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Chapter 1

Introduction

1.1. Background

“The Earth is a living body. Its soul is its ability to grow. This soul, which also provides

the Earth with its bodily warmth, is located in the inner fires of the Earth, which emerge

at several places as baths, sulfur mines or volcanoes. Its flesh is the soil, its bones are the

strata of rock, its cartilage is the tufa, its blood is the underground streams, the reservoir of

blood around its heart is the ocean, the systole and diastole of the blood in the arteries and

veins appear on the Earth as the rising and sinking of the oceans.”

—Leonardo da Vinci (Codex Leicester)

In Codex Leicester [11], da Vinci drew the analogy between natural objects such as soils,

rocks, and tufa to human body tissues like flesh, bones, cartilages and the heart. These

materials, from inanimate to organic, have one thing in common, that is, they are all porous

materials. Porous materials are solid materials containing void space, or pores, in them. The

pores are occupied by fluid, such as water, air, oil, blood, body fluid, or a mixture of fluids.

Poroelasticity is a field in materials science and mechanics that studies porous media. The

theory of poroelasticity dates back to Biot’s pioneering work. Biot in a series of papers be-

tween 1935 and 1957 [3], [4], [2] developed the general theory of poroelasticity and predicted

the propagation of elastic waves. Biot’s equations describe the behavior of fluid-saturated

porous media. They are derived from the equations of linear elasticity for the solid matrix,

Navier-Stokes equations for the viscous fluid, and Darcy’s law for the flow of fluid through

the porous matrix. The theory of poroelasticity has been widely applied in geomechanics,

hydrology, biomechanics, tissue mechanics, cell mechanics and micromechanics.
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Porothermoelasticity studies the porous media under the influence of heat. It does not

assume an isothermal condition. The heat can be, for example, transferred from an adjacent

body with different temperature. The resulting deformation itself can generate internal heat,

hence the variables in the thermal equations and Biot’s equations are coupled. The coupling

behavior also applies to chemically active materials in geotechniques, biology, and synthetic

material sciences. These materials exhibit swelling or shrinking behaviors when brought in

contact with aqueous solutions.

Likewise, the porous media and fluid may interact with electromagnetic fields, then it is

then necessary to study the electromagnetic fields and the porous media, and, of course, the

interaction between them. The fluid is an electrolyte, thus when the electromagnetic waves

propagate through the porous material, the charge excesses at the interface of the solid and

the fluid will be acted to produce pressure gradients. If the solid deforms, the resulting

relative motions in the fluid will carry excess ions hence generate a current. As a result, the

governing equations of electroporoelasticity consist of Maxwell’s equations coupled to Biot’s

equations. Electroporoelasticity arises in many areas from geomechanics [7], [14], [30], [45],

to medicine and imaging [22], [28], [29], [31], [32], since both rocks and bones are porous

media.

2



1.2. Notations

We list frequently used notation as follows.

1.2.1. Electromagnetism

We will use ε for permitivity and µ for permeability. In sections involving mathematical

analysis, ε represents infinitesimals as usual. H, the magnetizing field, is sometimes also

known as the magnetic field, so B is also called flux density or magnetic induction.1

E electric field

B magnetic field

H magnetizing field

D electric displacement

Jf ionic-current density

ε0 permitivity of free space

ε permitivity of the material

µ0 permeability of free space

µ permeability of the material

σ electrical conductivity

κξ dielectric constant

Q free charge

ω frequency

1In [13], the author insists that the name magnetic induction is misleading, since that term already has at

least two other meanings in electrodynamics, and B is indisputably the fundamental quantity. Sommerfeld

in [41] also argues that “The unhappy term ‘magnetic field’ for H should be avoided as far as possible. It

seems to us that this term has led into error none less than Maxwell himself ...”.
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1.2.2. Poroelasticity

We denote solid or fluid displacement by u, velocity by v, relative displacement by w,

and density by ρ.

σf bulk-fluid conductivity

us solid displacement

uf fluid displacement

u̇s instantaneous solid velocity

u̇f instantaneous fluid velocity

v relative fluid-solid flow vector

w relative fluid-solid motion

ẇ filtration velocity

Gfr shear moduli of the framwork

p pressure

ρb bulk density

ρs solid density

ρf fluid density

φ porosity
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1.2.3. Coupling effect

The coupling coefficients C, Cem, Cos depend on the frequency ω.

C bulk-electrolyte molarity

Cem electromigration of double layer ions

Cos the conductance due to electrically induced streaming of the ions

L frequency dependent coupling coefficient

k permeability

α∞ tortuosity

1.2.4. Miscellaneous

In mathematical expressions we use caligraphic font for all operators and Mathematical

black-bold font for function spaces, to be consistent with R as it represents the real space.

n outward normal

E,H,D Math bold font – Vectors

P ,B,A Math caligraphy font – Operators

Q,V,R Math black-bold font – Spaces (Custom)

1.3. Function Spaces

We will make use of various functions spaces which we describe below.

In all cases, Ω ⊂ Rn is an open set, Ω its closure and Γ its boundary. Let α =

(α1, · · · , αn) ∈ Nn be a multi-index, with |α| =
n∑
j=1

αj.

1.3.1. Differentiable Functions and Distributions

The space C(Ω) is comprised of all continuous functions on Ω.

C(Ω) = {f continuous on Ω}.
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The space Cm(Ω) denotes the space of all continuous functions on Ω with continuous deriva-

tive up to m-th order.

Cm(Ω) = {f ∈ C(Ω) : ∀α ∈ Nn, |α| ≤ m, ∂αf ∈ C(Ω)}, m ∈ N.

The set of all infinitely differentiable functions on Ω forms the space C∞(Ω).

C∞(Ω) =
⋂
m∈N

C(Ω).

The space D(Ω) comprises of infinitely differentiable functions with compact support on Ω.

It is also denoted by C∞c , where the index c stands for compact support.

D(Ω) = {f ∈ C∞(Ω) : f has compact support in Ω}.

A linear and continuous form T defined on D(Ω) is called a distribution. The space of

distributions is denoted by D′(Ω).

D′(Ω)is the linear dual of D(Ω) (distributions).

1.3.2. Lebesgue and Sobolev Spaces

The space Lp(Ω), 1 ≤ p < ∞ is composed of all Lebesgue measurable functions f that

are p-integrable, that is, f is defined on Ω such that the integral over Ω of p-th power of f

is finite.

Lp(Ω) =
{
f measurable on Ω :

∫
Ω

|f |pdx <∞
}
, 1 ≤ p <∞.

The space Lp is endowed with the norm ‖ · ‖Lp(Ω), L
p(Ω) is a Banach space and is separable.

The space L∞(Ω) is composed of all Lebesgue measurable functions that are essentially

bounded on Ω.

L∞(Ω) = {f measurable and bounded a.e. on Ω}.

A function in the space Hs(Ω) has square integrable derivatives up to order s. The norm is

defined by ‖f‖Hs(Ω) =

∫
Ω

∑
|α|≤s

|∂αf |2dx

1/2

.

Hs(Ω) = {f ∈ L2(Ω) :

∫
Ω

∑
|α|≤s

|∂αf |2dx

1/2

<∞}.
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We define W s,p(Ω) to be the space of functions f whose derivatives of order less than or

equal to s belong to Lp(Ω), with the norm ‖f‖W s,p(Ω) =

(∫
Ω

s∑
j=0

|∂jf |pdx

)1/p

.

W s,p(Ω) =
{
f ∈ Lp(Ω) : ∀α ∈ Nn, |α| ≤ m, ∂αf ∈ Lp(Ω)

}
, 1 ≤ p ≤ ∞, s ∈ N.

The space W s,p(Ω) is a generalization of Hs(Ω).

Hs(Ω) = W s,2(Ω).

We further make use of analogous spaces of vector value functions. L2(Ω) = [L2(Ω)]3,

H1(Ω) = [H1(Ω)]3 bold letters denote spaces of multi-dimensional vector fields.

1.3.3. Function Spaces on the Boundary (Trace Spaces) and Related Spaces

Here, Γ is assumed to be a Lipschitz submanifold of Rn. We denote γ0 : V → W, γ0f 7→ f|Γ

the trace mapping on the boundary.

The set of functions of L2(Γ) which are traces of functions of H1(Ω) constitutes a subspace

of L2(Γ) denoted by H1/2(Γ). The dual space of H1/2(Γ) is H−1/2(Γ) with respect to the

L2(Γ) duality pairing.

H1/2(Γ) = γ0(H1(Ω)).

H−1/2(Γ) is the dual of H1/2(Γ).

1.3.4. Basic Spaces involving divergence and curl

The spaces H(curl,Ω) and H(div,Ω) are essential when studying Maxwell’s equations

or equations of continuum mechanics.

We use H(curl,Ω) to denote the space functions f which are square integrable, as well

as their curl,

H(curl,Ω) = {v ∈ L2(Ω) : curl v ∈ L2(Ω)}.

Similarly, the space H(div,Ω) contains all functions in L2(Ω) whose divergence is square

integrable,

H(div,Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω)}.
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The space H0(curl,Ω) is a subspace of H(curl,Ω). A function in H0(curl,Ω) has zero

tangential components on the boundary, and the integration by parts formula becomes (∇×

u,v) = (u,∇× v), where (·, ·) is the L2 inner product,

H0(curl,Ω) is the closure of D(Ω) in H(curl,Ω),

H0(curl,Ω) = {v ∈ H(curl,Ω) : v × n|Γ = 0}.

The space H0(div,Ω) is a subspace of H(div,Ω). A function in H0(div,Ω) has zero normal

components on the boundary, and the integration by parts formula becomes (∇ · u,v) =

−(u,∇ · v),

H0(div,Ω) is the closure of D(Ω) in H(div,Ω),

H0(div,Ω) = {v ∈ H(div,Ω) : v · n|Γ = 0}.

The space H(curl 0,Ω) contains functions in H(curl,Ω) that are irrotational, its intersection

with H0(curl,Ω) is written as H0(curl 0,Ω)

H(curl 0,Ω) = {v ∈ H(curl,Ω) : ∇× v = 0}.

H0(curl 0,Ω) = H(curl 0,Ω) ∩H0(curl,Ω).

The space H(div 0,Ω) contains functions in H(div,Ω) that are solenoidal, its intersection

with H0(div,Ω) is written as H0(div 0,Ω)

H(div 0,Ω) = {v ∈ H(div,Ω) : ∇ · v = 0}.

H0(div 0,Ω) = H(div 0,Ω) ∩H0(div,Ω).

1.4. Earlier Work

1.4.1. General Theory of Three-Dimensional Consolidation

Maurice A. Biot, is generally recognized as the “father of poroelasticity”. He was awarded

the Timoshenko Medal [5], [9]. In [3], he gave a rigorous and complete treatment of consol-

idation theory. His model describes three-dimensional cases and is valid for arbitrary load

which can vary in time.

8



Soil consolidation is the process that a soil under load will settle gradually with a varying

pace, not immediately being crushed. The adaptation of the soil to the load variation is

gradual. This phenomenon was first investigated by Terzaghi, except that his treatment

was restricted to a one-dimensional problem with constant load. When Biot was generaliz-

ing Terzaghi’s theory, he adopted Terzaghi’s assumptions that the stress-strain relations is

revertible under final equilibrium conditions and that the stress-strain relations are linear.

Biot first defined soil stress and explained the relationships between strain, stress, and

water pressure, he also interpreted the physical meanings of the coefficients, such as the final

compressibility a

a =
1− 2ν

2G(1− ν)
,

and the shear modulus G

G =
E

2(1 + ν)
,

where ν is the drained Poisson ratio and E is the Young’s modulus. We are still using the

same definition today.

Biot established the general equations that govern consolidation. They are

G∇2u1 +
G

1− 2ν

∂∇ · u
∂x

− α∂p
∂x

= 0, (1.1)

G∇2u2 +
G

1− 2ν

∂∇ · u
∂y

− α∂p
∂y

= 0, (1.2)

G∇2u3 +
G

1− 2ν

∂∇ · u
∂z

− α∂p
∂z

= 0, (1.3)

κ∇2p = α
∂∇ · u
∂t

+
1

Q

∂p

∂t
(1.4)

where u = (u1, u2, u3) is the solid displacement, p is the fluid pressure, and the final com-

pressibility a and the shear modulus G are defined above. If we write the first three equations

as a vector equation, we can see that these equations are the same as (1.15) – (1.16).

Biot then verified his model by doing a standard soil test, he also considered a special

case when the porous medium is a saturated clay.

9



1.4.2. Poroelasticity

Cheng’s book [9] is a complete and authoritative reference for poroelasticity, mostly

from an engineering and geoscience perspective. The author begins by explaining basic

concepts such as drained and undrained responses, time and length scale, and effective

stress and poroelastic phenomena like borehole failure and hydraulic fracturing. He lays out

a continuum theory of poroelasticity, in terms of bulk constitutive equations, and determines

bulk material constants. The main equation is

σij =

(
Ku −

2G

3

)
δije+ 2Geij, (1.5)

where σ is the stress and e is the strain, Ku is the undrained bulk modulus and G the shear

modulus.

