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We discuss how the Fast Multipole Method (FMM) applied to a boundary concentrated

mesh can be used to evaluate volume potentials that arise in the boundary element method.

If h is the meshwidth near the boundary, then the algorithm can compute the potential in

nearly O(h−2) operations while maintaining an O(hp), p is order of expansion, convergence

of the error. The effectiveness of the algorithms are demonstrated by computing boundary

integral equations of the Poisson equation −∆φ = f in a domain Ω ⊂ R3 with Dirichlet

boundary conditions φ = g on Γ = ∂Ω. Our approach is based on the representation of the

solution as a combination of the single layer potential and the Newton potential, specifically

φ(x) =

∫
Γ

G(x, y)q(y) ds(y) +

∫
Ω

G(x, y)f(y)dy,

where G(x, y) is the Green’s function, and q(y) is surface density. For the discretization of

the domain we consider a boundary concentrated subdivision of Ω into tetrahedra. That is,

the tetrahedra on the boundary have diameters of size O(h) and the size of the tetrahedra

increases linearly with the distance to the boundary. In this setting there are O(h−2) tetra-

hedra in Ω and O(h−2) faces that make up the boundary. To our knowledge, this is the first

time that an algorithm with O(h−2) has been thoroughly studied in the literature. In the

Galerkin method the function q is approximated by piecewise polynomial functions subject

to a triangulation of Γ, in our case this triangulation consists of the boundary faces of the
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tetrahedra. This results in a linear system Ahqh = gh − bh, where

Ah(i, j) =

∫
Γ

∫
Γ

G(x, y)ϕi(x)ϕj(y) ds(y)ds(x),

and

bh(i) =

∫
Γ

∫
Ω

G(x, y)ϕi(x)f(y) dyds(x), gh(i) =

∫
Γ

ϕi(x)g(x)ds(x) .

Here, ϕi is a basis function of the finite element space on the boundary, and f is a given

volume function. When solving the linear system we have to compute matrix vector products

with Ah and bh. For the matrix Ah, standard fast methods, such as the Fast Multipole

Method, are available to compute the matrix vector multiplication in nearly optimal O(h−2)

operations. The new contribution of this work is to derive a nearly optimal algorithm for

constructing the right hand side in nearlyO(h−2) operations. Thus, solutions of the Poisson’s

equation can also be obtained in nearly O(h−2) operations. Here ”nearly” means that the

complexity estimate may contain additional logarithmic factors of O(h−1).
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Chapter 1

Introduction

1.1. General Overview

The Poisson equation is one of the mathematical models that plays an important role

in the mathematical simulation for of several physical phenomena for instance, particle -

particle interactions inside periodic system, potential field, mass density distributions, and

electrostatic field etc. [11].

Finding fast and accurate method for solving the model problem sometime is challenging

in particular in complicated three-dimensional geometries. Therefore, accurate, efficient, rig-

orous, and fast methods for computing the solution of such models are in high demands. Not

only the solution, but also its gradient and curl have physical importance [1, 37, 29]. Recently,

several fast and accurate methods have been proposed and demonstrated for computing the

solution of Poisson’s equation in complex and possibly multi-connected geometries, such as,

Fast Multipole Method (FMM) after translating the model into second kind boundary in-

tegral equation (SKIE) [40], and an Adaptive Fast Multipole Accelerated Poisson solver [1]

by decomposing the model into Laplace equation and particular model that does not satisfy

given boundary condition of the original model. Also, one of the most powerful method is

integral equation techniques which can be used to compute the solution of the model inside

complex geometries, and it can lead to accurate result even though the generated dense

matrix needs memory allocation which is considered to be one of the disadvantage of the

method [38]. However, evaluating Poisson’s problem of multi-connected region or domain

with singular interfaces(complex geometries) is more challenge, and it is a critical task be-

cause of the isolated singularities located on the interface which needs special treatment to

maintenance stability and accuracy of the method used [34]. In fact, there are several numer-
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ical techniques developed to handle interface problems, for instance, the Immersed Interface

Method(IIM) and Matched Interface and Boundary Method(MIB) which are based deriva-

tive, whereas the others are integral equation based scheme used to overcome a complex

geometries[34, 42, 43]. For instance, the integral scheme used in [1] handled the Poisson’s

equation by decomposing it into two model problems which are Laplace equation with the

Poisson’s original data and non-homogeneous that not satisfies the proper boundary con-

ditions in general. In this case, there are a lot of fast and accurate methods available can

be used to deal with Laplace equation and compute particular solution (φNH) [21, 19, 10].

In [10, 15] a grid adaptive and FMM method is used to compute the solution for the Pois-

son’s problem on simple geometries, while on the other hand in [16, 25, 26] the Poisson’s

equation is solved on complex geometries using FMM - accelerated quadrature, but it based

on uniform grids. However, T. Askham and A.J. Cerfon in[1] proposed an adaptive FMM

- accelerated Poisson solver for 2D complex geometries Ω which generated by embedding

the domain Ω in a square domain ΩB, with the help of potential theoretic, the solution of

Poisson decomposed into particular solution which computed on the artificial square domain

mentioned above following [14] and solution of Laplace equation.Also, its worth mention-

ing here that the volume integral in [1] computed by extending (extrapolate f) the source

function f such that be smooth beyond the domain Ω using global function extrapolation in

the same manner of[34] with different context; however, this may not guarantee smoothness

near the original domain Ω. The purpose of our work is to propose a new version of fast

Galerkin boundary integral equation method for the potential equation in three dimensional

3D geometries. The main improvements in this work over the aforementioned papers are:

– Instead of using a subdivision of the domain into cubes, we use a much more flexible

subdivision of Ω into a tetrahedral boundary concentrated subdivision. This eliminates

the need to extend the function f beyond Ω. This is a great improvement since it is

difficult in general to construct this extension in a stable way.

– We show both analytically and numerically that the asymptotic cost of constructing

a volume potential is the same as the cost for a surface potential. Only with this
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feature the BEM approach for solving PDEs with inhomogeneous right hand sides is

competitive with the more standard BEM discretization.

The details about how volume potentials arise in boundary integral equations are presented

in the next sections. Also, we will review some existing approaches that used to compute

the potentials and comparing them with our proposed method.

1.2. Potential Theoretic Approaches to Poisson’s Equation

Boundary integral reformulation of inhomogeneous PDEs give rise boundary integral

equations where the right hand side involves a volume integral. To illustrate this, consider

the Poisson equation with Dirichlet boundary conditions in a bounded domain Ω ⊂ R3 with

boundary surface Γ = ∂Ω. For f ∈ H−1(Ω) and g ∈ H
1
2 (Γ) the problem is well posed in

φ ∈ H1(Ω). For more details we refer to the homographs [35, 31]

−∆φ = f, in Ω,

φ = g, on Γ.
(1.1)

A well known approach is to represent the solution φ as a combination of a boundary

and a volume integral

φ(x) = Ṽq(x) + Ñ f(x), x ∈ Ω, (1.2)

where q is an unknown surface density and V and N are the single-layer and the Newton

potential, defined by

Ṽq(x) =

∫
Γ

G(x,y)q(y) dsy ,

Ñ f(x) =

∫
Ω

G(x,y)f(y) dy.

The kernel G(·, ·) is the free space Green’s function of the PDE, which in the case of the

Poisson equation is

G(x,y) =
1

4π

1

|x− y| .

As customary, a tilde indicates that the operators are evaluated in the domain, whereas the

operator without the tilde indicates the evaluation on the boundary. It follows from the
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well known jump relations of layer and volume potentials that Vq = γ0Ṽq and N f = γ0Ñ f ,

where γ0 denotes the boundary trace. Taking the trace in (1.2) then leads to a boundary

integral equation on Γ where the right hand side involves a volume integral over Ω

Vq(x) = g(x)−N f(x), x ∈ Γ. (1.3)

This equation is well posed and q ∈ H− 1
2 (Γ). An alternative to the indirect formulation (1.3)

is the direct formulation which is based on the Green’s representation formula

V ∂u
∂n

=

(
1

2
+K

)
g +N f, on Γ, (1.4)

where K is the double layer potential

Kg(x) =

∫
Γ

∂

∂ny

G(x,y)g(y) dsy.

and also involves evaluating the Newton potential, see [35, 31]

1.3. Complexity of Homogeneous PDE

If the PDE (1.1) is homogeneous (i.e., f = 0), then the Newton potential disappears in

(1.3) and (1.4), and the integral equation only involves quantities on the boundary surface. If

we use a standard approximation scheme, e.g., the Galerkin method where q is approximated

by a piecewise polynomial function on a triangulation of Γ then we obtain a linear system

with O(h−2) unknowns.Here h is the meshsize. For BEM discretizations, the matrices are

dense, but there is an abundance of methods to nevertheless compute a matrix-vector product

in O(h−2) or nearly O(h−2) operations. Here and in the following ’nearly’ means that the

complexity estimate includes terms that grow logarithmically in h−1. These methods include

wavelets [41, 39], H-matrices and the Fast multipole method, see, e.g.,[13, 6, 8, 40].

1.4. Complexity of Inhomogeneous PDE

For non-homogeneous equations the Newton potential appears and requires an efficient

algorithm for its evaluation. This has generated considerable interest in the past [2]. The

4



straight forward approach is to uniformly refine the domain Ω into O(h−3) tetrahedra of

side length h and to evaluate the potential on O(h−2) boundary patches. Of course, the

aforementioned fast evaluation methods can be adopted to accelerate the computations.

However, since O(h−3) sources have to be evaluated on O(h−2) targets the cost for this

operation scales at least like O(h−3), hence this operation will asymptotically dominate the

overall cost of the numerical solution of (1.4).

There are several papers that have appeared to solve the Poisson equation using volume

potentials[9, 27, 1, 36, 17]. The commonly used approach is to embed Ω in a cube and extend

the function f into the cube. The subdivision into cubes enables fast numerical schemes that

rely on FMM accelerations. While the algorithms described in these papers differ in several

aspects, they all rely on a uniform subdivision of the domain Ω in O(h−3) cubical cells, and

therefore require O(h−3) time and storage.

1.5. Intro BC Refinement

In this work we will pursue a different approach, that is focused on reducing the com-

plexity of representing the function f . To that end, we consider a boundary concentrated

subdivision of Ω such a refinement has been previously used in finite element calculation

[28, 5], but it is new in context of volume potential. In a boundary concentrated subdivision

the domain Ω is subdivided into tetrahedra of variable site. Tetrahedra near the boundary

have diameter proportional to h and diameter of interior tetrahedrons increased linearly with

the distance from the boundary surface. Since there are larger tetrahedra in the interior than

near the boundary, the number of tetrahedra is O(h−2). We will construct a new version

of the FMM algorithm to approximately evaluate the potential of the non-uniform volume

triangulation on the uniform boundary triangulation with O(h−2) cost. Here the involved

constants depend on the desired accuracy which in turn is controlled by the expansion order

of the approximation of the kernel by a Taylor (or multipole) expansion. By adjusting the

order to the level of the hierarchical decomposition of Ω, we will show that the error can be

bounded by O(h−p) by increasing the complexity by only logarithmically growing factors.
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1.6. Application Where Volume Potential Arise

The Newton potential arise in many physical problems. We conclude this chapter by

display some of these application in which the Newton potential appears, and it is crucial

to have an efficient numerical method to compute such problems. We refer to the following

applications:

1. The Lippmann-Schwinger Equation:

The propagation of time harmonic acoustic waves is described by Helmholtz equation

∆u+ κ2nu = 0, in R3, (1.5)

r(
∂us

∂r
− iκus)→ 0, r = |x| → ∞,

where n is refractive index and κ is number of waves. The equation (1.5) is equivalent

to

∆u(x) + κ2u(x) = κ2a(x)u(x), (1.6)

when a := 1 − n has compact support.The Green’s function of the equation (1.5) is

given by

G(x,y) =
exp(iκ |x− y|)

4π |x− y| .

The solution u describes both the amplitude and the phase of the time harmonic wave.

The total field is decomposed into reflected and income field such that

u = uinc + uref .

The income wave uinc satisfies the free space Helmholtz equation (1.5) thus,

∆uref + κ2uref = κ2a(x)u(x), x ∈ R3, (1.7)

Using the Green’s theorem and the Newton potential, it can be shown that the scat-

tering problem (1.5) can be reformulated into the integral equation of the second kind

u(x) = uinc(x)− κ2

∫
Ω

G(x,y)a(y)u(y)dy. (1.8)
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This is the Lippmann Schwinger Equation which involves a volume potential. In [22] is

shown that this is well posed problem. Numerical methods to solve (1.8) are described

in [20, 30]. Also, the numerical method presented in this dissertation provide an

alternative approach to compute the volume potential, that has the potential for better

scaling and applicability to handle a large class of contrasts a(x).

