
Southern Methodist University Southern Methodist University 

SMU Scholar SMU Scholar 

Statistical Science Theses and Dissertations Statistical Science 

Summer 2020 

Causal Inference and Prediction on Observational Data with Causal Inference and Prediction on Observational Data with 

Survival Outcomes Survival Outcomes 

Xiaofei Chen 
Southern Methodist University, xiaofeic@smu.edu 

Follow this and additional works at: https://scholar.smu.edu/hum_sci_statisticalscience_etds 

 Part of the Biostatistics Commons, Statistical Methodology Commons, Statistical Models Commons, 

and the Survival Analysis Commons 

Recommended Citation Recommended Citation 
Chen, Xiaofei, "Causal Inference and Prediction on Observational Data with Survival Outcomes" (2020). 
Statistical Science Theses and Dissertations. 16. 
https://scholar.smu.edu/hum_sci_statisticalscience_etds/16 

This Dissertation is brought to you for free and open access by the Statistical Science at SMU Scholar. It has been 
accepted for inclusion in Statistical Science Theses and Dissertations by an authorized administrator of SMU 
Scholar. For more information, please visit http://digitalrepository.smu.edu. 

https://scholar.smu.edu/
https://scholar.smu.edu/hum_sci_statisticalscience_etds
https://scholar.smu.edu/hum_sci_statisticalscience
https://scholar.smu.edu/hum_sci_statisticalscience_etds?utm_source=scholar.smu.edu%2Fhum_sci_statisticalscience_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/210?utm_source=scholar.smu.edu%2Fhum_sci_statisticalscience_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/213?utm_source=scholar.smu.edu%2Fhum_sci_statisticalscience_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/827?utm_source=scholar.smu.edu%2Fhum_sci_statisticalscience_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/825?utm_source=scholar.smu.edu%2Fhum_sci_statisticalscience_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/hum_sci_statisticalscience_etds/16?utm_source=scholar.smu.edu%2Fhum_sci_statisticalscience_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/


CAUSAL INFERENCE AND PREDICTION ON OBSERVATIONAL DATA WITH

SURVIVAL OUTCOMES

Approved by:

Dr. Daniel F. Heitjan
Professor,
Department of Statistical Science, SMU
Population & Data Sciences, UTSW

Dr. Haekyung Jeon-Slaughter
Assistant Professor,
Internal Medicine, UTSW

Dr. Xinlei (Sherry) Wang
Professor,
Department of Statistical Science, SMU

Dr. Hong Zhu
Associate Professor,
Population & Data Sciences, UTSW



CAUSAL INFERENCE AND PREDICTION ON OBSERVATIONAL DATA WITH

SURVIVAL OUTCOMES

A Dissertation Presented to the Graduate Faculty of the

Dedman College

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Biostatistics

by

Xiaofei Chen

B.S., Economics, Shandong University
M.S., Biostatistics, Georgetown University

August 04, 2020



Copyright (2020)

Xiaofei Chen

All Rights Reserved



ACKNOWLEDGMENTS

I would like to express my special appreciation and thanks to my Ph.D advisor Dr.

Daniel F. Heitjan and co-advisor Dr. Haekyung Jeon-Slaughter for the support of my Ph.D

research. Their guidance and immense knowledge helped me in working on research

and writing of this dissertation. I appreciate all their contributions to make me become a

statistician. I also would like to express my sincere gratitude to my dissertation committee

members Dr. Xinlei (Sherry) Wang and Dr. Hong Zhu for their time, interests, and helpful

comments on my dissertation, and also excellent teaching during my PhD study. Last

but certainly not least, I would like to thank my family and friends for their support and

encouragement.

iv



Chen, Xiaofei B.S., Economics, Shandong University
M.S., Biostatistics, Georgetown University

Causal Inference and Prediction on Observational Data with
Survival Outcomes

Advisor: Dr. Daniel F. Heitjan

Co-advisor: Dr. Haekyung Jeon-Slaughter

Doctor of Philosophy degree conferred August 04, 2020

Dissertation completed July 01, 2020

Infants with hypoplastic left heart syndrome require an initial Norwood operation, fol-

lowed some months later by a stage 2 palliation (S2P). The timing of S2P is critical for

the operation’s success and the infant’s survival, but the optimal timing, if one exists, is

unknown. We attempt to estimate the optimal timing of S2P by analyzing data from the

Single Ventricle Reconstruction Trial (SVRT), which randomized patients between two dif-

ferent types of Norwood procedure. In the SVRT, the timing of the S2P was chosen by

the medical team; thus with respect to this exposure, the trial constitutes an observational

study, and the analysis must adjust for potential confounding. In Chapter 1, we propose

an extended propensity score analysis that describes the time to surgery as a function

of confounders in a discrete competing-risk model. We then apply inverse probability

weighting to estimate a spline hazard model for predicting survival from the time of S2P.

In Chapter 2, we address same question by multiply imputing the potential post-S2P sur-

vival outcomes with a lognormal model under the Rubin Causal Model framework. With

this approach, it is straightforward to estimate the causal effect of S2P timing on post-S2P

survival by directly comparing the imputed potential outcomes. We examine the sensitivity

of these results by applying a more flexible model that assumes proportional hazards as

a function of S2P time, with a restricted cubic spline (RCS) for the baseline hazard. Our

analysis suggests that S2P conducted at 6 months after the Norwood gives the patient

v



the best post-S2P survival.

In Chapter 3, we build a new 10-year ASCVD (atherosclerotic cardiovascular disease)

risk prediction model for Veterans Affairs (VA) women based on data from the VA national

EHR (Electronic Health Records) database.
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CHAPTER 1

Estimating the Optimal Timing of Surgery from Observational Data

1.1. Introduction

Hypoplastic left heart syndrome (HLHS) is a congenital condition that afflicts roughly

1,000 US newborns each year [31]. Because children with this syndrome have severely

compromised blood oxygenation and circulation, without prompt treatment it is uniformly

fatal. In the 1970s, children with HLHS received only supportive care, and all died as

neonates. The advent of the Norwood procedure followed by stage 2 palliation (S2P),

introduced in the early 1980s, has led to vastly improved survival, with many patients now

living to adulthood [56].

Nevertheless, HLHS patients continue to face substantial mortality risk, particularly

in the interim between the Norwood and S2P operations. For example, in the Single

Ventricle Reconstruction Trial, which compared two variants of the Norwood procedure,

mortality before post-Norwood discharge was 16%, and a further 12% died between the

Norwood discharge and S2P [12, 19, 44]. There is reason to believe that appropriately

timing the S2P can further improve patient outcomes. Although no single time may be

optimal in all cases, it is desirable to identify a default time that gives superior results.

The choice of the optimal time to conduct the S2P is a causal question that refers

to selecting the best from a range of potential outcomes. As there has been no ran-

domized trial of S2P timing, bias from confounding can affect any data we have on this

question. Previous authors have described methods to investigate the causal effect of a
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time-dependent treatment on the distribution of an outcome. Robins et al [35] proposed

the marginal structural model, which allows for improved adjustment for confounding with

time-dependent treatment or covariates. Hu et al [22] developed a structural proportional

hazards model to characterize the effect of treatment initiation time on survival, using it

to select the timing of antiretroviral therapy initiation for patients who are co-infected with

HIV and tuberculosis.

Meza et al [28] estimated the optimal S2P timing without applying techniques from

causal modeling. They used parametric hazard analysis to model transplant-free survival

(TFS) from (1) Norwood procedure to S2P and (2) S2P to 3 years. They determined

the optimal timing of S2P by generating nomograms of risk-adjusted TFS vs. the interval

from the Norwood procedure to S2P. Their method does not address confounding bias;

for further discussion see Section 1.4.5 below.

Some currently available methods [22, 35] address the situation where there is one

type of treatment with no competing risks. By contrast, HLHS patients after the initial

Norwood surgery face four possible mutually exclusive events: elective S2P, non-elective

S2P, cardiac transplantation, or death before S2P. An S2P is “elective” if regular monitor-

ing of the patient suggests that the team can safely schedule the procedure after a brief

time, often a week or two. It is “non-elective” if monitoring suggests that the operation

must take place urgently. Because only one of these four events can occur, we identify

the pre-S2P/post-Norwood outcomes as competing risks.

To estimate without bias the effect of S2P timing on post-S2P survival, one must adjust

for potential confounding effects of the choice of treatment. Within the framework of the

Rubin Causal Model (RCM), one accomplishes this by modeling the selection of timing

as a function of potential confounders in a propensity score analysis. In the HLHS setting

we cannot create propensity scores from a logistic regression for treatment assignment

because i) there are several possible times of S2P surgery, and ii) the possible events

constitute competing risks. We therefore propose to use an extension of propensity score

2



analysis that assumes multiple treatments [23, 24, 36], basing our scores on a discrete-

time competing risk analysis of the possible post-Norwood but pre-S2P outcomes. This

model produces a generalized propensity score, from which we compute inverse proba-

bility weights that we apply in a proportional hazards regression [7] to describe the effect

of S2P timing on post-S2P survival.

1.2. The Single Ventricle Reconstruction Trial

Our data are from the US National Heart, Lung, & Blood Institute Pediatric Heart Net-

work Single Ventricle Reconstruction Trial (SVRT), conducted at 15 US centers between

2005 and 2008 [30]. Its primary aim was to compare one-year transplant-free survival

of newborns who were randomly assigned to have their Norwood procedure either with

a modified Blalock-Taussig shunt (MBTS) or a right ventricle-to-pulmonary artery (RVPA)

shunt. Among 548 randomized HLHS patients who had operative data and follow-up,

139 died prior to S2P, and 9 received a heart transplant. The remaining 400 underwent

S2P (Figure 1.1). The medical team determined the timing based on clinical assessment,

transcutaneous oxygen saturation measurements, and echocardiographic findings.

The SVRT data set includes information on pre-Norwood medical history, Norwood

procedure and post-operative course, S2P operation and post-operative course, postna-

tal echocardiograms (pre- and post-Norwood and pre-S2P), pre-S2P angiography, and

cardiac catheterization [28]. We have divided the S2P timing (measured in months from

the date of the Norwood procedure) into six categories: 1–3 months, 4 months, 5 months,

6 months, 7 months, and ≥ 8 months. This gives adequate numbers of patients in each

category to render the generalized propensity score model estimable.

3



Figure 1.1: Treatment and outcome patterns in the SVRT data

1.3. A Model-Based Analysis Method

Our modeling strategy involves three elements: An extended propensity score analy-

sis, a competing-risks model that permits estimation of propensity scores, and a hazard

model relating S2P time to post-S2P survival.

1.3.1. The generalized propensity score

Assume a collection of subjects i = 1, . . . , n, for each of whom we observe a baseline

covariate vector Xi and a treatment Zi ∈ {1, . . . ,M}. We moreover suppose that each

has a notional vector {Ti(z)}Mz=1, where Ti(z) represents the post-S2P survival outcome

should patient i receive treatment z. Only Ti(Zi) is observed; the other potential outcomes

are counterfactuals. In this setting, Imai et al [23] define the generalized propensity score
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ei(z, x) =: Pr(Zi = z|Xi = x) = E[Di(z)|Xi = x],

where

Di(z) =


1, if Zi = z,

0, otherwise

is an indicator function for the treatment for subject i. The generalized propensity score

has similar properties to the conventional propensity score [36]:

1. It is a balancing score:

Di(z) ⊥ Xi | ei(z,Xi) ∀z;

that is, given the generalized propensity score, the actual treatment and the covari-

ate vector are independent.

2. It renders treatment assignment unconfounded (ignorable):

Di(z) ⊥ Ti(z) | ei(z,Xi) ∀z;

that is, the potential outcomes and the actual treatment assignment are conditionally

independent given the generalized propensity score.