Then, the author discusses how equations and constants change according to different

cases. Many special and ideal models are considered, which provide additional insight into

multiple mechanisms.

The spatial averaging method is the applied, thermodynamic principles are explained

and variational formulation, and constitutive equations are given, using variation energy

minimization principle. A set of intrinsic material constants is determined in the process

and the relationship between micromechanical constants is revealed. Laboratory experiments

are included.

Next, the author focuses on anisotropy. The general form of constitutive equations and

bulk and micromechanical constants are presented. The introduction of different kinds of

symmetry has reduced the form of those equations. Orthotropy and transverse isotropy, for

example, are both of engineering importance.

The governing equations are summarized, for the linear, isotropic poroelasticity:

Definition of strain (a symmetric part of the displacement gradient removes the effect of

rotation in the state of strain in a body)

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

10



Constitutive equations (stress-strain relations).

τij = 2Geij +
2Gν

1− 2ν
δije− αδijp

p = M(ζ − αe).

Equilibrium equation (Newton’s law of motion)

τij
∂xj

= 0.

Darcy’s law (flow of a fluid with constant viscosity across a rock is a function of its pressure

difference, and the rock properties)

qi = −κ ∂p
∂xi

,

Continuity equation (conservation of mass)

ζ

∂t
+
∂qi
∂xi

= 0,

where ζ is variation in fluid content which is positive for fluid entering the control volume,

and qi is the apparent fluid flux with respect to a nondeformable control volume.

The above equations have a total of twenty variables and a set of five material constants.

The equations can be simplified to obtain the Navier-Cauchy Equation

G∆u +
G

1− 2ν
∇(∇ · u) = α∇p,

and the Diffusion Equation

∂p

∂t
− κM∇2p = −αM ∂∇u

∂t
.

These two equations are commonly refered to as the equations of poroelasticity. Simplifica-

tion of the equations under the assumptions of orthotropy, transverse isotropy, and others

that make the equations uncoupled are also included.

Analytical solutions are derived in the next chapter for cases which allow the analytical

solutions to be found. Cheng has investigated lower dimensional problems such as a one
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dimensional consolidation problem and plane and generalized plane strain, symmetical cases

such as ones with spherical symmetry and axial symmetry, cavity problems, borehole prob-

lems, different spatial settings such as a half plane, half space, and cylinder, layered and

more.

A long chapter on fundamental solutions and integral equations follows the chapter of ana-

lytical solutions. It starts with Green’s identities and reciprocity theorems. For fundamental

solutions are based on using these identities and theorems. It also explains stress disconti-

nuity method, displacement discontinuity method, dislocation method. Then fundamental

solutions for elasticity and poroelasticity are introduced. There is a detailed discussion of

the solutions of fluid and solid equations. Topics such as fluid source, fluid dipole, fluid

dilatation, solid quadrupole and hexapole, solid center of dilatation, and many more, are

studied.

The fully time dependent (dynamic) case - poroelastodynamics - is governed by

G∇2u + (λu +G)∇(∇ · u) + αM∇(∇ ·w) = ρü + ρfẅ − F + αM∇Q (1.6)

αM∇(∇ · u) +M∇(∇ ·w)− 1

κ
ẇ = ρf ü + ρ′ẅ − f +M∇Q (1.7)

where w = φ(u − v) is the specific relative fluid to solid displacement, F and f are body

forces, and Q is the volume of injected fluid, λu = λ+α2M is the undrained Lamé constant,

M is the Biot modulus, G, α, ρ and ρf are, as usual, the shear modulus, Biot effective

stress coefficient, bulk density, and fluid density. Wave propagation phenomenon will occur,

due to the existence of the second order time derivative terms. The book includes analytic

solutions of some special cases such as one-dimensional and plane wave reflection. It also

includes fundamental solutions and singular integral equation representations.

Equations of poroelasticity coupled with equations from other disciplines are always in-

triguing. Cheng in his book, discusses three cases: poroviscoelasticity, porothermoelasticity

and porochemoelasticity. Where poroviscoelasticity is introduced for better describing in-

tergranular frictional sliding, the intrinsic solid grain creep deformation, and more that have
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a time scale much smaller than Darcy flow, has apparent viscoelastic mechanisms, and can

result in a variety of time-dependent phenomena. Porothermoelasticity deals with the case

when the temperature of a porous medium can change, either because the porous medium

is in contact with a body of different temperature and heat is transferred by conduction, or

because of the heat is generated by deformation itself, and it can not be overlooked. Since

there are many types of energy and forces in the physical world, such as electrical, magnetic,

and chemical, and their coupling. Porochemoelasticity, is presented to depict the thermo-

chemical influence on the porous media, as many biological and synthetic porous media are

chemically active.

It turns out that the effects of thermal energy and chemical substances are identical —

the resulting coupled equations have the same form. Analytical solutions in those cases are

provided.

The governing equations are listed here for drawing the analogy between equations of

porothermoelasticity and porochemoelasticity:

Porothermoelasticity

. Navier Equation

G∇2u +
(
K +

G

3

)
∇(∇ · u)− α∇p− αd∇T = 0. (1.8)

Note that the pressure p in this equation can be replaced by the fluid content ζ, and the

temperature T can be replaced by entropy density s.

. Fluid Diffusion Equation

∂p

∂t
− κM∇2p = −αM ∂e

∂t
+ βeM

∂T

∂t
. (1.9)

. Thermal Diffusion Equation

∂T

∂t
− κT∇2T = − αd

md

∂e

∂t
+
βe
md

∂p

∂t
(1.10)

.
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Porochemoelasticity

The governing equations consist of

. Navier Equation

G∇2u +
(
Kc +

G

3

)
∇(∇ · u)− αc∇p− αµ∇cs = 0. (1.11)

Note that the molar concentration cs can be replaced by osmotic pressure Π, the pressure p,

again, can be replaced by the fluid content ζ.

. Diffusion Equations

∂p

∂t
−Mcκp∇2p = −Mcα

′
c

∂e

∂t
−Mcβα

∂cs
∂t
, (1.12)

∂cs
∂t
−D′c∇2cs = −α

′
c

ββ

∂e

∂t
− 1

Mcββ

∂p

∂t
. (1.13)

Cheng’s discussion of boundary conditions is of special interest to us, since Pride defines

the boundary conditions on the shear plane so that boundary conditions he suggests are not

practical for computation [34]. We list those boundary conditions here, in the figures.

a) Free surface. The surface of the porous medium is not in contact with any medium

other than air. The surface traction and pore pressure are zero.

b) Fluid contact. The contact surface is a static fluid under pressure p = p0. The

normal stress and the pore pressure are the same as the surrounding fluid whose pressure is

p0 and there is no shear stress.

c, d) Rigid surface smooth or rough. The surface of the porous medium is in

contact with another much harder medium, the contacted surface is considered rigid. On a

rigid surface, we can either assume a frictionless contact which allows lateral movement (c),

or a perfect contact such that no lateral displacement can occur (d).

e, f) Permeable and impermeable surface. The permeability of the contact surface

is much larger than that of the porous medium. We can assume infinite permeability, so

that the pores are drained and pressure is zero (e). Or if instead the permeability is much

14



smaller, we can assume an impermeable surface, which means that the normal flux is zero

(f).

g) Rigid plate. A force is applied to a porous medium through a rigid or flexible plate.

For a rigid plate, we only know that the displacement on the contacting surface must conform

to the rigid shape of the plate. In addition

∫
A

tydx = F (1.14)

where F is the applied force, A is the area of the plate. The boundary condition for Darcy’s

equation can be drained or impermeable.

h) Flexible plate. The plate is flexible, both the normal traction and displacement are

not known.

i) Bimaterial interface. Two porous media are in contact with each other. The stress,

displacement, pressure, and flux must be continuous across the interface, so there are eight

conditions for a three-dimensional problem.
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Figure 1.1: Types of physical boundary conditions (illustrated in two dimensions): (a) free

surface, (b) fluid contact, (c) rigid, frictionless surface, (d) rigid surface in perfect contact

(no slippage), (e) infinitely permeable surface, (f) impermeable surface, (g) rigid plate, (h)

flexible plate, and (i) bimaterial interface

.
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1.4.3. Diffusion in Poroelastic Media

A detailed mathematical analysis of poroelasticity is given by Showalter in [39]. Showalter

developed the existence, uniqueness, and regularity theory for a general initial-boundary-

value problem of poroelasticity. To that end, Showalter introduced the operator B, Bp =

∇ · u, which allows him to write the equations as an implicit parabolic p.d.e. The operator

B is shown to be linear, continuous, monotone, and self-adjoint, and satisfy some properties

on its range and kernel. Using this operator, the poroelasticity equations can be written

as an implicit evolution equation. The main conclusions are based on results for Cauchy

problems for implicit evolution equations of the type Ḃ(u) +A(u) = f , t ∈ [0, T ]. Showalter

showed that the poroelasticity equations have a unique strong solution and a weak solution,

and that under additional mild assumptions, the weak solution is unique.

Governing equations

The poroelasticity system takes the form

−(λ+ µ)∇(∇ · u)− µ∆u + α∇p = f , (1.15)

and

∂

∂t
(c0p+ α∇ · u)−∇ · k∇p = h, (1.16)

consisting of the equilibrium equation for conservation of momentum and the diffusion equa-

tion for the Darcy flow.

One characteristics of Showalter’s paper is his treatment of boundary conditions. He

considered two kinds of boundary conditions for both of the unknowns u and p. For u, the

boundary is divided into a clamped portion Γc and a constraint on the complement Γt which

involves the surface density of forces or traction σijnj,

Γc ∪ Γt = Γ, Γc ∩ Γt = {0}, (1.17)

and

ui = 0 on Γc, σijnj = gi on Γt, 1 ≤ i ≤ 3. (1.18)
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Similarly, The boundary conditions for p comprise of a homogeneous Dirichlet portion, also

known as the drained portion of the boundary, and a portion Γf where the normal component

of the flux is prescribed,

Γd ∪ Γf = Γ, Γd ∩ Γf = {0}, (1.19)

p = 0 on Γd, k
∂p

∂nj
= h1 on Γf . (1.20)

Showalter introduced the following operators in order to write the equations of poroelas-

ticity more compactly. First, let V = {v ∈ H1(Ω) : v = 0 on Γc}, define the restriction to

C∞0 (Ω) of E (u) ∈ V ′ by E0(u). Then

E0(u)i =
∂aijklεklu

∂xj
, (1.21)

E (u)(v) =
(
E0(u),v

)
L2(Ω)

+
(
aijklεklu, vi

)
L2(Γt)

, v ∈ V. (1.22)

It can be seen that E has been decoupled into the sum of its formal part E0 on Ω and its

boundary part σijnj on Γt. In this way the equations can be written concisely. Let Γs

be the portion of the boundary on which neither pressure nor displacement are specified,

Γs = Γt ∩ Γf , then operators A,
−→
∇ ,
−→
∇· can be defined

A(p) =
[
A0(p), k

∂p

∂n

]
∈ L2(Ω)⊕ L2(Γf ). (1.23)

−→
∇p = [∇p,−βpn] ∈ L2(Ω)⊕ L2(Γs). (1.24)

and

−→
∇ · v = [∇ · v,−(1− βp)v · n] ∈ L2(Ω)⊕ L2(Γs). (1.25)

With these operators, the quasi-static Cauchy problem can be written in the form
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E
(
u(t)

)
+ α
−→
∇p(t) = f(t),

d

dt

(
c0Pp(t) + α

−→
∇ · u(t)

)
+Ap(t) = h(t), (1.26)

and

c0Pp(0) + α
−→
∇ · u(0) = [v0,−v1],

where P : L2(Ω)⊕ L2(Γd)→ L2(Ω)⊕ {0} is the projection operator.

Strong solution

It is shown that this is a parabolic system which has a strong solution under minimal

smoothness requirements on the initial data and source term. Showalter introduced an

operator B on L2(Ω)⊕ L2(Γs)

Bp =
−→
∇ · u,where E (u) =

−→
∇p, p = [f, g] ∈ L2(Ω)⊕ L2(Γs). (1.27)

The operator B has the following properties

Lemma 1.1 The operator B = −
−→
∇·E −1−→∇ : L2(Ω)⊕L2(Γs)→ L2(Ω)⊕L2(Γs) is continuous

and self-adjoint with ker(B) = ker
−→
∇ and Im(B) = ker

−→
∇⊥, and each of the Sobolev spaces

(Hm(Ω) ∩ V )⊕Hm−1/2(Γs) is invariant under B.