2. Poisson-Boltzmann Equation:

Describes the electrostatic potential of ions in a diffuse layer. This is important for

modeling semiconductor devices [24] and biological macromolecules [33].Consider, for

instance, a MOFSET transistor. The electric potential φ satisfies the Poisson’s equa-

tion within the semiconductor

∆φ =
q

εs
(n− p−D), (1.9)

where q = initial electron charge, εs = the permittivity of silicon, n, p = the mobile

electron and hole densities, respectively, and D = the concentration of ionized impuri-

ties. Thus, n = ni exp( φ
VT

) and p = ni exp(− φ
VT

) hence we arrive at the nonlinear the

Poisson equation:

∆φ− qni
εs

sinh(
φ

VT
) = − q

εs
D. (1.10)

If the field strength are small, then the linearization is a sufficiently accurate approxi-

mation:

∆φ− qni
εsVT

φ = − q
εs
D. (1.11)

This equation is supplemented with Dirichlet Conditions on the contact, and homoge-

neous Neumann conditions at the rest of the transistor. Again, this equation can be

reformulated into IE involved the volume potentials. This proposed numerical method

is optimal to compute the emerged potentials efficiency.
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Chapter 2

The BEM Homogeneous and Inhomogeneous PDE

In chapter 1, we have introduced the Poisson equation. Also, we exhibited some numerical

techniques that used to compute such kind Dirichlet boundary problems. Especially, we

showed how the volume potential arise in the boundary integral equation after reformulating

the PDE.

This chapter gives a more detailed description of boundary element method, and we

will give a comprehensive basic terminology of elementary functional analysis and function

spaces. Only in very few cases solutions of a PDE can be computed analytically, which

is why it is important to develop and improve numerical techniques for such computing.

Moreover, there is no generic numerical method that can be used to compute and analyze

all of the problems. Therefore, we need to develop special method for doing specific tasks.

For instance, homogeneous problems can be reformulated to boundary integral equations,

combined with a fast solver they can achieve O(h−2) complexity. Furthermore, we have seen

that for inhomogeneous equations the volume integrals lead to O(h−3) complexity. Thus the

boundary integral approach has the same complexity as direct discretizations of the PDE.

The Boundary Element Method is a discretization method of boundary integral equations.

The BEM uses elements and nodes on the boundary mesh only. Because of this reduction

the method has advantages for solving engineering [4, 3, 7], physical, and natural problems.

In addition, it is more accurate compared to the other numerical tools like FEM.

In this chapter we discuss two different ways to formulate a PDE into a boundary integral

equations. The direct and indirect method, we then give some functional analysis background

and discuss the Galerkin method, which is based on the variational formulated of the BIEs.
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2.1. BEM Reformulations of Laplace and Poisson Equation

The boundary element method can be applied efficiently to homogeneous boundary value

problems. However, if the BVP is inhomogeneous, the problem must be transformed into a

homogeneous model by using the Newton potential. As we mentioned in the Chapter 1 the

Newton potential Ñ f can solve the equation (1.1). But, in general this potential will not

satisfy the boundary conditions. Consequently, the Newton Potential is considered special

solution for the Poisson equation with which we will decompose the equation (1.1) into two

models; homogeneous and inhomogeneous. Then, the solution of the Poisson equation will

be combination of solution of both models Ṽq + Ñ f . In general BEM classified into two

formulas which are:

2.1.1. Direct BIE

The Direct BIE is based on Green’s representation formula. It states that a solution of

the Poisson equation (1.1) can be expressed explicitly in terms of surface potentials of the

boundary data and volume potential of the inhomogeneity.

φ(x) =

∫
Γ

G(x,y)
∂φ(y)

∂ny

dsy −
∫

Γ

∂G(x,y)

∂ny

φ(y)dsy +

∫
Ω

G(x,y)f(y)dy, x ∈ Ω. (2.1)

Equation (2.1) can be written in the form of layer and volume potentials

φ(x) = Ṽ ∂φ
∂n
− K̃φ+ Ñ f(x), x ∈ Ω, (2.2)

where Ṽ ,K̃, and Ñ are called the single layer, the double layer, and the Newton potential

respectively. For x ∈ Ω, they are defined of the form

Ṽq(x) =

∫
Γ

G(x,y)q(y) dsy,

K̃φ(x) =

∫
Γ

∂G(x,y)

∂ny

φ(y) dsy,

Ñ f(x) =

∫
Ω

G(x,y)f(y)dy,

the function q(y) is surface density, and it is defined as q(y) = ∂φ(y)
∂ny

and G is the Green’s

function:

G(x,y) =
1

4π

1

|x− y| . (2.3)
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Note that for x ∈ Ω the distance of x and y is positive and therefore the integrands are

smooth functions. If x ∈ Γ, then we write V ,K,N . In this case the Green’s function is of

O(1
r
) and weakly singular at r = 0. For a smooth surface even the double layer is weakly

singular because (x− y) · ny = O(|x− y|2) see [22].

The relation ship of the operators with a tilde to the ones without tilde follows from the well

known jump relations of layer potentials and volume potentials. They are given by

lim
x→Γ.
Ṽq(x) = Vq(x),

lim
x→Γ.
K̃φ(x) = ±1

2
φ(x) +Kφ(x),

lim
x→Γ.
Ñ f(x) = N f(x),

see [22]. By taking traces in equation (2.2) following the boundary integral equation on Γ

can be derived

1

2
φ(x) = Vq(x)−Kφ(x) +N f(x), x ∈ Γ. (2.4)

2.1.2. Indirect BIE

Without using the Green’s identities, we can use the fundamental solution to construct

the boundary integral equation. However, the constructed density function in this case does

no relate to the boundary data of the solution. For that reason it is called indirect BIE.

Also, one of the advantage of this formula its cost. In fact, it is less expensive than direct

BIE since the double layer potential does not appear in the formulation. To that end, we

start with a combined single layer potential and volume potential

φ(x) =

∫
Γ

G(x,y)q(y)dsy +

∫
Ω

G(x,y)f(y)dy, x ∈ Ω, (2.5)

which is equivalent to

φ(x) = Ṽq(x) + Ñ f(x), ∀x ∈ Ω, (2.6)

where q is unknown density and Vq(x) and N f(x) are single layer and Newton potentials,

which were defined in the previous section. Because of the properties of layer potentials, we
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see that for x ∈ Ω

−∆φ = ∆Ṽq(x) + ∆Ñ f(x) = 0 + f = f.

.

Applying the jump relations of the layer potentials in the integral equation (2.6) leads to

a boundary integral equation on Γ

g(x) = Vq(x) +N f(x), x ∈ Γ, (2.7)

where g(x) is the Dirichlet boundary condition. If the source function f = 0, the Newton

potential will vanish. Therefore, N f(x) = 0 in the previous sections, and the equations (2.4)

and (2.7) are direct and indirect formula for Laplace equation.

2.2. Well Posedness of IE in Proper Function Spaces

We present some fundamental spaces and function analysis that relevant to the BEM,

and we need them later when we describe the proposed new Fast Algorithm. More details

can be found in e.g., [31]

• Continuous function spaces

Let K ∈ N0 and let Ω ⊂ Rd be domain, the space CK(Ω) is called the K time

differentiable continuous function on Ω, and ∂αf can be extended as a continuous

function on Ω̄ ∀ 0 ≤ |α| ≤ K . The space C∞(Ω̄) := ∩Ck(Ω̄) ∀K ∈ N0 is the space

of all infinitely differentiable functions.

• Space of L2(Ω)

Is a Hilbert space with inner product 〈φ, ψ〉0,Ω = 〈φ, ψ〉L2(Ω) =
∫

Ω
φ(x) ¯ψ(x)dx

• Sobolev Space

Let Ω ⊂ Rd be a bounded domain. for all l = 0, 1, 2, ... the Sobolev space H l(Ω) is

given by

H l(Ω) := {φ ∈ L2(Ω) : and ∂αφ ∈ L2(Ω) ∀|α| ≤ l}.
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Remark: If the functions φ and ψ in H l(Ω) then the inner product is defined as

〈φ, ψ〉H`(Ω) =
∑
|α|≤l

〈∂αφ, ∂αψ〉 =
∑
|α|≤l

∫
Ω

∂αφ∂αψdx.

For ` ≥ 0 the space H−`(Ω) is the dual of H`(Ω) with respect to the L2(Ω) duality

pairing. For boundary integral equations, we need Sobolev spaces of boundaries Γ :=

∂Ω of domains. Also, to be Lipschitz domain, we need l ≤ k for space of k times

differentiable and continuous.

For our purpose, we need L2(Γ) the space of square integrable functions on Γ which

has the inner product

〈φ, ψ〉L2(Γ) =

∫
Γ

φ(x)ψ(`)ds(`).

In addition, we need the space H
1
2 (Γ) which is the trace space of H1(Ω) and the space

H−
1
2 (Γ) which is the dual space of H

1
2 (Γ) with respect to the L2(Γ) duality pairing.

2.3. Variational Formulation and Galerkin Discretization

The Galerkin approximation method is one of the powerful discretization for the boundary

integral equations (2.4) and (2.7) because Galerkin Method is based on variational forms of

the integral equation. Find ∂φ
∂n
∈ H 1

2〈
φ,V ∂φ

∂n

〉
=

∫
Γ

∫
Γ

G(x,y)φ(x)
∂φ(y)

∂ny

dsxdsy, ∀φ ∈ H 1
2 ,

and

〈φ,Vq〉 =

∫
Γ

∫
Γ

G(x,y)φ(x)q(y)dsxdsy, ∀φ ∈ H 1
2 .

There it enables a complete error analysis in Sobolev spaces described above. Alternative

approaches like collocation and Nyström methods can only be analyzed in more special set-

tings [22]. The Galerkin method is considered the most stable approximation tools among all

other available discretization methods [7]. We briefly describe the Galerkin discretization of
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these equations. It is well known that for f ∈ H−1(Ω) and the Dirichlet condition g ∈ H 1
2 (Ω)

the integral equation is well posed in q ∈ H− 1
2 (Ω). For simplicity of exposition we assume

that Ω ⊂ R3 is a polyhedron Ω ⊂ R3 that is subdivided into a small number of coarsest level

tetrahedra ω. In chapter 5 we will give more detail how the volume triangulation is obtained.

Restricting this triangulation on the boundary surface results in a triangulation of Γ, where

we assume that the triangulation is quasi-uniform with meshwidth h. The finite element

space Sh consists of piecewise polynomial functions on each triangle γ of the boundary tri-

angulation. The basis functions of Sh are denoted by φk and are the usual box-functions,

hat-functions, and so on. The Galerkin discretization of (2.7) reads: find qh ∈ Sh such that

〈φk,Vqh〉 = 〈φk, g〉 − 〈φk,N f〉 ,

where 〈·, ·〉 is the L2-inner product on Γ and k runs through all basis functions. Since qh is

a linear combination of all φk’s this leads to a linear system

V q = g − b, (2.8)

where q is the vector of coefficients in the expansion of qh in the basis, and the coefficients

of g, V , and b are given by gk = 〈φk, g〉, Vk` = 〈φk,Vφ`〉, and bk = 〈φk,N f〉 respectively.

Also, the Galerkin discretization of the equation (2.4) is of the form

〈φk,Vqh〉 = 〈φk, ψ〉 − 〈φk,N f〉 , ψ = (
1

2
+K)g.

This leads to the same linear system (2.8) with different coefficients of g where gk = 〈φk, ψ〉.
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Chapter 3

Numerical Quadrature for Singular Face-Face and Face-Tetrahedron Integrals

To construct the linear system (2.8) using direct or indirect BIEs, we must compute the

layer and volume potentials after applying Galerkin discretization. the coefficients 〈φk,Vφ`〉,
and the volume potentials 〈φk,N f〉 must be computed.There are some challenges associated

with the construction of the matrix V , and the vector b through the integrals (5.4) and (5.3).

First, accurate quadrature need to be used efficiency. Second, since the matrix V is dense,

the construction and memory allocation cost is O(h−4). Finally, the integrand function is

not smooth when both x and y intersect on the boundary surface, and this intersection could

be in one, two, or three vertices. The numerical quadrature of layer potentials is defined

on a pair of reference panels px × py, while the quadrature of volume potentials is defined

on panel and tetrahedron px × τy. The integrand function of both the layer and volume are

not smooth when a panel px intersect with a panel py or a tetrahedron τy. For the use of

two panels there are transformations that map the integral over px × py to an integral over

the four dimensional unit cube [0, 1]4, see [31]. These construction is reviewed in section

3.1. This will motivate our new transformation from px × τy to [0, 1]5. This is discussed

in section 3.2. In all cases, the transformed integrals are smooth and can be calculated by

tensor-product Gauss quadrature.

3.1. Spatial Coordinates

For simplicity we combine layer potentials in one compact formula like introduced in [38].

Kf(x) =

∫
Γ

∂κ

∂nκy
G(|x− y|)f(y)dΓy. (3.1)

If κ = 0, K is single - layer potential, and it will be double layer potential if κ = 1. For the

Galerkin discretization, the equation (3.1) is multiplied by hat or box functions φi and then

14



integrated over the boundary Γ. Also, this discretization of the equation (3.1) introduces a

dense matrix with entries

Ki,j = 〈φi,Kφj〉 , ∀ 1 ≤ i, j ≤ N.

