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ABSTRACT 

Mediation analysis is the valuable technique used to investigate mediation models. One 

example of the mediation model is that student’s motivation will mediate the effect of the 

intervention on student’s achievement. In other words, student’s motivation levels will impact 

how much they can benefit from the intervention. We call the student’s motivation a mediator. 

The classical approach is traditionally common to estimate the mediation effect where the effect 

is simply a multiplication of the impact of the intervention on students’ motivation and the 

impact of student’s motivation on student’s achievement. When working with the outcomes such 

as student’s achievement, educational researchers may be interested in binary outcomes such as 

pass or fail, success or failure. The problem is when working with binary outcomes, the classical 

approach procedures to estimate the mediation effects causes some bias which may lead to 

inaccurate decisions such as applying ineffective teaching methods. 



The causal inference approach is considered to be a better alternative. It’s based on the 

theory of potential outcomes. Even though each student can only be observed in either treatment 

or control group, the potential outcome method can estimate the student’s outcomes in both 

conditions. For instance, if a group of students is under the treatment condition, they will have 

the observed outcomes which are the outcomes after they receive the treatment and we can use 

the method to estimate their outcomes of what would have happened if they did not receive the 

treatment. It is similar if they’re under the control condition. The mediation effect estimated by 

this approach is the average value of the difference between the students’ outcomes in the two 

conditions depending on the mediator on each condition.  

Two Monte Carlo Simulation studies were designed for this dissertation: one with a 

simple mediation model and the other one with a moderated mediation model with a treatment-

moderator interaction. Both studies replicated 1000 datasets for each of the various experimental 

conditions. Specially, they included (a) proportion of outcome (.06, .07, .075, .08, .09, .1, .2, .3, 

.4, .5, .6, .7), (b) effect size (small, medium, large), and (c) sample size (350, 700, 1000). The 

datasets were generated by using the probit model because the outcome is binary. The analyses 

were run with two models: probit and logit. Results were evaluated by various criteria, including 

bias, standard error (SE), average standard error (ASE), mean square error (MSE), coverage 

probability, and power.  

Results demonstrated that the causal inference approach produced a more accurate 

mediation effect than the classical approach in both outcome cases, both probit and logit models, 

and both mediation models. The first four evaluation criteria supported the demonstration. On 

the other hand, the last two criteria did not fully support the demonstration. For the coverage 

probability, the two approaches produced quite similar results. For power, in most of the 



conditions, the two approaches produced mediation effects with power of 1. Generally, the 

causal inference approach still produced more accurate and reliable effects than the classical 

approach. Finally, study limitations, practical implications, and future research were discussed.  

Keywords: mediation models, causal inference approach, classical approach, rare outcome cases, 

non-rare outcome cases. 
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Table 58. The Changes in ASE under Different Sample Sizes for Rare Outcome

Cases in Logit

Table 59. The Changes in ASE under Different Sample Sizes for Non-rare Outcome

Cases in Logit

Table 60. The Changes in MSE under Different Sample Sizes for Rare Outcome

Cases in Logit

Table 61. The Changes in MSE under Different Sample Sizes for Non-rare Outcome

Cases in Logit

Table 62. The Changes in Coverage under Different Sample Sizes for Rare Outcome

Cases in Logit

Table 63. The Changes in Coverage under Different Sample Sizes for Non-rare

Outcome Cases in Logit

Table 64. The Changes in Bias under Different Proportions for Rare Outcome

Cases in Probit with Moderation Effect

Table 65. The Changes in Bias under Small Effect Size across Proportions for Rare

Outcome Cases in Probit with Moderation Effect



Table 66. The Changes in Bias under Different Proportions for Non-rare Outcome

Cases in Probit with Moderation Effect

Table 67. The Changes in SE under Different Proportions for Rare Outcome Cases

in Probit with Moderation Effect

Table 68. The Changes in SE under Different Proportions in Non-rare Outcome

Cases in Probit with Moderation Effect

Table 69. The Changes in ASE under Different Proportions for Rare Outcome

Cases in Probit with Moderation Effect

Table 70. The Changes in ASE under Different Proportions in Non-rare Outcome

Cases in Probit with Moderation Effect

Table 71. The Changes in MSE under Different Proportions for Rare Outcome

Cases in Probit with Moderation Effect

Table 72. The Changes in MSE under Different Proportions for Non-rare Outcome

Cases in Probit with Moderation Effect

Table 73. The Changes in Coverage under Different Proportions for Rare Outcome

Cases in Probit with Moderation Effect

Table 74. The Changes in Coverage under Different Proportions in Non-rare Outcome

Cases in Probit with Moderation Effect

Table 75. The Changes in Power under Different Proportions for Rare Outcome

Cases in Probit with Moderation Effect

Table 76. The Changes in Power under Different Proportions in Non-rare Outcome

Cases in Probit with Moderation Effect

Table 77. The Changes in Bias under Different Effect Size for Rare Outcome Cases

in Probit with Moderation Effect

Table 78. The Changes in Bias under Different Effect Size in Non-rare Outcome

Cases in Probit with Moderation Effect



Table 79. The Changes in SE under Different Effect Size in Rare Outcome Cases

in Probit with Moderation Effect

Table 80. The Changes in SE under Different Effect Size in Non-rare Outcome

Cases in Probit with Moderation Effect

Table 81. The Changes in Coverage under Different Effect Size for Rare Outcome

Cases in Probit with Moderation Effect

Table 82. The Changes in Coverage under Different Effect Size in Non-rare Outcome

Cases in Probit with Moderation Effect

Table 83. The Changes in Power under Different Effect Size for Rare Outcome

Cases in Probit

Table 84. The Changes in Power under Different Effect Size in Non-rare Outcome

Cases in Probit with Moderation Effect

Table 85. The Changes in Bias under Different Sample Size for Rare Outcome

Cases in Probit with Moderation Effect

Table 86. The Changes in Bias under Different Sample Size in Non-rare Outcome

Cases in Probit with Moderation Effect

Table 87. The Changes in SE under Different Sample Size for Rare Outcome Cases

in Probit with Moderation Effect

Table 88. The Changes in SE under Different Sample Size in Non-rare Outcome

Cases in Probit with Moderation Effect

Table 89. The Changes in ASE under Different Sample Size for Rare Outcome

Cases in Probit with Moderation Effect

Table 90. The Changes in ASE under Different Sample Size in Non-rare Outcome

Cases in Probit with Moderation Effect

Table 91. The Changes in MSE under Different Sample Size for Rare Outcome

Cases in Probit with Moderation Effect



Table 92. The Changes in MSE under Different Sample Size in Non-rare Outcome

Cases in Probit with Moderation Effect

Table 93. The Changes in Coverage under Different Sample Size for Rare Outcome

Cases in Probit with Moderation Effect

Table 94. The Changes in Coverage under Different Sample Size in Non-rare Outcome

Cases in Probit with Moderation Effect

Table 95. The Changes in Power under Different Sample Size for Rare Outcome

Cases in Probit with Moderation Effect

Table 96. The Changes in Power under Different Sample Size in Non-rare Outcome

Cases in Probit with Moderation Effect

Table 97. The Changes in Bias under Different Proportions for Rare Outcome

Cases in Probit Without Moderated Effect

Table 98. The Changes in Bias across Proportions for Rare Outcome Cases in

Probit Without Moderation Effect

Table 99. The Changes in Bias across Proportions for Non-rare Outcome Cases in

Probit Without Moderation Effect

Table 100. The Changes in SE across Proportions for Rare Outcome Cases in Probit

Without Moderation Effect

Table 101. The Changes in SE across Proportions for Non-rare Outcome Cases in

Probit Without Moderation Effect

Table 102. The Changes in ASE across Proportions for Rare Outcome Cases in

Probit Without Moderation Effect

Table 103. The Changes in ASE across Proportions for Non-rare Outcome Cases in

Probit Without Moderation Effect

Table 104. The Changes in MSE across Proportions for Rare Outcome Cases in

Probit Without Moderation Effect



Table 105. The Changes in MSE under Different Proportions for Non-rare Outcome

Cases in Probit Without Moderation Effect

Table 106. The Changes in Bias under Different Proportions for Rare Outcome

Cases in Logit with Moderation Effect

Table 107. The Changes in Bias under Small Effect Size across Proportions for Rare

Outcome Cases in Logit with Moderation Effect

Table 108. The Changes in Bias under Different Proportions for Non-rare Outcome

Cases in Logit with Moderation Effect

Table 109. The Changes in Bias under under Small Effect Size across Proportions

for Non-rare Outcome Cases in Logit with Moderation Effect

Table 110. The Changes in SE under Different Proportions for Rare Outcome Cases

in Logit with Moderation Effect

Table 111. The Changes in SE under Small Effect Size across Proportions for Rare

Outcome Cases in Logit with Moderation Effect

Table 112. The Changes in SE under Different Proportions for Non-rare Outcome

Cases in Logit with Moderation Effect

Table 113. The Changes in SE under Small Effect Size across Proportions for Non-rare

Outcome Cases in Logit with Moderation Effect

Table 114. The Changes in ASE under Small Effect Size across Proportions for Rare

Outcome Cases in Logit with Moderation Effect

Table 115. The Changes in ASE under Small Effect Size across Proportions for

Non-rare Outcome Cases in Logit with Moderation Effect

Table 116. The Changes in MSE under Small Effect Size across Proportions for Rare

Outcome Cases in Logit with Moderation Effect

Table 117. The Changes in MSE under Different Proportions for Non-rare Outcome

Cases in Logit with Moderation Effect



Table 118. The Changes in Coverage under Different Proportions for Rare Outcome

Cases in Logit with Moderation Effect

Table 119. The Changes in Coverage under Different Proportions for Non-rare Outcome

Cases in Logit with Moderation Effect

Table 120. The Changes in Power under Different Proportions for Rare Outcome

Cases in Logit with Moderation Effect

Table 121. The Changes in Power under Different Proportions for Non-rare Outcome

Cases in Logit with Moderation Effect

Table 122. The Changes in Bias under Different Effect Size for Rare Outcome Cases

in Logit with Moderation Effect

Table 123. The Changes in Bias under Different Effect Size in Non-rare Outcome

Cases in Logit with Moderation Effect

Table 124. The Changes in SE under Different Effect Size for Rare Outcome Cases

in Logit with Moderation Effect

Table 125. The Changes in SE under Different Effect Size in Non-rare Outcome

Cases in Logit with Moderation Effect

Table 126. The Changes in ASE under Different Effect Size in Non-rare Outcome

Cases in Logit with Moderation Effect

Table 127. The Changes in ASE under Different Effect Size in Non-rare Outcome

Cases in Logit with Moderation Effect

Table 128. The Changes in MSE under Different Effect Size for Rare Outcome Cases

in Logit with Moderation Effect

Table 129. The Changes in MSE under Different Effect Size in Non-rare Outcome

Cases in Logit with Moderation Effect

Table 130. The Changes in Coverage under Different Effect Size for Rare Outcome

Cases in Logit with Moderation Effect



Table 131. The Changes in Coverage under Different Effect Size in Non-rare Outcome

Cases in Logit with Moderation Effect

Table 132. The Changes in Power under Different Effect Size for Rare Outcome

Cases in Logit with Moderation Effect

Table 133. The Changes in Bias under Different Sample Size for Rare Outcome

Cases in Logit with Moderation Effect

Table 134. The Changes in Bias under Different Sample Size in Non-rare Outcome

Cases in Logit with Moderation Effect

Table 135. The Changes in SE under Different Sample Size for Rare Outcome Cases

in Logit with Moderation Effect

Table 136. The Changes in SE under Different Sample Size in Non-rare Outcome

Cases in Logit with Moderation Effect

Table 137. The Changes in ASE under Different Sample Size for Rare Outcome

Cases in Logit with Moderation Effect

Table 138. The Changes in ASE under Different Sample Size in Non-rare Outcome

Cases in Logit with Moderation Effect

Table 139. The Changes in MSE under Different Sample Size for Rare Outcome

Cases in Logit with Moderation Effect

Table 140. The Changes in MSE under Different Sample Size in Non-rare Outcome

Cases in Logit with Moderation Effect

Table 141. The Changes in Coverage under Different Sample Size for Rare Outcome

Cases in Logit with Moderation Effect

Table 142. The Changes in Coverage under Different Sample Size in Non-rare Outcome

Cases in Logit with Moderation Effect

Table 143. The Changes in Power under Different Sample Size for Rare Outcome

Cases in Logit with Moderation Effect



Table 144. The Changes in Power under Different Sample Size in Non-rare Outcome

Cases in Logit with Moderation Effect

Table 145. The Changes in Bias under Different Proportions for Rare Outcome

Cases in Logit Without Moderated Effect

Table 146. The Changes in Bias across Proportions for Rare Outcome Cases in Logit

Without Moderation Effect

Table 147. The Changes in Bias across Proportions for Non-rare Outcome Cases in

Logit Without Moderation Effect

Table 148. The Changes in SE across Proportions for Rare Outcome Cases in Logit

Without Moderation Effect

Table 149. The Changes in SE across Proportions for Non-rare Outcome Cases in

Logit Without Moderation Effect

Table 150. The Changes in ASE across Proportions for Rare Outcome Cases in Logit

Without Moderation Effect

Table 151. The Changes in ASE across Proportions for Non-rare Outcome Cases in

Logit Without Moderation Effect

Table 152. The Changes in MSE across Proportions for Rare Outcome Cases in

Logit Without Moderation Effect

Table 153. The Changes in MSE under Different Proportions for Non-rare Outcome

Cases in Logit Without Moderation Effect



Chapter 1. Introduction

Mediation analysis is a useful technique for determining a mediation effect, which is

the indirect effect of an independent variable on a dependent variable via a mediator. A

mediation model is used to explain when and how a mediation effect occurs. Two

approaches are commonly used when conducting mediation analysis: the classical approach

and the causal inference approach. Researchers have been mostly using the classical

approach. However, the way the classical approach analyzes and interprets mediation

effects has some drawbacks, particularly when working with a binary outcome (Valeri &

VanderWeele, 2013; VanderWeele & Vansteelandt, 2010). Following are brief presentations

of mediation models, the classical approach, the causal inference approach, and the

drawbacks of using the classical approach.

Mediation Models

Wright (1920) introduced indirect effects on variables via other variables. Then,

Hyman (1955) and Lazarsfeld (1955) provided a series of statistical tests to determine the

effect of a third variable on the relation between two variables. Later, Judd and Kenny

(1981), James and Brett (1984), and Baron and Kenny (1986) translated these tests into

what are known as mediation models.

Mediation models identify and explain the process that underlies an observed

relation between an independent variable and a dependent variable through the use of a

third variable known as a mediator. Rather than focusing only on a direct relation between

independent and dependent variables, mediation models evaluate the relation between the

independent variable and the mediator, as well as the relation between the mediator and

the dependent variable. Figure 1 depicts a simple mediation model in which X is the

independent variable, Y is the dependent variable, and M is the mediator. The a and b

paths are direct paths from X to M and M to Y , respectively. The c′ path is the path

from X to Y conditioning on M . In addition, Figure 2 presents the c path, which is the
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direct path from X to Y .

Figure 1
Illustration of a Simple Mediation Model

Although X can be continuous or categorical, in this study I assume X to be a

binary predictor for the purpose to interpret the treatment effect on an outcome Y with

the existence of a mediator M . The treatment indicator X and the outcome Y in my study

will be binary, while the mediator M will be continuous.

When working with binary outcomes, mediation analyses typically employ either

the probit model or logit model. The probit model uses the cumulative normal distribution

function, which is defined as

probit(P ) = Φ(P ), (1)

where Φ is the cumulative normal distribution function and P is the probability of outcome

equal to 1. The logit model uses the cumulative logistic distribution function. It is the

inverse of the link function, also known as log-odds, is defined as

logit(P ) = ln
P

1 − P
. (2)
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Figure 2
Illustration of the c Path

Classical Approach to Mediation Analysis

The classical approach to a simple mediation analysis was proposed by Judd and

Kenny (1981) and Baron and Kenny (1986). To assess the mediation effect, this method

employs a pair of regression equations. The first equation explains how the treatment

indicator X affects the mediator M (i.e., X → M). The mediator M is a linear function of

the treatment indicator X, with the assumption that the relation between X and M is

linear. That is,

Mi = γ0 + γ1Xi + ϵMi
, (3)

where i is indexing for observations, Xi is the independent variable, Mi is the mediator, γ0

is the M -intercept, γ1 is the coefficient of the a path from X to M , respectively. In

addition, ϵMi
is normally distributed residual with mean 0 and variances σ2

m.

The second equation explains how the treatment indicator X influences the outcome

Y (i.e., X → Y ) by conditioning on the mediator M . The outcome Y is a linear function of

the treatment indicator X and the mediator M , with the assumption that the relation

between X and M to Y is linear. That is,

Yi = β0 + β1Mi + β2Xi + ϵYi
, (4)

where Yi is the outcome, β0 is the Y -intercept, β1 and β2 are the coefficients of b and c′
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paths from M to Y and from X to Y , respectively. In addition, ϵYi
is normally distributed

residual with mean 0 and variance σ2
y ; σ2

y is 1 for probit and π2/3 for logit.

As a result, the classical approach is inapplicable to nonlinear and interaction

models. The combined model of Equation (3) and Equation (4) is as follows:

Yi = β0 + β2Xi + β1(γ0 + γ1Xi + ϵMi
) + ϵYi

= β0 + β2Xi + β1γ0 + β1γ1Xi + β1ϵMi
+ ϵYi

. (5)

The mediation effect of X on Y via M is estimated by β1γ1, according to Equation (5).

The direct effect of X on Y at a fixed level of M is estimated by β2. This way of

estimating the mediation effect and the direct effect is referred to as the classical approach.

When interpreting the cause of the outcome, Ato García et al. (2014) suggests that

the classical approach must meet four assumptions in order to avoid bias in the estimation.

The first assumption is linearity and non-interaction, implying that the classical approach

is inapplicable to models with interactions or nonlinear terms. This assumption is

explained above because the classical approach employs a system of two linear regression

equations. The second assumption is that the treatment indicator X must come before the

mediator M , and the mediator M must come before the outcome Y . Because we are

interested in the causality of the relationships between X and M , M and Y , and X and Y ,

this assumption is required. Because this is a difficult assumption to meet with

cross-sectional data, researchers (e.g., Ato García et al., 2014) suggested using mediation

analyses with the classical approach only for longitudinal data. The third assumption is

that there will be no errors in measuring the treatment indicator X and mediator M . If

the variables are not measured with high reliability, the coefficients will be biased, as will

the estimation of the mediation effect. The fourth assumption is that no confounder

variables exist in the path from the treatment indicator X to the mediator M (i.e.,

X → M) and the path from the mediator M to the outcome Y (i.e., M → Y ). Confounder
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variables influence the relationships between X and M as well as M and Y . Because we

want to test the causality of M based solely on X and the causality of Y based solely on X

and M , the classical approach requires no confounder variables. Some researchers (e.g.,

Ato García et al., 2014) believe that measuring all potential confounders and controlling

their effects is the most effective way to prevent the problem of confounder variables.

To summarize, the classical approach to mediation analysis is straightforward. In a

simple mediation model, the mediation effect is simply calculated by multiplying the two

path coefficients, β1γ1. The four assumptions of the classical approach, however, are

difficult to meet. As a result, it is reasonable to expect that the estimated effects will be

biased.

Causal Inference Approach

Holland (1986) developed causal inference based on Jerzy Neyman’s theory of

potential outcomes (Rubin, 1990). Under each treatment state, the key assumption of

potential outcomes is that each individual in the population of interest has two potential

outcomes—observed potential outcome, which is the actual outcome when a condition is

met, and unobserved potential outcome, which is the outcome of what would have

happened if the condition was not met—under each treatment state. Despite the fact that

each individual can only be observed in one treatment state at any given time, the potential

outcome method attempts to estimate the expected values of unobserved outcomes.

Morgan and Winship (2015) provided one hypothetical scenario for potential

outcomes: having a college degree rather than just a high school diploma will have a causal

effect on subsequent earnings. Adults with only a high school diploma have theoretical

what-if earnings under the state “have a college degree,” while adults with a college degree

have theoretical what-if earnings under the state “have only a high school diploma.” These

what-if scenarios are counterfactual in the sense that they exist in theory but are not

observed in practice. The potential outcomes aid in answering causal questions such as
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“Does a college degree increase a person’s likelihood of earning a higher salary?” or “What

effect does a college degree have on wages later in life?”

An example for using the potential outcome method in mediation analyses is to

determine the mediation effect of an intervention on students’ achievement through

students’ motivation. Students’ motivation is the mediator in this case. For instance, a

group of students is in the treatment group, they will have observed outcomes which are

actual outcomes after they receive the treatment. The method will estimate their

unobserved outcomes which are the outcomes of what would have happened if they did not

receive the treatment. If the group is in the control condition, the situation is similar.

The causal inference approach to mediation analysis is the method of estimating an

average causal mediation effect by using potential outcomes. The mediation effect is

conceptualized as the expected value in the difference of the outcomes between the

treatment condition and the control condition when conditioning on the mediator in the

causal inference approach. This concept will be covered in depth in Chapter 2.

Statement of the Problems

Some issues arise when the classical approach to mediation analyses is applied to a

model with a binary outcome (VanderWeele & Vansteelandt, 2010). First, the classical

approach will produce a biased mediation effect when using the logit model with binary

outcomes. The causal inference approach employs a risk-ratio scale to estimate a mediation

effect using logit model. The risk-ratio is the ratio of the probability of an outcome in a

treatment group to the probability of an outcome in a control group (Sistrom & Garvan,

2004). The classical approach, on the other hand, employs an odds-ratio scale for both

probit and logit model. The odds-ratio, which is the ratio of the odds of an event occurring

in the treatment group to the odds of it occurring in the control group (Sistrom & Garvan,

2004), is a measure of association between a treatment indicator and an outcome. In the

case of a non-rare outcome in the logit model, where the response equals 1 occurs in more
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than 10% of all responses, a mediation effect estimated on the odds-ratio scale is not

approximately equal to a mediation effect estimated on the risk-ratio scale. As a result, the

estimated mediation effect is biased.

Second, when the outcome is binary, the classical approach is less suitable for

estimating mediation effects in the presence of an interaction between the treatment

indicator and a mediator or a covariate. According to MacKinnon et al. (2020), the

classical approach can only be used to properly estimate mediation effects for mediation

models with a continuous mediator and a continuous outcome when the interaction is

present. However, when the outcome is binary, the classical approach’s mediation effect

will not be equal to the causal inference approach’s mediation effect estimate (VanderWeele

& Vansteelandt, 2010). In other words, using the classical approach to estimate mediation

effects when there is a treatment-mediator or treatment-covariate interaction and a binary

outcome will result in some bias.

These issues will be discussed in more detail in Chapter 2. Despite these issues, the

classical approach to mediation analyses is still widely used in applied research, even when

the outcome variable is not continuous. Therefore, the purpose of this study will be to

show that the causal inference approach is better than the classical approach when

conducting a mediation analysis with a binary outcome.
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Chapter 2. Literature Review

The previous chapter provided a short history of mediation analysis as well as the

core principles of the classical approach and the causal inference approach to mediation

analysis. Issues that appeared while using the classical approach in mediation analysis with

binary outcomes were addressed. This chapter will introduce mediation and moderated

mediation models with continuous and binary outcomes. In addition, an explanation of

why the causal inference approach to mediation and moderated mediation analyses is

important for binary outcomes will be presented.

Mediation Models and Moderated Mediation Models

When working with mediation and moderated mediation analyses, there are two

main types of outcomes: continuous and categorical. The majority of published research

papers use mediation models and moderated mediation models with continuous outcomes.

Therefore, this section will start with continuous outcomes.

Continuous Outcomes

Mediation Models. They depict the relation between a treatment indicator and

an outcome through the use of a mediator. Chapter 1 provided a brief history of mediation

models. Figure 3 shows an example of how a mediation analysis is used in educational

research. The diagram shows a simple mediation model in which sex is the binary

predictor, emotional intelligence is the mediator, and reading comprehension is the

outcome. The model is based on the work of Jimanez-Parez et al. (2021). The classical

approach was used by the researchers to estimate the mediation effect. The effect of sex on

reading comprehension is mediated by emotional intelligence in this case.

The causal process between the treatment indicator X and the outcome Y via a

mediator is one of main reasons for investigators to explore third variable effects (James &

Brett, 1984). Two causal paths relate the treatment indicator X and the outcome Y in
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Figure 3
Example of A Mediation Analysis in Education Research. Adopted from "Sustainable Education Emotional Intelligence and
Mother–Child Reading Competencies within Multiple Mediation Models" by E. J. Perez, M. V. Jana, R. Gutierrez-Fresneda,
P. Garcia-Guirao, Sustainability, 2021, 13, 1803. Copyright 2021 by Multidisciplinary Digital Publishing Institute.

mediation analyses. The first path is directly from the treatment indicator X to the

outcome Y (direct effect). That is

Y = β01 + β11X + ϵY1 , (6)

where β01 is an intercept of the regression with Y as an outcome without M as a predictor,

β11 is the coefficient of the c path from X to Y , and ϵY1 is a normally distributed residual.

The second path from the treatment indicator X to the outcome Y through the mediator

M (mediation effect) shown in Equation (4) where the relation between M and X is shown

in Equation (3).

Baron and Kenny (1986) proposed a four-step technique for determining mediation

effects. First, the coefficient β11 in Equation (6) is required to be statistically significant.

Second, the coefficient γ1 in Equation (3) is required to be statistically significant. Third,

the coefficient β1 in Equation (4) is required to be statistically significant when both the

treatment indicator X and mediator M are the predictors of the outcome Y . Fourth, the

coefficient in the relation between the treatment indicator X and the outcome Y (the first

step) must be larger (in absolute value) than the coefficient in the relation of the treatment
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indicator X and the outcome Y through the mediator M . That is to say, β11 in Equation

(6) must be greater than β1 in Equation (4).

Moderated Mediation Models. They are extensions of mediation models that

include an additional covariate known as a moderator and its interaction with the

treatment indicator and/or the mediator. James and Brett (1984) were the first ones to

introduce these concepts to the scientific community, such as the joint mediator-moderator

models. The term moderated mediation was coined by the researchers to indicate that the

mediation effect is dependent on the level of a moderator.

X is a treatment indicator, Y is a dependent variable, M is a mediator, and Z is a

moderator, as shown in Figure 4. Furthermore, a1 and b are direct paths from X to M and

M to Y , c′
1 is the path from X to Y conditioning on M , a2 and c′

2 are paths from Z to M

and Z to Y , and a3 and c′
3 are paths from XZ to M and XZ to Y , respectively. The

effects shown as the c′
2 and c′

3 paths are also known as the moderated mediation effects,

which are mediation effects of the treatment on the outcome via the moderator. A

moderated mediation analysis is used to determine these effects. A moderated mediation

model used to explain how and when a specific effect occurs (Frone, 1999). A moderated

mediation effect occurs when the strength of a mediation effect is affected by the level of a

variable. Put another way, when mediation relations are contingent on the level of a

moderator, a moderated mediation effect occurs (Preacher et al., 2007). A moderator can

influence the magnitude of a mediation effect in a variety of ways. Preacher et al. (2007)

summarizes five common moderated mediation models (see Appendix A). Figure 4 is the

second of the five models, known as moderated mediation Model 2.

An example of moderated mediation Model 2 in educational research is presented in

Figure 5. This example was provided by Arslan and Coşkun (2021). They used the

classical approach to analyze the moderated mediation. The moderated mediation model is

used in this study to see if the level of mindfulness modifies the mediation role of

self -forgiveness on the effect of social exclusion on internet addiction in college students.
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Figure 4
Model 2 represented as path diagram. Adopted from “Addressing Moderated Mediation Hypotheses: Theory, Methods, and
Prescriptions.” By K. J. Preacher, D. D. Rucker, and A. F. Hayes, Multivariate Behavioral Research, 2007, 42(1), p. 185-227.
Copyright 2007 by Lawrence Erlbaum Associates, Inc.

Figure 5
Second Example for Education Research in Moderated Mediation Analysis. Adopted from “Social Exclusion, Self-Forgiveness,
Mindfulness, and Internet Addiction in College Students: a Moderated Mediation Approach” by G. Arslan & M. Coskun,
International Journal of Mental Health and Addiction, 2021. Copyright 2021 by Springer Science Business Media, LLC.
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To determine moderated mediation effects of moderated mediation models with

continuous mediator and continuous outcome, three-step procedure is applied: (1)

determine the mediation effect, (2) determine the moderation effect, and (3) determine the

moderated mediation effect of the mediator M on the relation between the treatment

indicator X and outcome Y through the moderator Z. Since the mediator M is

continuous, the moderated mediation process will determine the high and low values (1 SD

above and below) of the mediator. Most studies on moderated mediation models with

continuous outcome and continuous mediator used SPSS Macro PROCESS (Hayes, 2012),

Mplus MODMED (L. K. Muthén & Muthén, 2010), SmartPls (Ringle et al., 2015), Stata

(StataCorp, 2007), or a combined method of IBM, SPSS, and AMOS (Arbuckle, 2017) to

run moderated mediation analyses.

Binary Outcomes

The second type of outcomes used with mediation and moderated mediation models

is categorical. Binary outcomes are part of categorical outcomes. For the purpose of

exploring the utility of the causal inference approach in binary outcomes, the paper will

focus on binary outcomes.

Mediation Analysis. When the outcomes in mediation analyses are binary, for

example, students pass or fail a class, Equations (4) and (6) must change from the linear

regression to either the probit or logit regression. Under the condition of binary outcomes,

there are two cases: continuous mediator and binary mediator. For the purpose of this

study, the paper only focuses on continuous mediator. In this case, Equation (3) will be

with the linear regression. According to Muthén et al. (2015), the Equation (5) will have

the conditional expectation

E(Y ∗
i |Xi) = β0 + β1γ0 + β1γ1Xi + β2Xi (7)
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and conditional variance

V (Y ∗
i |Xi) = V (β1ϵMi

+ ϵYi
) = β2

1σ2
m + c. (8)

For the probit model, Equation (8) implies that Y ∗ conditioned on X has a normal

distribution because it involves the sum of two normally distributed residuals ϵM and ϵY .