Written in terms of the operator B, (1.26) has the form of an implicit evolution equation,

d

dt

(
c0P + B)p(t)

)
+A

(
p(t)

)
= h(t). (1.28)

Using semi-group theory [10], [40], it is shown that this equation has a solution

Theorem 1.2 Let T > 0, v0 ∈ L2(Ω), v1 ∈ L2(Γs), and the pair of Hölder continuous

functions h0(·) ∈ Cα([0, T ], L2(Ω), h1(·) ∈ Cα([0, T ], L2(Γs) be given with

∫
Ω

v0(x)dx−
∫

Γs

v1(s)ds = 0, (1.29)

and
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∫
Ω

h0(x, t)dx−
∫

Γs

h1(s, t)ds = 0. (1.30)

Then there exists a pair of functions p(·) : (0, T ] → V and u(·) : (0, T ] → V for which

c0p(·)+∇·u(·) ∈ C0([0, T ], L2(Ω))∩C1((0, T ], L2(Ω)) and (1−β)u(·)·n ∈ C0([0, T ], L2(Γs))∩

C1((0, T ], L2(Γs)), and these satisfy the initial-boundary-value problem (1.26) with

t→ tA(p(t)) = t

[
A0(p(t)), k

∂p(t)

∂n

]
∈ L∞([0, T ], L2(Ω)⊕L2(Γs))∩C0((0, T ], L2(Ω)⊕L2(Γs))

and

∫
Ω

(
c0p(t) +∇ · u(t)

)
dx−

∫
Γs

(1− β)u(t) · nds = 0, t ∈ (0, T ]. (1.31)

The function u(·) is unique. When ker(c0P +B+A) = {0}, p(·) is unique, and if ker(c0P +

B) ∩ V = {0}, the integral constraints (1.29), (1.30) and (1.31) are not necessary.

Weak solutions

Showalter also proved the existence and uniqueness of weak solutions.

Theorem 1.3 Let T > 0, v0 ∈ V ′a, and h(·) ∈ Cα([0, T ], V ′a) be given. Then there exists a

unique pair of functions p(·) : (0, T ]→ V and u(·) : (0, T ]→ V for which c0Pp(·)+
−→
∇·u(·) ∈

C0([0, T ], V ′a) ∩ C1([0, T ], V ′a), and these satify the initial-value problem

E
(
u(t)

)
+ α
−→
∇p(t) = 0,

d

dt

(
c0Pp(t) + α

−→
∇ · u(t)

)
+ Ap(t) = h(t), (1.32)

and

lim
t→0+

(
c0Pp(t) + α

−→
∇ · u(t)

)
= v0, in V ′a.
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1.4.4. Analysis of nonlinear poroelasticity

In [8], Cao, Chen, and Meir proved the existence and uniqueness of a solution and study

the numerical approximation of solutions of nonlinear poroelasticity equations,

−(λ+ µ)∇(∇ · u)− µ∆u + α∇p = f , (1.33)

and

∂

∂t
(c0p+ α∇ · u)−∇ · (κ(∇ · u)∇p) = g, (1.34)

subject to homogeneous boundary conditions. To that end, they applied a technique called

the modified Rothe’s method [47], which amounts to constructing a convergent sequence

of approximate solutions using the backward Euler approximation of the time derivative.

They also showed the convergence of a numerical method, using rigorous functional analysis

arguments.

The main results of that work are the following theorems. They can be summarized

as: the problem (1.33) – (1.34) has at least one solution, and under mild assumptions, the

solution is unique. The error betweent the exact and numerical solutions can be bounded

by the initial data and spatial discretization parameter h to the second order and time step

size k to the first order.

Theorem 1.4 Given g ∈ L2(I;L2(Ω)), the problem (1.33)–(1.34) has at least one weak

solution (u, p) ∈ L2(I;H1
0 (Ω))× L2(I;H1

0 (Ω)).

Theorem 1.5 Assume that ∇p ∈ L∞(Ω) and that there exists a constant C such that

‖∇p‖L∞(Ω) ≤ C, then the solution is unique.

Theorem 1.6 Assume that p ∈ C2(I;H2(Ω) ∩ H1
0 (Ω)) and u ∈ C1(I,W 2,∞(Ω)), then for

small enough time step k, there exist constants C1 and C2 which do not depend on k or

discretization parameter h, such that

‖un −Un‖+ ‖pn − P n‖ ≤ C1‖l0 − l‖+ C2(h2 + k), (1.35)
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where Un and P n are numerical approximations of solutions.

1.4.5. Seismic Phenomena in a Moist Soil

In this paper [12], Frenkel introduced the theory of wave propagation in saturated porous

media. He first predicted and named a compressional wave, also known as the slow wave.

Ivanov in 1939 [16] discovered that the propagation of elastic waves in the surface layers of the

soil can cause the electrical response of the latter. This is because different positions from the

source of the waves in th soil have different potentials. Ivanov called this the “seismoelectric

effect of the second kind”. Frenkel explained this phenomenon as the result of second-type

wave propagation. He started from the theory of Helmholtz and Smoluchovski that the

differences of hydrostatic pressure ∆p between two points of the soil must be connected with

a difference of the electrical potential 2

∆V =
εζ

4πµσ
∆p

where ζ is the potential difference in the surface double layer, µ the viscosity of water and

σ its electrical conductivity.

The author then discussed the elastic force acting on an unit volume of the soil, Φ, in

different cases. For dry soil,

Φ = (λ+ µ)∇(∇ · u) + µ∇2u.

In the case of moist soil, the liquid phase is subjected to hydrostatic pressure p at all pores

and p has the expression of

∆V

V1

=
∆V2

V2

= − 1

K0

p,

where V1 is the change of the volume of unit mass of the solid phase V2 is the change of the

volume of the pores, K0 is the true compressibility modulus of the solid phase. After a series

2This assumption is actually incorrect, as pointed out by Pride in 1994 [34]. Since the Helmholtz-

Smoluchowski equation assumes that the total electric current and an electrically driven conduction current

in the porous media is everywhere zero. In fact, the total current should be present in the Ampère’s law.
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of derivation, Φ now has the form of

Φ = (λ+ µ)∇(∇ · u) + µ∇2u +K2

(
1− φ− K

K0

)
∇p,

where K2 is the compressibility modulus of the liquid. We can see that this expression is

exactly the first equation of poroelasticity. When friction is taken into account, Darcy’s

equation will be used

v =
k

ν
(−∇p+ F)

where F denotes the external force acting on the liquid contained in a unit volume of the

soil, ν the viscosity and k the filtration coefficient of the soil. Now terms of
∂u

∂t
serve as the

elastic force Φ, the equation becomes

ρ1 = (λ+ µ)∇(∇ · u) + µ∇2u +K2

(
1− φ− K

K0

)
∇p+

ν

κ

(
v − ∂u

∂t

)
.

The author has also used methods in perturbation theory to analyze the propagation

of longitudinal vibrations in the soil, a special case of longitudinal plane sine waves, and

the propagation of traversal waves in a moist soil. Finally, he investigated the seismoeletric

effect, with the help from the formula

E = − εζ

4πµσ

∂p

∂x
.

He obtained

E = Cu,

where C =
2εζκω2φρ2

πσr2µ

(
K2

ρ2

β

β′w2
0

− 1

)
can be regarded as a coefficient. Thus, though im-

properly given, the coupling effect of the electric field and the solid displacement has been

described.
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1.4.6. Governing equations for the electromagnetics and acoustics

We describe the model derived by Pride in [34]. Consider macroscopic dynamics of

two-phase porous media possessing continuously distributed phases, Pride was the first to

construct a model that correctly describes the interaction between mechanical waves and

electric fields. He revised previous work of Frenkel [12] and Neev and Yeatts [27], and

pointed out that they did not apply the full set of Maxwell’s equations which led to a

erroneous conclusion. In practice, the fact that a macroscopic mechanical disturbance and

an electromagnetic disturbance can excite each other constitutes the main finding of Pride’s

paper, and it is one that Frenkel and Neev and Yeatts failed to realize.

A macroscopic mechanical disturbance can produce macroscopic electromagnetic distur-

bance, and vice versa.

When a macroscopic mechanical disturbance propagates through fluid saturated porous

media, a packing of grains saturated by electrolytes for instance, a small amount of relative

motion is induced between the fluid and solid phases. This relative motion will carry along

the excess ions in the electric double layers near the grain surfaces. In this way, the effect of a

mechanical wave resembles that caused by a current source for a macroscopic electromagnetic

disturbance. Conversely, an electromagnetic disturbance can serve a similar function as a

macroscopic mechanical disturbance. That is because when a macroscopic electromagnetic

disturbance propagates, the charge excess of the double layers will be influenced by an electric

field hence a pressure gradient in the fluid is generated and, in principle, a macroscopic

mechanical disturbance.

Boundary conditions

The boundary conditions for Pride’s model are prescribed on the boundaries called “shear

plane”. We first introduce the adsorbed layer and “diffuse layer”, and the shear plane which

separates one from another. The adsorbed layer is a layer of electrolyte ions and structured

water molecules that are chemically and physically adsorbed by the surface of the solid

grains. This layer also includes the ionized surface sites present on the grain surfaces. The

molecules and ions in this layer are assumed to be immobile. The diffuse layer is the region
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of fluid adjacent to the adsorbed layer. If there is a net excess of charge in the adsorbed

layer, it is balanced by an opposite amount of excess mobile ions distributed in the diffuse

layer. The complex structure of the shear plane, therefore, makes the boundary conditions

defined on it impossible to use for calculations.

Next we will introduce the model derived by Pride.

Pore and grain-scale governing equations

A. Electromagnetic equations

The electromagnetic equations that will be used to derive the final coupled equations are

∇ ·Bs = 0, (1.36)

∇ ·Ds = 0, (1.37)

∇× Es = −Ḃs, (1.38)

∇×Hs = Ḋs, (1.39)

∇ ·Bf = 0, (1.40)

∇ ·Df =
L∑
l=1

ezlNl, (1.41)

∇× Ef = −Ḃf , (1.42)

∇×Hf = Ḋf + Jf , (1.43)

Jf =
L∑
l=1

ezl[−kTbl∇Nl + ezlblNlEf +Nlu̇f ], (1.44)

Bξ = µ0Hξ, (1.45)

and

Dξ = ε0κξEξ. (1.46)

Equations (1.36) – (1.39) and (1.40) – (1.43) are Maxwell’s equations for the solid and

fluid phases, respectively. The ionic-current density Jf has contributions from the diffusion,

electromigration, and convection of ions. u̇f is the instantaneous fluid velocity. The ionic

properties are the valences zl (ezl represents the net charge and sign on each species-l ion),

the number densities Nl, and the mobilities bl.
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The boundary conditions are (on the shear plane)

n · (Bs −Bf ) = 0, (1.47)

n · (Ds −Df ) = Q, (1.48)

n× (Es − Ef ) = Qu̇s, (1.49)

n× (Hs −Hf ) = 0, (1.50)

and

n · Jf = Q̇. (1.51)

The boundary conditions (1.47) and (1.48) are the same as the boundary conditions of

Maxwell’s equations. There is a jump, “Q”, for the electrical displacement D across the

boundary but the magnetic field B will be continuous. The boundary condition (1.49) has a

nonzero right hand side induced by movement of the solid, and the boundary condition (1.50)

is homogeneous, because of the absence of steady currents. Equation (1.51) is obtianed by

taking the divergence of Ampère’s law and the time derviative of Coulomb’s law.

Pride assumes that the disturbances are time-harmonic, and that all field variables can

be written in the form of

Q(t) = Q0 + Re{q(ω)e−iωt}, (1.52)

Nl(t) = N0
l + Re{nl(ω)e−iωt}, (1.53)

and

Ef (t) = E0
f + Re{ef (ω)e−iωt}. (1.54)
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B. Mechanical equations

The mechanical equations for the displacements us and uf are

−iωρf u̇f = ∇ · τf +
L∑
l=1

ezl(N
0
l ef + nlE

0
f ), (1.55)

−iωρsu̇s = ∇ · τs, (1.56)

uf = Kf∇ · ufI− iωη
(
∇uf +∇uTf −

2

3
∇ · ufI

)
, (1.57)

and

us = Ks∇ · usI +G
(
∇us +∇uTs −

2

3
∇ · usI

)
, (1.58)

Equations (1.55) and (1.56) describe that the dynamics of both the fluid and solid phases

are governed by the conservation of linear momentum. The nonlinear convective term u̇ ·∇u̇

has been ignored in (1.57) and (1.58), as justified in [35]. The boundary conditions are

n · (τs − τf ) = −Q0es, (1.59)

and

us − uf = 0. (1.60)

On the normal direction of the boundary, a difference between the fluid and solid stress

tensors has been induced by the electric field, the right-hand side of (1.59) represents the

electrical body force acting on the excess charge of the adsorbed layer. The right-hand side

of (1.60) is obviously zero, if we recall the us and uf are the solid and fluid displacements,

respectively.

