
Southern Methodist University Southern Methodist University 

SMU Scholar SMU Scholar 

Statistical Science Theses and Dissertations Statistical Science 

Fall 12-19-2020 

Bayesian Semi-supervised Keyphrase Extraction and Jackknife Bayesian Semi-supervised Keyphrase Extraction and Jackknife 

Empirical Likelihood for Assessing Heterogeneity in Meta-analysis Empirical Likelihood for Assessing Heterogeneity in Meta-analysis 

GUANSHEN WANG 
Southern Methodist University, guanshenw@smu.edu 

Follow this and additional works at: https://scholar.smu.edu/hum_sci_statisticalscience_etds 

 Part of the Applied Statistics Commons, Biostatistics Commons, Data Science Commons, and the 

Statistical Methodology Commons 

Recommended Citation Recommended Citation 
WANG, GUANSHEN, "Bayesian Semi-supervised Keyphrase Extraction and Jackknife Empirical Likelihood 
for Assessing Heterogeneity in Meta-analysis" (2020). Statistical Science Theses and Dissertations. 18. 
https://scholar.smu.edu/hum_sci_statisticalscience_etds/18 

This Dissertation is brought to you for free and open access by the Statistical Science at SMU Scholar. It has been 
accepted for inclusion in Statistical Science Theses and Dissertations by an authorized administrator of SMU 
Scholar. For more information, please visit http://digitalrepository.smu.edu. 

https://scholar.smu.edu/
https://scholar.smu.edu/hum_sci_statisticalscience_etds
https://scholar.smu.edu/hum_sci_statisticalscience
https://scholar.smu.edu/hum_sci_statisticalscience_etds?utm_source=scholar.smu.edu%2Fhum_sci_statisticalscience_etds%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/209?utm_source=scholar.smu.edu%2Fhum_sci_statisticalscience_etds%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/210?utm_source=scholar.smu.edu%2Fhum_sci_statisticalscience_etds%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=scholar.smu.edu%2Fhum_sci_statisticalscience_etds%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/213?utm_source=scholar.smu.edu%2Fhum_sci_statisticalscience_etds%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/hum_sci_statisticalscience_etds/18?utm_source=scholar.smu.edu%2Fhum_sci_statisticalscience_etds%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/


BAYESIAN SEMI-SUPERVISED KEYPHRASE EXTRACTION

AND JACKKNIFE EMPIRICAL LIKELIHOOD FOR

ASSESSING HETEROGENEITY IN META-ANALYSIS

Approved by:

Dr. Xinlei (Sherry) Wang
Professor in Department of Statistical
Science, SMU

Dr. Yichen Cheng
Assistant Professor of Analytics in
Institute for Insight, Robinson College of
Business, GSU

Dr. Daniel F. Heitjan
Professor in Department of Statistical
Science, SMU & Population & Data
Sciences, UTSW

Dr. Chul Moon
Assistant Professor in Department of
Statistical Science, SMU



BAYESIAN SEMI-SUPERVISED KEYPHRASE EXTRACTION

AND JACKKNIFE EMPIRICAL LIKELIHOOD FOR

ASSESSING HETEROGENEITY IN META-ANALYSIS

A Dissertation Presented to the Graduate Faculty of the

Dedman College

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Statistical Science

by

Guanshen Wang

B.S., Mathematics, Shanghai University
M.S., Statistics, University of Illinois, Urbana-Champaign

December 19, 2020



Copyright (2020)

Guanshen Wang

All Rights Reserved



ACKNOWLEDGMENTS

I would like to thank my Ph.D. advisor Dr. Xinlei (Sherry) Wang. It has been an honor

to be her Ph.D. student. Dr. Wang gave me endless support like nobody else did. Her

immerse knowledge and enthusiasm was so contagious for me in the time of my Ph.D. years.

In our very first meeting, she taught me that great researchers should be better in every

single day, which was one of the most important lesson I have even had. Her advice and

help motivated me not only to be a qualified researcher, but to be a great person. I could

not ask for a better mentor for my Ph.D. study.

Secondly, I would like to appreciate huge support and help from Dr. Yichen Cheng. She

has provided me with great research ideas and insights. It would be much more difficult to

finish my Ph.D. study without her guidances and suggestions. I also thanks our department

chair Dr. Daniel Heitjan for his excellent teaching during my Ph.D. years and great comments

on my dissertation. Also, I am grateful to Dr. Chul Moon for his time and interest to serve

on my dissertation committee.

In addition, thank all fellow graduate students, I really enjoy the time that we studied

and worked together. Thank all friends that I met in the SMU. It is a long list but each of

you made my fantastic four years.

Last but not least, I would like to thank my family for their unconditional love and

support. Thank my dad, Rong Wang and my mom, Yibo Shen for their huge efforts on

raising and caring me. They sacrificed so much for me and I loved them so much. Thank my

lovely wife, Binbin Weng for loving me since high school. She kept pushing and supporting

me when times were rough. Thank my big family for their help and suggestion. I could not

go this far without them.

iv



Wang, Guanshen B.S., Mathematics, Shanghai University
M.S., Statistics, University of Illinois, Urbana-Champaign

Bayesian Semi-supervised Keyphrase Extraction

and Jackknife Empirical Likelihood for

Assessing Heterogeneity in Meta-analysis

Advisor: Dr. Xinlei (Sherry) Wang

Doctor of Philosophy degree conferred December 19, 2020

Dissertation completed October 23, 2020

This dissertation investigates: (1) A Bayesian Semi-supervised Approach to Keyphrase

Extraction with Only Positive and Unlabeled Data, (2) Jackknife Empirical Likelihood Con-

fidence Intervals for Assessing Heterogeneity in Meta-analysis of Rare Binary Events.

In the big data era, people are blessed with a huge amount of information. However,

the availability of information may also pose great challenges. One big challenge is how

to extract useful yet succinct information in an automated fashion. As one of the first few

efforts, keyphrase extraction methods summarize an article by identifying a list of keyphrases.

Many existing keyphrase extraction methods focus on the unsupervised setting, with all

keyphrases assumed unknown. In reality, a (small) subset of the keyphrases may be available

for an article. To utilize such information, we propose a probability model based on a

semi-supervised setup. Our method incorporates the graph-based information of an article

into a Bayesian framework so that our model facilitates statistical inference, which is often

absent in the existing methods. To overcome the difficulty arising from high-dimensional

posterior sampling, we develop two Markov chain Monte Carlo algorithms based on Gibbs

samplers, and compare their performance using benchmark data. We further propose a

false discovery rate (FDR) based approach for selecting the number of keyphrases, while the

existing methods use ad-hoc threshold values. Our numerical results show that the proposed

method compared favorably with state-of-the-art methods for keyphrase extraction.
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In meta-analysis, the extent to which effect sizes vary across component studies is called

heterogeneity. Typically, it is reflected by a variance parameter in a widely used random-

effects (Re) model. In the literature, methods for constructing confidence intervals (CIs)

for the parameter often assume that study-level effect sizes be normally distributed. How-

ever, this assumption may be violated in practice, especially in meta-analysis of rare binary

events. We propose to use jackknife empirical likelihood (JEL), a nonparametric approach

that uses jackknife pseudo-values, to construct CIs for the heterogeneity parameter, which

lifts the requirement of normality in the Re model. To compute jackknife pseudo-values,

we employ a moment-based estimator and consider two commonly used weighing schemes

(i.e., equal and inverse variance weights). We prove that with each scheme, the resulting

log empirical likelihood ratio follows a chi-square distribution asymptotically. We further

examine the performance of the proposed JEL methods and compare them with existing CIs

through simulation studies and data examples that focus on data of rare binary events. Our

numerical results suggest that the JEL method with equal weights compares favorably with

other alternatives, especially when (observed) effect sizes are non-normal and the number of

component studies is large. Thus, it is worth serious consideration in statistical inference.
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CHAPTER 1

Bayesian Semi-supervised Learning for Keyphrase Extraction

1.1. Introduction

With the explosion of science and technology innovations, a huge amount of new text

information is being generated daily. The extensive knowledge and innovations have bene-

fited people tremendously. However, they can sometimes be overwhelming. Therefore, how

to effectively process and make use of the available text information becomes a big chal-

lenge. Keyphrases, defined as a set of phrases or words that summarizes an article, provide a

promising solution to this question. An effective keyphrase extraction method can compress

the original documents into a concise form. For example, researchers can grasp the gist of

a paper by just reading its keyphrases; a short list of keyphrases from product reviews on

Amazon can help customers to determine if this product is worth buying; readers can learn

what happens today quickly by just reading a highlight of the daily news.

Most popular keyphrase extraction methods are unsupervised, since it is usually hard

to obtain label information for a large set of training data without extensive background

knowledge or tremendous human effort. However, it is possible to easily obtain part of the

keyphrases for an article. For instance, research articles usually list a collection of keyphrases

provided by the authors; the title of a news article is usually informative. Thus, in this paper,

we propose a Bayesian method in the semi-supervised setting which makes use of the partially

observed keyphrases. Unlike existing methods, our method is model based, allowing us to

gauge the uncertainties about model parameters and the (binary) decision easily. Also, it
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does not need to predetermine the number of keyphrases, which is unknown and varies from

article to article. Our numerical experiments show that the proposed method compared

favorably with existing unsupervised and semi-supervised approaches.

The rest of the chapter is organized as follows. State-of-the-art approaches to keyphrase

extraction is reviewed in Section 1.2. Section 1.3 describes our proposed Bayesian model.

Section 1.4 presents the Bayesian posterior computation and introduces a way to select

the number of keyphrases. Sections 1.5 and 1.6 evaluate the performance of the proposed

Bayesian method using benchmark data and further illustrate it using data examples from

various fields without known ground truth. Section 1.7 concludes the paper with a brief

discussion.

1.2. Review of Related Work

There exist three categories of methods in the literature of keyphrase extraction: su-

pervised, unsupervised, and semi-supervised. Most supervised methods first generate a

set of features (e.g., phrase frequencies) from articles and then rely on a large amount of

high-quality labeled data to train classification algorithms for identifying keyprhases (e.g.,

[11, 20, 30, 55, 61]). We focus on a common scenario where such labeled data are not available

in this paper and review unsupervised and semi-supervised methods below.

1.2.1. Unsupervised learning: from PageRank to TextRank

Brin and Page [10] developed an algorithm called PageRank, which is the first and best-

known algorithm used by Google Search to rank web pages in its search engine results. The

PageRank algorithm uses a graph to represent a hyperlinked set of documents from the World

Wide Web, with each web page involved being a node in the graph. If page i has a hyperlink

to page j, then there is a directed edge from page i to page j. Based on the assumption
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that more important web pages are likely to receive more links from other pages, PageRank

works by finding the stationary distribution for the following stochastic process. Suppose a

surfer is browsing a web page at random. Each time, the surfer can either randomly click on

one of the hyperlinks available from the current web page or get bored and start on another

random page or stop browsing. The probability that the surfer continues clicking is called

the damping factor d. Once the surfer determines to continue, the probability that he clicks

on a specific hyperlink would be 1/L, where L is the total outbound edges that the current

page has. PageRank computes an important score for each individual web page, reflecting

how likely the random surfer would visit it among all given pages. Then PageRank ranks

the web pages by these scores. High-ranked pages can be thought of as important nodes in

the graph.

Motivated by the idea of PageRank, Mihalcea and Tarau [43] considered keyphrase ex-

traction as a phrase search process that is similar to the web search process, and developed

a graph-based ranking model for identifying keyphrases. In their original paper, each article

is represented by a graph < V,E >, with V denoting the set of vertices and E denoting the

set of edges (either directed or undirected). Each vertex is a candidate phrase selected from

the article to best define the task at hand. Two vertices are connected by an edge if they

follow certain rules (e.g., phrases vi and vj are connected if they appear sufficiently close

to each other in an article). Mihalcea and Tarau [43] proposed TextRank (TR) to find the

importance scores θ = (θ1, θ2, . . . , θn)T for a list of candidate phrases by solving the following

equation:

θ = (1− d)1n + dGTθ, (1.1)

where d is the damping factor (usually set to be 0.85), 1n = (1, 1, · · · , 1)T is a vector of

n 1’s, n is the number of candidate phrases, G = D−1A is a n × n matrix representing

the normalized graph of the article, A is the graph represented by a weight matrix, and

D is a diagonal matrix with the diagonal elements Dii =
∑n

j=1Aij. Those phrases with
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high importance scores will be selected as keyphrases. Note that PageRank and TextRank

are highly similar: both obtain importance scores for the units (web pages or phrases) by

solving θ from (1.1). However, in Brin and Page [10], PageRank represents each edge using

a binary value (1 if present, 0 if absent) while in Mihalcea and Tarau [43], TextRank assigns

non-negative weights Aij’s to edges, in order to measure how “strong” the connections are.

Figure 1.1 shows an example of directed graph, nodes of the graph are a subset of words

from the article example in 1.5.2. In this graph, there is an edge from word A to word B if

and only if word B appears after word A within a window size of 2 in the article, weighted by

the frequency of the appearance. Thus, connections are not necessarily mutual. Example:

“loss” has an outbound edge to “accident” but “accident” does not have an outbound edge

to “loss” because in the article, “accident” appears after “loss” within a size of 2 twice

but “loss” never occur after “accident” within the same size. In addition, even there are

mutual connections, they can have different weights. Example: the weight of connection

from “lifetime” to “independent” is 2 but the weight from “independent” to “lifetime” is

1. Figure 1.2 shows a undirected graph with the same article example. In this undirected

graph, two nodes are connected by the frequency of co-occurrence within a window size of

2. Examples: “age” and “loss” are connected with a weight 12 as they co-occurred within

a window size of 2 for 12 times in the article; “age” is not connected to “accident” because

they never co-occur in the article. In this paper, we mainly focus on the undirected graph.