Therefore, the probability can be obtained using the standard normal distribution function

Φ for the probit regression,

P (Y = 1|X) = P (Y ∗ > 0|X) = Φ[ E(Y ∗|X)√
V (Y ∗|X)

]

= Φ[β0 + β1γ0 + β1γ1X + β2X

β2
1σ2

m + 1 ], (9)

where β0, β1, β2, γ0, γ1, and σ2
m are defined above.

If using the logit model instead of the probit model, Equation (8) implies that Y ∗

conditioned on X has a distribution that is a combination of the logit residual ϵY and the

normally distributed residual ϵM . Therefore, the effect will not be expressed explicitly in

the probability scale as in the probit regression. Instead, it is obtained in the scale of

log-odds-ratio, referred to as logit, through numerical integration.

Moderated Mediation Analysis. According to Muthén et al. (2015), the set of

two regression equations for the moderated mediation Model 2 where M is continuous and

Y is binary is given as

M = γ0 + γ1X + γ2Z + γ3XZ + ϵm (10)

and

Y ∗ = β0 + β1M + β2X + β3Z + β4XZ + ϵy. (11)
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The combined model of Equation (10) and Equation (11) is:

Y ∗ = β0 + β1γ0 + (β2 + β1γ1)X + (β1γ2 + β3)Z + (β1γ3 + β4)XZ + β1ϵm + ϵy, (12)

where γ0 and β0 are the intercepts for the regressions with M and Y ∗ as an outcome,

respectively, γ1, γ2, γ3 are coefficients of a1, a2, a3 paths, β1, β2, β3, β4 are coefficients of

b, c′
1, c′

2, c′
3 paths, ϵm and ϵy are normally distributed residuals, and V (ϵy) =1.

For the probit model, according to Preacher et al. (2007), the conditional

expectation and variance follows as

E(Y ∗|M = m, X = x, Z = z) = P (Y = 1|M = m, X = x, Z = z)

= Φ[probit(Y ∗)] (13)

and

V (X) = (β1 + β3Z)2σ2
m + 1, (14)

where probit(Y ∗) = β0 + β1M + β2X + β3Z + β4XZ. It can also be written as

probit(X1, X0) = β0 + β2X1 + β3Z + β4X1Z + β1(γ0 + γ1X0 + γ2Z + γ3X0Z), (15)

where X1 and X0 are the treatment indicator at the treatment and control conditions,

respectively. Furthermore, σ2
m is the error variance for the regression with M as an

outcome, β0, β1, β2, β3, β4, γ0, γ1, γ2, and γ3 are defined above.

Similar to the simple mediation model, if using the logit model instead of the probit

model, Equation (14) implies that Y ∗ conditioned on X has a distribution that is a

combination of the logit residual ϵY and the normally distributed residual ϵM . Therefore,

the effect is obtained in the scale of log-odds-ratio through numerical integration and will
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not be expressed explicitly.

Total Natural Indirect Effects (TNIE). It is defined when the treatment

indicator X is at treatment condition and the mediator M changes from control condition

to treatment condition. That is,

TNIE = E[Y (X = 1, M = M1)] − E[Y (X = 1, M = M0)], (16)

where Y (X = 1, M = M1) and Y (X = 1, M = M0) are the values of the outcome when X

is at the treatment condition and M is at the treatment condition and control condition,

respectively.

Pure Natural Indirect Effects (PNIE). It is defined when X is at the control

condition and mediator changes from the control condition to the treatment condition.

That is,

PNIE = E[Y (X = 0, M = M1)] − E[Y (X = 0, M = M0)], (17)

where Y (X = 0, M = M1) and Y (X = 0, M = M0) are the values of the outcome when X

is at the control condition and M is at the treatment condition and control condition,

respectively.

Binary Outcomes vs. Continuous Outcomes

Mediation analyses and moderated mediation analyses with binary outcomes need

to be explained separately because of two reasons. First, TNIE and PNIE are the same if

the outcome and mediator are continuous. That is,

PNIE = TNIE = E[Y (X = x, M = M0)] − E[Y (X = x, M = M1)], (18)
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where Y (X = x, M = M0) and Y (X = x, M = M1) are the values of the outcome when the

continuous X is at a fixed value x, and the mediator M is at the control condition and

treatment condition, respectively. For binary variables, PNIE and TNIE are different

(see Equations (16) and (17)).

Second, as mentioned in Chapter 1, we use different models in mediation and

moderated mediation analyses with binary outcomes to estimate unbiased moderated

mediation effects, which are probit or logit models. As probit and logit models function

quite differently, mediation analyses and moderated mediation analyses with binary

outcomes need to be considered carefully.

Causal Inference vs. Classical Approach

The two approaches, the classical approach and causal inference approach, to

mediation analyses were briefly introduced in Chapter 1. The classical approach is simple

while the causal inference approach is much more complicated. Therefore, this section will

provide more details about the causal inference approach.

Causal Inference Approach

The causal inference approach to mediation analyses is based on the potential

outcomes method, which assumes each individual has two potential outcomes, observed

and unobserved, in each treatment state. The underlying motivation for the potential

outcomes is to estimate the causal effects in mediation and moderated mediation analyses

as an average effect.

Following Imai et al. (2011); Muthén (2011); Pearl (2012); Valeri and VanderWeele

(2013), I assume a randomized binary treatment indicator Xi, where Xi=1 for the

treatment group and Xi=0 for the control group, to be applied for participant i

(i = 1, . . . , N). Then, the causal effect of the treatment will be Yi(1) − Yi(0), where Yi(1)

and Yi(0) are the outcome values of participant i when the participant is assigned to the
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treatment group and the control group, respectively. Since each participant can only be

observed once, either Yi(1) or Yi(0), the causal effect is undefined at the individual level.

However, the average effect of the treatment is identifiable. The effect is defined as

E[Yi(1) − Yi(0)].

Now let Mi(1) and Mi(0) be the values of the mediator obtained when the

participant i under the treatment condition and control condition, respectively. Then,

Y [Xi = 1, M = Mi(1)] will be the value of the outcome obtained when both the treatment

indicator X and the mediator M of participant i are under the treatment condition.

Similarly, Y [Xi = 0, M = Mi(0)] is the value of the outcome when both the treatment

indicator X and the mediator M of participant i are under the control condition.

According to Ato García et al. (2014), the average total effect (ATE) is defined by the

causal inference approach as

ATE = E[Yi(X = 1, M = Mi(1)) − Yi(X = 0, M = Mi(0))]. (19)

Here, ATE is average difference of unobserved outcomes under different conditions. That is

to say, the effect is the expected value of the difference between the value of the outcome

when the treatment indicator and the mediator are under the treatment condition and the

value of the outcome when the treatment indicator and the mediator are under the control

condition. Note that these expected values are a mixture of observed and unobserved

outcomes. ATE consists of two components: the average causal mediation effect (ACME)

and the average direct effect (ADE). ACME is the average of the mediation effect of the

treatment indicator X at level x on the outcome Y through the mediator M changing from

treatment condition X = 1 to control condition X = 0. To rephrase it, ACME shows the

average of the difference of the outcome value under the treatment condition from the
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outcome value under the control condition. In equation, this effect is written as

ACME = E[Yi(X = x, M = Mi(1)) − Yi(X = x, M = Mi(0))], (20)

where x takes a value either 1 or 0, indicating treatment or control condition. On the other

hand, ADE is the average of the direct effects of X on Y by controlling M at level x when

the treatment indicator changes between treatment condition and control condition,

ADE = E[Yi(X = 1, M = Mi(x)) − Yi(X = 0, M = Mi(x))], (21)

where x is defined above.

According to Ato García et al. (2014), Equations (20) and (21) require the

assumption of sequential ignorability. The assumption of sequential ignorability includes

two parts. First, if one or more observed covariates are given, the treatment indicator will

be ignorable. In other words, the treatment indicator is independent of all the potential

values of the mediator and outcome. Second, if the treatment and one or more observed

covariates are given, the mediator will be ignorable. Put another way, the mediator is

independent of all the potential values of the outcome. Imai et al. (2010) explained three

reasons why we need this assumption. First, it suggests the possibility of constructing a

general method of estimating the average treatment effect for outcome and mediating

variables of any type and using any parametric or nonparametric models. Second, it

implies that we may estimate causal mediation effects while imposing weaker assumptions

about the correct functional form or distribution of the observed data. Third,

nonparametric identification analysis reveals the key role of the sequential ignorability

assumption irrespective of the statistical models used by researchers.

The assumption of sequential ignorability also implies four other assumptions : (1)

no confounder in the path from X to Y , (2) no confounder in the path from M to Y , (3)
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no confounder in the path from X to M , and (4) the treatment cannot be the cause of any

confounder of the path from M to Y if it exists. As defined in Chapter 1, confounder

variables are variables that affect the relation between X and M , M and Y , and X and Y .

We need to control for confounder variables because we want to test the causality of M

based solely on X and the causality of Y based solely on X and M . Moreover, when

working with a mediation analysis, the causal inference approach requires to have the

temporal precedence of cause assumption: the treatment indicator X must precede the

mediator M , and the mediator M also must precede the outcome variable Y . The reason is

that we need to have the causality from X to M , M to Y , and X to Y . Thus, X needs to

happen before M and M needs to happen before Y .

Similarities of Causal Inference and Classical Approaches

In order to obtain the causal inference interpretation of the mediation effect when

working with mediation analyses, both classical and causal inference approaches have the

assumptions of no confounders and the temporal precedence of cause. The fourth

assumption in the classical approach requires no external variables in the relations between

X and M and between M and Y . Similarly, the sequential ignorability assumption of the

causal inference approach requires the same thing. That is to say, both approaches require

that the estimated regression equations are adjusted for the confounders of all paths in

mediation models (MacKinnon, 2008; VanderWeele & Vansteelandt, 2010). Moreover,

when working with mediation and moderated mediation models, both classical and causal

inference approaches assume the temporal precedence of cause for the treatment indicator,

the mediator, and the outcome (MacKinnon, 2008; Pearl, 2012). Put another way, the

treatment indicator is assumed to happen before the mediator and the mediator is assumed

to happen before the outcome.
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Differences Between Causal Inference and Classical Approaches

Besides the two similarities described above, the classical approach and the causal

inference approach have two main differences. These are two disadvantages of the classical

approach when working with mediation and moderated mediation analyses with binary

outcomes. First, as argued in Chapter 1, the classical approach will produce a biased

mediation effect when using the logit model with non-rare outcomes. A mediation effect

estimated using the classical approach in the odds-ratio scale is not approximately equal to

a mediation effect estimated using the causal inference approach in the risk-ratio scale.

The risk ratio (RR) scale for a binary outcome is

RR = P (Y = 1|X = 1)/[P (Y = 1|X = 1) + P (Y = 0|X = 1)]
P (Y = 1|X = 0)/[P (Y = 1|X = 0) + P (Y = 0|X = 0)] (22)

and the odds ratio (OR) scale for a binary outcome is

OR = odds(Y = 1)
odds(Y = 0) = P (Y = 1|X = 1)/P (Y = 0|X = 1)

P (Y = 1|X = 0)/P (Y = 0|X = 0) . (23)

In rare outcome cases, defined where the response equals 1 occurs in 10% or lower of the

total responses (VanderWeele & Vansteelandt, 2010), P (Y = 1|X = 1) and

P (Y = 1|X = 0) will be quite small. When those two terms are small, the two sums are

approximately the same as the second terms. So, OR is approximately equal to the RR.

However, when the outcome is non-rare, P (Y = 1|X = 1) and P (Y = 1|X = 0) will not be

small. Thus, OR is not equal to the RR. Moreover, the causal inference approach was

indicated to produce an unbiased mediation effect (Murphy et al., 2014). As a result, the

classical approach will cause bias in estimating mediation effects if using OR scale in the

logit model with non-rare outcome cases (Valeri & VanderWeele, 2013). In addition, the

classical approach cannot use the risk-ratio scale because on risk-ratio scale, the mediation

effect is estimated by the average of the difference of the values of observed outcome from
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unobserved outcome (VanderWeele & Vansteelandt, 2010). Put another way, to obtain the

mediation effect using the risk-ratio scale, we need to use potential outcomes method from

the causal inference approach.

Second, the classical approach cannot automatically incorporate with the

interaction between the treatment indicator and a mediator or a covariate when the

outcome is binary. The classical approach has limited guidance on how to estimate direct

and mediation effects in mediation analyses under the presence of an interaction (Judd &

Kenny, 1981; MacKinnon, 2008). Recently, MacKinnon et al. (2020) has presented a study

that showed the classical approach can be used to estimate effects for mediation models

with a continuous mediator and a continuous outcome. By recoding the treatment

indicator and using group-mean centering on the mediator, the mediation effects estimated

by the classical approach can be equivalent to the mediation effects estimated by the causal

inference approach. However, when the outcome is binary and an interaction is present, the

effects estimated by the classical approach cannot be equal to the effects estimated by the

causal inference approach (VanderWeele & Vansteelandt, 2010). Hence, there will be bias

when using the classical approach to estimate effects of mediation analyses with the

presence of an interaction and a binary outcome.

Considering these problems with the classical approach, the causal inference has

advantages. First, the causal inference approach estimates unbiased mediation effects

regardless of rare or non-rare binary outcome cases. That is to say, the causal inference

approach applies RR scale when using the logit model for both rare and non-rare outcome

cases. Second, the causal inference approach provides definitions and estimators of direct

and mediation effects that incorporate an interaction between a treatment indicator and a

mediator or a covariate even when the outcome is binary (Pearl, 2001; Robins &

Greenland, 1992). However, researchers have called for the importance of investigating the

interaction when using the causal inference approach (Pearl, 2001; VanderWeele &

Vansteelandt, 2010). The underlying method for estimating the effects in the causal
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inference approach is average effect, which is problematic when the treatment-mediator or

treatment-covariate interaction is present. The average effect method ignores the

important information on the direct and mediation effects at specific values of the

treatment indicator and mediator or covariate, which does not provide complete insight in

the causal mechanism (Pearl, 2001). Even though the causal inference cannot capture the

effects fully when an interaction is present, the approach is still a better choice compared

to the classical approach for mediation analyses with binary outcomes.

Published Research in Classical Approach vs. Causal Inference Approach

The problems of producing biased mediation effects when using the classical

approach with binary outcomes have been indicated for quite a while. Several research

papers have been published on comparing the classical approach and the causal inference

approach in mediation analyses and have suggested the causal inference approach as an

alternative for the classical approach. Ato García et al. (2014) summarized the two

approaches with their assumptions and ran a simulation study in a simple mediation

analysis with a continuous outcome to test whether violating the assumptions of omitting

latent confounders would affect the mediation effects. The researchers used simulation data

with four simulation factors: sample size, correlation between residuals, direct effect, and

indirect effect. Sample size was specified to 200. The direct effect was set to 0.5 and the

indirect effect was set to 0.09. The correlation between residuals were set to 0, 0.25, and

0.50. They used 1000 replications in each condition. The results indicated that the

existence of latent confounders caused overestimating mediation effects. Based on the

results, they recommended complementing the classical approach with the causal inference

approach since the causal inference approach can be generalized to variables of different

kinds and to many more complicated scenarios.

MacKinnon et al. (2020) compared the classical approach and causal inference

approach in two models with a continuous mediator and a continuous outcome; the first
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model is simple mediation analysis and the second model is mediation analysis with a

treatment-mediator interaction. The second model is the moderated mediation Model 1,

where the treatment indicator is also the moderator. The researchers used simulation data

with two simulation factors: sample size and effect size. Sample size was specified to 50,

100, 200, 500, and 1000. Effect size was specified to be zero, small (i.e., 2% of the variance

in the outcome), medium (i.e., 13% of the variance in the outcome), and large (i.e., 26% of

the variance in the outcome)(Cohen, 1988). Corresponding to the effect size, parameters

were specified: a path from X to M (0, 0.14, 0.39, 0.59), b path from M to Y (0, 0.14,

0.39, 0.59), h path from X to Y (0, 0.14, 0.36, 0.51). In sum, they used 1,280 conditions

with 500 replications for each condition. In addition, they ran simulations with a negative

value of h (i.e., -39) to test the power between the two approaches in detecting mediation

effects. Their findings indicated without the interaction term, mediation effects estimated

by the two approaches were the same; with the interaction term, however, the mediation

effects estimated by the causal inference approach in both treatment and control groups

were clearly different than the classical approach. According to their findings, the authors

recommended that researchers widely apply the causal inference approach in mediation

analyses.

Following the work of MacKinnon et al. (2020), Rijnhart et al. (2021) compared the

classical approach and causal inference approach in moderated mediation Model 1 with a

continuous mediator and a binary outcome, specifically in rare outcome cases. They used a

real-life data example, analytical comparisons, and a simulation study. The researchers

used both simulation data and real-life data for the comparison. For the simulation data,

they used five simulation factors: effect size, sample size, coefficient for d1 path from XM

to M , coefficient for d2 path from XM to Y , and residual variance. Effect size was specified

to be zero, small, medium, and large (Cohen, 1988). Sample size was specified to be 50,

100, 200, 500, and 1000. The d1 and d2 path coefficients were set to be 0 or 0.39. The

residual variance were considered as 1, 4, and 9. Moreover, the thresholds for dichotomizing
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the continuous treatment indicator and the outcome were at the median in the variables,

respectively. They concluded that the two approaches produced similar mediation effects,

but different direct effects and total effects. Based on the findings, the researchers

suggested that the classical approach should only be used to estimate the mediation effects

and direct effects of mediation models with binary outcomes when the aim is to determine

the direct effect conditional on specific mediator values. They also emphasized that the

causal inference approach is the preferred approach for mediation analyses as its average

causal direct and mediation effect estimates can be used to reveal causal mechanisms.
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Chapter 3. Method

In theory, the causal inference approach is a better choice than the classical

approach. The causal inference approach has advantages in working with mediation models

with binary outcomes and the presence of a treatment-mediator or treatment-covariate

interaction. Several methodological studies compared the classical approach and causal

inference approach in mediation analysis. My dissertation builds on their work by focusing

on two studies that compare the causal inference approach to the classical approach: one

on a simple mediation analysis and the other on a moderated mediation Model 2 analysis.

Both studies will use binary outcomes in both rare and non-rare cases. In two significant

ways, my dissertation differs from previous published research. First, it employs two

approaches in moderated mediation Model 2. Second, it exclusively considers binary

outcomes, such as rare and non-rare cases. Table 1 shows a summary of the comparison

between my dissertation and the other three papers.

The data for both studies will be generated by the probit model using Monte Carlo

Simulation on Mplus via the MplusAutomation package (Hallquist & Wiley, 2018) in

RStudio (Allaire, 2009). The generated data will next be analyzed using the probit and

logit models. As mentioned in Chapter 1, when utilizing the logit model with binary

outcomes, the classical approach will yield a biased mediation effect; the logit model will be

assessed to validate this statement. Furthermore, since the data were generated using the

probit model, TNIE estimated using the probit model are expected to be gold quantities.

The probit model will be evaluated to explore this hypothesis.
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García et al. (2014) Mackinnon et al. (2020) Rijnhart et al. (2021) My Dissertation

Simple Mediation X X X
Moderated Mediation Model 1 Model 1 Model 2
Continuous Outcomes X X
Rare Outcomes X X
Non-rare Outcomes X

Table 1
Comparison Between Research Papers and My Dissertation

Study 1: Simple Mediation Model

Model

Study 1 was under a simple mediation model without any treatment-mediator or

treatment-covariate interaction. The model was graphically shown in Figure 1 in Chapter

1. The model has three variables: a binary treatment indicator X, a continuous mediator

M , and a binary outcome Y . There are also three direct paths: a, b, and c′ paths from X

to M , M to Y , and X to Y conditioning on M , respectively. As described in Chapter 1,

this model has two regression equations. Equation (3) presents the regression with M as an

outcome and one slope coefficient, which is the a path coefficient (γ1). Equation (4)

presents the regression with Y as an outcome and two slope coefficients. One of them is the

b path coefficient (β1), and the other is the c′ path coefficient (β2).

Data Generation

The data generation process will be based on a probit model. The mediator M and

the continuous latent response variable Y ∗ will be generated based on Equations (3) and

(5). The data generation process needs to specify population values of β0, β1, β2, γ0, γ1,

and σ2
m. The threshold is also β0 and will be determined by one of the simulation

factors—the proportion of Y = 1. These population parameters will be specified in the

Simulation Design. The number of replications will be 1000, which is believed to be

sufficient for this study.
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Simulation Design

In the proposed simulation study, there will be three simulation factors: (1)

proportion of Y = 1, (2) effect size (of the mediation effect), and (3) sample size.

Specifically, there will be 12 levels from the first factor, 3 levels from the second factor, and

3 levels from the third factor. Therefore, 12 proportion values × 3 effect sizes × 3 sample

sizes will be 108 conditions.

Proportion of Y = 1. This is the proportion of the binary outcome variable

Y = 1. The proportion will be specified as .06, .07, .075, .08, .09, .1 for examining the rare

outcome cases and .2, .3, .4, .5, .6, .7 for non-rare outcome cases. The values are chosen

because as defined, the proportion of 10% or lower is considered as rare outcome cases.

Therefore, the proportion of Y = 1 has 12 levels: 6 levels for rare cases and 6 levels for

non-rare cases.

Effect size (ν). According to Lachowicz et al. (2017), the effect size of the

mediation effect for mediation analyses is defined as

ν = γ2
1β2

1 , (24)

where γ1 and β1 are coefficients of the direct path from X to M and M to Y . Essentially,

it is a squared value of the mediation effect by the classical approach. As a result, ν is

standardized, a type of variance-explained measure, and a monotonic function in absolute

value of the classical mediation effect. Moreover, it does not depend on sample size.

Therefore, even though ν is derived from the classical mediation effect, it can be applied to

the causal mediation effect without causing any bias.

This factor will depend on two coefficients γ1 and β1. For the purpose of comparing

among quantities, γ1 and β1 will be specified to be small (i.e., 0.14 or 2% of the variance in

the outcome), medium (i.e., 0.39 or 13% of the variance in the outcome), and large (i.e.,

0.59 or 26% of the variance in the outcome) (Cohen, 1988). According to Equation (24), the
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product of γ2
1 and β2

1 will define the effect size. Thus, there will be 3 levels for effect size.

Sample size (n). It is the number of observations. Sample size will be assigned

with a set of three values: small (n = 350), medium (n = 700), and large (n = 1000) to see

how the effects will change accordingly. The other coefficients γ2, γ0 and σ2
m will be

assigned a fixed value of 0.9, 1, and 0.84, respectively. The threshold for dichotomizing X

will be 0.4, with 40% of the treatment condition and 60% of the control condition in the

observed data.

Evaluation of Results

The mediation effects will be computed using the causal inference technique and the

classical approach in both probit and logit models. For the causal inference approach, two

mediation effects will be estimated using both models: TNIE on the odds-ratio scale using

the probit model and the logit model. The classical approach will calculate two mediation

effects: the traditional indirect effect (TIE) on the odds-ratio scale using the probit and

logit models. Another four mediation effects will be estimated using the population

parameter values that correspond to these four mediation effects. Then I’ll compute the

difference between the four estimated mediation effects and the four population mediation

effects. Furthermore, I will directly compare two pairs of different values of TNIE and

TIE from population values to see which approach is better in recovering population

mediation effects. According to Muthén et al. (2015), the formulas for determining the

mediation effects will be provided below.

TNIE in odds-ratio scale (probit model). It will be calculated using the

population model parameters for the data generating probit mediation model with

odds-ratio (OR). This quantity will also be estimated by fitting the probit mediation

model. It is defined as follows

28



TNIE(OR) = Φ[probit(1, 1)]/(1 − Φ[probit(1, 1)])
Φ[probit(1, 0)]/(1 − Φ[probit(1, 0)])

=
Φ[β0+β2+β1γ0+β1γ1]√

β2
1σ2

m+1
/[1 − Φ[β0+β2+β1γ0+β1γ1]√

β2
1σ2

m+1
]

Φ[β0+β2+β1γ0]√
β2

1σ2
m+1

/[1 − Φ[β0+β2+β1γ0]√
β2

1σ2
m+1

]
, (25)

where β0, β1, β2, γ0, γ1, γ2, and σ2
m are are defined above.

TIE in odds-ratio scale (probit model). It will be computed using the

population model parameters for the data generating probit mediation model. It is defined

as

TIE(OR) =
Φ(β0+β1γ1+β2)

1−Φ(β0+β1γ1+β2)
Φ(β0+β2)

1−Φ(β0+β2)

, (26)

where β1, and γ1 are computed using the population model parameters for the data

generating probit mediation model. Also, this quantity will be estimated by fitting the

probit mediation model.

TNIE in odds-ratio scale (logit model). With the logit model, TNIE in the

risk-ratio scale is used when the binary outcome Y is non-rare. However, for the purpose of

comparing between TNIE and TIE, TNIE in an odds-ratio scale will be computed for

both outcome cases instead of an odds-ratio scale for rare cases and a risk-ratio scale for

non-rare cases. According to VanderWeele and Vansteelandt (2010), the formula will be

TNIE(OR) ≈ expβ0+β2X+β1M , (27)

where β0, β1, β2 are defined above. This quantity will be estimated as part of fitting the

logit mediation model.

TIE in odds-ratio scale (logit model). With the logit model, TIE in

odds-ratio scale is used with the assumption that Y corresponds to a rare outcome. It is
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the exponential of mediation effect from X to Y via M . According to VanderWeele and

Vansteelandt (2010), the formula is

TIE(OR) ≈ expβ1γ1 . (28)

This quantity will be estimated as part of fitting the logit mediation model.

To summarize, these mediation effect formulas will be utilized to calculate the four

mediation effects estimated by the two approaches as well as the four population mediation

effects. The differences between these four pairs of mediation effects are then evaluated

using six evaluation criteria: (1) bias, (2) SE, (3) ASE, (4) MSE, (5) coverage, and (6)

power. Each evaluation criterion will be assessed in relation to the three simulation factors

outlined before. Following are the definitions and formulas for the six evaluation criteria.

Bias. It is the magnitude of a statistic to overestimate or underestimate a

parameter. That is, bias of an parameter θ is the difference between the parameter’s true

value and the expected value of the parameter being estimated.

bias = mean(θ̂) − θ, (29)

where θ̂ is estimated values of the parameter θ, θ is the population parameter.

In this study, bias is determined in a different way than usual. Because the

mediation effects are estimated on a probability scale for the probit model and a

log-odds-ratio scale for the logit model, they must be calculated on a common scale for the

two models to be comparable. As a result, bias is calculated on an odds-ratio scale. Since

two odds-ratio values should be compared by their ratio, rather than their difference, the

bias is calculated as a ratio between the estimated value in odds-ratio scale and the
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population value in odds-ratio scale. It is defined as

bias(OR) = odds-ratio(θ̂)
odds-ratio(θ) . (30)

This method of computing the bias made the bias values comparable regardless of the

population values, just like a relative bias, because the bias indicates how large or small

the estimated parameter value compared to the population value by its proportion. This is

in fact very similar to the idea of the relative bias. For example, when the bias is near to 1,

the results are considered good on the odds-ratio scale because the estimated mediation

effect is the same as the population mediation effects in that scenario.

Standard Error (SE). It is the standard deviation of the sampling distribution

of a target parameter. Accordingly, the SE of a parameter θ is defined as

SE =

√√√√∑r
i=1(θ̂i − ¯̂

θ)2

r
, (31)

where r is the number of replications, θ̂i is the estimated value of the parameter θ for the

ith replication, ¯̂
θ is the expected value of the estimated value of the parameter θ.

Mean of Estimated Standard Errors (ASE). It is the average of the

estimated standard errors across replications. It is defined as

ASE =
∑r

i=1 ŜEi

r
, (32)

where ŜEi is the estimated standard error of the parameter θ at ith replication, r is defined

above.

31



Mean Square Error (MSE). It is an overall measure of estimation error.

According to Rice (2007),

MSE = 1
r

r∑
i=1

(θ̂i − θ)2, (33)

where θ̂i, θ, and r are defined above.

Coverage Probability. It is the proportion of the time when the confidence

interval (CI) contains the population parameter, over many replications. In other words,

coverage probability is the probability of the population parameter in between the lower

bound and upper bound of the CI of the parameter. When CI works well, which means

95% certain contains the values of the parameter, the coverage probability should be close

to 0.95.

Power. It is the probability that a test correctly rejects a false null hypothesis. It

is defined as the probability that we reject H0 when it is false (Murphy et al., 2014), where

power = 1 − β = P (Reject H0|H0 is false). (34)

In many applications, 0.80 is considered to be sufficiently high.

TNIE and TIE will be estimated on an odds-ratio scale based on these evaluation

criteria. The goal is to determine which approach, causal inference or classical, is superior

in recovering population mediation effects. Specifically, I will examine which approach

provides a bias that is closer to 1, a lower SE, a lower ASE, a lower MSE, a higher

coverage, and a higher power.
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Study 2: Moderated Mediation Model 2

Model

Study 2 extends the simple mediation model in Study 1 to a moderated mediation

model including an interaction between a treatment indicator and a covariate. The model is

moderated mediation Model 2 in Figure 4, where the a1 path from the treatment indicator

X to the mediator M is moderated by the moderator Z and the treatment-moderator

interaction XZ. There are four variables in this model: the binary treatment indicator X,

continuous mediator M , binary moderator Z, and binary outcome Y . The letters

a1, a2, a3, and b are direct paths from X to M , Z to M , XZ to M , and M to Y , c′
1, c′

2,

and c′
3 are paths from X to Y , Z to Y , and XZ to Y conditioning on M , respectively.

Data Generation

The data generation process will be based on a probit model. The mediator M and

continuous latent response variable Y ∗ will be generated based on the Equations (14) and

(15). The data generation process needs β0, β1, β2, β3, β4, γ0, γ1, γ2, γ3, and σ2
m. The

threshold is also β0 and will be determined by one of the simulation factors—the proportion

of Y = 1. These population parameters will be specified in the Simulation Design. Number

of replications will be 1000, which is believed to be sufficient for this study.

