]. However, this scheme does not satisfy Theorem 5.3.1 due

to the coefficient

a52(HL) = 1
2
ϕ2(c5HL)− ϕ3(c4HL) + 1

4
ϕ2(c4HL)− 1

2
ϕ3(c5HL),

which is not a linear combination of {ϕk(c5HL)}5
k=1. Therefore, we cannot use it to derive a

fourth-order MERK scheme. However, in a very recent submitted paper [67], we have derived

a family of fourth-order, 6-stage, stiffly-accurate ExpRK methods (named expRK4s6), that
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additionally fulfill Theorem 5.3.1:

Un,2 = un + ϕ1(c2HL)c2HF (tn, un),

Un,k = un + ϕ1(ckHL)ckHF (tn, un) + ϕ2(ckHL)
c2k
c2
HDn,2, k = 3, 4

Un,j = un + ϕ1(cjHL)cjhF (tn, un) + ϕ2(cjHL)
c2j

c3−c4H
(−c4
c3
Dn,3 + c3

c4
Dn,4

)
+ ϕ3(cjHL)

2c3j
c3−c4H

(
1
c3
Dn,3 − 1

c4
Dn,4

)
, j = 5, 6

un+1 = un + ϕ1(HL)hF (tn, un) + ϕ2(HL) 1
c5−c6H

(−c6
c5
Dn,5 + c5

c6
Dn,6

)
+ ϕ3(HL) 2

c5−c6H
(

1
c5
Dn,5 − 1

c6
Dn,6

)
.

(5.52)

Since the pairs of internal stages {Un,3, Un,4} and {Un,5, Un,6} are independent of one other

(they can be computed simultaneously) and have the same format, this scheme behaves like a

4-stage method. Hence, instead of using 6 polynomials we need only 4 to derive the following

family of fourth-order MERK schemes, which we call MERK4:

p̂n,2(τ) = N (tn, ûn), τ ∈ [0, c2H]

p̂n,3(τ) = p̂n,4(τ) = N (tn, ûn) + τ
c2H

D̂n,2, τ ∈ [0, c3H]

p̂n,5(τ) = p̂n,6(τ) = N (tn, ûn) + τ
H

( −c4
c3(c3−c4)

D̂n,3 + c3
c4(c3−c4)

D̂n,4

)
+ τ2

H2

(
1

c3(c3−c4)
D̂n,3 − 1

c4(c3−c4)
D̂n,4

)
, τ ∈ [0, c5H]

q̂n(τ) = N (tn, ûn) + τ
H

( −c6
c5(c5−c6)

D̂n,5 + c5
c6(c5−c6)

D̂n,6

)
+ τ2

H2

(
1

c5(c5−c6)
D̂n,5 − 1

c6(c5−c6)
D̂n,6

)
, τ ∈ [0, H].

(5.53)
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For our numerical experiments, we choose the coefficients c2 = c3 = 1
2
, c4 = c6 = 1

3
, and

c5 = 5
6
. With this choice, we may then solve the linear ODE (5.20) using the polynomial

p̂n,3(τ) on [0, c3H] to get both Ûn,3 ≈ Un,3 = vn,3(c3H) and Ûn,4 ≈ Un,4 (since c4 < c3)

without solving an additional fast differential equation on [0, c4H]. Similarly, we may solve

the linear ODE (5.20) with the polynomial p̂n,5(τ) on [0, c5H] to obtain both Ûn,5 ≈ Un,5

and Ûn,6 ≈ Un,6. As a result, the fast time scale must only be evolved for a total duration of

17
6
H for each slow time step.

5.4.4. Fifth-order methods

Similar to fourth-order ExpRK methods, there are no stiffly-accurate fifth-order meth-

ods available in the literature that fulfill Theorem 5.3.1. In particular, the only existing

fifth-order scheme (expRK5s8, that requires 8 stages) was constructed in [70]. However, its

coefficients a75(HL), a76(HL), a85(HL), a86(HL) and a87(HL) involve several different lin-

ear combinations of ϕk(ciHL) with different scalings c6, c7, c8, and may not be used to create

a MERK method. Again, in [67], we have constructed a new family of efficient, fifth-order,

10-stage, stiffly-accurate ExpRK methods (called expRK5s10) that fulfills Theorem 5.3.1:

Un,2 = un + ϕ1(c2HL)c2HF (tn, un),

Un,k = un + ϕ1(ckHL)ckHF (tn, un) + ϕ2(ckHL)
c2k
c2
HDn,2, k = 3, 4

Un,j = un + ϕ1(cjHL)cjHF (tn, un) + ϕ2(cjHL)c2
jH
(
α3Dn,3 + α4Dn,4

)
+ ϕ3(cjHL)c3

jH
(
β3Dn,3 − β4Dn,4

)
, j = 5, 6, 7

(5.54a)
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Un,m = un + ϕ1(cmHL)cmHF (tn, un)

+ ϕ2(cmHL)c2
mH
(
α5Dn,5 + α6Dn,6 + α7Dn,7

)
+ ϕ3(cmHL)c3

mH
(
β5Dn,5 − β6Dn,6 − β7Dn,7

)
+ ϕ4(cmHL)c4

mH
(
γ5Dn,5 + γ6Dn,6 + γ7Dn,7

)
, m = 8, 9, 10

un+1 = un + ϕ1(HL)HF (tn, un) + ϕ2(HL)H
(
α8Dn,8 + α9Dn,9 + α10Dn,10

)
− ϕ3(HL)H

(
β8Dn,8 + β9Dn,9 + β10Dn,10

)
+ ϕ4(HL)H

(
γ8Dn,8 + γ9Dn,9 + γ10Dn,10

)

(5.54b)

with coefficients given by

α3 = c4
c3(c4−c3)

, α4 = c3
c4(c3−c4)

,

α5 = c6c7
c5(c5−c6)(c5−c7)

, α6 = c5c7
c6(c6−c5)(c6−c7)

, α7 = c5c6
c7(c7−c5)(c7−c6)

,

α8 = c9c10
c8(c8−c9)(c8−c10)

, α9 = c8c10
c9(c9−c8)(c9−c10)

, α10 = c8c9
c10(c10−c8)(c10−c9)

β3 = 2
c3(c3−c4)

, β4 = 2
c4(c3−c4)

,

β5 = 2(c6+c7)
c5(c5−c6)(c5−c7)

, β6 = 2(c5+c7)
c6(c6−c5)(c6−c7)

, β7 = 2(c5+c6)
c7(c7−c5)(c7−c6)

,

β8 = 2(c9+c10)
c8(c8−c9)(c8−c10)

, β9 = 2(c8+c10)
c9(c9−c8)(c9−c10)

, β10 = 2(c8+c9)
c10(c10−c8)(c10−c9)

γ5 = 6
c5(c5−c6)(c5−c7)

, γ6 = 6
c6(c6−c5)(c6−c7)

, γ7 = 6
c7(c7−c5)(c7−c6)

,

γ8 = 6
c8(c8−c9)(c8−c10)

, γ9 = 6
c9(c9−c8)(c9−c10)

, γ10 = 6
c10(c10−c8)(c10−c9)

.

(5.54c)
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Although this scheme has 10 stages, again its structure facilitates an efficient implementation.

Specifically, we note that there are multiple stages Un,i which share the same format (same

matrix functions with different inputs ci), and are independent of one another (namely,

{Un,3, Un,4}, {Un,5, Un,6, Un,7}, and {Un,8, Un,9, Un,10}). These groups of stages can again be

computed simultaneously, allowing the scheme to behave like a 5-stage method. We therefore

propose the corresponding fifth-order MERK methods that use only 5 polynomials, which

we name MERK5:

p̂n,2(τ) = N (tn, ûn), τ ∈ [0, c2H]

p̂n,3(τ) = p̂n,4(τ) = N (tn, ûn) + τ
c2H

D̂n,2, τ ∈ [0, c3H]

p̂n,5(τ) = p̂n,6(τ) = p̂n,7(τ) = N (tn, ûn) + τ
H

(
α3D̂n,3 + α4D̂n,4

)
+ τ2

2H2

(
β3D̂n,3 − β3D̂n,4

)
, τ ∈ [0, c5H]

p̂n,8(τ) = p̂n,9(τ) = p̂n,10(τ) = N (tn, ûn) + τ
H

(
α5D̂n,5 + α6D̂n,6 + α7D̂n,7

)
− τ2

2H2

(
β5D̂n,5 + β6D̂n,6 + β7D̂n,7

)
+ τ3

6H3

(
γ5D̂n,5 + γ6D̂n,6 + γ7D̂n,7

)
, τ ∈ [0, c8H]

q̂n(τ) = N (tn, ûn) + τ
H

(α8D̂n,8 + α9D̂n,9 + α10D̂n,10)

− τ2

2H2 (β8D̂n,8 + β9D̂n,9 + β10D̂n,10)

+ τ3

6H3

(
γ8D̂n,8 + γ9D̂n,9 + γ10D̂n,10

)
, τ ∈ [0, H].

(5.55)

For our numerical experiments, we choose c2 = c3 = c5 = c9 = 1
2
, c4 = c6 = 1

3
, c7 = 1

4
,

c8 = 7
10

, and c10 = 2
3
. Again, since c4 < c3, when solving the fast time-scale problem (5.20)

with polynomial p̂n,3(τ) on [0, c3H] gives Ûn,3 ≈ Un,3 = vn,3(c3h) and Ûn,4 ≈ Un,4 = vn,3(c4h).
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Similarly, since c7 < c6 < c5, Ûn,5, Ûn,6, and Ûn,7 can be obtained by solving a single fast

time-scale problem with polynomial p̂n,5(τ) on [0, c5H]. Finally since c9 < c10 < c8, one can

compute Ûn,8, Ûn,9, and Ûn,10 by solving a single fast time-scale problem with polynomial

p̂n,8(τ) on [0, c8H]. The sum total of these solves corresponds to evolving the fast time scale

for an overall duration of 16
5
H for each slow time step.

5.5. Numerical experiments

In this section we present results from a variety of numerical tests to examine the per-

formance of the proposed MERK3, MERK4 and MERK5 methods. These tests are designed to

confirm the theoretical convergence rates from Section 5.3.3, and compare efficiency against

the Multirate Infinitesimal Step method MIS-KW3, which uses a similar approach of evolving

the fast component using modified systems of differential equations [61, 107, 98, 101]. Unless

otherwise noted, we run these methods with inner explicit Runge–Kutta ODE solvers of the

same order of convergence as the MERK method, p:

• Third-order MIS-KW3 uses the Knoth-Wolke-ERK inner method [61];

• Third-order MERK3 uses the ERK-3-3 inner method,

0

1/2 1/2

1 −1 2

1/6 2/3 1/6

;

• Fourth-order MERK4 uses the ERK-4-4 inner method [45, Table 1.2, left];

• Fifth-order MERK5 uses the Cash-Karp-ERK inner method [14].