C. Transport coefficients

Pride carefully determines the expressions for the coefficients σ(ω), the electrical conduc-

tivity, L(ω), the coupling coefficient and k(ω), the permeability. [They are calculated], not

measured. In summary,
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σ(ω) =
φσf
α∞

[
1 +

2[Cem + Cos(ω)]

σfΛ

]
, (1.61)

L(ω) = L0

[
1− i ω

ωt

m

4

(
1− 2

d̃

Λ

)2(
1− i3/2d̃

√
ωρf
η

)2]− 1
2

(1.62)

and

k(ω) =
[(

1− i ω
ωt

4

m

) 1
2 − i ω

ωt

]−1

, (1.63)

where the forms of the tortuosity α∞, the porosity φ, the excess conductance associated with

the electromigration of double layer ions Cem, the conductance due to electrically induced

streamingof the ions Cos, the fluid density ρf , the conductivity σf , the transition frequency

ωt, the dimensionless number m, the low-frequency coupling coefficient L0 and the dc per-

meability k0 can be found in [34]. In [38], there is a table that shows the values of these

coefficients in three different materials.

D. The final form of the macroscopic governing equations

In summary, Pride’s equations can be written as

∇× E = iωB, (1.64)

∇×H = −iωD + J, (1.65)

∇ · τB = −ω2(ρBus + ρfw), (1.66)

J = σ(ω)E + L(ω)(−∇p+ ω2ρfus), (1.67)

−iωw = L(ω)E +
k(ω)

η
(−∇p+ ω2ρfus), (1.68)

D = ε0

[ φ
α∞

(κf − κs) + κs

]
E, (1.69)

B = µ0H, (1.70)

τB = (KG∇ · us + C∇ ·w)I +Gfr

(
∇us +∇uTs −

2

3
∇ · usI

)
, (1.71)

and
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−p = C∇ · us +M∇ ·w. (1.72)

We will derive a quasi-static model based on these equations, and impose boundary condi-

tions on the boundary of the domain.

1.4.7. Numerical electroseismic modeling: A finite element approach

The equations of porous media under the influence of electromagnetic waves were derived

by Pride in [34] where the author also determined the expression of the various coefficients.

Santos et al. [38] study these equations and derive a method for approximating the solutions.

They proved the uniqueness of the solution, discretized the equations in both space and time

and discussed element selections. We will describe some of their work, and at the same time,

provide some comments.

The differential model

Santos et al. follow [34] and [15] and write the equations as follows. Consider a 3D

rectangular domain Ω = Ωa∪Ωp where Ωa and Ωp are associated with the air and subsurface

poroelastic (disjoint) parts of Ω, respectively. The equations are

ε
∂E

∂t
+ σE−∇×H = Jse, in Ω, (1.73)

∇× E + µ
∂H

∂t
= 0, in Ω, (1.74)

ρb
∂2us

∂t2
+ ρf

∂2uf

∂t2
−∇ · τ = F(s), in Ωp, (1.75)

ρf
∂2us

∂t2
+m

∂2uf

∂t2
+

η

κ0

∂uf

∂t
− L0

η

κ0

E +∇p = F(f), in Ωp, (1.76)

2Gεlm(us) + δlm(λc∇ · us + αKav∇ · uf ) = τlm(u), in Ωp, (1.77)

and

−αKav∇ · us −Kav∇ · uf = p, in Ωp. (1.78)

Comparing these equations and those of Pride there is a term missing in equation (1.73),

that is, the term −L0∇p should also be on the left side. Recall the main conclusion of Pride’s
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paper, “When a macroscopic mechanical disturbance propagates through a porous material,

a small amount of relative motion is induced between the fluid and solid phases. This relative

flow will carry along the excess ions in the electric double layers near the grain surfaces. Thus,

a mechanical wave can act as a current source for macroscopic-electromagnetic disturbances.

Similarly, when an electromagnetic disturbance propagates, the electric field will act on

the charge excesses of the double layers producing pressure gradients in the fluid and, in

principle, macroscopic-mechanical disturbances”. Simply ignoring the coupling term −L0∇p

in Maxwell’s equations violates the spirit of Pride’s paper. However, mathematically, the

discussion in [38] is still of interest and relevant to our work.

In [46], the author has given an explanation of dropping the coupling term −L0∇p. He

first described the fact that the electrokinetic mobility L provides coupling between the EM

system and mechanical system (Biot’s equations). The author uses perturbation methods

to study the full system. He assumes weak coupling so that to leading order, i.e. the zeroth

order in L, the EM system field satisfies the conventional Maxwell’s equations (L = 0). Then

the Maxwell’s equations can be solved independently, and, the coupling term only presents

as a source in the mechanical equations.

Here we keep the coupling term −L0∇p for several reasons. First, we are studying

the well-posedness of the full system, and provide a theoretical background for using finite

element methods, we don’t need to sacrifice accuracy for simplicity. Second, the author in

[46] does not suggest any mathematical, physical, or experimental arguments to support this

idea of dropping the coupling term. Third, dropping the coupling term is not consistent with

Pride’s statements. Finally, in [46] the author refers to some experiments ([30], [44]) which,

do not include a justification for dropping the coupling term in the EM system, but not in

the mechanical system. Therefore, we keep this coupling term.

Santos et al. proposed boundary conditions on the boundary of the domain Ω. These

conditions can be used in mathematical computation. The authors introduced the quantities
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GΓs(u) =



τ(u)n · n

τ(u)n · χ1

τ(u)n · χ2

p


, SΓs(u) =



us · n

us · χ1

us · χ2

uf · n,


(1.79)

where χ1 and χ2 are two unit tangent vectors on the boundary such that {n, χ1, χ2} is an

orthonormal set. Define

PχE = E− n(n · E) = −n× n× E (1.80)

which is the 3-D orthogonal projection of the trace of E onto the tangent plane perpendicular

to the normal vector n. Then the boundary conditions are

√
εPχE +

√
µn×H = 0, on Γ, (1.81)

−GΓp(u) = DSΓp

(∂u

∂t

)
, on Γp, (1.82)

and

−GΓp(u) = 0, on Γa,p. (1.83)

Here, the matrix D is introduced so that the boundary conditions can be written compactly.

Its definition is D = R 1
2S 1

2R 1
2 , where S = R− 1

2MR− 1
2 and b = ρb − (ρf )2

m
,

R =



ρb 0 0 ρf

0 b 0 0

0 0 b 0

ρf 0 0 m


, M =



λc + 2G 0 0 αKav

0 G 0 0

0 0 G 0

αKav 0 0 Kav


. (1.84)
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Here D is a coefficient matrix, so are the matrices S, R, M.

Weak formulation, existence and uniqueness of solutions.

The weak formulation is: for t ∈ [0, T ], find (E,H,us,uf )(t) ∈ H(curl,Ω) × [L2(Ω)]3 ×

[H1(Ω)]3 ×H(div,Ω) such that:

(
ε
∂E

∂t
, ψ

)
+
(
σE, ψ

)
−
(
H,∇× ψ

)
+

〈√
ε

µ
PχE, Pχψ

〉
= (Jse, ψ),

ψ ∈ H(curl,Ω), (1.85)(
∇× E, ϕ

)
+

(
µ
∂H

∂t
, ϕ

)
= 0, ϕ ∈ [L2(Ω)]3, (1.86)

and (
P ∂

2u

∂t2
,v

)
+

(
η

κ0

∂uf

∂t
,vf
)

+A
(
u, v
)

−
(
L0

η

κ0

E,vf
)

+

〈
DSΓp

(
∂uf

∂t

)
,SΓp(v)

〉
= 0,

v = (vs,vf ) ∈ [H1(Ωp)]
3 ×H(div,Ωp). (1.87)

where 〈·, ·〉 represents the boundary integral. In (1.87)

P =

ρbId ρfId

ρfId mId

 , (1.88)

where Id is the identity matrix in Rd×d and A
(
u, v
)

is the bilinear form defined by:

A
(
u, v
)

=
∑
l,m

(τlm
(
u), εlm(vs)

)
Ωp
−
(
p,∇ · vf

)
Ωp
. (1.89)

Letting ψ = E, ϕ = H, vs =
∂us

∂t
, vf =

∂uf

∂t
, adding the resulting equations together,

Santos et al get that the norms of the unknowns are bounded by initial data, where the

uniqueness of solution is implied.

It is claimed that the uniqueness can be obtained using the compactness argument of

Lions [19] with an argument similar to that given in [37], so a detailed proof is omitted. It
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seems that the existence issue is much more complicated than uniquess. A rigorous proof is

needed.

A continuous-time finite element method. Parallelepiped elements. A priori error esti-

mates.

After choosing parallelepiped elements, Santos et al. showed that the solution is unique,

and derive the following error estimate:

‖E− Eh‖∞ + ‖H−Hh‖∞ + ‖us − us,h‖∞ + ‖uf − uf,h‖∞

+

∥∥∥∥∂(us − us,h)

∂t

∥∥∥∥
∞

+

∥∥∥∥∂(f s − uf,h)

∂t

∥∥∥∥
∞

+ ‖us − us,h‖2 + ‖(us − us,h) · v‖∞

≤ Ch1/2[N0 +N1 +M0 +M1], (1.90)

where C is some constant independent of h, N0, N1, M0 and M1 [are sum of some of]

‖E‖2, ‖H‖2, ‖us‖2, ‖uf‖2.

A discrete-time finite element method. Tetrahedral elements.

For a discrete-time finite element method and the case of tetrahedral elements, the unique-

ness and existence of solutions and a priori estimates are also obtained.

They also provide a chart of physical parameters,
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Homogeneous region Layer 1: brine saturated Layer 2: 75% gas –

brine saturated 25% brine saturation

σc(S/m) 0.01 0.1 0.001

φ(−) 0.2 0.25 0.2

Ks(Pa) 3.7×1010 2.5×1010 3.7×1010

vs(m/s) 1400 1450 1800

ρs(kg/m
3) 2650 2650 2650

k0(m2) 10−13 10−16 10−13

L0(A/(Pa ·m)) 3.2×10−15 1.5×10−9 3.3 ×10−9

ρf (kg/m
3) 1000 1000 0.88

η(kg/(m · s)) 0.001 0.001 1×10−5

Kf (Pa) 2.25×109 2.25×109 0.1×109

Sf (−) 1 1 0.75
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Chapter 2

Model

2.1. Governing Equation

We use the full-time version of Pride’s equations. There are three sources of force that

drive the charges to produce the current J: the electromagnetic field, pressure gradient,

and elastic waves. The coupling term included in the equation that governs the solid-fluid

relative speed - the speed is also determined by the electric field, in addition to pressure and

solid displacement as we see from poroelasticity equations. The coupling effect is linear, so

the linearity of the whole system of equations is preserved. The equations ar

ε
∂E

∂t
−∇×H = −J, (2.1)

µ
∂H

∂t
+∇× E = 0, (2.2)

∇ · τB =
∂2

∂t2
(
ρBus + ρfw

)
, (2.3)

J = σE + L
(
−∇p− ρf

∂2us
∂t2

)
, (2.4)

∂w

∂t
= LE +

k

η

(
−∇p− ρf

∂2us
∂t2

)
, (2.5)

τB = (KG∇ · us + C∇ ·w)I +Gfr

(
∇us +∇uTs −

2

3
∇ · usI

)
, (2.6)

and

−p = C∇ · us +M∇ ·w. (2.7)

Here E is the electric field, H is the magnetic field, τB is the bulk stress tensor, J is the

current density, us is the displacement of the solid matrix, w = φ(uf − us) is the relative

fluid-solid displacement, uf is the displacement of the fluid, and p is the pressure in the
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fluid. These are the unknowns. In addition, the physical parameters which appear above are

ε the electric permittivity and µ the magnetic permeability of the material, φ the porosity,

ρs the solid density, ρf the fluid density, and ρB = φρf + (1 − φρs) the bulk density, k

the permeability, η the fluid’s shear viscosity, σ the electrical conductivity, L a frequency

dependent coupling coefficient, C the bulk-electrolyte molarity, and Gfr the shear moduli of

the framework (matrix). Finally KG =
Kfr + φKf + (1 + φ)Ks∆

1 + ∆
and M =

1

φ

Kf

1 + ∆
, where

Kfr is the bulk moduli of the solid frame when the fluid is a gas or is absent, Kf and Ks are

the bulk moduli of the fluid and solid, respectively, and ∆ =
Kf

φK2
s

[(1 − φ)Ks −Kfr]. Also

above, I is the identity tensor.

The equations are posed on a spatial domain Ω. Here Ω is an open, bounded, simply

connected, subset of R3 with a Lipschitz continuous boundary ∂Ω.

