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Interferometric synthetic aperture radar (InSAR) provides capability to detect surface 

deformation. Between two SAR images, in addition to ground surface deformations, changes 

may happen in the surface parameters such as soil moisture, vegetation layer water content, and 

so on. Despite deformation, the other changes may not be of interest for a common InSAR 

analysis and an ordinary InSAR analysis rarely takes into account their influences on InSAR 

phase and coherence. The effect of the changes on InSAR phase and coherence can potentially 

impede accurate estimation of ground surface deformation but also can open new window into 

soil moisture retrieval and vegetation layer properties estimation. 

So far, numerous InSAR processing methods such as persistent scatterers (PS), and short 

baseline subset (SBAS) approaches have been introduced. Regardless of the processing 

methodology, however, temporal decorrelation is a major obstacle for all InSAR applications 

especially over vegetated areas and dynamic environments. Temporal coherence is usually 

modeled as a univariate exponential function of temporal baseline. Here, I introduce a new 

temporal decorrelation model that considers changes in surface backscattering by utilizing the 

relative change in SAR intensity between two images as a proxy for the change in surface 

scattering parameters.  
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The phase of interferograms generated from single-looked pixels are rather noisy due to 

strong effects of decorrelations and noises. One way to deal with this problem is using multi-

looked interferograms. Another approach is exploring methods such as SqueeSAR, and the 

component extraction and selection SAR (CAESAR), which have been developed to extend 

Persistent Scatterers Interferometry (PSI) analysis. Multi-looking, however, leads to non-zero 

phase triplet. I analyze the influence of the statistical properties of intensity and phase of single-

looked pixels on the phase and coherence of multi-looked pixels.  

Potentially, modeling soil moisture influence on InSAR phase measurements and SAR 

intensity changes provides a means to compensate soil moisture induced InSAR phase artifacts 

and also to retrieve surface soil moisture. I present a new approach and a comprehensive model 

to estimate soil moisture induced SAR intensity and InSAR phase changes. The model can not 

only provide improved estimation of soil moisture induced intensity and phase changes but also 

potentially be used to infer soil structure.    
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CHAPTER 1 

INTRODUCTION 

 1.1 SAR imaging 

Synthetic Aperture Radar (SAR) is a signal processing method to create images of the 

Earth’s surface using a radar instrument mounted on a space-borne or air-borne platform. As the 

satellite moves along its orbit at a height h with a velocity v, the radar instrument illuminates a 

swath on the ground by pointing a radar beam towards the Earth and perpendicular to the satellite 

motion. The scatterers in the illuminated swath phase encode and backscatter the transmitted 

radar echoes toward the receiver mounted on the satellite.  

SAR data are in the format of complex numbers. This is to record the phase and 

amplitude information of backscattering signal. The phase, which is moduled by 2π, is 

proportional to the time delay between the transmitted beam and received signal. In other words, 

it represents the radar signal’s round-trip traveling distance between the sensor and ground 

target, as well as the interaction of the radar signal with ground targets (Hanssen, 2001). Hence, 

to retrieve the continuous phase changes, a subsequent unwrapping procedure should be applied. 

The amplitude represents the intensity of the backscattered electromagnetic energy. The intensity 

of the received signal is a function of the imaging radar geometry such as incidence angle, i.e. 

the angle between the normal to the ground surface and the radar echo propagation direction, 

satellite height, etc (Hanssen, 2001). In addition, the radar reflectivity of scatterers on the 
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ground, i.e. surface dielectric constant, surface roughness, and surface slope, also determine the 

intensity of the received radar signal.  

 

 

Figure 1.1.  The imaging geometry of a space-borne SAR system (Image: European Space 
Agency (ESA)) 

1.2 Range and Azimuth Compression 

SAR images have two dimensions. One dimension define as the range direction or the 

across-track direction, which is parallel to the radar beam. The other dimension is referred as the 

azimuth direction, or the along track direction, which is along the satellite motion direction.  
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Raw SAR data is a 2-D function of range and azimuth. Range compression is the first 

step in the digital SAR processor, and is done with fast Fourier transform (FFT) (Hanssen, 2001). 

In the range direction, the radar antenna often sends out a linear frequency-modulated (FM) plus, 

which is called chirp. This chirp propagates to the ground where it reflects from scatterers. Every 

point will return chirp echo. The received signal then will be correlated with the replica of 

transmitted chirp. The received radar data consists of the complex reflectivity of the surface 

convolved with the chirp. The objective of range processing is to recover the complex 

reflectivity by deconvolution of the chirp. Therefore, the impulse response in the time domain is 

approximately a sinc function 

 

𝑆𝑖𝑛𝑐 ൫𝜏. 𝐵௣൯ =
ୱ୧୬ (గ ఛ ஻೛) 

గ ఛ ஻೛
       (1.1) 

 

where 𝜏 is time, and 𝐵௣ is the chirp bandwidth. Then the range resolution is 

 

𝜌ோ ≅
௖

ଶ ஻೛
        (1.2) 

 

As the radar instrument moves along the azimuth, it transmits pulses at the pulse 

repetition frequency (PRF). Thus, each point in the swath will be illuminated by multiple pulses. 

The echoes from multiple illuminations creates the second chirp function in the azimuth 

direction. In other words, the received signals from a scatterer are shifted in frequency due to the 
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relative movement between the radar instrument and the scatterer. This effect is known as 

“Doppler effect”. Therefore, the next step is to focus the data in azimuth direction. This is done 

by generating a frequency-modulated chirp. The velocity of the spacecraft, the pulse repetition 

frequency (PRF), and the absolute range define the chirp parameters. The chirp is FFT 

transformed into frequency space. Then it is multiplied by each column of range-migrated data. 

This generates an inverse Fourier transformed image.  

The time that a scatterer is illuminated by multiple pulses can be approximated by  

 

𝜏௔௭ =
୰బఒ 

௩ ௟
      (1.3) 

 

where 𝑙 is the length of the antenna, 
୰బఒ 

௟
 is the synthetic aperture length, and 𝑣 is the speed of the 

satellite. Therefore, the azimuth bandwidth will be  

𝐵𝑊௔௭ =
ଶ௩ 

௟
      (1.4) 

And finally the azimuth resolution is  

𝛿௔௭ =
௟ 

ଶ
       (1.5) 

The final product is focused SAR image with the azimuth and ranges resolutions of few meters.    

1.3 InSAR 

The phase of a pixel on a SAR image, which is moduled by 2π, is linearly related to the 

slant range from the satellite to the ground target 
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𝜙ଵ(𝑖, 𝑗) = −
ସగ

ఒ
 𝑟ଵ(𝑖, 𝑗) +  𝜀ଵ(𝑖, 𝑗)      (1.6) 

 

where 𝜆 is the wavelength of the radar, 𝜀ଵ is the sum of phase shifts due to the interaction 

between the incident radar wave and the scatterers within the resolution cell. InSAR requires two 

SAR images taken from the identical vantage of repeating passes with different acquisition 

times, and different positions, i.e. temporal, and spatial baselines. The two images should be co-

registered first. Image co-registration is the process of geometrically aligning two or more 

images. This means that same ground feature between images are aligned on the same spatial 

position. The initial interferometric phase 𝜙௜௡௜௧ between two equivalent pixels, i.e. 𝑠ଵ, and 𝑠ଶ, on 

two images is generated by the phase differential at each co-registered pixel 

 

𝑧ଵ,ଶ =  𝑠ଵ. 𝑠ଶ
∗ =  𝑎ଵ𝑎ଶ𝑒௜(థభିథమ)     (1.7) 

 

where, 𝑎௜ and 𝜙௜ are the amplitude and phase of the pixels, respectively. The initial phase 

represents the difference in the round-trip traveling distance along the line-of-sight (LOS) 

direction plus the phase change due to the change in the scattering property of the ground  

 

𝜙௜௡௜௧ = 𝜙ଵ − 𝜙ଶ = −
ସగ[௥భ(௜,௝)ି௥మ(௜,௝)]

ఒ
 +  [𝜀ଵ(𝑖, 𝑗) − 𝜀ଶ(𝑖, 𝑗)]   (1.8) 
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By assuming that the scattering phases remain the same (𝜀ଵ(𝑖, 𝑗) = 𝜀ଶ(𝑖, 𝑗)), the phase 

change of a pixel between two images will be 

 

𝜙୧୬୧୲ = 𝜙ଵ − 𝜙ଶ = −
ସగ[௥భ(௜,௝)ି௥మ(௜,௝)]

ఒ
     (1.9) 

 

 

Figure 1.2. Sketch of InSAR geometry (modified from Lu and Dzurisin, 2014) 

Due to the spatial baseline of the two acquisitions, there is a phase variation between two 

neighboring pixels, even over flat areas. The phase difference ∆𝜙 is a function of the slant range 

difference 𝑠 and the height difference ℎ 
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𝛥𝜙 = −
ସగ

ఒ

஻఼௦

ோ ௧௔௡(ఏ)
−

ସగ

ఒ

஻఼௛

ோ ௦௜௡(ఏ)
      (1.10) 

 

where R is the range distance, 𝜃 is the look angle, and 𝐵ୄ is the perpendicular (spatial) baseline 

between the two images. As mentioned previously, the first term of the equation (1.10) is due to 

the spatial separation of the two satellites and it should be reduced from the initial phase. The 

remaining part is called flatten interferometric phase   

 

𝛥𝜙௙௟௔௧௧௘௡ = −
ସగ

ఒ

஻఼௛

ோ ௦௜௡(ఏ)
      (1.11) 

 

In the case where there is no deformation between the two images, the flatten phase can 

be used to extract topographic elevation model (DEM). On the other hand, if deformation 

happened between the two images, we have  

 

𝛥𝜙௙௟௔௧௧௘௡ = −
ସగ

ఒ

஻఼௛

ோ ௦௜௡(ఏ)
+ 𝜙ௗ௘௙     (1.12) 

 

Therefore, the flatten phase can be subtracted from the phase simulated from digital 

elevation model to obtain the deformation happen between the two images. Because the phase is 

wrapped modulo 2π, an unwrapping procedure has to be applied to retrieve the continuous phase 

changes. 
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1.3.1 Multi-looking and InSAR Coherence 

The coherence of two complex SAR images 𝑢ଵ and 𝑢ଶ, is defined as follows (Lu and 

Dzurisin, 2014; Lopes et al., 1992; Bamler and Just, 1993; Tough et al., 1993)   

 

𝛾 =
ா[௨భ௨మ

∗ ]

ඥா[|௨భ|మ]ா[|௨మ|మ]
= |𝛾|𝑒௜஦బ     (1.13) 

 

where φ଴ is the expected noise-free phase, 𝑢ଶ
∗  is the complex conjugate of the second image, and 

E[.] denotes the expectation value that in practice will be approximated with a sampled average 

(Lopes et al., 1992; Just and Bamler, 1994;  Anxi et al., 2014). Hence, over statistically uniform 

areas, the sampled coherence can be computed as (Bamler and Just, 1993; Tough et al., 1993; 

Lee et al., 1994a; Lee et al., 1994b) 

 

𝛾ො =
∑ ௨భ௨మ

∗೙
భ

ඥ∑ |௨భ|మ ∑ |௨మ|మ೙
భ

೙
భ

= |𝛾ො|𝑒௝(ఝబାఝ೙) = |𝛾ො|𝑒௜஦     (1.14) 

 

where |𝛾ො| and φ are the magnitude and phase of the multi-looked interferogram. The joint 

probability density function (PDF) of magnitude and phase of an interferogram depends on the 

number of looks and satisfies Wishart distribution. The marginal PDF of InSAR phase can be 

derived from the joint PDF (Just and Bamler, 1994; Lee et al., 1994a; Lee et al., 1994b; 

Davenport and Root, 1987; Bamler and Hartl, 1998; Tough et al., 1995) that is characterized 
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with a mean of 𝜑଴ and a variance, which is a function of InSAR coherence value |γ | (Bamler and 

Hartl, 1998; Tough et al., 1995). Thus, we have 

 

𝜑 = 𝜑଴ + 𝜑௡ with 𝐸[𝜑] = 𝜑଴    (1.15) 

 

where φ௡ denotes a zero-mean additive noise, upon which its variance is independent of the 

magnitude φ (Bamler and Hartl, 1998). The expected value of interferometric phase is 𝜑଴ 

regardless of the magnitude of changes, number of looks and the value of complex correlation 

coefficient (Lee et al., 1994a; Lee et al., 1994b; Davenport and Root, 1987; Bamler and Hartl, 

1998). 

1.4 InSAR time-series techniques 

Conventional InSAR method can provide centimeter-level-precision deformation map. 

However, geometrical and temporal decorrelation, atmospheric artifacts, topographic errors, and 

unwrapping errors can limit its ability to accurately map the deformations. An interferometric 

phase has generally the following components 

 

𝛥𝜙௜௙௚ =  𝛥𝜙ௗ௘௙ + 𝛥𝜙௧௢௣௢
ᇱ + 𝛥𝜙௔௧௠ + 𝛥𝜙௢௥௕

ᇱ + 𝛥𝜙ௗ௖ + 𝛥𝜙௡௢௜௦௘    (1.16) 

 

where, 𝛥𝜙ௗ௘௙ is LOS deformation, 𝛥𝜙௧௢௣௢
ᇱ  is residual topographic phase (DEM error), which 

can be calculated by  
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𝛥𝜙௧௢௣௢
ᇱ = −

ସగ

ఒ

஻఼௛ᇲ

ோ ௦௜௡(ఏ)
      (1.17) 

 

where ℎᇱ is DEM error. 𝛥𝜙௔௧௠ is atmospheric phase delay, 𝛥𝜙௢௥௕
ᇱ  is the residual orbit phase 

error induced by in-accurate orbit locations, 𝛥𝜙ௗ௖ is the phase change due to the change in 

dielectric constant of the ground target, and 𝛥𝜙௡௢௜௦௘ represents all other uncorrelated noise 

sources. The aim of time-series InSAR methods is to separate the interferometric phase 

components based on their characteristics in spatial and time domains. InSAR time-series 

techniques utilize a network of interferograms other than individual interferograms to estimate 

temporal evolution of surface deformation. 

1.4.1 Small baseline SAR (SBAS) 

The essential strategy taken in SBAS methods is to exploit small temporal and spatial 

baselines to minimize geometrical decorrelation and topographic error induced artifacts. This 

leads to more accurate deformation time-series. In addition, the SBAS methods often perform a 

spatial averaging to further decrease decorrelation. The solution of time-series phase values 

associated with the deformation for each selected coherent point is given by 

 

𝜙ே = (𝐴்A)ିଵ 𝐴் ∆𝜙ெ      (1.18) 
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where 𝜙ே is the vector of the N unknown phase values associated with the cumulative 

deformation of N SAR images in time series, 𝐴 is an M by N sparse matrix (Berardino et al., 

2002), and  ∆𝜙ெ is the vector of the M known phase values from M interferograms. Based on the 

prior knowledge of the deformation signal, phase inversion methods can be exploited. When the 

all the interferograms are connected and A is full rank, such as least-squares estimation (Schmidt 

and Bürgmann, 2003) can be used. Also, singular value decomposition (Berardino et al., 2002) 

can be used when interferograms are not connected and A is rank deficient (Berardino et al., 

2002). The result is the temporal evolution of phase, i.e. deformation time-series. 

1.4.2 Persistent Scattere Analysis 

The persistent scatterer InSAR (PSI) technique (Ferrett et. al, 2000, 2001; Hooper et. al, 

2004) identifies coherent radar signal (persistent scatterer, PS) in a stack of interferograms. This 

is done by discriminating coherent signal from incoherent contributions.  

1.5 Soil moisture influence on InSAR phase, coherence, Closure phase 

InSAR detects mm level deformation and provides valuable input to studies of 

earthquakes, volcanos, landslides, permafrost processes, and so on. Two SAR images taken at 

different times are combined to make an interferogram aiming to detect ground surface 

deformations as well as to generate DEMs. The surface characteristics between the two images, 

e.g. soil moisture and vegetation water content, are subject to changes. The temporal change in 

soil moisture as well as vegetation layer has been known to contribute to InSAR phase and 

decorrelation (e.g. Molan et al., 2020; Molan and Lu, 2020). The effect of the changes on InSAR 

phase and coherence can potentially impede accurate estimation of ground surface deformation.  
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Furthermore, in some cases such as landslides, permafrost and surface erosion, the 

processes and subsequent surface movements are closely related to the changes in soil moisture. 

For example, sudden landslides can happen right after heavy precipitation or rapid snow melt. 

Soil moisture is also in a close relationship with permafrost thawing and subsequent ground 

surface subsidence. Therefore, quantifying the influence of soil moisture on InSAR phase, and 

coherence is of great importance.  

1.5.1 The effect of water content of surface medium on InSAR phase 

The temporal change in soil moisture has been known to contribute to InSAR phase. The 

first reported signal of soil moisture on InSAR images has been reported in 1989 (Gabriel et al., 

1989). One of the interferograms over agricultural field in California, generated using SEASAT 

data at the JET Propulsion Laboratory (JPL), featured phase changes corresponded to field 

boundaries. The observed phase was inferred to be related to soil moisture. Swelling 

characteristic of the soil convinced the authors to ascribe the phase change to surface movement 

(expansion), i.e. change in the travel path. Since then, soil moisture induced phase changes on 

interferograms from satellite SAR data (Nolan et al., 2003; Zhang et al., 2008; Barrett et al., 

2012) and airborne and indoor experiments (Hajnsek and Prats, 2008; Nesti et al., 1995, 1998) 

have been reported.  

New experimental studies, however, cast doubt on the expansion hypothesis. Rudant et 

al., 1996, in a laboratory experiment noted apparent subsidence over wetted soil and sprinkled 

planets.  Hensley et al., 2011 and Morrison et al., 2011, also noticed that the phase change is 

larger than deformation and motion of the surface of the soil under study indicating that the 

observed phase cannot be caused by a realistic deformation.  
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One explanation for soil moisture induced phase changes is penetration hypothesis. Soil 

moisture content governs the depth at which electromagnetic wave attenuates, i.e. depth of 

penetration (Tsang et al., 2000). The depth of penetration is the depth at which the two-way 

propagation leads to reduction in power by a factor of 1/e. According to this hypothesis, 

penetration depth decreases by increasing soil moisture (Nolan, 2003). Note that the influence of 

soil moisture change on InSAR coherence is not clear in this hypothesis.  

Recently, Dielectric hypothesis has been introduced to explain soil moisture induced 

phase changes. Based on this hypothesis, it is the dielectric characteristic of the medium (soil) 

that governs soil moisture induced phase change on interferograms. The change in the water 

content of vegetation layer on InSAR phase is also known to be similar to the effect of soil 

moisture changes on phase (Hensley et al., 2011) since the dielectric constant of both soil and 

vegetation layer depend on water content (Tsang et al., 2000). As water content of a medium (soil 

for example) between two images changes, the dielectric constant of the medium changes. The 

change in the dielectric constant results in a change in the wavenumber. The change in the real 

part of dielectric constant gives rise to the increase in wavenumber, i.e. shorter spacing of the 

wavefronts (Zwieback et al., 2015a). This in turn leads to phase increase as water content 

increases. The imaginary part of the dielectric constant governs the absorption of the 

electromagnetic wave by depth. The absorption increases by increasing water content. However, 

it is the real part of the dielectric constant that give rise to phase changes (De Zan et al., 2014).  

A broad range of studies from controlled experiments to observational studies have been 

conducted to quantify the effect of soil moisture on InSAR phase and coherence (Zwieback et al., 

2015b). A number of this studies provided mathematical models ranging from simple analytical 

expression (e.g. De Zan et al., 2014) to more complicated numerical solutions to Maxwell’s 



 

 
14 

 

equations (e.g. Zwieback et al., 2015a). Recently, Zwieback et al., 2015a, empirically analyzed the 

applicability of the aforementioned hypotheses. Using the data of two L-band airborne 

campaigns, the authors revealed that soil moisture change induced phase was not consistent with 

the penetration depth, or soil swelling hypotheses but only with dielectric volume scattering 

mechanism.  

1.5.2 The effect of the changes in water content of surface medium on InSAR coherence 

InSAR has been successfully used to detect surface deformation due to various 

mechanisms, such as volcanism, subsidence, permafrost, and landslides (Ferrett et. al, 2001; 

Molan et al., 2018a; Rykhus and Lu, 2008; Liu et al, 2010). So far numerous methods and 

approaches have been developed to improve InSAR performance. However, temporal 

decorrelation, regardless of the processing methodology, is one of the major obstacles for all 

InSAR applications especially over vegetated areas. The main sources of the loss of coherence, 

i.e. decorrelation, are temporal decorrelation, spatial decorrelation, volume decorrelation, 

thermal decorrelation, and processing errors (e.g. Zebker and Villasenor, 1992; Just and Bamler, 

1994). Generally, InSAR coherence decreases by increasing spatial and temporal baselines 

between two images.  

InSAR coherence is sensitive to the changes in surface backscattering, which is 

dominated by surface dielectric constant and roughness on the scale of the radar wavelength 

(Simard et al., 2012; Rocca, 2007; Luo et al., 2001; Lu and Dzurisin, 2014). It has been 

documented that temporal coherence can be influenced by temporal variations of surface 

backscattering due to changes in soil moisture, snow depth, surface roughness, and vegetation 

biomass (Scott et al., 2017; Zhang et al., 2003, 2008; Borgeaud and Wegmueller, 1996; Morishita  

and Hanssen, 2015). Simard et al. (2012) found precipitation events to be the main cause of 
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temporal decorrelation using fully polarimetric airborne L-band acquisitions over forested 

landscapes with up to 9 days temporal baselines,. Also, they argued that correlation decreases by 

increasing canopy height regardless of forest type and polarization. Zwieback et al. (2015b) 

evaluated soil moisture effects on L-band InSAR and revealed that the phase difference between 

two SAR images increased with increasing soil moisture difference, whereas the coherence 

decreased at the same time. Zhang et al. (2008), in a case study using C-band ERS SAR data, 

assessed the relationship between InSAR coherence and soil moisture and inferred that the 

relation between the two may satisfy an exponential distribution.  

1.6 Significance 

InSAR detected displacement can be systematically biased by the changes in soil 

moisture. Ordinary InSAR analyses rarely take into account soil moisture influences on InSAR 

phase, intensity, and coherence. However, soil moisture-induced uncompensated biases in the 

spatial and temporal patterns of InSAR detected displacement can limit its applicability and 

impacts its reliability and robustness. The effort to quantify the influence of soil moisture of 

InSAR measurements, in addition to compensate the influence of soil moisture changes, can also 

open new window into soil moisture retrieval and soil structure properties estimation.  

The quality, and quantity of the induced changes can be modeled or statistically assessed 

using adequate number of interferograms. Potentially, modeling soil moisture influence on 

InSAR phase and SAR intensity changes provides a means to compensate soil moisture phase 

artifacts and also to retrieve surface soil moisture. Also, modeling temporal decorrelations 

provides a means to understand and estimate a wide variety of surficial processes, such as 

vegetation growth, permafrost freezing and thawing, and soil moisture and vegetation layer 

induced effects (Simard et al., 2012). 
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1.7 Chapter summaries and contributions 

Chapter 2, 3, 4, 5, and 6 are written for peer reviewed publication. Chapter 2, 3, 4, and 5 include 

my research published in two journals: remote sensing (Molan et al., 2018a, and Molan et al, 

2018b) and IEEE Transaction of Geosciences and Remote Sensing (Molan and Lu, 2020a, and 

Molan et al., 2020). Chapter 6 is submitted to a peer-reviewed journal (Remote Sensing) (Molan 

and Lu, 2020b). Chapter 7 highlights the findings of this dissertation and discuss topics of future 

work. 

Chapter 2: This chapter provides a case study where InSAR was used for ground surface 

deformation mapping over discontinuous permafrost in interior Alaskan Boreal Forest (Molan et 

al, 2018a). The discontinuous permafrost zone is one of the world’s most sensitive areas to 

climate change. Alaskan boreal forest is underlain by discontinuous permafrost, and wildfires are 

one of the most influential agents negatively impacting the condition of permafrost in the arctic 

region. Using InSAR of Advanced Land Observation Satellite (ALOS) Phased Array type L-

band Synthetic Aperture Radar (PALSAR) images, we mapped extensive permafrost degradation 

over interior Alaskan boreal forest in Yukon Flats, induced by the 2009 Big Creek wildfire. Our 

analyses showed that fire-induced permafrost degradation in the second post-fire thawing season 

contributed up to 20 cm of ground surface subsidence. We generated post-fire deformation time 

series and introduced a model that exploited the deformation time series to estimate fire-induced 

permafrost degradation and changes in active layer thickness. The model showed a wildfire-

induced increase of up to 80 cm in active layer thickness in the second post-fire year due to pore-

ice permafrost thawing. The model also showed up to 15 cm of permafrost degradation due to 

excess-ice thawing with little or no increase in active layer thickness. The uncertainties of the 

estimated change in active layer thickness and the thickness of thawed excess ice permafrost are 
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27.77 and 1.50 cm, respectively. Our results demonstrate that InSAR-derived deformation 

measurements along with physics models are capable of quantifying fire-induced permafrost 

degradation in Alaskan boreal forests underlain by discontinuous permafrost. Our results also 

have illustrated that fire-induced increase of active layer thickness and excess ice thawing 

contributed to ground surface subsidence. 

Chapter 3: This chapter provides a model for L-band InSAR temporal coherence (Molan et al., 

2018b). InSAR provides capability to detect surface deformation. Numerous processing 

approaches have been developed to improve InSAR results and overcome its limitations. 

Regardless of the processing methodology, however, temporal decorrelation is a major obstacle 

for all InSAR applications especially over vegetated areas and dynamic environments such as 

Interior Alaska. Temporal coherence is usually modeled as a univariate exponential function of 

temporal baseline. It has been, however, documented that temporal variations in surface 

backscattering due to the change in surface parameters, i.e. dielectric constant, roughness, and 

the geometry of scatterers, can result in gradual, seasonal, or sudden decorrelations and loss of 

InSAR coherence. The coherence models introduced so far have largely neglected the effect of 

the temporal change in backscattering on InSAR coherence. Here, we introduce a new temporal 

decorrelation model that considers changes in surface backscattering by utilizing the relative 

change in SAR intensity between two images as a proxy for the change in surface scattering 

parameters. The model also takes into account the decorrelation due to the change in snow depth 

between two images. Using ALOS-2 PALSAR-2 data, the model has been assessed over forested 

and shrub landscapes in Delta Junction, Interior Alaska. The model decreases the RMS error of 

temporal coherence estimation from 0.18 to 0.09 in average. The improvements made by the 

model has been statistically proved to be significant with 99% confidence level. Also, the model 
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shows that the coherence of forested area is more prone to changes in backscattering than shrub 

landscape. The model is based on L-band data and may not be expanded to C-band or X-band 

InSAR observations. 