1.2.2. Semi-supervised learning

In practice, it is possible to know some keyphrases without reading the entire article.

For example, many academic journals require authors to specify up to a maximum number

of keyphrases (typically 3-5); a domain expert may instantly identify a few keyphrases by

reading an article title only. Motivated by the availability of such (partial) label information,

semi-supervised learning may be adopted to help improve the detection of keyphrases.
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Figure 1.1. A simple example for directed graph. Nodes of the graph are a subset of words

from the article example in 1.5.2.
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Figure 1.2. A simple example for undirected graph. Nodes of the graph are a subset of

words from the article example in 1.5.2.
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Existing literature on semi-supervised keyphrase extraction is sparse. Li et al. [38] pro-

posed a semi-supervised method, labeled SS, which aims to preserve the so-called “local

consistency” of a graph by solving the following equation with respect to the important

scores θ:

θ = (1− d)y + dG∗Tθ, (1.2)

where y is a vector of the observed labels (1 if known to be a keyphrase, 0 otherwise), and

G∗ = D−1/2AD−1/2 represents a graph structure that is similar to the G matrix described in

the unsupervised setting. The idea of “local consistency”, first proposed by Zhou et al. [64]

in a general semi-supervised learning setting, argues that similar nodes should have similar

labels. Additionally, Zhou et al. [64] showed that finding the solution to (1.2) is equivalent

to minimizing the following cost function:

Q(θ) =
∑

(i,j)∈E

Aij(
1√
Dii

θi −
1√
Djj

θj)
2 + µ ‖ θ − y ‖2,

where the regularization parameter µ= (1−d)/d. The first term in the cost function encour-

ages “local consistency” and the second term penalizes the distance between the observed

data and the importance scores. Note that θ from (1.2) is not between 0 and 1 even though

it should be close to y. In machine learning, this problem is also referred to as learning using

only positive and unlabeled data [17], since all the labels observed are positive.

1.2.3. Constructing a graph from an article

The above algorithms for keyphrase identification are graph based. Typically, such algo-

rithms require a user to first identify a set of candidate units from an article, add them as

vertices in a graph, and then define relations that connect such units to draw edges between

vertices in the graph. Edges can be directed or undirected, weighted or unweighted.

In the past, various approaches have been proposed to construct a graph from an article.

Mihalcea and Tarau [43] recommended to use frequencies of co-occurrence within a given
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window size as weights. Wan and Xiao [58] used a larger graph containing words from a

group of similar articles rather than those from one single article, in which each edge is

weighted using a weighted average of the numbers of co-occurrences among the group of

articles. Bougouin et al. [8] used topics instead of phrases as vertices of a graph. Wang

et al. [59] used a word embedding technique so that each phrase is represented by a numeric

vector and the weight for an edge is constructed based on the co-occurrence relation of the

two phrases as well as the distance between the corresponding two numeric vectors. Florescu

and Caragea [19] incorporated position information (i.e., phrases that appear earlier in an

article are likely to be more important) so that the importance scores are also adjusted to

reflect their location in the article. As an alternative to graph-based methods, Liu et al. [40]

proposed a cluster-based approach, where phrases are clustered according to their relevance.

1.2.4. Overview

Most of the existing approaches identify keyphrases in an article by first calculating

the importance score for each candidate phrase, and then identifying all the phrases with

scores greater than a certain threshold as keyphrases. However, such approaches have two

limitations. Firstly, even though their rankings reflect the relative importance of candidate

phrases, those importance scores cannot be used to gauge the uncertainty about the 0/1

decision (i.e., how likely an individual unit is a keyphrase in the presence of information

from the article). Secondly, the threshold value is usually chosen ad-hoc. Many existing

methods choose a threshold such that 1/3 of the phrases in an article will be selected as

keyphrases. Such methods inherently assume that every document has the same proportion

of keyphrases. However, in practice, different articles may have different proportions of

keyphrases.

We propose a graph-based Bayesian semi-supervised (BSS) learning model, where we

incorporate the graph information into a prior distribution and use the observed vector y to

construct the likelihood. Using the BSS model, for each candidate phrase, we can estimate
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its probability of being a keyphrase based on the posterior distribution. We further propose

a false discover rate (FDR) based criterion to select the number of keyphrases. To evaluate

the performance of the proposed method, we apply our method to a popular benchmark

data set in Hulth [30]. The results show that overall, our method performs better when

compared with baseline approaches in terms of FDR, precision, recall and F-1 measure. To

further illustrate potential applications, we apply BSS to a well-known statistical paper and

an Amazon review example.

1.3. Model

We describe the proposed BSS learning method for keyphrase extraction, assuming a

(small) subset of keyphrases is known. We assign two labels to each candidate phrase i: the

observed label yi and the actual label y∗i , where yi indicates whether phrase i is observed

to be a keyphrase and y∗i indicates whether it is indeed a keyphrase (1 for keyphrase, 0

otherwise). Note that only positive labels can be observed. Thus, if a phrase is observed to

be a keyphrase (i.e., yi = 1), then it must be a keyphrase (i.e., y∗i = 1). On the other hand,

for a phrase with yi = 0, it can be either a keyphrase or a non-keyphrase (i.e., y∗i = 0 or

1). We refer to y∗ = (y∗1, . . . , y
∗
n) as the “true labels”, which are unobserved to us unless the

corresponding observed label is 1.

1.3.1. The likelihood and prior elicitation

Let πi denote the probability that phrase i is a keyphrase, and αi denote the probability

that a keyphrase is not observed, namely, πi ≡ Pr(y∗i = 1) and αi ≡ Pr(yi = 0|y∗i = 1). The

conditional probability of yi given the parameters πi and αi can be calculated by integrating

out the hidden variable y∗i in the full likelihood function:
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Pr(yi|πi, αi) =
∑
y∗i

Pr(yi, y
∗
i |πi, αi)

= Pr(yi, y
∗
i = 1|πi, αi) + Pr(yi, y

∗
i = 0|πi, αi)

= Pr(yi|y∗i = 1, πi, αi)Pr(y
∗
i = 1|πi, αi) + Pr(yi|y∗i = 0, πi, αi)Pr(y

∗
i = 0|πi, αi)

Since all the observed positives are true positives, we have Pr(y∗i = 1|yi = 1) = 1. This also

implies that if a phrase is not a keyphrase, it cannot be observed as a keyphrase; that is,

Pr(yi = 0|y∗i = 0) = 1. It follows that

Pr(yi|πi, αi) =


(1− αi)πi yi = 1

αiπi + 1− πi yi = 0

For simplicity, we assume αi’s are the same across all phrases: αi = α. Then the likelihood

function is

Pr(y|π, α) =
n∏
i=1

[(1− α)πi]
yi [1− πi + απi]

1−yi ,

where n is the total number of candidate phrases.

Under a Bayesian framework, the unsupervised importance scores θ obtained from Tex-

tRank, when linked to π, can be used to form a prior distribution, to incorporate the

information from the graph constructed from an article under consideration. For the ith

phrase, πi has a probability scale (0, 1) while an importance score θi can be any real number.

Thus, we use the logit function to link πi and θi: θi = logit(πi).

Next, we propose a multivariate normal prior on a linear transformation of θ = (θ1, θ2, . . . , θn)T :

θ − [(1− d)1n + dGTθ] ∼ N(0, σ2I),
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This prior implies that without the label information, we would like to set θ to be centered

at the solution to (1.1). The prior on θ can be rewritten as:

π(θ) ∼ N(θ0,B
−1(B−1)Tσ2),

where θ0 = B−1(1−d)1n, and B = I−dGT . One typical choice of the prior distribution for σ2

is π(σ2) ∼ 1/σ2. However, it is an improper prior, which may lead to an improper posterior.

Thus, we use an inverse-gamma distribution IG(0.001, 0.001) instead to approximate 1/σ2.

A uniform prior is used for α: π(α) = 1, α ∈ (0, 1).

1.3.2. The full probability model

With the prior distributions specified in the previous subsection, the full probability

model is given by

p(y,θ, α, σ2) = Pr(y|θ, α)π(θ|σ2)π(α)π(σ2)

=
n∏
i=1

[
(1− α)eθi

1 + eθi

]yi [
1− (1− α)eθi

1 + eθi

]1−yi
· N

(
θ;θ0,B

−1(B−1)Tσ2
)
· IG(σ2; 0.001, 0.001). (1.3)

Then the joint posterior distribution is p(θ, α, σ2|y) ∝ p(y,θ, α, σ2). The main parame-

ters of interest are the θi’s while σ2 and α are nuisance parameters. In the next section, we

will discuss how to sample from the joint posterior distribution and identify keyphrases.
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1.4. Posterior Computation and Keyphrase Identification

We propose two MCMC algorithms for posterior sampling. In the first algorithm, we use

a Gibbs sampler to iteratively sample σ2, θ, and α from p(θ, α, σ2|y), and when sampling

θ within each iteration, we use a Metropolis-Hastings (MH) algorithm. The MH method

usually works well when the dimension of θ is not too high. However, when the dimension

of θ gets higher, this algorithm is likely to get trapped at local maxima. To overcome

this issue, we consider a commonly used strategy for high-dimensional MH sampling, which

resorts to a tiny scale in the proposal distribution to help the samples gradually escape

from the “unhealthy” neighborhood of a local mode over time. The spirit is to accumulate

many tiny moves, which are much easier to be accepted than a big move, so as to travel

around the entire posterior space over time. In the second algorithm, we first integrate σ2

out of p(θ, α, σ2|y), and then use a Gibbs sampler to iteratively sample θ and α, where a

component-wise adaptive MH algorithm is employed to sample θ at each iteration. The

spirit is to move one dimension only each time so that accepting a proposed move is not

unlikely. We implement both algorithms and compare their performance for high-dimensional

posterior sampling in the context of keyphrase identification.

1.4.1. MH within Gibbs with tiny moves

Using a Gibbs sampler, we iteratively sample from the three posterior conditionals:

p(σ2|y,θ, α), p(α|y,θ, σ2), and p(θ|y, σ2, α). It follows from the full probability model (1.3)

that the conditional posterior distribution of σ2 given θ and α is IG(n
2

+ 0.001, C
2

+ 0.001),

where C = (θ− θ0)
TBTB(θ− θ0). The conditional posterior distribution of θ given σ2 and

α is

p(θ|y, σ2, α) ∝
n∏
i=1

[
(1− α) exp(θi)

1 + exp(θi)

]yi [
1− (1− α) exp(θi)

1 + exp(θi)

]1−yi
exp

{
− C

2σ2

}
.
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Here, we use an MH algorithm to sample θ, with the proposal distribution set to be

N(θ(t−1),B−1(B−1)Tσ2(t) · b/n), where θ(t−1) is the sampled θ obtained at step t− 1, σ2(t) is

the sampled σ2 at step t, b is a pre-determined constant, and 1/n is used to adjust for the

dimension of θ in order to make tiny moves. Note that a large n yields a small variance of

the proposal distribution so that the proposed move cannot deviate much from the previous

draw θ(t−1). We adjust the value of b to ensure that the acceptance rate of the algorithm

is between 0.2 and 0.4, as recommended by Gelman et al. [21, Chap. 11]. Lastly, under

the uniform prior, we have p(α|y,θ, σ2) ∝ Pr(y|θ, α). In order to improve the sampling

performance and to achieve faster convergence, we follow a procedure similar to empirical

Bayes, which sets α(t) to be the value that maximizes p(α|y,θ(t), σ2(t)), instead of sampling

from its conditional posterior.

We refer to the above algorithm as tMH within Gibbs, where tMH stands for MH with

tiny moves. The main steps of the algorithm are described in Algorithm 1.

Algorithm 1 tMH within Gibbs

Generate graph, compute graph related terms B, θ0 and C.

Initialize the starting point of θ(0), α(0)

for t in (0 < t ≤ T ): do

Update σ2(t) by IG(n
2

+ 0.001, C
2

+ 0.001)

Generate θ∗ ∼ N(θ(t−1),B−1(B−1)Tσ2(t) · b/n).

Acceptance probability: A(θ∗|θ(t−1)) = min(1, p(θ∗|y,σ2(t),α(t−1))

p(θ(t−1)|y,σ2(t),α(t−1))
)

µ ∼ U(0, 1)

if µ < A(θ∗|θ(t−1)) then

θ(t)=θ∗

else

θ(t) = θ(t−1)

end if

Update α(t) by maximizing p(α|θ(t),y, σ2(t)) over a grid on the interval (0,1)

end for

12



1.4.2. Adaptive component-wise MH within Gibbs

Since we adopt a conditional conjugate prior for the nuisance parameter σ2, we can

integrate σ2 out:

p(θ|y, α) ∝p(y,θ, α)

=

∫
Pr(y|θ, α)π(θ|σ2)π(α)π(σ2)dσ2

∝
n∏
i=1

[
(1− α)eθi

1 + eθi

]yi [
1− (1− α)eθi

1 + eθi

]1−yi ∫
(σ2)−(

n
2
+1.001) exp

{
−
(
C + 0.002

2σ2

)}
dσ2

∝
n∏
i=1

[
(1− α)eθi

1 + eθi

]yi [
1− (1− α)eθi

1 + eθi

]1−yi (C
2

+ 0.001

)−(n
2
+0.001)

.