We simplify the system and convert it to quasi-static equations. Eliminating J we have

ε
∂E

∂t
+ σE−∇×H− L

(
∇p+ ρf

∂2us
∂t2

)
= 0, (2.8)

µ
∂H

∂t
+∇× E = 0, (2.9)

∂2

∂t2
(
ρBus + ρfw

)
−∇ · τB = 0, (2.10)

∂w

∂t
− LE +

k

η

(
∇p− ρf

∂2us
∂t2

)
= 0, (2.11)

(KG∇ · us + C∇ ·w)I +Gfr

(
∇us +∇uTs −

2

3
∇ · usI

)
= τB, (2.12)

and

C∇ · us +M∇ ·w = −p. (2.13)
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Substituting (2.12) into (2.10) yields

ε
∂E

∂t
+ σE−∇×H− L

(
∇p− ρf

∂2us
∂t2

)
=0, (2.14)

µ
∂H

∂t
+∇× E =0, (2.15)

∂2

∂t2
(
ρBus + ρfw

)
− [G∇ · ∇us + (KG +

1

3
G)∇(∇ · us) + C∇(∇ ·w)] =0, (2.16)

∂w

∂t
− LE +

k

η

(
∇p− ρf

∂2us
∂t2

)
=0, (2.17)

and

p+ C∇ · us +M∇ ·w =0. (2.18)

Ignoring the second order time derivatives we get

ε
∂E

∂t
+ σE−∇×H− L∇p = 0,

µ
∂H

∂t
+∇× E = 0,

−[G∇ · ∇us + (KG +
1

3
G)∇(∇ · us) + C∇(∇ ·w)] = 0,

∂w

∂t
− LE +

k

η
∇p = 0,

and

p+ C∇ · us +M∇ ·w = 0.

Finally, eliminating w and letting us = u, KG +
1

3
G − C2

M
= λc,

C

M
= α,

1

M
= c0 and

k

η
= κ, the equations can be written as

ε
∂E

∂t
+ σE−∇×H− L∇p = 0, (2.19)

µ
∂H

∂t
+∇× E = 0, (2.20)

−λc∇(∇ · u)−G∇ · ∇u + α∇p = 0, (2.21)

and

∂

∂t

(
c0p+ α∇ · u

)
+ L∇ · E− κ∆p = 0. (2.22)
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2.2. Initial and Boundary Conditions

We supplement the system of equations with initial conditions: at t = 0,

E(x, 0) = E0(x), H(x, 0) = H0(x), and
(
c0p+ α∇ · u

)
(x, 0) = l(x), in Ω. (2.23)

For simplicity we assume a perfect conducting boundary which yields the a boundary

condition for the electric field

E× n = 0, on ∂Ω× (0, T ],

(where as usual n denotes the unit, outward pointing, normal vector to Ω) and homogeneous

Dirichlet boundary condition for the displacement and pressure, namely,

u = 0 and p = 0, on ∂Ω× (0, T ].

Remark Nonhomogeneous boundary conditions, as well as other types boundary condi-

tions can also be considered. The analysis for nonhomogeneous Dirichlet boundary conditions

can be performed using the the proposed methodology (while the analysis for other types of

boundary conditions will be considered elsewhere).

2.3. Weak Form of the Governing Equations

Using L2-based Sobolev spaces (spaces that are now considered standard, see [23] and

references cited therein for definitions, inner products and norms on these spaces, and for

notation used), we introduce the weak formulation for the system under consideration (2.20)–

(2.22).

Recall the integration by parts formulas

(
∇×U,V

)
−
(
U,∇×V

)
=
〈
U× n,V

〉
, U,V ∈ H(curl,Ω),

and (
∇ ·U, V

)
+
(
U,∇V

)
=
〈
U · n, V

〉
, U ∈ H(div,Ω), V ∈ H1(Ω).
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Let I = (0, T ], D = L2(I;H0(curl,Ω)) ∩ H1(I;L2(Ω)), B = L2(I;L2(Ω)) ∩ H1(I;L2(Ω)),

V = L2(I;H1
0 (Ω))∩H1(I;L2(Ω)), Q = L2(I;H1

0 (Ω))∩H1(I;H−1(Ω)). The weak formulation

of the problem is: find (E,H,u, p) ∈ D × B × V × Q that satisfies (2.23) such that for a.e.

t ∈ (0, T ]:

(
ε
∂E

∂t
,D
)

+
(
σE,D

)
−
(
H,∇×D

)
−
(
L∇p,D

)
= 0, ∀D ∈ D, (2.24)(

µ
∂H

∂t
,B
)

+
(
∇× E,B

)
= 0, ∀B ∈ B, (2.25)(

λc∇ · u,∇ · v
)

+
(
G∇u,∇v

)
+
(
α∇p,v

)
= 0, ∀ v ∈ V, (2.26)

and (
c0
∂p

∂t
, q
)

+
(
α
∂(∇ · u)

∂t
, q
)
−
(
LE,∇q

)
+
(
κ∇p,∇q

)
= 0, ∀ q ∈ Q. (2.27)

We recall that (·, ·) denotes the L2 inner product (in space) and ‖ · ‖ denotes the cor-

responding L2 norm (other norms are denoted with respective subscripts), additionally we

use the same notation for spaces, inner products, and norms of scalar and vector valued

functions, the meaning being obvious from the context.

2.4. A Priori Estimates

Letting B = H in (2.25), we get

(
µ
∂H

∂t
,H
)

+
(
∇× E,H

)
= 0. (2.28)

Also, let D = E in (2.24) and use (2.28) to obtain

(
ε
∂E

∂t
,E
)

+
(
σE,E

)
+
(
µ
∂H

∂t
,H
)
−
(
L∇p,E

)
= 0. (2.29)

Next, choose v =
∂u

∂t
in (2.26), q = p in (2.27)

(
αp,

∂∇ · u
∂t

)
=
(
λc∇ · u,

∂∇ · u
∂t

)
+
(
G∇u,

∂∇u

∂t

)
, (2.30)
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and add the resulting equation to (2.29) to get

1

2

d

dt

[(
εE,E

)
+
(
µH,H

)
+
(
c0p, p

)]
+
(
σE,E

)
+
(
α
∂∇ · u
∂t

, p
)

−2
(
L∇p, E) +

(
κ∇p,∇p

)
= 0. (2.31)

substituting (2.30) into (2.31) yields

1

2

d

dt

[(
εE,E

)
+
(
µH,H

)
+
(
λc∇ · u,∇ · u

)
+
(
G∇u,∇u

)
+
(
c0p, p

)]
−2
(
L∇p, E) +

(
σE,E

)
+
(
κ∇p,∇p

)
= 0. (2.32)

Integrating in time,

1

2

[(
εE,E

)
+
(
µH,H

)
+
(
λc∇ · u,∇ · u

)
+
(
G∇u,∇u

)
+
(
c0p, p

)]
+

∫ T

0

(
σE,E

)
dt−

∫ T

0

2
(
L∇p, E)dt+

∫ T

0

(
κ∇p,∇p

)
dt

=
1

2

[(
εE0,E0

)
+
(
µH0,H0

)
+
(
λc∇ · u0,∇ · u0

)
+
(
G∇u0,∇u0

)
+
(
c0p0, p0

)]
. (2.33)

Or equivalently,

1

2

[
ε‖E‖2 + µ‖H‖2 + λc‖∇ · u‖2 +G‖∇u‖2 + c0‖p‖2

]
≤ 1

2

[
ε‖E0‖2 + µ‖H0‖2 + λc‖(∇ · u)0‖2 +G‖(∇u)0‖2 + c0‖p0‖2

]

Since ε and µ are electromagnetic constants, they are bounded below and above by some

positive constants,
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0 < ε∗ ≤ ε ≤ ε∗ <∞, 0 < µ∗ ≤ µ ≤ µ∗ <∞. (2.34)

and the fact that L is minuscule (3.2 × 10−15 ∼ 1.5 × 10−9A/(Pa · m)) compared to σ

(0.1 ∼ 0.001S/m) and κ (10−10 ∼ 10−8m3 · s/kg), the sum of the integrals

∫ T

0

(
σE,E

)
dt−∫ T

0

2
(
L∇p, E)dt+

∫ T

0

(
κ∇p,∇p

)
dt is always positive.

Applying Gronwall’s lemma [36], notifying that all terms on the left-hand side of (2.34)

are nonnegative and bounded by initial data, we conclude our problem has at most one

solution, given the condition

L2 < σκ, (2.35)

where this is satisfied by real world materials.

2.5. The Operator B

We express u also in terms of p so we can study an equation that has three variables

explicitly.

Define a bilinear form

a(u,v) := (λc +G)(∇ · u,∇ · v) + µ(∇u,∇v), for all u,v ∈ H1
0 (Ω). (2.36)

It is easy to verify that the bilinear form a(·, ·) is continuous and coercive on H1
0 (Ω) ×

H1
0 (Ω). Define the associated operator B : L2(Ω) → L2(Ω) such that for q ∈ L2(Ω), Bq :=

∇ · u where u satisfies

a(u,v) = (∇q,v), for all v ∈ H1
0(Ω),

and

u = 0, on ∂Ω.
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The proofs of the properties of the operator B can be found in [39]. The operator

B defined above is linear, continuous, monotone, and self-adjoint, with ker(B) = ker(∇)

and range(B) = ker(∇)⊥. Moreover, ker(B) = ker(∇) = {0} because of the homogeneous

boundary condition. Hence B is a continuous bijection from L2(Ω) into itself. According to

the bounded inverse theorem, B and also c0 + B have bounded inverses.
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Chapter 3

Numerical approximation

We now consider numerical approximation of the solutions of the initial value problem

(2.24) – (2.27).

We start by constructing appropriate finite element spaces. Let Th be a family of quasi-

uniform triangulations (into triangles or tetrahedra), see [42], of the polygonal, or polyhedral,

domain Ω satisfying max
τ∈Th

diam(τ) ≤ h (where τ is a geometrical element, and h is the mesh

parameter. Let {Pj}Nh
j=1 be the set of all the interior nodes of the triangulation (where Nh is

the number of interior nodes). Following [23], let Pr denote the standard space of polynomials

of total degree less than or equal to r, and let P̃r denote the space of homogeneous polynomials

of order r. Let Sr = {p ∈ (P̃r)3 : p(x) · x = 0,x ∈ R3}, then define Rr = (Pr−1)3
⊕

Sr.

Let Hh = {B ∈ L2(Ω) : B|τ ∈ (Pr−1)3,∀ τ ∈ Th}, and Eh = {D ∈ H(curl,Ω) : D|τ ∈

Rr,∀ τ ∈ Th}. In other words, the space Eh is the space of Nédélec edge elements whose

standard notation is N1er. Let Qh be the space consisting of continuous functions on Ω

which are polynomials of order r on each triangle, or tetrahedron, and vanish on ∂Ω that is

Qh = {p ∈ C(Ω) : p|τ ∈ Pr,∀ τ ∈ Th} i.e., for r = 1 or 2, this is the usual space of linear

or quadratic Lagrange elements that vanish on the boundary). Denote by Φj the piecewise

polynomial of order r which is 1 at Pj and vanishes at all the other nodes. It is easy to see

that {Φj}Nh
j=1 forms a basis of Qh. Let Vh = (Qh)

3, then {(Φj, 0, 0), (0,Φj, 0), (0, 0,Φj)}Nh
j=1

forms a basis of (Qh)
3.

Denote the time step size by k, that is, k = T/N for some positive integer N , and tn = nk

for n = 0, 1, . . . , N . Define ∆−P n = P n − P n−1 for n = 1, 2, . . . , N . The fully discrete

approximation is: find en ∈ Eh, hn ∈ Hh, Un ∈ Vh and P n ∈ Qh for n = 1, 2, . . . , N , such

that
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k−1∆−
(
εen,d

)
+
(
σen,d

)
−
(
hn,∇× d

)
−
(
L∇P n,d

)
= 0, ∀ d ∈ Eh, (3.1)

k−1∆−
(
µhn,b

)
+
(
∇× en,b

)
= 0, ∀ b ∈ Hh, (3.2)

a
(
Un,V

)
+
(
∇P n,V

)
= 0, ∀V ∈ Vh,(3.3)

k−1∆−
(
c0P

n, Q
)

+ k−1∆−
(
∇ ·Un, Q

)
−
(
Len,∇Q

)
+
(
κ∇P n,∇Q

)
= 0, ∀Q ∈ Qh,(3.4)

Here we set c0P
0 +∇ ·U0 = l0, where l0 is an approximation to l in Qh.

Remark The existence of a weak solution of (3.1)–(3.4) can be shown by using an

argument similar to the one which was used for the continuous problem.

We now consider error estimates for the approximate solution given by (3.1)–(3.4). That

is, we provide an estimates for the difference between the solution of (3.1)–(3.4) (approximate

solution) and that of (2.24)–(2.27) (exact solution). We use Ritz-Galerkin like projections

of the solution of (2.24)–(2.27). Given p ∈ H1
0 (Ω), define the projection Rhp of p onto Qh

as follows

(
κ∇(p−Rhp),∇q

)
= 0, ∀ q ∈ Qh. (3.5)

We need the following results to estimate the error of E and H. For any τ ∈ Th and E ∈

W 1,m(Ω), m > 2, we can define the interpolation operator IhE ∈ Eh such that IhE|τ ∈ Eh

has the same moments as E on τ , the definition of moments we use is the same as in [17].