To compute the dense matrix K entries, we must do integration over a reference pair of

panels. In this case these panels could intersect in one, two, or there vertices. In another

words, we may have one common vertex, one common edge, or identical face(three com-

mon edges or vertices)[31]. If this interaction happens between faces on the surface, we will

have non-smooth integrand function. In this case, we need to employ or call spatial trans-

formations to eliminate the singularities. Below we summarize this technique from Sauter

[23, 31]. Later, we will modify this approach to remove the singularities when we have face

- tetrahedron interactions.

3.1.1. Surface Mesh Setting

Consider the boundary surface mesh of a domain in R3 which is curved triangular of the

surface Γ, if P represents as a panel on the surface, Γ =
⋃
i

Pi where each Pi is a parametric

image of the unit triangle,

σ(2) =
{
x̂ ∈ R2 : 0 ≤ x̂2 ≤ x̂1 ≤ 1

}
,

i.e.,

Pi =
{
Pi(x̂), x̂ ∈ σ(2),∀i

}
.

The vertices of surface triangulation elements are the parametric images of the points in 2D

(0, 0), (0, 1), and (1, 1) and the parametric images of the line segments (ξ, 0), (1, ξ) and (ξ, ξ),

ξ ∈ [0, 1] are the edges. In this work we always consider the parametric image of the origin

(0, 0) ∈ σ(2) is the intersection point between two panels Pi and Pj if they intersect in one

point. Otherwise, the affine transformation must be applied to rotate the triangle(panel)

such that the common vertex for both panels relocated at the origin[23]. Also, for the pa-

rameterization and triangulation we consider the following:
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• The intersection of two different triangular panels Pi ∩ Pj is either empty(in this

case we will have smooth integrand function, and we don’t need singularities removal

transformations), a common vertex or a common edge.

• If two panels intersect in a common vertex or edge, then they satisfy the cone condition.

For more info about this condition, see [31, 23].

• If Pi intersects with Pj in a common edge, then Pi(ξ, 0) = Pj(ξ, 0), ξ ∈ [0, 1].

Consider the surface panel Pi with vertices v0, v1, and v2, then a parametrization for

the panel is defined as the following:

Pi(x̂) = v0 + a1x̂1 + a2x̂2,

where a1 = v1 − v0 and a2 = v2 − v1 are edges of the panel Pi and x̂ ∈ σ(2).

3.1.2. Panels or Patches Interaction

We can observe that if panels Pi intersects with Pj, it could be a common vertex, a

common edge, or self identical panel. In this cases, we can make the following observations

about patches interactions:

• Self Panel, Pi = Pj if both panels are parameterized as above then in this case we will

have Pi(x̂)−Pj(ŷ) = a1(x̂1 − ŷ1) + a2(x̂2 − ŷ2)

• One common edge, then the distance between the panels above will be Pi(x̂)−Pj(ŷ) =

a1(x̂1 − ŷ1) + a2(x̂2) + a3(ŷ2) + v0

• One common vertex, then Pi(x̂)−Pj(ŷ) = a1(x̂1) + b1(ŷ1) + a2(x̂2) + b2(ŷ2)
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3.1.3. The Transformations

To approximate the entries of the matrix K , one needs to compute double numerical

integration over surface panels, and the singular nodes must be removed from integrand

function. The integrand functions will be non smooth when a pair of patches Pi and Pj

intersect. This intersection, could be identical panels, panels with common edges, or panels

with one common vertex. Otherwise, integrand functions is smooth if there is a positive

distance between two panels(no common vertex). Therefore, an elegant transformations have

been employed to treat the singularity, and the transformations classified as the following

the details here are retrieved from [32, 23]:

3.1.3.1. Identical or Self Panels

since Pi(x̂) = Pj(ŷ) are located on the same patch ∀ x̂, ŷ ∈ σ(2) in this case, the integrand

is singular, and the following transformation can be employed:

z1 = ŷ1 − x̂1, x̂1 = w1,

z2 = ŷ2 − x̂2, x̂2 = w2,

w1 = x̂1, ŷ1 = z1 + w1,

w2 = x̂2, ŷ2 = z2 + w2,

(3.2)

where

z = (z1, z2) ∈
6⋃

k=1

Dk.

See Figure 3.1 Buy using Duffy trick, each one of Dk ∀k ∈ {1, ..., 6} can be mapped on the

unit square. Also, the parameter w = (w1, w2) depends on the variable z. Thus,

z = ξRk(η1), z ∈ Dk, (ξ, η1) ∈ [0, 1]2,

w = vk + (1− ξ)

 η2

η2η3

 , (η2, η3) ∈ [0, 1]2.

Then, ∀k the following subdomain can be obtained, and it’s good to know that vk is the
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Figure 3.1: Domain of z - integration for the identical panels interactions during the numer-
ical integration process for non-smooth functions.

lower left corner.

R1 =

−η1

−1

 , v1 =

ξ
ξ

 ,
R2 =

−1

−η1

 , v2 =

 ξ

ξη1

 ,
R3 =

 −η1

1− η1

 , v3 =

ξ
0

 ,
R4 =

1− η1

−η1

 , v4 =

ξη1

ξη1

 ,
R5 =

 1

η1

 , v5 =

0

0

 ,
R6 =

η1

1

 , v6 =

ξ(1− η1)

0

 ,

(3.3)

with Jacobian Jk = ξ(1− ξ)2η2, ∀k ∈ {1, ..., 6}.
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3.1.3.2. Common Edge

The panels Pi and Pj have only common edges. For that, the transformations must be

defined as the following in order to smooth the integrand function when both x̂ and ŷ on

the same patches. where x̂ and ŷ ∈ σ(2)

z1 = ŷ1 − x̂1, x̂1 = w1,

z2 = ŷ2, x̂2 = z3,

z3 = x̂2, ŷ1 = z1 + w1,

w1 = x̂1, ŷ2 = z2,

(3.4)

1

0.8

0.6

0.4

0

0.2
-1

-0.5

0.2

0
00.5

1

0.4

0.6

0.8

1

Figure 3.2: Domain of z - integration for the panels- panels interactions with common during
the numerical integration process for non-smooth functions.

the variable z located inside the union of four polyhedra at the origin see Figure 3.2 ,

and w1 must be in the intersection such that

w1 ∈ [−z1, 1− z1] ∩ [0, 1],

z = (z1, z2, z3) ∈
4⋃

k=1

Dk,

each of the element Dk in the given domain can be mapped into the [0, 1]3 by using Duffy

trick such that:
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z = ξRk(η1, η2), z ∈ Dk, (ξ, η1, η2) ∈ [0, 1]3,

where Rk ∀k, w1, and the Jcobian Jk,∀k ∈ {1, .., 4} of the transformations for each case

defined as the following:

R1 =


−η1

1− η1

η2

 , w1 = ξ + (1− ξ)η3, J1 = (1− ξ)ξ2,

R2 =


−η1η2

(1− η1)η2

1

 , w1 = ξ + (1− ξ)η3, J2 = (1− ξ)ξ2η2,

R3 =


1− η1

η2

η1

 , w1 = (1− η1)ξ + (1− ξ)η3, J3 = (1− ξ)ξ2,

R4 =


η1η2

1

(1− η1)η2

 , w1 = (1− η1η2)ξ + (1− ξ)η3, J4 = (1− ξ)ξ2η2.

(3.5)

3.1.3.3. Common Vertex

when there is only one common vertex between the shape elements of two panels Pi and

Pj, there will be only two transformation to get rid from singularities. In this case simply

the parametrization can be written as the following:

z1 = x̂1,

z2 = x̂2,

z3 = ŷ2,

z4 = ŷ1,

(3.6)
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where the variable z domain is union of the zone D1 and D2 thus,

z ∈
2⋃

k=1

Dk,

D1 =

z :

0 ≤ z2 ≤ z1 ≤ 1

0 ≤ z4 ≤ z3 ≤ 1

z3 ≤ z1

 ,

D2 =

z :

0 ≤ z2 ≤ z1 ≤ 1

0 ≤ z4 ≤ z3 ≤ 1

z1 ≤ z3

 .

(3.7)

Thus,

z = ξRk(η1, η2, η3), z ∈ Dk, ∀ ξ, η1, η2 ∈ [0, 1]3

where

R1 =


1

η1

η2

η2η3


, R2 =


η2

η2η3

1

η1


, (3.8)

with Jacobian for both is Jk = ξ2η2, ∀k ∈ {1, 2}.

3.2. Computing Newton Potential

Consider the Galerkin discretization of the Newton or volume potentials that arises in

the direct and indirect BIEs (2.4) and (2.7) bi = 〈φi,N f〉 such that

bγ,i =

∫
γ

φi(x)

∫
Ω

G(x,y)f(y)dydsx. (3.9)

To construct the vector bi, we must compute integral through equation (3.9) in which the

exterior integral is running over the boundary surface element, while the interior is domain

integral. In this setting, the boundary concentrated subdivision of the Ω generates O(h−2)
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tetrahedra of domain reference elements andO(h−2) face that makes up the boundary surface

reference elements. The integrand function in the is not smooth, and it has singularities when

the surface panels intersect with the domain elements ”tetrahedra”. This singularities need

special treatment so that it can be removed. For this purpose, we have improved Spatial

Transformation to smooth the integrand function. Also, if a panel p on the boundary surface

element ΓP intersects with a tetrahedron τ in the Ωτ in one corner, it is considered without

loss of generality the corner vertex is parametric image of the origin (0, 0) ∈ σ(2) (σ(2) defined

in the chapter 2). If not, the affine transformations will be used to rotate the patches in the

origin, and the same procedure can be follow for common edges between p and τ . Next, we

will describe affine and spatial transformation, then both will be combined into the equation

(3.9) in order to compute the volume potential.

3.2.1. Spatial Transformation and Singularities removal

Considered the boundary surface Γ = ∂Ω ⊂ R3 subdivided into a triangulation, such

that

Γ =
N⋃
p=1

Γp,

where each element in the Γp is image of unit triangle i.e

Γp = {Xp(x̂), x̂ ∈ σ(2)},

where σ(2) defined as the following:

σ(2) = {x̂ ∈ R2 : 0 ≤ x̂2 ≤ x̂1 ≤ 1},

the parametric images of the points (0, 0), (0, 1), and (1, 1) are the triangulation’s vertices,

while the line segments (ξ, 0), (1, ξ), and (ξ, ξ) are the edges. while y can be parameterized

as the following ŷ ∈ σ(3) where

Ω =
N⋃
q=1

τq,

each element in the τq is tetrahedron i.e

τq = {Yq(ŷ), ŷ ∈ σ(3)},

22



and σ(3) defined as the following:

σ(3) = {ŷ ∈ R3 : 0 ≤ ŷ3 ≤ ŷ2 ≤ ŷ1 ≤ 1}.

If a panel p intersects with a tetrahedron q, this intersection could be one vertex, one edge,

or identical on the tetrahedron face.

3.2.1.1. Three Common Edges

The panels p intersects or identical on one faces of a tetrahedron q.This means both have

the same edges, vertices, and the elements or particles x̂ = ŷ in the integrand function.

For x̂ ∈ σ(2), while ŷ ∈ σ(3).Since x̂ and ŷ are located on the same patch, the integrand is

singular, and the following transformation has employed:

z1 = ŷ1 − x̂1, x̂1 = w1,

z2 = ŷ2 − x̂2, x̂2 = w2,

w1 = x̂1, ŷ1 = z1 + w1,

w2 = x̂2, ŷ2 = z2 + w2 ; ŷ3 ≤ ŷ2,

(3.10)

where

z = (z1, z2) ∈
6⋃

k=1

Dk.

See Figure 3.1. Buy using Duffy trick, each one of Dk ∀k ∈ {1, ..., 6} can be mapped on the

unit square. Also, the parameter w = (w1,w2) depends on the variable z. Thus,

z = ξRk(η1), z ∈ Dk, (ξ, η1) ∈ [0, 1]2,

w = vk + (1− ξ)

 η2

η2η3

 , (η2, η3) ∈ [0, 1]2.

Then, ∀k the following subdomain can be obtained, and it’s good to know that vk is the
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lower left corner.

R1 =

−η1

−1

 , v1 =

ξ
ξ

 ,
R2 =

−1

−η1

 , v2 =

 ξ

ξη1

 ,
R3 =

 −η1

1− η1

 , v3 =

ξ
0

 ,
R4 =

1− η1

−η1

 , v4 =

ξη1

ξη1

 ,
R5 =

 1

η1

 , v5 =

0

0

 ,
R6 =

η1

1

 , v6 =

ξ(1− η1)

0

 ,

(3.11)

with Jacobian Jk = ξ(1− ξ)2η2 ∀k ∈ {1, ..., 6}.