Thus, we only need to sample from the posterior conditionals of α and θ, p(θ|y, α) and

p(α|y,θ), iteratively. In addition, because α and σ2 are conditionally independent, p(α|y,θ)

remains the same as in Section 1.4.1. Note that for the tMH within Gibbs introduced in

Section 1.4.1, we cannot integrate σ2 out, because it is part of the covariance matrix of the

proposal distribution for θ.

To mitigate the inefficiency of high-dimension MH sampling, we consider an adaptive

component-wise MH method [23]. That is, instead of sampling θ as a whole at each iter-

ation, we sample one component of θ at a time. At iteration t, the proposal for θ
(t)
i is set

to an univariate normal distribution N(θ
(t−1)
i , v

(t)
i ), where v

(t)
i is an adaptive variance calcu-

lated using samples obtained from previous iterations. We refer to this algorithm as acMH

within Gibbs, where acMH stands for adaptive component-wise MH. The main steps of this

algorithm is described in Algorithm 2.
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Algorithm 2 acMH within Gibbs

Generate graph, compute graph related terms B, θ0 and C.

Initialize the starting point of θ(0), α(0)

for t in (0 < t ≤ T ): do

for i in (1 ≤ i ≤ n) do

Generate θ∗i ∼ N(θ
(t−1)
i , v

(t)
i ).

Acceptance probability: A(θ∗i |θ
(t−1)
i ) = min(1,

p(θ
(t)
1 ,...,θ

(t)
i−1,θ

∗
i ,θ

(t−1)
i+1 ,...,θ

(t−1)
n |y,α(t−1))

p(θ
(t)
1 ,...,θ

(t)
i−1,θ

(t−1)
i ,θ

(t−1)
i+1 ,...,θ

(t−1)
n |y,α(t−1))

µ ∼ U(0, 1)

if µ < A(θ∗i |θ
(t−1)
i ) then

θ
(t)
i =θ∗i

else

θ
(t)
i = θ

(t−1)
i

end if

end for

Update α(t) by maximizing p(α|θ(t),y) over a grid on the interval (0,1)

end for

1.4.3. An FDR-based approach for keyphrase detection

After we obtain multiple posterior draws of θ via MCMC, we can transform θ back to

the probability scale to obtain π. To determine whether a candidate phrase is a keyphrase, a

threshold is needed. We employ a FDR control method [44] using the Bayesian estimator π̂,

obtained by averaging the posterior draws of π. For a given probability cutoff h, the FDR

can be estimated by F̂DR(h) = {
∑n

i=1(1 − π̂i)I(π̂i ≥ h)}/{
∑n

i=1 I(π̂i ≥ h)}, where I(·) is

the indicator function. In practice, h is the largest number such that F̂DR(h) ≤ γ, where γ

is a pre-specified value such as 0.1, 0.2 or 0.3. Candidate phrases with π̂i ≥ h are identified

as keyphrases. The larger γ is, the more keyphrases are identified. Evidently, this FDR

control method allows different articles to have different probability cutoffs for keyphrase

selection.
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1.5. Evaluation using benchmark data

1.5.1. Hulth abstract data

1.5.1.1. Data and preprocessing

To evaluate the performance of the proposed BSS method and compare it with existing

methods, we use the Hulth data set [30], which is regarded as the standard benchmark data in

the keyphrase extraction literature. The data set consists of journal abstracts from Computer

Science and Information Technology fields. Keywords for each article in the Hulth data set

have been hand labeled. For simplicity, we consider keyword extraction instead of keyphrase

extraction as keyphrases can be assembled from adjacent keywords in a post-processing step.

We preprocess all documents using standard natural language processing (NLP) steps

before constructing a graph for each. These preprocessing steps include tokenization and

part-of-speech tagging (POS-tagging), which help reduce the number of total words used for

graph building. Tokenization is to split a sentence into a list of words, such that the unit

for analysis is a word rather than a sentence. POS-tagging helps categorize each word into

a word class such as noun, adverb and so on. As a result, words that do not carry much

information, such as conjunction, preposition, can be removed from the candidate word list.

After these two steps, each remaining word is used as a vertex in the graph. The edge weight

between any two words is calculated as the number of co-occurrences in a window of two

words, as suggested by Mihalcea and Tarau [43].

For each article, we randomly select five words from the keyword list and treat them as

observed keywords. We evaluate the number of remaining keywords correctly identified by

each method. Articles with less than ten keywords are excluded in our experiment, such

that for each article, at least 50% of the keywords are unknown. This leaves us with 216
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documents with around 20 keywords per article on average. A summary of the number of

keywords is given in Table 1.1.

Table 1.1. Hulth abstract data: summary statistics for the number of keywords in 216

selected documents.

Min 1st Quartile Median Mean 3rd Quartile Max

11 14 19 19.83 24 42

To apply the proposed method, we use both tMH within Gibbs (Algorithm 1) and acMH

within Gibbs (Algorithm 2) to draw samples from the posterior distribution. For tMH within

Gibbs, we set b = 4 so that the acceptance rate of the MCMC samples is between 20% and

40%, as mentioned in Section 1.4.1. For acMH within Gibbs, v
(t)
i is set to be 1 in the first

10 iterations, and 2.4[V ar(θ0i , θ
1
i , ..., θ

t−1
i ) + ε] for the remaining iterations as suggested by

Haario et al. [23], where ε is a small positive constant so that the variance in the proposal

distribution is always positive. For all of our experiments, we set ε to be 0.01. For each

article, we run 50,000 MCMC iterations with the first 2,000 as burn-in samples and use the

posterior mean of the remaining iterations for Bayesian inference.

We compare the performance of BSS with those of TR and SS, the two state-of-art

methods for keyphrase extraction reviewed in Section 1.2. To select keywords for BSS,

we use the FDR control method described in Section 1.4.3, with γ ranging from 0.05 to

0.2 for these short abstracts. To make a fair comparison, we control the total number of

identified keywords to be the same across different methods. To be specific, we calculate

the ratio between the number of identified keywords (by BSS) and the total number of

candidate words among the 216 articles (say, r%). Then for TR and SS, we select the top

r% words (ranked by importance scores) as keywords for each article. As semi-supervised

learning methods, both BSS and SS methods ensure that observed keywords are identified
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as keywords. However, TR, as an unsupervised method, cannot guarantee this as it does

not utilize information of observed labels. This would place TR at a disadvantage in the

comparison. To avoid this, we force all the observed keywords to be keywords for TR as

well.

1.5.1.2. FDR comparison

The actual FDR rates for BSS, TR and SS are reported in Table 1.2 for different FDR

cutoffs (γ = 0.05, 0.10, 0.15, and 0.2). We report the results for both tMH and acMH within

Gibbs and observe that they both have better performance than the two competitors. In

general, tMH appears to identify more words as keywords while the actual FDRs for acMH

are closer to the nominal values. However, the acMH algorithm requires n × T iterations,

which greatly increases the computation time. Thus, for all the following analyses in this

paper, we use tMH only.

In Table 1.2, we highlight the smallest actual FDR in bold for each FDR cutoff. We

observe that our algorithms produced lowest FDRs in all the situations, suggesting that the

proposed BSS can identify more true keywords. Between TR and SS, TR performs better

than SS when the FDR threshold is small (γ = 0.05 or γ = 0.1), but worse when γ is larger.

1.5.1.3. Precision, recall and F-measure

In the literature of keyphrase extraction, precision, recall and F-measure are usually used

as the performance measures. Precision is defined as

Precision =
the number of correctly identified words (True Positives)

total number of identified words (True Positives+False Positives)
;
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Table 1.2. Hulth abstract data: FDR comparison for BSS, TR and SS. Total no. of positives

represents the total number of words identified as keywords. The actual FDRs for TR and SS

are calculated using the following steps. Taking γ = 0.1 as an example, we have 2028 words

identified as keywords from tMH with Gibbs, which is 18.0% of 11243 candidate words in

the 216 documents. Then 18.0% is used as the cutoff for both TR and SS, that is, we select

the top 18.0% of the candidate words with the highest importance scores to be keywords for

each article. Then the corresponding actual FDRs across all the documents are computed.

FDR Control Total No. of Positives Actual FDR

BSS TR SS

tMH within Gibbs

γ= 0.05 1438 0.056 0.086 0.086

γ= 0.1 2028 0.144 0.177 0.175

γ= 0.15 2899 0.254 0.273 0.282

γ= 0.2 4229 0.368 0.391 0.383

acMH within Gibbs

γ= 0.05 1404 0.059 0.084 0.086

γ= 0.1 1937 0.137 0.165 0.164

γ= 0.15 2678 0.241 0.250 0.260

γ= 0.2 3780 0.344 0.354 0.349

Recall is defined as

Recall =
the number of correctly identified words (True Positives)

total number of keywords words (True Positives+False Negatives)
;

F-measure is the harmonic mean of precision and recall:

F-measure = 2× Precision× Recall

Precision + Recall
;

The performance measured based on the three criteria is summarized in Table 1.3. For

each criterion and FDR cutoff, we highlight the largest number (i.e., best performance) in

bold. Similar to the previous subsection, we observe that BSS performs the best, regardless

of the cutoff value and measure. TR generally performs the worst because it cannot utilize

the label information, even though all observed keywords are forced to be keywords for TR.
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Table 1.3. Hulth abstract data: comparison of precision, recall and F-measure using different

FDR control cutoff values.

FDR Control Precision Recall F-measure

BSS TR SS BSS TR SS BSS TR SS

γ= 0.05 0.944 0.915 0.915 0.317 0.307 0.307 0.475 0.460 0.460

γ= 0.1 0.856 0.822 0.824 0.405 0.390 0.391 0.550 0.529 0.530

γ= 0.15 0.745 0.728 0.719 0.504 0.492 0.486 0.601 0.587 0.580

γ= 0.2 0.632 0.610 0.618 0.624 0.602 0.610 0.628 0.606 0.614

1.5.1.4. Factors affecting the performance

In order to better understand the behavior of the proposed method, we evaluate the per-

formance based on two key factors: the number of keywords and the proportion of keywords

in an article. Based on these two factors, we divide the articles into four groups of equal size

using quartiles and evaluate the performance within each quartile. For each group, we count

the overall number of correctly identified words (true positives), overall number of identified

words (positives) and overall number of keywords based on γ = 0.15 so as to calculate an

overall F-measure.

We show the overall F-measure vs. number of keywords in Figure 1.3. Group A represents

articles with the smallest numbers of keywords (less or equal to the first quartile) and group D

contains those with the largest numbers of keywords (larger or equal than the third quartile).

Since we assume each article contains 5 observed keywords regardless of the actual number,

it is not surprising that the F-measure decreases as the number of actual keywords increases.

From Figure 1.3, we observe that BSS generally performs the best in terms of F-measure

except for group D, where TR slightly outperforms SS and BSS. This implies that semi-

supervised methods (BSS and SS) may not perform better than the unsupervised method
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(TR) if the label information is sparse (i.e. observed keyphrases are just a very small portion

of the true ones).

Figure 1.3. Hulth abstract data: bar chart of overall F-measure (calculated based on γ =

0.15) vs. number of keywords (from smallest to largest for the four groups of articles A-D).

Table 1.4. Hulth abstract data: performance comparison for different article groups by key-

word proportion based on γ = 0.15. No. (proportion) of positives is the number (proportion)

of words identified as keywords. The positive proportion of baseline methods (TR/SS) is

26.2% for all article groups. No. of true positives is the number of actual keywords identified.

Article Group
No. (Prop.) of Positives No. of True Positives F-measure

Total No. (Prop.) of Keywords

BSS TR/SS BSS TR SS BSS TR SS

A 734 (0.223) 863 (0.262) 470 501 528 0.602 0.593 0.624 828 (0.251)

B 736 (0.249) 770 (0.261) 547 560 549 0.610 0.612 0.600 1060 (0.359)

C 812 (0.278) 763 (0.261) 632 613 581 0.600 0.596 0.565 1293 (0.443)

D 617 (0.327) 499 (0.264) 511 434 424 0.594 0.542 0.530 1102 (0.584)
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In Table 1.4, we show the results by grouping articles according to the keyword propor-

tion. The keyword proportion for an article is defined as the number of keywords divided

by the total number of candidate words in the article. Articles are divided into four groups

of equal size: A to D for articles with the smallest to largest proportions of keywords, re-

spectively. For each method, we report the number and proportion (in bracket) of words

identified as keywords, the number of actual keywords identified and F-measure. We also

report the total number of keywords within each article group for reference. It is interesting

to observe that as the keyword proportion increases, our method captures such information

and selects more words (in proportion) to be keywords (proportion of positives increases from

22.6% in group A to 31.8% in group D), while the proportions for TR and SS do not show

such a pattern (26.0% for all groups). F-measure comparison indicates that the advantage

of BSS over the other methods increases when the keyword proportion increases. While the

F-measure of BSS is around 0.6 for all the article groups, the F-measures for TR and SS

appear to decrease as the keyword proportion increases. This is deemed to be a merit of the

proposed BSS, showing that when an article has a relatively large proportion of keywords,

BSS is able to detect that by returning a larger proportion of positives. By contrast, both

TR and SS fail to reflect this underlying characteristic.

1.5.2. A long article in computer science

Unlike abstracts, a complete article may contain hundreds or even thousands of unique

words. Using the whole set of words leads to a big graph. On the other hand, a longer

article may still have a small number of keywords. In order to reduce the dimensionality,

we apply stemming to reduce the number of unique words and a frequency-based filter to

remove words that only appear once or twice in an document. Stemming is a process of

reducing words to their root forms. For example, stemming can reduce three different words

“compute”, “computing” and “computer” into their common root “comput”.