Chapter 4: An analytical model for soil moisture-induced SAR intensity and InSAR phase 

changes is provided in this chapter (Molan and Lu, 2020a). A broad range of studies have been 

conducted so far to quantify the effect of soil moisture on SAR intensity and InSAR phase. The 

introduced models are either intensity or interferometric models, and there is no single scattering 

model that can estimate both intensity and phase changes, indicating the subject is poorly 

understood. Here, we quantify the influence of soil moisture on InSAR phase and SAR intensity 

by employing a volume scattering model. We model soil as a collection of randomly distributed 

independent point scatterers embedded in a homogeneous background. Our volume scattering 

model successfully estimates SAR intensity and InSAR phase changes due to soil moisture 

changes. In addition to soil moisture changes, the model also takes into account the scatterers’ 

size and their volumetric fraction. This may open new window in the studying of soil structure 

using SAR images and InSAR methods. Our results indicate that the structure of soil manipulates 

the way soil moisture alters the SAR intensity and InSAR phase. The model has been evaluated 

against field soil moisture measurements and shown to be successful in modeling InSAR phase 

and SAR intensity. 

Chapter 5: This chapter provides the study dedicated to assess the influence of statistical 

properties of intensity and phase of pixels of multi-looked phase, coherence and closure phase 

(Molan et al., 2020). Non-zero closure phase exists in multi-looked pixels. We study the 

influence of statistical properties of intensity and phase changes of single-looked pixels on multi-

looked phase and coherence. By quantifying the extent of their influences on phase triplet, we 
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show in this paper that the statistical properties of intensity of pixels within a multi-looking 

window can induce changes in interferometric phase and coherence and contribute to non-zero 

closure phase. We demonstrate that the intensityinduced changes increase by increasing the 

standard deviation of phase changes, dispersion index of intensity, and the correlation between 

intensity and phase changes. We have used ALOS PALSAR, ALOS-2 PALSAR-2, and Sentinel-

1 images to generate real and semi-synthetic interferograms to assess our findings. The semi-

synthetic interferograms are produced by pairing real SAR data and synthetic SAR data; the 

synthetic SAR data is generated from the real data by adding random vectors with predefined 

average changes of phase and intensity. Our results show that closure phase is only a function of 

the statistical properties of the phase and intensity of pixels and does not possess the information 

about the magnitude of physical changes. This casts doubt on the effectiveness of methods that 

exploit phase triplet as a means to estimate soil moisture or any other deforming or non-

deforming changes.  

Chapter 6: This chapter is written to be submitted as a paper to Remote Sensing Journal (Molan 

and Lu, 2020b). This work provides a statistical assessment of the influence of soil moisture on 

InSAR coherence and closure phase and answers the question whether or not InSAR coherence 

and closure phase can be used for soil moisture estimation. To answer the question whether 

InSAR coherence and closure phase can be sued to estimate soil moisture changes, we studied 

the influence of the statistical properties of soil moisture changes on InSAR coherence and 

closure phase. We generated semi-synthetic multi-looked interferograms, which pairs n real 

single-looked pixels with n synthetic single-looked pixels. The synthetic pixels are generated 

from the real pixels by applying soil moisture changes with pre-defined mean and standard 

deviation of changes. Our results show that the diversity of soil moisture values within the multi-
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look window gives rise to decorrelations, multi-looked phase artifact, and consequently non-zero 

phase triplet. It is shown that decorrelation, and closure phase increase by increasing the 

diversity of soil moisture changes within the multi-look window. We showed that compared to 

soil moisture changes, non-soil moisture changes can lead to larger decorrelations and closure 

phases. We also show that the diversity of phase changes, decorrelation, and closure phase are 

correlated with land cover type. We concluded that closure phase and InSAR coherence are 

independent of the magnitude of soil moisture changes and are inappropriate tools to estimate 

soil moisture changes. 

Chapter 7: This chapter provides conclusions and future works.
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CHAPTER 2

INSAR ANALYSIS: A CASE STUDY OF PERMAFROST DEFORMATION MAPPING AND 
MODELING 

Molan, Y.E., J.-W. Kim, Z. Lu, B. Wylie, and Z. Zhu. 2018. Modeling Wildfire-Induced 
Permafrost Deformation in an Alaskan Boreal Forest Using InSAR Observations. Remote 
Sens., 10, 405. 

2.1 Introduction 

Permafrost plays a significant role in landscape stability, carbon cycling, and 

socioeconomic development, and is key to regulating biological, hydrological, geophysical, and 

biogeochemical processes (Zhang et al., 2012). Roughly 37% of the Northern Hemisphere 

permafrost occurs in western North America, mainly in Alaska and northern Canada, but also 

further south in the Rocky Mountains (Zhang et al., 1999). A huge amount of carbon is stored in 

permafrost (Apps et al., 1993), roughly twice as large as the amount of carbon in the atmosphere 

(Strauss et al., 2012); therefore, disturbance of the permafrost can significantly contribute to 

climate change (Apps et al., 1993). In addition, permafrost is structurally important, and its 

thawing has been known to cause erosion, disappearance of lakes, landslides, and ground 

subsidence. The active layer, defined as the top layer of ground in areas underlain by permafrost, 

plays a key role in land surface processes in cold regions and is subject to annual thawing and 

freezing and subsequent subsidence and uplift, respectively (Harris et al., 1998). 
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Field surveys (including surface geophysical collections), model simulations, and remote 

sensing observations are used to obtain regional variation of active layer thickness (ALT) 

(Streletskiy et al., 2012). ALT is usually directly measured by using a metal rod inserted into the 

soil to measure the depth of thawing (e.g. Machay, 1977). However, the measurement should be 

done at the end of the thawing season and, if possible, in stone-free soils. Surface geophysical 

datasets as well as ground-penetrating radar data can also be used to provide very high resolution 

and accurate estimates of ALT (e.g. Hubbard et al., 2013). Although ground-based ALT 

measurements are accurate, they provide a spatially limited sampling of a parameter that has 

significant spatial variability (Liu et al., 2012). At regional scales, using empirical and statistical 

relationships, ALT can be modeled at coarser spatial resolution by extrapolating ground-based 

measurements with air temperature, ground temperature, elevation, and surface vegetation 

(Nelson et al., 1997; Shiklomanov et al., 1999; Panda et al., 2010; Gangodagamage et al., 2014).  

In contrast, remote sensing estimation of ALT usually uses Interferometric Synthetic 

Aperture Radar (InSAR) measurements to estimate ALT from seasonal ground deformation 

(Schaefer et al., 2015). In the recent years, a few attempts have been made to estimate and model 

ALT using InSAR. This method eliminates the need to define an empirical or statistical 

relationship with probing data (Schaefer et al., 2015). InSAR provides an all-weather, day-or-

night capability to remotely sense mm–cm surface deformation with a high spatial resolution of 

tens of meters or better (e.g. Massonnet et al., 1998; Bürgmann et al., 2000; Simons and Rosen, 

2007; Lu and Dzurisin, 2014, Kim et al., 2017). Able to collect Synthetic Aperture Radar (SAR) 

images over a large-scale area, InSAR has proven very useful for deformation monitoring over 

permafrost in Alaska (e.g. Liu et al., 2012; Rykhus and Lu, 2008; Liu et al., 2010; Short et al., 

2011; Liu et al., 2014a; Liu et al, 2015). Liu et al. (Liu et al., 2010) applied InSAR using ERS-1 
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and -2 data to monitor surface deformation near Prudhoe Bay on the Alaskan North Slope. They 

studied long-term permafrost‐related surface subsidence and argued that the seasonal subsidence 

and long-term subsidence trends are due to thaw settlement of the active layer and thawing of 

ice-rich permafrost near the permafrost table, respectively. Liu et al., 2012, estimated the 1992–

2000 average ALT of the North Slope of Alaska from InSAR-derived surface subsidence by 

using the SAR images for thaw season only. By comparing TerraSAR-X, RADARSAT-2, and 

ALOS PALSAR interferometry, Short et al., 2011, concluded that ALOS-PALSAR provides the 

most promising data for permafrost degradation monitoring. Liu et al., 2014a, conducted InSAR 

time-series analysis using ALOS-PALSAR data to detect seasonal thaw settlement in individual 

drained thermokarst lake basins. Liu et al., 2015, demonstrated the capability of using L-band 

PALSAR interferograms with short perpendicular baselines to minimize the adverse effects of 

coherence loss, which made it possible to quantify thermokarst. Liu et al., 2014b, conducted 

InSAR time series analysis using ALOS PALSAR data to detect an increase in surface 

subsidence caused by Arctic tundra fire in a permafrost region of north Alaska. Iwahana et al., 

2016, investigated the northern part of the Anaktuvuk River fire scar with a two-path differential 

InSAR technique and measured up to 6.2 cm/year post-fire subsidence within burned tundra 

relative to surrounding off-scar tundra using three independent InSAR pairs of ALOS PALSAR 

data. In addition to the use of InSAR to quantify fire-induced permafrost deformations (e.g. 

Iwahana et al., 2016), some researchers have recently exploited LiDAR datasets to quantify 

permafrost degradation. Jones et al., 2015, for example, investigated the impact of the large and 

severe Anaktuvuk River tundra fire on potential, post-fire thermokarst development using two 

airborne LiDAR datasets acquired two and seven years after the fire.  
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Among remote sensing methods, optical methods provide the unique opportunity to map 

fire scar and assess its severity. Spectral analysis of optical images can facilitate fire scar and 

severity mapping (Lutes et al., 2006; Parks et al., 2014). Optical methods utilize the fire-induced 

changes in the spectral behavior of pre- and post-fire vegetation over fire scar as well as the 

differences between the post-fire reflective characteristics of vegetation and off-scar surrounding 

environment. So far, a number of indices for burned area mapping, including differenced 

normalized burn ratio (dNBR) (Lutes et al., 2006), relativized dNBR (RdNBR), and relativized 

burn ratio (RBR) (Parks et al., 2014), have been developed. 

The objective of this study is two-fold. First, we intend to demonstrate the capability of 

L-band InSAR to monitor and quantify fire-induced permafrost deformations over interior 

Alaskan boreal forest. Second, we introduce a model for the fire-induced post-fire permafrost 

deformations. To this end, we used L-band ALOS PALSAR data to map permafrost 

deformations over the Big Creek fire scar, Alaska, and then introduced a model to estimate 

wildfire-induced changes in ALT, exploiting InSAR-detected deformations in a time series over 

the fire scar. The InSAR-detected deformation is then used to model fire-induced permafrost 

deformations in boreal forest. In boreal forest, wildfire is one of the most important agents 

affecting permafrost. Since a huge amount of carbon is stored in permafrost, the disturbance of 

the permafrost can significantly contribute to global climate change. In addition, permafrost 

thawing has been known to cause erosion, disappearance of lakes, landslides, and ground 

subsidence (e.g. Streletskiy et al., 2012; Liu et al., 2012; Panda et al., 2010). In a study using 

airborne LiDAR, Jones et al., 2015, assessed fire-induced thermokarst development and 

concluded that in regions with ice-rich permafrost in the Arctic, the impact of tundra fires for 

initiating widespread thermokarst development is greater than what has been estimated to so far.  
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Our study area, which is underlain by discontinuous permafrost (Jorgenson et al., 2008) 

and located in the Alaskan Yukon River Basin, includes the 2009 Big Creek wildfire. The fire 

damaged ~686 km2 from 18 July 2009, to 18 August 2009 (Figure 2.1). The Alaskan Yukon 

River Basin is mainly composed of upland and lowland evergreen forests, bottomland deciduous 

forest, emergent and herbaceous wetlands, upland and lowland tundra, and alpine shrub 

(Spetzman, 1963) and is predominantly underlain by discontinuous permafrost (Jorgenson et al., 

2008). The near surface permafrost probability over the study area ranges from ~10% to ~70% 

(Pastick et al., 2015). The study area, a silty upland, was dominated by black spruce. Black 

spruce tends to be underlain by permafrost (Viereck et al., 1992) since black spruce stands 

generally contain a continuous insulating layer of moss and lichens (Johnstone et al., 2010). The 

area is in a region with low annual precipitation (about 170 mm) and particularly strong 

variations in seasonal temperature. In Yukon Flats, the average daily temperatures in winter and 

summer range from −34 °C to about −24 °C and from about 0 to about 22 °C, respectively 

(Gallant et al., 1995). 

First, we applied InSAR to measure ground surface deformations between interferometric 

pairs ranging from September 2009 to March 2011. Then, using the small baseline subset 

(SBAS) method (particularly, the TimeFun algorithm (Hetland et al., 2012)), we inverted the 

measured InSAR phases to deformation time series. Finally, we applied our model to estimate 

fire-induced changes in ALT using the deformation time series. The rest of this paper is 

organized as follows. The InSAR analyses and results are provided in Sections 2 and 3, 

respectively. In Section 4.1., we present our model and estimate wildfire-induced changes in 

ALT. Validation of results and estimation of uncertainties are included in Section 4.2., followed 

by conclusions in section 5.   
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Figure 2.1. The map of 2009 (red) and 2005 (yellow) wildfire perimeters in the study area (The 

Bureau of Land Management Alaska Fire Service (http://afs.ak.blm.gov/)). The study area 
covered by paths 252 and 251 (ALOS) are boxed in cyan and green, respectively. Points P1, P2, 
P3, P4, P5, P6, P7, and P8 are selected points to evaluate InSAR results. The reference point and 
the location of ground truth measurements are shown by the cyan and green stars, respectively. 
The area in a green polygon is densely populated by lakes and ponds. The background image of 

figure is a post-fire false color composite of Landsat ETM+ bands 7 (R), 4 (G), and 2 (B). 

2.2 Methods 

SAR returns must be coherent to retrieve useful information from interferograms (e.g. Lu 

et al., 2005). An InSAR coherence estimation image is a cross-correlation product of two co-

registered complex-valued SAR images (Lu et al., 2005), and loss of interferometric coherence is 

the major obstacle for applying InSAR to monitor permafrost deformations in forested areas. 

InSAR coherence tends to increase with radar wavelength due to the greater capability to 
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penetrate vegetation cover or forest canopy. For this reason, we employed L-band (23.6 cm 

wavelength) Japanese ALOS for InSAR analysis in the study area, which is mostly forested and 

underlain by permafrost. However, our inspection of InSAR coherence over the study area 

confirmed a strong fire-induced coherence loss that made us unable to quantify surface 

deformations using interferograms pairing pre- and post-fire SAR images. Figure 2.2 shows the 

ALOS coherence estimate between 17 July 2007 (pre-fire) and 06 September 2009 (post-fire) 

images. After the wildfire in 2009, the InSAR coherence decreased due to significant changes on 

the vegetation cover resulting in altered scattering characteristics from ground surface. When 

coherence was radically reduced to near zero values, we could not obtain useful information on 

the ground deformation. However, the coherence map (Figure 2.2) itself still can help delineate 

the extent of the fire scars. 

 

 

Figure 2.2. ALOS coherence estimate between 17 July 2007 and 06 September 2009 (path 252). 
Note near zero values over the fire scare, which indicates complete loss of InSAR coherence. 

Twelve HH polarized ALOS PALSAR single look complex (SLC) images, eight Fine 

Beam Single polarization (FBS, 28 MHz bandwidth) and four Fine Beam Dual polarization 
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(FBD 14 MHz bandwidth), from September 2009 to March 2011 with radar look angle of 38.76° 

and slant range and azimuth pixel sizes of 4.68 m (in SAR coordinates) and 3.13 m, respectively, 

were used in this study. First, assisted by high-resolution (12 m) TanDEM-X DEM data, all SLC 

images have been co-registered based on a single master image, which optimizes the geometric 

and temporal coherence of the interferogram stack. The resampled SLC images were multi-

looked by 6 and 14 in range and azimuth directions, respectively, and then used to generate 

initial interferograms with ground pixel sizes of about 45 m. Then, flat earth and topography 

phase components from initial interferograms have been removed using TanDEM-X DEM, and 

the interferograms were unwrapped using the Minimum Cost Flow (MCF) method (Costantini, 

1998). Also, atmospheric correction to remove stratified tropospheric artifacts that tend to 

correlate with topography has been done on the interferograms by evaluating linear regression of 

unwrapped phase with respect to height.  

The InSAR method quantifies ground surface deformation, but the geometrical and 

temporal decorrelations and atmospheric artifacts can affect the results. Over the last decade, a 

variety of SBAS algorithms have been developed and successfully applied in various ground 

deformation monitoring applications (e.g. Berardino et al., 2002) aiming to generate deformation 

time series with artifacts removed. Generally, small baseline differential interferograms are 

generated first and then time series analysis is conducted (e.g. Gong et al., 2016). In this 

research, the TimeFun method, adapted from the Multiscale InSAR Time Series (MInTS) 

algorithm (Hetland et al., 2016) and implemented in the Generic InSAR Analysis Toolbox 

(GIAnT) (Agram et al., 2013), was used to generate deformation time series. TimeFun adapts the 

same inversion strategy as that used in MInTS, but it is implemented in the data domain (Hetland 

et al., 2016; Lu et al., 2005; Costantini, 1998; Berardino et al., 2002; Gong et al., 2016; Agram et 
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al., 2013, 2016). Since it uses a singular value decomposition (SVD) approach with a minimum-

norm criterion, TimeFun is capable of inverting networks that are not fully connected (Agram et 

al., 2016). For every pixel with a coherence value above a user-specified threshold in all 

interferograms, TimeFun inverts small-baseline interferometric phases into time series 

measurements. This method is also applied to multi-looked interferograms to further reduce 

decorrelation noise. 

2.3 Results 

After careful inspection, 27 post-fire short baseline interferograms possessing relatively 

good coherence were selected to generate time series of deformations using the TimeFun 

method. The coherence, dependent on interferograms and ground futures, ranges from around 

0.1–0.9. We used pixels with coherence values greater than 0.7 to avoid possible unwrapping 

errors. Permafrost process, especially post-fire surface dynamics, is complex in nature. 

Therefore, instead of using high order polynomials, we used spline function, i.e., piecewise 

polynomials, defined for example in (Ahlberg, 1967), to invert the interferogram network to the 

time series. As permafrost thaws from top to bottom, due to the change in the type of ground ice 

being thawed, i.e., pore-ice and/or excess-ice permafrost, temporarily variable deformation rate 

can be detected by InSAR over permafrost. Regarding this complexity of post-fire deformations 

over permafrost, spline function seems to be a proper pre-defined function to invert the 

interferograms to time series deformation. However, this may make time series plots look 

uneven. Figure 2.3 shows temporal and perpendicular baselines of the interferograms. Since only 

one interferogram connects two clusters of the images, i.e., interferogram 12 of track 252, the 

quality of the time series strongly depends on it. This indicates that all noise and artifacts present 

in the interferogram will be propagated in the time series analysis. Moreover, because of the 
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orbital drift of the ALOS satellite, the perpendicular baseline generally increases in time (Figure 

2.3). Therefore, the topographic error that is proportional to the perpendicular baseline can 

possibly propagate in our temporal analysis. However, because our study area is flat near the 

Yukon River Basin, and our modeling scheme that will be presented later can cancel out the 

terms pertinent to the topographic errors, those errors can be assumed to be negligible. Figure 2.4 

illustrates, from each of the tracks, two interferograms of the least connected images. The 

interferogram, i.e., interferogram 12 of track 252, as well as the other three interferograms 

illustrated in Figure 2.4, demonstrates expected subsidence over the fire scar. Figure 2.5 shows 

the post-fire deformation time series of path 252 where the deformations are temporarily relative 

to 6 September 2009, and spatially relative to a reference point (cyan star in Figure 2.1) that has 

been shown by field measurements (Clark and Duffy, 2006) to be permafrost-free soil. As seen 

on the images (Figure 2.5), the time series demonstrates larger subsidence over the burned areas 

(up to 20 cm) compared to the deformation over the off-scar surrounding area (<5 cm). 

Generally, InSAR-detected post-fire subsidence is expected to be larger over the burned areas 

compared to surrounding unburned areas due to permafrost degradation and/or increased ALT as 

a consequence of wildfire-induced organic layer removal and soil temperature warming. 
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Figure 2.3. Temporal and perpendicular baselines of interferograms for paths 251 and 252. 
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Figure 2.4. Unwrapped interferogram between images (a) 25 May 2010 and 8 July 2010 (track 
251), (b) 8 July 2010 and 23 August 2010 (track 251), (c) 9 June 2010 and 25 July 2010 (track 

252), and (d) 25 July 2010 and 9 September 2010 (track 252). 



 

 
37 

 

  

  

  



 

 
38 

 

  

  

  

Figure 2.5. Accumulated deformation time series from path 252. Warm colors (red) represent 
ground subsidence occurring in fire-burned areas. 
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2.4 Discussions 

Ground ice takes up about 9% more volume than groundwater in the unfrozen state. 

Therefore, subsidence in summer and uplift in winter occur when the active layer thaws and 

freezes. This repetitive pattern of ground subsidence and uplift, which can be recognized as the 

seasonal variations of the ground surface, is typical in most permafrost regardless of 

human/natural perturbations (i.e., deforestation, wildfire). Ground surface deformation over 

permafrost, detected by InSAR, can be closely related to the volume changes of thawing/freezing 

ground ice in active layer (Liu et al., 2012). Generally, using InSAR-detected ground surface 

deformations, one can estimate ALT and change in ALT if the soil characteristics (porosity, 

saturation) in active layer are well defined. 

The winter freeze and summer thaw are completely natural in a permafrost region. 

However, the extreme fire events in the shrub and forest-covered Alaskan region can degrade 

both the active layer and underlying permafrost significantly. Wildfire can be triggered by 

natural processes and human perturbation, but regardless of the cause of wildfires, the drastic 

changes on the ground surface and underground soil formations induced by high heat can lead to 

irreversible consequences, such as thawing of permafrost and alteration of the soil characteristics 

in the active layer. Because of its low coherence, InSAR cannot measure the ground deformation 

through the comparison of pre- and post-wildfire SAR acquisitions. However, InSAR during 

post-wildfire can maintain the appropriate coherence, and we still can estimate the ground 

surface deformation that is closely related to the permafrost degradation and changes in active 

layer. We cannot disregard the seasonal variation of the movements of ground surface. Hence, 

we distinguished two major effects (seasonal and degradation effects) in our time-series 

observation.  



 

 
40 

 

2.4.1 Modeling 

To model the observed deformation of the study area, we considered a two-layer system 

of an active layer and an underlying permafrost. The hypothesis is that due to a thinned 

insulating organic layer and decreased surface albedo, downward heat transfer during post-fire 

thaw season (summer) increases, leading to increased thaw depth of active layer. Due to the 

increased thaw depth, based on the type of ground ice in permafrost, different deformation 

patterns may develop. If the ground ice in permafrost occurs in the form of pore ice, increased 

thaw depth leads to greater seasonal deformations, i.e., subsidence in summer and uplift in 

winter, without causing depression of the ground surface. Note that pore ice is the ice fills in the 

pores of soil and does not include segregated ice. Pore ice, when melting, does not generate 

water in excess of the pore volume of the soil in unfrozen condition (Harris et al., 1988). On the 

other hand, permafrost contains excess ice, and ground ice melting due to increased thaw depth 

generates meltwater in excess of the pore volume of the unfrozen soil. Excess ice is the volume 

of ice in permafrost that exceeds the total pore volume of the unfrozen soil (Harris et al., 1988). 

Therefore, due to excess ice melting, long-term ground surface depression, which can be 

categorized as a consequence of permafrost degradation, happens with no increase in seasonal 

deformations and measured ALT. Note that ALT is usually measured from the soil surface down 

and not relative to the original soil surface for the post-fire deformation measurements (e.g. 

Pastick). In this way, an observer on the ground may not notice the net subsidence of the surface, 

i.e., ground surface depression, due to thawing of ice-rich permafrost or thawing of transition 

layer between permafrost and active layer. Therefore, ALT measurements alone cannot show 

thawing of ice-rich permafrost (Shiklomanov et al., 2013). Our model, however, estimates the 

increase in ALT (Figure 2.6b) owing to thaw penetration into the pore ice permafrost as well as 
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the net ground surface depression (Figure 2.6a) due to thawing of excess ice (ice-rich) 

permafrost.  

  

Figure 2.6. Total thickness of (a) thawed excess ice and (b) pore ice permafrost during the 
second post-fire thaw season. 

Imagine pre-fire seasonal deformation and ALT to be 𝛿௣௥௘  and 𝐴𝐿𝑇௣௥௘, respectively. In 

the first post-fire summer, due to a thinned organic layer, increased downward heat transfer 

thaws excess ice and/or pore ice permafrost with the thicknesses of 𝑇ଵ
௜ and 𝑇ଵ

௣, respectively. The 

thickness of thawed ice-rich permafrost, i.e., 𝑇ଵ
௜, contributes totally to the subsidence, whereas 

the contribution of the thawed pore ice permafrost to subsidence depends on the thawed 

permafrost’s thickness, soil porosity, and saturation, as well as the densities of ice and water. By 

taking permafrost’s soil porosity to be constant, its saturation to be 1.0, and the densities of ice 

and water to be constant, and subsidence depends only on the thickness of thawed pore ice 

permafrost and increases by increasing the thickness. In the following equations, we try to 

formulate the relationship between thawed permafrost thickness and InSAR-measured 

deformations. In the following equations, δ’ (primed δ) represents uplift, whereas δ denotes 



 

 
42 

 

subsidence. The subscripts 1 and 2 denote first and second year, respectively. Also, superscripts 

p and i denote pore ice and excess ice permafrost, respectively. Therefore, we have 

𝛿ଵ = 𝛿௣௥௘ + ∅ 
ఘೢିఘ೔

ఘೢ
 𝑇ଵ

௣
+  𝑇ଵ

௜      (2.1) 

 

where 𝛿ଵ is the subsidence during the post-fire first year thawing season, Ø is the porosity of 

pore ice permafrost’s soil, 𝜌௪ is the density of water (1.0 g/cm3), 𝜌௜ is the density of ice (0.917 

g/cm3), 𝑇ଵ
௣ is the total thicknesses (cm) of thawed pore ice permafrost, and 𝑇ଵ

௜ is the total 

thickness (cm) of the thawed excess ice permafrost during the post-fire first thawing season. By 

the end of first thawing season, the ALT, i.e., 𝐴𝐿𝑇ଵ, increases by  𝑇ଵ
௣ and becomes 𝐴𝐿𝑇𝑝𝑟𝑒 +   𝑇1

𝑝. 