1.3.2. A competing-risks model for post-Norwood disposition

After undergoing the Norwood procedure, patients go on to experience either S2P or

death/heart transplantation. We denote Z to be the discrete time since Norwood of the

first occurrence of one of these events, and we denote R to be the type of event that

occurs: R = 1 for S2P and R = 2 for death/heart transplantation. This event R is distinct

from the post-S2P survival outcome. Data permitting, we can re-define R as R = 1 for

elective S2P, R = 2 for non-elective S2P, and R = 3 for death/heart transplantation to

achieve a finer subgroup analysis.
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As only one of these post-Norwood/pre-S2P events R can occur, we specify for Z a

competing-risks model that constitutes the basis of our propensity score analysis. Let

hr(z|x) denote the cause-specific hazard function for discrete time Z ∈ {1, . . . ,M} of

event R ∈ {1, . . . , J}; that is,

hr(z|x) = Pr(Z = z,R = r|Z ≥ z,X = x),

where x is a vector of covariates. The overall event hazard is h(z|x) =
∑J

r=1 hr(z|x). The

probability that an event of type r takes place at time z is

Pr(Z = z,R = r|X = x) = hr(z|x)S(z|x), (1.1)

where S(z|x) is the survival function S(z|X = x) = Pr(Z ≥ z|X = x) =
∏z−1

v=1 (1− h (v|x)).

Tutz et al [49] proposed a multinomial logistic model for cause-specific hazards with

discrete Z:

hr(z|x) =
exp (β0zr + xβr)

1 +
∑J

j=1 exp (β0zj + xβj)
, (1.2)

where β0zr stands for the cause-specific baseline hazard function at time z for event r,

and βr is the vector of cause-specific coefficients. This model assumes a time-constant

effect of covariates on each cause-specific hazard. The probability that no event occurs

at time z, given survival to that point, is

h0(z|x) = Pr(Z > z|Z ≥ z,X = x) = 1−
J∑

r=1

hr(z|x) =
1

1 +
∑J

j=1 exp (β0zj + xβj)

Alternatively, one can express the model as

ln

(
hr(z|x)

h0(z|x)

)
= β0zr + xβr. (1.3)
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We identify the generalized propensity score as the probability of undergoing S2P at

time z given the covariate vector x, Pr(Z = z,R = 1|X = x). The discrete S2P time is

regarded as the treatment Z in the generalized propensity score described above. This

makes the generalized propensity score for outcome r in our analysis

e
(r)
i (z, x) = Pr(Zi = z,Ri = r|Xi = x).

(As the r is understood in subsequent analyses, we henceforth drop the superscript on

ei.) In a weighted propensity-score analysis, the weight function is the inverse of the

generalized propensity score for subject i given the observed S2P time and the covariates:

wi =
1

ei(Zi, Xi)
.

We denote this the raw weight for subject i. Because analyses using small raw weights

can be unstable, it is often preferable to use the stabilized weight [35]

w∗i =
Pr(Zi = z,Ri = r)

ei(Zi, Xi)
.

Here, Pr(Zi = z,Ri = 1) is the marginal probability that subject i received S2P at time

z ∈ {1, 2, . . . , 6}. We estimate this probability by averaging the estimated values of the

terms in Equation (1.1) for R = 1 at each time z over the S2P patients.

1.3.3. A spline model for post-S2P survival

We describe the effect of S2P timing Z on post-S2P survival T by a proportional haz-

ards model, adjusting for confounding by inverse generalized propensity score weighting

[6, 35, 55]. The hazard at time t is

7



λ(t|R = 1; z, α) = λ0(t|R = 1) exp[g(z;α)], (1.4)

where λ0(t|R = 1) is the post-S2P baseline hazard at time t for patients having S2P, and

g(z;α) is a linear spline function in z (the S2P treatment time) with coefficient vector α:

g(z;α) = α1z +

Q+1∑
q=2

αq(z −Kq−1)+.

Here, K1, ..., KQ are preselected knots and (v)+ = max(0, v). In the linear spline model,

Z is still discrete with possible values 1 to 6 corresponding to the six time categories

introduced in Section 1.2. We use the Cox model with inverse generalized propensity

score weighting because it is flexible and easy to estimate.

Three key points motivate our model choice:

1. We interpret Z as a discrete, ordinal representation of time, because this confers

protection against potential distorting effects of small numbers of outlying S2P times.

2. The use of a regression spline to define the dependence of the hazard on Z is

simply a device for parameterizing the model, analogous to the choice of a contrast

matrix in an analysis of variance. Although spline regression typically presupposes

a continuous predictor, it need not. By selecting Model (1.4) from among the linear

splines with knots at all Z values, we obtain a parsimonious representation of the

hazard function.

3. Although we consider Z here to be discrete, the model is readily applicable, without

modification of notation or code, in situations where Z is continuous.

In the Appendix A we present sensitivity analyses that demonstrate robustness to the

parameterization of the hazard model and to the use of continuous rather than discrete

Z.
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For the generalized propensity score model, we assume that there is no unmeasured

confounding, effectively that the vector x contains all potential confounders. This as-

sumption is questionable, as it would be in any analysis of observational data. For the

Cox model with weighting, we assume that censoring time is independent of the potential

mortality outcome given the propensity score. Because censoring of post-S2P survival

in SVRT is essentially administrative, this assumption is plausible. Under these assump-

tions, Model (1.4) encodes the counterfactual hazard rate of T (z) at t, which we will con-

sider as our causal quantity of interest. We are interested in finding the z that minimizes

this quantity.

1.3.4. Estimating the spline model for post-S2P survival

Suppose we have n∗ subjects as above and let ∆i be an indicator that equals 1 if

subject i dies after S2P and 0 otherwise. T ∗ = min(T,C) is the observed post-S2P

follow-up time and C is the censoring time. The risk set Ri is the set of subjects who

are alive just prior to an observed time of death ti. The categorical variable Z is the S2P

time as above. It is reasonable to start with a saturated linear spline model and select a

subset of influential knots by the LASSO [47]. We compute the coefficients α̂ (we show in

Appendix A.3 that α̂ is consistent) by solving the estimating equations with the preselected

knots:
∂ lnL(α)

∂α1

=
n∗∑
i=1

∆iw
∗
i

[
zi −

∑
l∈Ri

zl exp (g(zl;α))∑
l∈Ri

exp (g(zl;α))

]
= 0; (1.5)

∂ lnL(α)

∂αq

=
n∗∑
i=1

∆iw
∗
i

[
(zi −Kq−1)+ −

∑
l∈Ri

(zl −Kq−1)+ exp (g(zl;α))∑
l∈Ri

exp (g(zl;α))

]
= 0,

q = 2, 3, . . . , Q+ 1.

(1.6)

Here w∗i is the stabilized weight for subject i. One can calculate standard errors for

{α̂s}Q+1
s=1 by inverting the weighted information matrix. The weighting creates a pseudo-

population consisting of w∗i (or wi) copies of each subject i [35]. The intuition is that if the

propensity score for an observed S2P timing is small, its behavior is underrepresented in
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the sample, and assigning it a large weight reduces bias.

Having estimated the model, we identify the optimal S2P timing by plotting the mortality

hazard linear spline against z and finding its minimum. We create a 100(1−α) confidence

interval for the optimal z by bootstrapping the data [11] and identifying the α/2 and (1 −

α/2) quantiles of the bootstrap distribution of optimal S2P times.

1.4. Application to the SVRT Data

1.4.1. Preliminary analyses

Descriptive statistics by Norwood outcome appear in Table 1.1. We note that children

who underwent S2P were heavier at birth and slightly younger at the time of the Norwood

procedure and post-Norwood discharge. Roughly 60% were male and 80% were white in

all groups. Subjects who underwent RVPA were more likely to survive to S2P.

Table A.1 (see Appendix A.2) presents baseline data for the 400 S2P recipients,

grouped by S2P time. Mean birth weight and mean age at the Norwood procedure are

similar across S2P time groups. The mean Norwood discharge age is younger for those

having the S2P 4–6 months after the Norwood procedure. Figure A.1 (see Appendix A.1)

shows histograms of S2P time stratified by elective status. Most non-elective S2Ps oc-

curred within 6 months of the Norwood, whereas elective procedures occurred on average

later.

1.4.2. Generalized propensity score analysis

All patients who underwent the Norwood procedure proceeded to either S2P or death

or cardiac transplantation without S2P. We used the discrete-time competing-risk model

described above to estimate generalized propensity scores for time of S2P, with time
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Table 1.1: Descriptive statistics by outcome of the Norwood procedure

S2P Death/Txa

Variable Values (n = 400) (n = 148)

Discrete

Sex M 252(63.0%) 87(58.8%)

F 148(37.0%) 61(41.2%)

Race White 323(80.8%) 112(75.7%)

Black 59(14.7%) 27(18.2%)

Other 18(4.5%) 9(6.1%)

Norwood treatment MBTS 177(44.3%) 91(61.5%)

RVPA 223(55.7%) 57(38.5%)

Prenatal diagnosis of congenital heart disease Y 312(78.0%) 107(72.3%)

N 88(22.0%) 41 (27.7%)

Aortic atresia Y 243(60.8%) 99(66.9%)

N 157(39.2%) 49(33.1%)

Obstructed pulmonary venous return Y 6(1.5%) 13(8.8%)

N 394(98.5%) 135(91.2%)

Continuousb

Birth weight (gm) 3157(518) 2961(576)

Norwood age (days) 6.7(4.0) 6.8(4.2)

Norwood discharge age (days) 40.1(32.9) 42.1(46.1)

aDeath or heart transplantation
bValues given as mean(SD)
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origin the date of the Norwood procedure. We used as covariates sex, race, birth weight,

Norwood procedure randomization arm, prenatal diagnosis of congenital heart disease,

aortic atresia, obstructed pulmonary venous return, and Norwood discharge age. These

are all baseline covariates.

As described above, we obtain the generalized propensity score from Equation (1.1)

with R = 1 (for S2P) or with R = 2 (for death/heart transplantation). To fit the multino-

mial logit model (1.3) and achieve the cause-specific hazard (1.2) in discrete time, we

transformed the data into a long form, with one row per patient per time category. The es-

timated model coefficients from the SVRT data are those shown under the column “Truth”

in the simulation settings of Table 1.2.

Figure 1.2 shows the result of the extended propensity score analysis. The average

probability of having S2P by month, adjusted for covariates and averaged over all patients,

rises steadily until month 5 then declines to near 0. Evidently, most patients undergo the

S2P from about 4 to 7 months after the Norwood. The probability of heart transplantation

or death declines over time from its modal value at months 1–3.

The stabilized weight for each subject used in the following analysis is the product of

the inverse generalized propensity score and the marginal probability of having S2P. We

coded the 6 possible values of S2P time Z as 1 to 6. These marginal probabilities are

0.053, 0.127, 0.173, 0.138, 0.045, 0.029. Probabilities in Figure 1.2 represent all 548

subjects.

1.4.3. Assessing covariate balance

Table A.1 shows that the covariates sex, race, Norwood arm, and Norwood discharge

age are poorly balanced across timing groups. We checked covariate balance given the

generalized propensity score using the method of Zhu et al [58]. This involved creating a

synthetic data set by sampling 5,000 observations with replacement from the original data
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Figure 1.2: Average probability of competing events over time, estimated from the
competing-risk model with outcomes S2P and death/transplantation

13



set with sampling probability equal to the stabilized weight. We then evaluated balance in

the synthetic data by calculating Cramér’s V statistic and setting the threshold at 0.1. Our

analysis suggested that balance was improved and was acceptable for further analysis.

1.4.4. Optimal S2P time

Our best-fitting survival model, evaluated by AIC, placed knots at z = 3 and z = 4,

corresponding to times 5 and 6 months. This gave estimated post-S2P survival hazard

λ(t|R = 1; z) = λ0(t|R = 1) exp [−0.19z − 0.66(z − 3)+ + 0.99(z − 4)+] .