21



We apply our method to a long article with 586 candidate words and 27 keywords. After

stemming and removing words that appear no more than twice in the article, we have 149

words left. Note that such preprocessing steps do not remove any keyword from the list

of candidate words. Observed keywords are generated from the title, leading to 8 observed

keywords, as listed in Table 1.5.

We use tMH within Gibbs and set b = 5 and γ = 0.25 to identify keywords. As in

Section 1.5.1, we assemble identified keywords into keyphrases if they are next to each other

in the document, and report them for each method in Table 1.5. We use () to denote the

keywords that are not identified. For example, “(hydrocarbon) reservoir model” means the

method finds keywords “reservoir” and “model” but does not find “hydrocarbon”. All three

methods identify the exactly same set of 12 keyphrases but BSS and SS identify one more

keyword than TR. As mentioned in Section 1.5.1.1, all observed keywords are enforced to

be keywords as an extra step for TR. By contrast, both semi-supervised methods identify

the observed keywords automatically without the extra enforcement step, suggesting their

efficient use of the observed label information.

1.6. Real Data Examples without Ground Truth

1.6.1. A statistical paper

We also apply our BSS method to a well known statistical paper [36], titled “Nonpara-

metric Estimation from Incomplete Observations” to see if BSS can grasp the gist of the

paper. Unlike all the previous examples, we don’t have a list of hand labeled keyphrases

for this paper. Fortunately, people who are familiar with Statistics know that this paper

proposed a nonparametric method for estimating the survival function using lifetime (time-

to-event) data. With all the preprocessing techniques applied and removal of mathematical

formulas, we have 840 candidate words. After stemming and applying the frequency-based
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Table 1.5. A long article in computer science: comparison of keyphrases identified by different

methods under two scenarios. All identified keywords are assembled to keyphrases and we use

() to denote the keywords that are not identified. For example: “ensemble (kalman) filter”

means “ensemble” and “filter” were identified as keywords while “kalman” is not identified.

Observed

keyphrases

BSS keyphrases TR keyphrases SS keyphrases

ensemble

kalman

filter, data

assimilation

methodol-

ogy,

reservoir,

grid-

enabling

ensemble kalman filter,

data assimilation

methodology,

(hydrocarbon) reservoir

model, grid-enabling,

TIGRE grid computing

environment, (pooling)

license, grid computing,

gridway metascheduler,

reservoir simulation,

(strategic) application

area, EnKF, TIGRE

ensemble kalman filter,

data assimilation

methodology,

(hydrocarbon) reservoir

model, grid-enabling,

TIGRE grid computing

environment, (pooling)

license, grid computing,

gridway metascheduler,

reservoir simulation,

(strategic) application

(area), EnKF, TIGRE

ensemble kalman filter,

data assimilation

methodology,

(hydrocarbon) reservoir

model, grid-enabling,

TIGRE grid computing

environment, (pooling)

license, grid computing,

gridway metascheduler,

reservoir simulation,

(strategic) application

area, EnKF, TIGRE

filter, we end up with 180 candidate words. Furthermore, we treat “nonparametric estima-

tion”, “incomplete observations” as observed keyphrases, which is directly extracted from

the title.

In this example, we again use the faster algorithm, tMH within Gibbs, and set b = 5

and γ = 0.3. We show keywords identify by the three methods, BSS, TR and SS, and

grouped adjacent ones into keyphrases in Table 1.6. All three methods identified “product-

limit estimation”, the main method introduced in the paper; “p(t)”, referring to the survival

function; “reduced-sample estimates”,which is another main method discussed in this paper;

“death”, “age”, and “integer numbers”, together indicating that the paper is about time-

to-event data. Besides, BSS found “actuarial estimates”, which is an important term in

the paper, while the other two methods did not. From all keywords found by BSS, we can

conclude that the paper focuses on different estimation methods for lifetime data.
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Table 1.6. A statistical paper: comparison of identified keyphrases/keywords identified by

different methods.

Observed

keyphrases

BSS keyphrases/keywords TR keyphrases/keywords SS keyphrases/keywords

nonparametric

estimation,

incomplete

observations

nonparemetric

estimation, incompleted

observation, product-limit

estimation, p(t),

reduced-sample estimates,

actuarial estimates, item,

age, death, integer

number, important, not,

case, results.

nonparametric

estimation, incompleted

observation,

product-limit estimation,

p(t), reduced-sample

estimates, death, loss,

item, integer number,

age, limit, variance, not,

case, value, n

nonparametric

estimation, incompleted

observation,

product-limit estimation,

p(t), reduced-sample

estimates, death, item,

loss, age, integer number,

variance, not, case, online

1.6.2. An Amazon product review example

We apply keyphrase extraction methods to an Amazon product review example, available

from McAuley and Leskovec [42]. Beside the actual content, the review contains a brief

summary, as shown in Table 1.7. We treat the summary “oatmeal for oatmeal lovers” as

the observed keyphrase, so “oatmeal” and “lovers” are observed keywords. After applying

the preprocessing steps described in Section 1.5.2 to the review content, we end up with 83

candidate words. The tMH within Gibbs algorithm with b = 5 is applied, and to identify

keywords, we set γ = 0.25. The keywords identified by the different methods BSS, TR

and SS are listed in Table 1.8. BSS returns quite a few very informative words, including:

“mccann”, “oatmeal”, “personally”, “like”, “well”, “loved/lovers”. By combining words that

are adjacent in the original review, we have the following keyphrases: “mccann oatmeal”,

“personally like”, “well loved oatmeal”, which are sufficient for people to interpret that the

reviewer has a quite positive feedback on this product. In contrast, keywords found by

TR and SS contain some noninformative words such as “cook”, “water”,”eater”, “single”,

as listed in Table 1.8. Those words may bring some difficulty to interpret this review. In
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addition, they are isolated from each other in the initial review so it is hard to combine those

into keyphrases.

Table 1.7. A review example of Amazon Fine Food review data from McAuley and Leskovec

[42].

Summary: Oatmeal for oatmeal lovers

McCann’s makes oatmeal for every oatmeal connoisseur, whether one likes it from the raw pellet state that

cooks for half an hour, to the sloth addled instant, which can be done in the microwave for under three

minutes. It’s all good, that’s for sure, and the beauty of the instant variety is that it is available in

different flavors as well as regular. This variety pack allows different tastes to be explored, as well as giving

you a chance to experience the difference between McCann’s and other well-known oatmeals. What I

personally like about McCann’s is that it cooks up thicker and with more body than the top brand here in

America. The Apples & Cinnamon, though, tends to be a little liquidy so you may want to experiment

with the amount of water you add. In my 1300watt microwave the oatmeal cooks up in about one minute

and twenty-seven seconds, so you should also watch that to get a handle on how much time and water to

use. The only bad thing -- if you can consider it a bad thing -- about this offering is that you have to buy

in lot so you’ll end up with six ten-count boxes. This is good if you have a whole family of oatmeal-eaters,

but if you’re a single person alone -- well, love oatmeal.

Table 1.8. Keywords identified by BSS, TR and SS. NOTE: “lovers/loved” means it can be

either “lover” or “loved” depending on contexts as they have the same root in the stemming

step.

Observed

keyphrases

BSS keywords TR keywords SS keywords

oatmeal,

lovers

mccann, oatmeal,

lovers/loved, personally,

every, like, well, known,

alone

mccann, oatmeal

lovers/loved, well, cook,

different, water, thing,

good

mccann, oatmeal,

lovers/loved, personally,

every, well, alone, single,

eater
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1.7. Discussion

We propose a novel Bayesian method for semi-supervised keyphrase extraction in sit-

uations when a (small) subset of keyphrases is known. We use an informative prior to

incorporate the graph-based information about the document structure. We propose two

MCMC algorithms, tMH within Gibbs and acMH within Gibbs, to sample from the high-

dimensional posterior distribution. Both algorithms provide favorable results compared to

the two state-of-the-art methods TR and SS. We recommend using tMH within Gibbs due

to its computational advantage.

Apart from existing methods, where keywords are selected based on importance scores,

our method produces the posterior probability of each word being a keyword. Thus, we

can use an FDR-based method to select the number of keywords. In practice, one has

to predetermine the FDR threshold γ. We select γ using the following approach: firstly

categorize articles into document pools by lengths and numbers of observed keyphrases; then

for short articles, γ can be set at 0.2 or lower since we do not expect a lot of words/phrases

identified; for long articles with lots of keyphrases observed (for examples, articles with long

titles), we can select γ at 0.25; for long articles with limited information observed, we can

pick a large γ such as 0.3 so as to identify more keyphrases/keywords. As shown in our

examples, this approach works reasonably well. We note that after fixing γ for a given

document pool, our method still has the ability to select different proportions of words as

keywords for different articles. In contrast, all existing methods select a fixed proportion of

words as keywords. Our experiment indicates that the proposed FDR-based method tends

to identify more when the keyword proportion is higher. We demonstrate the performance of

the proposed methods using a collection of different documents, including abstracts, articles

from different subjects, and an Amazon product review. We find that our BSS method has

better or competitive performance in all cases.
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CHAPTER 2

Jackknife Empirical Likelihood for Assessing Heterogeneity in Meta-analysis

2.1. Introduction

Meta-analysis is a statistical procedure that combines results from multiple independent

studies to achieve a reliable conclusion. Since its introduction, it has been widely used in

fields such as biology, psychology, medical and social sciences [5, 60, 54, 45]. Meta-analysis

can be extremely useful when different studies addressing the same research question have

inconsistent results, perhaps due to reasons such as small sample sizes, sparse data, different

experimental conditions, and heterogeneous population subtypes, etc. For instance, Goyal

et al. [22] conducted a literature search to examine if obesity has an effect on the outcomes of

spinal surgeries. Several studies showed statistically significant evidence of higher perioper-

ative morbidity for patients with obesity while others did not find any significant difference.

By conducting a meta-analysis, they were able to draw an overall conclusion that the differ-

ence was not statistically significant among patients with a minimally invasive surgery, but

significant for people who underwent open surgeries.

In meta-analysis, the random-effects (Re) model [7, 15, 24, 6] has been commonly used to

model observed effect sizes from component studies. Suppose that there are K independent

studies involved, each reporting Yi, the estimates of the effect sizes, and s2i , their within-study

variances. The Re model assumes that for study i, i = 1, 2, ..., K,
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Yi = θi + εi, θi = θ + δi, (2.1)

where all δi’s and εi’s are independent, θi is the true effect size of study i that may vary across

studies, εi is the experimental error of Yi, θ is the mean effect size, and δi is the random

error of θi. Further, the Re model assumes εi ∼ N(0, σ2
i ), where σ2

i denotes the within-

study variance, which is usually replaced by its estimate s2i and then treated as known for

convenience, and δi ∼ N(0, τ 2), where τ 2 is the variance parameter that accounts for the

between-study heterogeneity. In a special case, when τ 2 = 0, all studies share a common

effect size θ (i.e., θi ≡ θ), and consequently the Re model reduces to the fixed-effect (Fe)

model [41, 6, 7]. Many early studies in meta-analysis focused on estimating and testing

the overall treatment effect θ [41, 13]. Later on, people started to study the heterogeneity

parameter τ 2, because a poorly estimated τ 2 can lead to inaccurate estimation and inference

of θ. In this paper, we aim to construct nonparametric confidence intervals (CIs) for τ 2,

which are especially useful in meta-analysis of rare binary events data, where the normality

assumption in the Re model is often unmet.

Cochran [12] proposed a Q-statistic, which was later used by others to test if different

experiments have variation in effect sizes in addition to their own experimental errors, namely

Q =
K∑
i=1

wi(Yi − θ̂)2, (2.2)

where θ̂ =
∑

iwiYi/
∑

iwi is the estimated overall effect size and wi = 1/s2i is the weight

assigned to study i. Under the Fe model with the normality assumption, Q approximately

follows a chi-square distribution with K − 1 degrees of freedom, denoted χ2
K−1, given the

sample size of each study is large. This asymptotic property has been widely used in random-

effects meta-analysis to test the null hypothesis H0 : τ 2 = 0, and this test has been known

as the standard Q test. However, in meta-analysis with non-normal Yi’s, the distribution of
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Q is complex in general, which may not be simply approximated by the χ2
K−1 distribution

[28].

To construct CIs for the heterogeneity parameter τ 2, there are three major approaches

in the literature [63]. The first, also the most common approach is to consider the dis-

tribution of Cochran Q-statistic in (2.2) or a modified Q-statistic (e.g., Q with a different

weighing scheme) under the Re model as a function of τ 2, and then obtain the intervals via

a test-inverting process. Methods using this approach include (i) QP, the Q-profile method

considered in both Knapp et al. [37] and Viechtbauer [56], (ii) MQP, the modified Q-profile

method, proposed in Knapp et al. [37], (iii) BT, proposed in Biggerstaff and Tweedie [3], (iv)

BJ, proposed in Biggerstaff and Jackson [4], (v) J, proposed in Jackson [31], (vi) AJ, the ap-

proximate Jackson method proposed in Jackson et al. [34], and (vii) QPUT, the unequal-tail

Q profile method proposed in Jackson and Bowden [32]. The second approach is to construct

profile likelihood CIs under the Re model based on maximum likelihood (ML) estimation or

restricted maximum likelihood (REML) estimation, denoted by PLML [24] and PLREML [56],

respectively. The third is to construct Wald confidence intervals based on the ML or REML

estimation, denoted by WaldML and WaldREML[3], respectively. Other approaches include

CIs based on bootstrapping [16], the Sidik and Jonkman (SJ) estimator of τ 2 that is derived

from the weighted residual sum of squares in the framework of a linear regression model [51],

and an improved SJ estimator τ 2 [52], denoted by BS, SJ, and SJHO, respectively. We refer

readers to Zhang et al. [63] for a detailed review of these CI methods.