The meltwater of the thawed excess ice drains away and during the following winter, the new 

active layer freezes and heaves by 

 

𝛿ଵ
ᇱ = 𝛿௣௥௘ + ∅ 

ఘೢିఘ೔

ఘೢ
 𝑇ଵ

௣       (2.2) 

 

where 𝛿ଵ
ᇱ  is the post-fire uplift at the end of the first winter, calculated by subtracting the 

accumulated deformation on 22 October 2009 from the accumulated deformation on 24 April 

2010. In a similar way, the post-fire second-year subsidence at the end of the thawing season and 

uplift at the end of the freezing season can be expressed as 

 

𝛿ଶ = 𝛿ଵ + ∅ 
ఘೢିఘ೔

ఘೢ
 𝑇ଵ

௣
+  𝑇ଶ

௜       (2.3) 
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𝛿ଶ
ᇱ = 𝛿ଵ

ᇱ + ∅ 
ఘೢିఘ೔

ఘೢ
 𝑇ଶ

௣       (2.4) 

 

where 𝛿ଶ is the subsidence at the end of the second thawing season, calculated by subtracting the 

accumulated deformation on 25 October 2010 from the accumulated deformation on 24 April 

2010, 𝛿ଶ
ᇱ  is the uplift at the end of the second freezing season, calculated by subtracting the 

accumulated deformation on 25 October 2010 from the accumulated deformation on 12 March 

2011, 𝑇ଶ
௣ is the total thicknesses of thawed pore ice permafrost, and 𝑇ଶ

௜ is the total thickness of 

the thawed excess ice permafrost during the second post-fire thawing season. Based on the air 

temperature measurements in 2009 at Circumpolar Active Layer Monitoring Network (CALM) 

sites in or study area, i.e., Fort Yukon and Circle sites (https://www2.gwu.edu/~calm/), the air 

temperature dropped to near zero values at late September and early October. However, there is 

no soil temperature measured at these sites. The air and soil temperature measurements at the 

SNOTEL site, Eagle Summit (960) (Natural Water and Climate Center 

(https://wcc.sc.egov.usda.gov)), which is about 60 km away from the study area, show more than 

one month phase delay between the air and soil temperatures. Air temperature dropped to below 

zero values at mid-September and soil temperature remains above zero until mid-December. In 

our study area, at Circle and Fort Yukon sites, the air temperature became negative at the end of 

September (or early December). So, considering few weeks phase delay between air and soil 

temperatures, we estimate soil freezing in our study area to occur no earlier than mid- or late- 

October.  

InSAR estimates 𝛿ଵ
ᇱ

, 𝛿ଶ, and 𝛿ଶ
ᇱ . Therefore, the total thickness of the thawed excess ice 

permafrost during the second post-fire thaw season can be calculated by subtracting equation 
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(2.4) from equation (2.3). Likewise, the total thicknesses of thawed pore ice permafrost during 

the second year can be calculated by rewriting equation (2.4) 

 

𝑇ଶ
௣

=  
ఋమ

ᇲ ିఋభ
ᇲ

∅

ఘೢ

ఘೢ ିఘ೔
       (2.5) 

𝑇ଶ
௜ = 𝛿ଶ − 𝛿ଶ

ᇱ         (2.6) 

 

Our study area, located in the Yukon Flats, is underlain by more than 88 m of quiet-water 

silt and silty sand, overlain by alluvial deposits (Williams, 1962). An extensive mantle of eolian 

silt covers the marginal upland bordering the Yukon Flats (Black, 1951). The loess, which covers 

the study area, is massive well-sorted homogeneous unconsolidated tan to gray silt and sandy silt 

(Williams, 1962). Therefore, we set Ø to be 0.46 (the porosity of silt) and solved equations (2.5) 

and (2.6). Figure 2.6 illustrates the total thickness of thawed excess ice and pore ice permafrost 

during the second post-fire thaw season. Figure 2.6a illustrates up to 15 cm depression due to 

excess ice permafrost degradation. Also, Figure 2.6b shows up to 80 cm increase in ALT during 

the second post-fire year. 

Here, the assumption is that the post-fire soil of thawed pore-ice permafrost is fully 

saturated. However, this assumption may not be correct in cases where, for example, permafrost 

disappears entirely and becomes permeable for meltwater. Also, the equations assume that the 

change in the InSAR-detected organic layer deformation between the two post-fire following 

years, due to vegetation regrowth and soil moisture, is negligible. The change in the volume of 

the seasonally segregated ice between the first and second post-fire freezing seasons is assumed 
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to be negligible. However, this assumption may not be true. Yet the main limitation of the model 

is related to data availability. Estimating seasonal deformations over a thawing/freezing season 

requires a connected network of interferograms, spanning over the entire thawing/freezing 

season and covering soil thaw and freeze onset dates. Sometimes, long repeat-pass periods and 

loss of coherence and/or other artifacts like ionospheric effect reduce the number of available 

interferograms. In some cases, the available network of interferograms partly covers the full 

season. In this case, to estimate full-season deformation using a truncated interferogram network, 

the modified version of the Stefan equation (explained e.g., in (Liu et al., 2010, 2012)) can be 

used to approximate the depths of thaw and freeze as a function of time and temperature. 

Generally, for time series purposes, InSAR measurements are always considered to be 

relative to a reference point, which is assumed to have no or a predefined deformation time 

series. However, selecting a reference point can be controversial, and if not properly selected, a 

non-stable reference point will lead to biased measurements. Not that the bias initiated by using a 

reference point with seasonal deformations can be completely cancelled out by our model if the 

reference point has equal frost heave and thaw settlement in winter and summer, respectively. 

However, in the case of non-equal seasonal deformations of the reference point, i.e., non-equal 

summer subsidence and winter uplift, the model cannot fully prevent biased measurements.  

2.4.2 Validation of InSAR Results and Estimation of Uncertainties 

We selected interferograms with no ionospheric effects and the interferograms were 

flattened, atmospheric correction was applied to remove stratified tropospheric artifacts, and 

topography phase components have been removed using TanDEM-X DEM. Despite that, the 

measured InSAR phase may still have contributions from troposphere, topography, ionosphere, 

DEM errors, etc. Note that the estimated error in 𝛿ଶ
ᇱ − 𝛿ଵ

ᇱ  and 𝛿ଶ − 𝛿ଶ
ᇱ , due to orbit drift are 0.04 
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and 0.27 cm. Also, the accuracy of phase unwrapping influences directly the accuracy of InSAR 

estimations. This is the case especially over low coherence pixels. So we carefully selected high 

coherence interferograms to avoid unwrapping error.  

Here, we present the mean annual deformation velocity to visually inspect the 

deformations and compare the deformations over fire scar with the deformations over off-scar 

surrounding areas. Figure 2.7 presents the mean annual velocity map. Off-scar areas have less 

than 2-cm deformations, which is most likely induced by ground surface processes over 

permafrost. Also, the study area is almost flat and DEM-induced error is expected to be 

negligible.  

 
Figure 2.7. Mean annual deformation velocity map of track 252. 

To further evaluate the InSAR results, we generated deformation time series using eight 

post-fire SAR images from path 251, which overlaps path 252 and covers the fire scar. Then, the 

results of the two independent time series from path 251 and 252 were compared by selecting 

eight points over the burned area (Figure 2.1). Figure 2.8 shows the plots of deformation time 

series over the two paths. The comparison showed good agreement between the results. 
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Although points 2 and 3 (P251-2, P251-3, P252-2, and P252-3 in Figure 2.8) are on the burned 

area, they have smaller subsidence than other points on the burned area. This may indicate that 

underground permafrost was either absent or totally destroyed during the first post-fire thawing 

season, or that the post-fire organic layer was thick enough to keep the permafrost cool. This 

conclusion can be applied to all other points inside the burned area with small subsidence.  

  
Figure 2.8. Plot of deformation for the eight selected points. Each pair of the same-color solid 

and dotted lines represent graphs of one selected point over path 251 and 252, respectively. The 
x-coordinate shows days passed since 1 September 2009. 

A careful inspection of the deformation time series demonstrated in Figure 2.5 and the 

model’s results shown in Figure 2.6 reveals that the density of low coherence pixels, i.e., 

colorless pixels on the images, is higher over the central and eastern part of the fire scar. Not 

surprisingly, the area is dominated by lakes/ponds (Figure 2.1). This may infer that the area is 

more dynamic compared to the rest of the study area and experiences surface processes that lead 

to the loss of coherence, which makes InSAR measurements infeasible. The rest of the area, 

however, possesses relatively higher coherence values. Over the higher coherence area (away 

from the lake/pond area), our model estimates up to a 15-cm ground level decline and up to an 

80-cm increase in ALT. 
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Although there is no extensive ground truth data taken from the study area, we generally 

compared our model’s results and limited field measurements in the study area taken from 2010 

to 2012 (Nossov eta al., 2013). Thaw depths have been measured from 2010 to 2012 along two 

100–200-m transects with different fire disturbance histories. Figure 2.1 shows the location of 

the sampling site, which is unfortunately located in the low coherence area. The measurements 

showed that the wildfire-increased ALT with most settlements happened during the first and 

second year after fire, and the permafrost table was largely stabilized in the third year after fire 

(Nossov eta al., 2013). From 2010 to 2012, ALT increased by an average of 41 cm, with a 

maximum of 75 cm, and ground surface elevations declined on average by 9 cm, with a 

maximum of 39 cm, due to the degradation of ice-rich permafrost (Nossov eta al., 2013). 

However, since the sampling site falls in the low coherence area, which makes InSAR 

measurements infeasible, we could only compare the results generally.  

In general, the InSAR-estimated ground surface depression over the area away from 

lakes/ponds is smaller than the ground surface elevation decline measured in the lake/pond 

dominated area. This may indicate to us that the lake/pond dominated area is underlain by thicker 

excess ice permafrost. Also, our model shows up to an 80- and 40-cm increase in ALT over the 

southern and northern parts of the fire scare, respectively, during the first year after the fire. The 

estimated increase in ALT over the northern part of the study area is in good agreement with the 

result of ground measurements, i.e., a maximum of a 75-cm increase in ALT from 2010 to 2012 

(Nossov eta al., 2013). Since the thawing of excess ice permafrost did not add to ALT whereas 

pore ice permafrost thawing increased ALT, we can infer that the ground ice underlying the area 

away from the lakes/ponds, especially the southern part of the study region, is dominated by pore 

ice permafrost. The large increases over the southern part, i.e., up to 80 cm, indicate the likely 
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formation of talik. However, no sample has been taken from the southern part of the fire scar to 

allow us to evaluate the results.  

Model uncertainty can be estimated by calculating the uncertainty of each parameter 

involved in modeling and the sensitivity of the model to changes in the parameter, i.e., the 

adjoint relative to the parameter. By assuming that the parameters are affecting the model 

independently, the uncertainty of the model was then calculated by (e.g. Liu et al., 2010) 

 

𝜎௠௢ௗ௘௟ = ൬෍ ቀ
డெ

డ௉ೖ
𝜎௞ቁ

ଶ௡

௞ୀଵ
൰

ଵ/ଶ

     (2.7) 

 

where σmodel is the uncertainty of the model, Pk denotes parameters, n is the number of 

parameters, 
డெ

డ௉ೖ
 is the sensitivity of the model to the changes in parameter Pk, and σk represents 

uncertainty of Pk. Table 2.1 represents the parameters involved in estimating the change in the 

ALT, their values, uncertainties, relative contribution to the total uncertainty of the model, and 

cumulative uncertainties.  

Equation (2.3) represents the parameters involved in estimating the changes in the ALT, 

i.e., 𝑇ଶ
௣. The value for 𝛿ଶ

ᇱ − 𝛿ଵ
ᇱ  was calculated by averaging the difference between the post-fire 

first and second year seasonal uplifts over the fire-affected area. The uncertainty in the parameter 

is the standard deviation of the difference between the post-fire first and second year seasonal 

uplifts over the off-scar areas. Parameter S denotes the saturation of the soil that has been added 

to the active layer in the second thawing season due to thawed pore ice permafrost. We assumed 

the soil to be fully saturated, S = 1.0. Taking porosity to be a constant value is a source of 
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uncertainty as it is a site-specific characteristic of soil and should ideally be determined from in 

situ measurements at all InSAR pixels, thus we choose 0.1 of uncertainty in S. However, based 

on (Williams, 1962; Black, 1951), we estimated the porosity, P, to be in a narrow range around 

0.46, i.e., 0.46 ± 0.10. The uncertainty in 𝑇ଶ
௜, thawed excess ice permafrost, equals the 

uncertainty of the parameter 𝛿ଶ − 𝛿ଶ
ᇱ . The uncertainty in the parameter is the standard deviation 

of the difference between the post-fire second year seasonal subsidence and uplift over the off-

scar areas, i.e., 1.50 cm. Calculating standard deviation over the unburned area means that we 

have taken into account the uncertainties due to other sources of noise and artifacts such as long-

term deformation trend, atmospheric artifacts, orbit drift, and residual orbital errors. 

 

Parameter Value 
Parameter 

Uncertainty  

Cumulative 

Uncertainty (cm) 

Relative 

Contribution (%) 

𝜹𝒑𝒐𝒔𝒕ି𝒖𝒑,𝟐

− 𝜹𝒑𝒐𝒔𝒕ି𝒖𝒑,𝟏 

2.58 

(cm) 
0.97 (cm) 23.43 84.36 

Porosity 0.46 ±0.10 27.06 13.09 

Saturation 1.0 0.1 27.77 2.55 

Table 2.1. Model’s parameters, the uncertainties of each parameter, cumulative uncertainty, and 
relative contribution in the model for estimating changes in the ALT. 

2.5 Conclusions 

InSAR analyses using L-band ALOS PALSAR images have successfully mapped fire-

induced permafrost deformations in interior Alaskan boreal forest where loss of coherence is a 

major obstacle for applying InSAR. The loss of coherence caused by wildfire was prominent 
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within the burned area for interferograms pairing both pre- and post-fire SAR images. Although 

the loss of coherence restricted the total number of viable coherence pairs, by selecting only 

post-fire interferograms, we were able to establish interferogram networks covering three post-

fire freezing and thawing seasons (2009–2010 and 2010–2011 freezing seasons, and 2010 

thawing season) and generate post-fire deformation time series.  

Our analyses showed that the 2009 fire caused up to 20 cm of subsidence in the thawing 

season of 2010. The fire increased active layer thickness, which manifested as greater uplift over 

burned areas compared to unburned areas. Although the permafrost process is complex, we used 

a simple model that uses deformation time series to estimate fire-induced change in ALT as well 

as the thickness of thawed excess ice permafrost. The model assumes that deformation happens 

because ground water takes up to 9% less volume than ground ice.  

Our model revealed up to 15 cm of wildfire-induced excess ice permafrost thawing and 

up to an 80-cm increase in ALT. It can be seen on the map (Figures 2.5 and 2.6) that except for 

some local patches, almost the entire burned area features ground surface subsidence due to ALT 

change. This indicates that almost the entire area is underlain by pore ice permafrost. The 

thawing of excess ice permafrost does not add to ALT, whereas pore ice permafrost thawing 

increases ALT and its seasonal deformations. It should be noted that ALT is usually measured 

from the soil surface down and not relative to the original soil surface (e.g. Pastick et al., 2015). 

Therefore, we can infer that the area is dominated by pore ice permafrost. Some areas underlain 

by both pore and excess ice permafrost, however, experienced permafrost degradation in addition 

to ALT change.  

A comparison between the results of path 252 and a neighboring track covering the 

burned area, i.e., path 251, showed a good agreement between the results of the two paths. We 
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also estimated the uncertainty of the model by calculating the uncertainty of all parameters 

involved in the model. The uncertainties in the estimated change in the ALT and the thickness of 

the thawed excess-ice permafrost are 27.77 cm and 1.50 cm, respectively. 

The introduced model can be used in other places to estimate fire-induced permafrost 

degradation and ALT change. However, as discussed earlier in the paper, uncertainties are 

involved in the model and affect the accuracy of estimated thicknesses. Therefore, pre-and post-

fire extensive field sampling in an area, if available, can calibrate the model and improve the 

results.  
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CHAPTER 3

MODELING INSAR TEMPORAL COHERENCE USING SAR AMPLITUDE: A CASE 
STUDY OF INTERIOR ALASKA 

Molan, Y.E., J-W. Kim, Z. Lu, and P. Agram. 2018. L-band temporal coherence assessment and 
modeling using amplitude and snow depth over interior Alaska, Remote Sensing, 
10(1):150. 

3.1 Introduction 

Interferometric synthetic aperture radar (InSAR) provides an all-weather, day-or-night 

capability to remotely sense mm to cm scale surface deformation with a high spatial resolution of 

tens of meters or better (e.g. Massonnet et al., 1998; Bürgmann et al., 2000; Simons and Rosen, 

2007; Lu and Dzurisin, 2014). InSAR has been successfully used to detect surface deformation 

due to various mechanisms, such as volcanism, subsidence, permafrost, and landslides (Ferretti, 

et al., 2001; Kim et al., 2016; Hu et al., 2016; Rykhus and Lu, 2008; Liu et al., 2010). So far 

numerous methods and approaches have been developed to improve InSAR performance. 

However, temporal decorrelation, regardless of the processing methodology, is one of the major 

obstacles for all InSAR applications especially over vegetated areas. The main sources of the 

loss of coherence, i.e. decorrelation, are temporal decorrelation, spatial decorrelation, volume 

decorrelation, thermal decorrelation, and processing errors (e.g. Zebker and Villasenor, 1992; 

Just and Bamler, 1994). Generally, InSAR coherence decreases by increasing spatial and 

temporal baselines between two images.  



 

 
59 

 

InSAR coherence is sensitive to the changes in surface backscattering, which is 

dominated by surface dielectric constant and roughness on the scale of the radar wavelength 

(Simard et al., 2012; Rocca, 2007; Luo et al., 2001). It has been documented that temporal 

coherence can be influenced by temporal variations of surface backscattering due to changes in 

soil moisture, snow depth, surface roughness, and vegetation biomass (Simard et al., 2012; 

Rocca, 2007; Luo et al., 2001; Zwieback et al., 2015a, 2015b, 2015c; Lavalle et al., 2012; Zhang 

et al., 2003; Zhang et al., 2008; Borgeaud and Wegmueller, 1996; Morishita and Hanssen, 2015). 

Simard et al., 2012, found precipitation events to be the main cause of temporal decorrelation 

using fully polarimetric airborne L-band acquisitions over forested landscapes with up to 9 days 

temporal baselines,. Also, they argued that correlation decreases by increasing canopy height 

regardless of forest type and polarization. Zwieback et al., 2015b, evaluated soil moisture effects 

on L-band InSAR and revealed that the phase difference between two SAR images increased 

with increasing soil moisture difference, whereas the coherence decreased at the same time. 

Zhang et al., 2008, in a case study using C-band ERS SAR data, assessed the relationship 

between InSAR coherence and soil moisture and inferred that the relation between the two may 

satisfy an exponential distribution.  

Although the effect of the changes in surface backscattering on InSAR coherence has 

been documented (e.g. Simard et al., 2012; Zwieback et al., 2015a; Lavalle et al., 2012), it has 

been largely neglected in the coherence models introduced so far. Temporal coherence in general 

is modeled as a univariate exponential function of temporal baseline (Zebker and Villasenor, 

1992) with the assumption that the change in the position of scatterers, i.e. mutual displacements 

of scatterers, is the source of decorrelation (Lee et al., 2013). However, we argue that other 

variables, in addition to temporal baseline, should be added to the coherence function to 
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compensate the effect of temporal variation of surface backscattering on InSAR coherence. In 

this paper using ALOS-2 PALSAR-2 images, we analyzed temporal decorrelation of forested 

and shrub landscapes in Delta Junction, Alaska, and introduced a new InSAR coherence model, 

which takes into account the effects of the temporal variations of surface backscattering on 

InSAR coherence. The model considers the changes in the geometry and dielectric constant of 

scatterers to be the main sources of decorrelations. The effect of the gradual and natural change 

in scatterers’ geometry has been modeled as a decaying exponential function, which is equivalent 

to the exponential function of temporal coherence found in the literature (Zebker and Villasenor, 

1992; Rocca, 2007). The effect of the change in the surface backscattering, mainly due to the 

change in dielectric constant of scatterers on InSAR coherence has been modeled by utilizing the 

change in InSAR intensity as a proxy for it. The model also takes into account the decorrelation 

due to the change in snow depth between two images, which induces reversible and seasonal 

decorrelations. The model, in general and with difference constants, is applicable to model L-

band InSAR coherence in other environments and may not be expanded to X-band or C-band 

SAR observations. 

The importance of temporal decorrelations models and their practical use can be better 

understood by considering the following reasons. Basically, temporal changes of surface 

parameters describe processes occurring on time scales of the orbit repeat time. In other words, 

modeling temporal decorrelations provides a means to understand and remotely estimate a wide 

variety of surficial processes such as vegetation growth, permafrost freezing and thawing, and 

soil moisture and vegetation layer induced effects (Simard et al., 2012).  

For instance, it has been shown that both phase and coherence can be used to retrieve soil 

moisture (e.g. Zwieback et al., 2015a). The coherence, being generally independent of 
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deformation, provides a better means to estimate soil moisture. However, to retrieve soil 

moisture using temporal coherence, a decorrelation model should be implemented to separate the 

soil moisture induced decorrelation, i.e. the change in dielectric constant, from other 

decorrelation contributions such as the decorrelation due to the change in the geometry of 

scatterers. 

The second area of interest is in the design of orbit repeat for new satellite missions, 

which is driven by considering some important factors such as tolerable error levels, the 

attainable baseline, and the expected decorrelation with time of signals from the regions of 

interest to be mapped (Simard et al., 2012). In this case, temporal decorrelation models can 

facilitate a priori assessment of the expected coherence levels of interferograms for a new 

satellite mission designed for a specific application.  

Finally, temporal decorrelation models can help better estimate vegetation layer 

parameters. The total InSAR coherence is the product of spatial, temporal, thermal, volume, and 

processing coherences (e.g. Lee et al., 2013). Most models used to invert vegetation layer 

parameters (in PolInSAR studies) only consider the volume decorrelation contribution of the 

interferometric coherence and ignore other decorrelation contributions. However, leaving non-

volumetric decorrelations uncompensated leads to a less accurate parameter estimation. In 

repeat-pass InSAR systems, the most critical non-volumetric decorrelation contribution is the 

temporal decorrelation caused by the change of the geometric and/or dielectric properties of the 

scatterers (Lee et al., 2013) and its contribution to decorrelation can be quantify using temporal 

decorrelation models.  

The rest of this paper is organized as follows. In section 2, InSAR coherence estimates 

are presented over the study area, Delta Junction, Alaska. The temporal decorrelation model and 
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evaluation with real data are described in section 3 followed by discussions and conclusions in 

sections 4 and 5, respectively. 

3.2 Study area and data 

Our test site, illustrated in Figure 3.1, is located in Delta Junction, interior Alaska. The 

area is mostly covered by forest and shrub landscapes (Homer et al., 2015) and underlain by dis-

continuous permafrost. The Alaskan interior between the Alaska and Brooks Mountain Ranges 

has a strong continental climate with moderate temperatures and precipitation in summer and 

exceedingly cold and dry weather in winter (O'Neill et al., 2003). The average minimum and 

maximum annual temperatures in Big Delta station (1937– 2005), which is located in the study 

area, are -6.9 °C and -2.7 °C, respectively. The lowest and highest temperatures occur in January 

(-23.7 °C) and July (20.8 °C). Average total precipitation, average total snow-fall, and average 

snow depth are, respectively, about 29, 111.25, 10.2 centimeters (National Weather Service 

(http://www.wrcc.dri.edu)).  

To study temporal evolution of InSAR coherence, 32 Single Look Complex (SLC) SAR 

images of L-band ALOS-2 (23.6 cm wavelength) from three ascending and three descending 

orbital paths in the fine beam and horizontal-horizontal (HH) polarization mode have been used. 

The data are spanning from August 2014 to March 2017. Each group of the SLC SAR images 

have been co-registered based on a single master image, which optimizes the geometric and 

temporal coherence of the interferogram stack. The SLC images were then used to generate 

interferograms with pixel size of about 30x30 meters. After removing topographic phase, 

simulated using the National Elevation Dataset (NED) DEM, and applying range spectral shift 

and azimuth common band filters, linear weighting window size of  5 * 5 (in pixels) was used to 

estimate correlation.  Then, interferograms affected by ionospheric artifacts were excluded and a 
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total number of 75 interferograms with no or very limited effects of ionospheric artifacts have 

been selected to analyze temporal coherence. Table 3.1 gives the information of data and 

interferograms used in this study. 

 

 

Figure 3.1. Land cover map of the study area (National Land Cover Database 2011 (NLCD 
2011)). The orbit- frames covering the study area are shown with different colors (explained in 
Table 3.1). The black rectangle box shows the overlapping area. The Forested and shrub patches 
are boxed in red and blue, respectively. The location of SNOTEL Site Granite Creek (963) 
(Natural Water and Climate Center (https://wcc.sc.egov.usda.gov)) is shown by a white star. 

For each of the two major land cover types in the study area, forest and shrub, three 

patches within flat areas with a total number of 1963 and 1729 pixels, respectively, on geo-

referenced coherence images that are fully overlapped with all ALOS-2 observations have been 



 

 
64 

 

selected. Figure 3.1 shows the selected patches in red (forest) and blue (shrub) boxes. For each of 

the interferograms, average coherence values of the selected pixels of each of the land cover 

types have been calculated. Therefore, each interferogram has two coherence values, one for 

each of the land cover types, evergreen forest and shrub. Figure 3.2 illustrates the scatter plot of 

the average coherence versus temporal baseline for the selected patches. 

  

    

     

Figure 3.2. Scatter plot of coherence versus temporal baseline and the plot of model A (left) and 
scatter plot of residual coherence (Observation – Model A) versus temporal baseline (right) for 
forest (top) and shrub (bottom) landscapes. 
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Path-Frame Orbit direction Number of interferograms Color of frame on figure 3.1 

0040-2330 D 4 Yellow 

0041-2330 D 16 Blue 

0042-2320 D 10 Green 

0137-1280 A 10 Magenta 

0138-1280 A 29 Red 

0139-1270 A 6 Cyan 

Table 3.1. Data used in this study. The letters A and D denote ascending and descending, 
respectively. 