The standard errors for the coefficients are, respectively, 0.072, 0.125 and 0.210. The

log hazard ratio over Z appears in Figure 1.3, with month 6 as the reference level. From

this plot, patients receiving the S2P intervention at 6 months after the Norwood have the

lowest hazard and therefore the best survival prospects. A 95% bootstrap confidence

interval for the optimal S2P timing is [5,∞). The estimated 1-year post-S2P mortality risk

(with 95% CI) associated with this result appears in Table A.3.

In a sensitivity analysis, we analyzed post-S2P survival including only elective or only

non-elective S2P patients (Figures A.3 and A.4) by re-categorizing R: R = 1 for elective

S2P, R = 2 for non-elective S2P, and R = 3 for death/heart transplantation. The optimal

S2P timing for elective S2P patients is 6 months after the Norwood procedure with 95%

bootstrap confidence interval [5, 7] months. By contrast, for non-elective S2P, the optimal

S2P timing is as late as possible with confidence interval [4,∞). A possible explanation

for this difference is that patients are selected for non-elective S2P because their gen-

eral health condition is poor and unstable; that is, patients who are doing worse should

undergo the S2P later.
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Figure 1.3: Log mortality hazard ratio as a function of S2P timing, including all S2P pa-
tients

In this relatively small clinical trial, there is little power to evaluate the interaction be-

tween Norwood procedure type (MBTS or RVPA) and S2P timing. Unsurprisingly, when

we conducted this analysis we found no significant effect.

In the Appendix A, we present a sensitivity analysis that compares the discrete spline

model to i) a model with indicators for the discrete Z values and ii) a model that smooths

the hazard function with a linear spline on the continuous Z values. In the latter approach,

although Z is taken to be continuous, we use the weights from the discrete-Z competing-

risk model. Results show modest sensitivity to the hazard-modeling method when taking

Z to be discrete. Estimates were similar when considering Z to be continuous, although

this model exhibited greater sensitivity to the selection of knots.
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1.4.5. Comparison with the analysis of Meza et al.

Meza et al [28] analyzed the effect of S2P timing on survival using a “parametric haz-

ard” analysis. They began by constructing separate parametric models for transplant-free

survival after the Norwood procedure and survival after S2P. They then transformed the

post-S2P survival analysis results into a 3-year transplant-free survival plot over Norwood-

S2P intervals to determine the optimal S2P timing, concluding that the interval 3 to 6

months is best. We have some concerns about this analysis: First, it does not explic-

itly adjust for covariate effects on treatment assignment, as we do in our generalized

propensity score analysis; thus their estimates may be sensitive to potential model mis-

specification [10]. Second, when creating the nomogram to find the optimal S2P timing,

they failed to consider the competing risks of death and heart transplantation. Finally,

they did not distinguish elective from non-elective S2P, potentially biasing their estimate

toward the earlier times often seen in non-elective S2P operations.

1.4.6. A re-analysis using the method of Hu et al.

Although not designed to describe sequential treatments like the HLHS program, the

structural proportional hazards model of Hu et al [22] is potentially applicable to the SVRT

data. Identifying HIV/TB co-infection with the Norwood procedure, and antiretroviral ther-

apy with S2P, and censoring other Norwood outcomes (death and heart transplantation),

we were able to apply their method to the SVRT data. Results appear in Figure A.2, with

confidence intervals obtained by bootstrapping. This analysis gives an optimal S2P timing

at month 6 (95% CI [6, 8]), later than the Meza finding.

Our method differs from that of Hu et al [22] in several ways. First, we have formulated

the problem as one of maximizing post-S2P survival (T ) rather than pre- plus post-S2P

survival (Z + T ). We believe this better reflects the clinical situation, where the idea is to

produce the best possible long-term survival. The novelty in our method is in its use of a
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competing risk framework to model treatment selection.

We note moreover that our data differ in kind from those of Hu et al., who had a large

number of subjects with censored Z (we have none) and only a small fraction of deaths

prior to treatment (4%, compared to 26% in our sample).

1.5. Simulations

We performed simulations to evaluate the reliability of estimation of the discrete com-

peting risk model and the Cox model with weighting in samples of moderate size (see

Appendix A.4). We ran 2,000 replicates of each model with sample sizes of 500 and

1,000, setting true parameters to their estimates from the SVRT data. The main outcome

was the coverage probability of nominal 95% confidence intervals for the model parame-

ters.

Table 1.2 shows results for the competing-risk model. With n = 500, coverage proba-

bilities exceed 90%, but some are noticeably below 95%. When we increase the sample

size to n = 1, 000, all coefficients have coverage probability near the nominal 95%.

Table 1.3 shows results for simulated post-S2P survival data. Here λ∗ is the scale

parameter and γ∗ is the shape parameter for the underlying survival distribution. We fixed

the spline knots at 3 and 4; thus, there are three parameters (α1,α2,α3) in total for the

spline function g(·) discussed in Section 1.3.3. Table 1.3 shows that using the raw weight

wi leads to unacceptably low coverage probabilities, whereas using the stabilized weight

w∗i gives coverage probabilities close to 95%. Coverage probabilities are noticeably closer

to the nominal level when the sample size is n = 1, 000.
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Table 1.2: Monte Carlo coverage probabilities of nominal 95% confidence intervals for
parameters of the competing-risk model

Coverage Probability (%)

Outcome Variable Coefficient Truth n = 500 n = 1, 000

S2P Intercept Z = 1 β011 −4.126 94.3 95.5

Intercept Z = 2 β021 2.352 93.1 95.1

Intercept Z = 3 β031 3.210 92.9 95.0

Intercept Z = 4 β041 3.914 93.4 94.7

Intercept Z = 5 β051 3.856 92.5 95.5

Intercept Z = 6 β061 4.237 93.0 96.0

Sex:F β11 0.052 91.5 94.9

Race:W β12 −0.037 91.7 94.9

Race:B β13 −0.406 92.0 95.0

Norwood treatment:RVPA β14 0.184 90.6 94.6

Birth weight β15 0.0002 91.3 96.2

Prenatal diagnosis of congenital heart disease:Yes β16 0.028 92.6 94.9

Aortic atresia:Yes β17 −0.050 91.6 95.1

Obstructed pulmonary venous return:Yes β18 0.200 93.6 94.5

Norwood procedure discharge age β19 −0.008 92.2 95.3

Death/Heart Transplant Intercept Z = 1 β012 0.748 93.4 95.3

Intercept Z = 2 β022 −0.645 93.0 95.8

Intercept Z = 3 β032 −0.938 92.7 95.7

Intercept Z = 4 β042 −1.506 91.9 95.4

Intercept Z = 5 β052 0.301 92.1 94.8

Intercept Z = 6 β062 0.102 92.4 95.7

Sex:F β21 0.211 90.5 94.6

Race:W β22 −0.176 91.3 95.3

Race:B β23 −0.071 90.5 95.7

Norwood treatment:RVPA β24 −0.591 92.0 94.8

Birth weight β25 −0.001 92.8 94.7

Prenatal diagnosis of congenital heart disease:Yes β26 0.163 91.5 95.9

Aortic atresia:Yes β27 −0.148 91.4 95.7

Obstructed pulmonary venous return:Yes β28 1.906 91.7 95.9

Norwood procedure discharge age β29 −0.004 91.4 95.2
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Table 1.3: Monte Carlo coverage probabilities of nominal 95% confidence inter-
vals for parameters of the post-S2P survival model

Coverage Probability (%)

Rawa Stbb Raw Stb

Survival distribution Coefficient True value n = 500 n = 500 n = 1, 000 n = 1, 000

Exponential (λ∗ = 1) α1 −0.19 51.5 94.0 54.0 95.3

α2 −0.66 55.8 93.9 58.6 94.2

α3 0.99 53.1 93.5 59.5 95.7

Weibull (λ∗ = 1, γ∗ = 1.5) α1 −0.19 54.4 92.5 55.3 94.4

α2 −0.66 57.8 93.2 60.2 96.1

α3 0.99 59.0 94.5 58.5 95.8

Gompertz (λ∗ = 1, γ∗ = 1) α1 −0.19 61.0 94.7 60.6 94.5

α2 −0.66 52.3 93.0 57.2 94.8

α3 0.99 53.8 94.3 59.8 95.5

aRaw weights
bStabilized weights

1.6. Discussion

SVRT was effectively an observational study with respect to the choice of S2P timing;

accordingly, we have proposed a generalized propensity score analysis to remove poten-

tial confounding of S2P time and post-S2P survival. The first stage involves estimating

a discrete competing-risks model to create a generalized propensity score for predicting

time of the S2P. The second stage involves estimating a Cox model predicting survival

from S2P time, using the inverse propensity scores as weights. Our analysis of the SVRT

data suggests that conducting the S2P at 6 months after the Norwood is optimal for limit-

ing mortality risk.

Originally, we treated death and transplant as separate competing risks. Because

only a few patients experienced transplant prior to S2P, we ultimately combined these two

events into a single category. Although we did this largely for convenience, in fact death

and transplant both represent treatment failure; in many cases a child who died would
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have instead received a transplant if a donor heart had been available at the time.

A key parameter in determining the suitability of a post-Norwood-procedure patient for

S2P is the pulmonary vascular resistance (PVR), a marker of maturity of the infant’s cir-

culatory system. Surgeons are unwilling to perform S2P until the PVR has declined below

a safe level. Because the SVRT was not designed to study the timing of S2P, only one

PVR measurement field appears in the data set, and almost half of these observations

are missing (“PVR measurement not done”) [28]. Therefore, we did not include the PVR

in our analysis — a potentially serious limitation of this study.

Because there are no widely accepted guidelines for checking balance of categorical

covariates over a multi-level treatment, we assessed covariate balance using the Cramér’s

V statistic [8]. The investigation of methods for assessing balance in these complex

situations is a potential topic for further study.

We conclude that the optimal timing of S2P is roughly 6 months post-Norwood, with a

95% confidence interval of 5 to infinity. This fits into the current clinical experience. The

reason for this strange upper limit is that the last category of our discrete S2P time is

“≥ 8”. Because a large majority of HLHS patients undergo S2P within one year of the

Norwood procedure, it is difficult to assess mortality for higher values of Z. Our interval

is slightly later than Meza’s suggestion of 3–6 months, but similar to our reinterpretation

of the SVRT data using the method of Hu et al [22], which gave the interval 6–8 months.

With the substantial risk of death, transplant, and unscheduled S2P, the “optimal” time is

at best a target that medical teams will aspire to achieve in less complicated cases.
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CHAPTER 2

Estimating the Optimal Timing of Surgery by Imputing Potential Outcomes

2.1. Introduction

Hypoplastic left heart syndrome (HLHS), a complex of congenital conditions charac-

terized by underdevelopment or absence of the left ventricle, is uniformly fatal without

prompt treatment. The combination of the Norwood procedure followed by stage 2 pallia-

tion (S2P), introduced in the early 1980s, has led to vastly improved survival, with many

patients now living to adulthood [56]. It is known that the choice of S2P timing affects

the post-S2P survival time, although it is not known which time, if any, is best. A key po-

tential data source for answering this question is the Single Ventricle Reconstruction Trial

(SVRT), a study that randomized HLHS patients between versions of the Norwood pro-

cedure and assigned a range of S2P times according to clinical criteria [30]. We describe

the SVRT in greater detail in Section 2.3.1.