Simulation Design

The four simulation factors will be considered: (1) proportion of Y = 1, (2) effect

size (of the mediation effect), (3) sample size, and (4) moderation effect. Specifically, there

will be 12 levels from the first factor, 3 levels from the second factor, 3 levels from the third

factor, and 2 levels for the fourth factor. Therefore, there will be 12 proportion values × 3

effect sizes × 3 sample sizes × 2 moderation effects = 216 conditions. The first three

factors will be specified exactly the same as Study 1. The fourth factor, the moderator Z,

will be dichotomous with values of 0 for no moderation effect and 1 for having moderation
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effect. The coefficients β2, β3, β4, γ0, γ2, γ3, and σ2
m will be assigned to fixed values.

Evaluation of Results

The moderated mediation effects will be computed using the causal inference

approach and the classical approach by both probit and logit models. For the causal

inference approach, two moderated mediation effects will be computed: TNIE on the

odds-ratio scale using the probit model and the logit model. The classical approach will

compute two moderated mediation effects: TIE on the odd-ratio scale using the probit

model and the logit model. In addition to these four moderated mediation effects, another

four moderated mediation effects will be computed using the population parameter values.

Then I’ll compare the four pairs of moderated mediation effects: one from each of the two

approaches, and the other from population values. Furthermore, I will directly compare

TNIE and TIE in the odds-ratio scale estimated using the probit model and the logit

model to see which approach produces more accurate moderated mediation effects.

According to VanderWeele and Vansteelandt (2010) and Muthén et al. (2015), the

formulas for determining the moderated mediation effects will be provided below.

TNIE in odds-ratio scale (probit model). It will be calculated using the

population model parameters for the data generating probit moderated mediation model

with odds-ratio. This quantity will also be estimated by fitting the probit moderated

mediation model. It is defined as

TNIE(OR) = Φ[probit(1, 1)]/(1 − Φ[probit(1, 1)])
Φ[probit(1, 0)]/(1 − Φ[probit(1, 0)]) (35)

=
Φ[β0+β1γ0+β2+β1γ1+(β1γ2+β1γ3+β3+β4)Z√

β2
1σ2

m+1
]/[1 − Φ(β0+β1γ0+β2+β1γ1+(β1γ2+β1γ3+β3+β4)Z√

β2
1σ2

m+1
)]

Φ[β0+β1γ0+β2+(β1γ2+β3+β4)Z√
β2

1σ2
m+1

]/(1 − Φ(β0+β1γ0+β2+(β1γ2+β3+β4)Z√
β2

1σ2
m+1

)]
,

(36)

where β0, β1, β2, β3, β4, γ0, γ1, γ2, γ3, σ2
m, and Z are defined above.
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TIE in odds-ratio scale (probit model). It will be computed using the

population model parameters for the data generating probit mediation model. It is defined

as

TIE(OR) =
Φ(β0+β2+β1γ1+(β1γ2+β1γ3+β3+β4)Z)

1−Φ(β0+β2+β1γ1+(β1γ2+β1γ3+β3+β4)Z)
Φ(β0+β2+(β1γ2+β3+β4)Z)

1−Φ((β0+β2+(β1γ2+β3+β4)Z))

, (37)

where β1, and γ1 are computed using the population model parameters for the data

generating probit mediation model. Also, this quantity will be estimated by fitting the

probit mediation model.

TNIE in odds-ratio scale (logit model). With logit model, TNIE in the

risk-ratio scale is used when the binary outcome Y is non-rare. However, for the purpose of

comparing between TNIE and TIE, TNIE in odds-ratio scale will be computed for both

outcome cases. Adjusting the formula provided by VanderWeele and Vansteelandt (2010)

for Model 1 by adding the moderator Z and replacing the interaction term XM for XZ,

the formula for Model 2 will be

TNIE(OR) ≈ expβ0+β2X+β1M+β3Z+β4XZ , (38)

where β0, β1, β2, β3, and β4 are defined above. This quantity will be estimated as part of

fitting the logit mediation model.

TIE in odds-ratio scale (logit model). It is TIE(OR) = expβ1(γ1+γ3Z). Three

coefficients β1, γ1, and γ3 are obtained by fitting the logit regression.

In sum, these moderated mediation effect formulas will be used to compute four

moderated mediation effects from the two approaches and the four population moderated

mediation effects from the population values. Then, the differences between these four

pairs of moderated mediation effects will be estimated based on six evaluation criteria: (1)

bias, (2) SE, (3) ASE, (4) MSE, (5) coverage probability , and (6) power. Each of these

35



evaluation criteria will be evaluated with respect to the four simulation factors mentioned

earlier. The six evaluation criteria will be calculated exactly the same as shown in Study 1.
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Chapter 4. Results

Study 1: Simple Mediation Model

Probit Model

Overall, in the probit model analysis, TNIE was more accurate than TIE in

recovering the population values for the mediation effect in both rare and non-rare

outcome cases. For each evaluation criterion, the difference between TNIE and TIE was

small for non-rare outcome cases. However, in rare outcome cases, the gap was much

larger, and TNIE clearly outperformed TIE.

Proportion Y = 1. The proportion of Y = 1 had 12 levels: six for cases with

rare outcomes and six for cases with non-rare outcomes. Six evaluation criteria were used

to evaluate the mediation effects, TNIE and TIE, with respect to the proportion of Y = 1

in both rare and non-rare outcome cases.

As stated in Chapter 3, bias was calculated using an odds-ratio scale to compare

TNIE and TIE. On an odds-ratio scale, bias was the ratio of the odds of a mediation

effect to the odds of a population value. As a result, the closer a mediation effect was to

recovering a population value, the closer the bias was to 1. To put it another way, when

the bias for a mediation effect equals 1, it indicates that the quantity is unbiased. When

the proportion of rare outcomes increased, the bias for TNIE and TIE became closer to 1

and the gap between them shrank. The gap was positive because the bias for TNIE was

closer to 1 than the bias for TIE. This was evident in the conditions where the sample size

was 350 and the effect size was large (for the numerical information, see Table 2).

Furthermore, as the proportion of Y = 1 approached .08, the bias for the two quantities

increased faster , and then slowly after that. Figure 6 depicts this graphically.

This change did not exist in non-rare outcome cases. When the proportion of Y = 1

increased from 0.2 to 0.4 under the same conditions with a large effect size and a sample

size of 350, the bias for the two quantities increased and the gap between them decreased.
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Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

large 350 0.06 0.9556 0.9256 0.03
0.07 0.9658 0.94 0.0258
0.075 0.972 0.95 0.022
0.08 0.9714 0.9503 0.0211
0.09 0.9784 0.961 0.0174
0.1 0.9818 0.9661 0.0157

Table 2
The Changes in Bias under Different Proportions for Rare Outcome Cases in Probit

Figure 6
Bias over TIE and TNIE for Rare Outcomes in Probit for Simple Mediation Model
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Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

large 350 0.2 0.9877 0.9765 0.0112
0.3 0.9888 0.9788 0.01
0.4 0.9902 0.9811 0.0091
0.5 0.9897 0.9804 0.0093
0.6 0.9873 0.9779 0.0094
0.7 0.9844 0.9743 0.0101

Table 3
The Changes in Bias under Different Proportions for Non-rare Outcome Cases in Probit

Figure 7
Bias over TIE and TNIE for Non-rare Outcomes in Probit for Simple Mediation Model
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Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

large 350 0.06 0.4594 0.6497 -0.1903
0.07 0.4244 0.6065 -0.1821
0.075 0.3916 0.538 -0.1464
0.08 0.3929 0.5347 -0.1418
0.09 0.3217 0.4042 -0.0825
0.1 0.3119 0.3906 -0.0787

Table 4
The Changes in SE under Different Proportions for Rare Outcome Cases in Probit

As the proportion increased to 0.7, the bias for the two quantities shifted away from 1 and

the gap widened. This pattern is detailed in Table 3. The bias for TNIE is closer to 1

than for the bias for TIE, as in rare outcome cases (f or a graphical representation, see

Figure 7). In summary, as the proportion of Y = 1 increased, the bias for TNIE and TIE

became more consistent with 1 for rare outcome cases but not for non-rare cases.

Furthermore, in both outcome cases, the bias for TNIE was always closer to 1 than bias

for TIE.

SE indicated how far the mediation effect deviated from the mean of mediation

effects across 1000 replications. As a result, the smaller the SE, the more accurate the

mediation effect. My findings revealed that the SE followed similar patterns to the bias,

but in a different direction. The SE for the two quantities decreased as the proportion of

Y = 1 increased, as did the gap between them in rare outcome cases. This is evident when

the sample size is 350 and the effect size is large. Across all proportions of Y = 1, the SE

for TNIE was always less than the SE for TIE. The gap was all negative, as shown in

Table 4. The pattern is depicted graphically in Figure 8.

In non-rare outcome cases, this pattern was not as obvious. Under the same

conditions, with a sample size of 350 and a large effect size, increasing the proportion of

Y = 1 from 0.2 to 0.4 reduced the SE for the two quantities and narrowed the gap. The

SE for the two quantities continued to decrease as the proportion approached 0.5, but the

gap widened. When the proportion reached 0.6, the SE for the two quantities continued to

40



Figure 8
SE over TIE and TNIE for Rare Outcomes in Probit for Simple Mediation Model

decrease, and the gap also shrank. Finally, as the proportion approached 0.7, the SE for

the two quantities increased, as did the gap. Figure 9 depicts this graphically for all

conditions. In general, the gaps in rare and non-rare outcome cases were all negative. This

meant that the SE for TNIE was always less than the SE for TIE across all conditions in

both outcome cases.

Chapter 3 mentioned the formula and definition of ASE. The ASE was calculated

primarily by averaging the SEs for mediation effects across 1000 replications. As with SE,

the smaller the ASE, the better the mediation effect. The results for ASE were similar to

those for SE. The ASE for TNIE was consistently lower than the ASE for TIE. Tables
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Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

large 350 0.2 0.2862 0.3517 -0.0655
0.3 0.2833 0.3407 -0.0574
0.4 0.2775 0.3279 -0.0504
0.5 0.2771 0.329 -0.0519
0.6 0.2745 0.3251 -0.0506
0.7 0.2816 0.3335 -0.0519

Table 5
The Changes in SE under Different Proportions for Non-rare Outcome Cases in Probit

Figure 9
SE over TIE and TNIE for Non-Rare Outcomes in Probit for Simple Mediation Model
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Effect Size Sample Size Proportions ASE for TNIE ASE for TIE gap

large 350 0.06 0.5744 0.8015 -0.2271
0.07 0.4343 0.6059 -0.1716
0.075 0.3804 0.5085 -0.1281
0.08 0.3764 0.5022 -0.1258
0.09 0.319 0.3917 -0.0727
0.1 0.312 0.3799 -0.0679

Table 6
The Changes in ASE under Different Proportions for Rare Outcome Cases in Probit

6 and 7 provide numerical examples for rare and non-rare outcome cases with a large effect

size and a sample size of 350. Figures 10 and 11 depict the patterns of rare and non-rare

cases, respectively.

The MSE is a measure of how close the estimate is to the population value over

1000 replications. Thus, the smaller the MSE, the more accurate the mediation effect. My

findings revealed that the MSE followed similar patterns to the bias, but in a different

direction. The MSE for the two quantities decreased as the proportion increased, as did

the gap between them in rare outcome cases. When the sample size is 350 and the effect

size is large, this is clearly visible. Across all proportions of Y = 1, the MSE for TNIE

was consistently less than that of TIE. The gap was all negative, as shown in Tables 8 and

9. The pattern is depicted graphically in Figures 12 and 13.

Coverage probability represented the proportion of time when the population value

was in the 95% confidence interval over 1000 replications. Thus, if the coverage for a

mediation effect was equal to or greater than .95, it would indicate that the mediation

effect was unbiased. The results did not show any clear patterns for coverage as the

proportion of Y = 1 increased in rare and non-rare cases. For example, when the sample

size was 350 and the effect size was large, the proportion of Y = 1 increased from 0.06 to

0.075, the coverage for the two quantities increased and the gap between them increased as

well. Then, as the proportion increased to 0.09, the coverage for the two quantities

decreased and did the gap between them. When the proportion reached 0.1, the coverage
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Figure 10
ASE over TIE and TNIE for Rare Outcomes in Probit for Simple Mediation Model

Effect Size Sample Size Proportions ASE for TNIE ASE for TIE gap

large 350 0.06 0.2833 0.3357 -0.0524
0.07 0.2732 0.3208 -0.0476
0.075 0.2681 0.3129 -0.0448
0.08 0.2672 0.3118 -0.0446
0.09 0.2702 0.3156 -0.0454
0.1 0.2765 0.3245 -0.048

Table 7
The Changes in ASE under Different Proportions for Non-rare Outcome Cases in Probit
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Figure 11
ASE over TIE and TNIE for Rare Outcomes in Probit for Simple Mediation Model

Effect Size Sample Size Proportions MSE for TNIE MSE for TIE gap

large 350 0.06 0.2185 0.4452 -0.2267
0.07 0.1844 0.3823 -0.1979
0.075 0.1561 0.2993 -0.1432
0.08 0.1572 0.2956 -0.1384
0.09 0.1051 0.1692 -0.0641
0.1 0.0984 0.157 -0.0586

Table 8
The Changes in MSE under Different Proportions for Rare Outcome Cases in Probit
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Figure 12
MSE over TIE and TNIE for Rare Outcomes in Probit for Simple Mediation Model

Effect Size Sample Size Proportions MSE for TNIE MSE for TIE gap

large 350 0.06 0.0824 0.1257 -0.0433
0.07 0.0806 0.1177 -0.0371
0.075 0.0773 0.1088 -0.0315
0.08 0.0771 0.1096 -0.0325
0.09 0.0759 0.1074 -0.0315
0.1 0.0801 0.1136 -0.0335

Table 9
The Changes in MSE under Different Proportions for Non-rare Outcome Cases in Probit
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Figure 13
MSE over TIE and TNIE for Non-rare Outcomes in Probit for Simple Mediation Model

for the two quantities increased again and the gap between them continued to narrow. This

pattern is detailed in Table 10. Figure 14 shows this graphically as well. The difference was

positive but very small because TNIE had slightly more coverage than TIE across all

values of the proportion of Y = 1.

Non-rare outcome cases clearly showed no pattern in the difference between the two

quantities in coverage when compared to rare outcome cases. When the proportion of

Y = 1 increased from 0.2 to 0.3 under the same conditions with a large effect size and a

sample size of 350, the coverage for the two quantities decreased but the gap increased.

The gap was negative but small because TNIE has slightly less coverage than TIE.
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Effect Size Sample Size Proportions Coverage for TNIE Coverage for TIE gap

large 350 0.06 0.935 0.932 0.003
0.07 0.934 0.931 0.003
0.075 0.939 0.931 0.008
0.08 0.942 0.934 0.008
0.09 0.936 0.937 -0.001
0.1 0.942 0.94 0.002

Table 10
The Changes in Coverage under Different Proportions for Rare Outcome Cases in Probit

Figure 14
Coverage Probability over TIE and TNIE for Rare Outcomes in Probit for Simple Mediation Model
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Effect Size Sample Size Proportions Coverage for TNIE Coverage for TIE gap

large 350 0.2 0.939 0.941 -0.002
0.3 0.922 0.927 -0.005
0.4 0.925 0.915 0.01
0.5 0.929 0.93 -0.001
0.6 0.94 0.934 0.006
0.7 0.939 0.935 0.004

Table 11
The Changes in Coverage under Different Proportions for Non-rare Outcome Cases in
Probit

When the proportion was raised to 0.4, the coverage for TNIE increased while the

coverage for TIE decreased. Hence, the gap between them widened and became positive,

because TNIE has greater coverage than TIE. The proportion was then increased to 0.5,

the coverage for the two quantities increased, and the gap became positive but much

smaller. This meant that TNIE had slightly less coverage than TIE. As the proportion

approached 0.6, the coverage for the two quantities grew, and the gap widened and became

positive. This demonstrated that TNIE had greater coverage than TIE once more.

Finally, when the proportion reached 0.7, the coverage for TNIE dropped while the

coverage for TIE dropped further. As a result, the gap narrowed but remained positive.

This meant that TNIE’s coverage was still greater than TIE’s. This pattern is depicted

graphically in Figure 15 and shown numerically in Table 11.

The proportion of the time the statistical results were significant was used to

calculate the power. When the power for a mediation effect is .8, it indicates that the

mediation effect is unbiased. The findings of Study 1 revealed that the power for TNIE

and TIE increased as the proportion of Y = 1 increased in rare outcome cases. This is

evident when the sample size is 350 and the effect size is large. When the proportion was

0.06, the power for TNIE was slightly greater than the power for TIE, so the difference

was small and positive. When the proportion was increased to 0.7, the power of the two

quantities increased until they were equal. Therefore, the distance between them has
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Figure 15
Coverage Probability over TIE and TNIE for Non-rare Outcomes in Probit for Simple Mediation Model

shrunk to zero. As the proportion increased to 0.8, the power of the two quantities reached

1 and the difference remained zero. Following that, regardless of the proportion’s increase,

the power for the two quantities remains 1 and the gap remains 0. This is illustrated

numerically in Table 12 and graphically in Figure 14.

In non-rare cases, however, the power remained constant at 1 for both TNIE and

TIE as the proportion increased. This is illustrated graphically in Figure 17 and

numerically in Table 13.
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Effect Size Sample Size Proportions Power for TNIE Power for TIE gap

large 350 0.06 0.988 0.986 0.002
0.07 0.997 0.996 0.001
0.075 0.999 0.999 0
0.08 0.999 0.999 0
0.09 1 1 0
0.1 1 1 0

Table 12
The Changes in Power under Different Proportions for Rare Outcome Cases in Probit

Figure 16
Power over TIE and TNIE for Rare Outcomes in Probit for Simple Mediation Model
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Effect Size Sample Size Proportions Power for TNIE Power for TIE gap

large 350 0.2 1 1 0
0.3 1 1 0
0.4 1 1 0
0.5 1 1 0
0.6 1 1 0
0.7 1 1 0

Table 13
The Changes in Power under Different Proportions for Non-rare Outcome Cases in Probit

Figure 17
Power over TIE and TNIE for Non-rare Outcomes in Probit for Simple Mediation Model

52



Proportion Sample Size Effect Size TNIE TIE gap

0.06 350 small 0.9983 0.9982 1e-04
medium 0.9841 0.9785 0.0056
large 0.9556 0.9256 0.03

Table 14
The Changes in Bias under Different Effect Sizes for Rare Outcome Cases in Probit

Effect Size. There were three levels of effect size: small, medium, and large.

When the effect size was increased, the bias gaps between TNIE and TIE widened and

the bias for each quantity moved further away from 1. This pattern was clearly visible in

rare outcome cases when the proportion was 0.06 and the sample size was 350. The

difference between the two values was positive. As a result, the bias for TNIE was

consistently smaller than bias for TIE as the effect size increased (for more information,

see Table 14). Figure 7 shows this graphically as well.

For non-rare outcome cases, the pattern was similar but the gap between the two

quantities was quite smaller than in the rare cases. Moreover, the bias for the two

quantities in non-rare cases was closer to 1 than in rare cases. Table 15 and Figure 6 show

this pattern numerically and graphically. In sum, TNIE was less biased than TIE in both

cases; however, the difference was shown more clearly in rare outcome cases than non-rare

cases.

When the effect size increased, the gaps in SE between two quantities and SE for

each quantity widened. In rare outcome cases, this is clearly visible when the proportion is

0.06 and the sample size is 350 (for more information, see Table 16 and Figure 8). The

difference in SE was negative because the SE for TNIE was lower than the SE for TIE.

Thus, as the effect size increased, the SE for TNIE was consistently smaller than the

SE for TIE.

The SE for TNIE and TIE was smaller in non-rare outcome cases and the gap

between was also smaller (see Table 17 and Figure 9 for numerical and graphical
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Proportion Sample Size Effect Size TNIE TIE gap

0.2 350 small 0.9997 0.9996 1e-04
medium 0.9961 0.9937 0.0024
large 0.9877 0.9765 0.0112

Table 15
The Changes in Bias under Different Effect Size for Non-rare Outcome Cases in Probit

representations). Generally, SE for TNIE was smaller than that for TIE and the gap was

more visible in rare outcomes cases.

For both outcome cases, the results for ASE were similar to those for SE. Tables

18 and 19 show numerical examples of rare and non-rare outcome cases with a large effect

size and a sample size of 350. Figures 10 and 11 show the ASE pattern over the changes in

proportion across all conditions in rare and non-rare outcome cases.

MSE followed the same patterns as ASE and SE as the proportion of Y = 1

increased. This is shown in Tables 40 and 41 when the sample size is 350 and the effect size

is large. Figures 21 and 22 graphically depict the pattern across all conditions. Overall, the

SE, ASE, and MSE for TNIE were consistently lower than those for TIE in both

outcome cases across all conditions.

When the effect size changed, there was no clear pattern in the coverage probability

for the two quantities or the gaps between them. Table 22 shows an example of a rare

outcome case with a proportion of 0.06 and a sample size of 350. When the effect size was

small, bias for TNIE was slightly less than bias for TIE, resulting in a negative gap

between them. When the effect size was medium, the coverage for the two quantities

increased and the coverage for TNIE increased, resulting in a positive gap. Then, as the

effect size increased, the coverage for the two quantities decreased while the coverage for

TNIE increased; thus, the gap remained positive but shrank. Table 23 shows an

illustrated example of a non-rare outcome case. When the effect size was small, the

coverage for TNIE was slightly lower than the coverage for TIE, resulting in a negative
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Proportion Sample Size Effect Size TNIE TIE gap

0.06 350 small 0.0471 0.0462 9e-04
medium 0.1783 0.1944 -0.0161
large 0.4594 0.6497 -0.1903

Table 16
The Changes in SE under Different Effect Size for Rare Outcome Cases in Probit

Proportion Sample Size Effect Size TNIE TIE gap

0.2 350 small 0.0375 0.0366 9e-04
medium 0.1324 0.136 -0.0036
large 0.2862 0.3517 -0.0655

Table 17
The Changes in SE under Different Effect Size for Non-rare Outcome Cases in Probit

Proportion Sample Size Effect Size TNIE TIE gap

0.2 350 small 0.0394 0.0384 0.001
medium 0.1326 0.1351 -0.0025
large 0.2833 0.3357 -0.0524

Table 18
The Changes in ASE under Different Effect Size for Rare Outcome Cases in Probit

Proportion Sample Size Effect Size TNIE TIE gap

0.2 350 small 0.0394 0.0384 0.001
medium 0.1326 0.1351 -0.0025
large 0.2833 0.3357 -0.0524

Table 19
The Changes in ASE under Different Effect Size for Non-rare Outcome Cases in Probit

Proportion Sample Size Effect Size TNIE TIE gap

0.2 350 small 0.0014 0.0013 1e-04
medium 0.0176 0.0185 -9e-04
large 0.0824 0.1257 -0.0433

Table 20
The Changes in MSE under Different Effect Size for Rare Outcome Cases in Probit
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Proportion Sample Size Effect Size TNIE TIE gap

0.2 350 small 0.0014 0.0013 1e-04
medium 0.0176 0.0185 -9e-04
large 0.0824 0.1257 -0.0433

Table 21
The Changes in MSE under Different Effect Size for Non-rare Outcome Cases in Probit

but small gap. As the effect size increased to medium, the coverage for the two quantities

increased and became equal, resulting in a gap of 0. Then, as the effect size increased, the

coverage for the two quantities increased, while the coverage for TINE decreased slightly,

resulting in a negative but small gap. These patterns are depicted graphically in Figures 14

and 15. To summarize, as the effect size increased, the coverage for TNIE fluctuated

between greater and lesser than the coverage for TIE, with no particular pattern.

In rare outcome cases, the effect size had an effect on the power only when the

sample size was 350 and the proportion was less than 0.08. In those cases, as the effect size

increased, the power for TNIE and TIE decreased, and the power gap between the two

increased. In all other cases, the power of the two quantities was 1 and remained constant.

Figure 16 depicts this graphically. Table 24 shows one example under the conditions of

350 sample size and 0.06 proportion. When the effect size was small, the power for the two

quantities was equal, and thus the gap was 0. When the effect size was medium, the power

for the two quantities decreased and remained equal, resulting in a gap of 0. Then, as the

effect size increased, the power for the two quantities decreased further, while the power

for TNIE increased slightly; thus, the gap was positive but small. In non-rare outcome

cases, the power for the two quantities remained at 1 for all three sample size conditions.

This pattern is depicted graphically in Figure 17.

Sample Size. As mentioned in Chapter 3, the sample size was divided into three

levels: 350, 700, and 1000. The bias for TNIE and TIE became closer to 1 as the sample

size increased, and the gap between them shrank. This pattern was observed in both
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Proportion Sample Size Effect Size TNIE TIE gap

0.06 350 small 0.906 0.913 -0.007
medium 0.929 0.927 0.002
large 0.935 0.932 0.003

Table 22
The Changes in Coverage under Different Effect Sizes for Rare Outcome Cases in Probit

Proportion Sample Size Effect Size TNIE TIE gap

0.2 350 small 0.884 0.888 -0.004
medium 0.927 0.927 0
large 0.939 0.941 -0.002

Table 23
The Changes in Coverage under Different Effect Size for Non-rare Outcome Cases in Probit

Proportion Sample Size Effect Size TNIE TIE gap

0.06 350 small 1 1 0
medium 0.996 0.996 0
large 0.988 0.986 0.002

Table 24
The Changes in Power under Different Effect Size for Rare Outcome Cases in Probit

Proportion Sample Size Effect Size TNIE TIE gap

0.2 350 small 1 1 0
medium 1 1 0
large 1 1 0

Table 25
The Changes in Power under Different Effect Size for Non-rare Outcome Cases in Probit
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Proportion Effect Size Sample Size TNIE TIE gap

0.06 large 350 0.9556 0.9256 0.03
700 0.9856 0.9751 0.0105
1000 0.9905 0.9838 0.0067

Table 26
The Changes in Bias under Different Sample Sizes for Rare Outcome Cases in Probit

outcomes. Table 26 numerically presents the pattern in rare outcome cases with large effect

size and a proportion of 0.06. Under similar conditions, table 27 appears, but with a

proportion of 0.2. In summary, when the sample size increased, TNIE produced bias

closer to 1 than TIE, and this was more visible in rare outcome cases.

When the sample size was increased, the difference between two quantities in SE

and the SE for each quantity became smaller. This pattern can be seen clearly in rare

outcome cases with a proportion of 0.2 and a large effect size (see Table 28 for numerical

detail). Table 29 illustrates the pattern numerically for non-rare outcome cases.

The coverage probability for the two quantities and the gaps between them did not

show any clear patterns when the sample size was changed. Table 30 shows one numerical

example of a rare outcome case. When the sample size was 350, the coverage for TNIE

was slightly higher than that of TIE, indicating that the gap was positive. The coverage

for TNIE and TIE decreased as the sample size increased to 700, and the values for

TNIE remained slightly higher than those for TIE; thus, the gap remained the same.

When the sample size was increased to 1000, the coverage for the two quantities increased,

but the gap remained constant.

Table 31 shows an example of a non-rare outcome case. When the sample size was

350, the coverage for TNIE was slightly lower than that of TIE, resulting in a negative

but small gap. As the sample size increased to 700, the coverage for TNIE and TIE

increased, and the values for TNIE increased more than those for TIE, resulting in a

positive gap. When the sample size reached 1000, the coverage for the two quantities
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Proportion Effect Size Sample Size TNIE TIE gap

0.2 large 350 0.9877 0.9765 0.0112
700 0.9944 0.99 0.0044
1000 0.9946 0.9912 0.0034

Table 27
The Changes in Bias under Different Sample Sizes for Non-rare Outcome Cases in Probit

Proportion Effect Size Sample Size TNIE TIE gap

0.06 large 350 0.4594 0.6497 -0.1903
700 0.2426 0.3035 -0.0609
1000 0.2005 0.2414 -0.0409

Table 28
The Changes in SE under Different Sample Sizes for Rare Outcome Cases in Probit

Proportion Effect Size Sample Size TNIE TIE gap

0.2 large 350 0.2862 0.3517 -0.0655
700 0.1958 0.2266 -0.0308
1000 0.1702 0.196 -0.0258

Table 29
The Changes in SE under Different Sample Sizes for Non-rare Outcome Cases in Probit

Proportion Effect Size Sample Size TNIE TIE gap

0.06 large 350 0.935 0.932 0.003
700 0.933 0.94 -0.007
1000 0.938 0.94 -0.002

Table 30
The Changes in Coverage under Different Sample Size for Rare Outcome Cases in Probit
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Proportion Effect Size Sample Size TNIE TIE gap

0.2 large 350 0.939 0.941 -0.002
700 0.944 0.941 0.003
1000 0.932 0.934 -0.002

Table 31
The Changes in Coverage under Different Sample Sizes for Non-rare Outcome Cases in
Probit

decreased, but the gap became negative because the value for TNIE became less than the

value for TIE. Figures 14 and 15 depict these patterns graphically.

When the sample size increased from 350 to 700 in rare outcome cases, the power

for TNIE and TIE increased, as did the power gap between the two quantities. When the

sample size increased to 700, the power for the two quantities reached 1 and stayed there.

This is illustrated numerically in Table 32 and graphically in Figure 16.

In non-rare outcome cases, the power for the two quantities remained constant at 1

for all three sample size conditions. This pattern is depicted graphically in Figure 17.

Logit Model

Overall, in the logit model analysis, TNIE was more accurate than TIE in

recovering population values for the mediation effect in both rare and non-rare outcome

cases across the first four evaluation criteria. TNIE, on the other hand, had slightly less

coverage than TIE. In both outcomes cases, power for TNIE and TIE remained at 1 for

all conditions. Figure 18 represents this graphically.
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Proportion Effect Size Sample Size TNIE TIE gap

0.06 large 350 0.988 0.986 0.002
700 1 1 0
1000 1 1 0

Table 32
The Changes in Power under Different Sample Sizes for Rare Outcome Cases in Probit

Figure 18
Power over TIE and TNIE for Nonrare and Rare Outcomes in Simple Mediation Model in Logit

Proportion of Y = 1. As mentioned in Chapter 3, the proportion of Y = 1 in

the logit model also had 12 levels: six for cases with rare outcomes and six for cases with

non-rare outcomes. Six evaluation criteria were used to assess the mediation effects, TNIE

and TIE, in relation to the proportion of Y = 1 cases in both rare and non-rare outcome

cases.