3.3 Methods 

3.3.1 InSAR coherence 

An InSAR coherence estimation image is a cross-correlation product of two co-registered 

complex-valued SAR images (e.g. Zebker and Villasenor, 1992; Lu and Freymueller, 1998; 

Dzurisin and Lu, 2007) which quantifies radar wavelength-scale changes in backscattering 

characteristics. Decorrelation, i.e. loss of coherence, is generally increased by increasing spatial 

and temporal baselines between two image acquisitions (Zebker and Villasenor, 1992; Dzurisin 

and Lu, 2007; Hanssen, 2001). InSAR coherence assesses the accuracy of the estimated 

deformation and depends on the amount of phase error in an interferogram (Hanssen, 2001; 
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Bamler and Hartl, 1998; Touzi et al., 1999). Over a small window of pixels, InSAR coherence is 

estimated by 

 

𝛾 = ฬ
∑ ஼భ ஼మ

∗ ௘షೕ∅

ඥ∑|஼భ|మ ∑|஼మ|మ
ฬ      (3.1) 

 

where, C1 and C2 are complex-valued backscattering coefficients, C2* is the complex conjugate 

of C2, Ø is the deterministic phase due to baseline error, topography, or large deformation in the 

correlation window.  

The total InSAR coherence is the product of spatial (γ_spatial), temporal (γ_temporal), 

thermal (γ_thermal), volume (γ_volume), and processing (γ_processing) coherences (Lu and 

Dzurisin, 2014; Zebker and Villasenor, 1992; Hanssen, 2001) 

 

𝛾 = 𝛾௦௣௔௧௜௔௟ ∗ 𝛾௩௢௟௨௠௘ ∗ 𝛾௧௘௠௣௢௥௔௟ ∗ 𝛾௧௛௘௥௠௔௟ ∗ 𝛾௣௥௢௖௘௦௦௜௡௚.   (3.2) 

 

The spatial (perpendicular) baselines of our data set, except for two interferograms with 

spatial baselines of 308 and 347 meters, are smaller than 284 meters with a mean of ~108 meters, 

whereas the critical baseline of the data is about 11 km. Therefore, a perpendicular baseline of 

108 meters, i.e. the mean value of perpendicular baselines, will decrease the coherence by the 

value of ~0.01 which is negligible. In long wavelength (L-band) SAR sensor, such as ALOS-2 

PALSAR-2, the small perpendicular baseline will not affect the variation of spatial decorrelation 
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much. Therefore, we assumed that the spatial decorrelation from the small range of change in the 

perpendicular baseline is constant. Also, with such small perpendicular baselines, the volumetric 

decorrelation is negligible (e.g. Simard et al., 2012). Here, we focus only on temporal 

decorrelation by assuming that other decorrelation terms are constant or relatively not 

significant.  

3.3.2 Temporal coherence modeling 

The temporal coherence is usually considered as a univariate exponential function of time 

(e.g. Rocca, 2007; Lombardini and Griffiths, 1998) by taking random motion of scatterers in the 

resolution cell to be the main source of decorrelation, 

 

𝛾஺ = 𝛾଴𝑒ି
೟

ഓ      (3.3) 

 

where, subscript A denotes model A, ϒ0 is initial coherence, t is the time separation between two 

SAR images, and 1/τ is its decorrelation rate and is mainly dependent on the wavelength of the 

radar. Based on model A, the exponential decay of coherence values is expected in general by 

increasing temporal baselines. However, the scatter plots of the observed coherence versus 

temporal baseline and the scatter plots of the residual coherence, i.e. observation – model A, 

versus temporal baseline, illustrated in figure 3.2, feature strong undulation with local peaks at 

temporal baselines around one and two years. Model A takes into account decorrelations due to 

long-term variations of scatterers’ geometry. In real world, however, in addition to the natural 

and gradual long-term changes in scatterers’ geometry, seasonal and/or sudden changes in 

surface backscattering parameters may also contribute to temporal decorrelation. Generally, 
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backscattering is dominated by surface dielectric constant and roughness among other surface 

characteristics. Surface parameters such as soil moisture, vegetation, and temperature alter 

dielectric constant and roughness, and consequently backscattering coefficients (e.g. Zwieback et 

al., 2015c; Morishita and Hanssen, 2015; Ulaby et al, 1979). Therefore, other term(s) should be 

added to the temporal coherence function to compensate the effects of changes in surface 

backscattering between two image acquisitions.  

In this paper, we have modified the coherence model to accommodate decorrelations due 

to the change in surface backscattering parameters. Since SAR backscatter coefficient and 

consequently SAR intensity varies as a function of the changes in surface parameters (e.g. Zhang 

et al., 2003; Zibri et al., 2014), here, we use the change in SAR intensity as a proxy for the 

changes in surface backscattering. Figure 3.3 shows semi-logarithmic scatter plot of coherence 

ratio, i.e. observation / model A, versus relative intensity change between two images. Relative 

intensity is calculated by 𝑟 =  |10log (𝑖ଶ/𝑖ଵ)|, which i2 and i1 are SAR intensities of first and 

second images, respectively. Considering the linear trend fitted to the semi-logarithmic scatter 

plots (note R2 value and very small P-value of the linear regressions), model B is postulated to be 

 

𝛾஻ = γ଴ 𝑒
ି(

೟

ഓ
ା

ೝ

ഐ
)
      (3.4) 

 

where, r is the relative change in SAR intensity, i.e. backscattering baseline, and 1/ρ is its 

decorrelation rate. For each of the fitted linear trend, R2 and P-value of the regression are 

calculated and shown on the plots. Note that if the P-value of a t-test is smaller than the common 

alpha values of 0.1, 0.05, and 0.01 (the confidence level of 90, 95, and 99%, respectively), the 
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null-hypothesis is rejected. It means that the additional term related to the relative change in SAR 

intensity is likely correlated with temporal correlation.  

 

 

    

Figure 3.3. Semi-logarithmic scatter plot of coherence ratio, i.e. observation / model A, versus 
relative intensity changes for forested and shrub land cover types. 

The unknown parameters in models A and B, i.e. ϒ0, τ, and ρ can be estimated by 

solving the equations using known variables, i.e. ϒ, t, and r. The coherence, ϒ, is estimated using 

equation (3.1). The temporal baseline of the interferograms, t, ranges between 14 and 840 days. 

Figure 3.4 illustrates the scatter plots of model B, observed coherence, and residual coherence 

values (observation – model B) for the two landscapes. For comparison, the scatter plot of water 

body’s coherence is also shown in the figure. Also, table 3.2 exhibits the model parameters and 

RMS error for each model. The RMS error values of model B for the both land cover types are 
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smaller than those of model A, indicating that model B estimates more accurate coherence 

values. A detail discussion of how significant is the improvement has been provided in section 4.  

     

 

Figure 3.4. Plot of model A and the scatter plot of model B and observed coherence values, 
scatter plot of residual coherences (observation – model B) versus temporal baseline for the two 

landscapes and scatter plot of coherence of a water body. 
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model Land cover ϒ0 τ (day) ρ σ RMS f-test Cf (α=0.01) 

A 
Forest 0.37824 616.49 - - 0.180 - - 

Shrub 0.444 629.53 - - 0.186 - - 

B 
Forest 0.68885 861.07 2.5406 - 0.092 205.84 6.99 

Shrub 0.74482 879.27 2.5467 - 0.121 102.38 6.99 

C 
Forest 0.73842 903.7 3.3464 0.62062 0.083 16.23 7.00 

Shrub 0.79153 913.47 5.6462 0.37348 0.101 29.64 7.00 

Table 3.2. Model parameters of the two land cover types. Cf is critical f-value. 

Different snow depths between two images of an interferometric pair is one of the factors 

that can induce variations in surface scattering behavior, which in turn leads to decorrelation. 

Basically, between two winter images in stable frozen conditions with no change in soil 

moisture, the change in dielectric constant is negligible and high coherence values can be 

expected for open areas (Thiel and Schmullius, 2016). However, the change in snow depth 

between the two images may change surface scattering behavior, which in turn causes 

decorrelation. Here, we intend to modify our coherence model by adding the decorrelation term 

of snow depth changes. The basic assumption here is that the intensity and snow depth changes 

are independent parameters, i.e. systematic snow depth change doesn’t produce systematic 

intensity change. Figure 3.5, illustrating scatter plot of intensity change versus snow depth 

changes, shows no trend and indicates that the two parameters are independent.  
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Figure 3.5. Scatter plot of model intensity changes (dB) versus snow depth changes (meter) for 
a) forested and b) shrub land cover types. 

   

Figure 3.6. Semi-logarithmic scatter plot of coherence ratio, i.e. observation / model B, versus 
snow depth changes (meter) for forested and shrub land cover types. 
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Figure 3.6 shows semi-logarithmic scatter plot of coherence ratio, i.e. observation / model 

B, versus snow depth change between two images. Considering the linear trend fitted to the 

semi-logarithmic scatter plots, model C is postulated to be  

 

𝛾஼ = γ଴ 𝑒
ି(

೟

ഓ
ା

ೝ

ഐ
ା

ೞ

഑
)
      (3.5) 

 

where, s is snow depth changes between to images and 1/σ is its decorrelation rate. The unknown 

parameters in model C is estimated by solving the equations using known variables. The snow 

depth values are acquired from SMAP level 4 data (National Snow and Ice Data Center 

(http://nsidc.org)) and the measurements at the SNOTEL Site Granite Creek (963) (Natural 

Water and Climate Center (https://wcc.sc.egov.usda.gov)), which is located in our study area 

(white star in Figure 3.1). Figure 3.7 illustrates the scatter plots of model C, observed coherence, 

and residual coherence values (observation – model C) for the two landscapes. For comparison, 

the scatter plot of water body’s coherence is also shown. Also, Table 3.2 exhibits the model 

parameters and RMS error for each model. The RMS error values of model C for the two land 

cover types are smaller than those of model B. This means that the change in snow depth leads to 

decorrelation and taking into account its effect on InSAR coherence improves the model’s 

performance. A statistical analysis of how significant is the improvement has been provided in 

the next section.  



 

 
74 

 

 

Figure 3.7. Plot of model A and the scatter plot of model C and observed coherence values, 
scatter plots of residual coherences (observation – model C) versus temporal baseline for 
forested and shrub land cover types and scatter plot of water body’s coherence. 

3.4 Discussion 

3.4.1 Scatterers’ type and decorrelation sources 

Model C has three terms. The first term, exp (-t/τ), is the long-term irreversible 

decorrelation due to the temporal change in scatterers’ geometry. The second term, exp (-r/ρ), is 

the decorrelation due to the changes in backscattering between two images. As stated earlier, the 
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change in SAR intensity was used as a proxy for the change in the surface backscattering. Figure 

3.8 shows the plot of SAR intensity (dB) over forest and shrub landscapes versus the soil 

moisture measured at the SNOTEL Site Granite Creek (963) (Natural Water and Climate Center 

(https://wcc.sc.egov.usda.gov)) which is located in our study area and is 12 km away in average 

from the patches (see figure 3.1). The plots demonstrate a general correlation between soil 

moisture and SAR intensity, indicating that the change in backscattering and SAR intensity is 

most likely dominated by the change in dielectric constant of scatterers induced by the change in 

soil and biomass water content. 

 

 

Figure 3.8. Plot of the change in SAR intensity versus the change in soil moisture measured at 
the SNOTEL Site Granite Creek (963) (Natural Water and Climate Center 
(https://wcc.sc.egov.usda.gov)). Data under conditions of frozen and unfrozen are included. 

The third term, exp (-s/σ), is the decorrelation due to the change in snow depth between 

two images. The scatterplot of InSAR intensity change (dB) versus snow depth change for soil 

moisture-free, i.e. winter-winter, interferograms (Figure 3.5) shows no correlation between SAR 
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intensity change and snow depth change  over forested and shrub landscape indicating that snow 

depth change-induced decorrelation is most likely dominated by the change in scatterers’ 

geometry. In the section 4.3, we will perform statistical assessment to show that the 

improvement made by considering snow depth change in the model is statistically significant.     

In a case where the temporal evolution of surface parameters such as soil moisture, 

vegetation layer parameters, and snow depth are known, the general coherence is postulated to be 

 

𝛾 = γ଴ 𝑒
ି൬

೟

ഓ
ା∑

೛೔
ഋ೔

೙
೔సభ ൰

      (3.6) 

 

where, 1/μi is the decorrelation rate of the parameter pi, which is the change in the surface 

parameters between two images. 

In general, shrub landscape is more stable as changes happen in scatterers’ geometry and 

dielectric constant. Except the decorrelation rate of the change in snow depth, which is lower for 

forest, the decorrelation rates of long-term and backscattering are lower, i.e. higher τ and ρ 

values, for shrub landscape compared to the forested landscape (Table 3.2). The scatterers within 

a resolution cell are of two types, scatterers associated with ground surface and scatterers 

associated with vegetation layer. Forested landscape (coniferous in this research) possess more 

backscattering contribution from vegetation layer compared to shrub landscape. Since the mutual 

position of scatterers within a vegetation layer, i.e. the geometry of scatterers, is more likely 

subject to change than the geometry of the scatterers within a non-vegetated surface, forested 

area in long term decorrelates faster than non-forested area as time lapses. Therefore shrub is 
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expected to have lower decorrelation rate associated with the long-term change in scatterer’s 

mutual position (table 3.2). Also, the observed higher backscattering decorrelation rate of the 

forested area is associated in part with dielectric variation within the vegetation layer due to, for 

example, changing water content within the trees. Similarly, the observed higher snow depth 

decorrelation rate in shrub is associated with the type of scatterers within each landscape. Lower 

proportion of snow-covered scatterers within vegetation layer causes forested landscape to lose 

coherence with lower rate compared to non-forested landscape as the change in snow depth 

increases. 

The long-term decorrelation rate of forest is slightly higher than the one of shrub 

landscape, whereas the backscattering decorrelation rate of forest is almost two times greater 

than that of shrub landscape. This infers that, with short-baseline data sets, the difference 

between the temporal decorrelation of snow-free forested and non-forested areas is dominated by 

the decorrelation induced by the change in the dielectric constant of scatterers within vegetation 

layer and not by the change in the geometry of scatterers within the vegetation layer.  

3.4.2 The effect of seasonality on temporal coherence 

Figure 3.9 depicts coherence as a 3D surface and provides a visual comparison of 

coherence evolutions of the two land cover types, forested and shrub. The x-axis of the plot is the 

relative change in SAR intensity and ranges between 0 and 0.65, i.e. the maximum measured 

relative intensity change, whereas the y-axis is the change in snow depth and ranges between 0 

and 0.65 m. It is shown that the both land cover types, even with short temporal baselines, can 

lose coherence due to the changes in dielectric constant and snow depth. Also, it is illustrated 

that forest loses coherence with higher rate than shrub with changing backscattering (dielectric 
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constant), whereas shrub is more prone to decorrelation as the change in snow depth between 

two image increases. 

 

 

Figure 3.9. Coherence curve of the two land cover types, a) forest, and b) shrub land cover types. 

Land cover Group Mean SD SD/Mean 

Forest 

S 0.3433 0.0711 0.2070 

W 0.3703 0.0680 0.1835 

C 0.0896 0.0407 0.4546 

Shrub 

S 0.3905 0.0974 0.2495 

W 0.4074 0.0836 0.2052 

C 0.1522 0.0566 0.3720 

Table 3.3. Statistical properties, i.e. mean and Standard Deviation (SD), of interferograms 
categories. The letters S, W, and C denote summer-summer, winter-winter, and cross-season 

interferogram groups. 
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Table 3.3 shows statistical properties of the observed coherence values of the two land 

cover types. The interferograms of each land cover type is subdivided into three sub-groups, 

summer, winter, and cross-season interferogram categories. It is shown that shrub has higher 

coherence value than forest. Also, winter and cross-season interferogram categories possess 

highest and lowest coherence values in general.  

Basically, the different scatterers’ type and structure within forested and non-forested 

resolution cells may result in different decorrelation processes when seasonal or sudden 

variations in surface parameters and meteorological conditions happen. During a frozen season, 

decreased dielectric constant leads to reduced attenuation and deeper penetration of 

electromagnetic waves into forest canopy (Thiel and Schmullius, 2016; Kwok et al., 1994; Way 

et al., 1988). Consequently, this will cause a decrease in backscatter and influence polarimetric 

signature and InSAR coherence (Thiel and Schmullius, 2016; Kwok et al., 1994; Way et al., 

1988; Dobson et al., 1990; Santoro et al., 2015). In terms of coherence, between two winter 

images in stable frozen conditions, water content (soil moisture) changes do not occur leading to 

low temporal decorrelation for open areas (Thiel and Schmullius, 2016). This means that higher 

InSAR coherence is expected for winter interferograms. Basically, over frozen forests, compared 

to unfrozen condition, more volumetric decorrelation is expected to happen as perpendicular 

baseline increases, owing to deeper penetration of electromagnetic waves into frozen forest 

canopy (Thiel and Schmullius, 2016). However, with short-baseline interferograms of L-band 

ALOS-2 and future data sets with narrower orbital tubes, the volumetric decorrelation induced 

by the deeper penetration of electromagnetic waves into frozen soil and frozen forest canopy 

becomes low resulting in higher winter coherences.  
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During unfrozen condition, changing soil moisture, variable water content within the 

trees, growth-related changes, and wind are among the major sources of temporal decorrelation 

(Dobson, 1988; McDonald et al., 2002). The variation of the aforementioned surface parameters 

and meteorological conditions, in turn, results in decreased temporal coherence of unfrozen 

condition compared to frozen condition (Thiel and Schmullius, 2016).  

3.4.3 Statistical assessment on models’ performance 

To statistically assess the improvements of models B and C, which have respectively one 

and two more parameters compared to model A, we used F-test (explained, for example, in 

(Davis, 2002)),  

 

𝐹 =
ௌௌோభି ௌௌோమ

ௌௌோమ
 

௡ି௉మ

௉మି௉భ
      (3.7) 

 

where SSR is the sum of squared residuals of the model, P is the number of free model 

parameters, and n is the number of observations. If the calculated F-test value is greater than the 

upper-tailed critical value of the F-distribution, FP2-P1, n-P2, α, then with 1-α percentage 

confidence, the null hypothesis is rejected, i.e. the improvement is statically significant. The 

calculated F-test values and critical F-distributions values with 99% confidence level (probability 

level of 0.01) have been presented in table 3.2. All the calculated F-test values are greater than 

the critical values in a 99% confidence level, indicating that the improvements made by new 

models are statistically significant. 
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3.5 Conclusions 

Model C, takes into account the long-term irreversible/long-term changes in scatterers’ 

geometry, reversible/seasonal changes in scatterers’ dielectric constant, induced mainly by the 

change in soil and biomass water content, and reversible/seasonal changes in scatterers’ 

geometry, i.e. the third term, due to the change in snow depth. Shrub, in general is more stable 

than forest as time lapses and variations happen in surface backscattering properties. Also, the 

results show high coherence values for winter interferograms compared to summer ones owing 

to the stable condition of frozen season. Our model illustrates that snow depth difference 

between interferogram pair causes decorrelation, which is shown to be mainly resulted from the 

change in scatterers’ geometry. 

This paper argues that with short-baseline interferograms of L-band ALOS-2 and future 

data sets with narrower orbital tubes, the differences between temporal decorrelation rates of 

forest and non-forested areas, in snow free condition, is dominated by the change in dielectric 

constant of scatterers and not by the change in their geometry. It should be noted that the model 

introduced here is based on L-band data and therefore might not be expanded to C-band or X-

band InSAR observations. The model provides accurate estimation of InSAR coherence for 

coniferous forested and shrub land cover types. However, its accuracy over other terrain types 

should be assessed.  
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CHAPTER 4

INFLUENCE OF THE STATISTICAL PROPERTIES OF PHASE AND INTENSITY ON 
INSAR PHASE AND COHERENCE, AND CLOSURE PHASE 

Molan, Y.E., Z. Lu, and J-W. Kim. 2020. Influence of the statistical properties of phase and 
intensity on closure phase, IEEE TGRS. 

4.1 Introduction 

InSAR has the ability to remotely sense mm to cm scale surface deformation with a high 

spatial resolution of tens of meters or better, irrespective of weather and time of day (Massonnet 

and Feigl, 1998; Lu and Dzurisin, 2014). Surface deformations due to various mechanisms, such 

as volcanism, subsidence, permafrost, and landslides, have been successfully detected using 

InSAR (Shirzaei, and R. Bürgmann, 2013; Molan et al., 2018a, 2018b; Ferretti et al., 2001; 

Rykhus and Lu, 2008; Agram et al., 2013; Fattahi etal., 2007). In addition to deformation 

mapping, interferometric phase has been also used to estimate soil moisture changes (De Zan et 

al., 2015; Zwieback et al., 2016; Molan and Lu, 2020; Nolan et al., 2003). The common 

approach in the literature to estimate soil moisture is to define a relationship between the mean 

soil moisture value and InSAR phase and intensity changes. This is because the change in soil 

moisture will induce a change in dielectric constant. Dielectric constant of soil manipulates the 

depth and the attenuation of electromagnetic waves penetrating the soil. Basically, the depth of 

penetration decreases but at the same time wave-number increases by increasing soil moisture. 
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This leads to phase increase, which is manifested as subsidence on interferograms (Zwieback et 

al., 2016; Hensley et al., 2011).  

The phase of interferograms generated from single-looked pixels are rather noisy due to 

strong effects of decorrelations and noises. One way to deal with this problem is using multi-

looked interferograms. Multi-looking reduces the noise and improves the reliability of phase 

unwrapping by averaging adjacent pixels in the complex interferogram (Ferretti et al., 2015; 

Goldstein et al., 1988). Another approach is exploring SqueeSAR (Ferretti et al., 2015), and the 

component extraction and selection SAR (CAESAR) algorithms (Fornaro et al., 2015; Verde et 

al., 2018), which have been developed to extend Persistent Scatterers Interferometry (PSI) 

analysis. SqueeSAR overcomes the influence of temporal and geometrical decorrelation on 

Distributed Scatterers (DSs) in non-urban areas (Ferretti et al., 2015; 15, Fornaro et al., 2015; 

Verde et al., 2018). The strength of CAESAR is the possibility of extracting multiple dominant 

scattering mechanisms within a resolution element based on the analysis of the covariance matrix 

(Verde et al., 2018). 

Multi-looking, however, leads to non-zero phase triplet. Two SAR images from the same 

orbital track taken at different times can be used to generate a multi-looked interferogram. 

Likewise, using three SAR images, three mutual interferograms can be generated. One may 

assume that the phase of the multi-looked interferogram pairing the first and the last SAR images 

equals the summation of the phases of the two intermediate interferograms. In the real world, 

however, the assumption is violated because experiences show otherwise; this phenomenon is 

known as phase inconsistency.  

The possible causes of non-zero phase triplet have been recently discussed in the 

literature. De Zan et al., 2015, argued that phase inconsistencies can arise when different 
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scatterer populations with independent phase behaviors interfere with each other. They illustrated 

that changes in the water content of soil and vegetation could contribute to phase inconsistency. 

The three-dimensional structure of the scatterers within the resolution cell can also possibly 

cause phase inconsistency in the case of a non-zero spatial baseline (De Zan et al., 2015). 

Zwieback et al., 2016, argued that apart from deformations, which do not cause phase 

inconsistency, there should be other factors influencing phase inconsistency. The authors 

attributed the phase inconsistencies to non-random effects of decorrelation noise, the change in 

dielectric constant, and non-zero spatial baselines. The phase inconsistency induced by the 

changes in dielectric constant has been reported in the observations and interferometric models 

introduced recently (De Zan et al., 2015). The change in dielectric constant is ascribed to the 

change in soil moisture and water content of vegetation (De Zan et al., 2015; Zwieback et al., 

2016; Molan and Lu, 2020) and also to the freeze-thaw condition of soil (Zwieback et al., 2016).  

Unlike previous studies that attribute non-zero phase closure to the changes in three 

dimensional-structure or dielectric constant of single-looked pixels, in this paper, we show that 

non-zero phase triplet is only related to the statistical properties of the pixels within the multi-

looked window. One simple reason for this argument is that phase inconsistency, i.e. non-zero 

phase triplet, does not exist in single looked images but rather only in multi-looked images. 

Therefore, analyzing the influence of the statistical properties of intensity and phase changes of 

single-looked pixels on multi-looked phase would quantify the extent of their influence on phase 

triplet.  

Multi-looked phase and coherence are functions of phase (deforming and non-deforming) 

changes of single-looked pixels and the way that the physical changes are distributed in the 

multi-looking window (Just and Bamler, 1994; Anxi et al., 2014; Lopes et al., 1992). This is to 
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say that the multi-looked phase contains a physical phase and a statistical phase. Therefore, we 

first quantify the contributions of physical changes and statistical properties of pixels on multi-

looked phase and coherence and then assess the extent of their influences on closure triplet. 

Specifically, we answer the question: does the non-zero phase triplet demonstrates statistical 

characteristics of multi-looked window or does it instead possess information about phase 

changes corresponding to absolute physical changes, i.e. deforming and non-deforming 

processes such as soil moisture changes. This is of great importance because if the former 

statement is true, closure phase cannot be used as a proxy for estimating physical changes in the 

pixels.   

This paper is structured as follows: Section II analyzes multi-looked phase, coherence, 

and closure phase; Section III includes the multi-looked interferometric phase generated from 

synthetic data and presents the results of interferometric phase and coherence along with phase 

triplet. Section IV provides results generated using real SAR data and a discussion of the results; 

and finally, conclusions appear in Section V. 

4.2 Methods 

4.2.1 Multi-looked Interferometric Phase 

Let 𝑢ଵ = [𝑢ଵ
ଵ, 𝑢ଵ

ଶ, … ,  𝑢ଵ
௡]ᇱ and 𝑢ଶ = [𝑢ଶ

ଵ, 𝑢ଶ
ଶ, … ,  𝑢ଶ

௡]ᇱ to be master and slave SAR images 

each containing n pixels. Every pixel on each image is a random speckled quantity and can be 

written as the product of the unspeckled physical quantity 𝑠௜
௞ and the independent speckle 

random process 𝑛௜
௞ (Just and Bamler, 1994; Anxi et al., 2014; Lopes et al., 1992) 

 

𝑢௜
௞ =  𝑠௜

௞ . 𝑛௜
௞        (4.1) 
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where k is the pixel position. Note that, throughout the paper, superscripted parenthesized 

numbers indicate pixel numbers, subscripted numbers show image numbers, and subscripted 

letters indicate the association. Also, bold letters represent vectors.  