Estimating the optimal S2P time involves a causal comparison of outcomes under the

range of possible times of treatment. In the parlance of the Rubin causal model [25], a

potential outcome is a value of the outcome of interest under a particular choice of treat-

ment. In HLHS, the outcome of interest is the post-S2P survival time, and the potential

outcomes are the values of this variable under the different possible S2P times. Because

in the SVRT the S2P timing was not randomly assigned, confounding can bias estima-

tion. Current methods to investigate the causal effect of a time-dependent treatment on

the distribution of an outcome mainly rely on the marginal structural model [22, 35]. These
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methods use an inverse probability weighted marginal proportional hazard model to re-

move the confounding bias. Westreich et al [53] discuss causal inference by imputation of

the potential outcomes using multiple imputation or the g-formula [34] based on time-fixed

dichotomous treatment. They impute the potential outcomes independently, rather than

simultaneously, because the original data contain no information about the joint distribu-

tion of potential outcomes. We have proposed a generalized propensity score analysis,

using inverse propensity score weighting to eliminate confounding bias in estimation of the

optimal S2P timing [4]. The method regards post-Norwood/pre-S2P outcomes, including

death, heart transplantation and S2P, as competing risks, deriving generalized propensity

scores from the estimated competing-risk model.

In this article, we propose to treat unobserved potential outcomes as missing observa-

tions, conducting a model-based analysis by multiply imputing them [38, 40]. The novelty

is in using this method to estimate the causal effect of S2P timing on censored survival

data. Multiple imputation is a straightforward and broadly applicable method that handles

missing or otherwise incomplete observations in a principled way. We adopt it here for

several reasons:

1. It is straightforward to apply in the SVRT example.

2. Unlike a propensity score analysis, it includes all subjects, even those who did not

ultimately undergo S2P.

3. It simplifies analyses for sensitivity to assumptions about which the data are unin-

formative.

4. It correctly accounts for uncertainty about both missing observations and unob-

served potential outcomes [45].

In the next section, we describe the Rubin Causal Model framework and formulate the

needed assumptions and analysis strategy. Specifically, we impute all unobserved post-

S2P survival potential outcomes under a lognormal model. Unlike Westreich et al [53],
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who assumed independence, we can impute the potential outcomes under various as-

sumptions about the correlation of potential outcomes (Section 2.2.2). It is straightforward

to estimate the causal effect of S2P timing on post-S2P survival by directly comparing the

imputed potential outcomes. We then perform a second analysis based on a restricted

cubic spline (RCS) model for the baseline hazard in a proportional hazard model. This

analysis relaxes the strong parametric assumption of the lognormal model. In Section 2.3

we apply our methods to the SVRT data set. In Section 2.4 we offer further discussion.

2.2. Methods

The Rubin causal model [25] takes the potential outcomes for a subject to be the

outcomes that one would observe under the possible levels of a treatment or exposure.

Each potential outcome is a priori observable, in that one could observe it if the unit were

to receive the corresponding treatment, although we ultimately see only the outcome for

the assigned treatment. An approach to the analysis of potential outcomes is therefore

to treat the unobserved outcomes as missing observations and impute their values under

an estimated statistical model. In this way, we can estimate an average causal effect by

averaging the imputed causal effects across the sampled units.

A key hypothesis is the Stable Unit Treatment Value Assumption (SUTVA), which

posits that there is no interference between units and no hidden variation of treatments

among units. “No interference” means that potential outcomes for a given unit do not vary

with the treatments assigned to other units. This seems plausible in our application. “No

hidden variation of treatments” means that there is a single version of each treatment, in

this case the timing of the S2P; this also is plausible.

The fundamental problem of causal inference is the inevitability of missing data; for

each unit, we can observe at most one potential outcome. Thus it is necessary to as-

sume a missingness mechanism — here essentially a treatment assignment mechanism
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— and elucidate its consequences for inferences [37]. For SVRT, we assume that the

unobserved potential outcomes are missing at random (MAR), in the sense that the prob-

ability that a particular potential outcome is unobserved, given observed and missing vari-

ables, depends only on observed variables such as baseline predictors of outcome. That

is, the probability that the subject undergoes S2P at a particular time does not depend

on the survival values at the unselected times, given all observed covariate and outcome

data. MAR is sufficient to justify standard likelihood-based estimation of the model for the

potential outcomes. We make this assumption for both of our imputation models.

Although it is impossible to robustly test the assumption of MAR, one can evaluate

the sensitivity of inferences to departures from it. Imputing data under a plausible non-

ignorable model [20, 50] is a common way to evaluate robustness. If results differ under

alternative assumptions, we can conclude that analyses that flow from an MAR model are

unreliable.

2.2.1. Model-based multiple imputation and analysis

Suppose we have a collection of subjects i = 1, . . . , n who underwent the Norwood

procedure. Among them, n∗ ≤ n later underwent S2P, the rest either dying or receiving a

heart transplant. We observe a q-dimensional baseline covariate vector Xi and an S2P

treatment time Zi ∈ {1, . . . ,Ξ}. For simplicity, we have divided the set of possible S2P

times into six categories: 1–3 months, 4 months, 5 months, 6 months, 7 months, and ≥ 8

months, coded 1–6. With this formulation there are enough patients in each category to

make parametric model estimation feasible. We moreover assume that a notional vector

Ti = (Ti(1), . . . , Ti(6))T gives the potential outcomes for post-S2P survival under the range

of possible treatments. The realized event time Ti(Zi) may be censored by an observed

censoring time Ci. We let Di be an indicator that equals 1 if subject i is observed to die

after S2P and 0 otherwise, and T ∗i = min (Ti(Zi), Ci) (Table 2.1). Because censoring in

this study is administrative, Ci is independent of treatment assignment and Ti(Zi).
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Table 2.1: Example observations in the SVRT data

Potential Outcomes (days)

Unit Ti(1) Ti(2) Ti(3) Ti(4) Ti(5) Ti(6) Zi Di T ∗i

1 ? ? ? ? ? 1311 6 0 1311

2 ? 1331 ? ? ? ? 2 0 1331

3 ? ? ? 960 ? ? 4 0 960

4 ? ? ? 820 ? ? 4 0 820

5 ? ? 822 ? ? ? 3 0 822

6 ? 690 ? ? ? ? 2 0 690

7 ? ? ? 499 ? ? 4 1 499

8 ? ? 72 ? ? ? 3 1 72
...

...
...

...
...

...
...

...
...

...

2.2.2. A lognormal model

We assume that the log-transformed potential outcome vector lnTi follows the multi-

variate normal distribution

lnTi |Xi;ψ ∼ N (βXi + η,Σ), (2.1)

where ψ represents the model parameters. That is, the mean vector of the distribution is

µi = βXi + η where Xi is a q-vector of baseline predictors;

β =


β(1)

...

β(6)


is a 6-by-q coefficient matrix forXi; and η = (η(1), . . . , η(6))T is a six-vector representing the

causal treatment effects on the log potential outcomes. Thus β(Zi) = (β1(Zi), . . . , βq(Zi))

is the q-vector of covariate effects on the outcome under the realized treatment assign-

ment Zi. We moreover assume that the covariance matrix has diagonal elements Σzz =
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σ2
z , z ∈ {1, . . . , 6} and off-diagonal elements σz′z = ρσzσz′ for z′ 6= z ∈ {1, . . . , 6}, with

ρ ∈ [0, 1). Because the likelihood function contains no information on off-diagonal diag-

onal elements of Σ, we set ψ = (β, η, σ2
1, . . . , σ

2
6), effectively assuming that the potential

outcomes are uncorrelated. We will use imputation to conduct sensitivity analyses under

a range of assumed values of ρ to determine the impact of departures from independence

on final inferences.

Another potential model simplification is to assume that the rows of β are equal —

i.e., that β(z) = β(z′) for z, z′ ∈ {1, . . . , 6} [25]. This is analogous to equal covariate

effects across treatment arms in the analysis of covariance. The data can speak to the

validity of this assumption at the cost of estimating 5q additional parameters, which may

be challenging if the number of observations in any observed treatment arm is modest.

With observed data (x, z, t∗, d), the log-likelihood is

L(ψ;x, z, t∗, d) =
n∗∑
i=1

{
di ln

[
1

t∗i
φ(ln t∗i ;µi(zi), σzi)

]
+ (1− di) ln [1− Φ(ln t∗i ;µi(zi), σzi)]

}
,

where t∗i is the observed value of T ∗i ; di is the observed value of Di; and µi(zi) =

β(zi)xi + η(zi). φ(w; ν, τ) is the normal density and Φ(w; ν, τ) the normal distribution func-

tion evaluated at w with mean ν and standard deviation τ .

The first step in the imputation process is to draw M samples from the posterior dis-

tribution of the model parameters p(ψ;x, z, t∗, d). We implement this by approximating

p(ψ;x, z, t∗, d) as N (ψ̂, I−1n∗ (ψ̂)), where ψ̂ is the MLE estimate and In∗(ψ̂) is the observed

information [40, 48]. The next step is to impute missing values given the observed data

and the sampled parameter. There are three scenarios where potential outcomes are

treated as missing:
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1. A patient who does not receive S2P (pre-S2P death or heart transplant): We impute

all six potential outcomes based on baseline covariates Xi.

2. A patient who underwent S2P and was observed to die thereafter: We impute the

logs of the five counterfactual outcomes from their multivariate normal distribution

conditional on the observed log death time.

3. A patient who underwent S2P and whose survival is censored: We sample the log

event time from a truncated marginal survival distribution corresponding to observed

S2P timing zi. Conditional on this imputed event time, we sample the counterfactual

log event times from their multivariate normal distribution given the sampled event

time.

2.2.3. A restricted cubic spline hazard model

Inferences under Model (2.1) may be sensitive to departures from distributional as-

sumptions that will be difficult to detect. An alternative approach is to assume a propor-

tional hazards specification for the outcomes, modeling the baseline hazard as a flexible

parametric function of time. The restricted cubic spline (RCS) model of Herndon et al [21]

satisfies these requirements.

We specify J knots, K1 < K2 < · · · < KJ , with K1 and KJ designated as boundary

knots. We define the restricted cubic spline baseline hazard λ0(u) at post-S2P survival

time u as

λ0(u) = αJ−1 +
J−2∑
j=0

αjBj(u),

where B0(u) = u and, for j = 1, . . . , J − 2,

Bj(u) = (u−Kj)
3
+ −

(u−KJ−1)
3
+(KJ −Kj)

(KJ −KJ−1)
+

(u−KJ)3+(KJ−1 −Kj)

(KJ −KJ−1)
.
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This differs from the standard cubic spline in having fewer parameters and being con-

strained to be linear beyond the boundary knots.

We define the hazard function at post-S2P time u for subject i as

λi(u, zi) =

(
αJ−1 +

J−2∑
j=0

αjBj(u)

)
exp (γTxi + κ(zi)), (2.2)

where αj is the coefficient for the restricted cubic spline; xi is the covariate vector for

subject i; zi is the assigned treatment; γ is a vector of covariate effects; and κ is a vector

of potential hazard factors. We denote the parameter of Model 2.2 as χ = (α, γ, κ). With

implicit conditioning on the parameter and covariate vector, the survival function Si(u, zi)

is then

Si(u, zi) = exp

(
−
∫ u

0

λi(v, zi)dv

)
. (2.3)

We impute incomplete observations under Model (2.2) by the Bayesian bootstrap [39].

To create the m-th imputed data set, we perform the following steps:

1. Sample a uniform Dirichlet deviate with the same dimension as the number of rows

in the dataset.

2. Using the Dirichlet components as weights, sample a data set from the raw data

with replacement.

3. Obtain χ̂(m) = (α̂(m), γ̂(m), κ̂(m)) by estimating Model (2.2) using the data from step

(2).

4. Using the inverse-CDF transformation, impute the unobserved potential post-S2P

survival outcomes T (m)
i (z), z 6= zi, independently from their distribution conditional

on the data and the sampled parameters.
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Step (4) involves creation of the completed data given observed data and the sampled

parameter estimate. For completely unobserved outcomes, one samples from the survival

function in Equation (2.3). For censored outcomes for the observed Zi, one samples from

the survival function restricted to lie beyond Ti. All sampling of completed observations

assumes independence of potential outcomes.

2.2.4. Inference on the causal parameter

Under both statistical models, the imputed potential outcomes T (m)
i are the potential

post-S2P survival days. For simplicity, take the S2P procedure to be successful when the

imputed post-S2P survival is longer than 10 years; that is, the parameter of interest is the

proportion of imputed post-S2P survival times exceeding 10 years for each treatment z.