When the proportion of Y = 1 in rare outcomes increased, the bias for TNIE and

TIE became closer to 1 and the gap between them shrank. The gap was positive. That is,

the bias for TNIE was closer to 1 than it was for TIE. This was evident in the conditions

where the sample size was 350 and the effect size was large (for more information, see

Table 34). Figure 19 graphically depicts the pattern in all conditions.

Non-rare outcome cases did not show this change. When the proportion of Y = 1
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Proportion Effect Size Sample Size Power for TNIE Power for TIE gap

0.2 large 350 1 1 0
700 1 1 0
1000 1 1 0

Table 33
The Changes in Power under Different Sample Sizes for Non-rare Outcome Cases in Probit

was 0.2 under the same conditions with a large effect size and a sample size of 350, the bias

for TNIE was closer to 1 than that for the bias for TIE. Thus, the difference between

them was positive. When the proportion of Y = 1 increased from 0.2 to 0.5, the bias for

the two quantities increased, and the gap between them shrank but remained positive. As

the proportion increased to 0.6, the bias for the two quantities shifted further away from 1,

but the gap remained small and positive. When the proportion reached 0.7, the bias for

the two quantities shifted further away from 1, while the gap between them shrank but

remained positive. This pattern is detailed in Table 35. The bias for TNIE was

consistently closer to 1 than the bias for TIE, as in rare outcome cases (for a graphical

representation, see Figure 20). In brief overview, as the proportion of Y = 1 increased, the

bias for TNIE and TIE became closer to 1 in the rare outcome cases but not in

the non-rare cases. Furthermore, in both outcome cases, the bias for TNIE was always

closer to 1 than the bias for TIE.

The SE displayed patterns similar to the bias, but in a different direction. The SE

for the two quantities decreased as the proportion increased, as did the gap between them

in rare outcome cases. This is evident under the conditions of a sample size of 350 and a

large effect size. Across all proportions of Y = 1, the SE for TNIE was always less than

the SE for TIE. The difference between them was all negative, as shown in Table 36. The

pattern is depicted graphically in Figure 21.

This pattern did not emerge clearly in cases with non-rare outcomes.Under the

conditions of a sample size of 700 and a large effect size. The proportion of Y = 1 increased
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Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

large 350 0.06 0.7427 0.7091 0.0336
0.07 0.7491 0.7171 0.032
0.075 0.7526 0.7209 0.0317
0.08 0.754 0.7228 0.0312
0.09 0.7596 0.7292 0.0304
0.1 0.7644 0.7348 0.0296

Table 34
The Change in Bias under Different Proportion for Rare Outcome Cases in Logit

Figure 19
Bias over TIE and TNIE for Rare Outcomes in Logit for Simple Mediation Model
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Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

large 350 0.2 0.7847 0.7581 0.0266
0.3 0.7934 0.7678 0.0256
0.4 0.7987 0.7738 0.0249
0.5 0.8006 0.776 0.0246
0.6 0.7996 0.7756 0.024
0.7 0.7953 0.7715 0.0238

Table 35
The Change in Bias under Different Proportion for Non-rare Outcome Cases in Logit

Figure 20
Bias over TIE and TNIE for Non-rare Outcomes in logit for Simple Mediation Model
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Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

large 350 0.06 0.3269 0.4332 -0.1063
0.07 0.306 0.3995 -0.0935
0.075 0.2973 0.3858 -0.0885
0.08 0.293 0.3746 -0.0816
0.09 0.2792 0.3569 -0.0777
0.1 0.27 0.342 -0.072

Table 36
The Change in SE under Different Proportion for Rare Outcome Cases in Logit

Figure 21
SE over TIE and TNIE for Rare Outcomes in Logit for Simple Mediation Model
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Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

large 700 0.2 0.1651 0.1979 -0.0328
0.3 0.1606 0.1922 -0.0316
0.4 0.1564 0.1862 -0.0298
0.5 0.1574 0.1875 -0.0301
0.6 0.1563 0.1861 -0.0298
0.7 0.1567 0.1854 -0.0287

Table 37
The Changes in SE under Different Proportion for Non-rare Outcome Cases in Logit

from 0.2 to 0.4, the SE for the two quantities decreased, and the gap shrunk. As the

proportion approached 0.5, the SE for the two quantities increased, as did the difference

between them. The pattern changed once more when the proportion reached 0.6, with the

SE for the two quantities and the gap decreasing. Finally, when the proportion reached

0.7, the SE for the two quantities and the difference between them began to shrink. This

pattern is numerically represented in Table 37. Figure 22 depicts this graphically.

The ASE results followed a similar pattern to the SE results for both rare and

non-rare outcome cases. Table 38 presents numerically one example under conditions with

a large effect size and a sample size of 350, whereas Figure 23 graphically presents the

pattern across all conditions. Similarly, the pattern for non-rare outcome cases is presented

in Table 39 and Figure 24.

MSE followed the same patterns as ASE and SE as the proportion of Y = 1

increased. This is shown in Tables 40 and 41 when the sample size is 350 and the effect size

is large. The pattern is depicted graphically in Figures 21 and 22. Overall, the SE, ASE,

and MSE for TNIE were consistently lower than those for TIE in both outcome cases

across all conditions.

The results did not show any clear patterns for coverage as the proportion of Y = 1

in rare and non-rare cases increased. For example, when the sample size was 350 and the

effect size was large, the proportion of Y = 1 increased from 0.06 to 0.07, the coverage for

the two quantities decreased and the gap between them decreased. Then, as the proportion
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Figure 22
SE over TIE and TNIE for Non-Rare Outcomes in logit for Simple Mediation Model

Effect Size Sample Size Proportions ASE for TNIE ASE for TIE gap

large 350 0.06 0.3192 0.4058 -0.0866
0.07 0.3059 0.385 -0.0791
0.075 0.2993 0.3759 -0.0766
0.08 0.2949 0.3692 -0.0743
0.09 0.2851 0.3552 -0.0701
0.1 0.2771 0.3435 -0.0664

Table 38
The Changes in ASE under Different Proportion in Rare Outcome Cases for Simple
Mediation Model in Logit
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Figure 23
ASE over TIE and TNIE for Rare Outcomes in logit for Simple Mediation Model

Effect Size Sample Size Proportions ASE for TNIE ASE for TIE gap

large 350 0.06 0.2401 0.2911 -0.051
0.07 0.2258 0.2715 -0.0457
0.075 0.2184 0.2613 -0.0429
0.08 0.216 0.2578 -0.0418
0.09 0.2178 0.2592 -0.0414
0.1 0.2241 0.2669 -0.0428

Table 39
The Changes in ASE under Different Proportion for Non-rare Outcome Cases in Logit
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Figure 24
ASE over TIE and TNIE for Rare Outcomes in Logit for Simple Mediation Model

Effect Size Sample Size Proportions MSE for TNIE MSE for TIE gap

large 350 0.06 0.3413 0.5245 -0.1832
0.07 0.3129 0.4711 -0.1582
0.075 0.2996 0.4488 -0.1492
0.08 0.2939 0.4347 -0.1408
0.09 0.2737 0.4034 -0.1297
0.1 0.2586 0.3776 -0.119

Table 40
The Changes in MSE under Different Proportion for Rare Outcome Cases in Logit
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Figure 25
MSE over TIE and TNIE for Rare Outcomes in Logit for Simple Mediation Model

Effect Size Sample Size Proportions MSE for TNIE MSE for TIE gap

large 350 0.06 0.2056 0.2923 -0.0867
0.07 0.187 0.2645 -0.0775
0.075 0.1753 0.2452 -0.0699
0.08 0.1716 0.24 -0.0684
0.09 0.1719 0.238 -0.0661
0.1 0.1807 0.2485 -0.0678

Table 41
The Change for MSE under Different Proportion for Non-rare Outcome Cases in Logit
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Figure 26
MSE over TIE and TNIE for Non-rare Outcomes in Logit for Simple Mediation Model

increased to 0.09, the coverage for TNIE increased while the coverage for TIE decreased.

Subsequently, the gap between them shrank. When the proportion reached 0.1, the

coverage for TNIE increased again while the coverage for TIE decreased, but the gap

between them narrowed further. This pattern is detailed in Table 42. Figure 27 depicts

this graphically for all conditions. The gap was negative. That is, the coverage for TNIE

was less than the coverage for TIE for all values of the proportion of Y = 1.

There was no pattern in the gap between the two quantities in coverage in non-rare

outcome cases. When the proportion of Y = 1 increased from 0.2 to 0.3 under the same

conditions as the rare outcome cases with a large effect size and a sample size of 350, the
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Effect Size Sample Size Proportions Coverage for TNIE Coverage for TIE gap

large 350 0.06 0.842 0.96 -0.118
0.07 0.835 0.936 -0.101
0.075 0.83 0.936 -0.106
0.08 0.824 0.923 -0.099
0.09 0.82 0.921 -0.101
0.1 0.826 0.917 -0.091

Table 42
The Changes in Coverage under Different Proportion for Rare Outcome Cases in Logit

Figure 27
Coverage logability over TIE and TNIE for Rare Outcomes in Logit for Simple Mediation Model
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Effect Size Sample Size Proportions Coverage for TNIE Coverage for TIE gap

large 350 0.2 0.785 0.84 -0.055
0.3 0.76 0.82 -0.06
0.4 0.752 0.811 -0.059
0.5 0.756 0.806 -0.05
0.6 0.763 0.812 -0.049
0.7 0.76 0.824 -0.064

Table 43
The Changes in Coverage under Different Proportion for Non-rare Outcome Cases in Logit

coverage for the two quantities decreased but the gap increased. When the

proportion raised to 0.4, the coverage for TNIE decreased while the coverage for TIE

increased. Thus, the gap between them has shrunk slightly. The proportion then increased

to 0.5, and the coverage for TNIE increased while the coverage for TIE decreased, as did

the gap. The coverage for the two quantities increased as the proportion approached 0.6,

but the gap continued decreasing. Finally, once the proportion reached 0.7, the coverage

for TNIE decreased while the coverage for TIE increased. As a result, the gap widened.

All of the gaps were positive. This meant that the coverage for TNIE was less than the

coverage for TIE across all values for the proportion of Y = 1. For all conditions, this

pattern is shown in Table 43 and graphically in Figure 28.

Effect Size. When the effect size increased, gaps in the bias between TNIE and

TIE widened and the bias for each quantity moved further away from 1. This pattern was

clearly visible in rare outcome cases when the proportion was 0.06 and the sample size

was 350. All of the differences between the two quantities were positive. That is, the bias

for TNIE was greater than the bias for TIE at all levels of effect size (for more

information, see Table 44). Figure 19 shows this graphically as well.

The pattern was similar for non-rare outcome cases, but the difference between the

two quantities was smaller than in rare cases. Furthermore, in non-rare cases, the bias for

the two quantities was closer to 1, and the gaps were smaller than in rare cases. This

pattern is shown numerically in Table 45 for conditions with a sample size of 350 and a
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Figure 28
Coverage logability over TIE and TNIE for Non-rare Outcomes in Logit for Simple Mediation Model

Proportion Sample Size Effect Size Bias for TNIE Bias for TIE gap

0.06 350 small 0.9812 0.9806 6e-04
medium 0.8693 0.8586 0.0107
large 0.7427 0.7091 0.0336

Table 44
The Changes in Bias under Different Effect Size for Rare Outcome Cases in Logit
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Proportion Sample Size Effect Size Bias for TNIE Bias for TIE gap

0.2 350 small 0.9865 0.9861 4e-04
medium 0.8974 0.8894 0.008
large 0.7847 0.7581 0.0266

Table 45
The Changes in Bias under Different Effect Size for Non-rare Outcome Cases in Logit

proportion of 0.2, and graphically in Figure 20 for all conditions. In conclusion, TNIE was

less biased than TIE in both cases, with the gap being more visible in rare outcome cases

than non-rare cases.

When the effect size increased, the gaps in SE between two quantities and SE for

each quantity widened. In rare outcome cases, this is clearly visible under the proportion

of 0.06 and a sample size of 350 (for numerical and graphical details, see Table 46 and

Figure 21). The gaps in the SE were all negative. As the effect size increased, the SE for

TNIE became smaller than that for TIE.

The SE for TNIE and TIE was smaller in non-rare outcome cases, as was the gap

between (for numerical and graphical representations, see Table 47 and Figure 22). In

general, SE for TNIE was consistently lower than that for TIE, and the gap was more

noticeable in rare outcome cases.

In both outcome cases, the ASE for the two quantities followed the same pattern as

the SE. Tables 48 and 49 show numerical results with a sample size of 350 and a

proportion of.06 for a rare outcom case and.2 for a non-rare case. Figures 23 and 24 show

the pattern in all conditions for graphical representations.

In both outcome cases, the same pattern was seen for MSE for the two quantities.

Figures 25 and 26 graphically depict the pattern in all conditions. Tables 50 and 51 show

examples under conditions with large sample size and a proportion of.06 and.2 for rare and

non-rare outcome cases, respectively.

When the effect size changed, the coverage probability for the two quantities shrank
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Proportion Sample Size Effect Size SE for TNIE SE for TIE gap

0.06 350 small 0.0482 0.0493 -0.0011
medium 0.1564 0.1757 -0.0193
large 0.3269 0.4332 -0.1063

Table 46
The Changes in SE under Different Effect Size for Rare Outcome Cases in Logit

Proportion Sample Size Effect Size SE for TNIE SE for TIE gap

0.2 350 small 0.0351 0.0357 -6e-04
medium 0.116 0.127 -0.011
large 0.2418 0.2978 -0.056

Table 47
The Changes in SE under Different Effect Sizes for Non-rare Outcome Cases in Logit

Proportion Sample Size Effect Size ASE for TNIE ASE for TIE gap

0.06 350 small 0.0504 0.0515 -0.0011
medium 0.1553 0.1726 -0.0173
large 0.3192 0.4058 -0.0866

Table 48
The Changes in ASE under Different Effect Sizes for Rare Outcome Cases in Logit

Proportion Sample Size Effect Size ASE for TNIE ASE for TIE gap

0.2 350 small 0.0367 0.0373 -6e-04
medium 0.1163 0.1265 -0.0102
large 0.2401 0.2911 -0.051

Table 49
The Changes in ASE under Different Effect Sizes for Non-rare Outcome Cases in Logit

Proportion Sample Size Effect Size MSE for TNIE MSE for TIE gap

0.06 350 small 0.0027 0.0028 -1e-04
medium 0.055 0.0675 -0.0125
large 0.3413 0.5245 -0.1832

Table 50
The Changes in MSE under Different Effect Sizes for Rare Outcome Cases in Logit
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Proportion Sample Size Effect Size MSE for TNIE MSE for TIE gap

0.2 350 small 0.0014 0.0015 -1e-04
medium 0.0312 0.037 -0.0058
large 0.2056 0.2923 -0.0867

Table 51
The Changes in MSE under Different Effect Sizes for Non-rare Outcome Cases in Logit

and the gap between them widened. This pattern was evident in both outcomes. Table 52

shows an example of a rare outcome case with a proportion of 0.06 and a sample size of

350. Table 53 shows an illustrated example of a non-rare outcome case. These patterns are

depicted graphically in Figures 27 and 28. Furthermore, because the gaps were negative

across the two tables, it indicated that as the effect size increased, the coverage for TNIE

was less than the coverage for TIE.

Sample Size. In the rare outcome cases, the bias for TNIE and TIE became

closer to 1 as the sample size increased, and the gap between them shrank. Figure 19

depicts this pattern graphically for all conditions in rare outcome cases. Table 54

numerically presents the pattern under conditions with a large effect size and a proportion

of 0.06.

This change did not appear clearly in all conditions for non-rare outcome cases (see

Figure 20 for a graphical representation)). For example, when the sample size increased

from 350 to 700 under conditions with a large effect size and a proportion of 0.4, the bias

for TNIE and TIE became closer to 1 and the gap between them shrank. Then, as the

sample size increased to 1000, the bias for TNIE and TIE moved further away from 1,

but the gap between them still shrank. This pattern is numerically represented in Table 55.

In general, as the sample size increased for both outcome cases, the bias for TNIE got

closer to 1 than the bias for TIE.

When the sample size increased, the SE for the two quantities and the gap between

them shrank. Figures 21 and 22 depict this pattern graphically. Table 56 illustrates this
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Proportion Sample Size Effect Size Coverage for TNIE Coverage for TIE gap

0.06 350 small 0.982 0.982 0
medium 0.948 0.977 -0.029
large 0.842 0.96 -0.118

Table 52
The Changes in Coverage under Different Effect Sizes for Rare Outcome Cases in Logit

Proportion Sample Size Effect Size Coverage for TNIE Coverage for TIE gap

0.2 350 small 0.964 0.966 -0.002
medium 0.935 0.955 -0.02
large 0.785 0.84 -0.055

Table 53
The Changes in Coverage under Different Effect Sizes for Non-rare Outcome Cases in Logit

Proportion Effect Size Sample Size Bias for TNIE Bias for TIE gap

0.06 large 350 0.7427 0.7091 0.0336
700 0.7518 0.7247 0.0271
1000 0.7542 0.7287 0.0255

Table 54
The Changes in Bias under Different Sample Sizes for Rare Outcome Cases in Logit

Proportion Effect Size Sample Size Bias for TNIE Bias for TIE gap

0.4 large 350 0.7987 0.7738 0.0249
700 0.8023 0.7797 0.0226
1000 0.8016 0.7795 0.0221

Table 55
The Changes in Bias under Different Sample Sizes for Non-rare Outcome Cases in Logit
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Proportion Effect Size Sample Size SE for TNIE SE for TIE gap

0.06 large 350 0.3269 0.4332 -0.1063
700 0.2213 0.28 -0.0587
1000 0.1837 0.2275 -0.0438

Table 56
The Changes in SE under Different Sample Sizes for Rare Outcome Cases in Logit

pattern in the rare outcome cases with a proportion of 0.06 and a large effect size. The

pattern was similar in the non-rare outcome cases, but the gap was smaller. The conditions

when the effect size was large and the proportion was 0.2 are numerically illustrated in

Table 57. In total, the gaps between the two quantities were all negative. That is, the SE

for TNIE was consistently lower than the SE for TIE across all levels of the sample

size in both outcome cases.

The ASE for TNIE and TIE decreased as the sample size increased, as did the

gap between them. Figures 23 and 24 graphically depict this pattern across all conditions.

Tables 58 and 59 numerically emphasize the pattern under conditions with a large effect

size and proportions of 0.06 for a rare outcome case and 0.2 for a non-rare case,

respectively. In both tables, the gaps were negative. This indicated that the ASE for

TNIE was lower than the ASE for TIE under all levels of the sample size.

A similar pattern was shown for MSE. Figures 25 and 26 graphically depict this

pattern across all conditions, whereas Tables 60 and 61 emphasize it numerically under

conditions with a large effect size and a proportion of. 06 for a rare outcome case, and .02

for a non-rare outcome case.

The coverage probabilities for the two quantities decreased as the sample size

increased, as did the gap between them in both outcome cases. Furthermore, with a large

effect size and a sample size of 1000, the coverage for both quantities became extremely

small (<.2). This pattern is numerically delineated in Tables 62 and 63. This pattern can

also be seen across all conditions in Figures 27 and 28. Overall, TNIE coverage was less
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Proportion Effect Size Sample Size TNIE TIE gap

0.2 large 350 0.2418 0.2978 -0.056
700 0.1651 0.1979 -0.0328
1000 0.1436 0.1714 -0.0278

Table 57
The Changes in SE under Different Sample Sizes for Non-rare Outcome Cases in Logit

Proportion Effect Size Sample Size ASE for TNIE ASE for TIE gap

0.06 large 350 0.3192 0.4058 -0.0866
700 0.2171 0.2691 -0.052
1000 0.1795 0.2212 -0.0417

Table 58
The Changes in ASE under Different Sample Sizes for Rare Outcome Cases in Logit

Proportion Effect Size Sample Size ASE for TNIE ASE for TIE gap

0.2 large 350 0.2401 0.2911 -0.051
700 0.1664 0.1993 -0.0329
1000 0.1388 0.1661 -0.0273

Table 59
The Changes in ASE under Different Sample Sizes for Non-rare Outcome Cases in Logit

Proportion Effect Size Sample Size MSE for TNIE MSE for TIE gap

0.06 large 350 0.3413 0.5245 -0.1832
700 0.2621 0.3673 -0.1052
1000 0.2414 0.3292 -0.0878

Table 60
The Changes in MSE under Different Sample Sizes for Rare Outcome Cases in Logit

Proportion Effect Size Sample Size MSE for TNIE MSE for TIE gap

0.2 large 350 0.2056 0.2923 -0.0867
700 0.167 0.227 -0.06
1000 0.161 0.217 -0.056

Table 61
The Changes in MSE under Different Sample Sizes for Non-rare Outcome Cases in Logit
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Proportion Effect Size Sample Size Coverage for TNIE Coverage for TIE gap

0.06 large 350 0.842 0.96 -0.118
700 0.422 0.52 -0.098
1000 0.198 0.241 -0.043

Table 62
The Changes in Coverage under Different Sample Sizes for Rare Outcome Cases in Logit

than TIE coverage, as evidenced by negative gaps.

Study 2: Moderated Mediation Model 2

Similar to the findings of Study 1, the results of Study 2 showed that the causal

inference approach estimates mediation effects more accurately than the classical approach

in both rare and non-rare outcome cases, as well as in probit and logit models.

Furthermore, for the probit model, the causal inference approach was clearly superior to

the classical approach in non-rare outcome cases, whereas for the logit model, the causal

inference approach was clearly superior to the classical approach in rare outcome cases.

Probit Model

Overall, in the probit model analysis, TNIE was more accurate than TIE in

recovering the population values of the mediation effect in both rare and non-rare outcome

cases. The gap between TNIE and TIE was much smaller in rare outcome cases than in

non-rare outcome cases.

Proportion of Y = 1. When the proportion increased in rare outcome cases

with medium and a large effect sizes, the bias for TNIE and TIE got closer to 1 and the

gap between them got smaller. The gap was positive because the bias for TNIE was closer

to 1 than the bias for TIE. This was evident in the conditions where the sample size was

350 and the effect size was large (for more information, see Table 64). Figure 29 depicts

this graphically. Furthermore, under small effect size conditions, the bias for the two

quantities was very close to 1. As a result, there was no discernible pattern in the changes
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Proportion Effect Size Sample Size Coverage for TNIE Coverage for TIE gap

0.2 large 350 0.785 0.84 -0.055
700 0.352 0.378 -0.026
1000 0.165 0.173 -0.008

Table 63
The Changes in Coverage under Different Sample Sizes for Non-rare Outcome Cases in
Logit

in bias as the proportion increased (for numerical details, see Table 65). Despite the fact

that some of the differences between the two quantities were negative, the values were very

small. In those conditions, the bias for the two quantities was nearly identical.

Figure 30
Bias over TIE and TNIE in Non-rare Outcome Cases in Probit with Moderation Effect
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Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

large 350 0.06 0.9712 0.9406 0.0306
0.07 0.9736 0.9503 0.0233
0.075 0.9758 0.954 0.0218
0.08 0.976 0.9561 0.0199
0.09 0.978 0.9622 0.0158
0.1 0.9795 0.9627 0.0168

Table 64
The Changes in Bias under Different Proportions for Rare Outcome Cases in Probit with
Moderation Effect

Figure 29
Bias over TIE and TNIE for Rare Outcome Cases in Probit with Moderation Effect
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Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

small 350 0.06 0.9983 0.9993 -0.001
0.07 0.9996 0.9997 -1e-04
0.075 0.9994 0.9996 -2e-04
0.08 0.999 0.9994 -4e-04
0.09 0.999 0.9994 -4e-04
0.1 0.9987 0.9993 -6e-04

700 0.06 0.9991 0.9995 -4e-04
0.07 0.9998 0.9995 3e-04
0.075 0.9998 0.9997 1e-04
0.08 0.9997 0.9997 0
0.09 0.9996 0.9998 -2e-04
0.1 0.9994 0.9998 -4e-04

1000 0.06 0.9991 0.9995 -4e-04
0.07 0.9998 0.9995 3e-04
0.075 0.9998 0.9997 1e-04
0.08 0.9997 0.9997 0
0.09 0.9996 0.9998 -2e-04
0.1 0.9994 0.9998 -4e-04

Table 65
The Changes in Bias under Small Effect Size across Proportions for Rare Outcome Cases
in Probit with Moderation Effect

Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

large 350 0.2 0.9877 0.9484 0.0393
0.3 0.9873 0.9477 0.0396
0.4 0.9864 0.9476 0.0388
0.5 0.9856 0.9473 0.0383
0.6 0.9834 0.9453 0.0381
0.7 0.9783 0.9403 0.038

Table 66
The Changes in Bias under Different Proportions for Non-rare Outcome Cases in Probit
with Moderation Effect
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Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

large 350 0.06 0.2712 0.3943 -0.1231
0.07 0.2608 0.3659 -0.1051
0.075 0.2536 0.3524 -0.0988
0.08 0.2503 0.3344 -0.0841
0.09 0.2419 0.3096 -0.0677
0.1 0.2335 0.3105 -0.077

Table 67
The Changes in SE under Different Proportions for Rare Outcome Cases in Probit with
Moderation Effect

In the non-rare outcome cases, as the proportion of Y = 1 increased, the bias for the

two quantities shifted away from 1 and the gap remained relatively constant. This pattern

was detailed in Table 66. Similarly to rare outcome cases, the bias for TNIE was closer to

1 than the bias for TIE at all proportion levels (for a graphical representation, see Figure

30). In summary, as the proportion of Y = 1 increased, the bias for TNIE and TIE

increased in the rare outcome cases but decreased in the non-rare cases. Furthermore,

while the bias for TNIE was nearly identical to or got closer to 1 than the bias for TIE in

both outcome cases, the difference between the two quantities was much larger in non-rare

outcome cases.

The results revealed that the SE followed similar patterns to the bias, but in a

different direction. The SE for the two quantities decreased as the proportion increased, as

did the gap between them in rare outcome cases. Across all proportions of Y = 1, the SE

for TNIE was always less than the SE for TIE. The gaps were all negative, as shown in

Table 67. The pattern was depicted graphically in Figure 31.

This pattern did not emerge clearly in cases with the non-rare outcomes. The

numerical conditions with a sample size of 350 and large effect size are presented in Table

68. The SE for TNIE increased as the proportion of Y = 1 increased, whereas the SE for

TIE did not show a clear pattern of change. Figure 32 shows this graphically as well.
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Figure 31
SE over TIE and TNIE for Rare Outcome Cases in Probit with Moderation Effect

Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

large 350 0.2 0.1996 0.279 -0.0794
0.3 0.1967 0.2845 -0.0878
0.4 0.1973 0.28 -0.0827
0.5 0.2027 0.2778 -0.0751
0.6 0.2169 0.2842 -0.0673
0.7 0.243 0.2995 -0.0565

Table 68
The Changes in SE under Different Proportions in Non-rare Outcome Cases in Probit with
Moderation Effect
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Figure 32
SE over TIE and TNIE in Non-Rare Outcome Cases in Probit with Moderation Effect

Under conditions with a sample size of 350, there was no clear pattern for ASE as

the proportion of Y = 1 increased in the rare outcome cases. In other conditions, as the

proportion of Y = 1 increased, the ASE for the two quantities decreased, and the gap

between them increased. Furthermore, the ASE for TNIE was lower than the ASE for

TIE at all levels of the proportion. Table 69 numerically depicts the pattern under

conditions with large effect size and a sample size of 700. The pattern is depicted

graphically in Figure 33.

Under all levels of the proportion of Y = 1, the pattern of the ASE was clearer in
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Effect Size Sample Size Proportions ASE for TNIE ASE for TIE gap

large 700 0.06 0.191 0.2574 -0.0664
0.07 0.1833 0.2407 -0.0574
0.075 0.1796 0.236 -0.0564
0.08 0.1766 0.2314 -0.0548
0.09 0.171 0.225 -0.054
0.1 0.1667 0.222 -0.0553

Table 69
The Changes in ASE under Different Proportions for Rare Outcome Cases in Probit with
Moderation Effect

Figure 33
ASE over TIE and TNIE for Rare Outcome Cases in Probit with Moderation Effect
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Effect Size Sample Size Proportions ASE for TNIE ASE for TIE gap

large 350 0.2 0.2173 0.3305 -0.1132
0.3 0.2075 0.3183 -0.1108
0.4 0.2086 0.3148 -0.1062
0.5 0.2188 0.3197 -0.1009
0.6 0.2529 0.3696 -0.1167
0.7 0.3786 0.6197 -0.2411

Table 70
The Changes in ASE under Different Proportions in Non-rare Outcome Cases in Probit
with Moderation Effect

the non-rare outcome cases. The ASE for TNIE and TIE decreased as the proportion

of Y = 1 increased, and the ASE for TNIE was consistently smaller than the ASE

for TIE. The results are presented numerically and graphically in Table 70 and Figure 34.

In both outcome cases, the MSE results were similar to the SE results. The MSE

for the two quantities decreased, and the MSE for TNIE was consistently less than the

MSE for TIE across all proportions of Y = 1. The gaps were all negative, as shown in

Tables 71 and 72. The pattern is depicted graphically in Figures 35 and 36.

The results revealed no clear patterns for coverage as the proportion increased in

both rare and non-rare cases. Tables 73 and 74 numerically depict the ambiguous pattern

under conditions with a sample size of 350 and a large effect size. This is illustrated

graphically in Figures 37 and 38. In the rare outcome cases, TNIE coverage was less than

TIE coverage, but the gaps were very small. The gaps were larger in non-rare outcome

cases, especially when the coverage for TNIE was greater than the coverage for TIE.