The noise vector is a zero-mean value complex Gaussian random vector with the phase 

that is uniformly distributed over [-π, π] (Lopes et al., 1992; Bamler and Just, 1993; Tough et al., 

1994; Lee et al., 1994a; Lee et al., 1994b). For the two images, 𝑛ଵ and 𝑛ଶ are statistically 

independent of each other and of 𝑠ଵand 𝑠ଶ (Just and Bamler, 1994). Therefore, 𝑢ଵ and 𝑢ଶ are 

zero-mean random complex variables. Hence, the coherence of two complex SAR images 𝑢ଵ and 

𝑢ଶ, is defined as follows (Lopes et al., 1992; Bamler and Just, 1993; Tough et al., 1994)   

 

𝛾 =
ா[௨భ௨మ

∗ ]

ඥா[|௨భ|మ]ா[|௨మ|మ]
= |𝛾|𝑒௜஦బ     (4.2) 

 

where φ଴ is the expected noise-free phase, 𝑢ଶ
∗  is the complex conjugate of the second image, and 

E[.] denotes the expectation value that in practice will be approximated with a sampled average 

(Just and Bamler, 1994; Anxi et al., 2014; Lopes et al., 1992). Hence, over statistically uniform 

areas, the sampled coherence can be computed as (Bamler and Just, 1993; Tough et al., 1994; 

Lee et al., 1994a; Lee et al., 1994b) 

 

𝛾ො =
∑ ௨భ௨మ

∗೙
భ

ඥ∑ |௨భ|మ ∑ |௨మ|మ೙
భ

೙
భ

= |𝛾ො|𝑒௝(ఝబାఝ೙) = |𝛾ො|𝑒௜஦    (4.3) 
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where |𝛾ො| and φ are the magnitude and phase of the multi-looked interferogram. The joint 

probability density function (PDF) of magnitude and phase of an interferogram depends on the 

number of looks and satisfies Wishart distribution. The marginal PDF of InSAR phase can be 

derived from the joint PDF (Just and Bamler, 1994; Lee et al., 1994a; Lee et al., 1994b; 

Davenport and Root, 1987; Bamler and Hartl, 1998; Tough et al., 1995) that is characterized 

with a mean of 𝜑଴ and a variance, which is a function of InSAR coherence value |γ | (Bamler and 

Hartl, 1998; Tough et al., 1995). Thus we have 

 

𝜑 = 𝜑଴ + 𝜑௡ with 𝐸[𝜑] = 𝜑଴     (4.4) 

 

where φ௡ denotes a zero-mean additive noise, upon which its variance is independent of 

the magnitude φ (Bamler and Hartl, 1998). The expected value of interferometric phase is 𝜑଴ 

regardless of the magnitude of changes, number of looks and the value of complex correlation 

coefficient (Lopes et al., 1992; Bamler and Just, 1993; Tough et al., 1994; Lee et al., 1994a; Lee 

et al., 1994b; Davenport and Root, 1987; Bamler and Hartl, 1998). 

4.2.2 The Influence of Intensity and Phase Changes of Single-looked Pixels on Multi-looked 
Pixel’s Phase 

Some physical processes, i.e. deforming or non-deforming changes, can cause intensity 

changes as well as phase changes. Soil moisture and vegetation biomass changes, for instance, 

initiate dielectric constant changes that in turn cause intensity and phase changes (De Zan et al., 

2015; Zwieback et al., 2016; Hoekstra, and A. Delaney, 1974; Hallikainen et al., 1985). This is to 

say that in addition to phase changes of the pixels that occur between two images taken at 
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different times, their intensities are also subject to change. Plus, the two variables may be 

correlated to some degree. Basically, the amplitude and phase of SAR images are statistically 

independent random variables (Bamler and Just, 1993; Tough et al., 1994; Lee et al., 1994a; Lee 

et al., 1994b; ; Davenport and Root, 1987; Bamler and Hartl, 1998; Tough et al., 1995; Oliver 

and Quegan, 1998). However, between two images that are used to generate an interferogram, 

the intensity of pixels and their phase changes may not be independent variables. Therefore, we 

quantify the contribution of the statistical characteristics of intensity changes within the multi-

looking window, and the correlation between intensity and phase changes on the multi-looked 

phase and coherence. By considering 𝑢 = 𝑎 𝑒௝(𝜽భ) in (2), we can rewrite equation (4.2) as 

 

𝛾 =
𝐸[𝑢ଵ𝑢ଶ

∗]

ඥ𝐸[|𝑢ଵ|ଶ]𝐸[|𝑢ଶ|ଶ]
=

𝐸ൣ𝑰ଵ,ଶ 𝑒௝(𝜽భ,మ)൧

ඥ𝐸[𝑰ଵ]𝐸[𝑰ଶ]
 

=
1

ඥ𝐸[𝑰ଵ]𝐸[𝑰ଶ]
ቀ𝐸ൣ𝑰ଵ,ଶ൧𝐸ൣ 𝑒௝(𝜽భ,మ)൧ + 𝑐𝑜𝑣 ൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ቁ = 

|𝛾଴| 𝑒௝(ఝబ) + |𝛾௦| 𝑒௝(ఝೞ)       (4.5) 

 

In the equations above 𝑰ଵ,ଶ = 𝒂ଵ. 𝒂ଶ is the vector of the product of the amplitudes of the first and 

second images, and 𝜽ଵ,ଶ = 𝜽ଵ − 𝜽ଶ is the vector of their phase differences. The coherence vector 

𝛾 is the vector summation of two vectors. The amplitudes of the vectors are |𝛾଴| and |𝛾௦| and 

their phases are 𝜑଴ and 𝜑௦. The angle of coherence can be written in terms of the expected phase 

𝜑଴  

𝑎𝑟𝑔{𝛾} = 𝜑଴ + ∆𝜑௖௢௩       (4.6) 
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where ∆𝜑௖௢௩ is the phase change due to the influence of 𝑐𝑜𝑣 ൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ and can be calculated 

by using equation (4.5) 

 
∆𝜑௖௢௩ = 𝑎𝑟𝑔൛𝐸ൣ𝑰ଵ,ଶ 𝑒௝(𝜽భ,మ)൧ൟ − 𝑎𝑟𝑔൛𝐸ൣ 𝑒௝(𝜽భ,మ)൧ൟ    (4.7) 

 

Similarly, the sampled coherence, i.e. interferogram, can be rewritten as 

 

𝛾ො =
1

1
𝑛

ට∑ 𝑰ଵ
௞  ∑ 𝑰ଶ

௞௡
௞ୀଵ

௡
௞ୀଵ

ቆ
1

𝑛ଶ
൬෍ 𝑰ଵ,ଶ

௞ ෍ 𝑒௝൫𝜽భ,మ
ೖ ൯

௡

௞ୀଵ

௡

௞ୀଵ
൰ + 𝑐𝑜𝑣 ൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ቇ = 

|𝛾ො଴| 𝑒௝(ఝబ
ᇲ ) + |𝛾ො௦| 𝑒௝(ఝೞ)        (4.8) 

 

where 𝜑଴
ᇱ = 𝜑଴ + 𝜑௡,଴. Note that the superscripts indicate pixel numbers and subscripts show 

image numbers. The sampled coherence vector 𝛾ො is the vector summation of two vectors with the 

angles of 𝜑଴
ᇱ  and 𝜑௦ and the amplitudes of |𝛾ො଴| and |𝛾ො௦|. 𝜑଴

ᇱ  is dominated with the expected phase 

𝜑଴ plus a zero-mean random phase 𝜑௡,଴, which corresponds to the statistical properties of the 

phase changes within the multi-looking window. 𝜑௦ is however associated with statistical 

properties of the intensity and phase changes of the pixels. Similarly, the interferometric phase 

can be expressed as  

𝜑 = 𝑎𝑟𝑔൛|𝛾ො଴| 𝑒௝൫ఝబ
ᇲ ൯ + |𝛾ො௦| 𝑒௝(ఝೞ)ൟ = 𝜑଴

ᇱ + ∆𝜑௖௢௩ 

= 𝜑଴ + 𝜑௡ + ∆𝜑௖௢௩        (4.9) 
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where ∆𝜑௖௢௩ is the phase change due to the influence of 𝑐𝑜𝑣 ൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ on the 

interferogram’s phase that can be calculated by using equation (4.9) 

 

∆𝜑௖௢௩ =  𝑎𝑟𝑔 ቄ∑ 𝑰ଵ,ଶ 𝑒௝൫𝜽భ,మ
ೖ ൯௡

௞ୀଵ ቅ − 𝑎𝑟𝑔 ቄ∑ 𝑒௝൫𝜽భ,మ
ೖ ൯௡

௞ୀଵ ቅ    (4.10) 

 

In this paper, 𝜑଴
ᇱ  and ∆𝜑௖௢௩ are called, respectively, intensity-independent and intensity-

dependent phases for simplicity. The intensity-independent phase represents the expected 

physical changes 𝜑଴, e.g. deformation, soil moisture change, of single-looked pixels plus a zero-

mean random phase 𝜑௡, which is related to phase statistics within the multi-looking window. In 

other words, the intensity-independent phase is related to physical phase and statistical properties 

of single-looked pixels’ phase. The intensity-dependent phase, on the other hand, is associated 

with the statistical properties of both phase and intensity of single-looked pixels (see equations 

(4.5-4.7)).  

4.2.3 Coherence Changes Related to the Statistical Properties of Single-looked Pixels’ Intensity 
and Phase  

The coherence changes induced by 𝑐𝑜𝑣 ൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ is calculated in equations (4.5) and 

(4.8). Considering the sampled coherence as   

 

|𝛾ො| = ቚห𝛾ො௣ห 𝑒௝(ఝబ
ᇲ ) + |𝛾ො௦| 𝑒௝(ఝೞ

ᇲ)ቚ      (4.11) 
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We can calculate the coherence changes that is induced by the statistical properties of the phase 

and intensity of pixels  

 

∆|𝛾ො௖௢௩| = ቚห𝛾ො௣ห 𝑒௝(ఝబ
ᇲ ) + |𝛾ො௦| 𝑒௝(ఝೞ

ᇲ)ቚ − ቚห𝛾ො௣ห 𝑒௝(ఝబ
ᇲ )ቚ    (4.12) 

 

where ∆|𝛾ො௖௢௩| is the coherence change induced by 𝑐𝑜𝑣 ൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ and is called intensity-

dependent coherence in this paper. 

4.2.4 The Contribution of Statistical Properties of Single-looked Pixels’ Intensity and Phase on 
Phase Closure 

Three SAR images from the same orbital track taken at different times can be used to 

generate three multi-looked interferograms. Closure phase is the difference between the phase of 

the interferogram pairing the first and the last SAR images and the summation of the phases of 

the two intermediate interferograms. For multi-looked pixels with 𝑐𝑜𝑣 ൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ = 0, using 

equation (4.4), we can write 

 

𝜑⃛ = 𝜑଴,ଵ + 𝜑௡,ଵ + 𝜑଴,ଶ + 𝜑௡,ଶ − 𝜑଴,ଷ − 𝜑௡,ଷ    (4.13) 

 

where 𝜑⃛ is the closure phase. By considering 𝜑଴,ଵ + 𝜑଴,ଶ − 𝜑଴,ଷ = 0, we have 

 

𝜑⃛ = 𝜑௡,ଵ + 𝜑௡,ଶ − 𝜑௡,ଷ = 𝜑⃛௡      (4.14) 
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It should be noted that the noise phases are zero-mean random variables that are related 

to the magnitude of the coherence, which is related to the standard deviation of phase changes of 

the pixels within the multi-looking window. Thus, we have  

 

𝐸[𝜑⃛] = 0   and 𝜎ఝ⃛ = ට𝜎ఝ೙భ

ଶ + 𝜎ఝ೙మ

ଶ + 𝜎ఝ೙య

ଶ      (4.15) 

 

Likewise, the closure phase of a multi-looked pixel with 𝑐𝑜𝑣 ൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ ≠ 0 can be 

stated as 

 

𝜑⃛ᇱ = 𝜑⃛௡ + ∆𝜑⃛௖௢௩        (4.16) 

 

with the expected value and standard deviation of  

 

𝐸[𝜑⃛] = ∆𝜑⃛௖௢௩   and 𝜎ఝ⃛ = ට𝜎ఙക⃛
ଶ + 𝜎∆ఝ⃛೎೚ೡ

ଶ      (4.17) 

 

where ∆𝜑⃛௖௢௩ = ∆𝜑௖௢௩,ଵ + ∆𝜑௖௢௩,ଶ − ∆𝜑௖௢௩,ଷ is the contribution of intensity-dependent phase 

(∆𝜑௖௢௩ in equation (4.9)) of the three interferograms to the closure phase. Comparing equations 

(4.14) and (4.16) we can see that over pixels with 𝑐𝑜𝑣൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ = 0, phase triplet is a 

function of phase distribution within the multi-looked window, i.e. 𝜑௡, with the expected value 
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of zero. In other words, over pixels with intensity homogeneity, i.e. the intensity dispersion index 

𝐷ூ =
𝜎𝑰భ,మ

𝐼ଵ̅,ଶ
൘ = 0, the expected value of closure phase is zero. Yet, for the cases where 

𝑐𝑜𝑣൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ ≠ 0, it also contains contributions from statistical properties of intensity as 

well as phase, i.e. ∆𝜑௖௢௩
ᇱ .  

4.3 Semi-Synthetic Data 

4.3.1 Semi-Synthetic Interferograms 

The equations in the previous section calculate the influence of statistical properties of 

intensity and phase changes on interferometric phase and coherence and closure phase. Here we 

investigate their effect by exploiting semi-synthetic interferograms. The first image of the semi-

interferograms is a real SAR image and the second image is synthetic data generated from the 

real data by applying a predefined intensity and phase changes compared to the first image. 

Imagine a patch on a SAR data containing p.q=n pixels, which is called image one 𝒁𝟏 here. 

Image two 𝒁𝟐 can be generated by adding a change vector ∆𝒁𝟏,𝟐 to 𝒁𝟏 as 

 

𝒁𝟐 = ∆𝒁𝟏,𝟐 + 𝒁𝟏       (4.18) 

 

where 

 

 ∆𝒁𝟏,𝟐 = ቂ∆𝑍ଵ,ଶ
(ଵ)

, ∆𝑍ଵ,ଶ
(ଶ)

, … ,  ∆𝑍ଵ,ଶ
(௡)

ቃ
ᇱ

.      (4.19) 
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Each element of the change vector is associated with an intensity ratio 𝛼ଵ,ଶ
(୧)

= 𝐼ଶ
(୧)

/𝐼ଵ
(୧), 

and a phase change ∆𝜃ଵ,ଶ
(୧)

= 𝜃ଶ
(୧)

− 𝜃ଵ
(୧) so that for ith pixels of image one and two we can write 

 

𝑍ଵ
(୧)

= ට𝐼ଵ
(୧)

 exp (𝑗𝜃ଵ
(୧)

)  

𝑍ଶ
(୧)

= ට𝛼ଵ,ଶ
(୧)

𝐼ଵ
(୧)

 exp (𝑗ቀ𝜃ଵ
(୧)

+ ∆𝜃ଵ,ଶ
(୧)

ቁ)    (4.20) 

 

The intensity ratio and phase change vectors are random variables 

 

𝛂 = αഥ + 𝒏𝜶 and   

∆𝜽 = ∆𝜃തതതത + 𝒏∆𝜽       (4.21) 

 

where αഥ and ∆𝜃തതതത are the average intensity ratio and phase change and 𝒏𝜶 and 𝒏∆𝜽 are zero-mean 

random variable vectors. The intensity and phase of SAR images have exponential and uniform 

distributions, respectively (Lee et al., 1994b; Davenport and Root, 1987; Oliver and Quegan, 

1998). Therefore, by applying random vectors of intensity ratio and phase changes, the 

distribution properties of a real SAR image’s intensity and phase will be preserved in the 

synthetic image 𝒁𝟐.  

This allows to generate an interferogram between the two images that have pre-defined 

phase and intensity differences represented as random variable vectors. Figure 4.1 shows a series 
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of histograms of interferometric phases. Each of the histograms was generated from 200,000 

such semi-synthetic interferograms. The first image of the semi-synthetic interferograms is a 

patch of real SAR data including L-band ALOS PALSAR, ALOS-2 PALSAR-2, and C-band 

Sentinel-1. The size of the patch for ALOS PALSAR and ALOS-2 PALSAR-2 images is 14 by 7 

pixels in azimuth and range, respectively. For Sentinel-1 images, it is 20 by 4 pixels in azimuth 

and range, respectively. For each interferogram, the second image was generated by applying 

random intensity and phase changes to the pixels of the first image.  

The first cluster of interferograms (‘Cluster 1’, blue histograms in figure 4.1) was 

generated by considering intensity homogeneity of the images. This means the amplitude of all 

pixels on every pair of images are considered to be one. Therefore, only the vector of phase 

changes was used. This cluster of interferograms represents phase changes over an ideal 

homogenous pixel (intensity homogeneity). The average and standard deviation of phase change 

are +1.25 and 1.0 radians, respectively. Figure 4.1 (blue) illustrates the probability density 

function (pdf) of interferometric phases of cluster one. It should be noted that we used images 

from over a wide variety of land cover types with different multi-looking numbers and different 

magnitudes of intensity and phase changes. However, we only show results from over three 

regions: Delta Junction, Alaska, Idaho, and New Mexico, where the multi-looked pixel patches 

were selected over forest, sparsely vegetated soil, and agricultural fields, respectively. As shown 

in figure 4.1 and in general, the interferometric phase values 𝜑 center at 𝜑଴ (see equations (4.2) 

and (4.4)) regardless of the wavelength and polarization of data, magnitude of the changes, and 

land cover type.  

The second cluster of interferograms represents interferometric phase changes over a 

non-homogeneous pixel where both intensity and phase changed. For this cluster, we used the 
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same phase change vectors applied to generate the first cluster. The intensity of the second image 

was, however, generated by applying an average and standard deviation of changes of +4 dB and 

3 dB to the intensity of the first image.  

As discussed previously, some natural processes such as soil moisture and vegetation 

biomass changes may induce correlated phase and intensity changes. Next, we investigated the 

effect of correlated intensity and phase changes on interferometric phase and coherence. To do 

this, the third cluster of interferograms were generated by applying the same changes in intensity 

and phase applied to generate the second cluster. However, they differ in their correlation 

coefficients between intensity and phase changes, which are 0.0 and 0.75 for the second and third 

clusters, respectively. The third cluster of interferometric phase values center at ∆𝜑௖௢௩ (see 

equations (4.9) and (4.10)), which is the phase shift due to the influence of 𝑐𝑜𝑣 ൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ on 

the interferogram’s phase. The coherence of the third cluster is also greater than the second one 

(see equations (4.11) and (4.12)).  

Figure 4.1 shows that for each cluster of interferograms, all three histograms over 

different land cover type center at the same angle. It can be seen that the coherence of 

interferograms, however, differ depending on the polarization combination, wavelength, land 

cover type, homogeneity of pixels, and the covariance between intensity and phase changes. 

Note that the height of a histogram is a measure of its coherence. In other words, coherent 

interferograms have thinner histograms due to noise reduction.   
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Figure 4.1. Probability density function of interferometric phases over Delta Junction, Alaska 

(forest), Idaho (sparsely vegetated soil), and New Mexico (agricultural field). Cluster 1 has phase 
changes with no intensity changes. Cluster 2 has changes over non-homogeneous pixels where 

both intensity and phase changed. Like Cluster 2, Cluster 3 also has changes over non-
homogeneous pixels, but Cluster 3 has a correlation coefficient between intensity and phase 

change of 0.75 (vs. 0.0 for Cluster 2). 

4.3.2 Closure Phase of Semi-Synthetic Interferograms 

Synthetic data were also used to investigate the influence of statistical properties of pixels 

on closure phase. To do this, two categories of closure phases were generated, i.e. closure phases 
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of interferograms with independent intensity and phase changes (Cluster 2), and closure phases 

of interferograms with correlated intensity and phase changes (Cluster 3). For each category, 

three types of closure phases were generated so that we have six types of closure phases in total, 

which are 2-a, 2-b, 2-c, 3-a. 3-b, and 3-c). For 2-a and 3-a types, the average phase changes of 

+1.0, +0.5, and -1.5 have been applied to generate three interferograms of a closure phase. For 2-

b and 3-b types, half of the phase changes (+0.5, +0.25, and -0.75) is applied to generate three 

interferograms. For 2-c and 3-c types, zero phase changes were applied to generate the 

interferograms. Figure 4.2 shows the histogram of closure phase for the second and third cluster 

of interferograms (see figure 4.1). Note that each interferogram histogram is generated from 

200,000 semi-synthetic interferograms.  

It can be seen that the histogram of closure phase corresponding to the second cluster 

centers at zero, which is suggested by equation (4.15). For the third cluster, however, the 

histograms centers at  ∆𝜑⃛௖௢௩ (see equation (4.17)). Note that the results for the first cluster of 

interferograms (not shown here) are similar to the results of the second cluster.  
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Figure 4.2. Probability density function of closure phase over New Mexico (sparsely vegetated 

soil). In the legend, int 1, int 2, and int 3, respectively, represent the histograms of the first, 
second, and third interferograms. 
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4.4 Real Data Interferograms and Discussion 

4.4.1 Real Data Interferograms 

Equation (4.9) shows that interferometric vector is a summation of two vectors, which are 

called intensity-independent and intensity-dependent components in this paper. One example of 

the intensity-independent and intensity-dependent vectors are illustrated in figure 4.3. In figure 

4.3, the interferometric vector and its first and second components are illustrated in green, blue, 

and red, respectively. The angle of the first vector 𝜑଴
ᇱ  is dominated by change in physical 

properties of the pixels, i.e. expected phase 𝜑଴, plus a zero-mean random phase 𝜑଴,௡, which 

corresponds to the statistical properties of the phase changes within the multi-looking window. 

Therefore, its expected value is 𝜑଴. The angle of the second vector 𝜑௦, however, is associated 

with statistical properties of the intensity and phase changes of the pixels. It is a function of the 

dispersion index of intensity 𝐷ூ =
𝜎𝑰భ,మ

𝐼ଵ̅,ଶ
൘ , the standard deviation of the phase changes 𝜎 ௘ೕ(𝜽భ,మ), 

and the correlation coefficient between 𝑰ଵ,ଶ and  𝑒௝(𝜽భ,మ) 

 

௖௢௩ ൫𝑰భ,మ, ௘ೕ(𝜽భ,మ)൯

భ

೙
ට∑ 𝑰భ

ೖ  ∑ 𝑰మ
ೖ೙

ೖసభ
೙
ೖసభ

=  𝐷𝑰 𝜎 ௘ೕ(𝜽భ,మ)  𝑐𝑜𝑟൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯    (4.22) 

 

Its value is zero when either the dispersion index of intensity or the standard deviation of 

the phase changes is zero, i.e. over pixels with intensity or phase homogeneities. Also, its value 

becomes zero when 𝑐𝑜𝑟൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ = 0.  
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Figure 4.3. Interferometric (𝜑 in equation (4.9)), intensity-independent (𝜑଴

ᇱ  in equation (4.9)), 
and intensity-dependent (∆𝜑௖௢௩ in equation (4.9)) vectors and phases. 𝜑௦ is the phase of 

𝑐𝑜𝑟൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ (see equation (4.10)). 

Figure 4.3 also shows an interferometric phase 𝜑 in green. It can be seen that the 

interferometric phase is a scalar summation of intensity-independent 𝜑଴
ᇱ  and intensity-dependent 

∆𝜑௖௢௩ phases.  By comparing the two angles illustrated in figure 4.3, i.e. 𝑎𝑟𝑔൛𝐸ൣ 𝑒௝(𝜽భ,మ)൧ൟ and 

𝑎𝑟𝑔൛𝑐𝑜𝑟൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ൟ (see equation (4.10)), one can conclude that the difference between the 

two angles and consequently ∆𝜑௖௢௩ decrease by increasing homogeneity of 𝑰ଵ,ଶ. Figure 4.1 

features examples of interferometric phase histogram generated from semi-synthetic 

interferograms. It illustrates intensity-dependent and intensity-independent phase contributions to 

the interferometric phase.  

Figure 4.2 illustrates histogram of closure phases generated from semi-synthetic 

interferograms with different statistical properties of intensity and phase changes. It can be seen 

that the shapes of interferogram histograms and closure phase histograms don’t change by 
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varying the magnitude of changes (compare the three histogram types of a, b, and c).  This means 

that closure phase and interferometric coherence are independent of the magnitude of changes. 

Also, by comparing the histograms of Cluster 2 and Cluster 3, we can conclude that, when 

intensity and phase changes are independent (Cluster 2), the expected closure phase is zero. 

Unlikely, the expected closure phase becomes non-zero when intensity and phase changes are 

correlated (Cluster 3). These evaluations using synthetic data support our argument made in 

section II (see equations (4.13)-(4.17)). 

 

 
Figure 4.4. Study area in Delta Junction, Alaska (red box). The three major land cover types on 

the images are scarcely to moderately vegetated soil (area I), heavily vegetated area - forest (area 
II), and agricultural field (area III). 

Next, we use real data to show that closure phase correlates with land cover types and is 

highly correlated with coherence values. We generated intensity-dependent (∆𝜑௖௢௩ in equation 

(4.9)) and intensity-independent (𝜑଴
ᇱ   in equation (4.9)) phase images exploiting real SAR data. 

Using two images of ALOS-2 PALSAR-2 over Delta Junction (Alaska) taken on March 22, 2015 

and March 6, 2016, we generated intensity-independent and intensity-dependent phases 
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quantified in equations (4.9) and (4.10). Figure 4.4 shows the study area. The three major land 

cover types on the images are scarcely to moderately vegetated soil (area I), forest (area II), and 

agricultural field (area III). The results are illustrated in figure 4.5. It can be seen that the 

intensity-independent phase (figure 4.5 (a)) correlates with land cover type. This is because 

different land cover types experience different physical processes between the two images. 

Unlike intensity-independent phase (𝜑଴
ᇱ   in equation (4.9)), the intensity-dependent phase (∆𝜑௖௢௩ 

in equation (4.9)) (figure 4.5 (b)) is rather noisy. Its absolute value (figure 4.5 (c)), however, 

correlates with land cover type to some extent. Small intensity-dependent phase values 

correspond to homogenous areas where the coherence is higher and the larger values are 

associated with low-coherence areas (see figure 4.6 for comparison). This is because both 

coherence and 𝑐𝑜𝑣 ൫𝑰ଵ,ଶ,  𝑒௝(𝜽భ,మ)൯ increase by increasing the standard deviations of intensity and 

phase changes. Figure 4.5 shows that the intensity-dependent phase does not possess information 

about physical changes but rather is a proxy to estimate the homogeneity of pixels.  
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Figure 4.5. a) Intensity-independent phase (𝜑଴

ᇱ   in equation (4.9)), b) intensity-dependent phase 
(∆𝜑௖௢௩ in equation (4.9)), and c) absolute intensity-dependent phase generated using ALOS-2 

PALSAR_2 data over Delta Junction (Alaska). 