3.2.1.2. One Common Edge

The panels p and a face of a tetrahedron q have only one common edges. For that, the

transformations must be defined as the following in order to smooth the integrand function

when both x̂ and ŷ on the same patches. where x̂ ∈ σ(2) and ŷ ∈ σ(3)

z1 = ŷ1 − x̂1, x̂1 = w1,

z2 = ŷ2, x̂2 = z3,

z3 = x̂2, ŷ1 = z1 + w1,

w1 = x̂1, ŷ2 = z2, ; ŷ3 ≤ ŷ2,

(3.12)

the variable z located inside the union of four polyhedron at the origin see Figure 3.2, and

w1 must be in the intersection such that

w1 ∈ [−z1, 1− z1] ∩ [0, 1],
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z = (z1, z2, z3) ∈
4⋃

k=1

Dk,

each of the element Dk in the given domain can be mapped into the [0, 1]3 by using Duffy

trick such that:

z = ξRk(η1, η2), z ∈ Dk, (ξ, η1, η2) ∈ [0, 1]3,

where Rk ∀k, w1, and the Jcobian Jk,∀k ∈ {1, .., 4}of the transformations for each case

defined as the following:

R1 =


−η1

1− η1

η2

 , w1 = ξ + (1− ξ)η3, J1 = (1− ξ)ξ2,

R2 =


−η1η2

(1− η1)η2

1

 , w1 = ξ + (1− ξ)η3, J2 = (1− ξ)ξ2η2,

R3 =


1− η1

η2

η1

 , w1 = (1− η1)ξ + (1− ξ)η3, J3 = (1− ξ)ξ2,

R4 =


η1η2

1

(1− η1)η2

 , w1 = (1− η1η2)ξ + (1− ξ)η3, J4 = (1− ξ)ξ2η2.

(3.13)

3.2.1.3. One Common Vertex

In the case when there is only one common vertex between the shape elements x̂ and ŷ,

there will be only two transformation to get rid of singularities. In this setting simply the

parametrization can be written as the following:
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z1 = x̂1,

z2 = x̂2,

z3 = ŷ2,

z4 = ŷ1, ŷ3 ≤ ŷ2,

(3.14)

where the variable z domain is union of the zone D1 and D2 thus,

z ∈
2⋃

k=1

Dk,

D1 =

z :

0 ≤ z2 ≤ z1 ≤ 1

0 ≤ z4 ≤ z3 ≤ 1

z3 ≤ z1

 ,

D2 =

z :

0 ≤ z2 ≤ z1 ≤ 1

0 ≤ z4 ≤ z3 ≤ 1

z1 ≤ z3

 .

(3.15)

Thus,

z = ξRk(η1, η2, η3), z ∈ Dk, ∀ ξ, η1, η2 ∈ [0, 1]3,

where

R1 =


1

η1

η2

η2η3


, R2 =


η2

η2η3

1

η1


, (3.16)

with Jacobian for both is Jk = ξ2η2 ∀k ∈ {1, 2} .

3.3. Affine Transformations

If the integrand function is not smooth, there will be intersection between a surface panel

and interior tetrahedra. This interaction could be one of the above cases. In this work
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and without loss of generality the common vertex if occurs is assumed to be parametric

image of the origin (0, 0) ∈ σ(2). Otherwise, we apply affine transformation to rotate the

panels such that the singular point moves to the origin. Here in the work, since we have

two different kinds of reference elements, which are surface panels and interior tetrahedra,

we derive two affine transformations for this mission. They are affine panel transformation

and affine tetrahedron transformation.

3.3.1. Affine Panel Transformation

Consider a unite triangle with vertices v1 = (0, 0),v2 = (1, 0), and v3 = (1, 1) where the

index of the vertex location on the panel is defined as {0, 1, 2}. This index represents that

the vertex v1 is located at the origin. As it is mentioned above, if the vertex v2 intersects

with one of the tetrahedra vertex, the vertex v2 must be swap with the vertex v1. in other

word, it must be moved to the origin. The affine transformation for this process is defined

as the following,

>Affine(X) = AXIndex + bτ , (3.17)

where the matrix A ∈ R3×2 and the vector bτ ∈ R2×1 such that, A = (E′)−1F′ where the

matrices E ∈ R3×3 and F ∈ R2×3 are defined as the following,

E =

v1 v2 v3

1 1 1

 , F =
[
v1 v2 v3

]
, (3.18)

written as tuples, there are six permutations of the index set of a panels

{0, 1, 2}, {0, 2, 1}, {1, 0, 2}, {1, 2, 0}, {2, 0, 1}, and {2, 1, 0}. These are all possible ordering of

these three - Indices of vertex location. There for we need six Affine transformations in order

to be able to rotate singular points into the right position so that later Duffy Trick be able to

remove it efficiency and get a smooth integrand. The vector bτ is made up from the last row

of the matrix A. In this case the matrix A is reduced into a square matrix. i.e A ∈ R2×2
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3.3.2. Affine Tetrahedron Transformation

Consider the vertices of a tetrahedron w1 = (0, 0, 0),w2 = (1, 0, 0),w3 = (1, 1, 0), and

w4 = (1, 1, 1). In this order of the vertices the index of the location of each vertex is defined

as {0, 1, 2, 3}. To rotate any of the vertices defined above, we need to derive a special affine

transformation. Since we have a set of four coordinates indices, there will be 24 affine

transformations, and each of the can be called at specific time to eliminate the singularities

efficiency to get a smooth integrand function. The Affine Transformation, is defined as the

following,

>Affine(Y) = BYIndex + kτ , (3.19)

where the matrix B ∈ R4×3 and the vector kτ ∈ R3×1 such that, B = (E′)−1F′ where the

matrices E ∈ R4×4 and F ∈ R3×4 are defined as the following,

E =

w1 w2 w3 w4

1 1 1 1

 , F =
[
w1 w2 w3 w4

]
. (3.20)

Then the matrix B will be reduced into square matrix after the vector kτ is made up by the

last row of the matrix B. Therefor, B ∈ R3×3 in the affine transformation (5.15).

3.4. Combining Source and Target Transformation

We will parameterize the integral in the equation (3.9) in order to construct the vector

b. To turn to the type of integrals that to be computed in the implementation of Galerkin

boundary element method, we rewrite the Newton potential as

bγ,i =

∫
γ

∫
Ω

Φ(x,y, φi, f)dydsx, (3.21)

where Φ(x,y, φi, f) = φi(x)G(x,y)f(y). Since the point x on the surface and y inside the

domain, x is parameterized as panel and y as tetrahedron. Therefore, x is 2D, while y is in

3D. This computation needs efficient, robust, and accurate 5D quadrature rule. Incorporate

all shape functions and Jacobian of the both parameterization, we get the formula below
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bγ,i =

∫ 1

0

∫ x̂1

0

∫ 1

0

∫ ŷ1

0

∫ ŷ2

0

Φ(x̂, ŷ)J(x̂)J(ŷ)dŷ3dŷ2dŷ1dx̂2dx̂1, (3.22)

if this integrand function is smooth i.e i 6= j, then the integrand variable will be parameter-

ized again and turned into function dependent on ζ and η such that

bγ,i =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

Φ(η, ζ)J(x̂)J(ŷ)J(η)dζdη1dη2dη3dη4, (3.23)

if the integrand function is not smooth, and there is intersection between x and y which

could be one, two, or three vertices, the formula will be reformulated again by calling space

and affine transformation. Then, parametrization again is required for z and w. Therefore,

bγ,i =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

Φ(z,w)J(x̂)J(ŷ)J(η)J(z)dζdη1dη2dη3dη4. (3.24)

This equation (3.24) is used in the implementation to compute the vector b efficiency

based on the proposed new refinement scheme ”Boundary Concentrated Subdivision” so that

it can be treated and tuned with boundary element method.
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Chapter 4

The Variable Order FMM For Surface Potentials

Although the boundary element method BEM a powerful numerical tools for scientific

computing and mathematical simulation for physical and natural phenomena, it has limi-

tation for analyzing large - scale models. This because of the dense matrix that generated

after applying BEM to the model problems. It is clear that a dense matrix requires O(h−4)

operations for computing the coefficients and solving the system by any direct method. The

innovation of the fast multipole method FMM by Rokhlin and Greengard for studying sim-

ulations of particle interaction in artificial domains [12, 13] can also be used to reduce the

work complexity of building, allocating, and solving the system generated by BEM. In this

Chapter, we will review the FMM and variable order FMM [40] for surface layer potential

because this helps reader to understand our proposed new version of FMM called boundary

concentrated fast multipole method BCFMM for volume potentials. This will be described

in detail in the following chapters.

4.1. The FMM for Surface Integrals

To facilitate the description of the classic FMM, consider the boundary element method

system of equation (1.4)for the case that the source function vanishes. Recall that Aq = b

where Ai,j = 〈φi,Kφj〉 are the matrix A entries. If h is meshwidth near the boundary ∂Ω

of the domain Ω, the FMM can accelerate the computation of the matrix vector product

to O(p2h−2) operations and thus reduce the work complexity of solving this system if an

iterative and preconditional solver is used. Here p is the order of the multipole expansion of

the kernel. Also, it is important to mention here that in order to reduce the errors generated

by domain mesh and multipole expansion, one needs to increase the order p and decrease

the meshwidth h. This is considered to be expensive for large-scale model problems [13]. For
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more details about work complexity reductions by the FMM for surface integrals, we refer

to [14, 40].

4.2. Hierarchical Subdivision of Surface

In order to understand our proposed domain subdivision scheme ”Boundary Concentrated

subdivision” of the Ω ⊂ R3 which will be described in details in the next Chapter and

hierarchical subdivision of volume in the Chapter 6, we briefly exhibit this surface splitting

scheme on which the classic fast multipole method rely to compute far field particle-particle

interactions. The presentation in this section is based on the papers [40] and [13]. In the

first step of the process of refinement, the surface of the domain is embedded by a cube C0,

the index refers to top-level (level-zero). Then, the next generation of cubes is obtained by

dividing the cube C0 into 8 equal sized cubes, and the collection of the cubes at this level

is called C1. This procedure can be repeated l times until the finest level cubes contain no

more than a predetermined number of panels. Generated Cl is the set of all nonempty cubes

in level `.

Suppose that the collection of the panels in a cube ν is denoted by Sν then obviously we

have Γ =
⋃
ν∈C`

Sν for any level 0 ≤ ` ≤ L.

The bounding box Bν of Sν is the smallest axiparallel box that contains Sν . We choose a

point xν on Sν such that xν is a center of Bν and satisfy

ρν = max
v:vertex of Bν

|v − xν | .

We define the separation ratio of two different cubes in the same level as

ην,ν′ =
ρν + ρν′

|xν − xν′ |
. ν 6= ν ′, (4.1)

To describe the FMM, the following concepts will be needed.

• K(ν) denotes the set of all nonempty children of a cube ν .

• π(ν) is the parent of a cube ν.
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• The neighbors N (ν) of cube ν ∈ Cl consist of the cubes that share at least one vertex

with ν as well as the cubes ν ′ ∈ C` that satisfy

ην,ν′ ≥ η. (4.2)

That is, neighbors are cubes with a large separation ratio. The parameter η is prede-

termined. The smaller η, the more cubes are considered neighbors.

• I(ν) is called interaction list. This list consists of all cubes that they are not neighbor

but whose parents are neighbors i.e

I(ν) := {ν ′ ∈ Cl : π(ν ′) ∈ N (π(ν)) and ν ′ 6∈ N (ν)} .

With this definition of neighbors and interaction lists, we can get the following group of

elements: ⋃
ν′∈N (ν)

Sν × Sν′ =
⋃

µ∈K(ν)

 ⋃
µ′∈N (µ)

Sµ × Sµ′ ∪
⋃

µ′∈I(µ)

Sµ × Sµ′

 .

Applying this splitting repeatedly, we obtain the following decomposition:

Γ× Γ =
⋃
ν∈CL
ν′∈N (ν)

Sν × Sν′ ∪
L⋃
l=2

⋃
ν∈Cl
ν′∈I(ν)

Sν × Sν′ . (4.3)

Hence the inner product of 〈φ,Kf〉 can be computed as a combination of far field and near

field, i.e :

〈φ,Kf〉 =
∑
ν∈CL
ν′∈N (ν)

〈φν ,Kfν′〉+
L∑
l=2

∑
ν∈Cl
ν′∈I(ν)

〈φν ,Kfν′〉 , (4.4)

for φ, f ∈ L2(S) such that

φν(x) =

 φ(x), x ∈ Sν ,
0, otherwise.

4.3. Surface Fast Multipole Method

What is the key idea of the surface FMM? Equation (4.4), decompose the bilinear form

into a combination of Far Field (FF) and Near Field (NF). We are employing direct summa-

tion to compute the (NF), while the fast multipole method is implemented to approximately
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compute the (FF) and save computational cost. The key idea is to expand the kernel into a

truncated series expansion. This can be achieved by using the multipole expansion, kernel

interpolation, or the Taylor series. Since the FF consists of interaction of well separated

cubes, the kernel is smooth, and therefore these approximations converge rapidly. Specially,

the cubes ν and ν′ are well separated (i.e they are separated if they are satisfy special criteria

(4.2) ), then the potential φν,ν′ due to the panels in both clusters can be approximated by

using a Taylor series expansion. as follows

φνν′(x) =

∫
Sν′

(
∂

∂n′

)κ
G(|x− x′|)g(x′) ds(x′)

≈
∑
|α|≤p

∑
|β|≤p−|α|

Dα+βG(|rνν′|)
α!β!