Denote this vector θ(z), and assume that its variance-covariance matrix from a complete

data set is V . Denote the estimate and variance from the m-th imputed data set as θ̂(m)

and V (m), respectively. Then one can create inferences about θ using the well-known

Rubin combining formulas [40, 42].

We estimate the optimal S2P timing from the plot of θ̂(z) against z with 95% confidence

intervals. To construct a confidence interval for optimal S2P timing when using multiple

imputation, we apply the method “Bootstrap+MI” of Schomaker et al [43]. This method

involves creation first of a bootstrap sample of the data followed by a multiply imputed

sample.

2.2.5. Computing

We created imputations in R 3.5.2 and analyzed them in SAS 9.4 using PROC MIAN-

ALYZE.
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2.3. Application to the SVRT Data

2.3.1. The Single Ventricle Reconstruction Trial

The Pediatric Heart Network conducted the SVRT at 15 centers from 2005 to 2009;

study data are available at http://www.pediatricheartnetwork.com. The primary goal of

SVRT was to evaluate the effect of the type of Norwood procedure (stage 1 treatment)

on one-year transplant-free survival of newborns with hypoplastic left heart syndrome

(HLHS). The trial randomized newborns to undergo either a modified Blalock-Taussig

shunt (MBTS) or a right ventricle-to-pulmonary artery (RVPA) shunt. Survivors would

undergo S2P at a time determined by the surgical team, typically several months after the

Norwood operation. Ohye et al [30] give more details on the study design and the data.

Figure 2.1: Treatment and outcome patterns in the SRVT data

30

http://www.pediatricheartnetwork.com


The data set contains baseline variables, information on the Norwood and S2P oper-

ations, and survival time. Among 548 randomized HLHS patients who had operative data

and follow-up, 139 died prior to S2P, and 9 received a heart transplant. The remaining

400 underwent S2P (Figure 2.1).

Roughly 60% of the infants were male, and 80% were white. Newborns in the RVPA

arm were more likely to undergo S2P. Subjects who underwent S2P were heavier at birth

and slightly younger at the time of the Norwood procedure and post-Norwood discharge,

compared with the subgroup who died or underwent cardiac transplantation without S2P.

2.3.2. Analysis under the lognormal model

Using the Akaike information criterion (AIC), we selected a panel of predictive co-

variates including sex, race, randomized Norwood procedure (MBTS vs. RVPA), prenatal

diagnosis of congenital heart disease, aortic atresia, obstructed pulmonary venous return,

birth weight, age at Norwood, and age at Norwood discharge.

We conducted a sensitivity analysis to determine whether assumptions about the cor-

relation of the potential outcomes would influence final causal inferences. Assuming a

homogeneous compound symmetry model (σ2
1 = . . . = σ2

6), we imputed data under the

lognormal model separately for common correlation values ρ ∈ {0, 0.3, 0.6, 0.9}. Figure 2.2

shows that there is minimal sensitivity to the assumed value of ρ.

Figure 2.3 shows results from M = 200 imputations under the lognormal model with

varying common correlation coefficient. The peak fraction surviving occurs at the S2P

time 6 months after Norwood under all four models. The proportion of imputed post-S2P

survival times greater than 10 years ranges from 0.68 to 0.84 (Table 2.2).
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Table 2.2: Parameter estimates using the lognormal model (M = 200)

Correlation Standard 95% Confidence Interval

Coefficient Parameter Estimate Error Lower Limit Upper Limit

ρ = 0 θ(1) 0.683 0.025 0.634 0.731

θ(2) 0.702 0.024 0.654 0.749

θ(3) 0.792 0.020 0.753 0.830

θ(4) 0.832 0.018 0.798 0.867

θ(5) 0.815 0.020 0.775 0.855

θ(6) 0.784 0.021 0.743 0.825

ρ = 0.3 θ(1) 0.676 0.024 0.627 0.724

θ(2) 0.707 0.024 0.660 0.755

θ(3) 0.794 0.019 0.755 0.832

θ(4) 0.838 0.017 0.803 0.873

θ(5) 0.816 0.020 0.776 0.857

θ(6) 0.778 0.020 0.737 0.818

ρ = 0.6 θ(1) 0.667 0.024 0.619 0.716

θ(2) 0.697 0.023 0.650 0.744

θ(3) 0.784 0.019 0.745 0.823

θ(4) 0.831 0.017 0.797 0.866

θ(5) 0.814 0.020 0.774 0.854

θ(6) 0.781 0.020 0.740 0.821

ρ = 0.9 θ(1) 0.675 0.024 0.628 0.723

θ(2) 0.690 0.023 0.642 0.737

θ(3) 0.784 0.019 0.745 0.822

θ(4) 0.835 0.017 0.801 0.869

θ(5) 0.808 0.020 0.768 0.849

θ(6) 0.781 0.020 0.741 0.822
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Figure 2.2: Inference on the causal parameter as a function of the common correlation ρ
in the lognormal model (M = 200)

The results above assume equal covariate effects across treatment arms; that is,

β(z) = β(z′) for z, z′ ∈ {1, . . . , 6}. A larger data set would allow us to estimate a sep-

arate covariate effect in each arm. In addition, a homogeneous compound symmetry

model (σ2
1 = . . . = σ2

6) simplifies the likelihood function, rendering the optimization more

stable and likely to converge. We conducted an analysis assuming non-homogeneous

error variance (not shown), which yielded the same overall results.

2.3.3. Analysis under the RCS model

Estimates of θ imputed under the RCS model appear in Table 2.3 and Figure 2.4.

After a grid search using AIC as fit criterion, we set knots at 700 and 1400 days post-

S2P survival. We then applied multiple imputation with M = 20, 100, 200 and 500.

Table 2.3 shows that the proportion of imputed survival times greater than 10 years for

z = 1, . . . , 6 are roughly 0.77, 0.81, 0.87, 0.91, 0.88 and 0.86, regardless of M , with
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Figure 2.3: Confidence intervals on the causal parameter as a function of the common
correlation ρ in the lognormal model (M = 200)

estimates stabilizing by M = 200. Although θ values are generally higher than under the

lognormal model, the ranking of θ(z) is the same. We identify the optimal S2P timing as

6 months after the Norwood procedure.

To obtain a 95% confidence interval for the optimal S2P timing, we drew 100 bootstrap

samples, performing the MI procedure M = 20 times within each. In the 100 bootstrap

samples, the best S2P time was 6 months 82 times, 7 months 8 times, and ≥ 8 months 6

times (Figure 2.5). Thus, a bootstrap 95% confidence interval for optimal S2P timing is 6
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Figure 2.4: Inference on the causal parameter as a function of the number of imputations
in the restricted cubic spline model
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Table 2.3: Parameter estimates using the RCS model

Standard 95% Confidence Interval

M Parameter Estimate Error Lower Limit Upper Limit

20 θ(1) 0.768 0.024 0.721 0.815

θ(2) 0.811 0.021 0.768 0.852

θ(3) 0.869 0.020 0.829 0.909

θ(4) 0.906 0.014 0.878 0.932

θ(5) 0.881 0.019 0.842 0.919

θ(6) 0.862 0.018 0.825 0.897

100 θ(1) 0.770 0.026 0.726 0.815

θ(2) 0.813 0.021 0.771 0.854

θ(3) 0.871 0.018 0.836 0.905

θ(4) 0.906 0.014 0.878 0.934

θ(5) 0.880 0.018 0.844 0.915

θ(6) 0.862 0.018 0.827 0.897

200 θ(1) 0.771 0.022 0.727 0.815

θ(2) 0.813 0.020 0.774 0.853

θ(3) 0.870 0.017 0.838 0.903

θ(4) 0.906 0.014 0.878 0.934

θ(5) 0.879 0.018 0.844 0.915

θ(6) 0.862 0.018 0.827 0.897

500 θ(1) 0.771 0.022 0.727 0.814

θ(2) 0.814 0.020 0.775 0.853

θ(3) 0.870 0.017 0.837 0.905

θ(4) 0.905 0.015 0.876 0.935

θ(5) 0.879 0.018 0.845 0.914

θ(6) 0.861 0.018 0.826 0.879

to infinity.

In the SVRT data, most patients have pre-S2P events (death or heart transplantation)

or are censored within 3 years of S2P. One patient, however, is purported to have a post-

S2P censoring time of 2,704 days, or 7.4 years. This is a possibly influential outlier. The

non-parametric RCS model is more responsive to this point, potentially explaining the

generally higher values of θ under this model. The parametric lognormal model gives a

slightly lower fitted survival probability in the tail of the survival curve.
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Figure 2.5: Count of optimal S2P timing from 100 times bootstrap (M = 20)

2.3.4. Testing linear hypotheses for the parameters

To determine the causal effect of S2P timing on θ, we tested linear contrasts of the

θ(z) terms. Results under the RCS model appear in Table 2.4. The only significant

contrast is θ(3) − θ(2) with estimate 0.06 (M = 200) and 95% confidence interval 0.01–

0.11. This means having S2P at 5 months after Norwood procedure is significantly better

than having S2P at 4 months. The conclusion is insensitive to the number of imputations.

Under the lognormal model, we find same single significant contrast, and the conclusion

is insensitive to the correlation coefficient ρ.
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Table 2.4: Causal contrasts of θ terms

95% Confidence Interval

M Parameter Estimate Lower Limit Upper Limit

20 θ(2)− θ(1) 0.042 −0.020 0.104

θ(3)− θ(2) 0.059 0.009 0.109

θ(4)− θ(3) 0.036 −0.013 0.086

θ(5)− θ(4) −0.025 −0.073 0.024

θ(6)− θ(5) −0.019 −0.074 0.035

100 θ(2)− θ(1) 0.042 −0.017 0.101

θ(3)− θ(2) 0.058 0.008 0.108

θ(4)− θ(3) 0.035 −0.009 0.081

θ(5)− θ(4) −0.026 −0.072 0.019

θ(6)− θ(5) −0.018 −0.068 0.032

200 θ(2)− θ(1) 0.042 −0.016 0.100

θ(3)− θ(2) 0.057 0.008 0.107

θ(4)− θ(3) 0.035 −0.008 0.080

θ(5)− θ(4) −0.027 −0.071 0.018

θ(6)− θ(5) −0.018 −0.068 0.032

500 θ(2)− θ(1) 0.042 −0.015 0.099

θ(3)− θ(2) 0.057 0.007 0.107

θ(4)− θ(3) 0.035 −0.008 0.080

θ(5)− θ(4) −0.027 −0.071 0.018

θ(6)− θ(5) −0.018 −0.068 0.032

38



2.4. Discussion

We have proposed a multiple imputation strategy to create causal inferences for the

effect of S2P timing on survival outcomes in infants with HLHS. Imputation under a log-

normal model showed that inferences are insensitive to the assumed, and inestimable,

correlation of potential outcomes. A more flexible cubic spline hazard model gave esti-

mates that were generally larger for the fraction surviving 10 years, although causal con-

trasts between z values were similar to those from the lognormal. Both sets of analyses

suggest that the optimal S2P time occurs at 6 months.

Imbens and Rubin [25], working in the context of continuous, non-censored outcomes,

observed that causal inferences are generally insensitive to the assumed value of the in-

estimable correlation coefficient of the potential outcomes. Our sensitivity analysis under

the lognormal model gave a similar result. Our RCS model assumes independence of the

potential outcomes given the covariates; it is unclear whether these inferences are also

insensitive.

In medical practice, the dynamic variable pulmonary vascular resistance (PVR), a bio-

marker of the maturity of the infant’s circulatory system, is a key determinant of the timing

of S2P. A limitation of this study is that the data contain only a baseline PVR measurement,

which is absent in roughly half of the data. Therefore, we were unable to include PVR in

our analysis.