We note that although Theorem 5.3.2 guarantees that when using a MERK method of order

p, the internal stage solutions (5.20) can be computed with a solver of order q = p− 1 and

the step solution (5.23) can use a solver of order r = p, for simplicity we have used r = q = p
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in the majority of our tests. However, we more closely investigate these inner solver order

requirements in Section 5.5.3 below.

Not all of our test problems have convenient analytical solutions; for these tests, we com-

pute a reference solution using an 8th-order explicit or a 12th-order implicit Runge–Kutta

method with a time step smaller than the smallest micro time step h. When computing

solution error, we report the maximum absolute error over all time steps and solution com-

ponents. From these, we compute convergence rates using a linear least-squares fit of the

log-error versus log-macro time step H. For each test we present three types of plots: one

convergence plot (error vs H) and two efficiency plots. Generally, efficiency plots present er-

ror versus the computational cost. However in the multirate context, fast and slow function

costs can differ dramatically. As such, we separately consider efficiency using total function

calls and slow function calls. Since the dominant number of total calls are from the fast

function, the “total” plots represent the method efficiency for simulations with comparable

fast/slow function cost, whereas the “slow-only” plots represent the method efficiency for

simulations in which the slow function calls are significantly more expensive (as explained

in Section 5.1 as our original motivation for multirate methods). Individual applications

will obviously lie somewhere between these extremes, but we assume that they are typically

closer to the “slow-only” results.

Applications scientists traditionally use multirate solvers for one of two reasons. The

first category are concerned with simulations of stiff systems, but where they choose to use

a subcycled explicit method instead an implicit one for the stiff portion of the problem.

Generally, these applications are primarily concerned with selecting h to satisfy stability of

the fast time scale (instead of accuracy). The second category consider simulations wherein

it is essential to capture the coupling between the slow and fast times scales accurately,

since temporal errors at the fast time scale can significantly deteriorate the slow time scale

solution; here h is chosen based on accuracy considerations. We therefore separately explore

test problems in both of these categories in the Sections 5.5.1 and 5.5.2 below.
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To facilitate reproducibility of the results in this section, we have provided an open-source

MATLAB implementation of the MERK3, MERK4, MERK5 and MIS-KW3 methods, along with

scripts to perform all tests from this section [17].

5.5.1. Category I

As this category of problems is concerned with stability at the fast time scale, we choose

a fixed, linearly stable micro time step h, and vary the macro time step H (and similarly,

m = H/h). To this end, we focus on two stiff applications: a reaction diffusion problem and

a stiff version of the brusselator problem.

5.5.1.1. Reaction Diffusion

We consider a reaction diffusion problem with a traveling wave solution similar to the

one considered by Savcenco et al. [97],

ut =
1

100
uxx + u2(1− u), 0 < x < 5, 0 < t ≤ 3,

ux(0, t) = ux(5, t) = 0, u(x, 0) = (1 + eλ(x−1))−1,

where λ = 5
√

2. We discretize in space using a second-order accurate central finite difference

scheme using 1000 spatial points. This gives us a system for which we take L and N (t, u(t))

to be the discretized versions of 1
100
uxx and u2(1 − u) respectively. The micro time step is

chosen to satisfy the Courant-Friedrichs-Lewy (CFL) linear stability condition, h = 10−3.

In the left of Figure 5.1 we plot the method convergence as H is varied, which shows

slighty convergence rates that are better than predicted for all methods tested. As this

behavior is not consistently observed for the remaining test problems, we believe that this

is an artifact of this particular test problem. Here, we compute the best-fit rates using only

the error values larger than ∼ 10−13, where the error stagnates due to the accuracy of the

reference solution.
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Figure 5.1: Reaction diffusion convergence (left) and “slow-only” efficiency (right). The best fit
convergence rates are 3.03, 4.93, 5.71, 3.20 (MERK3, MERK4, MERK5, and MIS-KW3, resp.). The most
“efficient” methods at a given error are to the left of their less efficient counterparts.

The efficiency plots for both test problems in this category are very similar, so we present

the “slow-only” efficiency plot for this problem in the right of Figure 5.1, saving the “total”

efficiency plot for the next test. Here, we note that for tolerances larger than 10−7, MERK3

and MIS-KW3 are the most efficient, but for tighter tolerances MERK4 is the best. Although

MERK5 has a higher rate of convergence, the increased cost per step causes it to lag behind

until it reaches the reference solution accuracy, where it begins to overtake MERK4.

5.5.1.2. Brusselator

The brusselator is an oscillating chemical reaction problem for which one of the reaction

products acts as a catalyst. A two-component version of this problem is widely used as a

test for ODE solvers [45, (16.12) of Sec. I.16]. We examine a stiff version of this problem
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that has been used to test IMEX and multirate methods [102, 79]:



u

v

w



′

=



a− (w + 1)u+ u2v

wu− u2v

b−w
ε
− uw


, u(0) =



1.2

3.1

3


,

over the interval t ∈ (0, 2], with parameters a = 1, b = 3.5 and 1
ε

= 100. We convert this to

have the multirate form (5.1) by defining

L =



0 0 0

0 0 0

0 0 −1
ε


, N (t,u(t)) =



a− (w + 1)u+ u2v

wu− u2v

b
ε
− uw


.

In the left of Figure 5.2 we plot the error versus H, and list the corresponding best-fit

convergence rates. We observe that all the tested methods perform slightly worse than their

predicted convergence rates, which we attribute to order reduction due to the stiffness of

the problem; however, the relative convergence rates of each method compare as expected

against one another.

For this test problem, we plot the efficiency based on total function calls in the right of

Figure 5.2. We note that each curve is almost vertical since the micro time step h is held

constant for these tests, and is significantly smaller than H. Here, MIS-KW3 takes the least

amount of total function calls since its structure ensures that it only traverses the time step

interval [tn, tn + H] once when evaluating the modified ODEs, whereas MERK3, MERK4 and

MERK5 require approximately 2, 3 and 3 traversals, respectively. We note that although these

additional traversals of the time step interval [tn, tn+H] result in significant increases in the
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Figure 5.2: Brusselator convergence (left) and “total” efficiency (right). The best fit convergence
rates are 2.62, 3.75, 4.36 and 2.61 (MERK3, MERK4, MERK5, and MIS-KW3, respectively). Note the
near-vertical lines in the efficiency plots, indicating the dominance of “fast” function calls in the
estimate of total cost.

number of fast function calls, the number of potentially more costly slow function calls for

all methods is equal to the number of slow stages.

5.5.2. Category II

Recalling that our second category of multirate applications focuses on accurately cou-

pling the fast and slow processes, for these test problems we choose a fixed time scale sepa-

ration factor m for each method/test, and vary H (and proportionally, h = H/m). For this

group of tests we consider a linear multirate problem from Estep et al. [30] for which the fast

variables are coupled into the slow equation (one-directional coupling) and a linear multirate

problem of our own design where both the fast and slow variables are coupled (bi-directional

coupling). Since the “optimal” value of m for each multirate algorithm is problem-dependent,

we describe our approach for determining this m value in Section 5.5.2.1 below.
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5.5.2.1. One-directional coupling

We consider a linear system of ODEs [30]:



u

v

w



′

=



0 −50 0

50 0 0

1 1 −1





u

v

w


, u(0) =



1

0

2


, (5.56)

over the interval t ∈ (0, 1]. This has analytical solution u(t) = cos(50t), v(t) = sin(50t),

and w(t) = 5051
2501

e−t− 49
2501

cos(50t) + 51
2501

sin(50t). We convert this problem to multirate form

(5.1) by decomposing it as:

L =



0 −50 0

50 0 0

1 1 0


, N (t,u(t)) =



0

0

−w


.

We first discuss our approach in determining the “optimal” time-scale separation factor

m. For illustration, we consider MERK4 on this problem; however, we apply this approach

to all methods for both this test and the following bi-directional coupling test in Section

5.5.2.2. We begin by repeatedly solving the problem (5.56) using the multirate method with

different factors m = {5, 10, 25, 50, 75, 85, 100, 125}. For each value of m, we vary H (and

hence h = H/m). We then analyze the resulting “total” and “slow-only” efficiency plots for

each fixed m value, as shown in Figure 5.3.

We first note that both plots show a group of m values with identical efficiency, along

with other less efficient results. In Figure 5.3(a), the more efficient group is comprised of

larger m values, whereas in Figure 5.3(b) the more efficient group has smaller m values.
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Figure 5.3: Efficiency plots for MERK4 applied to the one-directional coupling test, resulting
from various m factors.

This is unsurprising, since increases in m for a fixed H correspond to decreases in h, leading

to accuracy improvements at the fast time scale alone. While this will results in increased

total function calls, the number of slow function calls will remain fixed. We therefore define

the “optimal” m as the value where the fast and slow solution errors are balanced. Hence,

in Figure 5.3(b) this corresponds to the largest m that remains in the more efficient group,

and in Figure 5.3(a) this corresponds to the smallest m that remains in the more efficient

group. Inspecting both plots in Figure 5.3, the optimal value for MERK4 on this problem is

m = 50. Carrying out a similar process for the other methods on this problem, MERK3 has

an optimal value of m = 75, MERK5 m = 25, and MIS-KW3 has an optimal value of m = 75.

Using these m values, In Figure 5.4 we plot the convergence results for the four methods

on this problem, confirming the analytical orders of convergence, with errors stagnating

around 10−13 due to accumulation of floating-point roundoff. While we find slightly better-

than-expected convergence rates for the MERK methods, and only the expected rate for

MIS-KW3, we do not draw conclusions regarding this behavior.

Similarly, in Figure 5.5 we plot both the “total” and “slow-only” efficiency of each method

on the one-directional test problem. When measuring only slow function calls, both MIS-KW3
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Figure 5.4: One-directional coupling convergence. Best fit convergence rates are 3.16, 4.28, 5.26
and 3.04 (MERK3, MERK4, MERK5 and MIS-KW3, respectively).

and MERK3 tie for errors larger than 10−6, MERK4 is the most efficient for errors between 10−6

and 10−12 and MERK5 is the most efficient at the tightest error values. When the fast function

calls are given equal weight as the slow, however, MIS-KW3 is the most efficient at errors larger

than 10−8, while MERK5 is the most efficient at tighter error thresholds.

5.5.2.2. Bi-directional coupling

Taking inspiration from the preceding one-directional test, we designed a problem with

coupling between both the fast and slow components to further demonstrate the flexibility

and robustness of MERK methods. To this end, we consider the following test problem



u

v

w



′

=



0 100 1

−100 0 0

1 0 −1





u

v

w


, u(0) =



9001/10001

−100000/10001

1000


, (5.57)
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Figure 5.5: One-directional coupling efficiency. The most efficient method depends on how
“cost” is measured, as well as on the desired accuracy.

over t ∈ (0, 2]. Converting to multirate form (5.1), we set L and N (t,u(t)) as:

L =



0 100 0

−100 0 0

1 0 0


, N (t,u(t)) =



w

0

−w


.