(x− xν)α
∫
S′ν

(xν′ − x′)βg(x′) ds(x′)

=
∑
|α|≤p

λαν,ν′(x− xν)α, x ∈ Sν , (4.5)

where α, β are multiindices and κ = 0 for the single and κ = 1 for the double layer

operator. Here the local expansion coefficient λαν,ν′ is given by

λαν,ν′ =
∑

|β|≤p−|α|

Dα+βG(|rνν′ |)
α!β!

(−1)|β|mβ
ν′(g), |α| ≤ p, (4.6)

where mβ
ν′(g) is a moment of the function g, which is given by

mβ
ν′(g) =

∫
Sν′

(
∂

∂nx

)κ
(x− xν′)βg(x) ds(x), |β| ≤ p, (4.7)

where rνν′ = xν − xν′ and the order of the expansion is p. The computation in the equation

(3.4) is called MtL, and its matrix notation is λν = T (ν, ν ′)mν′ . However, the equation (3.6)

used to compute MtM , and its matrix notation is mν =
∑

ν′M(ν, ν ′)mν′ .

mα
ν (g) =

∑
ν′∈K(ν)

∫
Sν′

∂κ

∂nκx
(xν′ − xν + x− xν′)αg(x) ds(x)

=
∑

ν′∈K(ν)

∑
β≤α

(
α

β

)
(xν′ − xν)α−βmβ

ν′(g), |α| ≤ p. (4.8)
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Also, the procedure of LtL can be computed by equation (3.10), and its matrix notation is

λν′ = L(ν ′, ν)λν

∑
|α|≤p

λαν (x− xν)α =
∑
α

λαν (x− xν′ + xν′ − xν)α (4.9)

=
∑
|α|≤p

λαν
∑
β≤α

(
α

β

)
(xν′ − xν′)α−β(x− xν′)β (4.10)

=
∑
|β|≤p

∑
α≥β
|α|≤p

(
α

β

)
(xν′ − xν)α−βλαν

 (x− xν′)β (4.11)

=
∑
|β|≤p

λβν′(x− xν′)β. (4.12)
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Algorithm 4.1 Classic Fast Multipole Method

1: for ν ∈ CL do . Nearfield Calculation

2: φ̂ν =
∑

ν′∈N (ν) K(ν, ν ′)f̂ν′

3: end for

4: for ν ∈ CL do . Moment Calculation

5: mν = Q(ν)f̂ν

6: end for

7: for l = L− 1, . . . , 2 do . Upward Pass

8: for ν ∈ Cl do

9: mν =
∑

ν′∈K(ν)M(ν, ν ′)mν′

10: end for

11: end for

12: 4Interaction Phase:

13: for l = L, . . . , 2 do . Interaction Phase

14: for ν ∈ Cl do

15: λν =
∑

ν′∈I(ν) T (ν, ν ′)mν′

16: end for

17: end for

18: for l = 2, . . . , L− 1 do . Downward Pass

19: for ν ∈ Cl do

20: for ν ′ ∈ K(ν) do

21: λν′ += L(ν ′, ν)λν

22: end for

23: end for

24: end for

25: for ν ∈ CL do . Evaluation Phase

26: φ̂ν += U(ν)λν

27: end for

4.4. The Variable Order FMM
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The most dominant cost of the fast multipole method are the translations of the moments

to far field coefficients which is known as MtL. In the classic version of FMM [12], the cost

of this translation is O(p4), while the later version of FMM helped to reduce this translation

cost into O(p2) [14]. A different approach was proposed in [40] to reduce the complexity

of all translations by adjusting the expansion order to the level of refinement. In fact, the

finest level of refinement started at low order of expansions, then the order incremented in

each level. This helps to reduce the work complexity in the finest level where the most

MtL translations need to be computed. On the other hand, only a few number of expensive

translations in the coarse level need to be computed. Thus, computations at the coarser

level do not contribute significantly to over all work cost. It was shown in [40] that in special

situations the work complexity can be reduced into O(h−2) where h is meshwidth, while

truncation error is O(h).

The variable order fast multipole method VFMM that implemented in [40] used a decreasing

sequence of expansion order from p2, p3, . . . , pL. In the interaction level, low order expansion

are used at the finest level l = L, then the order incremented in each upcoming level. In this

case, order of expansion at level l = 2 is pL, while it is p2 at the level l = L. For the other

translations (Upward Pass and Downward Pass) there are two alternatives:

1. Compute all moments in all level with the maximal order P2. This ensure that all

moments in all levels are exact.

2. Compute moments in level ` only up to order P`. Moments in the next coarser level

are computed by MtM translations. Since P`−1 is greater than P`, replace moments

in level ` of order greater than P` by zero. This results in an approximation of the

moment, which has been shown to be sufficiently accurate in [40].
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4.5. Variable Order vs Fixed Order FMM

The FMM can accelerate the work complexity of well separated panel interactions. The

dominant cost of the FMM are the interaction phase in which, the fixed order FMM reduces

the work complexity into O(p2), where p is expansion order, but the complexity of matrix

vector multiplication is scale O(p2h−2) with an improved constant factor [14]. To reduce the

discretization and expansion errors, one can increase the order of approximation p and h

approaches to zero. This leads to increase the work complexity faster than expected. Thus,

the fixed order FMM is not always optimal. On the other hand, the use of the low order

expansion in the finest level in the variable order FMM employs inexpensive translations in

the finest level, where most translation must be computed. Thus, the variable order FMM

can reduce the work complexity into O(h−2), and it is optimal option for accelerating a work

complexity. For more details see [40].
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Chapter 5

BCFMM For Volume Potentials

In this chapter, we present a new version of the fast multipole method FMM based

on a boundary concentrated domain subdivision which is called BCFMM. Then, we will

discuss how this new version applied to the boundary concentrated subdivision can be used

to compute the Newton potential 〈φi,N f〉 that arise in the boundary element method (1.2)

and (1.4). The tasks bellow need to be computed:

• Task 1. Given a function f , compute the potential Ñ f(x) in the domain with sufficient

accuracy using nearly O(h−2) operations.

• Task 2. Given a function f , compute the bγ,i’s with sufficient accuracy using nearly

O(h−2) operations.

• Task 3. Given a function qh, compute the potential Ṽqh(x) in the domain with

sufficient accuracy using nearly O(h−2) operations.

Note that in task 2 the Newton potential is integrated against a test function, whereas in

tasks 1 and 3 the potential is evaluated in a pointwise sense on the boundary concentrated

subdivision. An approximation of the function in Ω can then be obtained by interpolation.

We remark that to compute the Dirichlet-to-Neumann map via (1.4) it suffices to employ

task 1. Further, task 2 is required even for the homogeneous PDE, if the solution in the

domain Ω is sought. These two tasks are closely related by the fact that they are adjoint.

5.1. Hierarchical Volume Splitting

We briefly describe the hierarchical volume decomposition that BCFMM uses to compute

far field efficiently . Instead of using a cube as in classic FMM, the BCFMM begins with a
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polyhedron Ω ⊂ R3 that is subdivided into a small number of tetrahedra ω. These tetrahedra

are the coarsest level, or level zero in the triangulation. The ` + 1-st level tetrahedra are

obtained by subdividing tetrahedra in the `-st level into eight congruent tetrahedra.

The tetrahedra ω generated from this process of refinement is called children, and they are

combined in one group which is denoted by K(ω). If all tetrahedra in a level are subdivided,

a uniform refinement results. In contrast, a boundary concentrated subdivision is obtained

by refining only tetrahedra that are close to the boundary. A two dimensional situation is

illustrated in Figure 5.1. Note that a boundary concentrated subdivision is not conforming,

but this is not required for the Newton potential.

Figure 5.1: Illustration of a boundary concentrated subdivision of a triangle

To describe the process of a boundary concentrated subdivision in detail, we denote by

C` the set of refined tetrahedra in the `-th level. Further, for ω ∈ C` the center of ω is

denoted by xω and the diameter is

ρω = max
v:vertex of ω

|v − xω| . (5.1)

We define the separation ratio of two different tetrahedra in the same level as

η(ω, ω′) =
ρω′ + ρω′

|xω − xω′|
, ω 6= ω′, (5.2)
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and set η(ω, ω) =∞.

The neighbors of ω are the tetrahedra ω′ in the same level for which the separation ratio

is greater than a predetermined constant η0 < 1. That is,

N (ω) = {ω′ ∈ C` : η(ω, ω′) > η0}. (5.3)

Further

B` = {ω ∈ C` : ω has a face in Γ}, (5.4)

denotes the set of all boundary tetrahedra. Here it is worth emphasizing that if ω only has

one vertex in Γ it is not included in B`. Moreover,

M` = {ω ∈ C` : N (ω) ∩B` 6= ∅}, (5.5)

denotes the tetrahedra that have a boundary tetrahedron among their neighbors. Thus, M`

consists of tetrahedra that are close to the boundary relative to their size. We also write

U` = C` \M` . (5.6)

In the boundary concentrated subdivision only the tetrahedra in M` are refined and

included into the next level the tetrahedra U` are well separated from the boundary and

therefore do not need to be defined. Thus, the next level list of tetrahedra is

C`+1 =
⋃
ω∈M`

K(ω). (5.7)

Repeating this process L times we obtain the following subdivision of the domain

Ω̄ =
L⋃
`=0

⋃
ω∈U∗`

ω, (5.8)

where U∗L = CL and U∗` = U` when ` < L. In this decomposition, the interiors of all ω’s are

disjoint.

An important concept in the fast multipole method is the interaction list I(ω), which consists

of tetrahedra whose parents are neighbors, but who are not neighbors themselves. In level

zero, we write I(ω) = C0 \ N (ω), which can be and often is an empty set.
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Suppose now that for a level ` we have created all sets C`, B` and M`, and all neighbor

and all interaction lists. Algorithm 5.1 generates the neighbor and interaction lists for the

tetrahedra in C`+1

Algorithm 5.1 Recursive generation of neighbor and interaction lists.

1: for ω ∈M` and ω′ ∈ N (ω) do

2: for τ ∈ K(ω) and τ ′ ∈ K(ω′) do

3: if η(ω, ω′) > η0 then

4: add τ ′ to N (τ)

5: else

6: add τ ′ to I(τ).

7: end if

8: end for

9: end for

5.2. Domain Decomposition of All Tasks

The key idea of the fast multipole method is a hierarchical splitting of the domain where

sources and targets are located. To motivate the construction for a boundary concentrated

subdivision we first review a uniform refinement. To that end, let D` denote all tetrahedra in

the `-th refinement level. We define neighbors and interaction lists of a tetrahedron exactly

as before. Then by the definition of interaction lists,

⋃
ω∈D`

ω ×N (ω) =
⋃

ω∈D`+1

ω ×N (ω) ∪
⋃

ω∈D`+1

ω × I(ω). (5.9)

Applying this to the coarsest level,

Ω× Ω = D0 ×D0 =
⋃
ω∈D0

ω ×N (ω) ∪
⋃
ω∈D0

ω × I(ω) (5.10)

=
⋃
ω∈D1

ω ×N (ω) ∪
⋃
ω∈D1

ω × I(ω) ∪
⋃
ω∈D0

ω × I(ω), (5.11)
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and repeating for all finer levels gives

Ω× Ω =
⋃
ω∈DL

ω ×N (ω) ∪
L⋃
`=0

⋃
ω∈D`

ω × I(ω). (5.12)

The first term is the nearfield, which is evaluated directly, and the second term consists of

well separated sources and targets in all levels, that are approximated by fast evaluation

methods. For the case that Ω is a unit cube this is exactly the decomposition was used in

the original classic FMM papers [13], which explained in the Chapter 3.

As we mentioned earlier that we are pursuing different refinement scheme (BC) subdivision,

based on that scheme the near and far field are generated for each tasks mentioned above.

In fact, in the process of decomposition of each task only marked tetrahedra can be refined;

see the following decomposition for each task:

5.2.1. Decomposition for Task 1

For the analogous decomposition for the boundary-concentrated subdivision, note first

that C0 = D0 and C0 = M0 ∪ U0 thus we get for the coarsest level

Ω× Ω = C0 × C0 =
⋃
ω∈M0

ω ×N (ω) ∪
⋃
ω∈U0

ω ×N (ω) ∪
⋃
ω∈C0

ω × I(ω). (5.13)

From the construction of interaction lists and the fact that C`+1 = M`+1 ∪ U`+1 we can

conclude that similarly to (5.9) that

⋃
ω∈M`

ω ×N (ω) =
⋃

ω∈M`+1

ω ×N (ω) ∪
⋃

ω∈U`+1

ω ×N (ω) ∪
⋃

ω∈C`+1

ω × I(ω), (5.14)

holds. Hence it follows by recursion through levels that

Ω× Ω =
L⋃
`=0

⋃
ω∈U∗`

ω ×N (ω) ∪
L⋃
`=0

⋃
ω∈C`

ω × I(ω). (5.15)

The middle term does not appear in (5.12). It represents the nearfield terms in coarser levels

that are distanced from the boundary. In the fast algorithm below, they will be treated by

direct integration over level-` tetrahedra.