In a previous study [4], we used inverse propensity score weighting to eliminate con-

founding bias in estimation of the causal effects of S2P timing on survival in the SVRT

data. The key ignorability assumption in that analysis was weak unconfoundedness

[23, 57]. Our analyses necessarily excluded the 148 newborns who died or underwent

heart transplantation (and therefore did not undergo S2P). The analysis in this article in-

cludes those subjects, as they are assumed to have the full vector of potential outcomes
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even if we do not know their Zi values.

By constructing M completed datasets and properly combining inferences based on

them, one can eliminate bias due to systematic differences between the observed and

unobserved data [2]. Multiple imputation also offers a straightforward path to sensitivity

analysis through the incorporation of non-ignorable features into imputation models [41].

In conclusion, the optimal timing of S2P is roughly 6 months after Norwood procedure

with a 95% confidence interval of 6 to infinity. This result is consistent with the previ-

ous analysis that we conducted that created propensity scores using a competing-risks

analysis and estimated hazard ratios using inverse propensity score weighting [4].
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CHAPTER 3

Developing a VA Women’s Cardiovascular Disease Risk Score

3.1. Introduction

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death and

disability in North America and the third-leading cause of death in women veterans [52].

Women military service members and veterans have significantly higher numbers of car-

diovascular risk factors and poorer health status than their civilian counterparts [16, 27].

Previous studies [3, 51] report that women service members have almost twice the bur-

den of traditional cardiovascular disease (CVD) risk factors, such as hypertension, at

younger ages (< 40 years) than their civilian counterparts. Currently, women enlistees

are significantly younger than male enlistees in the military, and military exposure earlier

in life may alter the aging trajectory on ASCVD risk factors [54]. Therefore, aging-related

changes in ASCVD risk factors among Veterans Affairs (VA) women may differ from those

experienced by their civilian counterparts.

The current DoD (Department of Defense)/VA guidelines for cardiovascular disease

screening and treatment of hypertension and hypercholesterolemia rely on the American

College of Cardiology/American Heart Association (ACC/AHA) ASCVD risk assessment

model. The ACC/AHA model was developed from Goff et al [13] based on a pooled

epidemiologic dataset containing civilian men and women aged 40 to 79 years old. Con-

sistent with this, the current DoD/VA guideline recommends screening women for ASCVD

risk starting at age 45 [33]. But because the traumatic stress associated with military
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service earlier in life may alter the aging effect on ASCVD risk factors [9], it is unclear that

the current screening strategy is adequate for VA women.

VA women differ from women in the general population not only in prevalence of tradi-

tional and non-traditional CVD risk factors [16], but also in racial and ethnic group repre-

sentation. To examine whether the current ACC/AHA ASCVD model is applicable to VA

women, we re-estimated VA women’s ASCVD risk using the VA national Electronic Health

Records (EHR) database, which includes younger women service members aged 30–39,

similarly to the current ACC/AHA models [5]. This database is the largest longitudinal

health record in the U.S. health care system and the best data available on the VA women

population. Our analysis identified a curvilinear association of aging with ASCVD risk in

VA women starting at ages as young as 30 years across all races. This differs substan-

tially from the previous consensus, which was that women face minimal ASCVD risk until

age 45. Our observation suggests a need for cardiovascular risk screening of VA women

at ages less than 45, and the development of a new validated CVD risk model adequately

assessing CVD risk for VA women.

We aim to develop a new CVD risk model for VA women using the VA national EHR

database. To improve prediction accuracy (or calibration) and precision (or discrimination)

of the new CVD model, the study incorporated all available visit data and aging-related

changes in CVD risk factors. Using information from multiple visits, we have developed the

VA Women CVD Risk Score, based on a parsimonious predictive model and calculated

using time-dependent covariate Cox regression [7].

3.2. Study Cohort and Data Preparation

The study cohort is defined by women veterans aged were between 30 and 79 years

and alive on January 1, 2007 with at least one outpatient or inpatient visit diagnosis.

92,682 VA women with records in the VA Corporate Data Warehouse (CDW) met these
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criteria. Of these, we excluded 14,126 women who were missing data on baseline co-

variates, e.g., blood pressure and lipids. Because we focused on inference for white,

African American, and Hispanic patients, we excluded a further 8,982 VA women of other

races. We were left with data on 69,574 women service members and veterans: 36,172

non-Hispanic whites (52%), 29,231 non-Hispanic African Americans (42%), and 4,171

Hispanics (6%). See Figure 3.1.

We extracted data using the Structured Query Language (SQL) Server Management

Studio (SSMS, Version 2017, Microsoft Corp., Redmond, WA) and conducted statistical

and graphical analyses using SAS Enterprise Guide (version 7.1, SAS Institute, Cary,

NC) and R (Version 3.5.3, cran.r-project.org). We performed all data extraction, prepara-

tion, and analyses within the domain of the VA Informatics and Computing Infrastructure

(VINCI). Death event and cause of death data are obtained from the VINCI Vital Sta-

tus File, which compiles data from the BIRLS (Beneficiary Identification Records Locator

Subsystem), the VA Medicare Vital Status File, and the National Death Index (NDI) for

Veterans, which is a part of the VA Suicide Data Repository (SDR). All variables of in-

terest in the current study are extracted from VA national EHR data, situated in the VA

national Corporate Data Warehouse (CDW). The CDW data contain health records of all

patients treated in the VA Health Care System.

We transformed the data to represent values in six-month equal-length windows, with

data considered to be missing when there are no visit records in the window. Specifically,

the first interval (denoted the baseline visit) runs from January 1, 2007 to June 30, 2007.

Subsequent intervals run from July 1, 2007 to December 31 2007, January 1, 2008 to

June 30, 2008, etc. There are 22 intervals in total. If there is no visit within the first

interval, the first following available visit is set as the baseline. We consider each interval

to contain one record per patient; if a patient has multiple visits in a window, we represent

risk factor data as the average across the visits for continuous variables (e.g. HDL) or

maximum for binary variables (e.g. diabetes, current smoking status).
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Figure 3.1: Data extraction process
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Because of the sensitive nature of the Veterans Affairs (VA) data collected for this

study, access is restricted to VA-affiliated researchers trained in human subject confi-

dentiality protocols. Requests may be sent to the VA North Texas Health Care System

Institutional Review Board (IRB) at NTXIRBAdmin@va.gov.

3.3. Method

3.3.1. Re–estimating the ACC/AHA model

The ACC and AHA seek to improve the prevention, detection, and treatment of car-

diovascular disease (CVD) through the promulgation of guidelines. The Goff [13] CVD

risk assessment tool, based on the Cox proportional hazards model, is the basis of the

current ACC/AHA risk assessment guideline.

As mentioned above, the Goff model applies to civilians aged 40–79 years with no pre-

vious history of nonfatal myocardial infarction (recognized or unrecognized), stroke, heart

failure, percutaneous coronary intervention, coronary artery bypass surgery, or atrial fib-

rillation.

The Goff model evaluates risk separately for whites and American Africans. The

model for whites includes age, age squared, untreated systolic blood pressure (SBP),

treated SBP, current smoking status, diabetes, total cholesterol, high-density lipoprotein

(HDL), and several interaction terms: current smoking status*age, total cholesterol*age,

and HDL*age. The African American model omits the age squared term and smoking*age

and total cholesterol*age interactions, while including the SBP*age interaction. All contin-

uous predictors in these models appear on the log scale.

We re-estimated the Goff model using our VA EHR data and evaluated it by C-statistics

and calibration plots. Because this model cannot handle time-varying covariates, we used
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only predictors measured at the baseline visit. The ACC/AHA model estimates sepa-

rate coefficients for white women and African American women, and excludes Hispanic

women. We applied both the white and African American ACC/AHA models to Hispanic

women to estimate their ten-year ASCVD risk.

We assume that each of n subjects, labelled i = 1, . . . , n, has a p-dimensional predictor

Xi of biomarkers and risk factors. Let Ti stand for the CVD event time for subject i, and

assume that it is potentially censored at time Ci. The observed event/censoring time is

T ∗i = min(Ti, Ci), with the indicator ∆i equal to 1 if T ∗i is an event time and 0 if T ∗i is a

censoring time.

We let λ∗i (t|X) refer to the ASCVD event hazard function for subject i. The Cox pro-

portional hazards model takes the following form:

λ∗i (t|Xi) = λ∗0(t) exp(βXi) = λ∗0(t) exp

(
p∑

j=1

βjXij

)
,

where λ∗0(t) is the baseline hazard at time t, and βj is the coefficient for the j th risk fac-

tor. We interpret exp(βj) as the hazard ratio (HR) resulting from a one-unit increase in

predictor j. We note here two facts about the model:

1. The baseline hazard λ∗0(t) depends on t, but not on Xi.

2. The hazard ratio exp(βXi) depends on Xi but not on time t.

3.3.2. VA Women Cardiovascular Disease Risk Score

In our VA EHR database, patients have multiple visit records, with measured values

of the risk factors potentially varying across visits. Thus we can represent the risk factor

vector Xi as a function of time: Xi(t) is the vector of risk factors for subject i, measured at

time t. With this representation we can apply a more general form of the Cox model that
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allows the hazard to vary over time in response to changes in the predictors. We define

the time-dependent covariates Cox proportional hazard model as

λi(t|Xi(t)) = λ0(t) exp(βXi(t)) = λ0(t) exp

(
p∑

j=1

βjXij(t)

)
,

where λ0(t) is the baseline hazard at time t, and the hazard λi(t|Xi(t)) for subject i at time

t depends on the value of the risk factor vector at time t.

We constructed ASCVD risk factors from VA EHR data following Sussman et al [46],

and ASCVD events (non-fatal myocardial infarction, non-fatal stroke, and cardiac death)

using ICD-9 and ICD-10 diagnostic and procedural codes from VA national EHR data

and the NDI data. We validated myocardial infarction and stroke events by searching for

words such as “MI”, “myocardial infarction”, and “stroke”, respectively, embedded in health

providers’ narratives and notes extracted from VA EHR.

After building the model, we used the Harrell C-statistic [17, 18] to evaluate its preci-

sion and ability to discriminate ASCVD events. We also used calibration plots to evaluate

the quality of the prediction model.

The calibration plot compares the predicted probability with the observed probability.

Under an ideal model, pairs of observed and predicted probabilities would lie on the 45-

degree line, meaning that they agree exactly. We describe here the process of obtaining

the calibration plot for the time-dependent covariate Cox model:

1. Randomly split the original data into training and test data sets in the ratio 4:1. That

is, we sample 80% of unique patient IDs without replacement and use them as the

training set, with the remaining 20% representing the test set.

2. Estimate the proposed time-varying Cox model using the training set; obtain the

predicted 10-year ASCVD risk by plugging in the covariate values from the test set;

the final predicted risk is the average risk over all patients in the test set.
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3. Calculate the observed risk as one minus the Kaplan-Meier (KM) survival estimate

at 10 years.

We repeat steps (1)–(3) 100 times to get 100 pairs of predicted and observed risk.

The final calibration plot, with a 45–degree straight line as the reference, is the line plot

connecting the above 100 dots (x-axis: predicted risk; y-axis: observed risk) after sorting

the data.

3.4. Results

3.4.1. The VA EHR data

Table 3.1 shows that the study cohort consisted of 69,574 women: 52% white with

mean age 46; 42% African American with mean age 44; and 6% Hispanic with mean age

43. Patients under 40 constitute 16% of the sample. African American women have the

highest mean SBP and HDL cholesterol, but lowest mean total cholesterol. They also

have the highest prevalence of diabetes and the lowest of current smoking.

The enrolled women experienced 2,176 deaths from any cause (3.1%); of the women

who died 1,321 were white (1.9%); 781 were African American (1.1%); and 74 were His-

panic (0.1%). Table 3.2 describes ASCVD events by race and type. Non-fatal myocardial

infarction is the most common ASCVD event, followed by non-fatal stroke and cardiac

death. The rate of stroke is significantly higher in African American women (2.0%) than in

white women (1.5%).
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Table 3.1: Baseline risk factors stratified by race and ethnic group.