The error estimate for interpolation can be found in [26].

Lemma 3.1 Let 1 ≤ m ≤ r, if E ∈ Hm+1(Ω), then there exists a constant C such that

‖E− IhE‖+ ‖∇ × (E− IhE)‖ ≤ Chm‖E‖m+1.

The error estimate for projection can be found in [25].

Lemma 3.2 Define the projection PH : L2(Ω)→ Hh as in [25]:
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(
H− PHH,B

)
= 0, ∀B ∈ Hh.

Then if H ∈ Hm(Ω) for 0 ≤ m ≤ r, there exists a constant C such that

‖H− PHH‖ ≤ Chm‖H‖m, 0 ≤ m ≤ k.

The initial conditions used in the approximation are the interpolant and projection of the

exact initial conditions respectively,

En(0) = IhE0, Hn(0) = PHH0. (3.6)

Also needed are some estimates on the time derivative. Writing Ui = U(ti), and letting X

be H1(curl,Ω) or Hα(Ω), α ≥ 0, then from [17]

Lemma 3.3 We have that∥∥∥∥∂Ui

∂t

∥∥∥∥2

X
≤ 1

k

∫ ti

ti−1

‖Ut‖2
Xdt, ∀U ∈ H1(I;X).

Additionally from [18]

Lemma 3.4 We have that∥∥∥∥Ui − 1

k

∫
Ii

Udt

∥∥∥∥2

X
≤ k

∫
Ii
‖Ut‖2

Xdt, ∀U ∈ H1(I;X),

and ∥∥∥∥Ui−1 − 1

k

∫
Ii

Udt

∥∥∥∥2

X
≤ k

∫
Ii
‖Ut‖2

Xdt, ∀U ∈ H1(I;X).

We will also make use of the lemmas 3.5 – 3.8 which can be found in [42] and [33].

Lemma 3.5 Let B be a continuous linear operator on a Banach space X and let f : [0, T ]→

X be continuously differentiable with respect to t. Then B∂f
∂t

=
∂

∂t
Bf .
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Lemma 3.6 Let Qh be given as above. Define the interpolation operator Ih : Hr+1(Ω) ∩

H1
0 (Ω)→ Qh. For any q ∈ Hr+1(Ω) ∩H1

0 (Ω), and 1 ≤ m ≤ r + 1

‖q − Ihq‖+ h‖∇(q − Ihq)‖ ≤ Chm‖q‖m.

To estimate the difference (error) between pn and P n, we define

δn := pn −Rhp
n and θn := Rhp

n − P n. (3.7)

With these we can write the difference between pn and P n as

pn − P n = δn + θn. (3.8)

Lemma 3.7 Assume that q ∈ Hr+1(Ω) ∩H1
0 (Ω). Then there exists a constant C such that

‖q −Rhq‖+ h‖∇(q −Rhq)‖ ≤ Chm‖q‖m, for 1 ≤ m ≤ r + 1

Lemma 3.8 Assume that p ∈ C1(I : Hr+1(Ω) ∩ H1
0 (Ω)). Then there exists a constant C

such that

‖δ(t)‖+ h‖∇δ(t)‖ ≤ C(p)hm, for 1 ≤ m ≤ r + 1, t ∈ (0, T ]

and

‖δt(t)‖+ h‖∇δt(t)‖ ≤ C(p, pt)h
m, for 1 ≤ m ≤ r + 1, t ∈ (0, T ].

We are now ready to derive the estimates for the solution of (3.1)–(3.4).
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Theorem 3.9 Assume that E ∈ Hm+1(Ω) p ∈ C1(I;Hm(Ω)∩H1
0 (Ω)) and u ∈ C1(I,Hm(Ω)),

then there exists k0 > 0 such that for k ≤ k0, there exist constants C1 and C2 which do not

depend on h or k, such that

‖En − en‖+ ‖Hn − hn‖+ ‖un −Un‖+ ‖pn − P n‖ ≤ C1‖l0 − l‖+ C2(hm + k), (3.9)

Proof:

We start by expressing u in terms of p using the operator B, then equations (2.26) and

(2.27) in weak formulation will have the form of

(
(c0 + B)

∂p

∂t
, q
)
−
(
LE,∇q

)
+
(
κ∇p,∇q

)
= 0, ∀ q ∈ Q, (3.10)

and equations (3.3) and (3.4) are combined as

k−1∆−
(
(c0 + B)P i, Q

)
−
(
Lei,∇Q

)
+
(
κ∇P i,∇Q

)
= 0, ∀Q ∈ Qh. (3.11)

Multiplying the weak equations (2.24), (2.25), and (3.10) by 1/k, integrating over I i,

i = 1, 2, . . . , N , and choosing D = d, B = b, and q = Q yields

ε

k

(
Ei − Ei−1,d

)
+
σ

k

( ∫
Ii

E(τ)dτ,d
)

−1

k

( ∫
Ii

H(τ)dτ,∇× d
)
− L

k

( ∫
Ii
∇p(τ)dτ,d

)
= 0, ∀ d ∈ D, (3.12)

µ

k

(
Hi −Hi−1,b

)
+
(
∇× 1

k

∫
Ii

E(τ)dτ,b
)

= 0, ∀ b ∈ B. (3.13)

and

1

k

(
(c0 + B)(pi − pi−1), Q

)
− L

( ∫
Ii

E(τ)dτ,∇Q
)

+ κ
( ∫

Ii
∇p(τ)dτ,∇Q

)
= 0, ∀Q ∈ Q.

(3.14)
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Subtracting (3.12) from (3.1), (3.13) from (3.2), and (3.14) from (3.11), we obtain the

error equations

ε
(
k−1∆−(Ei − ei),d

)
+ σ

(
1

k

∫
Ii

E(τ)dτ − ei,d

)
−
(

1

k

∫
Ii

H(τ)dτ − hi,∇× d

)
− L

(
1

k

∫
Ii
∇p(τ)dτ −∇pi,d

)
= 0, d ∈ Dh, (3.15)

µ
(
k−1∆−(Hi − hi),b

)
+

(
∇×

(
1

k

∫
Ii

E(τ)dτ − ei
)
,b

)
= 0, b ∈ Bh. (3.16)(

k−1∆−(c0 + B)(pi − P i), Q
)
− L

(
1

k

∫
Ii

E(τ)dτ − ei,∇Q
)

+κ

(
1

k

∫
Ii
∇p(τ)dτ −∇P i,∇Q

)
= 0, Q ∈ Qh. (3.17)

Choosing d = IhEi−ei in (3.15) , b = PHHi−hi in (3.16), and Q = Rhp
i−P i in (3.17)

we can rewrite these as

ε
(
k−1∆−(IhEi − ei), IhEi − ei

)
−
(
PHHi − hi,∇× (IhEi − ei)

)
=ε
(
k−1∆−(IhEi − Ei), IhEi − ei

)
− σ

(
1

k

∫
Ii

E(τ)dτ − IhEi, IhEi − ei
)

− σ
(
IhEi − ei, IhEi − ei

)
−
(
PHHi −Hi,∇× (IhEi − ei)

)
−
(
Hi − 1

k

∫
Ii

H(τ)dτ,∇× (IhEi − ei)
)

+ L

(
1

k

∫
Ii
∇p(τ)dτ −∇pi, IhEi − ei

)
, (3.18)

µ
(
k−1∆−(PHHi − hi),PHHi − hi

)
+
(
∇× (IhEi − ei),PHHi − hi

)
=µ
(
k−1∆−(PHHi −Hi),PHHi − hi

)
+
(
∇×

(
IhEi − Ei

)
,PHHi − hi

)
+

(
∇×

(
Ei − 1

k

∫
Ii

E(τ)dτ

)
,PHHi − hi

)
(3.19)

(
k−1∆−(c0 + B)(Rhp

i − P i),Rhp
i − P i

)
=
(
k−1∆−(c0 + B)(Rhp

i − pi),Rhp
i − P i

)
+ L

(
1

k

∫
Ii

E(τ)dτ − ei,∇(Rhp− P )i
)

− κ
(

1

k

∫
Ii
∇p(τ)dτ −∇Rhp

i,∇(Rhp− P )i
)
− κ
(
∇(Rhp− P )i,∇(Rhp− P )i

)
. (3.20)

Now adding the three equations together, multiplying the resulting equation by k, and using

the fact that
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1

2
(a2 − b2) ≤ a(a− b), ∀ a, b ∈ R, (3.21)

we have

ε
(
∆−(IhEi − ei), IhEi − ei

)
+ µ
(
∆−(PHHi − hi),PHHi − hi

)
+
(
∆−(c0 + B)(Rhp

i − P i),Rhp
i − P i

)
≤εk

(
k−1∆−(IhEi − Ei), IhEi − ei

)
− σk

(
1

k

∫
Ii

E(τ)dτ − IhEi, IhEi − ei
)

− σk
(
IhEi − ei, IhEi − ei

)
− k
(
PHHi −Hi,∇× (IhEi − ei)

)
− k
(
Hi − 1

k

∫
Ii

H(τ)dτ,∇× (IhEi − ei)
)

+ µk
(
k−1∆−(PHHi −Hi),PHHi − hi

)
+ k

(
∇×

(
IhEi − Ei

)
,PHHi − hi

)
+ k

(
∇×

(
Ei − 1

k

∫
Ii

E(τ)dτ

)
,PHHi − hi

)
+ k
(
k−1∆−(c0 + B)(Rhp

i − pi),Rhp
i − P i

)
− κk

(
1

k

∫
Ii
∇p(τ)dτ −∇Rhp

i,∇(Rhp− P )i
)

− κk
(
∇(Rhp− P )i,∇(Rhp− P )i

)
+ Lk

(
1

k

∫
Ii
∇p(τ)dτ −∇pi, IhEi − ei

)
+ Lk

(
1

k

∫
Ii

E(τ)dτ − ei,∇(Rhp− P )i
)

(3.22)

We first give an estimate to the sum of the last two terms from inequality (3.22) using the

condition (2.35), which is σκ− L2 > 0. This is performed by using Young’s inequality

Lk

(
1

k

∫
Ii
∇p(τ)dτ −∇pi, IhEi − ei

)
+ Lk

(
1

k

∫
Ii

E(τ)dτ − ei,∇(Rhp− P )i
)

≤κ
8
k

∥∥∥∥1

k

∫
Ii
∇p(τ)dτ −∇pi

∥∥∥∥2

+ 2σk
∥∥IhEi − ei

∥∥2

+
σ

2
k

∥∥∥∥1

k

∫
Ii

E(τ)dτ − ei
∥∥∥∥2

+
σ

2
k
∥∥∇(Rhp− P )i

∥∥2

≤κ
8
k

∥∥∥∥1

k

∫
Ii
∇p(τ)dτ −∇pi

∥∥∥∥2

+
κ

8
k‖∇(p−Rhp)

i‖2

+
κ

8
k‖∇(Rhp− P )i‖2 + 2κk

∥∥IhEi − ei
∥∥2

+
σ

2
k

∥∥∥∥1

k

∫
Ii

E(τ)dτ − Ei

∥∥∥∥2

+
σ

2
k‖Ei − IhEi‖2

+
σ

2
k‖IhEi − ei‖2 +

κ

2
k
∥∥∇(Rhp− P )i

∥∥2
. (3.23)
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Using the above estimate, the inequality (3.22) can be written as

ε
(
∆−(IhEi − ei), IhEi − ei

)
+ µ
(
∆−(PHHi − hi),PHHi − hi

)
+
(
∆−(c0 + B)(Rhp

i − P i),Rhp
i − P i

)
≤εk

(
k−1∆−(IhEi − Ei), IhEi − ei

)
− σk

(
1

k

∫
Ii

E(τ)dτ − IhEi, IhEi − ei
)

− σ

2
k
(
IhEi − ei, IhEi − ei

)
− k
(
PHHi −Hi,∇× (IhEi − ei)

)
− k
(
Hi − 1

k

∫
Ii

H(τ)dτ,∇× (IhEi − ei)
)

+ µk
(
k−1∆−(PHHi −Hi),PHHi − hi

)
+ k

(
∇×

(
IhEi − Ei

)
,PHHi − hi

)
+ k

(
∇×

(
Ei − 1

k

∫
Ii

E(τ)dτ

)
,PHHi − hi

)
+ k
(
k−1∆−(c0 + B)(Rhp

i − pi),Rhp
i − P i

)
− κk

(
1

k

∫
Ii
∇p(τ)dτ −∇Rhp

i,∇(Rhp− P )i
)

− 3

8
κk
(
∇(Rhp− P )i,∇(Rhp− P )i

)
+
κ

8
k

∥∥∥∥1

k

∫
Ii
∇p(τ)dτ −∇pi

∥∥∥∥2

+
κ

8
k‖∇(p−Rhp)

i‖2

+
σ

2
k

∥∥∥∥1

k

∫
Ii

E(τ)dτ − Ei

∥∥∥∥2

+
σ

2
k‖Ei − IhEi‖2 +

σ

2
k‖IhEi − ei‖2. (3.24)