42



5.2.2. Decomposition for Tasks 2 and 3

In task 1 the target domain is replaced by the boundary and in task 2 the source domain

is replaced by the boundary. We denote the set of boundary faces of a tetrahedron by γ(ω),

further

NΓ(ω) =
⋃

ω′∈NΓ(ω)

γ(ω′) and IΓ(ω) =
⋃

ω′∈IΓ(ω)

γ(ω′). (5.16)

By the definition of the set U` it follows that γ(ω) = ∅ and NΓ(ω) = ∅ when ω ∈ U`. More-

over, γ(ω) is non-empty if and only if γ(ω) is in B`. With this in mind the decompositions

for task 1 and 2 can be easily obtained from (5.15) by restricting either the source or target

domain to the boundary. Thus

Γ× Ω =
⋃
ω∈BL

γ(ω)×N (ω) ∪
L⋃
`=0

⋃
ω∈B`

γ(ω)× I(ω), (5.17)

Ω× Γ =
⋃

ω∈ML

ω ×NΓ(ω) ∪
L⋃
`=0

⋃
ω∈C`

ω × IΓ(ω) . (5.18)

5.3. Potentional Evaluation Using Space Decompositions

The decomposition in (5.8) states that Ω can be decomposed into disjoint tetrahedra in

U∗m,m = 0, . . . , L. For a given ωm ∈ U∗m there are unique tetrahedra in the coarser levels

ω` ∈M` that contain ωm. From (5.15) it follows that

Ñ f(x) =
L−1∑
`=0

∫
N (ωm)

G(x,y)f(y) dy +
m∑
`=0

∫
I(ω`)

G(x,y)f(y) dy, x ∈ ωm. (5.19)

To obtain a discrete representation of the Newton potential, the potential will be evaluated

on a finite number of interpolation nodes in ωm.

As in the classical FMM for uniform refinements the fast evaluation is based on evaluating

neighbor interactions using direct evaluations and an expansion of the kernel to evaluate in-

teractions in the interaction lists. The main difference in the fast algorithm for the boundary

concentrated subdivision is that the finest level in which calculations have to be performed

depends on how far the evaluation point is removed from the boundary surface.
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5.3.1. Translation Operation for Farfield

The evaluation of the farfield terms in the above sum can be accomplished by using the

standard Moment-to-Local (MtL) expansion. We briefly recall the derivation for the case

that the kernel is approximated by a truncated Taylor series expansion.

Suppose that ω′ ∈ I(ω) then the Taylor expansion of G at centered at (xω,xω′) gives

φωω′(x) =

∫
ω′
G(x,y)f(y) dy

≈
∑
|α|≤p

∑
|β|≤p−|α|

Dα+βG(xω,xω′)

α!β!
(x− xω)α

∫
ω′

(xω′ − y)βf(y) dy

=
∑
|α|≤p

λαω,ω′(x− xω)α, x ∈ ω. (5.20)

In the formula above, the coefficients are given by

λαω,ω′ =
∑

|β|≤p−|α|

Dα+βG(xω,xω′)

α!β!
(−1)|β|mβ

ω′(f), |α| ≤ p, (5.21)

where mβ
ω′(f) is a moment of the function f , which is given by

mβ
ω′(f) =

∫
ω′

(y − xω′)
βf(y) dy, |β| ≤ p. (5.22)

The relationship between the expansion coefficients and moments is the MtL translation; in

matrix notation this will be written as λω = T (ω, ω′)mω′ .

The essence of the fast algorithm is to construct the moments mω′ , then translate moments

to local expansion coefficients, and finally evaluate the potential using the series expansion.

In order to recursively compute the moments of a parent tetrahedron from the moments of

its children, it is necessary to translate the center. This operation is the MtM translation.

Its coefficients are derived easily from the multivariate binomial formula
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mα
ω(f) =

∑
ω′∈K(ω)

∫
ω′

(xω′ − xω + y − xω′)
αf(y) dy

=
∑

ω′∈K(ω)

∑
β≤α

(
α

β

)
(xω′ − xω)α−βmβ

ω′(f), |α| ≤ p. (5.23)

In matrix notation (5.23) is mω =
∑

ω′M(ω, ω′)mω′ . The local expansion coefficients of a

tetrahedron ω′ are computed from the expansion coefficients of the tetrahedron’s parent ω

by translating the expansion center

∑
|α|≤p

λαν (y − xω)α =
∑
α

λαω(y − xω′ + xω′ − xω)α

=
∑
|α|≤p

λαω
∑
β≤α

(
α

β

)
(xω′ − xω′)

α−β(y − xω′)
β

=
∑
|β|≤p

∑
α≥β
|α|≤p

(
α

β

)
(xω′ − xω)α−βλαω

 (y − xω′)
β

=
∑
|β|≤p

λβω′(y − xω′)
β. (5.24)

In matrix notation we write λω′ = L(ω′, ω)λω .

5.3.2. Translation operators for Nearfield

For the evaluation of a nearfield interaction in the equation (6.19) we use a quadrature rule

that adjusts the singularity of the kernel. For the case that ω = ω′ this can be accomplished

with the Duffy transform. If the nodes and weights are (yk, wk), k = 1, . . . , nq then∫
ω′
G(x,y)f(y) dy ≈

nq∑
k=1

G(x,yk)wkf(yk), (5.25)

which in vector notation is uω = K(ω, ω′)fω′ .
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5.4. Algorithms

As in the regular classic FMM it is possible agglomerate moments of a node ω by translat-

ing the moments of the children’s nodes. We denote the corresponding matrix by M(ω, ω′).

Likewise, expansion coefficients can be re-centered from the parent’s node to the children,

the corresponding matrix is denoted by L(ω, ω′), The transformation of f̂ω to the moments

mω(f) is linear and will be written in matrix form as mω = Q(ω)f̂ω. Likewise, the trans-

formation of expansion coefficients λω to coefficients of the corresponding potential in the

nodal basis is linear and is written as φ̂ω = U(ω)λω. Note that the Q(ω) and U(ω) are only

needed if ω ∈ U` for some `. The boundary concentrated FMM for task 3 is summarized in

Algorithm 5.2. Note that the notation a += b means that variable b must be added to the

value of variable a.
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Algorithm 5.2 BCFMM for Task 1

1: for ` = 0 : L do . Nearfield Calculation.

2: for ω ∈ U∗` do

3: φω =
∑

ω′∈N (ω)

K(ω, ω′)f̂ω′

4: end for

5: end for

6: for ` = 0 : L do . Moment Calculation.

7: for ω ∈ U∗` do

8: mω = Q(ω)f̂ω

9: end for

10: end for

11: for ` = L− 1 : 0 do . Upward Pass.

12: for ω ∈M` do

13: mω =
∑

ω′∈K(ω)

M(ω, ω′)mω′

14: end for

15: end for

16: for ` = L : 0 do . Interaction Phase.

17: for ω ∈ C` do

18: λω =
∑

ω′∈I(ω)

T (ω, ω′)mω′

19: end for

20: end for

21: for ` = 0 : L− 1 do . Downward Pass.

22: for ω ∈M` and ω′ ∈ K(ω) do

23: λω′ += L(ω′, ω)λω

24: end for

25: end for

26: for ` = 0 : L do . Evaluation Phase.

27: for ω ∈ U∗` do

28: φω += U(ω)λω

29: end for

30: end for
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Algorithm 5.3 BCFMM for Task 2.

1: for ω ∈ BL do . Nearfield Calculation.

2: bω =
∑

ω′∈N (ω)

K(γ(ω), ω′)f̂ω′

3: end for

4:

5: for ` = 0 : L do . Moment Calculation.

6: for ω ∈ U∗` do

7: mω = Q(ω)f̂ω

8: end for

9: end for

10:

11: for ` = L− 1 : 1 do . Upward Pass.

12: for ω ∈M` do

13: mω =
∑

ω′∈K(ω)

M(ω, ω′)mω′

14: end for

15: end for

16: for ` = L : 0 do . Interaction Phase.

17: for ω ∈ B` do

18: λω =
∑

ω′∈I(ω)

T (ω, ω′)mω′

19: end for

20: end for

21: for ` = 0 : L− 1 do . Downward Pass.

22: for ω ∈ B` and ω′ ∈ K(ω) ∩B` do

23: λω′ += L(ω′, ω)λω

24: end for

25: end for

26: for ω ∈ BL do . Evaluation Phase.

27: bω += U(γ(ω))λω

28: end for
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Algorithm 5.4 BCFMM for Task 3

1: for ω ∈ U∗L do . Nearfield Calculation.

2: φω =
∑

γ∈NΓ(ω)

K(ω, γ)qγ

3: end for

4:

5: for ω ∈ BL do . Moment Calculation.

6: mω = Q(γ(ω))qγ(ω)

7: end for

8:

9: for ` = L− 1 : 0 do . Upward Pass.

10: for ω ∈ B` do

11: mω =
∑

ω′∈K(ω)∩B`
M(ω, ω′)mω′

12: end for

13: end for

14: for ` = L : 0 do . Interaction Phase.

15: for ω ∈ C` do

16: λω =
∑

ω′∈I(ω)

T (ω, ω′)mω′

17: end for

18: end for

19: for ` = 0 : L− 1 do . Downward Pass.

20: for ω ∈M` and ω′ ∈ K(ω) do

21: λω′ += L(ω′, ω)λω

22: end for

23: end for

24: for ` = 0 : L do . Evaluation Phase.

25: for ω ∈ U∗` do

26: φω += U(ω)λω

27: end for

28: end for
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Chapter 6

Bondary Concentrated Domain Subdivision

We have given details about the procedure of FMM for the surface potentials. Also,

it is important to note here that the efficiency of this method strongly relies on a uniform

refinement scheme in each level. Whereas, the BCFMM for volume potentials depends on the

boundary concentrated subdivision. In this chapter, we compare between both discretization

scheme and analyze quadrature error of Newton potentials.

6.1. BC Subdivision vs. Uniform Refinement

The uniform refinement is a process of subdivision of all elements in the collection Cl(the

set of all tetrahedron at level l). In another word, all elements are selected for refinement

repeatedly. This will divide the domain Ω into O(h−3) tetrahedra of side length h. However,

the BC scheme refines only a tetrahedron ω that in the collection M` see the set (5.5). In

this non-uniform process, the diameter of the tetrahedra grows linearly with the distance

from the boundary. Since there are larger tetrahedra in the interior than near the boundary

the number tetrahedra is O(h−2). Figures 6.1 and 6.2 show a BC mesh of a cube split

into tetrahedra. When the refinement level increases, the number of element generated

by uniform refinement is much higher than the number of tetrahedra generated by BC

subdivision. Figure 6.3 displays this reduction clearly. In addition, we display the data

generated from the procedure of refinement of the cube in the Tables 6.1 and 6.2 . In these

tables, #U` is the number of leaves, and #C` is the number of tetrahedra at level `. We also

display the number of edges, panels, and vertices are of each level.
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Figure 6.1: The boundary concentrated subdivision of the cube into tetrahedra and its faces
that make up the surface triangulation

Figure 6.2: A visual view of the interior reference elements of the cube and the surface
elements
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Table 6.1: The number of elements of tetrahedra, faces, vertices, and edges was generated

by the boundary concentrated subdivision for the unite cube.

Data Element Generated by BCR

Level Vertices Edges Panels #C` #U`

0 8 19 18 6 0

1 27 98 120 48 0

2 125 604 864 384 56

3 703 3862 5840 2680 932

4 3669 20670 31526 14524 5864

5 17195 97140 148174 68228 28604

6 75241 424568 646960 297632 126176

7 316863 1785362 2718132 1249632 531812

8 1307021 7355698 11191626 5142948 4449504

Figure 6.3: Rate of reduction of the reference element generated by BCR and compared to
the uniform scheme
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Table 6.2: The number of elements of tetrahedra, faces, vertices, and edges was generated

by the uniform refinement scheme for the unite cube.

Data Element Generated by Uniform R.