The above methods typically assume that the Re model (2.1) has normally distributed

εi’s and δi’s. This yields Yi|θi ∼ N(θi, σ
2
i ) and θi ∼ N(θ, τ 2), which Jackson and White [33]

referred to as the within-study and between-study distributions. The normality of the within-

study distributions is often justified by the central limit theorem that states the sampling

distribution of an estimated effect size is approximately normal when the sample size is large.

However, it would be invalid for data with a small to moderate sample size or data with

severe skewness or heavy tails. The normality of the between-study distribution is usually
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assumed based on mathematical convenience, and it is hard to defend why the underlying

true study effects should be always normal. Hardy and Thompson [25] provided practical

strategies to examine this assumption, including informal inspection of normal Quartile-

Quartile plots and formal normality testing (e.g., the Shapiro-Wilk test [50]). In the past,

concerns on these normality assumptions have been raised, and it has been further pointed

out that statistical methods that make fewer normality assumptions should be considered

more often in practice [29, 33]. We propose to use jackknife empirical likelihood (JEL) for

constructing CIs for the heterogeneity parameter, which does not require any distributional

assumption on effect sizes.

Empirical likelihood (EL) is an effective nonparametric tool for various statistical infer-

ences [46, 47]. One nice feature of EL is that it only requires independent and identically

distributed (i.i.d) samples with no extra assumption. The major idea of EL is to maximize

the profile empirical likelihood function with constraints from parameters of interest. How-

ever, computation would be extensive if such constraints are nonlinear. Jackknife empirical

likelihood (JEL), introduced by Jing et al. [35], constructs jackknife pseudo-values and then

treats them as i.i.d observations in the empirical likelihood function so that the constraints

are always linear, greatly facilitating the computation involved in many statistical problems

(e.g., [1, 62, 49]).

The rest of the chapter is organized as follows. In Section 2.2, we first review the pre-

liminaries on EL and JEL, and then apply JEL to interval estimation of the heterogeneity

parameter τ 2 in random-effects meta-analysis. We prove that the resulting jackknife empir-

ical likelihood ratio approximately follows a χ2
1 distribution or a scaled χ2

1 distribution from

which CIs can be constructed. In Sections 2.3 and 2.4, using simulated data and real exam-

ples for rare binary events, we examine the performance of the proposed JEL methods and

compare them with existing methods in situations when non-normality occurs. We conclude

the paper with a brief discussion in Section 2.5.
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2.2. Methodology

2.2.1. Review of EL and JEL

Let X = (X1, ..., Xn) denote i.i.d random variables from an unknown distribution F and

θ be a p × 1 parameter vector of interest with conditions E{m(X1,θ)} = 0, where m is

a d × 1 vector-valued function. Let x = (x1, ..., xn) be the observed samples and suppose

pi ≥ 0 and
∑

j:xj=xi
pj = F (xi)− F (xi−) for i = 1, 2, ..., n. Then the empirical likelihood of

pi’s is defined as

L(p1, ..., pn) = L(p1, ...pn; x) =
n∏
i=1

pi, (2.3)

and it reaches the maximum when pi = 1/n. Consider the following hypothesis test

H0 : θ = θ0 vs. H1 : θ 6= θ0.

Let p̃1, ..., p̃n be the maximum empirical likelihood estimators (MELEs) under H0 that

maximize (2.3) with the following constraints:

pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pi ·m(xi,θ0) = 0. (2.4)

We denote (p̃1, ..., p̃n) by {p̃1(θ0), ..., p̃n(θ0)}. Then L(p̃1, ..., p̃n) = L{p̃1(θ0), ..., p̃n(θ0)} =

L(θ0) can be considered as a profile empirical likelihood function for θ0. As a result, a

likelihood ratio test can be derived:

R(θ0) =
maxL(p1, ..., pn)

maxH0 L(p1, ..., pn)
=

(n−1)n

L(p̃1, ..., p̃n)
=

(n−1)n

L(θ0)
,
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where the null hypothesis H0 is rejected when R(θ0) has large values. Owen [47] proved that

−2 log{R(θ)} has a limiting χ2
d distribution under mild conditions, thus a confidence region

of θ can be constructed by inverting the likelihood ratio test.

A simple application of empirical likelihood is for estimating the distribution mean θ =

E(X1). The moment condition on the parameter is E {m(x, θ)} = 0, where m(x, θ) = x− θ.

Under the null hypothesis H0 : θ = θ0, (2.4) can be simplified to

pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

pixi = θ0. (2.5)

Owen [46] showed that L(θ0) can be calculated in a closed form under (2.5) using the La-

grange multiplier, namely

L(θ0) =
n∏
i=1

1

n{1 + λ(xi − θ0)}
, (2.6)

where λ satisfies

1

n

n∑
i=1

xi − θ0
1 + λ(xi − θ0)

= 0. (2.7)

This yields

−2 log{R(θ0)} = 2
n∑
i=1

{1 + λ(xi − θ0)}
d→ χ2

1.

However, when conditions are generalized from E{m(X1,θ)} = 0 to E{m(X,θ)} = 0,

the use of empirical likelihood may not be appealing. Such generalization can add non-

linear constraints of pi to the profile empirical likelihood and make it computationally dif-

ficult when finding the solution. Jing et al. [35] used U -statistics to illustrate the prob-

lem. Let the parameter of interest θ = E[h(X1, ..., Xr)], where 2 ≤ r ≤ n and h(·)
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is a symmetric kernel function of θ. Then the one-sample U -statistic of θ is given by

Un =
(
n
r

)−1∑
1≤i1≤...≤ir≤n h(Xi1 , ..., Xir), and the constraints in (2.4) can be written as

pi ≥ 0,
n∑
i=1

pi = 1, θ̃(X, p1, ..., pn) = θ0,

where

θ̃(X, p1, ..., pn) =

(
n

r

)−1 ∑
1≤i1≤...≤ir≤n

nrpi1 ...pirh(Xi1 , ..., Xir).

It is easy to see that the constraints are nonlinear in pi’s. To solve such a problem, they

proposed a jackknife empirical likelihood approach that creates jackknife pseudo-values as

follows:

V̂i = nTn − (n− 1)T
(−i)
n−1 , (2.8)

where Tn is an unbiased estimator of the parameter using all n samples and T
(−i)
n−1 is the same

estimator but with the ith sample removed. Those pseudo-values are treated as observed

values in the empirical likelihood so that the constraints become

pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piV̂i = θ0,

which can be solved easily using (2.6) and (2.7) with xi’s replaced by V̂i’s. Jing et al. [35]

further showed that for the U -statistics, −2 log{R(θ)} = 2
∑n

i=1{1 + λ(V̂i − θ)}
d→ χ2

1 under

mild conditions. The main advantage of JEL is that it can greatly reduce the computational

complexity by turning the statistic of interest into a sample mean based on the jackknife

pseudo-values.
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2.2.2. JEL CIs for the heterogeneity parameter in meta-analysis

Consider the Re model (2.1) without the normality assumptions, where we only assume

that the first two moments satisfy E(εi) = 0, V ar(εi) = σ2
i , E(δi) = 0, and V ar(δi) = τ 2.

We start with finding an unbiased estimator of the between-study heterogeneity parameter

τ 2 in a meta-analysis of K studies in total. Dersimonian and Kacker [14] showed that

E(Q) = τ 2

(
K∑
i=1

wi −
∑K

i=1w
2
i∑K

i=1wi

)
+

(
K∑
i=1

wiσ
2
i −

∑K
i=1w

2
i σ

2
i∑K

i=1wi

)
,

where σ2
i ’s are assumed to be known and will be replaced by s2i ’s (i.e., σ2

i and s2i are treated

equivalently), wi can be any positive weight for the ith study in (2.2). Using the method of

moments, an unbiased estimator of τ 2 is then given by

τ̂ 2 =
Q−

(∑K
i=1wiσ

2
i −

∑K
i=1 w

2
i σ

2
i∑K

i=1 wi

)
∑K

i=1wi −
∑K

i=1 w
2
i∑K

i=1 wi

. (2.9)

Once each study has been assigned a weight, we can construct confidence intervals for τ 2

by finding jackknife pseudo-values via (2.9) and (2.8). In particular, we consider two sets of

weights: (i) equal weights wi = 1/K, (ii) inverse-variance weights wi = 1/s2i .

2.2.2.1. JEL with equal weights

For equal weights, the estimator of τ 2 in (2.9) can be written as

TK =

∑K
i=1(Yi − Ȳ )2

K − 1
−
∑K

i=1 s
2
i

K
, (2.10)

and jackknife pseudo-values V̂i’s can be obtained via V̂i = KTK − (K − 1)T
(−i)
K−1, where T

(−i)
K−1

is defined similarly as in (2.8) (i.e., recomputing the estimator by leaving study i out). It
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is straightforward to show that all pseudo-values are also unbiased estimates of τ 2. Further,

the profile empirical likelihood can be expressed by

L(τ 2) = max{
K∏
i=1

pi : pi ≥ 0,
K∑
i=1

pi = 1,
K∑
i=1

piV̂i = τ 2},

and the log empirical likelihood ratio is then given by

− 2 log
{
R(τ 2)

}
= 2

K∑
i=1

{
1 + λ(V̂i − τ 2)

}
, (2.11)

where λ is the solution of

1

K

K∑
i=1

V̂i − τ 2

1 + λ(V̂i − τ 2)
= 0. (2.12)

Define δi+εi , µi and V ar(µ2
i ) , S2

i . The following theorem states that the log empirical

likelihood ratio in (2.11) converges to χ2
1 as the number of studies K increases.

Theorem 1. For the τ 2 estimator with equal weights wi = 1/K, under assumptions that

σ2
i > 0 and S2

i <∞ for i = 1, 2, . . . , K, we have

l(τ 2) = −2 log{R(τ 2)} d→ χ2
1 as K →∞.

The proof is given in Section A1.1 of Appendix A. As a result, an asymptotic 100(1−α)%

CI for τ 2 using JEL with equal weights can be constructed as

{τ 2 : −2 log{R(τ 2)} < χ2
1,1−α}. (2.13)

We refer to this CI method as JEL with equal weights, labeled JELEQ.

35



2.2.2.2. JEL with inverse-variance weights

For inverse-variance weights wi = 1/s2i , the estimator of τ 2 in (2.9) can be written as

TK =
Q− (K − 1)

A0

, (2.14)

where A0 =
∑

iwi − (
∑

iw
2
i )/(

∑
iwi). Then jackknife pseudo-values and the log empirical

likelihood ratio can be calculated in the same way as the equal-weight case. With the same

definition of S2
i in Section 2.2.2.1, we establish the following theorem.

Theorem 2. For the τ 2 estimator with inverse-variance weights wi = 1/s2i , assuming that

σ2
i > 0, ε < maxi s

2
i /mini s

2
i < 1/ε for some constant ε > 0, and S2

i <∞ for i = 1, 2, . . . , K,

we have

C · l(τ 2) = −2C log{R(τ 2)} d→ χ2
1 as K →∞,

where C is a constant scale factor.

The definition of C and the proof of Theorem 2 can be found in Section A1.2 of Appendix

A. Similarly, an asymptotic 100(1 − α)% CI for τ 2 can be constructed using (2.13), which

we refer to as JEL with inverse-variance weights, labeled JELIV.

2.2.2.3. Ending remarks

With equal and inverse-variance weights, the estimator in (2.9) becomes the Hedges and

Olkin (HO) estimator Hedges and Olkin [27] and the Dersimonian and Laird (DL) estimator

Dersimonian and Laird [15], respectively, but without truncation. As τ 2 ≥ 0, the HO

and DL estimators both truncate negative values to zero, which leads to biased estimation.

Thus, when constructing jackknife pseudo-values to obtain JEL CIs, we should not apply

truncation, in order to ensure unbiasedness of the τ 2 estimates. However, if an upper/lower
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bound of a JEL CI is negative, we should replace it with zero; that is, for a JEL CI that

covers zero, the lower bound is automatically reset to zero; in the extreme case when a JEL

CI is entirely below zero, it is reset to {0}.

2.3. Simulation focusing on rare binary events

2.3.1. Simulation set-up

We conduct simulation in the context of meta-analysis of rare binary events, to examine

the performance of the proposed JEL methods on interval estimation of the heterogeneity

parameter τ 2 and to compare it with existing CI methods. In a meta-analysis of size K, each

of the K studies is represented by a 2× 2 contingency table with elements (nCi , n
T
i , x

C
i , x

T
i ),

satisfying xCi ∼ Binomial(nCi , p
C
i ) and xTi ∼ Binomial(nTi , p

T
i ), where pCi (pTi ) is the event

probability, nCi (nTi ) and xCi (xTi ) are the number of subjects and events in the control (treat-

ment) group, respectively. To generate event probabilities, Li and Wang [39] proposed a

flexible binomial-normal simulation model, which allows treatment and control groups to

have different within-group variability on the logit scale, namely

logit(pCi ) = µi − ωθi, logit(pTi ) = µi + (1− ω)θi, (2.15)

where µi ∼ N(µ, σ2), θi ∼ N(θ, τ 2) , µ′is and θ′is are independent, and ω is a constant between

0 and 1. Bhaumik et al. [2] employed the model with ω = 0, where the treatment group is

assumed to have larger variability than the control group. When ω = 0.5, (2.15) is reduced

to a commonly used model in Smith et al. [53] where both groups are assumed to have

equal variability. In our simulation, we set ω ∈ {0, 0.5, 1}, representing smaller/equal/larger

variability in the control group, compared with the treatment group. Further, to understand

how the proposed nonparametric methods perform under different distributions of treatment

effects, we adapt the model (2.15) by simulating θi’s from (i) θi ∼ N(θ, τ 2); (ii) θi = θ +
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τti/
√

3, where ti ∼ T3 ( a standard t distribution with three degrees of freedom); (iii)

θi = θ+τ(ei−1), where ei ∼ exp(1). Note that the non-normal distributions also have mean

θ and variance τ 2, but (ii) represents heavy-tailed distributions and (iii) represents skewed

distributions. Since the parameter of our interest is τ 2 instead of the overall effect θ, we set

θ = 0, σ2 = 0.5 but vary τ 2 from zero to one with step size 0.1. Further, to estimate the

treatment effect θi measured by log odds ratio (LOR) in study i, we add 0.5 to each cell

count in the ith contingency table, as suggested by Walter and Cook [57], to reduce bias,

Yi = θ̂i = log
xCi + 0.5

nCk − xCi + 0.5
− log

xTi + 0.5

nTk − xTi + 0.5
.