Furthermore, the coverage for TNIE was high (above .94).
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Figure 34
ASE over TIE and TNIE for Rare Outcome Cases in Probit with Moderation Effect

Effect Size Sample Size Proportions MSE for TNIE MSE for TIE gap

large 350 0.06 0.0753 0.1642 -0.0889
0.07 0.0695 0.1399 -0.0704
0.075 0.0655 0.1293 -0.0638
0.08 0.0639 0.1164 -0.0525
0.09 0.0595 0.0992 -0.0397
0.1 0.0554 0.0997 -0.0443

Table 71
The Changes in MSE under Different Proportions for Rare Outcome Cases in Probit with
Moderation Effect
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Figure 35
MSE over TIE and TNIE for Rare Outcome Cases in Probit with Moderation Effect

Effect Size Sample Size Proportions MSE for TNIE MSE for TIE gap

large 350 0.06 0.0401 0.084 -0.0439
0.07 0.039 0.0872 -0.0482
0.075 0.0393 0.0847 -0.0454
0.08 0.0414 0.0835 -0.0421
0.09 0.0476 0.0876 -0.04
0.1 0.06 0.098 -0.038

Table 72
The Changes in MSE under Different Proportions for Non-rare Outcome Cases in Probit
with Moderation Effect
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Figure 36
MSE over TIE and TNIE in Non-rare Outcome Cases in Probit with Moderation Effect

Effect Size Sample Size Proportions Coverage for TNIE Coverage for TIE gap

large 350 0.06 0.951 0.971 -0.02
0.07 0.952 0.965 -0.013
0.075 0.951 0.965 -0.014
0.08 0.95 0.967 -0.017
0.09 0.952 0.962 -0.01
0.1 0.953 0.966 -0.013

Table 73
The Changes in Coverage under Different Proportions for Rare Outcome Cases in Probit
with Moderation Effect
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Figure 37
Coverage Probability over TIE and TNIE for Rare Outcome Cases in Probit with Moderation Effect

Effect Size Sample Size Proportions Coverage for TNIE Coverage for TIE gap

large 350 0.2 0.946 0.967 -0.021
0.3 0.94 0.964 -0.024
0.4 0.942 0.968 -0.026
0.5 0.943 0.961 -0.018
0.6 0.941 0.962 -0.021
0.7 0.945 0.962 -0.017

Table 74
The Changes in Coverage under Different Proportions in Non-rare Outcome Cases in
Probit with Moderation Effect
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Figure 38
Coverage Probability over TIE and TNIE in Non-rare Outcome Cases in Probit with Moderation Effect

In both outcome cases, the power for TNIE remained constant across changes in

the proportion of Y = 1. The power for TIE increased as the proportion of Y = 1

increased in rare outcome cases. Table 75 numerically depicts this pattern under conditions

with a large effect size and a sample size of 350. In the non-rare outcome cases, on the

other hand, the power for TIE was equal to 1 when the proportion of Y = 1 was 0.2 to

0.4, then decreased as the proportion of Y = 1 increased (see Table 76 for a numerical

representation). These patterns are also depicted graphically in Figures 37 and 38. Overall,

the power for TNIE was greater than the power for TIE if the power for TIE was not 1;

otherwise, the power for the two quantities was the same.
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Effect Size Sample Size Proportions Power for TNIE Power for TIE gap

large 350 0.06 1 0.689 0.311
0.07 1 0.791 0.209
0.075 1 0.83 0.17
0.08 1 0.859 0.141
0.09 1 0.907 0.093
0.1 1 0.942 0.058

Table 75
The Changes in Power under Different Proportions for Rare Outcome Cases in Probit with
Moderation Effect

Figure 39
Power over TIE and TNIE for Rare Outcomes in Probit in Probit with Moderation Effect
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Effect Size Sample Size Proportions Power for TNIE Power for TIE gap

large 350 0.2 1 1 0
0.3 1 1 0
0.4 1 1 0
0.5 1 0.998 0.002
0.6 1 0.978 0.022
0.7 1 0.879 0.121

Table 76
The Changes in Power under Different Proportions in Non-rare Outcome Cases in Probit
with Moderation Effect

Figure 40
Power over TIE and TNIE for Non-rare Outcomes in Probit in Probit with Moderation Effect
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Proportion Sample Size Effect Size TNIE TIE gap

0.075 700 small 0.9998 0.9997 1e-04
medium 0.996 0.9949 0.0011
large 0.989 0.9809 0.0081

Table 77
The Changes in Bias under Different Effect Size for Rare Outcome Cases in Probit with
Moderation Effect

Effect Size. When the effect size increased, the bias gaps between TNIE and

TIE widened and the bias for each quantity moved further away from 1. In rare outcome

cases, this pattern was clearly visible. The difference between the two quantities was

positive. As a result, the bias for TNIE was consistently smaller than the bias for TIE as

the effect size increased (for more information, see Table 77). Figure 29 shows this

graphically as well.

The bias for TNIE was closer to 1 in the non-rare outcome cases, and the gaps

were much larger than in the rare cases. The pattern of the gaps between the two

quantities in bias, on the other hand, was not as clear as in the rare outcome cases. The

gap narrowed slightly as the effect size increased from small to medium; when the effect

size reached large, the gap widened significantly. This pattern was shown numerically in

Table 78 and graphically in Figure 30. In summary, TNIE had smaller bias than TIE in

both cases, and it was more noticeable in non-rare outcome cases than in rare cases.

When the effect size was small and medium, the differences in SE between TNIE

and TIE were quite small. The gaps were more visible in both outcome cases given the

large effect size (see Tables 79 and 80, and Figures 31 and 32 for numerical and graphical

representations). In general, the SE for TNIE was lower than that for TIE, and the

difference was more visible in non-rare outcome cases.

Aside from conditions with a sample size of 350 in rare outcome cases, the ASE

followed a similar pattern to the SE. The ASE did not converge well under those
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Proportion Sample Size Effect Size TNIE TIE gap

0.2 700 small 0.999 0.98 0.019
medium 0.9984 1.0165 -0.0181
large 0.995 0.9611 0.0339

Table 78
The Changes in Bias under Different Effect Size in Non-rare Outcome Cases in Probit with
Moderation Effect

conditions. The pattern for MSE was similar to the pattern for SE across changes in

the effect size. However, there was little difference between the rare and non-rare outcome

cases. These patterns are depicted graphically in Figures 33, 34, 35, and 36.

When the effect size changed, there was no clear pattern in the coverage probability

for the two quantities or the gaps between them. Tables 81 and 82 show the numerical

changes in coverage in rare and non-rare outcome cases. In most cases, the differences

between the two quantities were negative but relatively small. These patterns are depicted

graphically in Figures 37 and 38. To summarize, as the effect size increased, the coverage

for TNIE fluctuated between greater and lesser than the coverage for TIE, with no

discernible pattern.

In rare outcome cases, the power for TNIE was 1 at all effect size levels. The effect

size had an effect on the power for TIE only when the sample size was between 350 and

700. In those cases, as the effect size increased, the power for TIE decreased and the

power gap between the two quantities increased. In all other cases, the power for TIE was

1 and stayed that way. This is depicted graphically in Figures 39 and 40. Tables 83 and 84

numerically demonstrate this pattern with a sample size of 350 and a proportion of 0.06 for

a rare outcome and 0.6 for a non-rare outcome. When the effect size was small, the power

for TIE was very close to 1, indicating that the gap was positive but small. When the effect

size was medium, the power for TIE decreased, resulting in a wider gap. Then, as the

effect size increased to large, the power for TIE decreased, resulting in a much larger gap.
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Proportion Sample Size Effect Size TNIE TIE gap

0.06 350 small 0.0525 0.0481 0.0044
medium 0.145 0.1452 -2e-04
large 0.2712 0.3943 -0.1231

Table 79
The Changes in SE under Different Effect Size in Rare Outcome Cases in Probit with
Moderation Effect

Proportion Sample Size Effect Size TNIE TIE gap

0.2 350 small 0.0402 0.0414 -0.0012
medium 0.1122 0.1276 -0.0154
large 0.1996 0.279 -0.0794

Table 80
The Changes in SE under Different Effect Size in Non-rare Outcome Cases in Probit with
Moderation Effect

Proportion Sample Size Effect Size Coverage for TNIE Coverage for TIE gap

0.06 350 small 0.993 0.997 -0.004
medium 0.946 0.969 -0.023
large 0.951 0.971 -0.02

Table 81
The Changes in Coverage under Different Effect Size for Rare Outcome Cases in Probit
with Moderation Effect

Proportion Sample Size Effect Size Coverage for TNIE Coverage for TIE gap

0.2 350 small 0.986 0.999 -0.013
medium 0.946 0.943 0.003
large 0.946 0.967 -0.021

Table 82
The Changes in Coverage under Different Effect Size in Non-rare Outcome Cases in Probit
with Moderation Effect
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Proportion Sample Size Effect Size Power for TNIE Power for TIE gap

0.06 350 small 1 0.998 0.002
medium 1 0.956 0.044
large 1 0.689 0.311

Table 83
The Changes in Power under Different Effect Size for Rare Outcome Cases in Probit

Sample Size. The bias for TNIE and TIE became closer to 1 as the sample size

increased, and the gap between them shrank. This pattern was clearly visible in both

outcome cases when the effect size was large. The pattern is numerically presented in

Tables 85 and 86 under conditions with a large effect size and a proportion of 0.06 for rare

cases and 0.2 for non-rare cases. In summary, TNIE produced bias that was closer to 1

than TIE in both cases as the sample size increased, but it was more visible in conditions

with a large effect size.

When the sample size was increased, the difference between two quantities in SE

and the SE for each quantity became smaller. This pattern is clearly visible when the

effect size is large (for numerical details, see Tables 87 and 88). This pattern is numerically

represented in Figures 31 and 32. In general, as sample size increased, the gap in

the SE between TNIE and TIE became less and less clear.

The ASE and MSE results for the two quantities followed the same pattern as the

SE. This is illustrated numerically in Tables 89, 90, 91, and 92 and graphically in Figure

33, 34, 35, and 36.

When the sample size was changed, the coverage probability for the two quantities

did not show any patterns, whereas the gaps between them only showed a clear pattern

when the effect size was large. In those cases, as the sample size increased, the gaps in

coverage widened and became negative. As the sample size increased, the coverage for

TNIE became smaller than the coverage for TIE. This pattern is numerically shown in

Tables 93 and 94.
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Proportion Sample Size Effect Size Power for TNIE Power for TIE gap

0.8 350 small 1 1 0
medium 1 0.999 0.001
large 1 0.978 0.022

Table 84
The Changes in Power under Different Effect Size in Non-rare Outcome Cases in Probit
with Moderation Effect

Proportion Effect Size Sample Size Bias for TNIE Bias for TIE gap

0.06 large 350 0.9712 0.9406 0.0306
700 0.9883 0.98 0.0083
1000 0.991 0.986 0.005

Table 85
The Changes in Bias under Different Sample Size for Rare Outcome Cases in Probit with
Moderation Effect

Proportion Effect Size Sample Size Bias for TNIE Bias for TIE gap

0.2 large 350 0.9877 0.9484 0.0393
700 0.995 0.9611 0.0339
1000 0.9955 0.963 0.0325

Table 86
The Changes in Bias under Different Sample Size in Non-rare Outcome Cases in Probit
with Moderation Effect

Proportion Effect Size Sample Size SE for TNIE SE for TIE gap

0.06 large 350 0.2712 0.3943 -0.1231
700 0.1793 0.2133 -0.034
1000 0.1518 0.1749 -0.0231

Table 87
The Changes in SE under Different Sample Size for Rare Outcome Cases in Probit with
Moderation Effect
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Proportion Effect Size Sample Size SE for TNIE SE for TIE gap

0.2 large 350 0.1996 0.279 -0.0794
700 0.1406 0.1925 -0.0519
1000 0.1204 0.1642 -0.0438

Table 88
The Changes in SE under Different Sample Size in Non-rare Outcome Cases in Probit with
Moderation Effect

Proportion Effect Size Sample Size ASE for TNIE ASE for TIE gap

0.06 large 350 0.3387 77.5323 -77.1936
700 0.191 0.2574 -0.0664
1000 0.1541 0.1889 -0.0348

Table 89
The Changes in ASE under Different Sample Size for Rare Outcome Cases in Probit with
Moderation Effect

Proportion Effect Size Sample Size ASE for TNIE ASE for TIE gap

0.2 large 350 0.2173 0.3305 -0.1132
700 0.1448 0.2051 -0.0603
1000 0.1191 0.166 -0.0469

Table 90
The Changes in ASE under Different Sample Size in Non-rare Outcome Cases in Probit
with Moderation Effect

Proportion Effect Size Sample Size MSE for TNIE MSE for TIE gap

0.06 large 350 0.0753 0.1642 -0.0889
700 0.0324 0.0464 -0.014
1000 0.0232 0.031 -0.0078

Table 91
The Changes in MSE under Different Sample Size for Rare Outcome Cases in Probit with
Moderation Effect
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Proportion Effect Size Sample Size MSE for TNIE MSE for TIE gap

0.2 large 350 0.0401 0.084 -0.0439
700 0.0198 0.0404 -0.0206
1000 0.0145 0.03 -0.0155

Table 92
The Changes in MSE under Different Sample Size in Non-rare Outcome Cases in Probit
with Moderation Effect

Proportion Effect Size Sample Size Coverage for TNIE Coverage for TIE gap

0.06 large 350 0.951 0.971 -0.02
700 0.95 0.958 -0.008
1000 0.939 0.958 -0.019

Table 93
The Changes in Coverage under Different Sample Size for Rare Outcome Cases in Probit
with Moderation Effect

Proportion Effect Size Sample Size Coverage for TNIE Coverage for TIE gap

0.2 large 350 0.946 0.967 -0.021
700 0.953 0.971 -0.018
1000 0.94 0.968 -0.028

Table 94
The Changes in Coverage under Different Sample Size in Non-rare Outcome Cases in
Probit with Moderation Effect

Proportion Effect Size Sample Size Power for TNIE Power for TIE gap

0.06 large 350 1 0.689 0.311
700 1 0.991 0.009
1000 1 1 0

Table 95
The Changes in Power under Different Sample Size for Rare Outcome Cases in Probit with
Moderation Effect
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Proportion Effect Size Sample Size Power for TNIE Power for TIE gap

0.2 large 350 1 1 0
700 1 1 0
1000 1 1 0

Table 96
The Changes in Power under Different Sample Size in Non-rare Outcome Cases in Probit
with Moderation Effect

When the sample size was increased from 350 to 700 in both outcome cases, the

power for TIE increased and the gap in the power between the two quantities decreased.

When the sample size was increased to 1000, the power for TIE was 1 and the gap was 0.

This is depicted graphically in Figures 39 and 40.

Moderation Effect. This factor was only used in the moderated mediation

model. The goal was to see if there was a significant difference in producing an accurate

mediation effect between the moderated mediation model with a low moderation value (no

moderation effect) and the moderated mediation model with a high moderation value (a

moderation effect). In rare outcome cases, with a moderation effect, the bias for TNIE

and TIE was closer to 1, and the gap between them was larger than without a moderation

effect. Tables 64 and 97 numerically present this pattern under conditions with a larger

effect size and a sample size of 350. Figures 29 and 41 show graphical representations of

this pattern where the title indicates whether the graph with or without moderation effect.

The figures cannot show the gaps for the conditions with a small effect size because they

are too small. The numerical results in these conditions are shown in Tables 65 and 98.

With the presence of a moderation effect, the bias for TNIE and TIE was slightly

closer to 1 and the gap between them was smaller in the non-rare outcome cases. Tables 66

and 99 numerically present this pattern under conditions with a small effect size. Figures

30 and 42 show this in graphical form.
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Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

large 350 0.06 0.9353 0.9143 0.021
0.07 0.9481 0.9343 0.0138
0.075 0.9539 0.9419 0.012
0.08 0.9549 0.9454 0.0095
0.09 0.959 0.9529 0.0061
0.1 0.9612 0.9548 0.0064

Table 97
The Changes in Bias under Different Proportions for Rare Outcome Cases in Probit
Without Moderated Effect

Figure 41
Bias over TIE and TNIE for Rare Outcomes in Probit Without Moderation Effect
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Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

small 350 0.06 0.9815 0.9844 -0.0029
0.07 0.991 0.9929 -0.0019
0.075 0.9915 0.9939 -0.0024
0.08 0.993 0.9945 -0.0015
0.09 0.995 0.9964 -0.0014
0.1 0.996 0.9972 -0.0012

700 0.06 0.9977 0.9985 -8e-04
0.07 0.9984 0.9987 -3e-04
0.075 0.9976 0.9985 -9e-04
0.08 0.9984 0.9987 -3e-04
0.09 0.9985 0.9989 -4e-04
0.1 0.9985 0.999 -5e-04

1000 0.06 0.9977 0.9985 -8e-04
0.07 0.9984 0.9987 -3e-04
0.075 0.9976 0.9985 -9e-04
0.08 0.9984 0.9987 -3e-04
0.09 0.9985 0.9989 -4e-04
0.1 0.9985 0.999 -5e-04

Table 98
The Changes in Bias across Proportions for Rare Outcome Cases in Probit Without
Moderation Effect
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Figure 42
Bias over TIE and TNIE for Non-rare Outcomes in Probit Without Moderation Effect

In both outcome cases, the bias for TNIE was closer to 1 than the bias for TIE in

terms of having a moderation effect or not having a moderation effect. Furthermore, in the

presence of a moderation effect, the gap between the two quantities in bias was larger in

the rare outcome cases but smaller in the non-rare outcome cases.

Under conditions with a moderation effect, the SE for the two quantities was

smaller in rare outcome cases, but the gap between the two quantities was slightly larger.

Furthermore, in the absence of a moderation effect, TNIE had a higher SE than TIE.

The patterns of the SE and the gaps between the two quantities were very similar in
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Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

small 350 0.2 0.9967 1.043 -0.0463
0.3 0.9982 1.0436 -0.0454
0.4 0.9977 1.0435 -0.0458
0.5 0.9985 1.0435 -0.045
0.6 0.9985 1.0432 -0.0447
0.7 0.9984 1.0435 -0.0451

700 0.2 0.9993 1.0453 -0.046
0.3 0.9997 1.0452 -0.0455
0.4 0.9987 1.0447 -0.046
0.5 0.9993 1.0446 -0.0453
0.6 0.999 1.044 -0.045
0.7 0.9989 1.0443 -0.0454

1000 0.2 0.9993 1.0453 -0.046
0.3 0.9997 1.0452 -0.0455
0.4 0.9987 1.0447 -0.046
0.5 0.9993 1.0446 -0.0453
0.6 0.999 1.044 -0.045
0.7 0.9989 1.0443 -0.0454

Table 99
The Changes in Bias across Proportions for Non-rare Outcome Cases in Probit Without
Moderation Effect

Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

small 350 0.06 0.1526 0.13 0.0226
0.07 0.0909 0.0702 0.0207
0.075 0.0853 0.0651 0.0202
0.08 0.0858 0.0663 0.0195
0.09 0.066 0.0497 0.0163
0.1 0.0621 0.0475 0.0146

700 0.06 0.0463 0.0329 0.0134
0.07 0.0431 0.0313 0.0118
0.075 0.0428 0.0314 0.0114
0.08 0.0419 0.0311 0.0108
0.09 0.0403 0.0305 0.0098
0.1 0.0388 0.0301 0.0087

1000 0.06 0.0379 0.0267 0.0112
0.07 0.036 0.026 0.01
0.075 0.0352 0.0258 0.0094
0.08 0.0344 0.0254 0.009
0.09 0.033 0.0249 0.0081
0.1 0.0319 0.0246 0.0073

Table 100
The Changes in SE across Proportions for Rare Outcome Cases in Probit Without
Moderation Effect
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Figure 43
SE over TIE and TNIE for Rare Outcomes in Probit Without Moderation Effect

non-rare outcome cases. However, when the moderation effect was present, the SE was

slightly smaller. Tables 67 and 100 numerically show this pattern for rare outcome cases,

whereas Tables 68 and 101 show non-rare outcome cases under small effect size conditions.

This pattern can be seen graphically in Figures 31 and 43 for rare outcome cases, and

Figures 32 and 44 for non-rare outcome cases.

Without the presence of a moderation effect, the gap in the ASE between the two

quantities was much clearer, and the ASE for TNIE was slightly larger than the ASE for

TIE in rare outcome cases, as shown graphically in Figures 31 and Figure 43. In non-rare

outcome cases, the ASE for moderated effects was quite similar at both levels. The
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Figure 44
SE over TIE and TNIE for Non-rare Outcomes in Probit Without Moderation Effect

pattern is numerically represented in Figures 32 and 44. Because the conditions with a

small effect size had such a small gap between the two quantities, the lines representing the

two quantities in ASE were overlapping. Tables 69 and 102 and Tables 70 and 103 present

numerical values in rare and non-rare outcome cases, respectively.

Under conditions with a medium effect size, the MSE for the two quantities showed

a clearer gap in rare outcome cases without a moderation effect. Figures 35 and 47

illustrate this pattern graphically. The pattern was quite similar between the levels of the

moderation effect for non-rare outcome cases. Figures 36 and 48 present graphically for

cases with non-rare outcomes. The gaps between the two quantities in MSE were either
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Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

small 350 0.2 0.0502 0.0438 0.0064
0.3 0.0432 0.041 0.0022
0.4 0.0419 0.0417 2e-04
0.5 0.0408 0.0417 -9e-04
0.6 0.0407 0.0419 -0.0012
0.7 0.0417 0.0427 -0.001

700 0.2 0.031 0.0272 0.0038
0.3 0.0282 0.0266 0.0016
0.4 0.0273 0.027 3e-04
0.5 0.0266 0.027 -4e-04
0.6 0.0268 0.0273 -5e-04
0.7 0.0275 0.0277 -2e-04

1000 0.2 0.0252 0.0221 0.0031
0.3 0.0231 0.0217 0.0014
0.4 0.0219 0.0216 3e-04
0.5 0.0212 0.0215 -3e-04
0.6 0.0216 0.022 -4e-04
0.7 0.0224 0.0225 -1e-04

Table 101
The Changes in SE across Proportions for Non-rare Outcome Cases in Probit Without
Moderation Effect

Effect Size Sample Size Proportions ASE for TNIE ASE for TIE gap

large 350 0.06 NaN 0.2654 NaN
0.07 NaN 126.8263 NaN
0.075 NaN 94.7017 NaN
0.08 NaN 38.1459 NaN
0.09 NaN 28.6141 NaN
0.1 NaN 0.0956 NaN

700 0.06 0.0754 0.0573 0.0181
0.07 0.057 0.047 0.01
0.075 0.0562 0.0437 0.0125
0.08 0.0513 0.0405 0.0108
0.09 0.0454 0.0356 0.0098
0.1 0.0426 0.0335 0.0091

1000 0.06 0.0446 0.0338 0.0108
0.07 0.0387 0.0289 0.0098
0.075 0.0376 0.0282 0.0094
0.08 0.0362 0.0272 0.009
0.09 0.0347 0.0263 0.0084
0.1 0.0335 0.0259 0.0076

Table 102
The Changes in ASE across Proportions for Rare Outcome Cases in Probit Without
Moderation Effect
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Figure 45
ASE over TIE and TNIE for Rare Outcomes in Probit Without Moderation Effect

very small or 0 for the conditions with a small effect size. This meant that the MSE for

TNIE and TIE were nearly identical. Tables 71 and 104, and Tables 72 and 105 present

this numerically for rare and non-rare outcome cases.

In rare outcome cases, the coverage probabilities for TNIE and TIE were quite

similar between the two levels of the moderation effect. Without the presence of a

moderation effect, the gap in the coverage probabilities between TNIE and TIE was

much larger in the non-rare outcome cases under conditions with a large effect size. This

pattern is depicted graphically in Figures 37 and 49, as well as Figures 38 and 50. In

general, the coverage for TNIE was slightly lower than the coverage for TIE under large
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Effect Size Sample Size Proportions ASE for TNIE ASE for TIE gap

small 350 0.06 0.0548 0.0487 0.0061
0.07 0.0478 0.0458 0.002
0.075 0.0449 0.0451 -2e-04
0.08 0.044 0.0453 -0.0013
0.09 0.0441 0.0459 -0.0018
0.1 0.0459 0.0472 -0.0013

700 0.06 0.0331 0.0291 0.004
0.07 0.0297 0.0282 0.0015
0.075 0.0282 0.028 2e-04
0.08 0.0276 0.0281 -5e-04
0.09 0.0278 0.0285 -7e-04
0.1 0.0288 0.0292 -4e-04

1000 0.06 0.0265 0.0233 0.0032
0.07 0.0239 0.0227 0.0012
0.075 0.0228 0.0226 2e-04
0.08 0.0223 0.0226 -3e-04
0.09 0.0224 0.0229 -5e-04
0.1 0.0231 0.0234 -3e-04

Table 103
The Changes in ASE across Proportions for Non-rare Outcome Cases in Probit Without
Moderation Effect

Effect Size Sample Size Proportions MSE for TNIE MSE for TIE gap

small 350 0.06 0.0236 0.0172 0.0064
0.07 0.0083 0.005 0.0033
0.075 0.0073 0.0043 0.003
0.08 0.0074 0.0044 0.003
0.09 0.0044 0.0025 0.0019
0.1 0.0039 0.0023 0.0016

700 0.06 0.0021 0.0011 0.001
0.07 0.0019 0.001 9e-04
0.075 0.0018 0.001 8e-04
0.08 0.0018 0.001 8e-04
0.09 0.0016 9e-04 7e-04
0.1 0.0015 9e-04 6e-04

1000 0.06 0.0014 7e-04 7e-04
0.07 0.0013 7e-04 6e-04
0.075 0.0012 7e-04 5e-04
0.08 0.0012 6e-04 6e-04
0.09 0.0011 6e-04 5e-04
0.1 0.001 6e-04 4e-04

Table 104
The Changes in MSE across Proportions for Rare Outcome Cases in Probit Without
Moderation Effect
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Figure 46
ASE over TIE and TNIE for Non-rare Outcomes in Probit Without Moderation Effect

effect size conditions and much higher than the coverage for TIE under small and medium

effect size conditions.

The gaps in the power were larger in rare outcome cases when no moderation effect

was present and a sample size of 350 was used. The power for TNIE remained constant at

both levels of the moderation effect, whereas the power for TIE was reduced. In all other

cases, the power of the two quantities remained constant at 1. The power for the two

quantities was 1 in non-rare outcome cases without the presence of a moderation effect.

This pattern is depicted graphically in Figures 39 and 51, as well as Figures 40 and 52.
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Figure 47
MSE over TIE and TNIE for Rare Outcomes in Probit Without Moderation Effect

Logit Model

Overall, in the logit model analysis, TNIE was more accurate than TIE in

recovering the population values of the mediation effect in both rare and non-rare outcome

cases for the first four evaluation criteria. The results of TIE were greater than those of

TNIE for coverage probability. For power, TNIE outperformed TIE only when the

sample size was 350, and the results of the two quantities were identical in all other

conditions. Furthermore, the difference between TNIE and TIE was smaller in non-rare

cases than in rare cases.
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Figure 48
MSE over TIE and TNIE for Non-rare Outcomes in Probit Without Moderation Effect

Proportion of Y = 1. When the proportion of Y = 1 increased in rare outcome

cases, the bias for TNIE and TIE got closer to 1 while the gap changed its pattern twice.

In more detail, as the proportion increased from 0.06 to 0.08, the gap shrank; as the

proportion approached 0.09, the gap widened; and finally, as the proportion reached 0.1,

the gap shrank again. The gap was positive because the bias for TNIE was closer to 1

than the bias for TIE. This was visible under conditions with large and medium effect

sizes. The conditions with a large effect size and a sample size of 350 are numerically

presented in table 106. Figure 53 depicts this graphically for all conditions. The difference

between the two quantities was too small to be captured in the figure when the effect size
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Effect Size Sample Size Proportions MSE for TNIE MSE for TIE gap

small 350 0.2 0.0025 0.0039 -0.0014
0.3 0.0019 0.0037 -0.0018
0.4 0.0018 0.0038 -0.002
0.5 0.0017 0.0038 -0.0021
0.6 0.0017 0.0037 -0.002
0.7 0.0017 0.0038 -0.0021

700 0.2 0.001 0.0029 -0.0019
0.3 8e-04 0.0029 -0.0021
0.4 7e-04 0.0029 -0.0022
0.5 7e-04 0.0029 -0.0022
0.6 7e-04 0.0028 -0.0021
0.7 8e-04 0.0029 -0.0021

1000 0.2 6e-04 0.0027 -0.0021
0.3 5e-04 0.0026 -0.0021
0.4 5e-04 0.0026 -0.0021
0.5 5e-04 0.0026 -0.0021
0.6 5e-04 0.0026 -0.0021
0.7 5e-04 0.0026 -0.0021

Table 105
The Changes in MSE under Different Proportions for Non-rare Outcome Cases in Probit
Without Moderation Effect

was small. Thus , I present numerically in Table 107. The bias for both quantities was

greater than 1, and the gap was negative. This implied that the bias for TNIE was closer

to 1 than it was for TIE.

In non-rare outcome cases, there was no clear pattern for the bias. The bias for the

two quantities increased as the proportion of Y = 1 increased from 0.2 to 0.4. When the

proportion was increased to 0.5, the bias for TNIE moved further away from one, while

the bias for TIE remained close to one. The bias for the two quantities grew further away

from 1 as the proportion increased to 0.7. As the proportion increased, the gap shrank.