While this is a linear test problem that may be solved using the matrix exponential, this

solution is difficult to represent in closed-form, and so we use a reference solution for con-

venience. Using the previously-described approach for determining the optimal time-scale

separation factor m for each method on this problem, we have m = 50 for MERK3 and MERK4,

m = 10 for MERK5 and m = 25 for MIS-KW3.

In Figure 5.6 we plot the convergence rates of each method on this test problem, again

confirming the analytical orders of convergence, with errors stagnating around 10−12 due to

the reference solution accuracy.
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Figure 5.6: Bi-directional coupling convergence. Best fit convergence rates are 3.03, 3.99, 4.97 and
3.06 (MERK3, MERK4, MERK5, MIS-KW3, respectively).

Similarly, in Figure 5.7 we plot both the “slow-only” and “total” efficiency plots for this

problem. Here, when measuring only the slow function calls, the most efficient method is

MERK3 at error thresholds above 10−5, and MERK5 for smaller error values. Strikingly, when

considering the total number of function calls, the MERK5 is the most efficient at nearly all

error thresholds. We note, however, that the optimal time-scale separation factor for MERK5

is m = 10 for this problem, which results in reduced fast function calls per slow step, and

hence an overal reduction in total function calls.

5.5.3. Variations in the fast method

We finish by demonstrating the effects of using inner methods with differing orders of

accuracy. Here, we consider only the MERK methods, applied to the bi-directional coupling

problem (5.57). Here, we vary the order of method applied for computing both the internal

stage solutions (5.20), q, and the step solution (5.23), r. Recalling the convergence theory

presented in Theorem 5.3.2, a MERK method of order p should use inner methods of orders

q ≥ p−1 and r ≥ p. However, in these tests we apply other variations on orders to ascertain

whether (a) the inner methods could have even lower order and still obtain overall order p,
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Figure 5.7: Bi-directional coupling efficiency. Again, the most efficient method depends on
how “cost” is measured, as well as on the desired accuracy, however MERK5 demonstrates the
best overall performance.

or (b) use of higher-order inner methods can result in overall convergence higher than p. We

present the best-fit convergence rates for this ensemble of tests in Table 5.1.

These numerical results show that in fact the inner method order requirements presented

in Theorem 5.3.2 are both necessary and sufficient, i.e., the least-expensive combination for

attaining a MERK method of order p is to compute stage solutions (5.20) using an inner

method of order p− 1, and the time step solution (5.23) using an inner method of order p.

Furthermore, use of higher-order inner methods with orders q = r > p does not result in

overall order higher than p, due to the first term C1H
p in Theorem 5.3.2, that corresponds

to the coupling between the fast and slow processes.

5.6. Conclusion

We propose a novel class of multirate methods constructed from explicit exponential

Runge–Kutta methods, wherein the action of the matrix exponential is approximated via

solution of “fast” initial value problems for each ExpRK stage. Algorithmically, these meth-

ods offer a number of desirable properties. Since these are created through defining a set of
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MERK3(p = 3) MERK4(p = 4) MERK5(p = 5)

q r Observed order q r Observed order q r Observed order

2 2 2.00 3 3 3.01 4 4 4.00

3 2 2.00 4 3 3.01 5 4 4.00

2 3 3.03 3 4 3.99 4 5 4.97

3 3 3.03 4 4 3.99 5 5 4.97

4 4 3.03 5 5 3.99 6 6 4.96

Table 5.1: Convergence rate dependence on inner ODE solvers.

modified IVPs (like (R)MIS and MRI-GARK methods), MERK implementations have near

complete freedom in evolving the problem at the fast time scale; however, unlike (R)MIS and

MRI-GARK, MERK methods may utilize inner solvers of reduced accuracy for the inter-

nal stages. Additionally, since the MERK structure follows directly from ExpRK methods

satisfying Theorem 5.3.1, derivation of high-order MERK methods, including versions sup-

porting embeddings for temporal adaptivity, is much simpler than for alternate multirate

frameworks. As a result, MERK methods constitute the first multirate algorithms of order

five, without requiring deferred correction or extrapolation techniques. Furthermore, the

proposed approach may be similarly applied to exponential Rosenbrock methods, allowing

for problems where the fast time scale is nonlinear, although such methods are not considered

in this work.

In addition to proposing the MERK class of multirate methods and providing rigor-

ous analysis of their convergence, we provide numerical comparisons of the performance

of multiple MERK and MIS methods on a variety of multirate test problems. Based on

these experiments, we find that the MERK methods indeed exhibit their theoretical orders

of convergence, including tests that clearly demonstrate our primary convergence result in

Theorem 5.3.2. Furthermore, the proposed methods compare favorably against standard
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MIS multirate methods, particularly when increased accuracy is desired and for problems

wherein the “slow” right-hand side function is significantly more costly than the “fast.”

This work may be extended in numerous ways. As alluded to above, extensions of

these approaches to explicit exponential Rosenbrock methods are straightforward, and are

already under investigation. Additionally, extensions to higher order will follow from related

developments of higher-order exponential methods. Finally, we plan to investigate the use

of embeddings at both the fast and slow time scales to perform temporal adaptivity in both

H and h for efficient, tolerance-based calculations.
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Chapter 6

Multirate exponential Rosenbrock methods

This chapter introduces a newly developed class of MIS-type multirate methods whose

structure closely follows that of MERK methods. Starting from exponential Rosenbrock

(ExpRB) methods, we derive a new multirating procedure and call these new schemes mul-

tirate exponential Rosenbrock (MERB) methods. The outline of this chapter is as follows:

first, we give a brief background of ExpRB schemes, present the MERB algorithm and ex-

ample MERB methods with orders up to six, finally we provide detailed numerical results

for MERB methods, comparing them with other MIS-type methods. This chapter is part of

a manuscript currently under preparation in collaboration with Vu Thai Luan and Daniel

R. Reynolds. Convergence proofs for MERB methods will appear in this manuscript.

6.1. Exponential Rosenbrock schemes

We consider a system of ODEs represented by

u′(t) = F (t, u(t)) = Ff (t, u) + Fs(t, u), u(t0) = u0, (6.1)

where F (t, u(t)) represents some vector field that can be split additively into a fast component

Ff (t, u) and slow component Fs(t, u) through linearizing the right hand side or otherwise.

First, we note that multirate exponential Runge–Kutta (MERK) methods for solving (6.1)

were derived in our recent work [68] for the case that the fast time scale involves in a linear

operator, i.e., Ff (t, u) = Lu(t) (e.g. diffusion-reaction systems). This case can arise from

a prior linearization of (6.1) (e.g., at the initial state u0), leading to a semi-linear system

u′(t) = Lu(t) + N(t, u(t)), where L = ∂F
∂u

(t0, u0) and N(t, u) = F (t, u) − Lu = Fs(t, u). In
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many scenarios, however, (6.1) has a strong nonlinearity even after performing the prior lin-

earization (e.g., N(t, u) is still large). In this situation, the dynamic linearization approach is

more appropriate for improving the stability after each integration step. Namely, linearizing

the vector field F (t, u) within each time step [tn, tn+1] around the current numerical solution

(tn, un) gives

u′(t) = F (t, u(t)) = Jnu(t) + Vnt+Nn(t, u(t)) (6.2)

with

Jn =
∂F

∂u
(tn, un), Vn =

∂F

∂t
(tn, un), Nn(t, u) = F (t, u)− Jnu− Vnt. (6.3)

Now one can represent the exact solution at time tn+1 = tn + H by applying the variation-

of-constants formula (or the Duhamel’s principle) to (6.2) (see [65]),

u(tn+1) = eHJnu(tn) +

ˆ H

0

e (H−τ)Jn
(
Vn.(tn + τ) +Nn(tn + τ, u(tn + τ))

)
dτ

= eHJnu(tn) +Hϕ1(HJn)Vntn +H2ϕ2(HJn)Vn

+

ˆ H

0

e (H−τ)JnNn(tn + τ, u(tn + τ))dτ,

(6.4)

where ϕ1(Z) and ϕ2(Z) (Z = HJn) belong to the family of ϕ-functions given by

ϕk(Z) =
1

Hk

ˆ H

0

e (H−τ) Z
H

τ k−1

(k − 1)!
dτ, k ≥ 1. (6.5)

Next, approximating the integral in (6.4) by using some quadrature rule with nodes

ci in [0, 1] and denoting un ≈ u(tn) and Un,i ≈ u(tn + cih) leads to a general class of

linearized exponential integrators, the so-called exponential Rosenbrock (ExpRB) methods

(see [54, 65, 71]),

Un,i = eciHJnun + ciHϕ1(ciHJn)Vntn + c2
iH

2ϕ2(ciHJn)Vn (6.6a)
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+H

i−1∑
j=1

aij(HJn)Nn(tn + cjH,Unj), i = 1, . . . , s,

un+1 = eHJnun+Hϕ1(HJn)Vntn +H2ϕ2(HJn)Vn +H

s∑
i=1

bi(HJn)Nn(tn + ciH,Un,i).

(6.6b)

Since this is an explicit scheme, one can take c1 = 0 and thus Un1 = un. Here, the

weights aij(HJn) and bi(HJn) are usually chosen (by construction) as linear combinations

of ϕk(ciHJn) and ϕk(HJn) functions given in (6.5), respectively (this can be also justified

by the fact that if one expands Nn(tn + τ, u(tn + τ)) in a Taylor series at (tn, u(tn)) then the

exact solution u(tn+1) in (6.4) can be represented as a linear combination of the product of

ϕk-functions with vectors). These unknown matrix functions can be determined by solving

a system of order conditions, depending on the required order of accuracy (see below).

For an efficient implementation of (6.6), one can reformulate it (see [54]) by using (6.3)

and introducing

Dn,i = Nn(tn + ciH,Un,i)−Nn(tn, un), i = 2, . . . , s (6.7)

(note Dn1 = 0) to obtain an equivalent form

Un,i = un + ciHϕ1(ciHJn)F (tn, un) + c2
iH

2ϕ2(ciHJn)Vn +H

i−1∑
j=2

aij(HJn)Dnj,

un+1 = un +Hϕ1(HJn)F (tn, un) +H2ϕ2(HJn)Vn +H

s∑
i=2

bi(HJn)Dn,i.

(6.8)

Remark 6.1.1. (Order conditions) From [69] the stiff order conditions for ExpRB methods

up to order 6 (see Table 6.1). One can see that it requires only 7 conditions for methods of

order 6, which is much less than 36 conditions needed for classical or exponential Runge–

Kutta methods of the same order. This is the advantage of the dynamic linearization approach
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and can be explained by observing from (6.3) that

∂Nn

∂u
(tn, un) =

∂Nn

∂t
(tn, un) = 0, (6.9)

which significantly simplifies the number of order conditions (and in turn higher-order schemes

can be achieved by using only a few stages). As a direct consequence of (6.9), we have from

(6.7) that Dn,i = O(H2), meaning that ExpRB methods are at least of order 2.