We further estimate the within-study variance by

s2i =
1

xCi + 0.5
+

1

nCi − xCi + 0.5
+

1

xTi + 0.5
+

1

nTi − xTi + 0.5
.

Other parameters are set up as follows. The number of studies K is set to be 20, 50,

and 80. As in Li and Wang [39], to allow varying allocation ratios across studies, we set

nTi = Rin
C
i , where log2Ri ∼ N(log2R, σ

2
R), R = 1, σ2

R = 0.5, and nCi ’s are randomly

generated from uniform[2000, 3000] for large-sample (LS) cases and from uniform[20, 1000]

for small-sample (SS) cases. To reflect rare and very rare event rates, we set µ ∈ {−2.5,−5},

which is equivalent to {0.076, 0.0067} in the probability scale, respectively. All those choices

of K, µ, ω, along with two scenarios of sample sizes (LS vs. SS) and three distributions of θi’s,

result in 108 combinations in our simulation for different τ 2 values in the set {0, 0.1, ..., 1}.

For each unique setting, 1000 replicate datasets are generated.

To benchmark the performance of our proposed JEL methods on interval estimation, we

calculate CIs using JELEQ and JELIV as well as a comprehensive list of existing methods.

The list includes fourteen methods mentioned in the introduction: QP, MQP, QPUT, BT,

BJ, J, AJ, SJ, SJHO, PLML, PLREML, WaldML, WaldREML, and BS. We implement BS in a

nonparametric manner: first randomly draw B = 200 samples of size K with replacement
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from a simulated dataset with K component studies; next, compute the DL estimator τ̂ 2DL

[15] for each of the B samples and obtain the empirical distribution of τ̂ 2DL; last, construct

the 95% CI using the 2.5th and the 97.5th percentiles of the empirical distribution. Thus, all

these methods except for BS, JELEQ, and JELIV assume the normality for valid inference.

The performance metric used in our simulation is the empirical coverage probability, defined

as the proportion of computed CIs that cover the true value of τ 2. For each method, 95%

CI’s are computed so that the nominal level of the coverage probability is 0.95.

2.3.2. JELEQ is superior to JELIV

Normal T3 Exponential

τ 2 JELIV JELEQ JELIV JELEQ JELIV JELEQ

0 0.975 0.971 0.979 0.973 0.980 0.977

0.1 0.896 0.930 0.688 0.737 0.796 0.853

0.2 0.876 0.911 0.669 0.733 0.776 0.851

0.3 0.886 0.937 0.631 0.740 0.787 0.852

0.4 0.869 0.928 0.619 0.747 0.757 0.841

0.5 0.868 0.930 0.579 0.727 0.723 0.850

0.6 0.863 0.942 0.564 0.739 0.715 0.853

0.7 0.847 0.930 0.493 0.725 0.698 0.848

0.8 0.830 0.922 0.503 0.750 0.630 0.843

0.9 0.809 0.919 0.459 0.733 0.639 0.854

1 0.790 0.929 0.374 0.706 0.577 0.850

Table 2.1. Empirical coverage probabilities of 95% CIs constructed using JELEQ and JELIV

for large-sample settings with K = 50, µ = −2.5, and ω = 0.5. Note that for τ 2 = 0,

the distribution of treatment effects is irrelevant and so the three settings for the different

distributions are merely replicates.

We begin with the comparison between JELEQ and JELIV, the two JEL methods with

different weighing schemes. Table 2.1 shows empirical coverage probabilities of the two

methods for large-sample settings with K = 50, µ = −2.5, and ω = 0.5. While the two
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methods have similar performance at τ 2 = 0, JELIV provides consistently lower coverage

than JELEQ for all positive τ 2 values. As τ 2 gets larger, the performance of JELIV becomes

worse but JELEQ is relatively robust to the change of τ 2 so that the advantage of JELEQ

over JELIV gets larger, regardless of the type of distribution. This advantage prevails in all

other settings as well (results are omitted for brevity).

Recall that JELIV uses 1/σ2
i as weights when estimating τ 2 and further assumes these

variances be known. But in practice, they have to be estimated by 1/s2i . By contrast,

JELEQ uses constant weights 1/K, and so avoids errors in estimating such weights. Due to

the superior performance of JELEQ as well as its simplicity, we prefer JELEQ to JELIV. In

what follows, we report results from the different methods but excluding JELIV.

2.3.3. When between-study heterogeneity does not exist (τ 2 = 0)

Method Large Sample Small Sample

K JELEQ QP MQP QPUT BT JELEQ QP MQP QPUT BT

20 0.974 0.974 0.974 0.990 1 0.983 0.985 0.986 0.997 1

50 0.975 0.975 0.975 0.987 1 0.977 0.988 0.988 1 1

80 0.970 0.983 0.983 0.990 1 0.992 0.991 0.992 0.998 1

K BJ J AJ SJ SJHO BJ J AJ SJ SJHO

20 1 0.976 0.989 0 0 1 0.994 0.994 0 0

50 1 0.972 0.977 0 0 1 0.993 0.994 0 0

80 1 0.974 0.981 0 0 1 0.998 0.981 0 0

K PLML PLREML WaldML WaldREML BS PLML PLREML WaldML WaldREML BS

20 0.994 0.986 1 1 0.992 0.993 0.986 1 1 0.996

50 0.976 0.971 0.999 0.999 0.984 N/A N/A 1 1 0.996

80 0.983 0.980 0.998 0.997 0.990 N/A N/A 1 1 0.992

Table 2.2. Empirical coverage probabilities of 95% CIs constructed using different methods

for settings with τ 2 = 0 and µ = −2.5. Note that when K = 50 or 80, PLML and PLREML

failed to construct CIs for small-sample settings, due to the convergence issue.

When the heterogeneity does not exist, the treatment effects are constant across compo-

nent studies so that the distribution of θi’s and the value of ω become irrelevant. Table 2.2
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shows empirical coverage probabilities for 15 different methods of computing 95% CIs for τ 2

by the number of studies K in LS and SS settings with µ = −2.5, respectively. Most meth-

ods including JELEQ have coverage higher than the nominal level 0.95 and some methods

such as BT, BJ, WaldML and WaldREML even have have a (virtually) 100% coverage. By

contrast, SJ and SJHO have zero coverage, due to the fact that they always produce positive

intervals. Similar patterns can be found in Table 2.3 when event rates go lower (µ = −5).

Except for SJ and SJHO, the coverage for every method is always high and gets even closer

to 100% when the event rates or sample sizes become smaller. Also, the coverage appears

not to change drastically with different K values.

Large Sample Small Sample

K JELEQ QP MQP QPUT BT JELEQ QP MQP QPUT BT

20 0.985 0.989 0.989 0.997 1 1 1 1 1 1

50 0.983 0.995 0.995 0.999 1 1 1 1 1 1

80 0.990 0.999 0.999 1 1 1 1 1 1 1

K BJ J AJ SJ SJHO BJ J AJ SJ SJHO

20 1 0.993 0.997 0 0 1 1 1 0 0

50 1 0.999 0.999 0 0 1 1 1 0 0

80 1 1 1 0 0 1 1 1 0 0

K PLML PLREML WaldML WaldREML BS PLML PLREML WaldML WaldREML BS

20 0.996 0.993 1 1 0.995 0.999 0.998 1 1 1

50 0.997 0.992 1 1 0.997 0.999 0.999 1 1 1

80 0.994 0.993 1 1 0.998 1 1 1 1 1

Table 2.3. Empirical coverage probabilities of 95% CIs constructed using different methods

for settings with τ 2 = 0 and µ = −5.

2.3.4. When between-study heterogeneity exists (τ 2 > 0)

We compare the performance of the methods under different distributions of θi’s. For

each type of distribution, we report results for three cases: (i) µ = −2.5 and LS; (ii) µ = −2.5

and SS; (iii) µ = −5 and LS. We omit the most difficult case: µ = −5 and SS, where all

methods do not perform adequately and the coverage of 95% CIs can be often below 50%.
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For case (i), the results for all fifteen methods are reported. For cases (ii) and (iii), we only

report results for eleven methods because the likelihood-based methods, PLML, PLREML,

WaldML, and WaldREML, frequently fail due to the convergence issue. Also, the performance

of QP and MQP is very similar and so their coverage curves overlap in many cases.

Results for treatment effects from heavy-tailed distributions: Figure 2.1 presents

empirical coverage probabilities of different 95% CIs for settings with ω = 0.5 and θ′is

generated from T3 distributions with much heavier tails than normal distributions. In fact,

T3 has the heaviest tails among T distributions with finite variances. The rows of the figure

correspond to cases (i), (ii) and (iii), from top to bottom, respectively; and the columns

represent K = 20, 50 and 80, from left to right, respectively. We can observe that all

methods have coverage lower than the nominal level 0.95, indicated by the horizontal line at

the top. However, for K =50 and 80, JELEQ is a clear winner and provides higher coverage

than all the other methods. Even for K = 20, it is among the top-performance group, though

BT becomes the best in all settings of K = 20 except for cases (ii) and (iii) with small τ 2,

where QP and MQP have the best performance instead. We note that BT can perform

badly elsewhere (e.g., settings with K = 80 and large τ 2). It appears that the performance

of JELEQ is not sensitive to the change of τ 2; however, a larger K would improve its coverage

and lift its gain over the other methods. Similar patterns can be observed in Figures A1 and

A2 in Appendix A, which present coverage results for settings with ω = 1 and 0, respectively.

It seems that the change of ω does not make a big difference for heavy-tailed distributions

as long as they are symmetric.

Results for treatment effects from skewed distributions: We find that ω has an

impact on the relative performance of the different methods when treatment effects are

exponentially distributed. Figures 2.2—2.4 show results for ω = 1, 0.5 and 0, respectively.

As we can observe from Figures 2.2 and 2.3, JELEQ outperforms the other methods in nearly

all settings with K = 50 and 80; for K = 20, QP and MQP offer the highest (or close to
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Figure 2.1. Empirical coverage probabilities of 95% CIs constructed using different methods

for settings with ω = 0.5 (i.e., equal variability in treatment and control groups) and effect

sizes θi’s from T3 distributions.
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Figure 2.2. Empirical coverage probabilities of 95% CIs constructed using different methods

for settings with ω = 1 (i.e., smaller variability in the treatment than in the control) and

effect sizes θi’s from exponential distributions.
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Figure 2.3. Empirical coverage probabilities of 95% CIs constructed using different methods

for settings with ω = 0.5 (i.e., equal variability in treatment and control groups) and effect

sizes θi’s from exponential distributions.
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Figure 2.4. Empirical coverage probabilities of 95% CIs constructed using different methods

for settings with ω = 0 (i.e., larger variability in the treatment than in the control) and effect

sizes θi’s from exponential distributions.
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highest) coverage when ω = 1 while BT is often the best when ω = 0.5. Figure 2.4 shows

that for ω = 0 (i.e. larger variability in the treatment than in the control), JELEQ is still

among the top-performance group, but usually beaten by BT and BJ. Also, as in previous

cases under heavy-tailed distributions, the performance of JELEQ seems to be quite robust

to the change of τ 2 and ω (while many other methods are not), and the larger K is, the

better it performs.

Figure 2.5 compares widths of the different CIs for settings with K = 50, 80 and ω = 0.5,

in which JELEQ has the best coverage; Figure 2.6 compares the widths for settings with

K = 50, 80 and ω = 0, in which BT and BJ have the best coverage instead. In each of the

figures, the first (second) row corresponds to K = 50 (80), respectively. Evidently, the CI

width of each method increases (roughly linearly) as τ 2 gets larger, meanwhile the variability

between the methods also becomes larger. More importantly, we observe from the two figures

that the method offering the highest coverage also has the largest width. We note that when

CIs have quite different coverage probabilities and widths, it is actually a choice between

methods with low bias and high variability and methods with high bias and low variability.

In practice, people generally prefer the method with the least bias. Narrower intervals are

only useful when they are able to provide adequate coverage. Thus, for different types of CIs,

we should focus on the comparison on their coverage probabilities. Only for those that can

offer comparable (adequate) coverage, we may further compare their widths and the method

offering the shortest intervals would win.

Results for normal treatment effects: We proceed to examine the performance of

JELEQ when the normality assumption holds. Here, we do not expect that JELEQ, as a

nonparametric method, outperforms the other methods that utilize the normality to con-

struct CIs. Figure 2.7 shows coverage probabilities of different CIs for settings with ω = 0.5

and θ′is generated from normal distributions. QP and MQP perform well, whose coverage is

always close to the nominal level 0.95. Other methods like BT, BJ, J, SJ and SJHO have high
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Figure 2.5. Width curves of 95% CIs constructed using different methods for settings with

ω = 0.5 (i.e., equal variability in treatment and control groups) and effect sizes θi’s from

exponential distributions.