White African American Hispanic

n = 36, 172(52%) n = 29, 231(42%) n = 4, 171(6%)

Continuousa

Age (year) 45.9(8.7) 44.2(7.8) 43.1(8.4)

Systolic blood pressure (mmHg) 123.8(14.8) 127.1(15.8) 122.2(14.6)

Total cholesterol (mg/dL) 200.0(40.8) 192.4(38.9) 195.6(38.3)

High-density lipoprotein (mg/dL) 53.8(16.7) 56.9(17.4) 53.83(15.6)

Discrete

Diabetes 8,405(23.2%) 9,569(32.7%) 1,056(25.3%)

Current smoking 10,864(30.3%) 5,111(17.5%) 994(23.8%)

aValues given as mean(SD)

Table 3.2: ASCVD events stratified by race and ethnic group

ASCVD type White African American Hispanic

Non-fatal myocardial infarction (MI) 1,515 1,148 148

Non-fatal stroke 538 592 61

Cardiac death 245 144 16

Heart failure 175 151 18

Cardiac arrest 9 6 2
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3.4.2. Re–estimating the ACC/AHA model

We re-estimated the ACC/AHA model using the VA EHR data with patients younger

than 40 years old. Figure 3.2 plots the covariate-adjusted aging effect. We can see that

the estimated 10-year ASCVD risk for VA women increases curvilinearly with older age,

starting at age 30.

The Figure 3.2 (a) displays the aging effect on 10-year risk of ASCVD event for whites

(solid line) and African Americans (dotted line). Both of the predicted 10-year risk of

ASCVD event are about 5% at age 30 years old. That risk of white veteran increases

slowly and surpasses that of African American at age 55. It reaches around 15% at age

79, comparing with 8% for African American veteran. Since Goff et al [13] only have the

models for white or African American veteran, we apply both of the two models for the

Hispanic veteran VA women in our dataset. The result shows in Figure 3.2 (b) having

similar pattern as Figure 3.2 (a).

3.4.3. VA women Cardiovascular Disease Risk Score

Goff et al [13] proposed separate time-independent covariate models for white and

African American civilians. To simplify prediction, we have built a single, parsimonious

model that is valid for all three race/ethnic groups. The risk factors are age, untreated

systolic blood pressure, treated systolic blood pressure, diabetes mellitus status (yes or

no), current smoking status (yes or no), major depression (yes or no), total cholesterol,

HDL, and antihypertensive treatment (yes or no). Unlike Goff’s models, ours contain no

interaction terms.

We have created two separate models: Model 1 predicts any of non-fatal myocardial

infarction (MI), non-fatal stroke, and cardiovascular death; and Model 2 predicts these

outcomes plus heart failure and cardiac arrest. Both models include all of the predictors
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Figure 3.2: Estimated effect of aging on increased 10-year ASCVD risk, stratified by race
for women military service members: (a) whites (solid line) and African Americans (dotted
line); (b) Hispanic veterans by the models for white and African Americans.

indicated above. The coefficients of the ASCVD risk factors, interpreted as log hazard

ratios, appear in Table 3.3, stratified by race. Table 3.3 shows that model 1 and model 2

typically have similar coefficient values. A positive (negative) coefficient means that the

risk factor has a positive (negative) correlation with the ASCVD risk. In all race/ethnic

groups, high ASCVD risk is associated with older age, higher SBP and total cholesterol

level, lower HDL, and presence of smoking, diabetes, and major depression.

Baseline survival probabilities for the Model 1 events at 10 years, estimated from the

Kaplan-Meier curve, are 0.944, 0.944, and 0.954 for whites, African Americans, and His-

panics, respectively. These probabilities are slightly lower after adding heart failure and

cardiac arrest as outcome events (as in Model 2). We calculated the predicted 10-year

ASCVD risks using the two outcome models for all race groups, fixeing the covariates as

age 38, total cholesterol 199 mg/dL, HDL 50 mg/dL, systolic BP 138mmHg, no diabetes,

no major depression, no current smoking and no antihypertensive treatment. These re-

sults appear as the final row in Table 3.3, where we see that African American women
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Table 3.3: Time dependent Cox PH model estimates

White African American Hispanic

Model 1a 2b 1 2 1 2

Age 2.399 2.493 2.058 2.074 2.191 2.291

Untreated hypertension 1.008 1.018 0.411 0.526 0.653 0.812

Treated hypertension −0.208 0.463 1.246 1.664 −3.714 −1.391

Diabetes mellitus 0.425 0.457 0.276 0.350 0.315 0.301

Current smoking 0.072 0.073 -0.020 -0.004 0.356 0.413

Major depression 0.244 0.254 0.231 0.282 0.311 0.393

Total cholesterol 0.024 0.167 0.180 0.096 0.099 0.107

High-density lipoprotein −1.350 −1.295 −1.339 −1.276 −1.225 −1.208

Antihypertensive treatment 1.263 −1.966 −5.795 −7.698 18.290 7.061

C-statistic 0.700 0.710 0.680 0.683 0.660 0.671

S(10)c 0.944 0.939 0.944 0.939 0.954 0.949

10-year CVD risk (%)d 4.070 4.340 4.970 5.200 3.810 4.220

aOutcome is MI + stroke + cardiovascular death
bOutcome is MI + stroke + cardiovascular death + heart failure + cardiac arrest
c10-year CVD event free survival probability
d1-S(10)exp(β̂X−β̂X̄), where X is a vector of covariates, X̄ is the mean value of the corre-

sponding covariates, and β̂ is the vector of estimated regression coefficients (log hazard ratios).
Specific values used in the table are age 38 years, total cholesterol 199 mg/dL, HDL 50 mg/dL,
SBP 138 mmHg, no diabetes, no major depression and no current smoking status.
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have the highest predicted risk at nearly 5%.

The performance of our VA women risk score is evaluated by C-statistics and predic-

tion accuracy (calibration plot). All C-statistics for our models are around 0.7; thus they

are uniformly better than the ACC/AHA models in Section 3.3.1, which give C-statistics

slightly over 0.6. A C-statistics of 0.7 generally is interpreted to represent good prediction

precision.

Figure 3.3 displays calibration plots for Model 1 by race group. For white women,

Model 1 overestimates the 10-year ASCVD risk slightly when the observed risk is lower

than 0.1, and underestimates risk when the observed risk greater than 0.1. As the cali-

bration plot is roughly centered around the 45-degree line, this discrepancy is considered

acceptable. The calibration plots for African American and Hispanic women reveal similar

patterns. Calibration plots for the model 2 outcome (Appendix Figure C.1) have similar

appearance.

To evaluate the prediction discrepancy between our risk score and the ACC/AHA

model, we calculated the 10-year predicted ASCVD risk for each subject in our VA EHR

database using these models (Table 3.4). For simplicity, we classify estimated ASCVD risk

as either low (< 7.5%), moderate (7.5–19.9%), or high (≥ 20%) [15]. Because ACC/AHA

models only apply to whites and African Americans, we omit Hispanics from the compar-

ison. As Table 3.4 shows, our risk score classifies white women who are at low risk by

ACC/AHA into moderate (n = 6 962) or high-risk groups (n = 3 763). For African Ameri-

cans, our model predicts 4,531 women in the low risk category whom the ACC/AHA model

marks as of moderate risk. Most of the re-classifications are nevertheless consistent.
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Figure 3.3: Calibration plots for VA women ASCVD risk model 1 by race

Table 3.4: Comparison of model prediction between VA women
risk score and ACC/AHA model

VA women ASCVD risk score

< 7.5% 7.5%− 19.9% ≥ 20%

< 7.5% 19,572(20,185)a 6,962(1,485) 3,763(0)

ACC/AHA model 7.5%− 19.9% 50(4,531) 3,108(2,828) 2,636(147)

≥ 20% 0(46) 0(0) 80(9)

aValues given are for whites (African Americans)
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3.5. Discussion

We have proposed a new 10-year ASCVD risk prediction model for Veterans Affairs

women based on data from the VA national EHR database. We evaluated the new model

by C-statistics, calibration plots, and reclassification performance when compared with

the current ACC/AHA CVD risk model [13]. In predicting risk for VA women, our new

model is more accurate, precise, parsimonious, and stable than the ACC/AHA model.

Our proposed ASCVD risk score includes the traditional CVD risk factors: age, SBP,

diabetes, current smoking status, total cholesterol, and HDL. We have also identified a

new risk factor — major depression — that leads to statistically significant improvement

in ASCVD risk prediction.

Our study has substantial strengths:

1. It is based on the VA national EHR database with a sample size of more than 90,000;

therefore it is representative of the VA women population and stable.

2. The proportion of minority women is moderate, making the model reliable for differ-

ent race groups.

3. The VA national EHR data, unlike other non-VA EHR databases, is able to follow

patients over substantial periods of time. This longitudinal (multiple visits) feature

allows us to build a Cox PH model that has time-dependent predictors and is there-

fore potentially more accurate.

4. The database includes a substantial number of VA women under age 40, improving

the credibility of the model for predicting ASCVD risk in this young but susceptible

population.

5. Provider narrative notes (medical notes) in the database enable us to verify the

outcome events, like non-fatal MI, non-fatal stroke, etc., identified through their ICD

codes.
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EHR data are often criticized for containing mis-classified ICD-9 and ICD-10 codes.

For example, some studies have found inaccruate ICD diagnosis codes for stroke events,

with concordance of only 50%–61% with providers’ note [14, 32]. In our database, the

concordance between ICD codes and medical note is 92.5% for non-fatal stroke and

96.9% for non-fatal MI. ASCVD events derived from ICD codes are therefore reliable in

the VA EHR database.

Our analysis has several limitations:

1. Our model cannot incorporate information about menopause or history of other

pregnancy-related conditions/complications. Future work could incorporate these

female-specific biomarkers.

2. Our analysis assumes non-informative censoring, in the sense that loss to follow

up is statistically independent of the time to the ASCVD event. Violation of this

assumption could bias estimates. This would occur if, for example, patients suffering

stroke or MI are more likely to visit the nearest hospital rather than their regular

VA hospital, and in that case our model would underestimate ASCVD risk. Future

studies could assess the sensitivity of results to violation of this assumption.

3. The current study is limited to VA women with complete data on vital signs, SBP,

total cholesterol and HDL at baseline visits. If women who do not have all of these

variables available differ from those who do with respect to risk factors for ASCVD,

some bias may result.

4. VA women younger than age 30 and older than 80, and smaller minority groups

such as Asians are not included in the current study cohort.

In summary, we have proposed an accurate and parsimonious 10-year ASCVD risk

prediction model that performs better in VA women than the current ACC/AHA guideline

model. It is a consistent risk score that fits the three major race/ethnic groups of VA

women and demonstrates a new aging effect on ASCVD risk. Because the number of
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women in the U.S. military has increased rapidly in recent years [1], a precise and usable

ASCVD risk prediction model will be an important element in the future care of women

veterans.
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APPENDIX A

APPENDIX of CHAPTER 1

A.1.

Figure A.1: Histogram of S2P times of 400 patients who underwent S2P, by elective status
of the procedure
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Figure A.2: Estimated one-year survival probability after S2P, estimated by the method of
Hu et al. (2018)
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Figure A.3: Average probability of the three competing events — elective S2P, non-
elective S2P, and death/cardiac transplantion — over time
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Figure A.4: Log mortality hazard ratio as a function of S2P timing: (a) Elective S2P only;
(b) non-elective S2P only.