Table 6.1: Stiff order conditions for exponential Rosenbrock methods up to order 6. Here
Z,K, and M denote arbitrary square matrices.

No. Order condition Order

1
∑s

i=2 bi(Z)c2
i = 2ϕ3(Z) 3

2
∑s

i=2 bi(Z)c3
i = 6ϕ4(Z) 4

3
∑s

i=2 bi(Z)c4
i = 24ϕ5(Z) 5

4
∑s

i=2 bi(Z)ciK
(∑i−1

k=2 aik(Z)
c2k
2!
− c3

iϕ3(ciZ)
)

= 0 5

5
∑s

i=2 bi(Z)c5
i = 120ϕ6(Z) 6

6
∑s

i=2 bi(Z)c2
iM
(∑i−1

k=2 aik(Z)
c2k
2!
− c3

iϕ3(ciZ)
)

= 0 6

7
∑s

i=2 bi(Z)ciK
(∑i−1

k=2 aik(Z)
c3k
3!
− c4

iϕ4(ciZ)
)

= 0 6

Remark 6.1.2. (ExpRB methods for autonomous problems). We note that (6.6) (and thus

(6.8)) can be easily applied to autonomous versions of (6.1), i.e., u′(t) = F (u(t)), by setting

Vn = 0. In this case, Nn(t, u) becomes Nn(u) = F (u)− Jnu.

6.2. A multirate procedure for ExpRB methods

Inspired by our recent work [68], we now show that ExpRB schemes can be interpreted as

a class of multirate infinitesimal step-type methods (MIS). Namely, we will construct mod-

ified differential equations whose exact solutions correspond to the ExpRB internal stages
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Un,i (i = 2, . . . , s), and the final stage un+1. This can be done by adapting the result of

[68, Theorem 3.1] (where we used the idea of backward error analysis [44, Chap. IX] to

build modified ODEs for exponential Runge–Kutta schemes) to ExpRB schemes (6.8). In

particular, one can directly obtain the following result.

Lemma 6.2.1. Consider an explicit ExpRB scheme (6.8). Assume that the weights aij(HJn)

and bi(HJn) can be written as linear combinations of ϕk functions (given in (6.5)), i.e.,

aij(HJn) =

`ij∑
k=1

α
(k)
ij ϕk(ciHJn), bi(HJn) =

mi∑
k=1

β
(k)
i ϕk(HJn), (6.10)

where `ij and mi are some positive integers. Then, Un,i and un+1 are the exact solutions of

the following (linear) modified differential equations of (6.4)

v′n,i(τ) = Jnvn,i(τ) + pn,i(τ), vn,i(0) = un, i = 2, . . . , s, (6.11a)

v′n(τ) = Jnvn(τ) + qn(τ), vn(0) = un (6.11b)

at the times τ = ciH and τ = H, respectively. Here pn,i(τ) and qn(τ) are polynomials in τ

given by

pn,i(τ) = Nn(tn, un) + (tn + τ)Vn +
i−1∑
j=2

( `ij∑
k=1

α
(k)
ij

ckiH
k−1(k − 1)!

τ k−1
)
Dnj, (6.12a)

qn(τ) = Nn(tn, un) + (tn + τ)Vn +
s∑
i=2

( mi∑
k=1

β
(k)
i

Hk−1(k − 1)!
τ k−1

)
Dn,i. (6.12b)

Proof. The proof can be carried out in a very similar way as done in [68, Theorem 3.1].

Here, we only sketch the main idea. First, we insert the ϕk functions in (6.5) into (6.10) to
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get the integral representations of aij(HJn) and bi(HJn):

aij(HJn) =

ˆ ciH

0

e (ciH−τ)Jn

`ij∑
k=1

α
(k)
ij

(ciH)k(k − 1)!
τ k−1dτ, (6.13a)

bi(HJn) =

ˆ H

0

e (H−τ)Jn

mi∑
k=1

β
(k)
i

Hk(k − 1)!
τ k−1dτ. (6.13b)

Then inserting these into (6.8) shows that

Un,i = eciHJnun +

ˆ ciH

0

e (ciH−τ)Jnpn,i(τ)dτ, i = 2, . . . , s, (6.14a)

un+1 = eHJnun +

ˆ H

0

e (H−τ)Jnqn(τ)dτ, (6.14b)

which clearly show that Un,i = vn,i(ciH) and un+1 = vn(H) by means of the variation-of-

constants formula applied to (6.11a) and (6.11b), respectively.

MERB methods. Starting from the initial value u0 = u(t0), Lemma 6.2.1 suggests a

multirate procedure to approximate the numerical solution un+1 (n = 0, 1, 2, . . .) obtained by

ExpRB methods. Specifically, one may integrate the slow process using a macro time step H

and integrate the fast process using a micro time step h = H/m (where m > 1 is an integer

representing the time-scale separation factor) via solving the ‘fast’ ODEs (6.11a) on [0, ciH]

and (6.11b) on [0, H]. By denoting the corresponding numerical solutions of these ODEs

by Ûn,i (≈ vn,i(ciH) = Un,i) and ûn+1 (≈ vn(H) = un+1), one can practically formulate this

multirate procedure in each step by solving (6.11)–(6.12) with the initial value ûn (û0 = u0)

(and thus all the corresponding Jn, Vn, Nn(t, u) in (6.3) and Dn,i in (6.7) must be evaluated

at (tn, ûn) to update the polynomials in (6.12)).
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Namely, starting with û0 = u0, we solve the following perturbed linear ODEs for i =

2, . . . , s:

y′n,i(τ) = Ĵnyn,i(τ) + p̂n,i(τ), yn,i(0) = ûn, on [0, ciH] (6.15)

with

p̂n,i(τ) = Nn(tn, ûn) + (tn + τ)V̂n +
i−1∑
j=2

( `ij∑
k=1

α
(k)
ij

ckiH
k−1(k − 1)!

τ k−1
)
D̂n,j (6.16)

(
here Ĵn =

∂F

∂u
(tn, ûn), V̂n =

∂F

∂t
(tn, ûn), D̂n,j = N̂n(tn + cjH, Ûnj)− N̂n(tn, ûn)

)
to obtain

Ûn,i ≈ yn,i(ciH) ≈ vn,i(ciH) = Un,i.

Then, using these approximations, we find

q̂n(τ) = Nn(tn, ûn) + (tn + τ)V̂n +
s∑
i=2

( mi∑
k=1

β
(k)
i

Hk−1(k − 1)!
τ k−1

)
D̂n,i (6.17)

and solve one additional linear ODE

y′n(τ) = Ĵnyn(τ) + q̂n(τ), yn(0) = ûn on [0, H] (6.18)

to obtain the update

ûn+1 ≈ yn(H) ≈ vn(H) = un+1.

Since this process can be derived from ExpRB schemes satisfying (6.10), the resulting meth-

ods (6.15)–(6.18) will be henceforth called Multirate Exponential Rosenbrock (MERB) meth-

ods.

Remark 6.2.1. (A comparison with MERK methods). In view of MERB methods (6.15)–

(6.18), one can see that, in each step, they have similar structure as MERK methods [68].

Hence, they can retain MERK’s interesting features (such as using very few evaluations of
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the slow components and thus be more efficient when the slow components are more expen-

sive to compute than fast components; also they do not require computing matrix functions

as ExpRB methods do). The main difference, however, is that, in order to proceed with the

next integration step, MERB methods require updating the coefficient matrix of the linear

part (i.e., the Jacobian Ĵn) and thus their corresponding polynomials result from the dy-

namic linearization approach. An advantage of MERB methods over MERK methods due to

the property (6.9), we expect that the number of fast ODEs needed for constructing MERB

methods will be less than for MERK methods of the same order (see Section 6.3).

6.2.1. MERB algorithm

In Algorithm 2 we provide a precise description of the MERB algorithm. We note that

• Input: F ; Jn(t, u); Vn(t, u); t0; u0; s; ci (i = 1, . . . , s); H

• Initialization: Set n = 0; ûn = u0.

While tn < T

1. Set Ûn,1 = ûn.

2. For i = 2, . . . , s do

(a) Find p̂n,i(τ) as in (6.16).

(b) Solve (6.15) on [0, ciH] to obtain Ûn,i ≈ yn,i(ciH).

3. Find q̂n,s(τ) as in (6.17)

4. Solve (6.18) on [0, H] to get ûn+1 ≈ yn(H).

5. Update tn+1 := tn +H, n := n+ 1.

• Output: Approximate values ûn ≈ un, n = 1, 2, . . . (where un is the numerical

solution at time tn obtained by an ExpRB method).

Algorithm 2: MERB method
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in our implementations of MERB methods, we have found it beneficial to include formulas

for Nn(t, u) and Dn,i(t, u) as additional inputs to the algorithm (provided they can be pre-

computed) for use in equations (6.16) and (6.17) to avoid floating-point cancellation errors.

6.3. Construction of specific MERB methods

We derive MERB methods up to order 6. Here we only provide the polynomials p̂n,i(τ)

and q̂n(τ) that characterize each MERB method in nonautonomous form. In general, MERB

methods result in fewer modified ODEs to be solved per slow time step compared with MERK

methods.

6.3.1. Second-order methods

A second-order MERB method only requires the solution of one modified ODE, with

q̂n(τ) = Nn(tn, ûn) + (tn + τ)Vn, τ ∈ [0, H]. (6.19)

We do not include this method in any of our numerical experiments.

6.3.2. Third-order methods

Our third-order method is called MERB3 and involves the solution of two modified ODEs

per slow time step, with polynomials

p̂n,2(τ) = Nn(tn, ûn) + (tn + τ)Vn, τ ∈ [0, c2H], (6.20)

q̂n(τ) = Nn(tn, ûn) + (tn + τ)Vn +
τ 2

c2
2H

2
D̂n2, τ ∈ [0, H]. (6.21)

In our numerical experiments we chose c2 = 1
2
. The total fast time step traversal for MERB3

is 3
2
H, i.e., we must traverse the fast time scale for a total effective interval that is 50% larger

than the overall slow step size.
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6.3.3. Fourth-order method

MERB4 is our fourth-order method, that also involves only two modified ODEs per slow

time step:

p̂n,2(τ) = Nn(tn, ûn) + (tn + τ)Vn, τ ∈ [0,
3

4
H] (6.22)

q̂n(τ) = Nn(tn, ûn) + (tn + τ)Vn +
16

9

τ 2

H2
D̂n2, τ ∈ [0, H]. (6.23)

The total fast traversal time for MERB4 is 7
4
H.