In addition to phase contribution of statistical properties of pixels, changes in multi-

looked coherence are also expected based on equation (4.12) and is shown in the phase 

histogram in figure 4.1. Figure 4.6 shows the interferometric coherence (6a), intensity-

independent coherence (6b), and intensity-dependent coherence (∆|γොୡ୭୴| in equation (4.12)) (6c), 

i.e. the difference between the two coherence values. Also in figure 4.3, the length of vectors 
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represent the magnitude of coherence values. The intensity-independent coherence (6b) is 

represented by the length of blue vector in figure 4.3. It is related to the phase statistics of single 

looked pixels and independent of intensity statistics. The interferometric coherence (6a), on the 

other hand, is dependent on phase and intensity statistics. The intensity-dependent coherence 

(∆|𝛾ො௖௢௩| in equation (4.12))) is the length difference between green and blue vectors. In figure 

4.3, it can be seen that the magnitude of interferometric coherence (the length of the green 

vector) increases by decreasing the difference between the phase of the statistical vector (red 

vector) and the phase of the intensity-independent vector (blue vector). The average intensity-

dependent coherence of 0.1 can be seen on the image with lower amount on low-coherence 

pixels and higher values over homogenous areas.   

Figure 4.7 shows closure phase images generated using three images of ALOS-2 

PALSAR-2 over Delta Junction (Alaska) taken on March 08, 2015, March 22, 2015 and March 

6, 2016. As shown in equation (4.16), closure phase is a function of noise and statistical phases, 

i.e. 𝜑⃛௡ + ∆𝜑⃛௖௢௩. Figure 4.7(a) illustrates the phase triplet of 𝜑⃛௡ whereas, figure 4.7(b) illustrates 

the phase triplet of ∆𝜑⃛௖௢௩. 𝜑⃛௡ is a function of standard deviation of phase changes and its 

probability increases with a decreasing in coherence. This means that high ∆𝜑௡ values correlate 

with low coherence values as seen in figure 4.6 and figure 4.7(c). Figure 4.7(d) shows that the 

absolute value of ∆𝜑⃛௖௢௩ is also correlated with low coherence values. Therefore, we expect 𝜑⃛௡ 

and ∆𝜑⃛௖௢௩ to be correlated with each other and inversely with coherence, as in figure 4.6 and 

figure 4.7.  
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Figure 4.6. a) Interferometric coherence, b) intensity-independent coherence (ห𝛾ො௣ห in equation 
(4.11)), and c) the difference between interferometric and intensity-independent coherences 

(intensity-dependent coherence (∆|𝛾ො௖௢௩| in equation (4.12))). The three major land cover types on 
the images are scarcely to moderately vegetated soil (area I), heavily vegetated area, forest (area 

II), and agricultural field (area III). 

The mathematical analyses and the results of synthetic data show that none of the phase 

triplet components is directly related to the magnitude of phase or intensity changes. Rather, they 

are functions of statistical properties. Also, our real data results show that absolute closure phase 
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values correlate with coherence values. This fact makes the closure phase less appropriate for 

soil moisture change estimation.  

4.4.2 Soil Moisture Estimation Using InSAR Phase and Closure Phase 

As stated previously, in addition to deformation mapping, interferometric phase has been 

also used to estimate soil moisture changes (De Zan et al., 2015; Zwieback et al., 2016). The 

change in soil moisture will induce a change in dielectric constant that in turn leads to phase 

increase, which is manifested as subsidence on interferograms (Hensley et al., 2011; Ferretti, et 

al., 2011). However, the phase of interferograms generated from single-looked pixels are rather 

noisy due to strong effects of decorrelations and noises. Therefore, we prefer multi-looked pixel. 

Multi-looking reduces the noise and improves the reliability of phase unwrapping by averaging 

adjacent pixels in the complex interferogram (Hensley et al., 2011; Ferretti, et al., 2011). In 

practice, multi-looking process makes strong pixels contribute more to interferometric phase. 

This is desired for deformation mapping purposes because the effect of weak pixels is cancelled 

out to some extent. This leads to increased effect of the strong pixels and lower uncertainties in 

phase estimation.  
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Figure 4.7. a)The closure phase of 𝜑⃛௡, b) the closure phase of ∆𝜑⃛௖௢௩ , c) the absolute closure 
phase of 𝜑⃛௡, and d) the absolute closure phase of ∆𝜑⃛௖௢௩ generated using ALOS-2 PALSAR_2 

data over Delta Junction (Alaska). 

For many cases, pixels are covered by natural materials such as soil and vegetation layer. 

In these cases, the change in the physical properties of pixels such as soil moisture and 

vegetation biomass changes will cause intensity changes as well as phase changes. In this paper 

we showed that intensity changes can contribute to phase and coherence changes of multi-looked 
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pixels. The effect of the statistical properties of intensity on multi-looked phase and coherence 

(equation (4.10)) are called intensity-dependent phase and coherence, respectively, in this paper. 

The intensity-independent component of the multi-looked interferometric phase is dominated by 

the change in physical properties of the pixels plus a zero-mean random phase related to phase 

statistics within the multi-looking window. The intensity-dependent phase is only associated with 

statistical properties of the intensity and phase changes in the multi-looking window. The 

intensity-dependent phase is rather small over homogeneous pixels but its magnitude increases 

over heterogeneous areas such as pixels over vegetation layer. Therefore, understanding the 

contribution of intensity-dependent phase on InSAR phase, we suggest that care should be taken 

when multi-looked phase is used to estimate absolute physical changes, especially over non-

homogeneous pixels.  

Multi-looking also leads to non-zero closure phase. It has been argued in the literature 

that closure phase has the potential to be used as a proxy to estimate soil moisture changes. We 

showed that closure phase is a function of phase and intensity statistical properties and similar to 

InSAR coherence, it contains no information about the magnitude of physical changes. It can be 

used for soil moisture estimation only when a strong correlation between absolute soil moisture 

changes and its standard deviation can be found.  

4.5 Conclusion 

The magnitude and the standard deviation of phase changes associated with physical 

changes contribute to multi-looked phase changes. InSAR coherence is relate to the standard 

deviation of phase changes in the multi-looking window. In this paper, we showed that the 

statistical properties of the intensity of pixels contributes to phase and coherence of multi-looked 

pixels. The influence of intensity increases by increasing the standard deviation of phase 
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changes, dispersion index of intensity, and the correlation between intensity and phase changes. 

This paper demonstrated that non-zero closure phase originates from statistical properties of 

phase and intensity of the pixels within the multi-looking window.  

We showed that phase closure is associated with the standard deviation of phase changes 

and dispersion index of intensity and does not relate to the magnitude of physical, deforming and 

non-deforming changes. Therefore, this casts doubt on the effectiveness of using phase triplet as 

a means to estimate soil moisture changes or any changes corresponding to dielectric changes.  

 Semi-synthetic interferograms are used to support the findings of this paper. Semi-

synthetic interferograms pair a real image and a synthetic SAR image, which is generated from 

the real SAR image by applying random changes in intensity and phase with defined magnitude 

of changes. We also used real SAR images to generate interferograms over different land cover 

types. The histogram of generated semi-synthetic interferograms accord with the findings of the 

paper.  
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CHAPTER 5

SOIL MOISTURE-INDUCED SAR INTENSITY AND INSAR PHASE CHANGES  

Molan, Y.E., and Z. Lu. 2020. Modeling InSAR Phase and SAR intensity Changes Induced by 
Soil Moisture, IEEE TGRS, DOI: 10.1109/TGRS.2020.2970841. 

5.1 Introduction 

InSAR, which is an all-weather, day-or-night technique, has the ability to 

remotely sense mm to cm scale surface deformation with a high spatial resolution of 

tens of meters or better (Massonnet and Feigl, 1998; Bürgmann et al., 2000; Lu and Dzurisin, 

2014). InSAR provides valuable input to studies of earthquakes, volcanos, landslides, permafrost 

processes, and so on (Lu and Dzurisin, 2014; Molan et al., 2018a; Ferretti et al., 2001). Two 

SAR images taken at different times are combined to make an interferogram to detect ground 

surface deformations as well as to generate DEMs (Massonnet and Feigl, 1998; Bürgmann et al., 

2000; Lu and Dzurisin, 2014). Between the two images, the water content of the soil being 

imaged is subject to change. The temporal change in soil moisture has been known to contribute 

to InSAR phase and SAR intensity changes (Lu and Meyer, 2002; Nolan et al., 2003; Barrett et 

al., 2012; Zwieback et al., 2015a; De Zan et al., 2014). Consequently, InSAR detected ground 

displacement can be systematically biased by the changes in soil moisture. The uncompensated 
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biases in the spatial and temporal patterns of InSAR detected displacement limits the reliability 

and robustness of InSAR (Lu and Meyer, 2002; Nolan et al., 2003; Barrett et al., 2012; Zwieback 

et al., 2015a; De Zan et al., 2014). 

Unlike ground deformations, which are spatially and temporally correlated, the spatial 

and temporal variabilities of soil moisture are complex (Hensley et al.., 2011) and, in practice, 

the influence on InSAR phases can be confused with atmosphere artifacts. Some atmospheric 

artifacts can be compensated by utilizing spatial-temporal filters (Hensley et al.., 2011; Hooper et 

al., 2012) since they often feature spatially-correlated variations (Hanssen, 2001). Unlikely, soil 

moisture is not always correlated spatially as its value varies abruptly, for example, across 

boundaries of two agricultural fields or different land cover types (Hensley et al.., 2011; Hooper 

et al., 2012; Hanssen, 2001; Gabriel et al., 1989). Soil moisture’s temporal variability is also 

intricate (Hensley et al.., 2011; Hooper et al., 2012; Hanssen, 2001; Gabriel et al., 1989). 

Therefore, temporal filters may not be as practical as it is to mitigate turbulent tropospheric 

phase artifacts, which are temporally uncorrelated on time scale of days (Hanssen, 2001). Also, 

in some cases, terrestrial processes and subsequent movements are closely related to the changes 

in soil moisture. For example, sudden landslides can happen after rapid snow melt or heavy 

precipitation (Cardinali et al., 2000). Soil moisture also indicates groundwater conditions 

(Robinson and Campbell, 2008) and is in a close relationship with permafrost thawing and 

deformation (Molan et al., 2018a). Broadly speaking, soil moisture is a key variable in 

agricultural and environmental studies (Hirschi et al., 2006; Liang et al., 2014; Seneviratne et al., 

2004), and plays a vital role in the terrestrial water cycle, exchange of energy and carbon fluxes 

between the atmosphere and the land surface (Liang et al., 2014; Seneviratne et al., 2004).  
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Potentially, modeling soil moisture influence on InSAR phase measurements and SAR 

intensity changes provides a means to compensate soil moisture induced InSAR phase artifacts 

and also to retrieve surface soil moisture. The first reported signal of soil moisture on InSAR 

images has been reported in 1989 (Gabriel et al., 1989). One of the interferograms over 

agricultural field in California, generated using SEASAT data, featured phase changes 

corresponded to field boundaries. The observed phase was inferred to be related to soil moisture. 

Swelling characteristic of the soil convinced the authors to ascribe the phase change to surface 

movement (expansion), i.e. shortening in the travel path of radar wave. Since then, soil moisture 

induced phase changes on interferograms from satellite SAR data (Nolan et al., 2003; Zhang et 

al., 2008; Barrett et al., 2012) and airborne and indoor experiments (Hajnsek and Prats, Nesti et 

al., 1995, 1998) have been continued to be reported.  

New experimental studies later cast doubt on the expansion hypothesis. For instance, 

Rudant et al., 1996, in a laboratory experiment noted apparent subsidence over wetted soil and 

sprinkled planets.  Hensley et al., 2011, and Morrison et al., 2011, also noticed that the phase 

change is larger than the deformation of the surface of the soil, indicating that the observed phase 

cannot be caused by a realistic deformation. Alternatively, the influence of soil moisture on 

InSAR phase has been attributed to soil volume scattering (Zwieback et al., 2015; De Zan et al., 

2014). Zwieback et al., 2015, empirically analyzed the applicability of the aforementioned 

hypotheses. Using the data of two L-band airborne campaigns, the authors revealed that the soil 

moisture induced phase was not consistent with the penetration depth or the soil swelling 

hypotheses but only with dielectric volume scattering mechanism. Upon wetting, the dielectric 

constant of the soil and consequently the optical path between the antenna and the scatterers in 

the soil volume increase. As soil absorbs water, the replacement of air within free spaces of soil 
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by water increases the dielectric constant of the soil since the magnitude of the dielectric 

constant of water is much greater than that of air or sand grains. The increase in dielectric 

constant corresponds to an increase in the wavenumber in the soil, which gives rise to an 

increase in phase. This is manifested as a movement away from the antenna or an apparent 

subsidence of the surface, even with no mechanical deformation on the ground.  

So far, a broad range of studies from controlled experiments to observational studies 

without soil moisture information have been conducted to quantify the effect of soil moisture on 

SAR intensity and InSAR phase and coherence (Molan et al., 2018a, 2018b; Lu and Meyer, 

2002; De Zan et al., 2014; Gabriel et al., 1989; Nolan et al., 2003; Zhang et al., 2008; Barrett et 

al., 2012; Hajnsek and Prats, 2008; Nesti et al., 1995, 1998; Rudant et al., 1996; Hensley et al., 

2011; Morrison et al., 2011). The models can be divided into interferometric and intensity 

models. On one hand, a number of interferometric models  have provided mathematical volume 

scattering models ranging from simple analytical expression (e.g. Zwieback et al., 2015) to more 

complicated numerical solutions to Maxwell’s equations to estimate soil moisture induced 

InSAR phase artifacts (e.g. De Zan et al., 2014). Basically, the models can potentially be used or 

modified for different soil types as well as layered and/or depth-resolved observations. Yet, what 

all the interferometric models share in common is that the temporal change in volume soil 

moisture has been purported to be the primary influential factor in the models. Hence, these 

interferometric models don’t consider the influence of soil’s structure, i.e. the size and 

distribution of scatterers, on InSAR phase changes. On the other hand, intensity models usually 

attribute soil moisture induced SAR intensity changes to surface scattering solely (Fung et al., 

1992; Su et al., 2015; Baghdadi and Zribi, 2006; Altese et al., 1996; Barrett et al., 2009), and 

volume scattering is either neglected or employed along with surface scattering models to 
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provide an explanation for negative slope that appears on SAR intensity curves at small soil 

moisture values (Liu et al., 2016; Zwieback et al., 2017).  

At the time of writing this manuscript, to the best of our knowledge, no volumetric soil 

moisture model has been introduced that takes into account soil volumetric structure and 

addresses both intensity and phase changes. In this paper, we present a new approach and a 

comprehensive model to estimate soil moisture induced SAR intensity and InSAR phase 

changes. To this end, we model the soil as a collection of discrete coarse scatterers, i.e. with a 

diameter of few centimeters or larger, embedded in an attenuating dielectric medium comprising 

of finer soil grains. Therefore, our volume scattering model can not only provide improved 

estimation of soil moisture induced intensity and phase changes but also potentially be used to 

infer soil structure. The rest of this paper is structured as follows: Section II describes the 

introduced volume scattering model; Section III includes simulated results; Section IV provides a 

discussion on the results and also mathematical analyses to support the outcomes; Section V 

provides validation of results; conclusions appear in Section VI. 

 
5.2 Volume backscattering model  

Here, we model the expected return signal from a pixel after SAR focus. Soil, the 

scattering object, is modeled as a half-space dielectric medium with N randomly distributed 

independent point scatterers in a resolution cell. When an electromagnetic wave strikes on the 

soil surface, a part of the incident wave reflects away, whereas a fraction of it transmits into the 

soil and decays exponentially at a rate governed by the imaginary part of the medium’s complex 

wavenumber (Tsang et al., 2000; Ulaby et al., 1981; Mätzler, 1998). Also, as the wave 

propagates through the medium, its phase is manipulated by the real part of the medium’s 
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complex wavenumber (Tsang et al., 2000; Ulaby et al., 1981; Mätzler, 1998). Once the wave is 

scattered by a point scatterer within the soil medium, a part of the scattered wave propagates 

backward. Through the backward propagation, the dielectric medium again modifies its 

amplitude and phase until it reaches the soil-air boundary. A part of the transmitted wave at the 

soil-air interface propagates back toward the antenna. Then, the signal is further modified by 

applying slant range and azimuth resolution functions, 𝑊𝑎 and 𝑊𝑟, respectively. Finally, the 

scattered signal from a single scatterer located at (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) within the soil becomes 

 

𝑢௜ = 𝑒ି௝ଶ௞ோ𝑡ଵ,ଶ 𝑡ଶ,ଵ 𝑠௜ 𝑒
షమഀ೥೔

ౙ౥౩(ഇೝ)𝑒ି௝ଶ(௞బ௬೔ ୱ୧୬(ఏೝ)ା ఉ ௭೔ୡ୭ୱ(ఏೝ)) ௐೌ (௫೔)ௐೝ(௬೔ ୱ୧୬(ఏೝ)ି௡ ୡ୭ୱ(ఏೝ)௭೔)          

(5.1) 

 

where 𝑛 is the refraction index of the medium, 𝜃𝑖 and 𝜃𝑟 are the incident and refracted angles, 

respectively, 𝑡𝑖,𝑗 is one-way transmission coefficient of amplitude from medium i to medium j, 𝑅 

is the propagation distance, i.e. the slant range of the pixel, 𝛼 and 𝛽 are real and imaginary part 

of 𝑗𝛾, which 𝛾, 𝛼, and 𝛽 are propagation, absorption, and phase constants of the medium, 𝑘0 is 

free air wavenumber, and 𝑠𝑖 is the scattering amplitude of the scatterer.  

The complex-valued SAR backscattering 𝒖, i.e. the total backscattering from the 

scattering points within a resolution element, is the coherent summation of the point scatterers’ 

backscattering (Lei et al., 2016; Treuhaft et al., 1996) 

 

𝒖 =  ∑ 𝑢௜
ே
௜ୀଵ           (5.2) 
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where 𝑢𝑖 is the backscattering signal of the point scatterer located at (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) within the soil. 

The point scatterers are randomly distributed in the soil volume, randomizing the total signal 

which is the summation of random signals. By assuming uniform random distribution, the soil 

volume can be considered    as a symmetric target in the azimuth and ground range directions, 

meaning that the backscattered signal is a function of variations in the vertical direction.  

The pixel’s backscattering is the collection of contributions of all scatterers (grains) 

embedded in the soil (Treuhaft et al., 1996). The scattering and absorption coefficients of a 

scatterer are functions of its size, dielectric constant, and the wavelength. In the cases where the 

particle size is much smaller than the wavelength, i.e. clay, silt, and sand soil particles, Rayleigh 

approximation can be used to express the scattering, extinction, and absorption coefficients 

(Tsang et al., 2000; Ulaby et al., 1981; Mätzler, 1998). It is an approximation of Mie equations 

and can expressed by only the first two terms of the Mie series (Ulaby et al., 1981; Mätzler, 

1998) 

 

𝜉௦ =
଼

ଷ
𝜒ସ|𝐾|ଶ      (5.3) 

𝜉௘ = 𝜒 𝐼𝑚(−𝐾) +
଼

ଷ
𝜒ସ|𝐾|ଶ     (5.4) 

𝜉௔ = 𝜉௘ − 𝜉௦       (5.5) 

 

where 𝜉𝑠, 𝜉𝑒, and 𝜉𝑏, are the scattering, extinction, and backscattering efficiencies, respectively, 

and 
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𝐾 =
௡మିଵ

௡మାଶ
       (5.6) 

𝜒 =  
ଶగ௥೛

ఒ
ඥ𝜖௕

ᇱ        (5.7) 

𝑛 =
௡೛

௡್
       (5.8) 

 

In the equations above, 𝜆 is free space wavenumber, 𝑟𝑝 is the radius of the point scatterer, 

𝜖𝑏
′  is the real part of the dielectric constant of the background, 𝑛𝑝 and 𝑛𝑏 are complex indices of 

refraction of the scatterer and the background, and 𝑛 is the ratio of the two refraction indices. 

The expressions in equation (5.2) are valid only for |𝑛𝜒| ≪ 0.5 (Tsang et al., 2000; Ulaby 

et al., 1981). Consequently, for L-band radar measurements, the Rayleigh approximation is 

always valid for medium and small grains, i.e. sand, silt, and clay, even with large dielectric 

constants of the soil. For larger grain sizes, e.g. gravel, depending on the dielectric constant, the 

assumption may not always be satisfied. Once the dielectric constant of the soil increases, the 

indicator|𝑛𝜒| gradually increases to reach values larger than 0.5 (see equations (5.6) and (5.7)). 

For C-band measurements, depending on the dielectric constant of the medium, the Rayleigh 

approximation may not be applicable even for medium grain sizes. In such cases, Mie equations 

(Ulaby et al., 1981; Mätzler, 2002; Bohren and Huffman, 1983), which involve no 

approximations, should be used instead.  

Using Mie solutions, the scattering, extinction, and backscattering efficiencies and 

scattered complex amplitudes are expressed in the form of converging series (Ulaby et al., 1981; 

Mätzler, 2002; Bohren and Huffman, 1983) 
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𝜉௦ =
ଶ

ఞమ
∑ (2𝑘 + 1)(|𝑎௞|ଶ + |𝑏௞|ଶ)ஶ

௞ୀଵ              (5.9) 

𝜉௘ =
ଶ

ఞమ
∑ (2𝑘 + 1)𝑅𝑒(𝑎௞ + 𝑏௞)ஶ

௞ୀଵ                (5.10) 

𝜉௕ =
ଵ

ఞమ
|∑ (2𝑘 + 1)(−1)௞(𝑎௞ − 𝑏௞)ஶ

௞ୀଵ |ଶ     (5.11) 

 

𝑆ଵ (ୡ୭ୱ ఏ) = ∑
ଶ௞ାଵ

௞(௞ାଵ)
(𝑎௞𝜋௞ + 𝑏௞𝜏௞)ஶ

௞ୀଵ               (5.12) 

𝑆ଶ (ୡ୭ୱ ఏ) = ∑
ଶ௞ାଵ

௞(௞ାଵ)
(𝑎௞𝜏௞ + 𝑏௞𝜋௞)ஶ

௞ୀଵ               (5.13) 

 

where 𝑆1 and 𝑆2 are the scattered complex amplitudes for perpendicular and parallel polarized 

waves, respectively. In the equation above, 𝜃 is the scattering angle, 𝜋𝑘 and 𝜏𝑘 are functions of 𝜃 

and 𝑛, and finally 𝑎𝑘 and 𝑏𝑘 are known as the Mie coefficients. The equations for the coefficients 

are not repeated here, instead interested readers are referred to (Ulaby et al., 1981; Mätzler, 

2002; Bohren and Huffman, 1983) and the references therein for more details about the 

coefficients and strategies to calculate them.  

Once the Mie efficiencies are calculated, the volume cross sections (𝑚2/𝑚3) are 

obtained by summing cross sections (𝑚2) over 𝑁𝑣 (𝑚−3) particles per unit volume  

 

𝜅௦ = ∑ 𝑄௦(𝑟௞) = ∑ 𝜉௦(𝑟௞) × 𝜋𝑟௞
ଶேೡ

௞ୀଵ
ேೡ
௞ୀଵ     (5.14) 

𝜅௘ = ∑ 𝑄௘(𝑟௞) = ∑ 𝜉௘(𝑟௞) × 𝜋𝑟௞
ଶேೡ

௞ୀଵ
ேೡ
௞ୀଵ     (5.15) 
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where 𝜅𝑠 and 𝜅𝑒 are volume scattering cross section and volume extinction cross section, 

respectively, and 𝑁𝑣 is the number of point scatterers embedded in the soil. The volume 

absorption coefficient is related to absorption constant of the medium 𝛼 by 𝜅𝑎 = 2𝛼 (Ulaby et 

al., 1981). The extinction coefficient 𝜅𝑒 includes the scattering coefficient 𝜅𝑠 and absorption 

coefficient 𝜅𝑎 of dielectric medium (Fung, 1994; Ulaby et al., 1986; Liu et al., 2016) 

 

𝑘𝑒 = 𝑘𝑠 + 𝑘𝑎      (5.16) 

 

 

Figure 5.1. Mie volume scattering and absorption cross sections for different grain sizes. 

Figure 5.1 shows the plot of Mie volume scattering and volume extinction cross sections 

(see equations (5.14) and (5.15)) for different grain sizes. It can be seen that Mie volume 

scattering cross section, plotted in logarithmic coordinates in figure 5.1, increases by enlarging 

the size of grains. For example, the Mie volume scattering cross section of a grain with the size 
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of 10 mm is about 1000 times larger than that of a grain with the size of 1 mm (figure 5.1). This 

means that the scattering of gravel grains with the radius of 1 cm occupying only 1% of a soil’s 

solid volume is 10 times larger than the scattering of background grains with grain size of 1 mm 

occupying 99% of the total solid volume.  

Unlike the volume scattering cross section, the volume extinction function is almost 

independent of grain size, at least for the range of sizes we study in this paper, i.e. up to a few 

centimeters. This means that the signal scattered by the soil volume is dominated by larger grains 

and that the contribution of smaller grains becomes negligible if large grains exist in the soil. 

However, all grains, regardless of their size, equally contribute to the absorption.  

 
5.3 Simulating Results 

5.31 Constant soil moisture profile 

Here we provide simulation results for soils with different structures and soil moisture 

changes. In our model, the soil volume is assumed to a collection of randomly distributed point 

scatterers, i.e. larger grains, embedded in a lossy dielectric medium, i.e. finer grains. Without 

loss of generality, we assume a soil with 𝑁ഥ 𝑣 point scatterers of the same size 𝑟𝑝 occupying 𝑓𝑠 

percent of the soil’s total volume  

 

𝑁ഥ௩ =
ଷ௙ೞ 

ସగ௥೛
య      (5.17) 
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where 𝑓𝑠 is the fraction of the total volume occupied by the scattering soil particles. Then, we 

calculate soil moisture-induced interferometric phase and SAR intensity changes over the soil 

with different 𝑟𝑝 and 𝑓𝑠 values. The dielectric constant of wet soil was calculated using 

Hallikainen mixing model (Hallikainen et al., 1985). By increasing soil moisture, water fills the 

free spaces between the particles in the porous background. This increases the dielectric constant 

of the background. Unlike the porous background, large grains can only be wrapped by a layer of 

water. The thickness of the water layer increases by increasing soil moisture and its maximum 

thickness is related to the size of the free spaces, i.e. voids between background grains. To 

estimate the dielectric constant of a grain wrapped by a layer of water we used Maxwell-Garnett 

(Maxwell-Garnett, 1904) mixing equation (Sihvola, 1999) 

 

𝜀௘௙௙ = 𝜀଴ + 3𝑓𝜀଴
ఌೞିఌబ

ఌೞାଶఌబି௙(ఌೞିఌబ)
      (5.18) 

 

where 𝑓 =
௩ೞ

௩ೞା௩೗
 is the volume fraction of the solid grain, 𝜀௘௙௙ is the effective dielectric constant, 

𝜀଴ is the dielectric constant of water, 𝜀ୱ is the dielectric constant of the grain, 𝑣௦ is the volume of 

the grain, and 𝑣௟ is the value of the water layer. It should be noted that unlike the dielectric 

constant of the background, the dielectric constant of the larger grains, i.e. scatterers, slightly 

increase because the thickness of the water layer, which is related to the dimension of the free 

spaces, is much smaller than the size of scatterers.  