The gaps, like the rare outcome cases, were all positive. That is, the bias for TNIE was

closer to 1 than it was for TIE. The conditions with a large effect size and a sample size of

350 are numerically presented in Table 108. Figure 54 graphically depicts the pattern for

all conditions. The difference between the two quantities was too small to capture under

conditions with a small effect size. As a result, in Table 109, I numerically present the
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Figure 49
Coverage over TIE and TNIE for Rare Outcomes in Probit Without Moderation Effect

Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

large 350 0.06 0.8201 0.7734 0.0467
0.07 0.8266 0.7797 0.0469
0.075 0.8312 0.7841 0.0471
0.08 0.8334 0.7857 0.0477
0.09 0.8392 0.7922 0.047
0.1 0.8441 0.7962 0.0479

Table 106
The Changes in Bias under Different Proportions for Rare Outcome Cases in Logit with
Moderation Effect
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Figure 50
Coverage over TIE and TNIE for Non-rare Outcomes in Probit Without Moderation Effect

pattern under those conditions. In these conditions, the bias for the two quantities was

greater than 1, and the gap was negative. This indicated that the bias for TNIE was

closer to 1 than it was for TIE. In brief summary, as the proportion of Y = 1 increased,

the bias for TNIE and TIE became closer to 1 for the rare outcome cases but not for

the non-rare cases. Furthermore, in both outcome cases, the bias for TNIE got closer to 1

than the bias for TIE across all conditions.
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Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

small 350 0.06 1.007 1.0072 -2e-04
0.07 1.0074 1.0077 -3e-04
0.075 1.0071 1.0074 -3e-04
0.08 1.0068 1.0071 -3e-04
0.09 1.0067 1.007 -3e-04
0.1 1.0065 1.0067 -2e-04

700 0.06 1.008 1.0082 -2e-04
0.07 1.0077 1.0079 -2e-04
0.075 1.0077 1.0079 -2e-04
0.08 1.0076 1.0078 -2e-04
0.09 1.0075 1.0077 -2e-04
0.1 1.0073 1.0075 -2e-04

1000 0.06 1.008 1.0082 -2e-04
0.07 1.0077 1.0079 -2e-04
0.075 1.0077 1.0079 -2e-04
0.08 1.0076 1.0078 -2e-04
0.09 1.0075 1.0077 -2e-04
0.1 1.0073 1.0075 -2e-04

Table 107
The Changes in Bias under Small Effect Size across Proportions for Rare Outcome Cases
in Logit with Moderation Effect

Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

large 350 0.2 0.8729 0.8267 0.0462
0.3 0.8811 0.8365 0.0446
0.4 0.8828 0.8406 0.0422
0.5 0.881 0.8417 0.0393
0.6 0.874 0.8386 0.0354
0.7 0.8602 0.8282 0.032

Table 108
The Changes in Bias under Different Proportions for Non-rare Outcome Cases in Logit
with Moderation Effect
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Figure 51
Power over TIE and TNIE for Rare Outcomes in Probit Without Moderation Effect
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Figure 52
Power over TIE and TNIE for Non-rare Outcomes in Probit Without Moderation Effect
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Figure 53
Bias over TIE and TNIE for Rare Outcomes in Logit with Moderation Effect
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Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

small 350 0.2 1.0052 1.0055 -3e-04
0.3 1.0056 1.0058 -2e-04
0.4 1.0052 1.0055 -3e-04
0.5 1.005 1.0052 -2e-04
0.6 1.005 1.0052 -2e-04
0.7 1.0051 1.0052 -1e-04

700 0.2 1.0057 1.0059 -2e-04
0.3 1.0053 1.0055 -2e-04
0.4 1.005 1.0052 -2e-04
0.5 1.0049 1.005 -1e-04
0.6 1.005 1.0051 -1e-04
0.7 1.0053 1.0054 -1e-04

1000 0.2 1.0057 1.0059 -2e-04
0.3 1.0053 1.0055 -2e-04
0.4 1.005 1.0052 -2e-04
0.5 1.0049 1.005 -1e-04
0.6 1.005 1.0051 -1e-04
0.7 1.0053 1.0054 -1e-04

Table 109
The Changes in Bias under under Small Effect Size across Proportions for Non-rare
Outcome Cases in Logit with Moderation Effect
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Figure 54
Bias over TIE and TNIE for Non-rare Outcomes in Logit with Moderation Effect

The SE showed similar patterns to the bias, but in the opposite direction. In

the rare cases, as the proportion increased, the SE for the two quantities decreased while

the gap between them increased. When the sample size was 350 and the effect size was

large, this was clearly visible. Across all proportions of Y = 1, the SE for TNIE was

always less than that for TIE. The gaps were all negative, as shown in Table 110. Figure

55 graphically represented the pattern for all conditions. Because the difference between

the two quantities was too small to see on the graph under the conditions of a small effect

size, I present it numerically in Table 111.
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Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

large 350 0.06 0.2772 0.3673 -0.0901
0.07 0.2672 0.3584 -0.0912
0.075 0.2608 0.3515 -0.0907
0.08 0.2579 0.3488 -0.0909
0.09 0.2495 0.3349 -0.0854
0.1 0.2414 0.3259 -0.0845

Table 110
The Changes in SE under Different Proportions for Rare Outcome Cases in Logit with
Moderation Effect

Figure 55
SE over TIE and TNIE for Rare Outcomes in Logit with Moderation Effect
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Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

small 350 0.06 0.0543 0.0559 -0.0016
0.07 0.0528 0.0543 -0.0015
0.075 0.0522 0.0538 -0.0016
0.08 0.0512 0.0527 -0.0015
0.09 0.0498 0.0513 -0.0015
0.1 0.0486 0.05 -0.0014

700 0.06 0.0348 0.0353 -5e-04
0.07 0.0338 0.0343 -5e-04
0.075 0.0333 0.0339 -6e-04
0.08 0.0332 0.0338 -6e-04
0.09 0.0332 0.0338 -6e-04
0.1 0.0321 0.0327 -6e-04

1000 0.06 0.0304 0.0308 -4e-04
0.07 0.0295 0.0299 -4e-04
0.075 0.0291 0.0295 -4e-04
0.08 0.0291 0.0295 -4e-04
0.09 0.0286 0.029 -4e-04
0.1 0.028 0.0285 -5e-04

Table 111
The Changes in SE under Small Effect Size across Proportions for Rare Outcome Cases in
Logit with Moderation Effect

Cases with non-rare outcomes followed a different pattern. The SE for the two

quantities decreased as the proportion for Y = 1 increased from 0.2 to 0.4. The SE for the

two quantities increased as the proportion approached 0.5. When the proportion was

increased to 0.7, the SE for the two quantities increased further. Table 112 shows this

pattern with a sample size of 350 and a large effect size. Figure 56 depicts this graphically

for all conditions. Because the difference between the two quantities was too small with

such a small effect size, I presented it numerically in Table 113. The gaps were negative

across all conditions in both outcome cases. This implied that the SE for TNIE was

always less than the SE for TIE.
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Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

large 350 0.2 0.2062 0.2784 -0.0722
0.3 0.2005 0.2695 -0.069
0.4 0.1979 0.2621 -0.0642
0.5 0.1993 0.2586 -0.0593
0.6 0.2085 0.266 -0.0575
0.7 0.2274 0.2846 -0.0572

Table 112
The Changes in SE under Different Proportions for Non-rare Outcome Cases in Logit with
Moderation Effect

Figure 56
SE over TIE and TNIE for Non-Rare Outcomes in Logit with Moderation Effect

In general, the SE for TNIE was lower than the SE for TIE as the proportion of
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Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

small 350 0.2 0.0418 0.0429 -0.0011
0.3 0.04 0.041 -0.001
0.4 0.0394 0.0405 -0.0011
0.5 0.0408 0.0419 -0.0011
0.6 0.0427 0.0437 -0.001
0.7 0.0452 0.0461 -9e-04

700 0.2 0.0278 0.0283 -5e-04
0.3 0.0266 0.027 -4e-04
0.4 0.0265 0.027 -5e-04
0.5 0.0264 0.0268 -4e-04
0.6 0.0276 0.0281 -5e-04
0.7 0.0288 0.0292 -4e-04

1000 0.2 0.0239 0.0243 -4e-04
0.3 0.0227 0.0231 -4e-04
0.4 0.0224 0.0227 -3e-04
0.5 0.0225 0.0228 -3e-04
0.6 0.0233 0.0236 -3e-04
0.7 0.0235 0.0238 -3e-04

Table 113
The Changes in SE under Small Effect Size across Proportions for Non-rare Outcome
Cases in Logit with Moderation Effect

Y = 1 increased in both outcome cases. Furthermore, in rare outcome cases, the difference

between the two quantities was slightly larger.

The results for ASE were comparable to those for SE. Table 114 shows the pattern

numerically in rare outcome cases with a small effect size. The pattern is depicted

graphically in Figure 57. Table 115 presents numerically conditions with a small effect size

for non-rare outcome cases, and Figure 58 presents the results graphically across all

conditions.

MSE followed the same pattern as SE and ASE. Figures 59 and 60 depict rare

and non-rare outcome cases graphically. As indicated by the negative gaps, the MSE for

TNIE was consistently lower than that for TIE across all conditions. Furthermore, under

conditions with a small effect size, the MSE for the two quantities was nearly identical (for

numerical representations, see Tables 116 and 117).

When the proportion of Y = 1 increased, the results for coverage probability did not
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Effect Size Sample Size Proportions ASE for TNIE ASE for TIE gap

large 350 0.06 0.0732 0.0764 -0.0032
0.07 0.0691 0.0721 -0.003
0.075 0.0677 0.0705 -0.0028
0.08 0.066 0.0687 -0.0027
0.09 0.0634 0.066 -0.0026
0.1 0.0612 0.0636 -0.0024

700 0.06 0.0416 0.0426 -0.001
0.07 0.0399 0.0409 -0.001
0.075 0.0393 0.0403 -0.001
0.08 0.0386 0.0396 -0.001
0.09 0.0376 0.0386 -0.001
0.1 0.0366 0.0376 -0.001

1000 0.06 0.0325 0.0332 -7e-04
0.07 0.0313 0.0319 -6e-04
0.075 0.0307 0.0314 -7e-04
0.08 0.0303 0.0309 -6e-04
0.09 0.0295 0.0302 -7e-04
0.1 0.0289 0.0295 -6e-04

Table 114
The Changes in ASE under Small Effect Size across Proportions for Rare Outcome Cases
in Logit with Moderation Effect

Effect Size Sample Size Proportions ASE for TNIE ASE for TIE gap

small 350 0.06 0.0514 0.0533 -0.0019
0.07 0.0476 0.0493 -0.0017
0.075 0.0464 0.0479 -0.0015
0.08 0.0466 0.048 -0.0014
0.09 0.0475 0.0488 -0.0013
0.1 0.0499 0.0511 -0.0012

700 0.06 0.0312 0.0319 -7e-04
0.07 0.0293 0.03 -7e-04
0.075 0.0288 0.0295 -7e-04
0.08 0.0289 0.0295 -6e-04
0.09 0.0297 0.0303 -6e-04
0.1 0.0309 0.0315 -6e-04

1000 0.06 0.0248 0.0253 -5e-04
0.07 0.0235 0.0239 -4e-04
0.075 0.0231 0.0236 -5e-04
0.08 0.0232 0.0236 -4e-04
0.09 0.0237 0.0241 -4e-04
0.1 0.0247 0.025 -3e-04

Table 115
The Changes in ASE under Small Effect Size across Proportions for Non-rare Outcome
Cases in Logit with Moderation Effect
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Effect Size Sample Size Proportions MSE for TNIE MSE for TIE gap

small 350 0.06 0.003 0.0032 -2e-04
0.07 0.0028 0.003 -2e-04
0.075 0.0028 0.0029 -1e-04
0.08 0.0027 0.0028 -1e-04
0.09 0.0025 0.0027 -2e-04
0.1 0.0024 0.0025 -1e-04

700 0.06 0.0013 0.0013 0
0.07 0.0012 0.0012 0
0.075 0.0012 0.0012 0
0.08 0.0012 0.0012 0
0.09 0.0011 0.0012 -1e-04
0.1 0.0011 0.0011 0

1000 0.06 0.001 0.001 0
0.07 9e-04 9e-04 0
0.075 9e-04 9e-04 0
0.08 9e-04 9e-04 0
0.09 9e-04 9e-04 0
0.1 8e-04 9e-04 -1e-04

Table 116
The Changes in MSE under Small Effect Size across Proportions for Rare Outcome Cases
in Logit with Moderation Effect

Effect Size Sample Size Proportions MSE for TNIE MSE for TIE gap

small 350 0.2 0.0018 0.0019 -1e-04
0.3 0.0016 0.0017 -1e-04
0.4 0.0016 0.0017 -1e-04
0.5 0.0017 0.0018 -1e-04
0.6 0.0018 0.0019 -1e-04
0.7 0.0021 0.0021 0

700 0.2 8e-04 8e-04 0
0.3 7e-04 8e-04 -1e-04
0.4 7e-04 7e-04 0
0.5 7e-04 7e-04 0
0.6 8e-04 8e-04 0
0.7 9e-04 9e-04 0

1000 0.2 6e-04 6e-04 0
0.3 5e-04 6e-04 -1e-04
0.4 5e-04 5e-04 0
0.5 5e-04 5e-04 0
0.6 6e-04 6e-04 0
0.7 6e-04 6e-04 0

Table 117
The Changes in MSE under Different Proportions for Non-rare Outcome Cases in Logit
with Moderation Effect
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Figure 57
ASE over TIE and TNIE for Rare Outcomes in Logit with Moderation Effect

show any clear patterns. For example, in rare outcome cases with a sample size of 350 and

a small effect size, the proportion for Y = 1 increased from 0.06 to 0.07, the coverage for

the two quantities increased, and the gap between them remained constant. When the

proportion raised to 0.075, the coverage for TNIE decreased while the coverage for TIE

increased, and the gap between them widened. As the proportion approached 0.8, the

coverage for TNIE increased while the coverage for TIE remained constant and the gap

between them shrank. Then, as the proportion increased to 0.9, the coverage for TNIE

decreased while the coverage for TIE remained constant, increasing the gap between

them. When the proportion reached 0.1, the coverage for TNIE decreased further, while
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Figure 58
ASE over TIE and TNIE for Rare Outcomes in Logit with Moderation Effect

the coverage for TIE increased, and the gap between them widened. This pattern is

numerically depicted in table 118. Figure 61 shows this graphically across all conditions.

The gaps were positive, but they were quite small. This indicated that TNIE had slightly

less coverage than TIE across all proportion of Y = 1.

The gap between the two quantities in coverage showed a clearer pattern in

the non-rare outcome cases than in the rare outcome cases. When the proportion of Y = 1

increased from 0.2 to 0.3 under conditions with a small effect size and a sample size of 350,

the coverage for TNIE decreased while the coverage for TIE remained the same and the

gap increased. The coverage for TNIE and TIE decreased as the proportion increased to
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Figure 59
MSE over TIE and TNIE for Rare Outcomes in Logit with Moderation Effect

Effect Size Sample Size Proportions Coverage for TNIE Coverage for TIE gap

large 350 0.06 0.992 0.996 -0.004
0.07 0.993 0.997 -0.004
0.075 0.992 0.998 -0.006
0.08 0.993 0.998 -0.005
0.09 0.991 0.998 -0.007
0.1 0.989 0.999 -0.01

Table 118
The Changes in Coverage under Different Proportions for Rare Outcome Cases in Logit
with Moderation Effect
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Figure 60
MSE over TIE and TNIE for Non-rare Outcomes in Logit with Moderation Effect

0.4, and the gap shrank. The proportion then increased to 0.5, the coverage for TNIE

decreased further, while the coverage for TIE remained constant, and the gap remained

constant. The coverage for the two quantities decreased as the proportion approached 0.6,

as did the gap. Finally, once the proportion reached 0.7, the coverage for TNIE and TIE

remained constant, as did the gap. For proportion, the gap was negative at all levels. This

demonstrated that the coverage for TNIE was slightly less than that for TIE. The

pattern is shown numerically in Table 119, and graphically in Figure 62 across all

conditions. The gap was negative but small in both outcome cases. That is, the coverage

for TNIE is slightly less than the coverage for TIE.
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Figure 61
Coverage Probability over TIE and TNIE for Rare Outcomes in Logit with Moderation Effect

Effect Size Sample Size Proportions Coverage for TNIE Coverage for TIE gap

large 350 0.2 0.988 0.997 -0.009
0.3 0.985 0.997 -0.012
0.4 0.984 0.994 -0.01
0.5 0.984 0.994 -0.01
0.6 0.977 0.993 -0.016
0.7 0.977 0.993 -0.016

Table 119
The Changes in Coverage under Different Proportions for Non-rare Outcome Cases in
Logit with Moderation Effect
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Figure 62
Coverage Probability over TIE and TNIE for Non-rare Outcomes in Logit with Moderation Effect

In both outcome cases, the power for TNIE and TIE was very high (above .95)

across all conditions. For rare outcome cases, the power for TNIE was 1 for all conditions

and the power for TIE was all 1 except for conditions with a large effect size and a sample

size of 350 (for a graphical representation, see Figure 63). As the proportion increased, the

power for TIE increased, and the difference in power between the two quantities

decreased. This is illustrated numerically in Table 120.

In non-rare cases, on the other hand, the power remained 1 for both TNIE and

TIE as the proportion increased. This can be seen numerically in Table 121 and
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Effect Size Sample Size Proportions Power for TNIE Power for TIE gap

large 350 0.06 1 0.981 0.019
0.07 1 0.992 0.008
0.075 1 0.994 0.006
0.08 1 0.997 0.003
0.09 1 0.998 0.002
0.1 1 0.999 0.001

Table 120
The Changes in Power under Different Proportions for Rare Outcome Cases in Logit with
Moderation Effect

graphically in Figure 64.

Effect Size. When the effect size increased, the gaps in the bias between TNIE

and TIE widened and the bias for each quantity moved further away from 1. Furthermore,

when the effect size was small, the gap was negative but very small, and the bias for the

two quantities was greater than 1; this indicated that the bias for TNIE was slightly closer

to 1 than the bias for TIE. Because the difference was so small (.0004), we could conclude

that the bias for TNIE and TIE was nearly identical. When the effect size was medium,

the gap was positive, indicating that the bias for TNIE was smaller than the bias for

TIE. As the effect size increased, the gap widened and remained positive, indicating that

the bias for TNIE was clearly smaller than the bias for TIE. This pattern can be seen in

both outcome cases. Tables 122 and 123 numerically present this pattern under conditions

with a sample size of 350 and a proportion of 0.06 for rare outcome cases and 0.2 for

non-rare outcome cases. Figures 53 and 54 show this graphically for all conditions.
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Effect Size Sample Size Proportions Power for TNIE Power for TIE gap

large 350 0.2 1 1 0
0.3 1 1 0
0.4 1 1 0
0.5 1 1 0
0.6 1 1 0
0.7 1 1 0

Table 121
The Changes in Power under Different Proportions for Non-rare Outcome Cases in Logit
with Moderation Effect

Figure 63
Power over TIE and TNIE for Rare Outcomes in Logit with Moderation Effect
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Proportion Sample Size Effect Size Bias for TNIE Bias for TIE gap

0.06 350 small 1.007 1.0072 -2e-04
medium 0.9282 0.9188 0.0094
large 0.8201 0.7734 0.0467

Table 122
The Changes in Bias under Different Effect Size for Rare Outcome Cases in Logit with
Moderation Effect

Figure 64
Power over TIE and TNIE for Non-rare Outcomes in Logit with Moderation Effect

When the effect size increased, the gaps in SE between two quantities and the SE

for each quantity widened. More specifically, when the effect size was small, the SE for
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Proportion Sample Size Effect Size Bias for TNIE Bias for TIE gap

0.2 350 small 1.0052 1.0055 -3e-04
medium 0.9503 0.941 0.0093
large 0.8729 0.8267 0.0462

Table 123
The Changes in Bias under Different Effect Size in Non-rare Outcome Cases in Logit with
Moderation Effect

TNIE was slightly smaller than the SE for TIE so the gap was negative but small; when

the effect size was medium, the SE was smaller than TIE because the gap grew larger but

remained negative; and when the effect size was large, the SE for TNIE was clearly

smaller than the SE for TIE since the gap grew larger but remained negative. Under the

conditions of a sample size of 350 and a proportion of 0.06 for a rare outcome case and 0.2

for a non-rare outcome case, this pattern can be seen in Tables 124 and 125. Figures 55

and 56 show graphical representations of all conditions.

The ASE results for the two quantities were the same as the SE results. As the

effect size increased, the ASE for TNIE became clearly smaller than the ASE for TIE.

Tables 126 and 126 present this using a sample size of 350 and a proportion of 0.06 for

a rare outcome case and 0.2 for a non-rare outcome case. This is depicted graphically for

all conditions in Figures 57 and 58.

Similarly, the MSE for TNIE was clearly smaller than the MSE for TIE across

the effect size changes. This pattern is shown numerically in Tables 128 and 129, and

graphically for all conditions in Figures 59 and 60.

The coverage probability for the two quantities decreased as the effect size increased,

while the gap between them increased. More closely, when the effect size was small, the gap

between them was negative but small, implying that TNIE had slightly less coverage than

TIE. When the effect size was medium, the gap grew slightly larger but remained

negative, indicating that the coverage for TNIE was less than that for TIE. When the

141



Proportion Sample Size Effect Size SE for TNIE SE for TIE gap

0.06 350 small 0.0543 0.0559 -0.0016
medium 0.1495 0.1674 -0.0179
large 0.2772 0.3673 -0.0901

Table 124
The Changes in SE under Different Effect Size for Rare Outcome Cases in Logit with
Moderation Effect

Proportion Sample Size Effect Size SE for TNIE SE for TIE gap

0.2 350 small 0.0418 0.0429 -0.0011
medium 0.1163 0.131 -0.0147
large 0.2062 0.2784 -0.0722

Table 125
The Changes in SE under Different Effect Size in Non-rare Outcome Cases in Logit with
Moderation Effect

Proportion Sample Size Effect Size ASE for TNIE ASE for TIE gap

0.06 350 small 0.0732 0.0764 -0.0032
medium 0.1674 0.1972 -0.0298
large 0.3145 0.4747 -0.1602

Table 126
The Changes in ASE under Different Effect Size in Non-rare Outcome Cases in Logit with
Moderation Effect

Proportion Sample Size Effect Size ASE for TNIE ASE for TIE gap

0.2 350 small 0.0514 0.0533 -0.0019
medium 0.1256 0.1451 -0.0195
large 0.2239 0.3167 -0.0928

Table 127
The Changes in ASE under Different Effect Size in Non-rare Outcome Cases in Logit with
Moderation Effect
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Proportion Sample Size Effect Size MSE for TNIE MSE for TIE gap

0.06 350 small 0.003 0.0032 -2e-04
medium 0.0292 0.0371 -0.0079
large 0.1517 0.271 -0.1193

Table 128
The Changes in MSE under Different Effect Size for Rare Outcome Cases in Logit with
Moderation Effect

effect size was large, the gap widened, implying that the coverage for TNIE was clearly

less than the coverage for TIE. This pattern was visible equally in both outcome cases.

Table 130 shows an example of a rare outcome case with a proportion of 0.06 and a sample

size of 350. Table 131 shows an illustrated example of a non-rare outcome case of 0.2 and a

sample size of 350. Figures 61 and 62 graphically depict these patterns for all conditions.

Only when the sample size was 350 did the effect size had an effect on the power for

the two quantities in rare outcome cases. When the effect size was small or medium, the

power for TNIE and TIE was 1 and the gap was zero; when the effect size was large, the

power for TNIE remained 1 while TIE shrank and the gap widened. This implied that

TNIE had a higher power than TIE only when the effect size was large. In all other

cases, the power of the two quantities was 1 and remained constant. This is illustrated

numerically in Table 132 and graphically in Figure 63.

In non-rare outcome cases, the power for the two quantities remained constant at 1

for all three effect size conditions. This pattern is depicted graphically in Figure 64.

Sample Size. The bias for TNIE and TIE became closer to 1 as the sample size

increased, and the gap between them shrank. Furthermore, the bias for TNIE was clearly

smaller than the bias for TIE at all three sample size levels. This pattern can be seen

clearly in both outcome cases under medium and large effect size. Tables 133 and 134

numerically present the pattern under conditions with a large effect size and a proportion

of 0.06 for a rare outcome case and 0.2 for a non-rare outcome case. Figures 53 and 54
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Proportion Sample Size Effect Size MSE for TNIE MSE for TIE gap

0.2 350 small 0.0018 0.0019 -1e-04
medium 0.0167 0.0217 -0.005
large 0.0752 0.1472 -0.072

Table 129
The Changes in MSE under Different Effect Size in Non-rare Outcome Cases in Logit with
Moderation Effect

Proportion Sample Size Effect Size Coverage for TNIE Coverage for TIE gap

0.06 350 small 0.992 0.996 -0.004
medium 0.934 0.992 -0.058
large 0.846 0.996 -0.15

Table 130
The Changes in Coverage under Different Effect Size for Rare Outcome Cases in Logit with
Moderation Effect

Proportion Sample Size Effect Size Coverage for TNIE Coverage for TIE gap

0.2 350 small 0.988 0.997 -0.009
medium 0.94 0.989 -0.049
large 0.871 0.993 -0.122

Table 131
The Changes in Coverage under Different Effect Size in Non-rare Outcome Cases in Logit
with Moderation Effect

Proportion Sample Size Effect Size Power for TNIE Power for TIE gap

0.06 350 small 1 1 0
medium 1 1 0
large 1 0.981 0.019

Table 132
The Changes in Power under Different Effect Size for Rare Outcome Cases in Logit with
Moderation Effect
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Proportion Effect Size Sample Size Bias for TNIE Bias for TIE gap

0.06 large 350 0.8201 0.7734 0.0467
700 0.8326 0.7928 0.0398
1000 0.8343 0.7967 0.0376

Table 133
The Changes in Bias under Different Sample Size for Rare Outcome Cases in Logit with
Moderation Effect

graphically depict this pattern for all conditions.

When the sample size increased, the difference between two quantities in SE and

the SE for each quantity became smaller. The gap was negative, indicating that the SE

for TNIE was less than the SE for TIE. This pattern is illustrated in Tables 135 and 136

under conditions with a large effect size and a proportion of 0.06 for a rare outcome

case and 0.2 for a non-rare outcome case. This pattern is also depicted graphically in

Figures 55 and 56.

The ASE and MSE results for the two quantities followed the same pattern as the

SE. This is illustrated numerically in Tables 137, 138, 139, and 140, and graphically in

Figures 57, 58, 59, and 60.

The coverage probability for the two quantities decreased as the sample size

increased, but the gap between them increased rather than decreased. This pattern is

numerically illustrated in Tables 141 and 142 under conditions with a large effect size and a

proportion of 0.06 for rare outcome cases and 0.2 for non-rare outcome cases. Figures 61

and 62 show clear graphical representations for all conditions. Across all sample sizes, the

coverage for TNIE was lower than that for TIE. Furthermore, when the sample size was

1000, the coverage was quite low (below .85).

When the sample size was 350, the power for TNIE was 1 and the power for TIE

was slightly lower. As a result, the difference between the two quantities was positive. The

power for TNIE remained 1 when the sample size was increased to 700, while the power

145



Proportion Effect Size Sample Size Bias for TNIE Bias for TIE gap

0.2 large 350 0.8729 0.8267 0.0462
700 0.8795 0.8374 0.0421
1000 0.8798 0.8389 0.0409

Table 134
The Changes in Bias under Different Sample Size in Non-rare Outcome Cases in Logit with
Moderation Effect

Proportion Effect Size Sample Size SE for TNIE SE for TIE gap

0.06 large 350 0.2772 0.3673 -0.0901
700 0.1865 0.2401 -0.0536
1000 0.1586 0.2007 -0.0421

Table 135
The Changes in SE under Different Sample Size for Rare Outcome Cases in Logit with
Moderation Effect

Proportion Effect Size Sample Size SE for TNIE SE for TIE gap

0.2 large 350 0.2062 0.2784 -0.0722
700 0.1451 0.1905 -0.0454
1000 0.1245 0.1618 -0.0373

Table 136
The Changes in SE under Different Sample Size in Non-rare Outcome Cases in Logit with
Moderation Effect

Proportion Effect Size Sample Size ASE for TNIE ASE for TIE gap

0.06 large 350 0.3145 0.4747 -0.1602
700 0.1976 0.2649 -0.0673
1000 0.1602 0.2095 -0.0493

Table 137
The Changes in ASE under Different Sample Size for Rare Outcome Cases in Logit with
Moderation Effect
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Proportion Effect Size Sample Size ASE for TNIE ASE for TIE gap

0.2 large 350 0.2239 0.3167 -0.0928
700 0.1497 0.2009 -0.0512
1000 0.1232 0.1633 -0.0401

Table 138
The Changes in ASE under Different Sample Size in Non-rare Outcome Cases in Logit
with Moderation Effect

Proportion Effect Size Sample Size MSE for TNIE MSE for TIE gap

0.06 large 350 0.1517 0.271 -0.1193
700 0.0976 0.166 -0.0684
1000 0.0865 0.1436 -0.0571

Table 139
The Changes in MSE under Different Sample Size for Rare Outcome Cases in Logit with
Moderation Effect

Proportion Effect Size Sample Size MSE for TNIE MSE for TIE gap

0.2 large 350 0.0752 0.1472 -0.072
700 0.05 0.0961 -0.0461
1000 0.0443 0.0847 -0.0404

Table 140
The Changes in MSE under Different Sample Size in Non-rare Outcome Cases in Logit
with Moderation Effect

Proportion Effect Size Sample Size Coverage for TNIE Coverage for TIE gap

0.06 large 350 0.846 0.996 -0.15
700 0.689 0.956 -0.267
1000 0.577 0.815 -0.238

Table 141
The Changes in Coverage under Different Sample Size for Rare Outcome Cases in Logit
with Moderation Effect
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Proportion Effect Size Sample Size Coverage for TNIE Coverage for TIE gap

0.2 large 350 0.871 0.993 -0.122
700 0.774 0.906 -0.132
1000 0.683 0.789 -0.106

Table 142
The Changes in Coverage under Different Sample Size in Non-rare Outcome Cases in Logit
with Moderation Effect

for TIE increased to 1. Thus , the gap was zero. When the sample size reached 1000, the

power for the two quantities was 1 and the gap was 0. This is shown numerically in Table

143 and graphically for all conditions in Figure 63.

In the non-rare outcome cases, the power for the two quantities remained constant

at 1 for all three sample size levels. This pattern was depicted graphically in Figure 64.