6.3.4. Fifth-order methods

We only require 3 modified ODEs to define our fifth-order method, MERB5:

p̂n,2(τ) = Nn(tn, ûn) + (tn + τ)Vn; τ ∈ [0, c2H] (6.24)

p̂n,3(τ) = p̂n,4(τ) = Nn(tn, ûn) + (tn + τ)Vn +
( τ

c2H

)2

D̂n2; τ ∈ [0, c3H] (6.25)

q̂n(τ) = Nn(tn, ûn) + (tn + τ)Vn +
τ 2

H2

( c4

c2
3(c4 − c3)

D̂n3 +
c3

c2
4(c3 − c4)

D̂n4

)
+ (6.26)

τ 3

H3

( −1

c2
3(c4 − c3)

D̂n3 −
1

c2
4(c3 − c4)

D̂n4

)
; τ ∈ [0, H].

Here we have the condition that c4 < c3, with c4 = 15c3−12
20c3−15

. In our experiments we pick

c2 = c4 = 1
4

and c3 = 33
40

. Because pn,3 = pn,4, a computationally efficient way of imple-

menting MERB5 is to solve for both Ûn,3 and Ûn,4 simultaneously on the interval [0, c3H],

without solving an additional fast ODE on the shorter interval [0, c4H]. With this strategy,

the total fast traversal for MERB5 is (1 + c2 + c3)H = 83
40

.
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6.3.5. Sixth-order methods

Here we present the first-ever sixth-order MIS-type multirate method, MERB6, that

requires only 3 modified ODEs per each slow time step, which makes it incredibly efficient.

The corresponding polynomials are

p̂n,2(τ) = p̂n,3(τ) = Nn(tn, ûn) + (tn + τ)Vn; τ ∈ [0, c2H] (6.27)

p̂n,4(τ) ≡ p̂n,5(τ) = p̂n,6(τ) = p̂n,7(τ) =

Nn(tn, ûn) + (tn + τ)Vn +
τ 2

H2

( c3

c2
2(c3 − c2)

D̂n2 +
c2

c2
3(c2 − c3)

D̂n3

)

+
τ 3

H3

( −1

c2
2(c3 − c2)

D̂n2 −
1

c2
3(c2 − c3)

D̂n3

)
; τ ∈ [0, c4H] (6.28)

q̂n(τ) = Nn(tn, ûn) + (tn + τ)Vn −
τ 2

H2

( 7∑
i=4

α̂iD̂n,i

)
+
τ 3

H3

( 7∑
i=4

η̂iD̂n,i

)
− τ 4

H4

( 7∑
i=4

β̂iD̂n,i

)

+
τ 5

H5

( 7∑
i=4

γ̂iD̂n,i

)
, τ ∈ [0, H] (6.29)

where γ̂i, α̂i, β̂i, η̂i (i = 4, 5, 6, 7) are given by

γ̂i =
1

c2
i (ci − ck)(ci − cl)(ci − cm)

(6.30)

α̂i = ckclcmγ̂i (6.31)

β̂i = (ck + cl + cm)γ̂i (6.32)

η̂i = (ckcl + clcm + ckcm)γ̂i. (6.33)

(note that i, k, l,m ∈ {4, 5, 6, 7} are distinct indices and that ci, ck, cl, cm are distinct (posi-

tive) nodes). Here we have the conditions c3 < c2 and c5, c6, c7 < c4. We choose c3 = c5 =
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1
10
< c2 = c6 = 1

9
< c7 = 1

8
< c4 = 1

7
for our numerical experiments. This gives a total fast

traversal time of (1 + c2 + c4)H = 79
63
H.

6.4. Numerical Experiments

In this section we implement MERB methods on multirate test problems to demonstrate

convergence rates and computational costs. We first discuss choices we make for the inner

fast integrators, fast-slow splitting, optimal time scale separation factors, and give a gen-

eral overview of how we perform error and efficiency analysis. We then present numerical

experiments for two multirate ODE systems. The first ODE system arises from a spatial

discretization of a reaction-diffusion problem and the second is a semi-linear nonautonomous

system with coupling between the fast and slow variables, we call this the bidirectional

coupling problem. For each test problem we implement MERB3, MERB4, MERB5, and

MERB6, then we compare them with implementations of other recently developed multi-

rate methods that treat the slow time scale explicitly: MERK3, MERK4, and MERK5 from

[68], plus MRI-GARK-ERK33a and MRI-GARK-ERK45a from [88], written here in short

form as MRI-GARK33a and MRI-GARK45a.

6.4.1. Choice of inner integrators

For uniformity, in our implementations of MERB, MERK, and MRI-GARK methods of

the same order, we use the same fast integrators for the internal stages and step solution.

Third-order methods use a 3 stage explicit third-order method from equation (233f) of [10],

fourth-order methods use a 4 stage explicit fourth-order method commonly known as “RK4”

from [62], fifth-order methods use an 8 stage fifth-order method which is the explicit part of

ARK5(4)8L[2]SA from [57], while the sixth-order method uses an 8 stage explicit sixth-order

method based on the 8,5(6) procedure of [106]. We note that like with MERK methods, for

a MERB method of order q, we only require that the internal stages are computed with an

order q − 1 integrator, along with an integrator of order q to compute the step solution.
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6.4.2. Fast-slow splitting

The splitting into fast and slow components for MERB methods is dictated by the dy-

namic linearization process at each time step. This brings about interesting questions con-

cerning the comparison process with MERK and MRI-GARK methods that do not neces-

sarily require dynamic linearization. MERK methods require a linear fast component but

MRI-GARK methods do not have constraints on what constitutes the fast and the slow time

scale. With these multirate splittings in mind, we endeavor to present results that provide

a fuller picture of the competitiveness of MERB methods in comparison with MERK and

MRI-GARK. We consider two separate fast-slow splittings, each having its own merits. The

first is dynamic linearization which involves the linearization of the right hand side, therefore

requiring a Jacobian computation at each time step. The fast component then becomes the

linear portion and the slow component is the remainder. The dynamic linearization process

can place more of the problem at the fast time scale than other fixed multirate splittings,

and depending on how much the fast problem is subcycled, can lead to better overall ac-

curacy. Using MERK methods with the dynamic linearization approach demonstrates their

applicability to nonlinear systems.

Our other fast-slow splitting defines a fixed linear portion of the test problem as the fast

component and the rest as the slow component, in the ensuing results we call this ‘fixed

linearization’. Though the motivation for this splitting is from the MERK requirements of

a linear fast component, we also apply it to MRI-GARK methods. We note that other fixed

splittings that can offer different accuracy and efficiency insights on multirate methods are

possible, especially for our bidirectional coupling problem. We however only focus on one

fixed splitting for each test problem. Methods that use fixed linearization are denoted with

an asterisk in our results, for example MERK3* uses a fixed linearization while MERK3 uses

dynamic linearization.
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6.4.3. Optimal time scale separation

In order to compare methods at their peak performance, we strive to determine an optimal

time scale separation factor for each multirate method on each test problem. The optimal

time scale separation factor m = H/h is the integer ratio between the slow and fast time

step sizes which is most efficient. This value is determined experimentally by comparing

efficiency in terms of slow-only evaluations and total (slow+fast) evaluations for several

different values of m. Keeping the values of H constant, as we increase m, h becomes

smaller and the fast ODE is solved more accurately. The optimal m is the value where we

stop seeing improvement in the overall solution error due to more accurate fast evolution.

Thus any larger m would result in the same errors as the optimal value, but at a greater

cost in terms of fast function evaluations, hence total function evaluations. A more in depth

illustration and discussion of this process can be found in [68].

Method
Reaction-diffusion

m
Bidirectional coupling

m

Dynamic Fixed Dynamic Fixed

MERB3 10 80

MERK3 20 10 80 10

MRI-GARK33a 20 5 80 10

MERB4 10 40

MERK4 20 10 40 10

MRI-GARK45a 10 1 40 1

MERB5 5 10

MERK5 5 5 10 10

MERB6 5 5

Table 6.2: Optimal time scale separation factor for each test problem, each splitting, and
each method.
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Table 6.2 presents the optimal m values for each method and each test problem depending

on splitting type. A trend emerges among MERK and MRI-GARK methods that use both

dynamic and fixed linearization; for these methods, dynamic linearization almost exclusively

results in the need for a larger m value than the one required by fixed linearization. This

is likely because in both test problems, dynamic linearization results in a fast-slow splitting

where more of the problem is included within the fast dynamics, so there is need for a

larger m value to resolve the dynamics. We also note that for the fixed linearization, both

MRI-GARK methods have smaller optimal values of m, suggesting an efficient solve for the

MRI-GARK fast problem with larger values of h.

6.4.4. Presentation of results

For each test problem we group our numerical results by order of convergence. We have

3 groups corresponding to O(H3) methods, O(H4) methods, and O(H5) combined with

O(H6) methods. In each group we provide four kinds of “log-log” plots, one convergence

plot (solution error versus slow time step size H) and three efficiency plots featuring solution

error versus each of slow function calls, total function calls, and MATLAB runtimes. Errors

given are maximum absolute errors over all spatial grid points and time outputs measured

against an analytical solution or highly accurate numerically determined reference solution.

We also provide rates of convergence computed from a least squares error fit on the error

versus H data, neglecting points at the reference error floor. Each of our three efficiency

measurements tells a different story. First, we consider slow function calls to illustrate

the costs of each multirate method especially when dealing with systems with expensive

slow components. Second, we consider total function calls to capture the fast evaluations

and highlight properties of methods related to their total traversal times. Lastly, though

MATLAB runtimes are often not the best representatives for runtimes on HPC applications,

we use them here to possibly capture the costs added by Jacobian computations in dynamic

linearization and measure how they affect efficiency.
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6.4.5. Reaction-diffusion

From Savcenco et al.[97], we consider the reaction-diffusion equation:

ut = εuxx + γu2(1− u), 0 < x < 5, 0 < t ≤ 5, (6.34)

where λ = 1
2

√
2γ/ε. We use initial conditions ux(0, t) = ux(5, t) = 0, and boundary con-

ditions u(x, 0) = (1 + exp(λ(x − 1)))−1. Multiple combinations of γ and ε are possible but

we specifically chose γ = 0.1 and ε = 0.01 so the problem exhibits an optimal m > 1 for

MERB methods. We use a second-order centered finite difference scheme with 101 spatial

grid points to discretize the diffusion term. In addition to dynamic linearization, MERK and

MRI-GARK methods also use a fixed splitting where the fast component is Ff (t, u) = εuxx

and the slow component is Fs(t, u) = γu2(1 − u). We consider the solution at 10 different

points within the interval and slow time steps H = 0.5 × 2−k, for k = 0, . . . , 6. Since we

do not have an analytical solution for this test problem, we compare numerical solutions

against a reference solution obtained using MATLAB ode15s with relative tolerance 10−13

and absolute tolerance 10−14.

Figures 6.1 - 6.3 show accuracy and efficiency results for the reaction-diffusion problem.