Figure 5.2 shows modeled interferometric phase and intensity changes for different soils 

as a function of 𝑟𝑝 and 𝑓௦ (see equations (5.1) and (5.2)). It can be seen that the intensity is 
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proportional to the volume geometric cross section, i.e. 𝜎𝑔 = 𝜋𝑟𝑝
2𝑁ഥ 𝑣, whereas phase change is 

proportional to 1/𝜎௚.  

5.3.2 Variable soil moisture profile 

Constant soil moisture profile has been assumed to derive equation (5.1). This means that 

the attenuation and phase constants of the soil are independent of depth. However, with variable 

soil moisture profiles the attenuation and phase constants become functions of depth and we can 

rewrite equation (5.1) as 

 

𝒖 = ෍ 𝑒ି௝ଶ௞ 𝑡ଵ,ଶ 𝑡ଶ,ଵ 𝑠௜ 𝑒
ିଶ ∫

ఈ
ୡ୭ୱ (ఏೝ)

ௗ௭ᇲ೥
బ 𝑒ି௝ଶ(௞బ௬೔ ୱ୧୬(ఏೝ))

ே

௜ୀଵ

 

 𝑒ିଶ௝ ∫ ఉ ୡ୭ୱ(ఏೝ)ௗ௭ᇲ೥
బ 𝑊௔(𝑥௜)𝑊௥(𝑦௜ sin(𝜃௥) − 𝑛 cos(𝜃௥)𝑧௜)    (5.19) 

 

Figure 5.3 shows modeled SAR intensity and interferometric phase over a soil with 

different soil moisture profiles. The soil is loam containing 1.5% gravel grains of average radius 

of 2.5 cm. The soil moisture values at the surface are in the range of 0 and 0.50 and linearly 

changes with depth until it becomes 0.40 at depth 40 cm. In order to generate interferometric 

phases, we assume the master image to have variable soil moisture profile with the value of 0.10 

at surface and 0.40 at the depth 40 cm. The results show that the depth-resolved and depth-

averaged backscattered intensities are almost equal when shallow depths hold large soil 

moisture. Note that depth-resolved means a profile of variable soil moisture whereas depth-

averaged indicates a constant soil moisture profile. However, by decreasing the soil moisture 
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values at shallow depths, the depth-averaged intensities take larger values compared to the depth-

resolved intensity. Similar results can be seen in phase changes where larger difference between 

depth-resolved and depth-averaged phase changes can be observed at smaller soil moisture 

values. 

 

 

Figure 5.2. L-band soil moisture-induced SAR intensity changes and InSAR phase changes for 
different soil structures and different soil moisture changes.  
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Figure 5.3. L-band soil moisture induced SAR intensity and phase changes for uniform and 
variable soil moisture profiles. 

5.4 Discussion 

There are two main steps in modeling soil moisture induced intensity and phase changes 

of a single-looked pixel on a SAR image. The first step is to model the dielectric medium (soil 

here) and the second step is to estimate intensity and phase changes due to changes in soil 

moisture. Most of the models introduced so far model soil as a continuous scattering medium 

(Zwieback et al., 2015; De Zan et al., 2014). The models then use a cross correlation between 

two soils with different soil moisture values to estimate the phase change. The model introduced 
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in this paper, however, differs in strategy from previous models in two ways. The first is that the 

model in this work considers the soil to be a discrete dielectric medium. The second lies in the 

approach we used to estimate the soil moisture-induced intensity and phase changes. The 

previous models aim to model the cross correlation between two single-looked pixels. In 

contrast, the model in this paper is a SAR based model that directly quantify SAR intensity of a 

single-looked pixel as a function of soil moisture. It also calculates phase change of a SAR pixel 

as a function of soil moisture.  

5.4.1 Modeling dielectric medium (soil)  

Generally, there are two main approaches that can be used to model a scattering object in 

order to estimate the phase and intensity changes. The first approach is to consider the scattering 

object as a collection of discrete scatterers embedded in a dielectric medium. In this model, the 

contribution of a single scatterer to the scattered signal is a function of its size, position and 

dielectric constant of the scatterer and the medium’s dielectric constant. The second approach is 

to assume the scattering object as a continuous medium. The total signal in the case of 

continuous medium is expressed as a coherent sum of correlation among pairs of infinitesimal 

slabs along the vertical direction. This mathematically implies that every infinitesimal particle of 

the entire soil profile acts like a scattering object. The model neglects the influence of the 

structure of soil, i.e. the dimensions and distribution of scatterers, on the scattered signal. 

However, as explained in the previous section, the backscattering of a scatterer is a function of 

its size (Ulaby et al., 1981). Figure 5.4 shows such a relationship between grain size and Mie 

scattering cross section. The relationship between a scatterer’s size and its backscattering, 

illustrated in figure 5.1 and figure 5.4, indicates that the scatterers’ size should be considered in 

the models. It also indicates that a small grain’s contribution to the total signal is negligible 
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compared to the contribution of a larger grain in the models. However, all grains, regardless of 

their sizes, equally contribute to the absorption. This means that scattering is a function of 

scatterer size and absorption is independent of it. Therefore, considering these, we have modeled 

the soil as a collection of discrete coarse scatterers embedded in an attenuating dielectric 

medium.  

5.4.2 Estimating intensity and phase changes 

Once the dielectric medium, i.e. soil, is modeled as a collection of scatterers, the soil 

moisture-induced intensity and phase changes can be estimated by exploiting a model. Imagine 

that n scatterers, i.e. 𝑎ଵ,ଵ𝑒௝ఝభ,భ , 𝑎ଵ,ଶ𝑒௝ఝభ,మ , … , 𝑎ଵ,୬𝑒௝ఝభ,౤, are within the single-looked pixel 𝒖𝟏 on 

the first image where 𝑎1,𝑖 and 𝜑1,𝑖 are the amplitude and phase of the scattered signal of the ith 

scatterer. Now imagine that changes happened in soil moisture. This in turn leads to the changes 

in the amplitudes and phases of the scatterers. Therefore, for the same pixel on the second image, 

the backscattering values of the scatterers are 𝑎ଶ,ଵ𝑒௝ఝమ,భ , 𝑎ଶ,ଶ𝑒௝ఝమ,మ , … , 𝑎ଶ,୬𝑒௝ఝమ,౤. Now a model 

should be exploited to quantify phase change of the single-looked pixel between the two SAR 

images due to soil moisture change. The common approach in the literature has been applying a 

cross correlation between the two scattering objects, i.e. soil here. Therefore, the phase change 

can be calculated by 

 

∅ଵ,ଶ = arg ൬∑ 𝑎ଵ,௜
௡
௜ୀଵ 𝑎ଶ,௜

௘
ೕകమ,೔

௘
ೕകభ,೔

൰            (5.20) 
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Note that SAR images are not generated in this approach and phase change is estimated 

from two modeled scattering objects by exploiting cross-correlation. Cross-correlation is a 

common approach to estimate interferometric phase in multi-looking process. However, the 

performance of cross correlation applied in modeling scattering objects is different from that of 

cross correlation conducted in multi-looking processing aiming to improve phase estimation. In 

multi-looking processing, the single-looked pixels in the multi-looking window on the first 

image are multiplied to the complex conjugate of the equivalent single-looked pixels on the 

second image. Here, however, cross-correlation is conducted between the stable point scatterers 

within the first single-looked pixel and the point scatterers within the second single-looked pixel. 

This means that the scatterers within the single-looked pixel on the first image are multiplied to 

the complex conjugate of the equivalent scatterers on the second image. 

We argue here that applying cross-correlation to model soil moisture-induced phase 

changes cause phase artifacts. Since the amplitudes of the equivalent single-looked pixels are 

multiplied (see equation (5.20)), using cross-correlation in multi-looking process, weaker pixels, 

i.e. pixels with smaller amplitude and noises, have less influence on the estimated multi-looked 

phase. Thus, multi-looking improves phase estimation by decreasing the influence of weaker 

pixels. Unlike this, cross-correlation, however, can lead to biased phase estimations when it is 

exploited for dielectric mediums, e.g. soil. Soil is loosy dielectric medium, the phase of a 

scatterer increases by increasing its depth whereas its amplitude decreases at the same time. In 

this case, weaker scatterers, i.e. deeper scatterers with smaller amplitudes, are associated with 

larger phases. This means that by applying cross-correlation, scatterers with larger phases have 

less influence on the estimated phase. Since this effect increases by increasing soil moisture 

changes, phase curves tends to saturate at higher soil moisture changes. Saturated phase curves 
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have been documented in previous models (Zwieback et al., 2015; De Zan et al., 2014) in which 

cross-correlation has been used to model soil moisture induced interferometric phase.  

Another consequence is non-zero closure phase for single-looked pixels, which has been 

documented in previous models (Zwieback et al., 2015; De Zan et al., 2014). Note that closure 

phase of single-looked pixels is zero in observations. This effect is similar to phase artifact in 

multi-looking process and interested readers are referenced to Molan et al., 2020, for more 

details about the multi-looking artifacts. We also notice that, in practice, unlike the cross-

correlation approach, we use SAR images to generate interferograms since the signals of the 

single point scatterers within the soil volume are not available separately. 

In this paper, instead of applying cross-correlation, we first model SAR pixel and then 

calculate the phase and intensity changes between SAR images with different soil moisture 

values. A single pixel on a SAR image is a vector summation of the signals of single scatterers 

within the resolution cell 

 

𝒖௝ = ∑ 𝑎௝,௜𝑒
௝ఝೕ,೔௡

௜ୀଵ       (5.21) 

 

Then, the interferometric phase of two single-looked pixels on SAR images is simply calculated 

by subtracting the phase of first SAR image from the phase of the second image  

 

∅ଵ,ଶ = 𝜑ଶ − 𝜑ଵ = arg ൬
∑ ௔మ,೔௘

ೕകమ,೔೙
೔సభ

∑ ௔భ,೔௘
ೕകభ,೔೙

೔సభ

൰    (5.22) 
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Here, one may argue that a shallower scatterer with larger amplitude contributes to a 

SAR pixel’s signal more than a deeper scatterer with smaller amplitude, alike the aforementioned 

case in cross-correlation. However, it should be noted that the influence of amplitude on 

interferometric phase between two acquisitions decreases because amplitude appears in the 

denominator as well as the numerator of the equation (5.22).  On the other hand, as it can be seen 

in equation (5.20), the counterbalancing of amplitude influence doesn’t happen in cross-

correlation. Instead, cross-correlation increases the influence of the amplitude by multiplying the 

amplitudes. 

5.4.3 Negative slope on SAR intensity curves  

One of the features, which is occasionally observed on SAR intensity curves is inverse 

relation between soil moisture and backscatter for small soil moisture values, e.g. mv<0.10. This 

phenomena is thought to be due to a decrease in the subsurface scattering and an increase in 

surface scattering upon wetting (Barrett et al., 2009; Liu et al., 2016). However, not all intensity 

curves feature such a negative slope for small soil moisture values, indicating that this may not 

the case. We argue that the negative slope appears when the dielectric constant of the dry 

background, e.g. silt, sand, and clay, is smaller than the dielectric constant of point scatterers, 

e.g. gravel sized grains. The porous background has smaller dielectric constant compared to the 

individual larger soil particle due to the smaller dry bulk density. As the background soil absorbs 

water, its dielectric constant increases and gets closer to the dielectric constant of the point 

scatterers, resulting in decreased backscatter at their interface. The backscattering then increases 

upon more wetting. Figure 5.4 shows the Mie backscattering (see equation (5.11)) of point 

scatters with dielectric constant of 3.3 embedded in a background with dielectric constant of 2.5 
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at dry condition. As it can be observed on the plot, backscattering decreases at first and then 

increase upon more wetting.  

 

 

Figure 5.4. Mie backscattering for different soil moisture values and different particle sizes. 𝑀௩ 
is volumetric soil moisture (ratio of soil volume occupied by water). 

5.5 Evaluation 

To evaluate our model, we choose ALOS PALSAR data over Idaho where in-situ soil 

moisture measurements are available at the Orchard Range SCAN station 

(https://www.wcc.nrcs.usda.gov/). Co-registered SLC images are used to generate multi-looked 

interferograms with 6 and 3 looks in azimuth and range, respectively. Table 5.1 provides the 

dates of the SAR images. The path and frame numbers are 208 and 860, respectively. The 

topographic phase is simulated using the Digital Elevation Model (DEM) of Shuttle Radar 

Topography Mission (SRTM) with 1 arc-second spatial resolution and is then removed from the 

interferograms. After removing those interferograms with low coherence over the soil moisture 

station, a total of 87 remaining interferograms are selected. The perpendicular baseline of the 
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selected interferograms ranges between 12 m and 1970 m and the maximum temporal baseline is 

1196 days.  

 

 

Figure 5.5. The modeled and observed interferometric phases at point (a) with grain size of 2.8 
cm and volume fraction of 3.6 percent, and point (b) with grain size of 2.75 cm and volume 

fraction of 5.2 percent. 
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No. date No. date No. date 

1 2007-07-05 7 2008-07-07 13 2010-05-28 

2 2007-08-20 8 2009-01-07 14 2010-07-13 

3 2007-11-20 9 2009-07-10 15 2010-08-28 

4 2008-01-05 10 2009-10-10 16 2010-10-13 

5 2008-04-06 11 2010-01-10 17 2011-02-28 

6 2008-05-22 12 2010-04-12   

Table 5.1. The date (yyyy-mm-dd) of the SLC images. 

Figure 5.5 illustrates the comparison between our model and the model introduced by De 

Zan et al., 2014, with observed interferometric phases at two pixels around the station where soil 

moisture measurements are available. The model introduced in De Zan et al., 2014, has been 

used for soil moisture estimations and later revised by Zwieback et al., 2017, to accommodate 

depth variable soil moisture cases. This model assumes the temporal changes in soil moisture to 

be the primary influential factor. Hence, it doesn’t consider the influence of soil’s structure on 

InSAR phase changes. Therefore, unlike our model, its estimated phase for (a) and (b) cases (see 

figure 5.5) are the same regardless of their different phase behaviors due to different soil 

structures. In figure 5.6, the modeled intensity is compared with the observed intensity. Also, in 

figure 5.7, intensity changes are compared with the observed intensity changes. The plots show 

that our model is very successful in estimation of InSAR phase and SAR intensity. By fitting the 

modeled phase and intensity values to the observed intensity and phase values (see figure 5.6 and 

figure 5.7), the grain sizes of 2.8 and 2.75 cm with volume fractions of 3.6 and 5.2 percent, 

respectively for (a) and (b) are estimated. The dielectric constant of the scatterers is also 
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estimated to be 2.7 and the maximum layer of water that wraps larger grains is estimated to be 

1.1 mm.   

Upon wetting, the replacement of air within free spaces of soil by water increases the 

dielectric constant of the soil. The increase in dielectric constant corresponds to an increase in 

the wavenumber in the soil. This means that the wave fronts propagating in the soil become 

closer as soil becomes wetter. However, soil moisture contribution to the final signal received by 

antenna appertain more to soil structure. Generally, as the density of scatters increases, the 

magnitude of scattered waves at shallower depths increase and relatively smaller portion of the 

wave has the chance to reach deeper depths and gain larger phase changes. This is because a 

wave backscattered by a scatterer at depth 10 cm, for instance, experiences twice larger phase 

changes compared to a wave backscattered by a scatterer located at depth 5 cm in a 

homogeneous medium. On this account, soil moisture-induced InSAR phase change decreases 

by increasing the volume fraction and/or size of the scatterers. At the same time, however, the 

backscattered intensity increases as the volume fraction and/or size of the scatterers increases. 

This fact can be observed in our model’s results shown in figure 5.2 and also in figures 5.5 and 

5.6, which feature the comparison between real and modeled phase and intensity changes. It can 

be seen that the intensity is proportional to the volume geometric cross section whereas phase 

change is inversely proportional to it. In other words, pixels with smaller volume geometric cross 

section are associated with larger soil moisture-induced phase changes and smaller intensities. 

Theoretically, a pixel can take large phases (say 2 rad. and even larger) however, in practice, 

such pixels are difficult to study since the intensity gets closer to the noise equivalent signal zero 

(NESZ). Therefore, the largest detectable soil moisture-induced phase changes is relevant to 

NESZ of the data. 
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Figure 5.6. The modeled and observed SAR intensity. 

Three measurements exhibit very high values on intensity plots (figure 5.6), indicating a 

strong change in the backscattering property of the soil. The observed out-of-range values (figure 

5.6) are so high that even fully saturated soil could not generate such a strong backscattering. 

Therefore, the mechanism that leads to the high values of intensity could not be elucidated 

considering soil moisture changes solely. Instead, we attribute this to the change in the structure 

of soil due to freezing. The weather record over the study area indicates that the soil 
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temperatures of the three measurements are below 0°C. The dielectric constant of ice, which is 

about 3.2, is very close to the dielectric constant of soil particles. When soil freezes, the pore ice 

bonds soil particle together, resulting in a larger almost homogenous scatterer. The change in the 

structure of the soil due to freezing decorrelates the backscattered signals (Molan et al., 2018b), 

leading to low coherence between frozen and non-frozen soils. In this case where the coherence 

is low, intensity changes can be potentially used for analyzing the radar responses of frozen soil. 

However, we don’t cover this issue in this research as it is beyond the scope of this research. 

 

 

Figure 5.7. The modeled and observed SAR intensity changes. 

5.6 Conclusion 

Unlike previous models, which are only applicable for either intensity or phase 

estimations, our volume scattering model successfully estimates SAR intensity changes as well 

as InSAR phase changes.  Also, while previous interferometric models provide phase changes 

due to soil moisture changes, they don’t take into the account the structure of the soil, i.e. soil 

particle size and distribution. The model introduced in this paper models the soil as a discrete 
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dielectric constant medium with larger scatterers embedded within a finer grain background of 

soil. It takes into account the scatterers’ sizes and their volumetric fraction. This may open new 

window in the study of soil structure using SAR and InSAR methods. 

The volume scattering models so far have been used along with surface models to 

estimate soil moisture-induced SAR intensity changes. Based on this hypothesis, the negative 

slope on intensity curves is attributed to volume scattering, which decreases by increasing soil 

moisture. The volume scattering model provided in this study, however, is successful in 

estimation of SAR intensity changes.  

The model in this work predicts reverse relationship between soil moisture changes and 

SAR intensity changes for small soil moisture values. We attribute this to the difference between 

the dielectric constants of dense point scatterers and porous dry background.  

The previous models lead to non-zero phase triplets for single focused pixels, which is 

zero in real world and also in our model. This is because the models don’t generate SAR images 

and instead, they apply a cross-correlation to estimate phase changes from modelled pixels. 
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CHAPTER 6

SOIL MOISTURE INDUCED PHASE, COHERENCE, AND CLOSURE PHASE CHANGES. 

Molan, Y.E., and Lu, Z. 2020. Can InSAR Coherence and Closure phase be used to estimate soil 
moisture changes? Remote Sensing. 

6.1 Introduction 

InSAR can remotely sense mm to cm scale surface deformation with a high spatial 

resolution of tens of meters or better (Massonnet and Feigl, 1998; Bürgmann et al., 2000; Simons 

et al., 2007). InSAR has been used successfully to map surface deformations associated with 

different mechanisms, such as landslides, sinkholes, volcanism, subsidence, and permafrost (Lu 

and Dzurisin, 2014; Ferretti et al., 2001; Molan et al., 2018; Rykhus and Lu, 2008; Liu et al., 

2010). Two SAR images of the same area with the same looking angle taken at different times 

can be used to generate an interferogram. After removing topographic phase, orbital, and 

atmospheric phase artifacts, the phase of an interferogram represents the deformation between 

two images in the line of sight direction. Between the two image acquisitions of an 

interferogram, however, soil moisture may have also changed. The change in water content 

contributes to InSAR phase and SAR intensity changes (Molan and Lu, 2020a). This, in turn, can 

influence inferred deformation and potentially affect InSAR coherence.  
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Soil moisture is a key variable in many agricultural and environmental studies, and plays 

a vital role in the terrestrial water cycle, exchange of energy, and carbon fluxes between the 

atmosphere and the land surface (Hirschi et al., 2006; Liang et al., 2014; Seneviratne et al., 

2004). Also, some terrestrial processes and subsequent movements are in a close relationship 

with the changes in soil moisture. For example, rapid snowmelt or heavy precipitation can trigger 

sudden landslides (Cardinali et al., 2000). Groundwater conditions can be indicated by soil 

moisture condition (Robinson and Campbell, 2008). Also, soil moisture is closely related to 

permafrost thawing and deformation (Molan et al., 2018; Rykhus and Lu, 2008; Liu et al., 2010).  

Many studies have been introduced to estimate soil moisture changes using InSAR phase 

and SAR intensity (De Zan et al., 2014, 2015; Zwieback et al., 2015, 2016; Molan et al., 2018b; 

Hoekstra and Delaney, 1974; Hallikainen et al., 1985). However, soil moisture estimation using 

InSAR phase has encountered difficulties and uncertainties. The spatial and temporal 

variabilities of soil moisture, unlike deformation, are complex (Hensley et al., 2011). In many 

cases, soil moisture varies abruptly, for example, across boundaries of different land cover types 

or two agricultural fields. Therefore, it is not always correlated spatially (Zwieback et al., 2015; 

Hensley et al., 2011). Temporal variability of soil moisture is also complex due to, for example, 

precipitation and seasonal effects (Hensley et al., 2011). In addition, intensity and phase 

contribution of non-soil moisture changes cannot be easily distinguished from the soil moisture 

signal. Despite these difficulties, complex SAR images have been used to estimate soil moisture 

[e.g. De Zan et al., 2015; Zwieback et al., 2015; Hensley et al., 2011).  

In order to avoid the difficulties in estimating soil moisture using InSAR phase, recently, 

some studies have introduced approaches to estimate soil moisture using closure phase. By 

assuming that closure phase has contributions from the magnitude of soil moisture changes, 
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Zwieback et al. (2017) tried to establish approaches to estimate soil moisture using closure phase 

and InSAR coherence. Closure phase (a.k.a. phase triplet) is the combination of three 

interferograms generated from three SAR images. The phase of the single-looked interferogram 

pairing the first and the third SAR images equals the summation of the phases of the two 

intermediate single-looked interferograms. This means non-zero phase triplet does not exist in 

single-looked pixels (Molan et al., 2020). For multi-looked pixels, however, closure phase has 

non-zero values (Zwieback et al., 2017; Molan et al., 2020; De Zan and Gomba, 2018). Some 

studies have discussed the possible causes of non-zero phase triplet. De Zan et al. (2015) argued 

that non-zero phase triplet could happen due to interference of different scatterer populations 

with independent phase behaviors. The authors associated closure phase to the changes in the 

water content of soil and vegetation. Also, Zwieback et al. (2015) argued that deformations do 

not cause non-zero phase triplet. The authors suggested that non-random effects of decorrelation 

noise, non-zero spatial baselines, and the change in dielectric constant can potentially cause 

phase inconsistency (De Zan et al., 2015; Zwieback et al., 2015).  

In contrast to the hypothesis that the magnitude of changes contributes to closure phase 

(Zwieback et al., 2017; De Zan and Gomba, 2018), a new study showed that closure phase is 

independent from the magnitude of changes (Molan et al., 2020). Using analytical and statistical 

approaches, Molan et al. (2020) studied the influence of the statistical properties of intensity and 

phase of single-looked pixels on multi-looked phase and coherence. The authors showed that 

closure phase is related to the heterogeneity of intensity and phase changes and is independent of 

the magnitude of changes. In this letter, we study the influence of soil moisture changes on 

closure phase and coherence of multi-looked pixels. We aim to answer the question whether 

closure phase or InSAR coherence can be used to estimate soil moisture changes.  
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To study the relationship between soil moisture changes and InSAR coherence and 

closure phase, we generated semi-synthetic interferograms with variable soil moisture changes 

between the images. Using an analytical soil moisture model (Molan and Lu, 2020), the soil 

moisture values were converted to their corresponding intensity and phase changes. The intensity 

and phase changes were applied to the real pixels to generate synthetic pixels. Finally, semi-

synthetic interferograms were generated using the real and synthetic pixels. The results from 

synthetic data showed that multi-looked phase artifact, decorrelation, and closure phase increase 

by increasing the standard deviation of soil moisture changes within the multi-look window. We 

show that, compared to soil moisture changes, non-soil moisture changes can lead to larger 

decorrelation and closure phase values. To confirm the results of synthetic data, we used phase 

and coherence images generated from real SAR images of L-band ALOS PALSAR over two 

study areas in Idaho and Oregon. It is also shown that heterogeneity of phase changes, 

decorrelation, and closure phase are correlated with each other and with land cover type. We 

conclude that, in general, closure phase and InSAR coherence are independent of the magnitude 

of soil moisture changes and are inappropriate tools to estimate soil moisture changes.  

The rest of this letter is structured as follows: Section 6.2 describes the method to 

generate semi-synthetic interferograms; Section 6.3 provides the results generated from synthetic 

and real SAR images; Section 6.4 provides a discussion on the results; conclusions appear 

in Section 6.5. 