Figure 2.6. Width curves of 95% CIs constructed using different methods for settings with

ω = 0 (i.e., larger variability in the treatment than in the control) and effect sizes θi’s from

exponential distributions.
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coverage as well except that their performance dips in cases (ii) and (iii) with small τ 2. BS,

as another nonparametric method, has the lowest coverage in most of the cases. In contrast,

JELEQ works reasonably well though it does not make any use of the normality assumption

– it has decent coverage probabilities (around 0.90) for K = 20, and has competitive perfor-

mance (mostly 0.92-0.93) for K =50 and 80. Again, Figure 2.7 shows that the performance

of JELEQ is quite stable as τ 2 changes. Figures A3 and A4 in Appendix A further report

results for settings with ω = 1 and ω = 0, which suggest that ω does not have a significant

effect on the coverage, due to the symmetry of normal distributions.

2.3.5. Summary

For normal treatment effects, most methods can provide high coverage. However, when

the treatment effects are non-normal, none of the CIs reaches the nominal level, and the

difference in coverage can be substantial. The performance of likelihood-based methods

(PLML, PLREML, WaldML, WaldREML) is generally not good, perhaps because they are more

sensitive to the violation of the normality assumption. Another issue for the likelihood-based

CIs is the computational cost. It takes much longer time to construct these CIs, compared

with other methods, and sometimes they do not converge. Further, the performance of some

methods is sensitive to the value of ω for skewed distributions. For example, BT and BJ

work well when ω = 0 but may work poorly when ω = 0.5 or 1 (e.g., settings with large

τ 2 and K values). In contrast, JELEQ has relatively steady performance across different ω

values. Further, as the number of studies K increases, JELEQ has generally better coverage,

while some other methods such as QP, MQP, J and AJ tend to have worse coverage.

Among all, the winner can be any of JELEQ, BT, QP, and MQP, depending on the type

of distribution, the values of ω and τ 2, sample size, and event rate. JELEQ is clearly the best

in many non-normal settings with large K. Overall, the performance of JELEQ seems to be

robust to different values of µ, ω, τ 2 and the type of distribution. Thus, even when it is not
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Figure 2.7. Empirical coverage probabilities of 95% CIs constructed using different methods

for settings with ω = 0.5 (i.e., equal variability in treatment and control groups) and effect

sizes θi’s from normal distributions.
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the best, JELEQ is still in the top-performance group. Unlike JELEQ, the other three (BT,

QP and MQP) can perform poorly in some settings.

2.4. Data Examples

2.4.1. Handedness and Eye-dominance

(a) (b)

Figure 2.8. Density plots of observed effect sizes (measured by LOR) from (a) handedness

and eye-dominance data; (b) GSTP1 and lung cancer data.

People have preferences for use of a hand, called the dominant hand, to do major activi-

ties. Such preferences are also known as handedness. Most people prefer to use their right

hands. According to Hardyck and Petrinovich [26], only one in ten people is left-handed.

Likewise, people also have their dominant eyes and about one third people are left-eyed [48].

Bourassa et al. [9] conducted a meta-analysis to investigate the association between hand-

edness and eye-dominance. The meta-analysis includes 54,087 subjects from 54 independent

studies, each summarized by a 2×2 table recording counts of being “left-handed, left-eyed”,

“left-handed, right-eyed”, “right-handed, left-eyed”, and “right-handed, right-eyed”. We di-

vide the subjects into two groups based on their dominant eyes, and consider “left-handed”
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as the event of interest (see Table A1 in Appendix A). The overall event rate is 10.1% and

there are small-sized studies (e.g., 10+ studies have sample sizes smaller than 100). Figure

2.8(a) presents the density of observed LORs from the individual studies, which clearly has

a long left tail, indicating a left-skewed distribution. Furthermore, the Shapiro-Wilk test

yields a p-value smaller than 0.001, showing very strong statistical evidence for violation

of the normality in this dataset. The HO and DL estimates of τ 2 are given by 0.531 and

0.303, respectively. Also, the estimated variances of the observed LORs in the treatment

and control groups are 1.088 and 0.553, respectively, suggesting that the value of ω is close

to zero. Thus, this meta-analysis is somewhat similar to our simulation settings of K = 50,

µ = −2.5, SS, ω = 1 for right skewed distributions with the middle-range values of τ 2. Based

on the fifth subplot in Figure 2.2, we may expect that JELEQ has the best coverage, followed

by QP and MQP, while BT, BJ and BS are the worst three.

Table 2.4 shows the CIs of τ 2 obtained by the different methods. Besides SJ and SJHO

that produce only positive intervals, all the other methods except for BT and BJ exclude

zero in their CIs. Combined with our simulation results, this seems to indicate (i) BT and

BJ perform poorly, and (ii) the between-study heterogeneity occur in the data. Compared to

JELEQ, the other intervals are shorter; however, for settings as in this example, simulation

suggests that they provide poorer coverage. In order to cover the true value of τ 2 with a

high confidence, a longer interval may be needed and JELEQ does so automatically.

Method JELEQ QP MQP QUT BT

CI (0.203, 1.227) (0.253, 0.816) (0.250, 0.816) (0.227, 0.765) [0, 0.973)

Method BJ J AJ SJ SJHO

CI [0, 0.786) (0.225, 0.749) (0.209, 0.713) (0.381, 0.823) (0.332, 0.717)

Method PLML PLREML WaldML WaldREML BS

CI (0.122, 0.523) (0.245, 0.730) (0.252, 0.753) (0.192, 0.650) (0.196, 0.670)

Table 2.4. Data example of handiness and eye-dominance: 95% CIs of the between-study

heterogeneity τ 2 constructed using different methods.
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2.4.2. GSTP1 Gene and Lung cancer

Feng et al. [18] conducted a meta-analysis to investigate the association between the

glutathione S-transferase P1 (GSTP1) gene and lung cancer. The event of interest is the

GG genotype of GSTP1 and the overall event rate is around 10.5%. Subjects are split into

two groups based on whether they had lung cancer or not. The meta-analysis includes 50

studies and 44 of them have non-missing counts for the GSTP1/GG genotype. Table A2

in Appendix A shows actual data for these 44 studies, and again, there exist small-sized

studies (e.g., the smallest sample size is 35). Figure 2.8(b) shows that the density of the

observed LORs is roughly symmetric, but with heavy tails on both sides. The Shapiro-Wilk

test confirms that the evidence for non-normality in this example is statistically significant

at the significance level α = 0.05 (p-value is 0.034). The HO and DL estimates of τ 2 are

given by 0 and 0.006, respectively. Also, the estimated variances of the observed LORs in

the treatment and control groups are 0.762 and 0.869, respectively, suggesting that the value

of ω is perhaps about 0.5. Thus, this meta-analysis is similar to our simulation settings of

K = 50, µ = −2.5, SS, ω = 0.5 for heavy-tailed distributions with τ 2 close or equal to zero.

Based on the fifth subplot in Figure 2.1, we may expect that again, JELEQ has the best

coverage, followed by BT.

Table 2.5 shows the CIs of τ 2 obtained by the different methods. Except for the positive

intervals SJ and SJHO, all other intervals include zero, among which QP, MQP, BJ, BT, and

J even produce [0, 0]. Overall, the results indicate that that heterogeneity might not exist

among these lung cancer studies.
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Method JELEQ QP MQP QUT BT

CI [0 0.075) [0, 0] [0, 0] [0, 0] [0, 0]

Method BJ J AJ SJ SJHO

CI [0, 0] [0,0] [0, 0.076) (0.006, 0.141) (0.006, 0.015)

Method PLML PLREML WaldML WaldREML BS

CI [0, 0.037) [0, 0.053) [0, 0.060) [0, 0.029) [0, 0.035)

Table 2.5. Data example of GSTP1 and lung cancer: 95% CIs of the between-study hetero-

geneity τ 2 constructed using different methods.

2.5. Discussion

We propose to use jackknife empirical likelihood, a nonparametric approach, to construct

CIs for the between-study heterogeneity parameter τ 2 in a relaxed random-effects model that

lifts the normality assumptions for meta-analysis. Here, to obtain jackknife pseudo-values,

we use an unbiased estimator of τ 2 based on the method of moments and consider two

commonly used weighing schemes (i.e., equal and inverse variance weights); we show that

with each scheme, the resulting log empirical likelihood ratio follows a (scaled) χ2
1 distribution

asymptotically. We further construct CIs, namely, JELEQ and JELIV (based on equal and

inverse variance weights, respectively) by inverting the likelihood ratio test according to

this asymptotic distribution. Our simulation shows that JELEQ is consistently better than

JELIV; also, it often has better performance over existing methods when effect sizes follow

non-normal distributions and the number of studies K is large. When K is relatively small,

there is no uniform winner but JELEQ is always one of the top performers. When the

normality is satisfied, JELEQ still has reasonable performance even though the other methods

may perform better, due to their utilization of the normality when constructing the CIs.

As mentioned above, we have considered two different weighing schemes when computing

jackknife pseudo-values. Dersimonian and Kacker [14] discussed other weight options, which
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could be potentially considered as alternatives in the future work. Most methods for com-

puting CIs of τ 2 assume that the within-study variances σ2
i ’s are known, including our JEL

methods. However, uncertainty arises with replacing σ2
i by its estimate s2i , which should

be accounted for especially when component studies are small-sized. One should further

consider the correlation between s2i and Yi when making inference when possible [33].

We have focused on meta-analysis of rare binary events in our numerical evaluation, due

to its practical importance and wide range of applications where the normality assumption

may be most vulnerable. However, the proposed JEL approach is general-purposed and

is not restricted to (rare) binary events data. How JEL would perform in other scenarios

(e.g. continuous outcomes with an interest on the mean difference) would be an interesting

question. Furthermore, Zhang et al. [63] reported that none of existing CI methods work

well when events are very rare (less than 1%) and studies have small sample sizes under the

normality. It was further verified by our simulation that all methods including JELEQ fail

to work adequately when the normality assumption is violated. Thus, the case of very rare

events coupled with small-sized individual studies would be another direction that requires

future research work, where Bayesian approaches can play an important role by incorporating

prior knowledge (such as the information about event rates).
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APPENDIX A

APPENDIX of CHAPTER 2

A.1. Technical detail

A.1.1. Proof of Theorem 1

To prove Theorem 1, we first introduce notations and establish Lemmas 3 and 4. We

consider the Re model without the normality assumptions, and so we have model (2.1) with

E(εi) = 0, V ar(εi) = σ2
i , E(δi) = 0 and V ar(δi) = τ 2. Here, σ2

i ’s are assumed to be known

and can be replaced by their estimates s2i ’s (i.e., s2i and σ2
i are exchangeable in our proof).

For the JEL method with equal weights wi = 1/K, we define δi + εi ≡ µi,
∑

i µ
2
i , a

and,
∑

i µi , b. So the Q-statistic in (2.2) is given by

QEQ =

∑
i(Yi − Ȳ )2

K
=

∑
i(µi −

∑
i µi
K

)2

K
=

a

K
− b2

K2
.

Lemma 3. Under assumptions in Theorem 1, as K →∞, we have

K

{
1

K

∑
i

V̂i − τ 2
}

d→ N(0,
∑
i

S2
i )

where S2
i ≡ V ar(µ2

i ).

56



Proof. It is easy to show that E(a) = V ar(b) =
∑

i σ
2
i +Kτ

2 , E(b) = 0, and V ar(a) =
∑

i S
2
i .

By Lyapunov’s CLT, we have

√
K
b

K
=
√
K

∑
i µi
K

d→ N(0, v), as K →∞ (A.1)

where v = (
∑

i σ
2
i + Kτ 2)/K, yielding b2

Kv

d→ χ2
1, thus E(b2) = Kv =

∑
i σ

2
i + Kτ 2, and

V ar(b2) = 2(
∑

i σ
2
i +Kτ 2)2. As a result, we have

E(QEQ) =

∑
i σ

2
i +Kτ 2

K
−
∑

i σ
2
i +Kτ 2

K2
=

(K − 1)(
∑

i σ
2
i +Kτ 2)

K2
.

In addition, as µi ⊥ µj for i 6= j, we have

Cov(a, b2) = Cov(
∑
i

µ2
i , (
∑
i

µi)
2) = Cov(

∑
i

µ2
i ,
∑
i

µ2
i ) = V ar(a),

which implies

V ar(QEQ) =V ar

(
a

K
− b2

K2

)
= V ar

( a
K

)
+ V ar

(
b2

K2

)
− 2Cov

(
a

K
,
b2

K2

)

=

∑
i S

2
i

K2
+

(
∑

i σ
2
i +Kτ 2)2

K4
−

2
∑
i

S2
i

K3

=

∑
i S

2
i

K2
+O(K−2).

Thus, Q can be approximated by a normal distribution

QEQ ∼ N

(
(K − 1)(

∑
i σ

2
i +Kτ 2)

K2
,

∑
i S

2
i

K2

)
.
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From (2.10), it is easy to see that

TK =
K ·QEQ

K − 1
−
∑

i s
2
i

K
,

which, combined with the expression for E(QEQ), leads to that Tk is an unbiased esti-

mator of τ 2, where the estimates s2i is treated the same as σ2
i , as mentioned before. Some

simple algebra yields

KTK ∼ N(Kτ 2,
∑
i

S2
i ) as K →∞.