For our convergence discussion on third-order methods, we focus on Figure 6.1 (top-left) and

the legend. For the rates of convergence listed in the legend of Figure 6.1, each third-order

method attains the expected order of convergence on this test problem. The observed errors

for the dynamic linearization approach on all methods are less than for fixed linearization.

This can be attributed to a larger fast portion in the case of dynamic linearization which

results in higher optimal time scale separation factors (as shown in Table 6.2) and lower

errors. Among the methods that apply dynamic linearization, MERK3 and MRI-GARK33a

have almost identical errors that are lower than those for MERB3 which uses an m two times

smaller. MERK3* and MRI-GARK33a* have the largest errors on this test problem.
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Figure 6.1: Convergence (top-left) and efficiency (top-right, bottom) for O(H3) methods
on the reaction-diffusion problem of section 6.4.5. MERK3* and MRI-GARK33a* use fixed
linearization while the rest of the methods use dynamic linearization. The legend shows the
slopes of the least-squares error fit of max error versus H data. It is clear that the most
efficient method for this problem depends heavily one the definition of ‘cost’: MERB3 has
the best runtime efficiency, MRI-GARK33a has the best total function call efficiency, and all
of three methods utilizing dynamic linearization have the best slow function call efficiency.

129



Next we discuss efficiency focusing on Figure 6.1 (top-right and bottom) plots. The

most efficient methods in each of these plots are closest to the bottom left corner. For our

MATLAB implementations, MERB3 has an obvious advantage in terms of runtimes, while

both MRI-GARK33a and MRI-GARK33a* have the least efficient implementation. Taking

into account only MERK and MRI-GARK methods, there is not much of a difference in

runtimes between the dynamic linearization approach and the fixed linearization approach,

though the fixed linearization does correspond to slightly less runtime. When looking at total

function calls, both MRI-GARK33a and MRI-GARK33a* are the most efficient of the group,

largely owing to the property that they only traverse the time step H once, while MERB3

has a total traversal time of 1.5H, and MERK3 has a total traversal time of 2.166H and

therefore has the most total function calls. The behavior of multirate methods in terms of

slow function calls, Figure 6.1 (bottom-right) is closely aligned with the convergence behavior

Figure 6.1 (top-left). At large values of H, MERK3 and MRI-GARK33a are most efficient,

but MERB3 is just as efficient as MERK3 and MRI-GARK33a at smaller H values.

For fourth-order methods, we observe in Figure 6.2 (top-left) and legend that all methods

reach at least their expected order of convergence, with MERK4* and MRI-GARK45a*

performing better than expected. MERK4 has the least errors, but also uses an m value

that is two times greater than other fourth-order methods on this test problem as shown

in Table 6.2. MERK4* starts off with larger errors than MERB4 and MRI-GARK45a, but

because it converges at fifth-order for this test problem, its errors quickly drop below those

for MERB4 and MRI-GARK45a. MRI-GARK45a* has an m = 1 which seemingly puts it

at a disadvantage when comparing accuracy with other methods, however, larger values of

m only lead to more total function evaluations and not reduction in errors.

To compare efficiency, we focus on Figure 6.2 (top-right and bottom) plots. From the

runtime plot, MERB4 is more efficient at larger values of H, but MERK4 is eventually the

most efficient at smaller values of H. Meanwhile, the lessons we learned from third-order

methods are largely repeated in the plot for total function calls - Figure 6.2 (bottom-left).
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Figure 6.2: Convergence (top-left) and efficiency (top-right, bottom) for O(H4) methods
on reaction-diffusion problem of section 6.4.5. MERK4* and MRI-GARK45a* use fixed
linearization while the rest of the methods use dynamic linearization. The legend shows the
slopes of the least-squares error fit of max error versus H data. MERB and MERK methods
are have the best efficiency in terms of runtime and slow function calls. MRI-GARK methods
have the best efficiency for total function calls.
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MRI-GARK45a and MRI-GARK45a* are the most efficient in terms of total function calls

and closely line up, MERB4 which has a total traversal time of 1.75H performs better

than MERK4 and MERK4* with total traversal times of 2.833H. Finally, comparing slow

function calls in Figure 6.2 (bottom-right), MERB4 is the most efficient. This is expected

since MERB4 only has 2 slow stages, compared with 6 for MERK4 and 5 for MRI-GARK45a.

The first thing to note in the discussion of fifth and sixth-order methods is that they all

use the same m = 5 (Table 6.2). All methods converge at their expected rates as shown

in the legend for Figure 6.3. The fifth-order methods: MERB5, MERK5, and MERK5*,

all cluster around similar error values in Figure 6.3 (top-left), but MERB6 has the largest

errors. As with previous observations above, MERK5 which does dynamic linearization has

slightly less error than MERK5* which does fixed linearization.

In all efficiency plots, Figure 6.3 (top-right and bottom), MERB5 is the most efficient.

Looking at the total function calls plot, MERB5 has a total traversal time of 2.075H com-

pared to 3.2H for MERK5 and 1.253H for MERB6 (though we barely get to see advantages

of this since MERB6 has the largest errors). When it comes to slow function calls, Fig-

ure 6.3 (bottom-right), MERB5 has 4 slow stages which is much lower than the 10 stages

for MERK5, and 7 stages for MERB6. Combining the merits of MERB5 from total function

calls and slow function calls explains the runtimes in Figure 6.3 (top-right).

6.4.6. Bidirectional coupling system

In this section we discuss a test problem of our own making that is inspired by the

numerical example in Section 5.1 of Estep et al. [30]. We consider the following system on

0 < t ≤ 1:

u′ = σv − w − βt, (6.35)

v′ = −σu,
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Figure 6.3: Convergence (top-left) and efficiency (top-right, bottom) of O(H5) and O(H6)
methods on reaction-diffusion problem of section 6.4.5. MERK5* uses fixed linearization, all
the other methods use dynamic linearization. The legend shows slopes of the least-squares
error fit of the max error versus H data. MERB5 has the best efficiency of all O(H5) and
O(H6) methods.
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w′ = −λ(w + βt)− β

(
u− a(w + βt)

aλ+ bσ

)2

− β

(
v − b(w + βt)

aλ+ bσ

)2

,

with exact solution u(t) = cos(σt) + ae−λt, v(t) = − sin(σt) + be−λt, and w(t) = (aλ+

bσ)e−λt−βt. This problem features linear coupling from fast to slow time scales through the

equation for u′(t), and nonlinear coupling from slow to fast time scales through the equation

for w′(t). In addition, the problem is nonautonomous and includes tunable parameters

{a, b, β, λ, σ} taken here to be {1, 20, 0.01, 5, 100}, with aσ = bλ. The parameter σ determines

the frequency of the fast time scale and β controls the strength of the nonlinearity. In the

case of dynamic linearization, a small value of β corresponding to weak nonlinearity results

in high values of the optimal time scale separation factor m. While there are various possible

splittings into a fixed linear component and remainder, we chose the most natural splitting

into fast variables and slow variables informed by the exact solution:

Ff (t,u) =



0 σ −1

−σ 0 0

0 0 0





u

v

w


, Fs(t,u) =



−βt

0

−λw − λβt− β

(
u− a(w−βt)

aλ+bσ

)2

− β

(
v − b(w−βt)

aλ+bσ

)2



We assess error at 20 equally spaced points within the time interval and consider slow time

steps H = 0.05× 2−k for integers k = 0, 1, . . . , 7.

Accuracy and efficiency plots for the bidirectional problem are shown in Figures 6.4-6.6. Starting

with third-order methods, in Figure 6.4 (top-left) all methods incorporating dynamic linearization

have similar errors, coinciding with their uniform time scale separation factor of m = 80. Similarly,

fixed linearization approaches MERK3* and MRI-GARK33a* have the same m = 10, leading to

comparable errors. As with the results in Section 6.4.5, dynamic linearization leads to lower errors

than fixed linearization, here the difference in errors for the same H is up to 103.
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Figure 6.4: Convergence (top-left) and efficiency (top-right, bottom) of O(H3) methods on
the bidirectional coupling problem of section 6.4.6. MERK3* and MRI-GARK33a* use fixed
linearization, all the other methods use dynamic linearization. The legend shows slopes of
the least-squares fit of the max error versus H data. Methods implemented with dynamic
linearization have lower errors than those implemented with fixed linearization. MERB3
has the best runtime and slow function call efficiency. MRI-GARK33a has the best total
function call efficiency.
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The lessons in efficiency from the reaction-diffusion problem of Section 6.4.5 are repeated here.

Our implementation of MERB3 is the most efficient in MATLAB run times and slow function

evaluations, while MRI-GARK33a is most efficient in total function evaluations. Overall, our new

MERB3 method is competitive with other explicit MIS-type multirate methods.

Results for fourth-order methods are plotted in Figure 6.5. Like with the third-order methods,

we use the same m for dynamic linearization methods, but here there is slightly more variation in

errors, with MERK4 being the most accurate of the group. Given MERB4 and MERK4, MERB4

is the best choice when considering efficiency and comes very close to matching the accuracy of

MERK4.

Finally, the performance of fifth and sixth-order methods on the bidirectional coupling problem

is illustrated in Figure 6.6. The accuracy of all the fifth and sixth-order methods is almost identical

on this test problem, so we focus on the efficiency comparisons. Both of our new MERB methods

are the most competitive for this test problem. We observe that MERB5 is the most efficient in

terms of run time at large values of H but as the H values become smaller, MERB6 is the most

efficient. MERB6 is also the most efficient in total function calls followed by MERB5, because

of fewer total traversal times compared with those for MERK5. The small number of stages for

MERB5 make it the most efficient when it comes to slow function calls.

136



10−310−2

H

10−10

10−8

10−6

10−4

10−2

100

M
ax

E
rr

or

MERB4 (3.74)

MRI-GARK45a (3.84)

MERK4 (4.0)

MRI-GARK45a* (4.11)

MERK4* (4.01)

10−2 10−1 100

Runtime (s)

10−10

10−8

10−6

10−4

10−2

100

103 104 105 106

Total function calls

10−10

10−8

10−6

10−4

10−2

100

M
ax

E
rr

or

102 103 104

Slow function calls

10−10

10−8

10−6

10−4

10−2

100

Figure 6.5: Convergence (top-left) and efficiency (top-right, bottom) of O(H4) methods on
the bidirectional coupling problem of section 6.4.6. MERK4* and MRI-GARK45a* use fixed
linearization, all the other methods use dynamic linearization. The legend shows slopes of
the least-squares fit of the max error versus H data. MERB4 and MERK4 have the most
efficient runtimes. MRI-GARK methods have the most efficient total function calls, while
MERB4 excels in slow function call efficiency.
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Figure 6.6: Convergence (top-left) and efficiency (top-right, bottom) of O(H5) and O(H6)
methods on the bidirectional coupling problem of section 6.4.6. MERK5* uses fixed lin-
earization, all the other methods use dynamic linearization. The legend shows slopes of the
least-squares fit of the max error versus H data. MERB5 and MERB6 have the best runtime
efficiency. Individually, MERB6 has the best total function call efficiency and MERB5 has
the best slow function call efficiency.
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Chapter 7

Conclusion

In this chapter we give concluding remarks for this thesis and briefly discuss future directions.