Level Vertices Edges Panels #C` #U`

0 8 19 18 6 0

1 27 98 120 48 0

2 125 604 864 384 0

3 729 4184 6528 3072 0

4 4913 31024 50688 24576 0

5 35937 238688 399360 196608 0

6 274625 1872064 3170304 1572864 0

7 2146689 14827904 25264128 12582912 0

8 ≥64-Bit ≥64-Bit ≥64-Bit ≥64-Bit 0
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6.2. Accuracy and efficiency of Boundary Concentrated Subdivision

As a first test of the accuracy that can be obtained with the BC subdivision, we compute

the Newton potential in one corner based on both uniform and BC subdivisions with same

quadrature order for all tetrahedra. To that end, consider the point wise evaluation of the

Newton potential N f

∫
Ω

G(x, y)f(y)d(y) =
L∑
l=1

∑
ω∈U`

∫
T

G(x, y)f(y)ds(y), (6.1)

where L is total number of refinement levels, and the original domain Ω is a cube which

divided into 6-Tetrahedra at Level C0. Then, the second generation will be 48-tetrahedra

which is level C1 and so on. Now, the y coordinate must be parameterized with help of the

Jacobian to relating infinitesimal areas in the artificial domain Ω before and after refinement

process such that: ∫
T

Θ(y(t1, t2, t3))|J |dt, (6.2)

where Θ(y) = G(x, y)f(y), and G is Green’s function for potential equation with singularity.

Now, Apply Duffy trick to handle the singularity of the integrand.

We observed that even though we do not refine the interior elements, the quadrature error

generated by BC still goes down up to a certain point along with the quadrature error

generated by uniform refinement. This illustrates the smoothness properties of the Newton

potential for tetrahedra away from the boundary. Since in the BC subdivision the diameter

of the tetrahedra grows linearly with the distance from the boundary surface, there are larger

tetrahedra in the interior domain than near the boundary. Therefore, the quadrature error

of the Newton potential at some point will stagnate if the BC subdivision continued. This

is illustrated in Figure 6.4. To fix this issue, one must increase the quadrature order in the

interior elements. For that reason we will use variable order expansion. In this case low

order expansion will be used in the finest level of refinement, then this order is incremented
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in each level. By adjusting the order of the level of the domain decomposition Ω, we will

show in the Chapter 8 that the error can be bounded by O(h−p). This could increase the

work complexity by only logarithmically growing factors.

Figure 6.4: The quadrature error of the Newton potential based on boundary concentrated
subdivision compared to the error based on uniform refinement when the evaluation points
is located in one corner
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Chapter 7

Error and Work Complexity Analysis

In this section we prove the main result of this dissertation. Namely, that the BCFMM

can compute the volume potential to any desired accuracy in nearly optimal O(h−2L) op-

erations. The Green’s function in the BCFMM in the interaction list of well separated

tetrahedra is approximated, while approximation can be achieved by various methods. We

restrict ourselves to the truncated Taylor series. For more about estimates such expansion,

we refer to [18]. In order to estimate the error for computing the Newton potential, we

generalize the results in [40]. In this analysis, we will show the better and proper choice for

the separation ration η and the expansion orders in the MtL translations. Also, we evaluate

the flops counts for each step in the algorithm to determine overall complexity.

7.1. Error Estimate

Suppose that Sh is finite element space, and it consists of piecewise polynomial functions

on each triangle γ which is one of the tetrahedron’s face on the boundary. Also, let φh be

function of Sh (h is mesh width) which makes up the boundary elements. Then, the bilinear

form of the Newton potential can be written in the following form

〈φh,N f〉 =

∫
Γ

∫
Ω

G(x,y)φh(x)f(y)dyds(x). (7.1)

By applying the hierarchical domain splitting, the domain is divided and decomposed

as it is shown in chapter 5. Then we can write the above formula based on the domain

subdivision.

〈φh,N f〉 =
∑
ω∈CL
ω′∈N (ω)

〈φω,N fω′〉+
L∑
l=2

∑
ω∈Cl
ω′∈I(ω)

〈φω,N fω′〉 , (7.2)
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where the subscripts ω and ω′ indicate restrictions of the function to the tetrahedron. The

first sum is computed directly. The only error introduced by the BCFMM schemes from

replacing the kernels in the second sum by truncated Taylor series. To that end, we have to

estimate the remainders of the Taylor expansion for order p.

We consider a Green’s function which depends on the distance of the source function and

the field point that is G(x,y) = G(|x− y|). Furthermore, we assume that G(·) is analytic

except for the origin and that there is a constant C such that

|G(τ)| ≤ C

|τ | , 0 6= τ ∈ C. (7.3)

The truncated Taylor series of the Green’s function is given by

G(|r + z|) =
∑
|α|≤p

DαG(|r|)
α!

zα +Rp(r, z), (7.4)

Rp(r, z) = G(x,y)−G(|r + z|) = G(x,y)−
∑
|α|≤p

DαG(|r|)
α!

zα, (7.5)

where r = xω − xω′ and z = x− y − r . For separation ration η < 1 and for ω′ ∈ I(ω),

there is a constant C the remainder above is bounded by

|Rp(r, z)| ≤ c
p

|r|

( |z|
|r|

)p+1

, (7.6)

where r = xω−xω′ and z = x−y− r. For more details about proof of equation (7.6) see

[40]. The bilinear form of Newton potential induced by FMM is defined as the following,

〈φh,NFf〉 =
∑
ω∈CL
ω′∈N (ω)

〈φω,N fω′〉+
L∑
l=2

∑
ω∈Cl
ω′∈I(ω)

〈φω,Nω,ω′fω′〉 . (7.7)

There Nω,ω′ is the operator that results if the kernel G is replaced by the truncated

series expansion. Comparing the bilinear forms of hierarchical domain splitting (7.2) with

the above bilinear form (7.7) makes clear that the source of error comes from the MtL

translation in the equation (6.21) . Thus for all φh ∈ Sh and source function f the error of

the bilinear form is
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〈
φh,
(
N −NF

)
fh
〉

=
L∑
l=2

∑
ω∈Cl
ω′∈I(ω)

〈
φω,
(
N −Nω,ω′

)
fω′
〉
. (7.8)

Lemma 7.1 Suppose that ω and ω′ ∈ C`, and ω′ is not neighbor of ω (ω′ /∈ N (ω)) then

∣∣〈φω, (N −NF

)
fω′
〉∣∣ ≤ cp

rωω′
ηpωω′2

−`2−
3
2
`‖φ‖L2(γ(ω′))‖f‖L2(ω) (7.9)

Proof. For ω ∈ C` and ω′ ∈ I(ω)

ηω,ω′ ≥ η, (7.10)

holds. Then the interaction in the equation (7.8) can be written in the integral formula as

the following,

〈φω, (N −NF)fω′〉 =

∫
γ(ω′)

∫
ω

(
Rp(xω − xω′ ,x− xω − y − xω′)

)
φ(x)f(y)dyds(x) (7.11)

≤ cp

rωω′
ηp
∫
γ(ω′)

|φ(x)| ds(x)

∫
ω

|f(y)| dy (7.12)

≤ cp

rωω′
ηp2−

5
2
`‖φ‖L2(γ(ω′))‖f‖L2(ω). (7.13)

The last step follows from the Cauchy Schwarz inequality and the fact that |γ(ω′)| ≤ C2−2`

and |ω| ≤ C2−3`.

To obtain the error of the bilinear form, the contributions of all interactions must be added.

Because of the factor 2−
5
2
l in (7.9), the errors are smaller in the finer levels and it suffices to

use a smaller expansion order. We set

pl = pL + α(L− `), (7.14)

where pL and α are small numbers that will be optimized below.

Theorem 7.2 For f ∈ L2(Γ), φh ∈ Sh and η = 1/2 the error of bilinear form induced by

the FMM with orders given by (7.14) is bounded by

∣∣〈φh, (N −NF

)
fh
〉∣∣ ≤ c2−pL · 2−min(α, 5

2
)L‖φ‖L2(Γ)‖f‖L2(Ω) (7.15)
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Proof. Since interaction lists have a bounded number of elements, it follows that

∑
ω∈C`
ω′∈I(ω)

‖φω‖‖fω′‖ ≤

 ∑
ω∈C`
ω′∈I(ω)

‖φω‖2


1
2
 ∑

ω∈C`
ω′∈I(ω)

‖fω‖2


1
2

≤ c‖φ‖L2(Γ)‖f‖L2(Ω). (7.16)

We estimate (7.8) using (7.9)

∣∣〈φh, (N −NF

)
fh
〉∣∣ ≤ c

L∑
`=2

∑
ω∈C`
ω′∈I(ω)

p`η
p`
ωω′2

−`2−
3
2
`‖φ‖L2(Γ)‖f‖L2(Ω) (7.17)

= c2−pL−αL ·
L∑
`=2

2(α− 5
2

)`‖φ‖L2(Γ)‖f‖L2(Ω), (7.18)

if α < 5
2
, then we will have

L∑
`=2

2(α− 5
2

)` ≤ 2, (7.19)

if α > 5
2
,

L∑
`=2

2(α− 5
2

)` ≤ 2 · 2(α− 5
2

)L. (7.20)

Hence it follows that

∣∣〈φh, (N −NF

)
fh
〉∣∣ ≤ c2−pL · 2−min(α, 5

2
)L‖φ‖L2(Γ)‖f‖L2(Ω).

We can conclude that any convergence rate 2−Lµ can be obtained by appropriate choices of

α and pL. For instance if µ ≤ 5
2
, we simply set α = 3. If µ ≥ 5

2
, we set pL = [µ− 5

2
] · L and

α = 3.

7.2. Complexity Estimate

We have seen in Chapter 5 that the number of tetrahedra generated by the BC subdivision

at level ` is bounded by c4` i.e

#Cl ≤ c4`
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Also, the number of flops in one MtL translation in the equation (5.21) is p6
` where p` is

the order of kernel expansion at level `. Thus the overall all work complexity in the MtL

translation is

NInter ≤
L∑
l=2

#Clp
6
l ≤ c

L∑
l=2

p6
`4
` ≤ C4L max p6

` . (7.21)

Since h = 2−L it follows that the complexity of the BCFMM is up to logarithmic factors,

O(h−2).
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Chapter 8

Implementation and Numerical Results

In order to verify the preceding analysis and test the variable order BCFMM for Galerkin

discretizations of elliptic volume integral operators, we have implemented the method in the

C programming language which combines all different modules presented in the previous

chapters. To illustrate the reduction of CPU time (work complexity) and convergence of

the variable order BCFMM, we evaluate the Poisson’s equation in Ω ∈ R3. The boundary

concentrated subdivision is generated by refining two different domains a tetrahedron and

a cube. The latter is given as a union of six tetrahedra. All computations in this work are

in core on a single processor of Intel Xeon Phi 7230 known as Knights Landing or KNL

with 385 GB of DDR4-2400 memory with 641.30GHz clock speed. To verify the method we

consider the Green’s equation

φ(x)

2
+

∫
Γ

G(x,y)q(y) dsy +

∫
Γ

∂

∂ny

G(x,y)φ(y) dsy =

∫
Ω

G(x,y)f(y)dy, x ∈ Γ, (8.1)

where q(y) = ∂φ(y)
∂ny

and G| • | is the Green’s function:

G(x,y) =
1

4π

1

|x− y| . (8.2)

In this numerical tests, we have set

f(r) = (6− 4 |r|2) · exp(− |r|2)

φ(r) = exp(− |r|2) r ∈ R3,

which is a solution to the Poisson equation, and hence the surface potentials on the LHS

of (8.1) must equal the volume potentials on the RHS of (8.1). For each numerical test,

the domain Ω is the cube described in chapter 6. As discussed in the preceding chapters

we have used the BCFMM to compute the volume potentials in the RHS of (8.1) and the
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surface FMM for the surface potentials on the LHS. Since these are two different numerical

approximations, there will be a difference which we reported as the error.

8.1. Test Work Complexity of Slow Method

We first test the proposed boundary concentrated subdivision by computing the equation

(8.1) where Newton potential appears in the right hand side. Specifically, we are solving for

surface density q of the domain Ω where it is the cube described above. The number of

tetrahedra at level ` + 1 will be 6× 8` with uniform scheme, and it is bounded by c4` with

BC scheme. Also, the source function f is smooth exponential, and x is located on the surface

we see that the error is going down even though we are ignoring large interior element in the

next refinement process. Also, the running time is very high for this simple test, and this

will be worst for large scale problems see Table 8.1 Note: SetupTime < 1 means the CPU

time is less than one second because we are using time.h which only reports whole seconds.

Table 8.1: Results of Solving test problem (8.1) with BC subdivision and the slow method

Slow Method of Solving GBIE by BC Mesh

Level SetupTime Edges Panels Tetrahedra Error

0 < 1 19 18 6 2.31677

1 2 98 120 48 1.37725

2 16 604 864 384 0.575889

3 221 4184 6528 3072 0.157997

4 856 31024 50688 24576 0.064593

Also we see that the work complexity for computing the surface and volume integral in

the equation (8.1) when the given domain is single polyhedron at level zero is high even for

small scale problems see Table 8.2. Further, we note that the proposed domain subdivision

boundary concentrated subdivision is accurate and efficient to compute surface integral on
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Table 8.2: Work complexity and CPU time for computing surface and volume integral (slow

method)

CPU Time for Volume and Surface Setup

Level SetupTime Surface Volume Tetrahedra Error

0 < 1 < 1 < 1 1 6.731

1 < 1 < 1 < 1 8 2.706

2 < 1 < 1 1 64 0.836

3 1 1 1 512 0.227

4 1 1 9 4096 0.058

5 11 11 178 32736 0.0125

ToTlevels: Tets=37417 ,Volume=2.666667

the non-uniform volume triangulation. This means when the source function f = 0. The

error goes down very fast. See Table 8.3.