Now we analyze the error terms one by one. To estimate the first term (on the right hand

side), we use Lemma 3.1 and Lemma 3.2 to obtain

εk
(
k−1∆−(IhEi − Ei), IhEi − ei

)
≤ 1

2
εk‖k−1∆−(IhEi − Ei)‖2 +

1

2
εk‖IhEi − ei‖2

≤ 1

2
ε

∫
Ii
‖(IhE− E)′t(t)‖2dt+

1

2
εk‖IhEi − ei‖2

≤ Ch2m

∫
Ii
‖E′t(t)‖2

mdt+
1

2
εk‖IhEi − ei‖2. (3.25)

To estimate the second term, we add and subtract to the left operand of the inner product

the same amount Ei

σk

(
1

k

∫
Ii

E(τ)dτ − IhEi, IhEi − ei
)

= σk

((
1

k

∫
Ii

E(τ)dτ − Ei

)
+ (Ei − IhEi), IhEi − ei

)
≤ 1

2
σk2

∫
Ii
‖E′t(t)‖2dt+

1

2
Ckh2m‖E‖2

m+1

+ σk‖IhEi − ei‖2. (3.26)

The third term is simply

σ

2
k
(
IhEi − ei, IhEi − ei

)
=
σ

2
k‖IhEi − ei‖2.
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For the fourth term, using [25] and the definition of the projection operator PH , we have

k
(
PHHi −Hi,∇× (IhEi − ei)

)
= 0. (3.27)

To estimate the fifth term, see [24], using integration by parts while noticing that the bound-

ary condition is n× E = 0,

k
(
Hi − 1

k

∫
Ii

H(τ)dτ,∇× (IhEi − ei)
)

= k

(
∇×

(
Hi − 1

k

∫
Ii

H(τ)dτ

)
, IhEi − ei

)
≤ 1

2
k

∥∥∥∥∇× (Hi − 1

k

∫
Ii

H(τ)dτ

)∥∥∥∥2

+
1

2
k‖IhEi − ei‖2

=
1

2
k

∥∥∥∥(∇×H)i − 1

k

∫
Ii
∇×H(τ)dτ

∥∥∥∥2

+
1

2
k‖IhEi − ei‖2

≤ 1

2
k2

∫
Ii
‖∇ ×H′t(t)‖2dt+

1

2
k‖IhEi − ei‖2.

(3.28)

The sixth term can be estimated in a similar fashion to the first, except that we now have

a projection instead of an interpolation,

µk
(
k−1∆−(PHHi −Hi),PHHi − hi

)
≤ 1

2
µk‖k−1∆−(PHHi −Hi)‖2 +

1

2
µk‖PHHi − hi‖2

≤ 1

2
µ

∫
Ii
‖(PHH−H)′t(t)‖2dt+

1

2
µk‖PHHi − hi‖2

≤ Ch2m

∫
Ii
‖H′t(t)‖2

mdt+
1

2
µk‖IhHi − hi‖2. (3.29)

To estimate the seventh term, we apply Lemma 3.1

k
(
∇×

(
IhEi − Ei

)
,PHHi − hi

)
≤ 1

2
k‖∇ × (IhEi − Ei)‖2 +

1

2
k‖PHHi − hi‖2

≤ 1

2
kh2m‖∇ × Ei‖2

m+1 +
1

2
k‖PHHi − hi‖2. (3.30)
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The eighth term, can be estimated by

k

(
∇×

(
Ei − 1

k

∫
Ii

E(τ)dτ

)
,PHHi − hi

)
≤1

2
k

∥∥∥∥∇× (Ei − 1

k

∫
Ii

E(τ)dτ

)∥∥∥∥2

+
1

2
k‖PHHi − hi‖2

≤1

2
k

∥∥∥∥(∇× E)i − 1

k

∫
Ii
∇× E(τ)dτ

∥∥∥∥2

+
1

2
k‖PHHi − hi‖2

≤1

2
k2

∫
Ii
‖∇ × E′t(t)‖2dt+

1

2
k‖PHHi − hi‖2.

(3.31)

Since (c0 + B) is bounded, for the ninth term, we have

k
(
k−1∆−(c0 + B)(Rhp

i − pi),Rhp
i − P i

)
≤1

2
k‖k−1∆−(c0 + B)(Rhp

i − pi)‖2

+
1

2
k‖Rhp

i − P i‖2

≤1

2
k2‖c0 + B‖

∫
Ii
‖(Rhp− p)′t(t)‖2dt

+
1

2
k‖Rhp

i − P i‖2. (3.32)

We evaluate the tenth and eleventh term together, using Young’s inequality and then Lemma

3.4 and Lemma 3.7,

− κk
(

1

k

∫
Ii
∇p(τ)dτ −∇Rhp

i,∇(Rhp− P )i
)
− 3

8
κk
(
∇(Rhp− P )i,∇(Rhp− P )i

)
≤κk

(
∇Rhp

i − 1

k

∫
Ii
∇p(τ)dτ,∇Rhp

i − 1

k

∫
Ii
∇p(τ)dτ

)
+
κ

4
k
(
∇(Rhp− P )i,∇(Rhp− P )i

)
− 3

8
κk
(
∇(Rhp− P )i,∇(Rhp− P )i

)
=κk

∥∥∥∥∇Rhp
i − 1

k

∫
Ii
∇p(τ)dτ

∥∥∥∥2

− κ

8
k‖∇(Rhp− P )i,∇(Rhp− P )i‖2

≤κk
∥∥∥∥∇Rhp

i − 1

k

∫
Ii
∇p(τ)dτ

∥∥∥∥2

≤κk‖∇(Rhp− p)i‖2 + κk

∥∥∥∥∇pi − 1

k

∫
Ii
∇p(τ)dτ

∥∥∥∥2

≤κkh2m‖p‖2
m+1 + κk2

∫
Ii
‖∇p′t(t)‖2dt. (3.33)
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The twelfth term is estimated using Lemma 3.4,

κ

8
k

∥∥∥∥1

k

∫
Ii
∇p(τ)dτ −∇pi

∥∥∥∥2

≤ 1

8
κk2

∫
Ii
‖∇p′t(t)‖2dt. (3.34)

We obtain that the thirteenth term is 0 from the definition of the projection Rh,

κ

8
k‖∇(p−Rhp)

i‖2 = 0. (3.35)

The fourteenth term is also estimated using Lemma 3.4,

σ

2
k

∥∥∥∥1

k

∫
Ii

E(τ)dτ − Ei

∥∥∥∥2

≤ σ

2
k2

∫
Ii
‖E′t(t)‖2dt. (3.36)

Adding all the above inequalities together and summing both sides of the resulting ineqiuality

over i = 1, 2, . . . , n, while keeping in mind that for an arbitrary function f ,

n∑
i=1

∫
Ii
fdt =

∫ nk

0

fdt ≤
∫ T

0

‖f‖dt, (3.37)

we have, since B is both monotone and bounded,

ε

2
‖IhEn − en‖2 +

µ

2
‖PHHn − hn‖2 +

1

2
c0‖Rhp

n − P n‖2

ε

2
‖IhEn − en‖2 +

µ

2
‖PHHn − hn‖2 +

1

2
(c0 + B)‖Rhp

i − P i‖2

≤ ε
2
‖IhE0 − e0‖2 +

µ

2
‖PHH0 − h0‖2 +

1

2
(c0 + B)‖Rhp

0 − P 0‖2 (3.38)

+ C1k
n∑
i=1

(‖IhEi − ei‖2 + ‖PHHi − hi‖2 + ‖Rhp
i − P i‖2)

+ Ch2m

∫
Ii
‖E′t(t)‖2

mdt+
1

2
σk2

∫
Ii
‖E′t(t)‖2dt+

1

2
Ckh2m‖E‖2

m+1

+
1

2
k2

∫
Ii
‖∇ ×H′t(t)‖2dt+ Ch2m

∫
Ii
‖H′t(t)‖2

mdt

+
1

2
kh2m‖∇ × Ei‖2

m+1 +
1

2
k2

∫
Ii
‖∇ × E′t(t)‖2dt

+ κkh2m‖p‖2
m+1 + κk2

∫
Ii
‖∇p′t(t)‖2dt

+
1

8
κk2

∫
Ii

+
σ

2
k2

∫
Ii
‖E′t(t)‖2dt. (3.39)
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Combining terms and using the fact IhE0 − e0 = 0, PHH0 − h0 = 0, and Rhp
0 − P 0 = 0,

due to (3.6), and that kn ≤ T , we can simply rewrite (3.39) as

ε‖IhEn − en‖2 + µ‖PHHn − hn‖2 + c0‖Rhp
n − P n‖2

≤C(k2 + h2m) + C2k
n∑
i=1

(‖IhEi − ei‖2 + ‖PHHi − hi‖2 + ‖Rhp
i − P i‖2). (3.40)

If we move the n-th terms ‖IhEn − en‖ and ‖PHHn − hn‖ to the left side and adjust the

coefficients, we can write

ε‖IhEn − en‖2 + µ‖PHHn − hn‖2 + c0‖Rhp
n − P n‖2

≤C(k2 + h2m) + C3k
n−1∑
i=1

(‖IhEi − ei‖2 + ‖PHHi − hi‖2 + ‖Rhp
i − P i‖2). (3.41)

Using the Gronwall’s Lemma [36], we obtain

ε‖IhEn − en‖2 + µ‖PHHn − hn‖2 + c0‖Rhp
n − P n‖2 ≤ C(k2 + h2m)eC3nk,

and finally

ε‖En − en‖2 + µ‖Hn − hn‖2 + c0‖pn − P n‖2

≤2ε(‖En − IhEn‖2 + ‖IhEn − en‖2) + 2µ(‖Hn − PHHn‖2 + ‖PHHn − hn‖2)

+ 2c0(‖pn −Rhp
n‖2 + ‖Rhp

n − P n‖2)

≤Ch2m‖En‖2
m+1 + Ch2m‖Hn‖2

m + 2η(‖IhEn − en‖2 + ‖PHHn − hn‖2) + 2c0‖Rhp
n − P n‖2

≤C(k2 + h2m). (3.42)

To obtain the estimate for u(tn) − Un, we define the projection Pu : H1
0 (Ω) → Vh for

u ∈ H1
0 (Ω)

a
(
u− Puu,v

)
= 0, ∀ v ∈ Vh.

We write the error un −Un as

un −Un = un − Puun + Puun −Un = δnu + θnu,

where δnu = un − Puun and θnu = Puun −Un. As in the proof of Lemma 3.8, it is easy to

verify that the projection error δu satisfies

‖δu‖ ≤ C(u)hm.
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Subtracting (3.3) from (2.26), we have that

a
(
θnu,v

)
= a
(
un −Un,v

)
= −

(
∇(P n − pn),v

)
, ∀ v ∈ Vh.

Since we know that the bilinear form a is both bounded and coercive, with v = θnu in the

above equation, there exist a number α and a number C such that

α‖θnu‖2
1 ≤ a

(
θnu, θ

n
u

)
= −

(
∇(P n − pn), θnu

)
≤ C‖pn − P n‖‖θnu‖1,

hence

‖θnu‖1 ≤
C

α
‖pn − P n‖ ≤ C1‖l0 − l‖+ C2(hm + k).

�
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Chapter 4

Numerical example

We now illustrate the theory described above. To that end, we construct solutions and

use the proposed method to approximate this solution. Let Ω = [−1, 1] × [−1, 1] × [−1, 1],

I = [0, 1]. Set ε = 1, σ = 2, µ = 1, λc = 2, G = 1, α = 1, c0 = 1, κ = 2, L = 1. The solution

is given by

E =
(

sin(πx) sin(πy) sin(πz), sin(πx) sin(πy) sin(πz), sin(πx) sin(πy) sin(πz)
)
(t2 + 1),

H =−
(

sin(πx) cos(πy) sin(πz)− sin(πx) sin(πy) cos(πz),

sin(πx) sin(πy) cos(πz)− cos(πx) sin(πy) sin(πz),

cos(πx) sin(πy) sin(πz)− sin(πx) cos(πy) sin(πz)
)
π(
t3

3
+ t)

u =
(

sin(πx) sin(πy) sin(πz), 0, 0
)
(t2 + 1),

and

p = sin(πx) sin(πy) sin(πz)(t2 + 1).
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Note that the system of equations is not homogeneous if we use this set of solutions. The

right hand side is now (J, 0, f , g)T , where

JT =


sin(πx) sin(πy) sin(πz)

sin(πx) sin(πy) sin(πz)

sin(πx) sin(πy) sin(πz)

 2
(π2

3
t3 + t2 + (π2 + 1)t+ 1

)

+


cos(πx) cos(πy) sin(πz) + cos(πx) sin(πy) cos(πz)

sin(πx) cos(πy) cos(πz) + cos(πx) cos(πy) sin(πz)

cos(πx) sin(πy) cos(πz) + sin(πx) cos(πy) cos(πz)

 π2(
t3

3
+ t)

−


cos(πx) sin(πy) sin(πz)

sin(πx) cos(πy) sin(πz)

sin(πx) sin(πy) cos(πz)

 π(t2 + 1)

f =
(
5π2 sin(πx) sin(πy) sin(πz),−2π2 cos(πx) cos(πy) sin(πz)(t2 + 1),

− 2π2 cos(πx) sin(πy) cos(πz)
)
,

and

g =
(
(sin(πx) + π cos(πx))2t+ sin(πx)6π2(t2 + 1)

)
sin(πy) sin(πz)

+
(

cos(πx) sin(πy) sin(πz) + sin(πx) cos(πy) sin(πz) + sin(πx) sin(πy) cos(πz)
)
π(t2 + 1).