7.1. Overall contributions

In this thesis we have introduced three classes of high-order, flexible multirate methods namely,

IMEX-MRI-GARK, MERK, and MERB. These methods are geared towards multiphysics problems

that exhibit multiple time scales. Their unifying property is that of a fast time scale that can be

integrated almost arbitrarily through the definition of modified ODE problems, an idea that was

first introduced by Knoth and Wolke [61] and further developed to create multirate infinitesimal

step methods [107]. The overall contributions to each class of methods are as follows:

In Chapter 3 we presented a newly developed class of IMEX-MRI-GARK methods that extend

Sandu’s MRI-GARK methods [88] to include an IMEX treatment of the slow time scale, making

them the first class of methods of MIS-type to have this property. This flexibility in the integration

of the slow dynamics is in addition to the flexibility at the fast time scale which can be treated

explicitly, implicitly, or in an IMEX fashion. We derived order conditions for IMEX-MRI-GARK

methods up to fourth-order, taking advantage of the structure of our IMEX-ARK slow base. Be-

cause of their ease of implementation and following [88], we constructed solve-decoupled methods

that alternate between integrating fast modified ODEs and standard diagonally-implicit Runge–

Kutta solves. Combining Sandu’s scalar stability analysis and Zharovsky and collaborators’ joint

stability analysis, we defined our own joint stability region to assess linear stability. Using this def-

inition of joint stability we were able to create a third-order method optimized to extend the region

of stability on the negative real-axis. Numerical experiments confirmed the order of convergence for

our third and fourth-order methods. Comparisons with legacy Lie–Trotter, Strang–Marchuk, and

implicit MRI-GARK methods show that IMEX-MRI-GARK are just as accurate and efficient as
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implicit MRI-GARK methods on select test problems, and more accurate and efficient than legacy

approaches.

In Chapter 4 we further investigated the linear stability of IMEX-MRI-GARK methods with

the specific goal of constructing a fourth-order IMEX-MRI-GARK method with better stability

properties. Relaxing our definition of joint stability allowed us to find viable directions for max-

imizing the joint stability region on the negative real axis. Numerical experiments of the newly

constructed fourth-order method show improved stability properties compared to the fourth-order

method of Chapter 3 on an advection-diffusion-reaction test problem.

In Chapter 5 we introduced MERK methods which expand on MIS theory, starting with ex-

ponential Runge–Kutta methods. MERK methods allow the solution of exponential Runge–Kutta

methods without the evaluation of matrix functions, instead, we solve modified ODEs to advance

from slow stage to slow stage. We discussed the theory of MERK methods including convergence

results and showed that the modified ODEs corresponding to internal stages can be solved with

a fast integrator of degree one less than the overall MERK method. We derived methods up to

fifth-order, including the very first fifth-order method of MIS-type. In numerical experiments we

identified two main categories for practitioners of multirate methods: those that have stability lim-

ited systems of ODEs and those with systems of ODEs with differing time scales. This distinction

enabled us to pick different sets of test problems in each category. For the second category, we

presented an experimental technique for determining the optimal ratio between the fast and slow

time scales. Such optimal ratios enable an efficient solution of test problems when using fixed

time steps for both the slow and fast dynamics, in the absence of time adaptivity techniques. Our

numerical experiments confirmed orders of convergence and provided efficiency results.

In Chapter 6 we presented MERB methods, another addition to the family of MIS-type meth-

ods. The theory of MERB methods closely follows that of MERK methods, with a lot of properties

carrying over from MERK to MERB. MERB methods involve the least number of order condi-

tions of all MIS-type methods owing to their exponential Rosenbrock base, in addition, high-order

methods are easily attainable. We derived MERB methods up to the very first sixth-order method

of MIS-type. Similar to our treatment of MERK methods, we provided in-depth numerical ex-

periments. Our results involved comparisons with MERK and MRI-GARK methods, which led to
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the investigation of both fixed linearization and dynamic linearization approaches to splitting the

right hand side. In addition to confirming convergence of MERB methods, we demonstrated their

competitiveness, particularly in efficiency.

7.2. Future directions

There are several immediate research directions in extension of this thesis work. An extension

to all methods discussed is the derivation of embedding coefficients for time adaptivity. Procedures

to effectively use these embedding coefficients for the control of two time step sizes are also needed.

Proper error control for multirate methods will promote their widespread adoption.

Another topic of extension is the stability analysis for additive multirate systems. Commonly

used tools in this area and their implications are not yet fully realized due to added complexity

in multirate schemes. Furthermore, there is currently no standard way of assessing stability of

multirate methods. All the methods we have explored in this thesis can benefit from rigorous

stability analysis that investigates dependence on fast-slow splitting, time scale separation factors,

and coupling strength between fast and slow components.

There is also need for more test problems that can rigorously test various aspects of multirate

methods before their application to large-scale systems.

Finally, in relation to IMEX-MRI-GARK methods, solve-coupled approaches are predicted to

provide more stability, opening up new questions about how to effectively implement them.
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Appendix A

IMEX-MRI-GARK appendix

A.1. IMEX-MRI-GARK3a

The nonzero coefficients for IMEX-MRI-GARK3a (accurate to 36 decimal digits) are:

c
{S}
1 = 0,

c
{S}
2 = c

{S}
3 = 0.4358665215084589994160194511935568425,

c
{S}
4 = c

{S}
5 = 0.7179332607542294997080097255967784213,

c
{S}
6 = c

{S}
7 = c

{S}
8 = 1,

γ
{0}
2,1 = −γ{0}3,1 = γ

{0}
3,3 = γ

{0}
5,5 = γ

{0}
6,1 = −γ{0}7,1 = γ

{0}
7,7

= 0.4358665215084589994160194511935568425,

γ
{0}
4,1 = −γ{0}5,1 = −0.4103336962288525014599513720161078937,

γ
{0}
4,3 = 0.6924004354746230017519416464193294724,

γ
{0}
5,3 = −0.8462002177373115008759708232096647362,

γ
{0}
6,3 = 0.9264299099302395700444874096601015328,

γ
{0}
6,5 = −1.080229692192928069168516586450436797,
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ω
{0}
2,1 = ω

{0}
8,7 = 0.4358665215084589994160194511935568425,

ω
{0}
4,1 = −0.5688715801234400928465032925317932021,

ω
{0}
4,3 = 0.8509383193692105931384935669350147809,

ω
{0}
5,1 = −ω{0}5,3 = 0.454283944643608855878770886900124654,

ω
{0}
6,1 = −0.4271371821005074011706645050390732474,

ω
{0}
6,3 = 0.1562747733103380821014660497037023496,

ω
{0}
6,5 = 0.5529291480359398193611887297385924765,

ω
{0}
8,1 = 0.105858296071879638722377459477184953,

ω
{0}
8,3 = 0.655567501140070250975288954324730635,

ω
{0}
8,5 = −1.197292318720408889113685864995472431.

We note that these coefficients (and all of those that follow) are available electronically in [16].

A.2. IMEX-MRI-GARK3b

The nonzero coefficients for IMEX-MRI-GARK3b (accurate to 36 decimal digits) are:

c
{S}
1 = 0,

c
{S}
2 = c

{S}
3 = 0.4358665215084589994160194511935568425,

c
{S}
4 = c

{S}
5 = 0.7179332607542294997080097255967784213,

c
{S}
6 = c

{S}
7 = c

{S}
8 = 1,
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γ
{0}
2,1 = −γ{0}3,1 = γ

{0}
3,3 = γ

{0}
5,5 = γ

{0}
7,7

= 0.4358665215084589994160194511935568425,

γ
{0}
4,1 = −γ{0}5,1 = 0.0414273753564414837153799230278275639,

γ
{0}
4,3 = 0.2406393638893290165766103513753940148

γ
{0}
5,3 = −0.3944391461520175157006395281657292786

γ
{0}
6,1 = −γ{0}7,1 = 0.1123373143006047802633543416889605123

γ
{0}
6,3 = 1.051807513648115027700693049638099167

γ
{0}
6,5 = −0.8820780887029493076720571169238381009

γ
{0}
7,3 = −0.1253776037178754576562056399779976346

γ
{0}
7,5 = −0.1981516034899787614964594695265986957

ω
{0}
2,1 = ω

{0}
8,7 = 0.4358665215084589994160194511935568425,

ω
{0}
4,1 = −0.1750145285570467590610670000018749059,

ω
{0}
4,3 = 0.4570812678028172593530572744050964846,

ω
{0}
5,1 = −ω{0}5,3 = 0.06042689307721552209333459437020635774,

ω
{0}
6,1 = 0.1195213959425454440038786034027936869,

ω
{0}
6,3 = −1.84372522668966191789853395029629765,
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ω
{0}
6,5 = 2.006270569992886974186645621296725542,

ω
{0}
7,1 = −0.5466585780430528451745431084418669343,

ω
{0}
7,3 = 2,

ω
{0}
7,5 = −1.453341421956947154825456891558133066,

ω
{0}
8,1 = 0.105858296071879638722377459477184953,

ω
{0}
8,3 = 0.655567501140070250975288954324730635,

ω
{0}
8,5 = −1.197292318720408889113685864995472431.