Moderation Effect. In rare outcome cases, with a moderation effect, the bias for

TNIE and TIE was closer to 1, and the gap between them was larger than without a

moderation effect. Tables 106 and 145 numerically present this pattern under conditions

with a larger effect size and a sample size of 350. Figures 53 and 65 show this in graphical

forms. The figures cannot show the gaps for the conditions with small effect sizes because

they are too small. The numerical results in these conditions are shown in Tables 107 and

146.

Similarly to rare outcome cases, with a moderation effect, the bias for TNIE and

TIE was closer to 1 and the gap between them was larger than in non-rare cases without a

moderation effect. Furthermore, as the proportion of Y = 1 increased, the gap between the

two quantities in bias in conditions without a moderation effect moved in the opposite

direction as in conditions with a moderation effect. To put it simply, when there was a

moderation effect, the gap widened. Tables 109 and 147 numerically present this pattern

under conditions with a small effect size. Figures 54 and 66 show this in graphical

representations.
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Proportion Effect Size Sample Size Power for TNIE Power for TIE gap

0.06 large 350 1 0.981 0.019
700 1 1 0
1000 1 1 0

Table 143
The Changes in Power under Different Sample Size for Rare Outcome Cases in Logit with
Moderation Effect

Figure 66
Bias over TIE and TNIE for Non-rare Outcomes in Logit Without Moderation Effect

In both outcome cases, the bias for TNIE was closer to 1 than the bias for TIE in

terms of having a moderation effect or not having a moderation effect. Furthermore, the
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Proportion Effect Size Sample Size Power for TNIE Power for TIE gap

0.2 large 350 1 1 0
700 1 1 0
1000 1 1 0

Table 144
The Changes in Power under Different Sample Size in Non-rare Outcome Cases in Logit
with Moderation Effect

Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

large 350 0.06 0.7144 0.6831 0.0313
0.07 0.724 0.691 0.033
0.075 0.7296 0.6969 0.0327
0.08 0.7334 0.6998 0.0336
0.09 0.7423 0.7078 0.0345
0.1 0.7488 0.7127 0.0361

Table 145
The Changes in Bias under Different Proportions for Rare Outcome Cases in Logit
Without Moderated Effect

Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

small 350 0.06 0.9769 0.9765 4e-04
0.07 0.9782 0.9779 3e-04
0.075 0.9788 0.9783 5e-04
0.08 0.9797 0.9794 3e-04
0.09 0.9804 0.98 4e-04
0.1 0.9811 0.9807 4e-04

700 0.06 0.9795 0.9794 1e-04
0.07 0.9807 0.9805 2e-04
0.075 0.9808 0.9806 2e-04
0.08 0.9812 0.9811 1e-04
0.09 0.9818 0.9815 3e-04
0.1 0.9824 0.9822 2e-04

1000 0.06 0.9795 0.9794 1e-04
0.07 0.9807 0.9805 2e-04
0.075 0.9808 0.9806 2e-04
0.08 0.9812 0.9811 1e-04
0.09 0.9818 0.9815 3e-04
0.1 0.9824 0.9822 2e-04

Table 146
The Changes in Bias across Proportions for Rare Outcome Cases in Logit Without
Moderation Effect
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Figure 65
Bias over TIE and TNIE for Rare Outcomes in Logit Without Moderation Effect

gap in bias between the two quantities for two levels of the moderation effect moved in the

same direction in the rare outcome cases but in the opposite direction in the non-rare

outcome cases.

The SE for TNIE and TIE at the two levels of the moderation effect was very

close to the bias. Under conditions with a moderation effect, the SE for the two quantities

was smaller. Furthermore, under both levels of the moderated effects, TNIE had a smaller

SE than TIE in both outcome cases. In non-rare outcome cases, the SE and the gaps

between the two quantities were slightly smaller. Tables 111 and 148 numerically show this

pattern for rare outcome cases, whereas Tables 113 and 149 show non-rare outcome cases
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Effect Size Sample Size Proportions Bias for TNIE Bias for TIE gap

small 350 0.2 0.984 0.9835 5e-04
0.3 0.986 0.9855 5e-04
0.4 0.9867 0.9861 6e-04
0.5 0.9868 0.9862 6e-04
0.6 0.9863 0.9855 8e-04
0.7 0.9857 0.9849 8e-04

700 0.2 0.9862 0.9859 3e-04
0.3 0.9873 0.987 3e-04
0.4 0.9876 0.9871 5e-04
0.5 0.9876 0.9871 5e-04
0.6 0.9868 0.9864 4e-04
0.7 0.9863 0.9857 6e-04

1000 0.2 0.9862 0.9859 3e-04
0.3 0.9873 0.987 3e-04
0.4 0.9876 0.9871 5e-04
0.5 0.9876 0.9871 5e-04
0.6 0.9868 0.9864 4e-04
0.7 0.9863 0.9857 6e-04

Table 147
The Changes in Bias across Proportions for Non-rare Outcome Cases in Logit Without
Moderation Effect

Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

small 350 0.06 0.0631 0.064 -9e-04
0.07 0.0603 0.0613 -0.001
0.075 0.0598 0.0607 -9e-04
0.08 0.0585 0.0595 -0.001
0.09 0.0559 0.0568 -9e-04
0.1 0.0541 0.0549 -8e-04

700 0.06 0.04 0.0404 -4e-04
0.07 0.0374 0.0378 -4e-04
0.075 0.0372 0.0375 -3e-04
0.08 0.0367 0.0371 -4e-04
0.09 0.0357 0.0361 -4e-04
0.1 0.0349 0.0353 -4e-04

1000 0.06 0.033 0.0333 -3e-04
0.07 0.0315 0.0318 -3e-04
0.075 0.031 0.0313 -3e-04
0.08 0.0303 0.0305 -2e-04
0.09 0.0293 0.0296 -3e-04
0.1 0.0286 0.0289 -3e-04

Table 148
The Changes in SE across Proportions for Rare Outcome Cases in Logit Without
Moderation Effect
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Figure 67
SE over TIE and TNIE for Rare Outcomes in Logit Without Moderation Effect

under small effect size conditions. This pattern can be seen graphically in Figures 55 and

67 for rare outcome cases, and Figures 56 and 68 for non-rare outcome cases.

The ASE results followed the same pattern as the SE results. This is depicted

graphically in Figures 57 and 69 for cases with rare outcomes, and Figures 58 and 70 for

cases with non-rare outcomes. Because the conditions with a small effect size had such a

small gap between the two quantities, the lines representing the two quantities in ASE

were overlapping. Tables 114 and 150 and 115 and 151 present numerical values for rare

and non-rare outcome cases, respectively.
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Effect Size Sample Size Proportions SE for TNIE SE for TIE gap

small 350 0.2 0.0463 0.0472 -9e-04
0.3 0.0414 0.0424 -0.001
0.4 0.0412 0.0424 -0.0012
0.5 0.0409 0.0422 -0.0013
0.6 0.0414 0.0428 -0.0014
0.7 0.0432 0.0448 -0.0016

700 0.2 0.029 0.0294 -4e-04
0.3 0.0271 0.0276 -5e-04
0.4 0.0269 0.0275 -6e-04
0.5 0.0267 0.0273 -6e-04
0.6 0.0273 0.028 -7e-04
0.7 0.0284 0.0292 -8e-04

1000 0.2 0.0236 0.0239 -3e-04
0.3 0.0222 0.0226 -4e-04
0.4 0.0215 0.0219 -4e-04
0.5 0.0213 0.0217 -4e-04
0.6 0.022 0.0225 -5e-04
0.7 0.0231 0.0236 -5e-04

Table 149
The Changes in SE across Proportions for Non-rare Outcome Cases in Logit Without
Moderation Effect

Effect Size Sample Size Proportions ASE for TNIE ASE for TIE gap

large 350 0.06 0.0754 0.0771 -0.0017
0.07 0.0707 0.0723 -0.0016
0.075 0.0689 0.0705 -0.0016
0.08 0.067 0.0685 -0.0015
0.09 0.0641 0.0656 -0.0015
0.1 0.0616 0.063 -0.0014

700 0.06 0.0438 0.0443 -5e-04
0.07 0.0416 0.0422 -6e-04
0.075 0.0409 0.0414 -5e-04
0.08 0.04 0.0406 -6e-04
0.09 0.0387 0.0393 -6e-04
0.1 0.0375 0.038 -5e-04

1000 0.06 0.0348 0.0351 -3e-04
0.07 0.0332 0.0335 -3e-04
0.075 0.0325 0.0328 -3e-04
0.08 0.0319 0.0322 -3e-04
0.09 0.0309 0.0312 -3e-04
0.1 0.03 0.0304 -4e-04

Table 150
The Changes in ASE across Proportions for Rare Outcome Cases in Logit Without
Moderation Effect
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Figure 68
SE over TIE and TNIE for Non-rare Outcomes in Logit Without Moderation Effect

The MSE for the two quantities was clearly lower with a moderation effect than

without one. Figures 59 and 71 depict this for rare outcome cases, and Figures 60 and 72

depict this for non-rare outcome cases. The gaps between the two quantities in MSE were

either very small or zero for the conditions with a small effect size. This indicated that the

MSE for TNIE and TIE were nearly identical. Tables 116 and 152, as well as Tables 117

and 153, show this numerically for rare and non-rare outcome cases.

The coverage probabilities for TNIE and TIE under no moderation effect

conditions were much smaller, and the gap between them was larger than under

moderation effect conditions. This pattern can be found in all conditions and in both
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Effect Size Sample Size Proportions ASE for TNIE ASE for TIE gap

small 350 0.06 0.0503 0.0517 -0.0014
0.07 0.0459 0.0473 -0.0014
0.075 0.0442 0.0458 -0.0016
0.08 0.0441 0.0458 -0.0017
0.09 0.0449 0.0468 -0.0019
0.1 0.0473 0.0494 -0.0021

700 0.06 0.0309 0.0314 -5e-04
0.07 0.0286 0.0292 -6e-04
0.075 0.0277 0.0284 -7e-04
0.08 0.0277 0.0284 -7e-04
0.09 0.0283 0.0292 -9e-04
0.1 0.0297 0.0306 -9e-04

1000 0.06 0.0248 0.0252 -4e-04
0.07 0.023 0.0235 -5e-04
0.075 0.0224 0.0229 -5e-04
0.08 0.0224 0.0229 -5e-04
0.09 0.0228 0.0234 -6e-04
0.1 0.0239 0.0245 -6e-04

Table 151
The Changes in ASE across Proportions for Non-rare Outcome Cases in Logit Without
Moderation Effect

Effect Size Sample Size Proportions MSE for TNIE MSE for TIE gap

small 350 0.06 0.0046 0.0047 -1e-04
0.07 0.0042 0.0043 -1e-04
0.075 0.0041 0.0042 -1e-04
0.08 0.0039 0.004 -1e-04
0.09 0.0036 0.0037 -1e-04
0.1 0.0033 0.0034 -1e-04

700 0.06 0.0021 0.0021 0
0.07 0.0018 0.0019 -1e-04
0.075 0.0018 0.0018 0
0.08 0.0017 0.0018 -1e-04
0.09 0.0016 0.0017 -1e-04
0.1 0.0016 0.0016 0

1000 0.06 0.0016 0.0016 0
0.07 0.0014 0.0015 -1e-04
0.075 0.0014 0.0014 0
0.08 0.0013 0.0013 0
0.09 0.0012 0.0013 -1e-04
0.1 0.0012 0.0012 0

Table 152
The Changes in MSE across Proportions for Rare Outcome Cases in Logit Without
Moderation Effect
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Figure 69
ASE over TIE and TNIE for Rare Outcomes in Logit Without Moderation Effect

outcome cases. This pattern is depicted graphically in Figures 61 and 73, as well as Figures

62 and 74. Across both levels of the moderation effect, the coverage for TNIE was

significantly lower than the coverage for TIE.

The results of power were far superior to those of coverage probability. Under the

two levels for the moderation effect, the power for TNIE and TIE was quite similar in

both outcome cases. In rare outcome cases, with medium and large effect sizes and a

sample size of 350, the power for TNIE remained constant at 1, whereas the power for

TIE increased as the proportion of Y = 1 increased. As a result, the gap between them

was positive and narrowed as the proportion increased. The power for TIE without a
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Figure 70
ASE over TIE and TNIE for Non-rare Outcomes in Logit Without Moderation Effect

moderation effect was lower than the power for TIE with a moderation effect. In all other

cases, the power of the two quantities remained constant at 1. Under all conditions, the

power for the two quantities in non-rare outcome cases was 1. This pattern is depicted

graphically in Figures 63 and 75 and Figures 64 and 76.
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Figure 71
MSE over TIE and TNIE for Rare Outcomes in Logit Without Moderation Effect
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Figure 72
MSE over TIE and TNIE for Non-rare Outcomes in Logit Without Moderation Effect
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Effect Size Sample Size Proportions MSE for TNIE MSE for TIE gap

small 350 0.2 0.0024 0.0025 -1e-04
0.3 0.0019 0.002 -1e-04
0.4 0.0019 0.002 -1e-04
0.5 0.0019 0.002 -1e-04
0.6 0.0019 0.0021 -2e-04
0.7 0.0021 0.0023 -2e-04

700 0.2 0.0011 0.0011 0
0.3 9e-04 9e-04 0
0.4 9e-04 9e-04 0
0.5 9e-04 9e-04 0
0.6 9e-04 0.001 -1e-04
0.7 0.001 0.0011 -1e-04

1000 0.2 8e-04 8e-04 0
0.3 7e-04 7e-04 0
0.4 6e-04 7e-04 -1e-04
0.5 6e-04 7e-04 -1e-04
0.6 7e-04 7e-04 0
0.7 7e-04 8e-04 -1e-04

Table 153
The Changes in MSE under Different Proportions for Non-rare Outcome Cases in Logit
Without Moderation Effect
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Figure 73
Coverage over TIE and TNIE for Rare Outcomes in Logit Without Moderation Effect
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Figure 74
Coverage over TIE and TNIE for Non-rare Outcomes in Logit Without Moderation Effect
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Figure 75
Power over TIE and TNIE for Rare Outcomes in Logit Without Moderation Effect
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Figure 76
Power over TIE and TNIE for Non-rare Outcomes in Logit Without Moderation Effect
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Chapter 5. Discussion & Implication

The results from Chapter 4 will be interpreted in this chapter, as will the

discrepancies between my hypothesis and the results. Furthermore, the significance of my

study will be recognized, as well as how my dissertation will contribute to the field’s

literature. Furthermore, several limitations will be highlighted, and future research will be

conducted.

Discussion

Study 1: Simple Mediation Model

Overall, the results did not fully support my original hypotheses. In the probit and

logit models, the causal inference approach estimated mediation effects more accurately

than the classical approach in both rare and non-rare outcome cases. Furthermore, the

mediation effects from the probit model outperformed those from the logit model. These

indications corroborate my hypotheses. The gap between the two effects, however, was

more visible in the rare outcome cases than I anticipated. The specifics are shown below.

Probit Model. The first four evaluation criteria results supported the hypothesis

that TNIE was more accurate than TIE. The last two evaluation criteria, however, did

not fully support my hypotheses. This is true for all three simulation factors.

Proportion Y=1. The evaluation criterion bias on the odds-ratio scale was used

to determine the accuracy of the mediation effect by looking at how close to 1 the bias was.

The closer the bias was to 1, the more accurate the mediation effect. In all conditions, the

bias for TNIE was closer to 1 than for the bias for TIE. This indicated that TNIE was

more accurate than TIE across all the proportions of Y = 1 in both outcome cases and

was more visible in the rare outcome cases. This contradicts my hypothesis. I expected the

bias difference between TNIE and TIE to be more visible in the non-rare outcome cases

than in the rare outcome cases.

166



SE, ASE, and MSE, on the other hand, were used to determine how deviant the

mediation effect was from the population value. Subsequently, the smaller the criteria, the

better the results. In both outcome cases, TNIE was consistently smaller than TIE in

these evaluation criteria across all levels of the proportion of Y = 1. This is similar to my

hypotheses. However, I anticipated that the gap in these criteria would not be visible in

the rare outcome cases, whereas the results were visible in both outcomes.

Coverage probability was used to assess the reliability of the effects. Thus, the

coverage probability of an accurate effect should be close to or greater than .95. In the rare

outcome cases, coverage for both TNIE and TIE was very close to .95, with a very small

difference between them. When the effect size was small in the non-rare outcome cases,

some coverage probabilities for the two quantities were less than .90. Except for conditions

with a small effect size, the results of TNIE and TIE were equally reliable in rare and

non-rare outcome cases. My hypothesis does not correspond to the results. I predicted that

the coverage of the two quantities would be .95 or higher in all conditions, and that TNIE

would be better than TIE in non-rare outcome cases.

The precision of the results was measured using power. As a result, if the power

was .80 or higher, the mediation effect would be considered good. The power for TNIE

and TIE was greater than .99 in both outcome cases. This indicated that the TNIE and

TIE results were precise in all conditions of proportion of Y = 1. This result matches my

hypothesis, but not entirely. In non-rare outcome cases, I expected the power for TNIE to

be greater than the power for TIE.

Effect Size. With increasing effect size, the bias for TNIE became closer to 1

than the bias for TIE, and the gap between them widened in both outcome cases. The

difference between the two quantities was greater in the rare outcome cases than in the

non-rare cases. This indicated that as the effect size increased, it became clear that TNIE

was more accurate than TIE, particularly in the rare outcome cases. In more detail, when

the effect size was small, the bias for TNIE was slightly smaller than the bias for TIE;
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when the effect size was medium, the bias for TNIE was smaller than the bias for TIE;

and when the effect size was large, the bias for TNIE was clearly smaller than the bias

for TIE, as seen in both cases. Except for the visibility of the rare and non-rare outcome

cases, these results match my hypotheses.

Similarly to the bias, the SE, ASE, and MSE for TNIE outperformed TIE in

both outcome cases across all effect size levels. These findings support my hypotheses.

In the cases of rare outcomes, the coverage probabilities for TNIE and TIE were

very close to .95. The effect size change had little effect on the changes in

coverage probabilities. When the effect size was small in non-rare outcome cases, some

coverage probabilities for the two quantities were below .90; when the effect size was

medium, the coverage for the two quantities increased and became nearly identical; when

the effect size was large, the coverage for TNIE was slightly better than the coverage for

TIE. Furthermore, the results indicated that TNIE and TIE in both rare and non-rare

outcome cases were reliable, with the exception of conditions with a small effect size. These

findings contradict my hypotheses. In non-rare outcome cases, I expected TNIE to have

better coverage than TIE across all levels of effect size.

In the non-rare outcome cases, the power for the two quantities was equal to 1 and

was unaffected by the change in effect size. In the rare outcome cases, when the effect size

was small, the two power were identical; when the effect size was medium, the two power

were smaller but still identical; and when the effect size was large, the two power shrank

and the power for TNIE was slightly better than the power for TIE. My hypotheses were

not supported by the results. In summary, when the effect size was small, TNIE recovered

the population value slightly better than TIE; when the effect size is medium, TNIE

recovered better than TIE; and when the effect size is large, the gap between the two

quantities was much larger. That is, TNIE was clearly superior to TIE. Across three

effect size conditions, the gap between the two quantities was larger in the rare outcome
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cases than in the non-rare outcome cases. This pattern was clearly presented in the first

four evaluation criteria. The values for the last two criteria, coverage probability and

power, were quite close to each other for TNIE and TIE. Because the final two criteria

evaluate the reliability and precision of the results, it makes sense that the two values

were good and close to each other.

Sample Size. When the sample size was increased, the bias for TNIE became

closer to 1 than the bias for TIE, and the difference between them shrank in both outcome

cases. The gap was larger in the rare outcome cases than in the non-rare cases. This

implied that as the sample size grew, it became less clear that the bias for TNIE was

smaller than the bias for TIE, particularly in non-rare outcome cases. In more detail,

when the sample size was 350, the bias for TNIE was clearly smaller than the bias

for TIE; when the sample size was 700, the bias for TNIE was smaller than the bias

for TIE; and when the sample size was 1000, the bias for TNIE was slightly smaller than

the bias for TIE, but this was not presented clearly in both cases because the gaps were

too small. The pattern affected by the sample size change was similar to my hypotheses,

but the visibility of rare and non-rare outcome cases was the opposite of what I expected.

The SE, ASE, and MSE for TNIE were better than those for TIE in rare

outcome cases than non-rare outcome cases, but they became less clearly as the sample size

increased. When the sample size reached 1000, these criteria of the two quantities became

closer and almost identical. The pattern confirmed my hypotheses, but the visibility of the

rare and non-rare outcome cases contradicted them.

This demonstrated that the results of TNIE and TIE in both rare and non-rare

outcome cases were reliable. My hypotheses were not completely supported by the results.

I expected TNIE coverage to be better than TIE coverage, and the gaps between them to

be more visible in non-rare outcome cases.

In the non-rare outcome cases, the powers for the two quantities were equal to
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1 and were unaffected by the change in sample size. When the sample size was 350, the two

powers were around .99, and TNIE was slightly better than TIE; when the sample size

was 700, the powers for both quantities reached 1; and when the sample size was 1000, the

two powers were identical and remained at 1. The results for the rare outcome cases match

my hypotheses, whereas I expected the results for TNIE to be more accurate than the

results for TIE in the non-rare cases.

Logit Model. Sum up, the logit model’s values for the first five evaluation

criteria for TNIE and TIE were not as good as the probit model’s. This is explained by

the fact that the probit model was used to simulate data sets. The causal inference

approach produced more accurate mediation effects in the logit model than the classical

approach. This was demonstrated by the findings that TNIE outperformed TIE in

recovering population values in both rare and non-rare outcome cases across all evaluation

criteria except coverage probability, and power. In terms of power, both quantities have a

consistent power of 1 under all conditions. This indicated that the TNIE and TIE results

were precise.

Proportion Y=1. When the proportion of Y = 1 increased, the bias for TNIE

became closer to 1 than for TIE, and the gap between them shrank slightly for rare

outcome cases. However, regardless of the proportion of Y = 1 increments, the bias for

TNIE consistently got closer to 1 than the bias for TIE. This indicated that TNIE

recovered the population mediation effects better than TIE in both outcome cases. The

pattern aligned with my hypotheses.

When the proportion of Y = 1 increased in the rare outcome cases, the SE for

TNIE was better than the SE for TIE in recovering the population values, but the

difference between them shrank. The SE for the two quantities got closer to each other as

the proportion of Y = 1 increased, but TNIE is still better than TIE. The pattern did not

appear clearly in the non-rare outcome cases. Regardless of the changes in the proportion

of Y = 1, the SE for TNIE was better than the SE for TIE. In summary, for the criterion
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SE, TNIE outperforms TIE in both cases; the difference is slightly larger in rare outcome

cases than in non-rare outcome cases. Furthermore, the larger the gap between TNIE and

TIE in SE, the smaller the proportion of Y = 1 in the rare outcome cases. ASE and

MSE produced similar results to SE. The pattern of the SE, ASE, and MSE matched

my hypotheses, but the visibility between the rare and non-rare outcome cases did not.

In both outcome cases, there was no clear pattern in the coverage probabilities for

the two quantities. In both outcome cases, TNIE had a lower coverage probability than

TIE. The difference between the two quantities was greater in the rare outcome cases than

in the non-rare outcome cases.Regardless of the proportion values, the majority of

coverage probabilities for the two quantities were less than .90. This indicated that the

TNIE and TIE results were not very reliable. The results did not match my hypothese.

For the first four criteria, the results are generally consistent with my hypotheses.

As the proportion of Y = 1 increased, the difference between the values of TNIE and

TIE became smaller. This was evident in the rare outcome cases but not in the non-rare

cases, despite the fact that the TNIE values were better than the TIE values across all

conditions in the first four evaluation criteria. This implies that TNIE is more accurate

than TIE in getting closer to population values for bias, SE, ASE, and MSE. In both

outcome cases, however, the coverage for TIE was greater than that of TNIE. In the rare

outcome cases, as the proportion of Y = 1 increased, the gap in coverage between the two

quantities shrank. The gap did not change significantly in the non-rare cases. Despite the

fact that the results suggested that TIE was more reliable than TNIE, the differences

were not significant. As a result, there is no reason to be concerned about the outcomes of

TNIE.

Effect Size. With increasing effect size, the bias for TNIE became closer to 1

than the bias for TIE, and the gap between them widened in both outcome cases. The gap

was larger in the rare outcome cases than in the non-rare cases. This meant that as the

effect size increased, it became clear that bias for TNIE was better than the bias for TIE,
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especially in the rare outcome cases. In more detail, when the effect size was small, the bias

for TNIE was slightly better than the bias for TIE; when the effect size was medium, the

bias for TNIE was better than the bias for TIE; and when the effect size was large, the

bias for TNIE was clearly better than the bias for TIE, as demonstrated in both cases.

My hypotheses are confirmed by the results besides the visibility of the two outcome cases.

Similar to the bias results, the SE, ASE, and MSE for TNIE were clearly better

than those for TIE in rare outcome cases than in non-rare outcome cases. This indication

also partly corresponds to my hypotheses. I anticipated that the gaps were clearer in the

non-rare outcome cases.

In the rare outcome cases, coverage probabilities for both TNIE and TIE

decreased, while the gap between them increased as the effect size increased. Some

coverage probabilities for the two quantities were below .90 when the effect size was small;

when the effect size was medium, the coverage for the two quantities decreased and the

coverage for TNIE was slightly worse than the coverage for TIE; when the effect size was

large, the coverage for TNIE was slightly better than the coverage for TIE. The gaps

between the two quantities were much smaller in non-rare outcome cases. The change in

effect size did not follow the same pattern under the same conditions with a sample size of

1000. This suggested that, with the exception of conditions with a small effect size, the

results of TNIE and TIE in rare and non-rare outcome cases were reliable in some

conditions. My hypotheses were not supported by the results. I expected that the results

would be reliable in all conditions and that non-rare outcome cases would outperform rare

outcome cases.

In summary, when the effect size was small, TNIE recovered the population effect

values slightly better than TIE; when the effect size was medium, TNIE recovered the

population effect values better than TIE; and when the effect size was large, the gap

between the two quantities was much larger. To put it simply, TNIE was clearly superior
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to TIE. Across three effect size conditions, the gap between the two quantities was larger

in the rare outcome cases than in the non-rare outcome cases. The first four evaluation

criteria clearly demonstrated this pattern. The coverage probability and power for TNIE

and TIE were very close for the last two criteria. Because the last two criteria evaluate the

results’ reliability and precision, the fact that the two values were good and close to each

other implied that we could trust the results.

Sample Size. When the sample size was increased, the bias for TNIE became

closer to 1 than the bias for TIE, and the difference between them shrank in both outcome

cases. The gap was larger in the rare outcome cases than in the non-rare cases. This meant

that as the sample size grew, it became less clear that the bias for TNIE was better than

the bias for TIE, especially in non-rare outcome cases. In more detail, when the sample

size was 350, the bias for TNIE was clearly better than the bias for TIE; when the

sample size was 700, the bias for TNIE was better than the bias for TIE; and when the

sample size was 1000, the bias for TNIE was slightly better than the bias for TIE, but

this could not be seen clearly in both cases. My hypotheses were supported by the pattern,

but not by the visibility of the rare and non-rare outcome cases.

Similarly to bias, the SE, ASE, and MSE for TNIE were clearly better than

those for TIE in rare outcome cases than non-rare outcome cases. When the sample size

was increased, the SEs for the two quantities became closer and almost identical. My

hypotheses are confirmed by the results, but not by the visibility of the two outcome cases.

The coverage probabilities for both TNIE and TIE decreased as the sample size

increased, as did the gap between them. When the sample size was 350, the coverage for

the two quantities was close to.95. Furthermore, the coverage for TNIE was always less

than that of TIE. This means that the results for TNIE and TIE in both rare and

non-rare outcome cases were only reliable with a sample size of 350. My hypotheses do not

account for this.
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In both outcome cases, the powers for the two quantities were equal to one in

non-rare outcome cases and were unaffected by the change in sample size. The power of

TNIE was one in rare outcome cases, while the power of TIE increased to one as the

sample size increased. This indicated that the TNIE and TIE results were accurate in all

conditions. My hypotheses are confirmed by the results.

Except for the visibility of rare and non-rare outcome cases, the results for the

sample size factor are generally consistent with my hypotheses for the first four criteria.

Further elaborated, when the sample size was 350, the criteria for TNIE were clearly

better than the criteria for TIE; when the sample size was 700, the criteria for TNIE were

better than the criteria for TIE; and when the sample size was 1000, the criteria for

TNIE were slightly better than or nearly identical to the criteria for TIE. Furthermore,

the results showed that the gap between the two quantities was larger in the rare outcome

cases than in the non-rare outcome cases, contrary to my hypotheses. However, the

coverage probability for TNIE was lower than that of TIE, while the power for the two

quantities was the same.

In the first four evaluation criteria for Study 1, the results are aligned with my

hypothesis for non-rare outcome cases but not for rare outcome cases. I predicted that the

results for TNIE and TIE would be nearly identical in rare cases, with TNIE

outperforming TIE in non-rare cases. Based on the results, when the proportion of Y = 1

changed, TNIE was more accurate than TIE in both cases. Because my hypotheses were

based on the results of Rijnhart et al. (2021), a number of factors contributed to the

discrepancy between my hypotheses and the results. First, the researchers only looked at

rare outcomes. My hypotheses were not tested in cases with non-rare outcomes. Second,

the model used in the paper included an interaction term between the independent variable

and the mediator, whereas my model did not. The additional term can significantly

improve the impact of TNIE on estimating mediation effects. This explains why TNIE is

identical to TIE in their paper when it comes to recovering population results.
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Study 2: Moderated Mediation Model 2

Overall, the results match my hypothesis that the causal inference approach

produced a more accurate mediation effect than the classical approach. Moreover, the

results from the probit model was exactly as I anticipated that the gap between the two

approaches were more visible in the non-rare outcome cases.

Probit Model. According to the results of the probit model analysis, TNIE

performed more accurately than TIE in recovering the population values. In all simulation

factors, the results of bias and coverage probability were more visible in the non-rare

outcome cases, whereas the results of other evaluation criteria were more noticeable in the

rare outcome cases.