8.2. Complexity and Convergence of Variable Order BCFMM

The proposed variable order BCFMM is applied to solve the test problem (8.1) which is a

combination of volume and surface integrals with smooth source function f . We will test for

the Ω tetrahedron and cube. This proposed BCFMM algorithm can compute the potential

approximately of the generated non-uniform volume panels on uniform surface panels with

CPU time and memory usage cost O(h−2) where h is diameter of tetrahedron with a distance

from boundary in each mesh refinement. In other words, the time and memory usage is

quadrupled each refinement step. See Table 8.4. The order of FMM translation in the Table

8.4 is constant for all translations which is set at p = 2 and the separation ratio is η = 1
2

.

The domain initially divided into 8 tetrahedra at the level one, then the algorithm of

the proposed boundary concentrated subdivision moved tetrahedra near the boundary into

63



Table 8.3: Work complexity and CPU time for computing surface integral when source

function vanished (slow method)

CPU Time for Setup Surface Integral

Level SetupTime Surface Tetrahedra L2(τ)-Error

2 < 1 < 1 64 0.00381648

3 1 < 1 512 0.000645588

4 1 1 4096 0.000111469

5 12 110 32736 1.94652e-05

6 101 155 224736 3.41955e-06

ToTlevels: Tets=262153 leaves=229384

Table 8.4: Work complexity and CPU time for computing surface and volume integrals via

BCFMM with fixed order

CPU Time and Memory Usage

Level SetupTime Surface Volume Storage of Tets MB

3 < 1 < 1 < 1 1.43e-01

4 2 < 1 1 1.14e+00

5 19 1 5 9.14e+00

6 156 3 25 6.40e+01

7 871 9 113 3.51e+02

ToTlevels: Tets=1436137 leaves=1256620
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Figure 8.1: Work complexity of setup volume generated via BCFMM compared to the One
generated by slow method

Figure 8.2: Work complexity of setup surface generated via BCFMM compared to the One
generated by slow method
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next process of refinement. In this case we must ignore elements that are away from the

boundary. In the Table 8.5 we can observe this process of reduction.

Table 8.5: Number of elements that not in the marked list:Leaves and data statistics of

BCFMM

Reduction of Element via BC Mesh/Level

Level Volume Leaves Neighbor Interaction

3 0.00 0 244.22 251.27

4 0.002 4 435.04 1518.77

5 0.377 4644 562.93 2912.00

6 0.793 77088 597.91 3369.70

7 1.492 1173984 600.03 3369.28

Tot: leaves=1256620 nBrs=1378640193

The neighbor and interaction lists in the Table 8.5 shows the average number of neighbor

and interaction elements that attached to a tetrahedron per level. This non-uniform domain

subdivision leads to generate non uniform tetrahedra with a different radius. Therefore, the

interior elements are larger than the element that close to the boundary. In the Table 8.6 can

see the change of radius per level of refinement, we can observe that through the columns

labeled RMin and RMax. They display the maximal and minimal length of an edge for each

level. We see from the table and the ration RMax/RMin remains constant. Therefore, there

are no tetrahedra with a bad aspect ratio in the BC subdivision mesh.

Also, the table demonstrated that the number of tetrahedra is O(h−2) in the process

of refinement. Due to the smooth properties of Newton Potential, the contribution of the

interior tetrahedra do not need a high resolution as contribution near the boundary. There-

fore, this BC subdivision will provide the same accuracy as the uniform mesh. However,

since we use a fixed expansion order the error generated by the BC mesh will be grater by
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Table 8.6: Data elements that generated by BC subdivision/ minimum and maximum radius

of tetra per level with separation ratio η = 1
2

Deta Element Generated by BC Mesh/Level

Level RMin RMax Neighbor Interaction

0 1.73 1.73 1.00 0.00

1 0.86 1.06 8.00 0.00

2 0.43 0.53 61.93 2.07

3 0.21 0.26 244.22 251.27

4 0.10 0.13 435.04 1518.77

5 0.05 0.06 562.93 2912.01

6 0.02 0.03 597.91 3369.70

7 0.01 0.01 600.03 3369.28

Stge : Tetras = 2.29e+02: Nbrs=6.53e+03 MB
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logarithmical factor than the one generated by uniform refinement See Figure 6.4. As was

described there, this ensure full convergence, while maintaining log-linear complexity in the

number of tetrahedra. See the cost of VolTime for both variable and fixed order in the Table

8.7 and Figure 8.3.

Table 8.7: Comparing the work complexity generated by variable and fixed order of expansion

in the BCFMM with separation ratio η = 1
2

Variable and Fixed Order CPU Time

Level FixOrder VolTime Ratio VarOrder VolTime Ratio

2 2 < 1 – 8 < 1 –

3 2 < 1 – 7 < 1 –

4 2 1 4 6 1 4

5 2 4 4 5 4 4

6 2 16 4.5 4 17 4.5

7 2 73 4.2 3 77 4.4

8 2 307 – 2 339 –

ToTlevels: Tets=1436137

The error of computing equation 8.1 goes down fast and bounded by O(h−p) where p is

the order of expansion. Also, the work complexity time and memory usage down to O(h−2)

where h is diameter of a tetrahedron with a distance from boundary. In another words, They

(memory usage and time of complexity) are quadrupled See Table 8.8.

Further, we compared the error generated by variable order boundary concentrated Fast

Multipole Method with Fixed order BCFMM in all levels. As we mentioned earlier in this

section, using variable order could increase the cost of complexity by logarithmical factor.

However, since we store matrices K(ω, ω′) for the near field elements, and the matrices Q(ω)

and U(ω) of the proposed algorithm, while all translation process MtM, MtL, and LtL are
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Figure 8.3: Comparing of the work complexity of the direct and the BCFMM method

Table 8.8: Error of computing the equation (8.1) with BCFMM where separation ratio is

η = 1
2

and the order of moment is p = 2 for all level of refinements.

The Error, CPU Time, and Memory Usage/MB

Level Tetra SetupTime Volume TetStorage/MB Error

2 64 0 < 1 1.78e-02 0.106291

3 512 0 < 1 1.43e-01 0.00718122

4 4096 2 1 1.14e+00 0.000435992

5 32736 19 4 9.14e+00 3.84577e-05

6 224736 156 16 6.40e+01 7.75485e-06

7 1173984 871 73 3.51e+02 1.91506e-06

8 5333472 2690 0307 1.65e+03 4.76851e-07

ToTlevels: tets=6769609, Separation Ratio=0.5, Mom Order=2
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computed on the fly, the significant increases in the work complexity due to the usage of

variable order does not effect overall work complexity. But, this process of variable order is

helpful to increase the work accuracy, and it can help to avoid the defection that may cause

by the process of ignoring interior elements during the procedure of domain refinement via

boundary concentrated subdivision. This can be observed from the error generated by both

fixed and variable order see Table 8.9 and Figure 8.4. In the Figure 8.4 we compared error

of variable order of expansion p ∈ {2 . . . 2 +L} with error of fixed order p = 2 and p = 7. As

a result, we observe that the error of the variable order is comparable to the error of p = 7;

however, the cost of using p = 7 is very expensive than variable order Figure 8.3. This is

another advantage of using lower variable order of expansion on fixed order.

Table 8.9: Comparing the work complexity and error generated by variable and fixed order

of expansion in the BCFMM with separation ratio η = 1
2

Variable and Fixed Order CPU Time

Level FixOrder VolTime Error VarOrder VolTime Error

2 2 < 1 0.106291 8 < 1 0.106709

3 2 < 1 0.00718122 7 < 1 0.00718929

4 2 1 0.000435992 6 1 0.000438031

5 2 4 3.84577e-05 5 4 2.85974e-05

6 2 16 7.75485e-06 4 17 2.75146e-06

7 2 73 1.91506e-06 3 77 4.20676e-07

8 2 307 4.76851e-07 2 339 7.32864e-08

Number boundary faces=65536, boundary vertices=32770

In the coarse level the BCFMM translations that need to be computed decrease expo-

nentially. In this case higher order translation will not increase the work complexity because

of the lower degree of freedom at these levels see Figure 8.5.
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Figure 8.4: Comparing the error generated by variable order of expansion at the variable
order with the one generated by fixed order at p = 2 and p = 7

Figure 8.5: CPU time for computing volume in the coarse level decreases exponentially,it
increases in finest L.
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It is good to know which order of expansion should be used in the variable order BCFMM

algorithm in the finest level. In fact, the results are shown in the Figures 8.6a, 8.6b, 8.7a,

and 8.7b confirm that using high order of expansion O(Expansion) > 3 in the finest level

will duplicate the work complexity and increase the CPU time even though it gives the same

accuracy as lower order. Therefore, it is recommended to start with low order of expansion

in the finest level, such as p = 2, 3. This will give the same rate of Error as order p > 3.

That is besides the point that the cost of work complexity at lower order p = 2, 3 is cheap

and reasonable comparing to the fixed or higher variable order of expansion in the finest

level during the translations processes MtM, MtL, and LtL. Also, to be more accurate in the

Figures 8.6 and 8.7 if we compare the error and work complexity for all fixed and variable

order of expansion, we can observe that using variable order at finest level of refinement at

p = 2 is the best option due to the lower work complexity and and error of computing the

volume potential that arise in the numerical test problem (8.1).

Also, it turns out that the variable order of expansion in this proposed version of BCFMM

can lead to better accuracy even in computing surface integrals. In this case, if the source

function f = 0 in the equation 8.1, the Newton potential does not have to be computed

and only surface integrals remain. In the Figures 8.8a and 8.8b we tested both algorithms,

fixed and variable order expansion, and we observed that the cost of computing the surface

integrals using variable order of expansion p = 2 in the finest level, can provide better

accuracy and smaller error than the fixed order besides the point that they are cost the same

work complexity time.

In addition, we have tested this proposed BCFMM version to a different separation ratio

η between a tetrahedron ω and its neighborhood ω′. Particularly, we compared the error

and work complexity time for computing the volume potential that arise in the integral

equation (8.1), for both separation rations η = 1
2

and η = 0.8. It turns out that the errors

are comparable and the work complexity time of η = 0.8 is less than the complexity time of

η = 1
2

see Figure 8.9.
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(a) Comparing CPU Times in the test problem 8.1 for two

variable order p = 2, 4

(b) Comparing error in the test problem 8.1 for two variable

order p = 2, 4

Figure 8.6: Comparing error and work complexity for variable order of expansion p = 2, 4
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(a) Comparing CPU time for computing volume for variable

and fixed order of moment expansion p = 2, 3.

(b) Comparing error of the test problem 8.1 using variable

and fixed order p = 2, 3

Figure 8.7: Comparing error and CPU time between variable and fixed order of expansion
p = 2, 3
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(a) Comparing CPU time of surface potentials of variable

and fixed order of expansion p = 2

(b) Comparing error of surface potentials of variable and

fixed order of expansion p = 2

Figure 8.8: Comparing error and CPU time between variable and fixed order of expansion
p = 2 for f = 0
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(a) Comparing CPU Time of two different η = 0.5, 0.8

(b) Comparing Error of the test problem (8.1) of two dif-

ferent η = 0.5, 0.8

Figure 8.9: Comparing error and CPU time for η = 0.5, 0.8
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8.3. Conclusion

We have discussed and proposed a new algorithm of Fast Multipole Method, which called

Boundary Concentrated FMM, BCFMM. This method applied effectively to compute the

volume potential that arise in the boundary integral equations. Also, we found that this

algorithm worked efficiency to reduce the overall work complexity to O(h−2). In fact, The

CPU time and complexity scale linearly very well and the number of degree of freedom in the

computational domain has been reduced. Also, we have demonstrated that this algorithm

works even for separation ratios larger than expected. The reason for this is that the error

estimates for the Taylor series are upper bounds, with much smaller actual error. The

boundary concentrated subdivision plays a crucial role to align the volume potential with

surface integral efficiency, and it guarantees to obtain high accuracy. In addition, despite

the large elements that generated in the computational domain Ω, the variable order of

FMM translations that adjusted to the level of the hierarchical domain decomposition of Ω

optimizes the accuracy and the CPU time. Further, the variable order bounds the error by

O(h−p), whereas the complexity increases by only logarithmically growing factors. Further,

the capability of this algorithm can be improved to the vector equations such as the A-field

due to currents. But, because of the BEM approaches, we have to restrict things to piecewise

homogeneous materials. Moreover, it can be improved to study charge distribution inside

complex geometries such as implicit solvent models. This improvement can be one of our

future work that we have in mind. Finally, we note that the scope of applications we have

in mind in scattering of time harmonic waves from an inhomogeneous medium and thermal

equilibrium in semiconductor devices.
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