A.3. IMEX-MRI-GARK4

The nonzero coefficients for IMEX-MRI-GARK4 (accurate to 36 decimal digits) are:

c{S} =

[
0 1

2
1
2

5
8

5
8

3
4

3
4

7
8

7
8 1 1 1

]
,

γ
{0}
2,1 = 1

2 ,

γ
{0}
3,1 = −γ{0}3,3 = −γ{0}5,5 = −γ{0}7,7 = −γ{0}9,9 = −γ{0}11,11 = −1

4 ,

γ
{0}
4,1 = −3.97728124810848818306703385146227889,

γ
{0}
4,3 = 4.10228124810848818306703385146227889,

γ
{0}
5,1 = −0.0690538874140169123272414708480937406,

γ
{0}
5,3 = −0.180946112585983087672758529151906259,

γ
{0}
6,1 = −1.76176766375792052886337896482241241,
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γ
{0}
6,3 = 2.69452469837729861015533815079146138,

γ
{0}
6,5 = −0.807757034619378081291959185969048978,

γ
{0}
7,1 = 0.555872179155396948730508100958808496,

γ
{0}
7,3 = −0.679914050157999501395850152788348695,

γ
{0}
7,5 = −γ{0}8,5 = −0.125958128997397447334657948170459801,

γ
{0}
8,1 = −5.84017602872495595444642665754106511,

γ
{0}
8,3 = 8.17445668429191508919127080571071637,

γ
{0}
8,7 = −2.33523878456435658207950209634011106,

γ
{0}
9,1 = −1.9067926451678118080947593050360523,

γ
{0}
9,3 = −γ{0}10,3 = −1.54705781138512393363298457924938844

γ
{0}
9,5 = −γ{0}10,5 = 4.12988801314935030595449173802031322,

γ
{0}
9,7 = −γ{0}10,7 = −0.926037556596414564226747853734872477,

γ
{0}
10,1 = 3.33702815168872605455765278252966252,

γ
{0}
10,9 = −1.55523550652091424646289347749361021,

γ
{0}
11,1 = −0.821293629221007618720524112312446752,

γ
{0}
11,3 = 0.328610356068599988551677264268969646,

γ
{0}
11,5 = 0.678001812102026694142641232421139516,
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γ
{0}
11,7 = −0.342779287862800022896645471462060708,

γ
{0}
11,9 = −0.0925392510868190410771489129156017025,

γ
{1}
4,1 = −γ{1}4,3 = 8.70456249621697636613406770292455778,

γ
{1}
6,1 = 3.91164310234387488238124087134101229,

γ
{1}
6,3 = −5.02715717158263104496515924327911025,

γ
{1}
6,5 = 1.11551406923875616258391837193809796,

γ
{1}
8,1 = 10.8186076991391180114318371131645132,

γ
{1}
8,3 = −14.9890852682678311755908413058447354,

γ
{1}
8,7 = 4.17047756912871316415900419268022213,

γ
{1}
10,1 = −2.61047101304182849292578695498722043,

γ
{1}
10,9 = 2.61047101304182849292578695498722043,

ω
{0}
2,1 = 1

2 ,

ω
{0}
4,1 = −1.91716534363662868878172216064946905,

ω
{0}
4,3 = 2.04216534363662868878172216064946905,

ω
{0}
5,1 = −ω{0}5,3 = −0.404751031801105942697915907046990469,
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ω
{0}
6,1 = 11.4514660224922163666569802860263173,

ω
{0}
6,3 = −30.2107574752650427144064781557395061,

ω
{0}
6,5 = 18.8842914527728263477494978697131888,

ω
{0}
7,1 = −0.709033564760261450684711672946330144,

ω
{0}
7,3 = 1.03030720858751876652616190884004718,

ω
{0}
7,5 = −ω{0}8,5 = −0.321273643827257315841450235893717036,

ω
{0}
8,1 = −29.9954871645582843984091068494419927,

ω
{0}
8,3 = 37.605982774991801805364896856243857,

ω
{0}
8,7 = −7.80676925426077472279724024269558129,

ω
{0}
9,1 = 3.10466505427296211633876939184912422,

ω
{0}
9,3 = −ω{0}10,3 = −2.43032501975716229713206592741556636,

ω
{0}
9,5 = −ω{0}10,5 = −1.90547930115152463521920165948384213,

ω
{0}
9,7 = −ω{0}10,7 = 1.23113926663572481601249819505028427,

ω
{0}
10,1 = −2.42442954775204786987587591435551401,

ω
{0}
10,9 = −0.555235506520914246462893477493610215,

ω
{0}
11,1 = −0.010441350444797485902945189451653542,

ω
{0}
11,3 = 0.0726030361465507450515210450548814161,
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ω
{0}
11,5 = −0.128827595167726095223945409857642431,

ω
{0}
11,7 = 0.112935535009382356613944010712215408,

ω
{0}
11,9 = ω

{0}
12,9 = −0.0462696255434095205385744564578008512,

ω
{0}
12,1 = −0.81085227877621013281757892286079321,

ω
{0}
12,3 = 0.25600731992204924350015621921408823,

ω
{0}
12,5 = 0.806829407269752789366586642278781947,

ω
{0}
12,7 = −0.455714822872182379510589482174276116,

ω
{0}
12,11 = 1

4

ω
{1}
4,1 = −ω{1}4,3 = 4.0843306872732573775634443212989381,

ω
{1}
6,1 = −21.8434299813822208479181287579586536,

ω
{1}
6,3 = 59.6120128869278735434171244973850312,

ω
{1}
6,5 = −37.7685829055456526954989957394263776,

ω
{1}
8,1 = 61.6590414586370916981876370447766458,

ω
{1}
8,3 = −77.2725799671586411437821175301678084,

ω
{1}
8,7 = 15.6135385085215494455944804853911626,

ω
{1}
10,1 = −ω{1}10,9 = −1.11047101304182849292578695498722043.
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A.4. IMEX-MRI-GARK4s

The nonzero coefficients for IMEX-MRI-GARK4s (accurate to 34 decimal digits) are:

c{S} =

[
0 1

2
1
2

5
8

5
8

3
4

3
4

7
8

7
8 1 1 1

]
,

γ0
2,1 = 1

2

γ0
3,1 = −γ0

3,3 = −γ0
5,5 = −γ0

7,7 = −γ0
11,11 = −1

4

γ0
4,1 = −2.817831494651470217184001103636529328

γ0
4,3 = 2.942831494651470217184001103636529328

γ0
5,1 = −0.1952664611117636700443611630362283904

γ0
5,3 = −0.05473353888823632995563883696377160959

γ0
6,1 = 1.573386664685180231132095485642704949

γ0
6,3 = −2.848115321164554981395859537875345168

γ0
6,5 = 1.399728656479374750263764052232640219

γ0
7,1 = −0.01856566842724184119671364205880345497

γ0
7,3 = 0.1746719543270047659803703037568245017

γ0
7,5 = −0.4061062858997629247836566616980210467

γ0
8,1 = −13.17145919027832704094939131031560574

γ0
8,3 = 18.04050552525041321233472357853754826

150



γ0
8,5 = −0.1925688892678704307160178461844250039

γ0
8,7 = −4.551477445704215740669314422037517517

γ0
9,1 = −0.7292964946020029874553082743280442362

γ0
9,3 = −3.951875409464220626731828319758480933

γ0
9,5 = 5.407216080020020100729158971725193377

γ0
9,7 = −0.9758905458744198071272479073272681848

γ0
9,9 = 0.2498463699206233205852255296885999769

γ0
10,1 = 4.27436986605952044736828671850893082

γ0
10,3 = 3.974565543070702715617491406810738868

γ0
10,5 = −9.820312385291494736264478779902428167

γ0
10,7 = 3.236702287374085453480422526836742226

γ0
10,9 = −1.540325311212813880201721872253983747

γ0
11,1 = −0.8211693775934401156683476822687831979

γ0
11,3 = 0.3242615491037373817255022127407452596

γ0
11,5 = 0.6884389488176969505254613560888780436

γ0
11,7 = −0.3514769017925252365489955745185094808

γ0
11,9 = −0.09005421853546898003362031204233062454

151



γ1
4,1 = 6.385662989302940434368002207273058657

γ1
4,3 = −6.385662989302940434368002207273058657

γ1
6,1 = −2.506240407146833122175468645212953117

γ1
6,3 = 5.805697720105582622702996749678233555

γ1
6,5 = −3.299457312958749500527528104465280438

γ1
8,1 = 26.6300497174111377642922099047488184

γ1
8,3 = −36.43035495915483595663018776458874553

γ1
8,5 = 1.197350350335266710999349015764892101

γ1
8,7 = 8.602954891408431481338628844075035034

γ1
9,1 = −0.001040736867997488831073110704394935055

γ1
9,3 = 0.0001189563917373802500419832650635498794

γ1
9,5 = 0.0003072601587534111965138716726642087451

γ1
9,7 = 0.0003072601587533385549683151438671302458

γ1
9,9 = 0.0003072601587533588295489406228000461851

γ1
10,1 = −6.839106006047037430994883777657378232

γ1
10,3 = −0.04549922360470155802136815736957942136

γ1
10,5 = 8.825885350384195859874125744681805372

152



γ1
10,7 = −4.521930743158084631261317554162815213

γ1
10,9 = 2.580650622425627760403443744507967494

ω0
2,1 = 1

2

ω0
4,1 = −3.802474726359658177024731971599831005

ω0
4,3 = 3.927474726359658177024731971599831005

ω0
5,1 = −0.2105632231901359008308105558171519078

ω0
5,3 = −ω0

5,1

ω0
6,1 = 1.953327862167814132825858955499564963

ω0
6,3 = −2.726518335677098775398439947736473022

ω0
6,5 = 0.8981904735092846425725809922369080596

ω0
7,1 = 0.07522455689146829287472230399977197606

ω0
7,3 = 0.1179464991463193211489485084577951048

ω0
7,5 = −0.1931710560377876140236708124575670809

ω0
8,1 = −13.58095856011764416959932319624351428

ω0
8,3 = 6.234370888846225823524257099242842268

ω0
8,5 = 9.782909968635930986202708936616545543

ω0
8,7 = −2.311322297364512640127642839615873527

153



ω0
9,1 = 1.677015123971293108584232945561385364

ω0
9,3 = −0.4049917536456330675372883750083619956

ω0
9,5 = −2.813322851301324867279163299826905131

ω0
9,7 = 1.541299480975664826232218729273881763

ω0
10,1 = −5.652730530866139340795071311533834901

ω0
10,3 = 0.6528780241976233184916212256053459127

ω0
10,5 = 13.73677626592977940589435092988424003

ω0
10,7 = −8.071598448048449503389178971701767296

ω0
10,9 = −0.5403253112128138802017218722539837472

ω0
11,1 = 0.005010108382277661249247933502754606596

ω0
11,3 = 0.08862041891416721301448829750634934811

ω0
11,5 = −0.2523285973897348835412743520503916481

ω0
11,7 = 0.2037251793610244992943482770624530056

ω0
11,9 = −0.04502710926773449001681015602116531227

ω0
12,1 = −0.8261794859757177769175956157715378045

ω0
12,3 = 0.2356411301895701687110139152343959115

ω0
12,5 = 0.9407675462074318340667357081392696917
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ω0
12,7 = −0.5552020811535497358433438515809624864

ω0
12,9 = −0.04502710926773449001681015602116531227

ω0
12,11 = 1

4

ω1
4,1 = 7.854949452719316354049463943199662009

ω1
4,3 = −ω1

4,1

ω1
6,1 = −3.23552927795535646399009679936482611

ω1
6,3 = 5.031910224973925749135258783838642229

ω1
6,5 = −1.796380947018569285145161984473816119

ω1
8,1 = 27.26146800645235175344920178448748462

ω1
8,3 = −12.70463477598509028934641121540127474

ω1
8,5 = −19.17947782519628674435807624831795692

ω1
8,7 = 4.622644594729025280255285679231747054

ω1
10,1 = 8.201430813789692464421676731944899075

ω1
10,3 = −0.4957725411039805019086657011939678341

ω1
10,5 = −21.8469068292569090772303752601146698

ω1
10,7 = 13.06059793414556935431392048485577106

ω1
10,9 = 1.080650622425627760403443744507967494
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