Proportion Y=1. When the proportion of Y = 1 increased, the bias for TNIE

approached 1 in both rare and non-rare outcome cases. This suggested that TNIE was

more accurate than TIE in recovering population mediation effects. Furthermore, the

disparities between the two quantities were more noticeable in non-rare outcome cases.

This is consistent with my hypotheses.

When the proportion of Y = 1 was increased for SE and MSE, the results for

TNIE were better than the results for TIE in recovering the population values. The gap

between the two quantities narrowed as the proportion of Y = 1 increased, but TNIE is

still better than TIE in both outcome cases. This is exactly what I was expecting. Even

though the results for ASE did not converge well in the rare outcome cases for a sample

size of 350, they still showed that TNIE outperformed TIE.

The coverage probability results match my hypotheses quite well. Aside from the

fact in rare outcome cases and a large effect size in non-rare outcome cases, the coverage

for TNIE was slightly lower than that of TIE. Even though TNIE had less coverage

than TIE in those cases, the difference was very small, especially in the rare outcome

cases. Furthermore, the coverage probabilities for the two quantities were high (above .94
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for TNIE and .8 for TIE) across all proportion levels. This indicated that the results were

quite consistent.

Except when the proportion of Y = 1 was 0.06 or 0.07, the power for TIE was good

(above .80) in both outcome cases. Furthermore, in both outcome cases, the power for

TNIE remained constant at 1 across all conditions, whereas the power for TIE was 1 in

some conditions. Despite the fact that the results do not support my hypothesis that as

the proportion of Y = 1 increased, the power for TNIE was consistently greater than the

power for TIE, the results still indicated that TNIE recovered the population effects

better than TIE.

In general, the results closely match my hypotheses as the proportion of Y = 1

increased. The difference between TNIE and TIE values became smaller as the

proportion of Y = 1 increased, but TNIE values were still better than TIE across all

conditions in the first four evaluation criteria. This implied that TNIE was more accurate

than TIE for bias, SE, ASE, and MSE. The coverage for TIE, on the other hand, was

sometimes better and sometimes worse than that of TNIE. Even though the results

suggested that TIE was more reliable than TNIE, the differences were small. As a result,

my hypotheses that TNIE was a better choice are still supported.

Effect Size. With increasing effect size, the bias for TNIE became closer to 1

than the bias for TIE, and the gap between them widened in both outcome cases. This

meant that as the effect size increased, it became clear that bias for TNIE was smaller

than the bias for TIE, especially in the rare outcome cases. More specifically, when the

effect size was small, the bias for TNIE was slightly smaller in the rare outcome cases and

smaller in the non-rare cases than the bias for TIE; when the effect size was medium, the

bias for TNIE was smaller in rare outcome cases and non-rare outcome cases than the

bias for TIE; and when the effect size was large, the bias for TNIE was smaller in rare

outcome cases and clearly smaller in non-rare outcome cases than the bias for TIE. My

hypotheses are confirmed by the results.
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The results for the SE, ASE, and MSE showed that TNIE was clearly more

accurate than TIE in recovering population values in rare outcome cases than in non-rare

outcome cases. Further elaborated, when the effect size was small, TNIE in these criteria

was slightly smaller than TIE or nearly identical to TIE (i.e., MSE); when the effect size

was medium, TNIE in these criteria was smaller than TIE; and when the effect size was

large, TNIE in these criteria was clearly smaller than TIE. These outcomes are exactly

what I expected.

The coverage probabilities results do not match my hypotheses. In rare outcome

cases, regardless of effect size changes, the coverage probability for TNIE was

slightly smaller than the coverage probability for TIE. When the effect size was small, the

coverage probability for TNIE was slightly smaller under a sample size of 350 and clearly

larger under other sample sizes than the coverage probability for TIE; when the effect size

was medium, the coverage probability for TNIE was larger than the coverage probability

for TIE; when the effect size was large, the coverage probability for TNIE was smaller

than the coverage probability for TIE.

When the effect size was small, the power for the two quantities remained at 1; when

the effect size was medium, the power for TNIE was greater than the power for TIE only

when the sample size was 350; and when the effect size was large, the power for TNIE was

greater than the power for TIE only when the sample size was 350 or 700; otherwise, the

two quantities had the same power of 1. The findings confirm my hypotheses, as I expected

the power for the two quantities to be closer to 1. I also predicted that as the effect size

increased, TNIE would consistently outperform TIE in terms of power. The results do

not support this. However, TNIE remained at the highest power across all conditions.

In summary, when the effect size was small, the bias, SE, ASE, and MSE for

TNIE were slightly better than those for TIE; when the effect size was medium, the

criteria values for TNIE were better than those for TIE; and when the effect size was
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large, the gap between the two quantities was much larger. To put it simply, TNIE was

clearly superior to TIE. In terms of coverage probability, even though TNIE was less

than TIE in some conditions, the difference was very small. The gap was wide when the

coverage probability for TNIE was greater than that for TIE. The power for TNIE and

TIE were close in most of the conditions. Because the last two criteria assess the results’

reliability and precision, the fact that the two values were good and close to each other

implied that we can trust the results.

Sample Size. When the sample size increased, the bias for TNIE became closer

to 1 than the bias for TIE, and the difference between them shrank in both outcome cases.

This meant that as the sample size grew larger, it became less clear that the bias for

TNIE was smaller than the bias for TIE. More specifically, when the sample size was 350,

the bias for TNIE was clearly smaller than the bias for TIE; when the sample size was

700, the bias for TNIE was smaller than the bias for TIE; and when the sample size was

1000, the bias for TNIE was slightly smaller than the bias for TIE. This pattern can be

seen more clearly in rare outcome cases than in non-rare outcome cases, despite the fact

that the difference in bias between the two quantities was much larger in non-rare outcome

cases. My hypotheses are not fully supported by the results. I expected the change in bias

to be more noticeable in non-rare outcome cases.

The SE, ASE, and MSE results revealed that TNIE performed more accurately

than TIE in recovering population values. The values were slightly higher in the rare

outcome cases than in the non-rare outcome cases. When the sample size increased, the

criteria for the two quantities became more similar and nearly identical. This corresponded

to my hypotheses for non-rare outcome cases. For rare outcome cases, I expected the

criteria values for TNIE and TIE to be slightly identical when the sample size was 350;

almost identical when the sample size was 700; and identical when the sample size was

1000.

The coverage probabilities for both TNIE and TIE decreased as the sample size
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increased, and the gap between them widened. This was clearly visible in both outcome

cases with a small effect size. In the rare outcome cases, w hen the sample size was 350, the

coverage for TNIE was slightly lower than the coverage for TIE; as the sample size

increased to 700, the coverage for TNIE was lower than that of TIE; and finally, when

the sample size reached 1000, the coverage for TNIE was lower than the coverage for

TIE. In the non-rare outcome cases, when the sample size was 350, the coverage for

TNIE was slightly lower than the coverage for TIE; when the sample size increased to

700, the coverage for TNIE was higher than the coverage for TIE; and when the sample

size reached 1000, the coverage for TNIE was clearly higher than the coverage for TIE.

This contradicts my hypotheses. I expected the difference between the two quantities to

narrow as the sample size grew larger.

When the sample size was 350, the power for TNIE was greater than the power for

TIE; when the sample size was 700, the power for TNIE was greater than the power for

TIE only when the effect size was large; otherwise, the power for the two quantities was 1;

and when the sample size was 1000, the power for TNIE and TIE remained constant at 1.

These results do not fully support my hypotheses.

Except for the visibility of rare and non-rare outcome cases, the results for the

sample size factor were generally consistent with my hypotheses for the first four criteria.

In more detail, when the sample size was 350, TNIE were clearly better than TIE in

recovering population effect values; when the sample size was 700, the TNIE were better

than TIE; and when the sample size was 1000, the TNIE were slightly better than or

nearly identical to TIE. Furthermore, the results showed that the gap between the two

quantities was more visible in non-rare outcome cases for bias and in rare outcome cases

for other criteria, whereas I expected the results to be more visible in non-rare outcome

cases for all criteria. In terms of coverage probability, TNIE was less than TIE in rare

outcome cases and, under certain conditions in non-rare outcome cases. The power for

TNIE, on the other hand, was either greater than or equal to the power for TIE. Despite
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the fact that the results do not fully support my hypotheses, they do show that TNIE is

more accurate than TIE.

Moderation Effect. When the moderation effect was present, the bias for the

two quantities was closer to 1. In the rare outcome cases, the bias for TNIE was clearly

closer to 1 than the bias for TIE under a large effect size in both levels of the moderation

effect, whereas it was slightly farther away from 1 than or nearly identical to the bias for

TIE under small and medium effect sizes without a moderation effect. In non-rare

outcome cases, the bias for TNIE was closer to 1 than the bias for TIE across all

conditions. My hypotheses are confirmed by the results.

The outcomes for SE, ASE, and MSE were fairly similar. The criteria values of

the two quantities were smaller in the presence of the moderation effect, and the criteria

values for TNIE were also smaller than those for TIE. In the absence of the moderation

effect, however, the criteria values for TNIE were slightly higher than those for TIE in

rare outcome cases. My hypotheses are not supported by the results.

Without the moderation effect, the coverage for the two quantities was reduced and

the gap between them widened. The differences were more noticeable in non-rare outcome

cases than in rare outcome cases. My hypotheses are validated by this result. Despite this,

TNIE had less coverage than TIE at both levels of the moderation effect. This

contradicts my hypotheses.

In both outcome cases, TNIE had a power of 1 under two levels of moderation

effects. In the rare outcome cases, on the other hand, TIE had less power in the absence of

a moderation effect. Without the presence of a moderation effect, TIE had a power of 1 in

all non-rare outcome cases. Furthermore, the power for TIE was less than 0.8 in both

moderation effects with a large effect size and a sample size of 350. My hypotheses were

not supported by the results.

In both outcome cases, the presence of a moderation effect improved the results for
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the moderation effect factor. Only in bias do the results match my hypotheses.

Logit Model. Overall, the logit model’s values for the first five evaluation criteria

for TNIE and TIE were not as good as the probit model’s. This is explained by the fact

that the probit model was used to simulate data sets. The causal inference approach

produced more accurate mediation effects in the logit model than the classical approach.

This was demonstrated by the findings that TNIE outperformed TIE in recovering

population values in both rare and non-rare outcome cases across all evaluation criteria

except coverage probability, and power. Both quantities have a high power across all

conditions. This indicated that the TNIE and TIE results were precise.

Proportion of Y=1. As the proportion of Y = 1 increased, the bias for TNIE

approached 1 in both rare and non-rare outcome cases. This suggested that TNIE was

more accurate than TIE in recovering population mediation effects. Furthermore, the gaps

between the two quantities were nearly identical in both outcome cases. This contradicts

my hypotheses. In the rare outcome cases, I expected the bias for TNIE to be similar to

that of TIE.

When the proportion of Y = 1 increased for SE, ASE, and MSE, the results for

TNIE were better than those for TIE in recovering the population values. The gap

between the two quantities narrowed as the proportion of Y = 1 increased, but TNIE is

still better than TIE in both outcome cases. Furthermore, the disparity was more

pronounced in rare outcome cases versus non-rare outcome cases. This is the polar

opposite of what I expected.

Except for the part where the coverage for TNIE was slightly smaller than the

coverage for TIE, the results for coverage probability match quite well with my

hypotheses. Even though the coverage for TNIE was less than that of TIE, the difference

was very small, especially in the rare outcome cases. Furthermore, across all levels of the

proportion, the majority of coverage, probabilities of the two quantities were less than.85.
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This indicates that the TNIE and TIE results were not very reliable. My hypotheses were

not supported by the results.

In both outcome cases, the power for the two quantities was quite high (above .95).

Furthermore, in non-rare outcome cases, the power for TNIE and TIE remained constant

at 1. For rare outcome cases, the power for TNIE remained constant at one, whereas the

power for TIE remained constant only when the sample size was 700 or 1000. This

contradicts my hypotheses.

Aside from the coverage, the results in the visibility of the two outcome cases do

not match my hypotheses as the proportion of Y = 1 increased. As the proportion of

Y = 1 increased, the difference between the values of TNIE became smaller than that of

TIE. This was evident in the rare outcome cases but not in the non-rare cases, despite the

fact that the TNIE values were better than the TIE values across all conditions in the

first four evaluation criteria. In other words, the results of bias, SE, ASE, and MSE

indicated that TNIE was more accurate than TIE in recovering the population values. In

both outcome cases, however, the coverage for TIE was greater than the coverage for

TNIE. In the rare outcome cases, as the proportion of Y = 1 increased, the coverage gap

between the two quantities shrank. The gap did not change significantly in the non-rare

cases. Despite the fact that the results suggested that TIE was more reliable than TNIE,

the differences were not significant. As a result, there is no reason to be concerned about

the outcomes of TNIE.

Effect Size. When the effect size was increased, the bias for TNIE became

closer to 1 than the bias for TIE, and the gap between them widened in both outcome

cases. This indicated that as the effect size increased, it became increasingly clear that the

TNIE was less bias than TIE, particularly in the rare outcome cases. In more detail,

when the effect size was small, the bias for TNIE was slightly smaller than the bias for

TIE; when the effect size was medium, the bias for TNIE was smaller than the bias for

TIE; and when the effect size was large, the bias for TNIE was clearly smaller than the
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bias for TIE, as demonstrated in both cases. My hypotheses are supported by the results.

The results for the SE, ASE, and MSE showed that TNIE was clearly more

accurate than TIE in recovering population values in rare outcome cases than in non-rare

outcome cases. Precisely, when the effect size was small, TNIE in these criteria was

slightly smaller than TIE or nearly identical to TIE (i.e., MSE); when the effect size was

medium, TNIE in these criteria was smaller than TIE; and when the effect size was large,

TNIE in these criteria was clearly smaller than TIE. These outcomes were exactly what I

expected.

The coverage probabilities results contradicted my hypotheses completely. When

the effect size was small, the coverage, probabilities for TNIE was slightly smaller than

the coverage for TIE; when the effect size was medium, the coverage for the two

quantities decreased, and the coverage for TNIE was smaller than the coverage for TIE;

and when the effect size was large, the coverage for TNIE was clearly smaller than the

coverage for TIE. This pattern was evident in both outcomes.

In the last criterion, as the effect size was small and medium in the rare outcome

cases, the power for the two quantities remained at 1. When the effect size was large, the

power for TNIE was greater than the power for TIE only when the sample size was 350;

otherwise, the two quantities had the same power of 1. The power for TNIE and TIE in

non-rare outcome cases was 1 for all conditions. The results partially confirm my

hypotheses, as I expected the power for the two quantities to be closer to 1. I also

predicted that as the effect size increased, the power for TNIE would be closer to 1 than

the power for TIE. That does not correspond to the results.

In summary, when the effect size was small, the bias, SE, ASE, and MSE for

TNIE recovered the population effect values slightly more accurate than those for TIE;

when the effect size was medium, TNIE recovered the population effect values more

accurate than TIE; and when the effect size was large, the gap between the two quantities
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was much larger. That is to say, TNIE was clearly smaller than TIE in those values.

Across three effect size conditions, the gap between the two quantities was larger in the

rare outcome cases than in the non-rare outcome cases. The coverage probability, and

power for TNIE and TIE were very close. Because the last two criteria assess the

reliability and precision of the results, the fact that the two values were good and close to

each other implied that we could trust the results.

Sample Size. When the sample size was increased, the bias for TNIE became

closer to 1 than the bias for TIE, and the difference between them shrank in both outcome

cases. This meant that as the sample size grew larger, it became less clear that the bias for

TNIE was smaller than the bias for TIE. In more detail, when the sample size was 350,

the bias for TNIE was clearly smaller than the bias for TIE; when the sample size was

700, the bias for TNIE was smaller than the bias for TIE; and when the sample size was

1000, the bias for TNIE was slightly smaller than the bias for TIE. This pattern is visible

in both outcome cases. This perfectly matched my hypotheses.

The results of SE, ASE, and MSE indicated that TNIE recovered population

values better than TIE. The values were slightly higher in the rare outcome cases than in

the non-rare outcome cases. When the sample size was increased, the SEs for the two

quantities became closer and almost identical. This corresponded to my hypotheses for

non-rare outcome cases. For rare outcome cases, I expected the criteria values for TNIE

and TIE to be slightly identical when the sample size was 350; almost identical when the

sample size was 700; and identical when the sample size was 1000.

The coverage probabilities for both TNIE and TIE decreased as the sample size

increased, but the gap between them grew larger before narrowing slightly. More closely,

when the sample size was 350, the coverage for TNIE was lower than the coverage for

TIE; when the sample size increased to 700, the coverage for TNIE was clearly lower

than the coverage for TIE; and finally, when the sample size reached 1000, the coverage

for TNIE was lower than the coverage for TIE. My hypotheses were not supported by

184



the results. I anticipated that TNIE had higher coverage than TIE.

When the sample size was 350 for the rare outcome cases, the power for TNIE was

greater than the power for TIE only when the effect size was large; otherwise, the power

for the two quantities was 1. The power for TNIE and TIE remained constant when the

sample size was increased to 700 and 1000, respectively. The powers for the two quantities

were equal to 1 in the non-rare outcome cases and were unaffected by the change in sample

size. These findings contradict my hypotheses.

With the exception of the visibility for rare and non-rare outcome cases, the results

for the sample size factor were generally consistent with my hypotheses for the first four

criteria. In more detail, when the sample size was 350, the TNIE criteria were clearly

better than the TIE criteria in recovering population effect values; when the sample size

was 700, the TNIE criteria were better than the TIE criteria; and when the sample size

was 1000, the TNIE criteria were slightly better than or nearly identical to the TIE

criteria. Furthermore, the results showed that the gap between the two quantities was

similar in both outcome cases, whereas I expected the results in non-rare outcome cases to

be more visible. The coverage probability for TNIE was lower than the

coverage probability for TIE, and the coverage, probabilities was quite low. The power for

the two quantities, on the other hand, was nearly identical. Even though the results do not

match my hypotheses, the fact that the power was greater than.95 indicated that the

TNIE and TIE results were precise in all conditions.

Moderation Effect. When the moderation effect was present, the bias for the

two quantities was closer to 1. Furthermore, in both levels of the moderation effect, the

bias for TNIE was clearly closer to 1 than the bias for TIE. This pattern was slightly

more visible in the cases with non-rare outcomes. My hypotheses are verified by the results.

The outcomes of SE, ASE, and MSE were comparable. The criteria values for the

two quantities were smaller in the presence of the moderation effect, and the values for
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TNIE were also smaller than TIE. Furthermore, the values were slightly lower in non-rare

outcome cases. I correctly predicted the different outcomes in the two levels of the

moderation effect. My hypotheses, however, are diametrically opposed to the visibility of

the outcome cases. I expected the cases with rare outcomes to be less visible.

Without the moderation effect, the coverage for the two quantities was much lower,

and the gap between them was much wider. The gaps were much larger in cases with rare

outcomes than in cases with non-rare outcomes. For the visibility of the two outcome

cases, the results do not match my hypotheses.

In the two levels of the moderation effect, the power for the two quantities was very

similar. The power for TIE was slightly higher when a moderation effect was present,

whereas the power for TNIE was 1 under all conditions. This result corroborates my

hypothesis. There was no discernible difference between rare and non-rare outcome cases.

This result contradicts my hypothesis. I expected that the outcomes of non-rare outcome

cases would be more visible than those of rare outcome cases.

In both outcome cases, the presence of a moderation effect improved the results for

the moderation effect factor. Furthermore, in both levels of the moderation effect, TNIE

outperformed TIE in the first four evaluation criteria. The results for TIE were better

and more clear for the coverage probability without a moderation effect. Because I used

Mplus results directly, the calculation may be inaccurate. The results for TNIE and TIE

for power were very high and very close to each other.

To summarize, the findings of Study 2 closely match my hypotheses, with the

exception of the distinction between rare and non-rare outcome cases. Because my visibility

hypotheses were based on the findings of Rijnhart et al. (2021), where the researchers only

looked at the rare outcome cases. My study’s findings indicated that TNIE were superior

to TIE, whereas Rijnhart et al. (2021) claimed that the two quantities were identical. The

main reason for the disparity between my results and theirs is that we did not use the same
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model; mine is moderated mediation Model 2 with treatment-moderator interaction, while

theirs is moderated mediation Model 1 with treatment-mediation interaction.

Implications

The causal inference approach outperforms the classical approach in estimating

accurate mediation effects, according to the results and discussions. The findings would

support the use of the causal inference approach with mediation analyses when the

outcomes are binary. For example, when it is believed that the effect is mediated by

students’ interest in learning, researchers should use the causal inference approach to test

whether an intervention on an education program will improve students’ academic

achievement, either pass or fail.

The classical approach is a common method for calculating mediation effects. It is

widely used in many topics that have binary outcomes, such as alcohol addiction in

university students, the effect of students’ mental health on academic achievement, and the

effect of parental involvement on students’ initial alcohol consumption. Because the

classical approach has been applied to a wide range of topics, there may be significant

effects in demonstrating that the causal inference approach produces more accurate results

than the classical approach. Sznitman et al. (2015), for example, presented a study in

which the outcomes and mediators are binary. The graphical representation of the model

used in the study is shown in Figure 77. The study’s goal was to use a mediation model to

test the relationship between ethno-religious groups (treatment indicator) and alcohol uses

(outcomes) among university students via life expectancies (mediators). The researchers

used the traditional method to obtain those effects and the bias-corrected bootstrap

resampling method to compute confidence intervals for the mediation effect.

The findings revealed that Israeli Arab students were more likely to abstain from

alcohol than Israeli Jewish students, but those Israeli Arab students who did drink were at

a higher risk of heavy drinking. Their findings suggested that Ethno-religious differences in
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Figure 77
Example for Mediation Analysis with Binary outcomes and Binary Mediators. Adopted from "Examining differences in drinking
patterns among Jewish and Arab university students in Israel" by S. R. Sznitman, S. Bord, W. Elias, A. Gesser-Edelsburg, Y.
Shiftan, O. Baron-Epel, Ethnicity and Health, 2015, 20(6), p. 594–610. Copyright 2015 by National Library of Medicine.

heavy drinking among Israeli Arabs and Jews were moderated by drinking expectations.

This aided public health interventions aimed at better understanding Ethno-religious group

differences in harmful drinking. Because the researchers used the classical approach to

estimate the mediation effects, we must consider whether the results are accurate. If the

results were incorrect, based on the findings of this study that the classical approach

produces inaccurate effects when working with binary outcomes, this suggests that the

understanding of group differences in harmful drinking may be invalid. As a result, an

ineffective intervention is designed. Focusing on the wrong group may mean ignoring those

who are at risk of harmful drinking and in need of assistance.

Another example is Gardella et al. (2016)’s paper. The researchers presented a

study of moderated mediation Model 2 with a binary mediator and a categorical outcome.

The graphical representation of the model used in the study is shown in Figure 78. The

researchers employed a moderated mediation analysis to examine the relationship between

multiple victimization (treatment indicator) and academic performance (outcome), which
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was mediated by school absenteeism (mediator), and the relationship between multiple

victimization and school absenteeism was moderated by the presence of school security

measures (moderator). They used the classical approach to estimate the moderated

mediation effect.
Figure 78
Example for Moderated Mediation Analysis with Categorical Outcome and Binary Mediation. Adopted from "Academic
Consequences of Multiple Victimization and the Role of School Security Measures" by J. H. Gardella, E. E. Tanner-Smith, B.
W. Fisher, American Journal of of Community Psychology, 2016, 58, p. 36-46. Copyright 2016 by Community Research and
Action.

The findings indicated that absenteeism moderated the relationship between

multiple victimization and academic performance, and that both metal detectors and

security guards moderated the relationship between multiple victimization and

absenteeism. In other words, victims of multiple victimization reported higher absenteeism

in schools with security guards or metal detectors. The researchers advised practitioners to

exercise caution when implementing security measures in schools because some security

measures had been linked to increased absenteeism and poor academic performance in

some students. Because this study also used the classical approach, the findings may need

to be revisited. If the results were inaccurate, schools may need to consider implementing

additional security measures to protect students.

The third example is about peer pressure and parental involvement in students’

alcohol use. Trucco et al. (2011) presented a study of moderated mediation Model 1 with a

binary outcome and a continuous mediator. The graphical representation of the model

used in this study is shown in Figure 79. The study’s goal was to test the relationship
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between perceived peer delinquency (treatment indicator) and initiation of alcohol use

(outcome) via perceived peer approval/use of alcohol (mediator) under different levels of

parental demandingness or parental responsiveness (moderator). The researchers used the

classical approach to estimate the moderated mediation effect.
Figure 79
Example for Moderated Mediation Analysis with Binary Outcomes and Continuous Mediations. Adopted from "Vulnerability
to peer influence: A moderated mediation study of early adolescent alcohol use initiation by E. M. Trucco, C. R. Colder, W.
F. Wieczorek. Psychology of Addictive Behaviors, 2011, 36(7), p. 729–736. Copyright 2017 by 2011 by America Psychological
Association

The study’s findings revealed that high levels of peer delinquency predicted the

initiation of alcohol use through perceived peer approval and use of alcohol; however,

parental warmth or parental control was not related to the initiation of alcohol use.

According to the researcher, parental warmth and control may not be enough to protect an

adolescent from the influence of deviant peers. Because they used the classical approach to

estimate moderated mediation effects when the outcome is binary, the results may need to

be reexamined. If the results were inaccurate, as suggested by the classical approach

producing biased results when working with binary outcomes, the decision on whether
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parents should increase their warmth or control to prevent adolescents from initiating

alcohol use may need to be reconsidered.

These examples highlight the importance of revisiting studies that used the classical

approach in mediation analysis with binary outcomes. The inaccuracy of the classical

approach’s results may cause problems in decision making. Furthermore, this study

strongly encourages researchers to experiment with new statistical analytics techniques in

order to obtain more robust results. Robust outcomes will lead to accurate and precise

decisions, which will aid in academic achievement and the prevention of actions or harmful

habits that have caused mental and physical illness.

Furthermore, my research fills a gap in the field’s literature by examining the

differences between the causal inference approach and the classical approach. Other studies

concentrated on continuous and rare outcome cases with moderated mediation Model 1, in

which the treatment indicator and mediator interact. My study included non-rare outcome

cases as well as rare outcome cases in moderated mediation Model 2, where the treatment

indicator and moderator interact. I was able to determine that the mediation effects of the

causal inference approach and the classical approach were not equal by expanding the

research in other conditions. To put it another way, the causal inference approach

produced more accurate mediation effects than the classical approach. This demonstrated

the efficacy of the causal inference approach and the importance of using it to estimate

accurate mediation effects in mediation analyses with binary outcomes. In addition, the

effect will assist researchers and practitioners in making critical and accurate decisions such

as changing the teaching curricula, implementing interventions, or implementing school

safety measures.

Finally, this study will add to the literature by informing applied education

researchers about the applications of the two approaches in mediation and moderated

mediation analyses with binary outcomes, as well as clearly demonstrating that the causal
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inference approach provided a more accurate estimate of a mediation effect. The classical

approach was never more effective than the causal-inference approach. More specifically,

while it worked well, the classical approach performed only as well as the causal inference

approach. As a result, the causal inference approach is recommended wherever feasible.

The causal inference approach, on the other hand, is not always practicable. When there

are two or more mediators in an indirect path in mediation models, the causal inference

approach cannot be applied because Mplus cannot utilize the causal inference approach.

Despite the fact that this is a software constraint, I am unaware of any alternative software

that can handle it in a convenient manner.

Limitations & Future Research

First and foremost, the sample sizes are quite large. The vast majority of

educational research does not employ such a large sample size. However, the results were

inconsistent for smaller sample sizes. So, no conclusions can be drawn from the analysis

(see Appendix B for these graphs). Second, Mplus was used to calculate the results of the

evaluation criteria other than bias in this study. The results were generated across all 1000

replications at the same time. Another option is to manually generate the evaluation

criteria using the formulas given in the Method Chapter after collecting the data from each

replication. I chose Mplus because it is a useful and powerful tool. Third, I calculated

mediation effects on an odds-ratio scale for both approaches in order to compare TNIE

and TIE in both probit and logit models. As indicated in the literature review, the causal

inference approach for the logit model utilizes a risk-ratio scale rather than an odds-ratio

scale. As a consequence, the mediation effects estimated by the two approaches in the logit

model were substantially closer to each other than in the probit model.

For future research, a real data analysis should be considered as a follow-up study.

By analyzing a real data set by both classical and causal inference approaches, it will

provide an opportunity to reflect the results from the current study by evaluating the
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discrepancy between the results from the two approaches. In addition, having a real data

analysis is a bridge to connect methodology research to practical applications.

Furthermore, based on the literature review, the causal inference approach is

estimated on a risk-ratio scale when using the logit model. The risk-ratio scale is not

available for the classical approach since it requires to use the potential outcome method.

Thus, the odds-ratio scale was chosen since that is the common scale for all quantities in

the study. A study on calculating TNIE on the risk-ratio scale to compare with the TNIE

on the odds-ratio scale from the present study might be examined for future research.
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Appendix A

Supplimental Graphs

Figure A1
Graphs for Five Common Moderated Mediation Models
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Appendix B

Graphs for Inconsistent Results

Figure B1
SE over TIE and TNIE for Rare Outcomes in Probit for Simple Mediation Model
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Figure B2
SE over TIE and TNIE for Non-Rare Outcomes in Probit for Simple Mediation Model

Figure B3
ASE over TIE and TNIE for Rare Outcomes in Probit for Simple Mediation Model

Figure B4
ASE over TIE and TNIE for Non-Rare Outcomes in Probit for Simple Mediation Model
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Figure B5
MSE over TIE and TNIE for Rare Outcomes in Probit for Simple Mediation Model

Figure B6
MSE over TIE and TNIE for Non-Rare Outcomes in Probit for Simple Mediation Model

Figure B7
SE over TIE and TNIE for Rare Outcomes in Logit for Simple Mediation Model
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Figure B8
SE over TIE and TNIE for Non-Rare Outcomes in Logit for Simple Mediation Model

Figure B9
ASE over TIE and TNIE for Rare Outcomes in Logit for Simple Mediation Model

Figure B10
MSE over TIE and TNIE for Rare Outcomes in Logit for Simple Mediation Model
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