 
6.2 Materials and Methods 

To investigate the effect of statistical characteristics of soil moisture changes on InSAR 

coherence, and closure phase, we exploit semi-synthetic interferograms. The first image of a 
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semi-synthetic interferogram 𝒖ଵ is a real single-looked SAR image containing p.q=n pixels. The 

second image 𝒖ଶ is synthetic data generated from the real data by applying a change vector 

∆𝒖ଵ,ଶ 

 

𝒖𝐣 = ቂ𝑢௝
(ଵ)

, 𝑢௝
(ଶ)

, … , 𝑢௝
(௡)

ቃ
ᇱ

, j = 1,2       (6.1) 

 

The intensity and phase changes of the change vector, respectively, are  

 

 ∆𝒅𝑩 = 𝑓ௗ஻(𝑀௩) +  ∆𝒅𝑩𝒊,  ∆𝜽 = 𝑓ఏ(𝑀௩) +  ∆𝜽𝒊     (6.2) 

 

where 𝑴௩ is the vector of soil moisture changes between the real and synthetic images  

 

𝑀௩ = ൣ𝑚(ଵ), 𝑚(ଶ), … , 𝑚(௡)൧′.      (6.3) 

 

In the equations above 𝑓ௗ஻(𝑴௩), and 𝑓ఏ(𝑴௩) are soil moisture dependent intensity and 

phase changes, respectively.  ∆𝒅𝑩௡௦ and ∆𝜽௡௦ indicate the intensity and phase changes 

associated with non-soil moisture changes between the two images, which in general include 

mechanical deformations, other artifacts, and noise.  
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In the literature, studies suggest a linear relationship between soil moisture changes and 

SAR intensity changes (e.g. Barrett et al., 2009). Also, a linear relationship between soil 

moisture changes and phase changes has been reported in the studies where statistical approaches 

have been conducted (e.g. Zwieback et al., 2015). Thus far, few analytical and statistical 

approaches have been introduced to quantify the relationship between soil moisture and SAR 

intensity or phase (Zwieback et al., 2016, 2017; Nolan et al., 2013; Zhang et al., 2008; Barrett et 

al., 2012; Hajnesk and Prats, 2008; Nesti et al., 1998, 2015; Rudant et al., 1996; Morrison et al., 

2011). The studies generally model either phase or intensity. In this letter, we use the analytical 

model developed by Molan and Lu (2020). The model uses Mie equations and successfully 

quantifies soil moisture induced SAR intensity and phase changes. It models soil as a collection 

of discrete coarse scatterers embedded in a background that is an attenuating dielectric medium 

comprised of finer soil grains. The signal of a focused single-looked pixel, in the model, is 

(Molan and Lu, 2020) 

 

𝑢 =

∑ 𝑒ି௝ଶ௞ோ𝑡ଵ,ଶ 𝑡ଶ,ଵ 𝑠௜ 𝑒
ିଶ ∫

ഀ

ౙ౥౩ (ഇೝ)
ௗ௭ᇲ೥

బ 𝑒ି௝ଶ(௞బ௬೔ ୱ୧୬(ఏೝ))ே
௜ୀଵ 𝑒ିଶ௝ ∫ ఉ ୡ୭ୱ(ఏೝ)ௗ௭ᇲ೥

బ 𝑊௔(𝑥௜)𝑊௥(𝑦௜ sin(𝜃௥) −

𝑛 cos(𝜃௥)𝑧௜)            (6.4) 

 

where 𝑢 is the phasor of the single looked pixel, i.e. the total backscattering from all scattering 

points within the pixel, 𝑛 is the refraction index of the soil medium, 𝜃௥ is the refracted angle, 𝑡௜,௝ 

is the one-way transmission coefficient of amplitude from medium i to medium j (Barrett et al., 

2009), 𝑅 is the range of the pixel, 𝛼 and 𝛽 are absorption and phase constants of the medium, 𝑘଴ 
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is free air wavenumber, and 𝑠௜ is the amplitude of the scattered wave by the scatterer. Also, 𝑊𝑎 

and 𝑊𝑟 are slant range and azimuth resolution functions for the single scatterer located at 

(𝑥𝑖, 𝑦𝑖, 𝑧𝑖). Figure 6.1 shows modeled intensity and phase changes calculated using equation 6.4. 

Without loss of generality, we assume that the soil background is loam that contains silt, clay, 

and sand. It also contains gravels with the grain size (𝑟௣) of 2.65 cm and volume fraction (𝑓௦) of 

1.0 percent. 

 

 
Figure 6.1. Intensity and phase changes of the soil. 𝑟௣ is the radius of the larger grains (main 

scatterers) and 𝑓௦ is the fractional volume of larger grains. 

Using equations 6.2 and 6.4, we can generate a synthetic image from a real image and a 

synthetic image with pre-defined soil moisture changes. The real image has n single looked 

pixels. The soil moisture differences between the real and the synthetic image 𝑴𝒗 is a random 

vector with pre-defined average ∆𝑚௩ and standard deviation 𝜎௠௩ values. Therefore, one soil 

moisture change 𝑀𝑣௜ is associated to each of the single-looked pixels in the first image 𝑢ଵ
(௜). The 

soil moisture changes are converted to the equivalent intensity and phase changes using equation 
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6.4. Then, the intensity and phase changes are applied to 𝑢ଵ
(௜) to generate 𝑢ଶ

(௜). After creating the 

synthetic image, an interferogram can be generated using the real and synthetic images. 

Therefore, by applying different values to the average and standard deviation of soil moisture 

changes and calculating the resulting phase and coherence changes, we can assess the influence 

of the statistical properties of soil moisture changes on InSAR phase and coherence. To compare 

the influence of soil moisture change with the effect of non-soil moisture changes, we first 

assume that the non-soil moisture changes are negligible. Then, we generate the second type of 

interferograms that have both soil moisture and non-soil moisture changes.   

 
 

6.3 Results 

6.3.1 Synthetic data 

The interferometric phase and coeherence are the angle and magnitude of  

 

𝛾 =
ா[𝒖𝟏𝒖𝟐

∗ ]

ඥா[|𝒖𝟏|మ]ா[|𝒖𝟐|మ]
     (6.5) 

 

To assess the influence of the statistical properties of soil moisture changes on InSAR phase and 

coherence, two types of interferograms are generated. For the first type of the interferograms, 

non-soil moisture changes are assumed to be zero. This means that  ∆𝒅𝑩௡௦ and ∆𝜽௡௦ in equation 

6.2 are zero and we have 
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 ∆𝒅𝑩 = 𝑓ௗ஻(𝑀௩), ∆𝜽 = 𝑓ఏ(𝑀௩)     (6.6) 

 

The intensity and phase changes associated with soil moisture changes, i.e. 𝑓ௗ஻(𝑴௩) and 

𝑓ఏ(𝑴௩), are calculated using equation 6.4. Then, 𝒖ଶ is calculated by applying the intensity and 

phase change to 𝒖ଵ and finally, an interferogram is generated using 𝒖ଵ and 𝒖ଶ. The average soil 

moisture changes of 0.05, 0.15, and 0.25 with the standard deviation in the range of 0.01-0.13 

were applied between the two images to generate interferograms. For each case with the same 

average and standard deviation, one thousand interferograms were generated. Figure 6.2 

illustrates the phase and coherence of the generated interferograms. In figure 6.2, each point on 

the solid phase lines is the average phase of one thousand interferograms with a specific ∆𝑚௩ 

and 𝜎௠௩. The same-color dashed lines show the average ± standard deviation of multi-looked 

phases of the interferograms. The average interferometric coherence values for those 

interferograms are also shown in figure 6.2. 

As stated previously, we considered zero non-soil moisture changes between the images 

to assess the influence of soil moisture changes of InSAR coherence and closure phase. Now, we 

generate the second type of semi-synthetic interferograms by applying non-soil moisture changes 

( ∆𝒅𝑩௡௦ and ∆𝜽௡௦) in addition to the soil moisture changes. Soil moisture changes lead to 

intensity and phase changes of SAR images. In general, the intensity and phase values increase 

by increasing soil moisture (see figure 6.1). In other words, dielectric constant changes due to 

soil moisture changes cause correlated intensity and phase changes. Unlike soil moisture 

changes, the intensity and phase changes of non-soil moisture changes are assumed to be 

uncorrelated.  
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In the second type of the interferograms, which include both soil moisture and non-soil 

moisture changes, the average intensity and phase of non-soil moisture changes are considered to 

be zero. The standard deviations of the intensity and phase changes are 4 dB and 0.75 radians, 

respectively. The soil moisture changes of the second type of interferograms are identical to the 

soil moisture changes of the first type. The multi-looked phase and coherence values are shown 

in figure 6.3. Similar to the first type of interferograms, we generated one thousand 

interferograms with the same average and standard deviation of changes for each case. Note that 

the influence of non-soil moisture changes is demonstrated by larger distance between the 

average plot (solid phase line) and the average ± standard deviation plot (dashed phase lines). 

The coherence plot of non-soil moisture cases is shown in figure 6.3, which dropped from 1.0 to 

0.68 at 𝜎௠௩ = 0. 

 

 

Figure 6.2. The phase and coherence changes due to the change in the standard deviation of soil-
moisture changes. 
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Figure 6.3. The phase and coherence changes due to the change in the average and standard 
deviation of soil-moisture changes and zero-mean random non-soil moisture change. 

Three images can generate three mutual interferograms and one phase triplet, which is 

calculated by subtracting the phase of the interferogram pairing the first and the last images from 

the summation of the phases of the two intermediate interferograms (De Zan et al., 2015; Molan 

et al., 2020) 

 

∅ሸ௜,௝,௞ =  ∅௜,௝ + ∅௝,௞ − ∅௜,௞      (6.7) 

 

We have used a pair of one real image and one synthetic image to generate the 

interferograms. Now, we can use one real image and two synthetic images to generate a closure 

phase image. We used the same strategy applied in the previous section to generate the semi-

synthetic interferograms. Figure 6.4 shows the closure phases generated using six different 
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combinations of soil moisture changes. In figure 6.4, each point on the image is the average 

value of one thousand closure phases with specific ∆𝑚௩,ଵ, ∆𝑚௩,ଶ, 𝜎௠௩,ଵ, and 𝜎௠௩,ଵ values. 

 
 

 

Figure 6.4. Closure phase due to different combination of soil moisture changes.  

The results in figure 6.4 were generated by assuming negligible non-soil moisture 

changes. The second type of closure phases were generated by applying both soil moisture and 

non-soil moisture changes between the images. We assumed that the non-soil moisture changes 

induce zero-mean intensity and phase changes with the standard deviations of 4 dB and 1.0 

radian, respectively. The results of the second type of closure phases are shown in figure 6.5. 
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Figure 6.5.  Closure phase (in radians) due to different combination of soil moisture changes and 
zero-mean random non-soil moisture change. 

6.3.2 Real data 

Our results from synthetic data showed that InSAR coherence and closure phase are 

functions of the standard deviation of soil moisture changes between images. Now, we use real 

SAR data over two areas in Oregon and Idaho to evaluate the results generated from the 

synthetic data. To this end, over each area, three co-registered SLC images (the three first images 

in table 6.1 and table 6.2) of L-band ALOS PALSAR have been used to generate multi-looked 

interferograms with 9 and 4 looks in azimuth and range, respectively. To simulate and remove 

the topographic phase from the interferograms, the Shuttle Radar Topography Mission (SRTM) 

Digital Elevation Model (DEM) with 1 arc-second spatial resolution was used. The images over 
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the area in Idaho are from ascending orbital path 208 and frame 860 and the images over the area 

in Oregon are from ascending orbital path 215 and frame 830. The data are in the fine beam and 

horizontal-horizontal (HH) polarization mode. Over each study area, from the three co-registered 

SLC images, three multi-looked interferograms, and three coherence images were generated. In 

addition, for each study area, three circular standard deviation images 𝑆௖ (Zar 2010), one for 

each interferogram, have been generated. The circular standard deviation of a multi-looked pixel 

is calculated by   

 

𝑆௖ = ට−2 lnห∑ exp (𝑗𝜃௜)௡
௜ୀଵ ห    (6.8) 

 

where i is the number of the single-looked pixel, n is the total number of single-looked pixels in 

the multi-looked window, and 𝜃௜ is phase change of the pixel i. For each area, the three multi-

looked interferograms were used to produce a closure phase image. Figures 6.6(a) and 6.7(a) 

show closure phase images. Similarly, the three circular standard deviation images were used to 

generate a standard deviation root mean square (RMS) image, i.e.   

 

𝑅𝑀𝑆௦ = ට
ଵ

ଷ
 (𝑆௖,ଵ

ଶ + 𝑆௖,ଶ
ଶ + 𝑆௖,ଷ

ଶ)     (6.9) 
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Figures 6.6(b) and 6.7(b) show standard deviation RMS images. The three coherence 

images were also used to generate the average coherence image R. Figures 6.6(c) and 6.7(c) 

show the average decorrelation images, i.e. 1-R.  

 

No. date No. date No. date No. date 

1 2007-07-05 4 2009-07-10 7 2010-05-28 10 2010-10-13 

2 2007-08-20 5 2009-10-10 8 2010-07-13 11 2011-02-28 

3 2007-11-20 6 2010-04-12 9 2010-08-28   

Table 6.1. The date (yyyy-mm-dd) of the SLC images over the study area in Idaho. 

No. date No. date No. date 

1 2007-08-01 2 2007-12-17 3 2008-03-18 

Table 6.2. The date (yyyy-mm-dd) of the SLC images over the study area in Oregon. 
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Figure 6.6. Closure phase (a), 𝑅𝑀𝑆௦ of phase changes (b), and average decorrelation (c) over the 

study area in Idaho. The study area is in red box on the optical image. 
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Figure 6.7. Closure phase (a), 𝑅𝑀𝑆௦ of phase changes (b), and average decorrelation (c) over the 

study area in Oregon. The study area is in red box on the optical image. 

6.4 Discussion 

Due to strong effects of decorrelations and noises, single-looked interferograms are 

noisy. Multi-looking, which averages adjacent pixels in complex interferograms, improves phase 

reliability by reducing noise.  (Ferretti et al., 2011; Goldstein et al., 1998)). It was shown, 

however, that the statistical properties of intensity and phase changes within a multi-look 

window influence interferometric phase and coherence (Molan et al., 2020). Molan et al. (2020) 
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showed that InSAR coherence and closure phase are associated with the heterogeneity of 

intensity and phase changes. In this letter, we assessed changes in InSAR phase, coherence, and 

closure phase due to change in the statistical properties of soil moisture changes using semi-

synthetic interferograms. Our results indicate that non-zero standard deviation of soil moisture 

changes within a multi-look window leads to decorrelation and non-zero closure phase. 

Regarding this, we discuss here whether InSAR phase, coherence, and closure phase can be used 

for soil moisture estimation.  

6.4.1 Soil moisture-induced multi-looked phase artifact and non-zero phase triplet 

Multi-looked InSAR phase has been used for soil moisture estimation. Multi-looked 

interferometric phase has contributions from physical changes as well as the statistical properties 

of the intensity and phase of single-looked pixels (Molan et al., 2020). In the case of soil 

moisture changes between two multi-looked pixels, the average and standard deviation of soil 

moisture changes contribute to physical and statistical phases, respectively.  

The results in figure 6.2 illustrate the average interferometric phase ∅, physical phase ∅௣, 

statistical phase (∅௦ = ∅ − ∅௣), and phase diversity. The solid and dashed lines, respectively, 

show the average and standard deviation of the interferometric phases. The physical phase ∅௣ in 

figure 6.2 is the interferometric phase at 𝜎௠௩ = 0 (the first point on the solid line), at which the 

statistical phase (∅௦) is zero. The average statistical phase ∅௦ is the phase difference between 

interferometric phase ∅ (the solid line) and the physical phase ∅௣ (the first point on the solid 

line).  

In figure 6.2, we show that the average statistical phase increases by increasing the 

standard deviation of soil moisture changes. However, soil moisture-induced phase diversity, i.e. 
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standard deviation, is negligible. Similar behavior of the average interferometric phase and 

statistical phase can be seen in figure 6.3, which illustrates the results of non-soil moisture cases. 

Also, the diversity of interferometric phases increases by increasing the standard deviation of soil 

moisture and non-soil moisture changes. However, non-soil moisture changes lead to larger 

diversity of phase changes compared to soil moisture changes (compare the dashed lines in 

figures 6.2 and 6.3).  

Considering the contribution of statistical phase, InSAR phase can be potentially used for 

soil moisture estimation if the magnitude of physical phase is meaningfully larger than the 

statistical phase. A thorough discussion of physical and statistical phase contributions on multi-

looked phase has been provided in Molan et al. (2020). However, as a general practical strategy, 

pixels with low coherence values should be avoided because low coherence pixels are associated 

with larger statistical phases. In other word, both decorrelation and multi-looked phase artifact 

(statistical phase) are functions of the standard deviation of changes (Molan et al., 2020). 

The results in figure 6.4 show that closure phase is zero only when 𝜎௠௩ between images 

is zero. It is shown in figure 6.4 that regardless of the magnitude of soil moisture changes, 

closure phase increases by increasing 𝜎௠௩. This indicates that closure phase is independent of the 

magnitude of changes and is an inappropriate means to estimate soil moisture changes. Also, a 

comparison between soil moisture and non-soil moisture results, illustrated, in figures 6.4 and 

6.5 respectively, shows that the closure phase values increase drastically by applying non-soil 

moisture changes. This is because non-soil moisture changes induce much larger phase diversity 

(see figures 6.2 and 6.3). The practical implication of this is that closure phase due to non-soil 

moisture changes can mask soil moisture-induced closure phase. The general conclusion that one 

can make is that closure phase, decorrelation, and phase diversity are smaller when the intensity 
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and phase changes are correlated, i.e. soil moisture-induced changes. The quantities increase 

drastically by increasing non-soil moisture changes, i.e. non-correlated intensity and phase 

changes. 

6.4.2 Soil moisture-induced decorrelation 

The results illustrated in figure 6.2 show that coherence decreases by increasing the 

standard deviation of soil moisture changes. It should be noted that the small changes in 

coherence and closure phase values of different soil moisture changes are due to non-linear 

relationships between soil moisture and the intensity and phase of single-looked pixels (see 

figure 6.1). Regarding the relationship between soil moisture changes and InSAR coherence, the 

main question is whether we can exploit InSAR coherence to estimate soil moisture changes. 

The results indicate that coherence, like closure phase, is a function of the standard deviation of 

changes and is independent of the magnitude of changes. Therefore, it cannot be directly used to 

estimate soil moisture. This conclusion is true except for those cases where the magnitude and 

diversity of soil moisture changes (dielectric constant changes in general) are correlated. It 

should be noted that the uncertainty of soil moisture estimation for the cases where the 

magnitude and diversity are correlated is related to the degree of association between the 

magnitude and diversity.  

In our study area in Idaho, we show an example to assess the correlation between the 

magnitude and diversity of changes. To do this, for each multi-looked pixel, we calculated the 

correlation coefficient between the magnitude and diversity of the phase of single-looked pixels 

within the multi-looked window. Over the study area in Idaho, eleven co-registered SLC images 

of L-band ALOS PALSAR (table 6.1) were used to generate 41 unwrapped multi-looked 

interferograms with 14 and 7 looks in azimuth and range. The processing approach to generate 
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unwrapped interferograms was explained earlier in section 3. For each interferogram, one 

standard deviation of phase changes within multi-looked pixels were calculated. Therefore, each 

multi-looked pixel has forty-one interferometric phase values and forty-one standard deviation 

values. Finally, for each multi-looked pixel, the correlation coefficient between the 

interferometric phase values and the standard deviation values was calculated. Figure 6.8 

illustrates the calculated correlation coefficient image. It shows that the correlation between the 

diversity and magnitude of phase changes is not strong, i.e. |𝑟| < 0.5.  

 
 

 
Figure 6.8. The correlation coefficient images over the study areas in Idaho. 

It should be noted that even with correlated magnitude and diversity of changes, soil 

moisture estimation using closure phase, if not impractical, will suffer from high uncertainty in 

the results. This is because, unlike coherence that is associated with the statistical properties of 

changes between one pair of images, closure phase has contribution from three interferograms, 

each with different statistical properties.  
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One other problem in using coherence to estimate soil moisture is related to the 

ambiguity in the orientation of soil moisture changes. An inferred soil moisture change can be 

assigned to both drying and wetting soils. This is even more complicated for closure phase 

because it combines three interferograms. Furthermore, it should be noted that soil moisture 

estimation using InSAR coherence and closure phase is even more challenging in practice. 

Coherence reduction and non-zero phase triplet due to non-soil moisture changes can bury the 

decorrelation and non-zero phase triplet of soil moisture changes. Figures 6.6 and 6.7 show 

optical images of our study areas. When comparing closure phase values over different land 

cover types, we see very small values over bare soil with drastic increases over vegetated areas 

and agricultural fields (figure 6.6). The standard deviation RMS and average decorrelation also 

show similar behaviors over different land cover types. The practical implication of this is that 

possible soil moisture signal in coherence and closure phase will be buried by the larger 

influence of vegetation.  

Yet, the effect of vegetation is not the only obscuring influence on soil moisture-induced 

decorrelation and closure phase. In figure 6.7, which shows the results over the study area in 

Oregon, decorrelation and closure phase are larger over unconsolidated sediments, i.e. the 

brighter area on the left side of the optical image. The area is covered by unconsolidated 

Quaternary surficial deposits (Walker et al., 1965). Although not vegetated, higher decorrelation, 

closure phase, and diversity values can be seen over the area. This is because surficial deposits 

can be easily moved by surface water that leads to increased phase diversity.  

6.5 Conclusion 

Our analysis showed that InSAR coherence and closure phase are functions of the 

diversity of soil moisture and non-soil moisture changes. The results of the synthetic data 
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illustrated that non-soil moisture changes have a larger influence on decorrelation and closure 

phase. The results of the real data confirm that compared to soil moisture changes, vegetation 

and surficial processes lead to much larger closure phase and decorrelations. It is also shown that 

closure phase and decorrelation are correlated with each other and with land cover type.  

By considering the results of the synthetic and real data, we conclude that coherence and 

closure phase are not appropriate tools for soil moisture estimation. However, over sparsely 

vegetated areas and bare soils with stable surface deposits, coherence can be associated with soil 

moisture changes if a strong correlation exists between the magnitude and diversity of soil 

moisture changes and if coherence reduction caused by other environmental factors are 

negligible. 
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CHAPTER 7

FINDINGS AND FUTURE WORK 

InSAR detected displacement can be systematically biased by the changes in soil 

moisture. Ordinary InSAR analyses rarely take into account soil moisture influences on InSAR 

phase, and coherence. However, soil moisture-induced uncompensated biases in the spatial and 

temporal patterns of InSAR detected displacement can limit its applicability and impacts its 

reliability and robustness. This dissertation illustrates analytical and statistical approaches to 

model the influence of soil moisture of InSAR phase and coherence. The highlights of the major 

chapters of this dissertation are summarized below. 

 

7.1 Highlights 

Chapter 3: Temporal coherence is usually modeled as a univariate exponential function 

of temporal baseline. The coherence models introduced so far have largely neglected the effect 

of the temporal change in backscattering on InSAR coherence. We introduced a new temporal 

decorrelation model that considers changes in surface backscattering by utilizing the relative 

change in SAR intensity between two images as a proxy for the change in surface scattering 

parameters. The model also takes into account the decorrelation due to the change in snow depth 

between two images. The improvements made by the model has been statistically proved to be 

significant with 99% confidence level.  
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Chapter 4: An analytical model for soil moisture-induced SAR intensity and InSAR 

phase changes is provided in this chapter. We quantified the influence of soil moisture on InSAR 

phase and SAR intensity by employing a volume scattering model. Our volume scattering model 

successfully estimates SAR intensity and InSAR phase changes due to soil moisture changes. In 

addition to soil moisture changes, the model also takes into account the scatterers’ size and their 

volumetric fraction. This may open new window in the studying of soil structure using SAR 

images and InSAR methods.  

Chapter 5: We study the influence of statistical properties of intensity and phase changes 

of single-looked pixels on multi-looked phase and coherence. By quantifying the extent of their 

influences on phase triplet, we showed that the statistical properties of intensity of pixels within a 

multi-looking window can induce changes in interferometric phase and coherence and contribute 

to non-zero closure phase. We demonstrate that the intensity induced changes increase by 

increasing the standard deviation of phase changes, dispersion index of intensity, and the 

correlation between intensity and phase changes. Our results show that closure phase is only a 

function of the statistical properties of the phase and intensity of pixels and does not possess the 

information about the magnitude of physical changes.  

Chapter 6: This work provides a statistical assessment of the influence of soil moisture 

on InSAR coherence and closure phase and answers the question whether or not InSAR 

coherence and closure phase can be used for soil moisture estimation. Our results show that the 

diversity of soil moisture values within the multi-look window gives rise to decorrelations, multi-

looked phase artifact, and consequently non-zero phase triplet. It is shown that decorrelation, and 

closure phase increase by increasing the diversity of soil moisture changes within the multi-look 

window. We showed that compared to soil moisture changes, non-soil moisture changes can lead 
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to larger decorrelations and closure phases. We concluded that closure phase and InSAR 

coherence are independent of the magnitude of soil moisture changes and are inappropriate tools 

to estimate soil moisture changes. 

 

7.2 Future Work  

Extending the L-band soil moisture model to C-, P-, and S-bands: The volumetric 

soil moisture model developed in Molan and Lu, 2020, is a function of wavelength. Therefore, it 

can be extended to C-, S, and P-bands. The model for C-band is, however, expected to have 

higher uncertainty. This is because surface backscattering and surface temporal change have 

greater influence on smaller wavelengths. This leads to greater contribution of the surface 

backscattering to the received signal. 

Developing analytical models to estimate and remove InSAR phase change due to 

the changes in vegetation water content: The analytical soil moisture model developed in 

this dissertation can estimate soil moisture-induced phase changes. It, however, does not estimate 

the phase changes due to the change in vegetation water content. The structure of the scattering 

medium can be re-modeled and modified for a vegetation layer. Modeling the structure of 

scatterers embedded in a vegetation layer is the most challenging task to deal. 

Developing statistical models to estimate and remove surface moisture-induced 

phase changes: The analytical model that can quantify soil moisture-induced phase 

changes should also be modified to estimate phase changes due to the change in the water 

content of vegetation layer. In practice, however, both soil and vegetation have contributions to 

InSAR phase and un-mixing the two phase changes is demanding if no ancillary data are 
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available. With adequate measurement of the soil moisture and vegetation water content during 

image acquisitions, a statistical model can be developed to estimate surface moisture-induced 

phase and also to un-mix soil and vegetation phases.   

Estimating surface moisture-induced phase using SAR intensity change: The change 

in surface moisture, i.e. soil moisture and water content of vegetation, changes SAR intensity as 

well as InSAR phase. Therefore, using intensity change as a proxy for phase change can provide 

an estimation of the phase change. A time-series can be developed to use SAR 

backscattering intensity to separate intensity-independent phase changes from intensity-

dependent phase change. 
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