Figure A.5 presents the log hazard ratio as a function of time from Norwood to S2P

(Z) estimated under three models: Unsmoothed, using discrete Z (shown in red, with a

triangle at the estimate); smoothed by a linear spline, with discrete Z (black, circle); and

smoothed using a linear spline with continuous Z (blue, star). Both discrete-Z methods

give a minimum hazard ratio at Z = 6, and the continuous-Z method gives a minimum

hazard at Z = 6 (with knots chosen at integer Z). Estimated hazard ratios are similar at

all times. Standard errors for the analysis with continuous Z are often less than those with

discrete Z.

Figure A.6 presents the log hazard ratio as a function of time from Norwood to S2P

(Z) estimated under the three models, now stratified by elective status of the S2P. The

models are coded as in Figure A.5. The discrete-Z methods give nearly identical results.

The continuous-Z method gives similar results with smaller standard errors but is sensitive

to the choice of knots in the spline function.

In the survival models with continuous Z we used weights estimated from the discrete-

Z competing-risk model. We also removed one patient who had an outlying S2P time (23

months; see Figure A.1). We selected a final model by the Akaike information criterion,

starting from a family of models with knots at the discrete Z values.
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Figure A.5: Log mortality hazard ratio as a function of S2P timing, estimated under three
models using all S2P patients

Figure A.6: Log mortality hazard ratio as a function of S2P timing, estimated under three
models and stratified by elective S2P status: (a) Elective S2P; (b) non-elective S2P.
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A.2.

Table A.1: Descriptive statistics by S2P time (in months)

Variables 1–3 (n=30) 4 (n=69) 5 (n=103) 6 (n=105) 7 (n=44) ≥8 (n=49)

Z = 1 Z = 2 Z = 3 Z = 4 Z = 5 Z = 6

Discrete

Sex M 21(70%) 45(65%) 64(62%) 68(65%) 25(57%) 29(59%)

F 9(30%) 24(35%) 39(38%) 37(35%) 19(43%) 20(41%)

Race White 28(94%) 61(88%) 83(80%) 83(79%) 32(72%) 36(73%)

Black 1(3%) 5(7%) 15(15%) 16(15%) 10(23%) 12(24%)

Other 1(3%) 3(5%) 5(5%) 6(6%) 2(5%) 1(3%)

Norwood arm MBTS 18(60%) 17(25%) 49(48%) 54(51%) 16(36%) 23(47%)

RVPA 12(40%) 52(75%) 54(52%) 51(49%) 28(64%) 26(53%)

Prenatal Dxa Y 20(67%) 57(83%) 79(77%) 86(82%) 33(75%) 37(76%)

N 10(33%) 12(17%) 24(23%) 19(18%) 11(25%) 12(24%)

Aortic atresia Y 19(63%) 42(61%) 67(65%) 57(54%) 23(52%) 35(71%)

N 11(37%) 27(39%) 36(35%) 48(46%) 21(48%) 14(29%)

Obstructed pulmonary venous return Y 1(3%) 1(2%) 2(2%) 1(1%) 0(0%) 1(2%)

N 29(97%) 68(98%) 101(98%) 104(99%) 44(100%) 48(98%)

Continuousb

Birth weight (grams) 3160(452) 3228(455) 3141(492) 3146(561) 3159(619) 3114(514)

Norwood age (days) 7.3(3.5) 7.2(3.5) 6.2(3.8) 6.9(4.6) 6.6(4.6) 6.6(3.3)

Norwood discharge age (days) 45(22) 37(25) 38(30) 37(28) 48(43) 47(49)

aPrenatal diagnosis of congenital heart disease
bValues given as mean(SD)
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Table A.2: Descriptive statistics by outcome of the Norwood procedure

Variables Elective S2P (n=263) Non-elective S2P (n=137) Death/Tx a(n=148)

Discrete

Sex M 161(61.2%) 91(66.4%) 87(58.8%)

F 102(38.8%) 46(33.6%) 61(41.2%)

Race White 207(78.7%) 116(84.7%) 112(75.7%)

Black 46(17.5%) 13(9.5%) 27(18.2%)

Other 10(3.8%) 8(5.8%) 9(6.1%)

Norwood treatment MBTS 124(47.2%) 53(38.7%) 91(61.5%)

RVPA 139(52.8%) 84(61.3%) 57(38.5%)

Prenatal diagnosis of congenital heart disease Y 206(78.3%) 106(77.4%) 107(72.3%)

N 57(21.7%) 31(22.6%) 41 (27.7%)

Aortic atresia Y 161(61.2%) 82(59.9%) 99(66.9%)

N 102(38.8%) 55(40.1%) 49(33.1%)

Obstructed pulmonary venous return Y 4(1.5%) 2(1.5%) 13(8.8%)

N 259(98.5%) 135(98.5%) 135(91.2%)

Continuousb

Birth weight (grams) 3193(535) 3088(478) 2961(576)

Norwood age (days) 6.9(4.4) 6.4(3.0) 6.8(4.2)

Norwood discharge age (days) 38.8(30.2) 42.7(37.5) 42.1(46.1)

aDeath or heart transplantation
bValues given as mean(SD)
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Table A.3: 1-year estimated post-S2P mortality risk by S2P time

S2P time Z 1-yr mortality risk(%) Lower 95% CI Upper 95% CI

1 (1-3 months) 12.10 8.70 15.37

2 (4 months) 10.11 7.25 12.89

3 (5 months) 8.44 6.04 10.78

4 (6 months) 3.70 2.63 4.76

5 (7 months) 4.24 3.01 5.46

6 (≥ 8 months) 4.86 3.46 6.25

A.3.

We show that when censoring is noninformative and there are no unmeasured con-

founders, the estimate α̂ obtained by solving Equations (1.5) and (1.6) is consistent for α

in Model (1.4).

Define the counting process Ni(t) = I(T ∗i ≤ t,∆i = 1), where I(·) is the indicator

function, T ∗i is the observed post-S2P follow-up time for subject i, and ∆i is an indicator

that equals 1 if subject i dies after S2P and 0 otherwise. Denote ξi(t) to be the indicator

that subject i is at risk at time t.

Consider a hypothetical randomized study in which the treatment (S2P timing) is ran-

domly assigned under distribution f(z), where z is discrete as in this study. The score

equation for α in Model (1.4) from the hypothetical randomized study is

n∗∑
i=1

U∗i (T ∗i , Zi;α) =
n∗∑
i=1

∫ ∞
0

{
A(Zi, K)−

∑n∗

l=1A(Zl, K)ξl(t) exp(g(Zl;α))∑n∗

l=1 ξl(t) exp(g(Zl;α))
)
}
dNi(t) = 0.

Here, A(·) is the design matrix under the linear spline model with knots K. The score

term in the estimating equation 1
n∗

∑n∗

i=1 U
∗
i (T ∗i , Zi;α) = 0 is an unbiased estimator of

ER{U∗(T ∗, Z;α)}, where ER{·} refers to expectation under the hypothetical randomized

study [26]. Murphy et al [29] derived the Radon-Nikodym derivative for the distribution of
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the data from a hypothetical randomized study with respect to the distribution of the data

from an observational study under the no-unmeasured-confounder assumption.

One can obtain unbiased estimating equations for α in the observational study by

weighting the terms according to their Radon-Nikodym derivatives under the hypothetical

randomized study [26]. Suppose the probability distribution of the data (T ∗, Z,X,∆) under

the hypothetical distribution is PrR(·) and under the observational study is Pr(·). Murphy

et al [29] have shown that the distribution of (T ∗, Z,X,∆) under PrR(·) is absolutely con-

tinuous with respect to the distribution of (T ∗, Z,X,∆) under Pr(·) with a Radon-Nikodym

derivative. Because the S2P treatment censored by death or heart transplantation is

specified by the discrete-time competing risk model, the Radon-Nikodym derivative re-

duces to E
{

f(z)
f(z|x) |T

∗ = t, Z = z,X = x,∆ = δ
}

, where E{·} is the expectation under the

observational study. Now,

ER{U∗(T ∗, Z;α)} = E
{
U∗(T ∗, Z;α)× f(z)

f(z|x)

}
= E{U(T ∗, Z;α)}

where U(T ∗, Z;α) := U∗(T ∗, Z;α) × f(z)
f(z|x) = U∗(T ∗, Z;α) × w∗ and U(T ∗, Z;α) is the

score function of Model (1.4) for the observational study. We estimate f(z|x) from the

discrete-time competing-risk model and use it to compute the generalized propensity

score e(r)(z, x), and the stabilized weight w∗:

n∗∑
i=1

Ui(T
∗
i , Zi;α) =

n∗∑
i=1

U∗i (T ∗i , Zi;α)× w∗i

=
n∗∑
i=1

w∗i

∫ ∞
0

{
A(Zi, K)−

∑n∗

l=1A(Zl, K)ξl(t) exp(g(Zl;α))∑n∗

l=1 ξl(t) exp(g(Zl;α))

}
dNi(t).

By solving
∑n∗

i=1 Ui(T
∗
i , Zi;α) = 0, which is identical to the estimating equations in (1.5)

and (1.6), we obtain a consistent estimate for α in Model (1.4) [26].
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A.4.

To estimate frequentist properties of the parameter estimates, we repeat the following

procedures 2,000 times. In each iteration, we generate a data set, then apply our method

to the data set and record the estimates. Each simulation consists of five steps:

1. Consistent with our application to the SVRT data, we bootstrap the real data set with

the desired sample size (n = 500 or n = 1000). We only keep the baseline covariates

X and the post-Norwood event type R (signifying elective S2P, non-elective S2P,

death, or heart transplantation).

2. Plugging the observed x and r into the generalized propensity score model es-

timated from the real data, we obtain the probability Pr(Z, r|x). We sample the

Norwood outcome event time Z from the distribution with probability mass function

Pr(Z, r|x).

3. We sample post-S2P survival from a standard parametric distribution, as indicated

in Table 1.3. We simulate the post-S2P survival time T under the spline model

estimated from the real data for the corresponding R.

4. The censoring of post-S2P survival is administrative. Thus we censor the simulated

survival time T at a designated censoring time C.

5. We apply our proposed analyses to the above generated data.
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We provide here the form of the log-likelihood function in the restricted cubic spline

model.

The cumulative hazard Λi(u, zi) at post-S2P time u with treatment zi for subject i is:

Λi(u, zi) = exp (γTxi + κ(zi))Λ0(u),

where

Λ0(u) = αJ−1u+
J−2∑
j=0

αjBj(u);

B0(u) = 1
2
u2, for j = 1, . . . , J − 2, and

Bj(u) =
1

4
(u−Kj)

4
+ −

(u−KJ−1)
4
+(KJ −Kj)

4(KJ −KJ−1)
+

(u−KJ)4+(KJ−1 −Kj)

4(KJ −KJ−1)
.

Bj(u) is the integral of Bj(u), where B0(u) = u and, for j = 1, . . . , J − 2,

Bj(u) = (u−Kj)
3
+ −

(u−KJ−1)
3
+(KJ −Kj)

(KJ −KJ−1)
+

(u−KJ)3+(KJ−1 −Kj)

(KJ −KJ−1)
.

68



The full log-likelihood is then

L(χ;x, z, t∗, d) = ln

(
n∗∏
i=1

λi(t
∗
i , zi)

di exp(−Λi(t
∗
i , zi))

)

=
n∗∑
i=1

(
di ln

{
αJ−1 +

J−2∑
j=0

αjBj(t∗i )

}
+ di

(
γTxi + κ(zi)

)
− exp

(
γTxi + κ(zi)

)
Λ0(t

∗
i )

)

=
n∗∑
i=1

(
di ln

{
αJ−1 +

J−2∑
j=0

αjBj(t∗i )

}
+ di

(
γTxi + κ(zi)

)
− exp

(
γTxi + κ(zi)

){
αJ−1t

∗
i +

J−2∑
j=0

αjBj(t
∗
i )

})
,

where n∗ is the number of patients who underwent S2P; t∗i is the observed value of T ∗i ;

and di is the observed value of Di for subject i.
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Figure C.1: Calibration plots for VA women ASCVD risk model 2 by race
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