From (2.8), the jackknife pseudo-value can be written as

V̂i =
K

K − 1
a− b2

K − 1
−
∑
i

σ2
i −

{
K − 1

K − 2
(a− µ2

i )−
(b2 − 2µib+ µ2

i )

K − 2
−
∑
j 6=i

σ2
j

}

=

(
K

K − 1
− K − 1

K − 2

)
a+

K − 1

K − 2
µ2
i −

(
1

K − 1
− 1

K − 2

)
b2 − 2µib

K − 2
+

µ2
i

K − 2
− σ2

i

=
−(a− b2)

(K − 1)(K − 2)
+

K

K − 2
µ2
i −

2µib

K − 2
− σ2

i

,di − σ2
i . (A.2)

Therefore, the average of pseudo-values is given by

1

K

∑
i

V̂i =
−(a− b2)

(K − 1)(K − 2)
+

1

K − 2
a− 2b2

K(K − 2)
− 1

K

∑
i

σ2
i

=
1

K − 1
a− 1

K(K − 1)
b2 − 1

K

∑
i

σ2
i = Tk,

which completes the proof.
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Lemma 4. Under assumptions in Theorem 1, as K →∞, we have

SK ,
1

K

∑
i

(V̂i − τ 2)2
p→ 1

K

∑
i

S2
i .

Proof. First note that

E(V̂i − τ 2)2 = E(V̂ 2
i )− 2E(V̂i)τ

2 + τ 4. (A.3)

Using the fact that

E(di) = O(K−2) +
K

K − 2
E(µ2

i ) +O(K−1) = E(µ2
i ) +O(K−1)

E(µib) = E(µ2
i + µi

∑
j 6=i

µj) = E(µ2
i )

E(µ3
i b) = E(µ4

i + µ3
i

∑
j 6=i

µj) = E(µ4
i ) = (σ2

i + τ 2)2 + S2
i ,

the first term of (A.3) can be written as

E
(
V̂ 2
i

)
=

(
K

K − 2

)2

E(µ4
i ) + σ4

i − E(2σ2
i di)−

E(4Kµ3
i b)

(K − 2)2
+O(K−2)

=

(
K

K − 2

)2

E(µ4
i ) + σ4

i − 2σ2
iE(µ2

i ) +O(K−1).

Similarly, the second term is

−2E(V̂i)τ
2 =− 2τ 2{E(µ2

i )− σ2
i }+O(K−1).
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So as K →∞,

E(V̂i − τ 2)2 =

(
K

K − 2

)2

E(µ4
i ) + σ4

i − 2σ2
iE(µ2

i )− 2τ 2{E(µ2
i )− σ2

i }+ τ 4 +O(K−1)

→E(µ4
i ) + σ4

i − 2σ2
iE(µ2

i )− 2τ 2{E(µ2
i )− σ2

i }+ τ 4

=(σ2
i + τ 2)2 + S2

i + σ4
i − 2σ2

i (σ
2
i + τ 2)− 2τ 2{τ 2}+ τ 4

=S2
i ,

which completes the proof.

We now proceed to prove Theorem 1. From (2.12), we have

0 =
1

K
|
∑
i

(V̂i − τ 2)− λ
∑
i

(V̂i − τ 2)2

1 + λ(V̂i − τ 2)
|

≥| λ
K

∑
i

(V̂i − τ 2)2

1 + λ(V̂i − τ 2)
|

≥ |λ|SK
1 + |λ|WK

− | 1
K

∑
i

(V̂i − τ 2)|, (A.4)

where WK = max1≤i≤K |V̂i−τ 2|. By Lemmas 3 and 4, one have SK is Op(1) and the second

term of (A.4) is Op(K
−1/2). Also, since S2

i is finite, we have WK = op(K
1/2). Therefore, one

has λ = Op(K
−1/2). Let γi = λ(V̂i − τ 2), then

max
1≤i≤K

|γi| = Op(K
−1/2)op(K

1/2) = op(1).
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Applying the Taylor expansion to (2.12), we have

0 =
1

K

∑
i

(V̂i − τ 2){1− γi +
γ2i

1 + γi
}

=
1

K

∑
i

(V̂i − τ 2)− SKλ+
1

K

∑
i

(V̂i − σ2
0)γ2i

1 + γi

=
1

K

∑
i

(V̂i − τ 2)− SKλ+Op(K
−1).

This gives

λ = S−1K
1

K

∑
i

(V̂i − τ 2) +Op(K
−1).

As a result, (2.11) can be written as

−2 log{R(τ 2)} =2
∑
i

log(1 + γi)

=2
∑
i

γi −
∑
i

γ2i + op(1)

=2Kλ
∑
i

(V̂i − τ 2)−KSKλ2 + op(1)

=
K( 1

K

∑
i V̂i − τ 2)2

SK
+ op(1).

Combining the above equality with Lemmas 3 and 4, we have −2 log{R(τ 2)} → χ2
1 based

on Slutsky’s theorem.

A.1.2. Proof of Theorem 2

The proof of Theorem 2 under the inverse-variance weights can be shown similarly, thus

we only outline the sketch of the proof. We denote the Q-statistic in (2.2) by QIV when it

has inverse-variance weights wi = 1/s2i , which can be obtained from (2.2):
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QIV =
∑
i

wiµ
2
i −

(
∑

iwiµi)
2∑

iwi
= a0 −

b20
C0

.

Only for the proof, we assume that the sum of wi is bounded, that is, there exists a constant

C2 such that
∑
wi < C2. In fact, this assumption is very mild as we can always achieve it

by a simple rescaling of wi: w
∗
i = wi/

∑
wi, and using the new weights w∗i will not affect our

estimation. We use the following notations:

∑
i

wi − (
∑
i

w2
i )/(

∑
i

wi) , A0,
∑
j 6=i

wi − (
∑
j 6=i

w2
i )/(

∑
j 6=i

wi) , Ai,

∑
i

wiµ
2
i , a0,

∑
j 6=i

wjµ
2
j , ai,

∑
i

wiµi , b0,
∑
j 6=i

wjµj , bi,

∑
i

wi , C0,
∑
j 6=i

wj , C0i,

∑
i

1

Ai
, C1,

∑
i

1

A2
i

, C2.

Next, we introduce Lemmas 5 and 6 that show properties of
∑

i V̂i and SK . Note that from

the condition ε < maxi s
2
i /mini s

2
i < 1/ε for some positive constant ε, we have V ar(a0) =

Op(K
−1). Thus, the variances of

∑
i V̂i and SK obtained from Lemmas 5 and 6 are of the

same order as those obtained from Lemmas 3 and 4, respectively.

Lemma 5. Under assumptions in Theorem 2, we have

K

{
1

K

∑
i

V̂i − τ 2
}

d→ N(0, B1V ar(a0))
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as K →∞, where

B1 =

(
K

A0

)2

+

(
K − 1

K

)2(
C1 −

1

A0

)2

−
(
C1 −

1

A0

)
2(K − 1)

A0

.

Proof. From (2.14), we have

TK =
a0 − b20/C0 − (K − 1)

A0

,

and the pseudo-values are given by

V̂i =KTK − (K − 1)T
(−i)
K−1

=

(
K

A0

)(
a0 −

b20
C0

)
− K(K − 1)

A0

− K − 1

Ai

(
ai −

b2i
C0i

)
+

(K − 1)(K − 2)

Ai
.

The variance of the mean pseudo-value can be derived:

V ar

(
1

K

∑
i

V̂i

)
=

(
K

A0

)2

V ar(a0)+

(
K − 1

K

)2

V ar

(∑
i

ai
Ai

)
−2(K − 1)

A0

Cov

(
a0,

∑
i ai
Ai

)
.

(A.5)

After some tedious but straightforward calculation, the variance and covariance from the

second and third terms in (A.5) can be approximated by

V ar

(∑
i

ai
Ai

)
=
∑
i

(
C1 −

1

A0

)2

w2
i s

2
i ≈

(
C1 −

1

A0

)2

V ar(ao),

Cov

(∑
i

ai
Ai
, a0

)
= C1 · V ar(a0)−

∑
i

w2
i s

2
i

Ai
≈
(
C1 −

1

A0

)
V ar(a0),

which completes the proof.

Lemma 6. Under assumptions in Theorem 2, as K →∞, we have

SK ,
1

K

∑
i

(V̂i − τ 2)2
p→ B2V ar(a0),
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where

B2 =

(
K

A0

)2

+
(K − 1)2

K

(
C2 −

1

A2
0

)
− 2(K − 1)

A0

(
C1 −

1

A0

)
.

Proof. Simply noting

E(SK) =
1

K

∑
i

V ar(V̂i)

=

(
K

A0

)2

V ar(a0) +
(K − 1)2

K

(∑
i

1

A2
i

)
V ar(a0)−

(K − 1)2

K

∑
i

w2
i s

2
i

A2
i

−2(K − 1)

A0

(∑
i

1

A0

)
V ar(a0) +

2(K − 1)

A0

∑
i

w2
i s

2
i

A2
i

≈

{(
K

A0

)2

+
(K − 1)2

K

(∑
i

1

A2
i

)
− (K − 1)2

KA0

− 2(K − 1)

A0

∑
i

1

Ai
+

2(K − 1)

A2
0

}
V ar(a0)

completes the proof.

We proceed to prove Theorem 2 and define C , B2/(KB1). Note that using Lemmas 5

and 6, Theorem 2 can be proved similarly as in Section A.1.1.

First, using a similar argument, we can get λ = Op(K
−1/2). As a result, we have:

−2 log{R(τ 2)} =
K( 1

K

∑
i V̂i − τ 2)2

SK
+ op(1).

Thus, by Lemmas 5 and 6, we have −2C log{R(τ 2)} d→ χ2
1 as K →∞.
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A.2. Additional simulation results

Figure A.1. Empirical coverage probabilities of 95% CIs of the between-study heterogeneity

τ 2 constructed using different methods for settings with ω = 1 (i.e., smaller variability in

the treatment than in the control) and effect sizes θi’s from T3 distributions.
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Figure A.2. Empirical coverage probabilities of 95% CIs of the between-study heterogeneity

τ 2 constructed using different methods for settings with ω = 0 (i.e., larger variability in the

treatment than in the control) and effect sizes θi’s from T3 distributions.
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Figure A.3. Empirical coverage probabilities of 95% CIs of the between-study heterogeneity

τ 2 constructed using different methods for settings with ω = 1 (i.e., smaller variability in

the treatment than in the control) and effect sizes θi’s from normal distributions.
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Figure A.4. Empirical coverage probabilities of 95% CIs of the between-study heterogeneity

τ 2 constructed using different methods for settings with ω = 0 (i.e., larger variability in the

treatment than in the control) and effect sizes θi’s from normal distributions.
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A.3. Datasets

Left-eye Right-eye Left-eye Right-eye

Study # events # subjects # events # subjects Study # events # subjects # events # subjects

1 93 223 17 777 28 11 67 11 133

2 140 445 91 788 29 18 136 20 175

3 16 59 14 128 30 38 77 14 48

4 102 699 97 1995 31 19 35 6 39

5 17 55 14 94 32 19 191 12 364

6 10 62 2 172 33 411 1486 198 3661

7 7 22 2 171 34 9 60 8 131

8 4 19 2 40 35 26 68 34 124

9 2 26 3 42 36 4 47 2 67

10 3 21 4 43 37 18 49 19 94

11 4 33 3 92 38 31 302 8 551

12 2 22 1 50 39 11 191 21 374

13 3 22 2 47 40 37 227 27 287

14 27 128 0 261 41 467 2968 300 3764

15 9 68 11 109 42 16 84 15 348

16 5 28 2 40 43 10 42 2 86

17 20 157 13 340 44 563 3266 320 7247

18 6 20 8 42 45 5 19 1 38

19 8 39 5 61 46 19 48 6 138

20 241 1828 211 3651 47 46 94 32 203

21 19 46 10 43 48 89 232 70 454

22 2 35 2 86 49 25 41 53 121

23 8 37 2 58 50 141 515 54 1573

24 13 30 15 57 51 23 112 17 522

25 10 107 20 206 52 32 160 13 453

26 429 2957 311 4729 53 20 183 12 388

27 10 22 10 58 54 30 159 8 455

Table A.1. Data used for meta analysis of the relationship between handedness and eye-

dominance [9]. Here, left-handedness is defined as an event.
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with lung

cancer

without

lung cancer

with lung

cancer

without

lung cancer

Study # events # subjects # events # subjects Study # events # subjects # events # subjects

1 22 138 27 297 23 6 29 4 29

2 26 178 18 199 24 110 1095 84 626

3 17 150 22 172 25 220 1921 141 1343

4 9 169 14 241 26 116 249 115 260

5 0 47 5 122 27 55 429 94 766

6 17 358 8 257 28 21 211 10 211

7 17 164 20 200 29 16 317 12 353

8 38 388 35 353 30 11 213 7 213

9 6 93 13 151 31 25 200 30 264

10 15 85 14 163 32 5 151 6 151

11 30 251 20 264 33 9 319 2 381

12 29 282 54 541 34 3 93 15 253

13 1 112 1 119 35 69 617 136 1257

14 35 362 44 419 36 5 89 9 108

15 71 229 65 197 37 19 462 6 379

16 62 446 70 622 38 7 100 12 125

17 31 235 39 233 39 13 118 22 290

18 0 12 0 23 40 97 788 92 788

19 22 228 38 288 41 23 142 26 190

20 13 89 19 119 42 33 198 27 233

21 4 227 3 227 43 5 270 5 270

22 15 112 18 151 44 9 150 4 152

Table A.2. Data used for meta analysis of the relationship between the GSTP1 gene and

lung cancer [18]. Here, the GG genotype of GSTP1 is defined as an event.
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