One can check that the boundary conditions are satisfied

E× n = 0, on ∂Ω, (4.1)

u = 0, p = 0, on ∂Ω. (4.2)

The tables below provide some information about the discretizations used (time step k,

mesh parameter h, number of elements, and number of degrees of freedom/unknowns) as
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well as the observed relative errors and convergence rates. The observed convergence rates

were computed from the observed errors which were measured using the L2-norm. These

observed rates are in good agreement with the theory.

Table 1 shows the relative errors for each variable and the corresponding convergence

rates when using order 1 Nédélec edge element N1e1 and linear Lagrange element. (r.e. is

the relative error)

k h DOFs r.e. E rate r.e. H rate r.e. u rate r.e. p rate

1/10 1/3 913 0.6225 - 0.4172 - 0.4037 - 0.4010 -

1/20 1/6 6034 0.3427 0.86 0.2130 0.97 0.1249 1.69 0.1182 1.76

1/40 1/12 4.4×104 0.1757 0.96 0.1070 0.99 0.0339 1.88 0.0309 1.94

1/80 1/24 3.3×105 0.0885 0.99 0.0535 1.00 0.0087 1.96 0.0078 1.99

Table 4.1: A nice table

Table 2 shows the relative errors for each variable and the corresponding convergence

rates when we using order 2 Nédélec edge element N1e2 and quadratic Lagrange element.

k h DOFs r.e. E rate r.e. H rate r.e. u rate r.e. p rate

1/10 1/3 4306 0.1620 - 0.0747 - 0.04749 - 0.04569 -

1/40 1/6 3.0×104 0.0438 1.89 0.0192 1.96 0.005307 3.16 0.005044 3.18

1/160 1/12 2.3×105 0.0113 1.96 0.0048 1.99 6.1×10−4 3.12 6.0×10−4 3.08

1/640 1/24 1.8×106 0.0028 1.99 0.0012 2.00 7.4×10−5 3.04 7.7×10−5 2.95

Table 4.2: Relative L2-norm errors and convergence rates using order 2 Lagrange elements

and Nédélec elements.
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We plot the approximate solutions.
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(a) Electric field E (b) Magnetic field H

(c) Solid displacement u (d) Pressure p

Figure 4.1: Plot of four variables E, H, u, p.
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A set of solutions which satisfy the homogeneous equations (2.19) – (2.22) with the initial

condition

E0 =(sin(πy) sin(πz), sin(πz) sin(πx), sin(πx) sin(πy)), (4.3)

H0 =(π sin(πx)(cos(πy)− cos(πz)), π sin(πy)(cos(πz)− cos(πx)),

π sin(πz)(cos(πx)− cos(πy))), (4.4)

u0 =(3 sin(πx) sin(πy) sin(πz), 3 sin(πx) sin(πy) sin(πz), 0), (4.5)

p0 =(sin(πx) sin(πy) sin(πz)), (4.6)

is
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To better illustrate the effect of the coupling parameter L, we calculated solutions of the

equations for two values of L while keeping other parameters fixed. For comparison we plot

these solution below. We applied the boundary conditions as

E

H

u

p


=



0, 0, 0

0, 0, 0

0, 0, x

0


and initial conditions as

E

H

u

p


=



30xy(1− y)z(1− z), 30yz(1− z)x(1− x), 30zx(1− x)y(1− y)

30(x− 1)x(y − z), 30(y − 1)y(z − x), 30(z − 1)z(x− y)

sin(πx) sin(πy) sin(πz), 0, x

10 sin(πx) sin(πy) sin(πz)


.
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(a) Plot of E (b) Plot of H

(c) Plot of u (d) Plot of p

Figure 4.2: Plot of four variables E, H, u, p

64



(a) Electric field E when L = 0 (b) Electric field E when L = 0.3

(c) Magnetic field H when L = 0 (d) Magnetic field H when L = 0.3

Figure 4.3: Plot of electromagnetic fields E and H
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(a) Solid displacement u when L = 0 (b) Solid displacement u when L = 0.3

(c) Pressure p when L = 0 (d) Pressure p when L = 0.3

Figure 4.4: Plot of poroelasticity variables u and p
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Chapter 5

Computation and computer implementation

We implement the numerical scheme using FEniCS [1]. FEniCS is a popular open-

source computing platform for solving partial differential equations. FEniCS enables users

to quickly translate scientific models into efficient finite element code. With the high-level

Python and C++ interfaces to FEniCS, it is easy to get started, but FEniCS offers also

powerful capabilities for more experienced programmers. FEniCS runs on a multitude of

platforms ranging from laptops to high-performance clusters.

Our FEniCS code is

# Poro-electro-elasticity Equations

# epsilon dE/dt + sigma E - curl H - L grad p = J

# mu dH/dt + curl E = 0

# -lambda grad div u - G div grad u + alpha p = f

# d/dt(c p + alpha div u) + L div E - kappa laplacian p = g

from fenics import *

from ufl import nabla div

import numpy as np

import matplotlib.pyplot as plt

# Definition of constants and parameters

epsilon0 = 1

sigma0 = 2*pi*pi

L0 = 0.5

mu0 = 1

lambda0 = 2

G0 = 1

alpha0 = 1
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c0 = 1

kappa0 = 1/(3*pi*pi)

T = 1.0 # final time

num steps = 10 # number of time steps

dt = T/ num steps # time step size

# Create mesh and define function space

# Load mesh

mesh = UnitCubeMesh(10, 10, 10)

# Build function space

D1 = FiniteElement("N1curl", mesh.ufl cell(), 1)

B1 = FiniteElement("RT", mesh.ufl cell(), 1)

V = VectorElement("Lagrange", mesh.ufl cell(), 1)

Q = FiniteElement("Lagrange", mesh.ufl cell(), 1)

element = MixedElement([D1, B1, V, Q])

W = FunctionSpace(mesh, element)

# Exact solutions, boundary conditions and known functions

E ex = Expression((’sin(pi*x[1])*sin(pi*x[2])*exp(-t)’,\

’sin(pi*x[2])*sin(pi*x[0])*exp(-t)’, \

’sin(pi*x[0])*sin(pi*x[1])*exp(-t)’), degree = 2, t = 0)

H ex = Expression((’pi*sin(pi*x[0])*(cos(pi*x[1])-cos(pi*x[2]))*exp(-t)’, \

’pi*sin(pi*x[1])*(cos(pi*x[2])-cos(pi*x[0]))*exp(-t)’, \

’pi*sin(pi*x[2])*(cos(pi*x[0])-cos(pi*x[1]))*exp(-t)’), degree = 2, t = 0)

u D = Expression((’sin(pi*x[0])*sin(pi*x[1])*sin(pi*x[2])*exp(-t)’, ’0’, ’0’), degree

= 2, t = 0)

p D = Expression(’sin(pi*x[0])*sin(pi*x[1])*sin(pi*x[2])*exp(-t)’, degree = 2, t

= 0)

J = Expression((’(-1-0.5*pi*cos(pi*x[0]))*sin(pi*x[1])*sin(pi*x[2])*exp(-t)’,

’(-1-0.5*pi*cos(pi*x[1]))*sin(pi*x[2])*sin(pi*x[0])*exp(-t)’, \

’(-1-0.5*pi*cos(pi*x[2]))*sin(pi*x[0])*sin(pi*x[1])*exp(-t)’), \
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degree = 2, t = 0)

f = Expression((’5*pi*pi*sin(pi*x[0])*sin(pi*x[1])*sin(pi*x[2])*exp(-t)

+ pi*cos(pi*x[0])*sin(pi*x[1])*sin(pi*x[2])*exp(-t)’,

’-2*pi*pi*cos(pi*x[0])*cos(pi*x[1])*sin(pi*x[2])*exp(-t)

+ pi*cos(pi*x[1])*sin(pi*x[2])*sin(pi*x[0])*exp(-t)’,

’-2*pi*pi*cos(pi*x[0])*sin(pi*x[1])*cos(pi*x[2])*exp(-t)

+ pi*cos(pi*x[2])*sin(pi*x[0])*sin(pi*x[1])*exp(-t)’),

degree = 2, t = 0)

g = Expression(’-pi*cos(pi*x[0])*sin(pi*x[1])*sin(pi*x[2])*exp(-t)’, \

degree = 2, t = 0)

U 0 = Expression((’sin(pi*x[1])*sin(pi*x[2])’, ’sin(pi*x[2])*sin(pi*x[0])’,

’sin(pi*x[0])*sin(pi*x[1])’,

’pi*sin(pi*x[0])*(cos(pi*x[1])-cos(pi*x[2]))’,

’pi*sin(pi*x[1])*(cos(pi*x[2])-cos(pi*x[0]))’,

’pi*sin(pi*x[2])*(cos(pi*x[0])-cos(pi*x[1]))’,\

’sin(pi*x[0])*sin(pi*x[1])*sin(pi*x[2])’, ’0’, ’0’, \

’sin(pi*x[0])*sin(pi*x[1])*sin(pi*x[2])’), degree = 2)

tol = 1E-14

def boundary(x, on boundary):

return on boundary

bcD = DirichletBC(W.sub(0), Constant((0.0, 0.0, 0.0)), DomainBoundary())

bcB = DirichletBC(W.sub(1), Constant((0.0, 0.0, 0.0)), DomainBoundary())

bcu = DirichletBC(W.sub(2), Constant((0.0, 0.0, 0.0)), DomainBoundary())

bcp = DirichletBC(W.sub(3), Constant(0.0), boundary)

bc = [bcD, bcB, bcu, bcp]

# Define expressions used in variational forms

dt = Constant(dt)

epsilon0 = Constant(epsilon0)

sigma0 = Constant(sigma0)

L0 = Constant(L0)

mu0 = Constant(mu0)
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lambda0 = Constant(lambda0)

G0 = Constant(G0)

alpha0 = Constant(alpha0)

c0 = Constant(c0)

kappa0 = Constant(kappa0)

# Define initial value

bfU n = project(U 0, W)

# solutions got from last time step

E n, H n, bfu n, p n = split(bfU n)

# Define variational problem

E, H, bfu, p = TrialFunctions(W)

D, B, bfv, q = TestFunctions(W)

# bilinear form

a = epsilon0*inner(E, D)*dx +dt*sigma0*inner(E, D)*dx - dt*inner(H, curl(D))*dx\

- dt*L0*inner(nabla grad(p), D)*dx + mu0*inner(H, B)*dx + dt*inner(curl(E), B)*dx\

+ lambda0*inner(nabla div(bfu), nabla div(bfv))*dx\

+ G0*inner(nabla grad(bfu), nabla grad(bfv))*dx\

+ c0*inner(p, q)*dx + alpha0*inner(nabla div(bfu), q)*dx

- alpha0*inner(p, nabla div(bfv))*dx\

- dt*L0*inner(E, nabla grad(q))*dx + dt*kappa0*inner(nabla grad(p)

, nabla grad(q))*dx\

L = dt*inner(J, D)*dx + epsilon0*inner(E n, D)*dx + mu0*inner(H n, B)*dx\

+ inner(f, bfv)*dx + inner((c0*p n + dt*g), q)*dx\

+ alpha0*inner(nabla div(bfu n), q)*dx

# Time-stepping #

bfU = Function(W)

t = 0

for nn in range(num steps):

# Update current time

t += T/ num steps
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E ex.t = t

H ex.t = t

J.t = t

u D.t = t

p D.t = t

f.t = t

g.t = t

# Solve variational problem

solve(a == L, bfU, bc)

# Calculate errors

Eh, Hh, Uh, ph = bfU.split()

error L21 = errornorm(E ex, Eh, norm type = ’l2’)

error L22 = errornorm(H ex, Hh, norm type = ’l2’)

error L23 = errornorm(u D, Uh, norm type = ’l2’)

error L24 = errornorm(p D, ph, norm type = ’l2’)

ENorm = sqrt(assemble(inner(E ex, E ex)*dx(mesh)))

HNorm = sqrt(assemble(inner(H ex, H ex)*dx(mesh)))

UNorm = sqrt(assemble(inner(u D, u D)*dx(mesh)))

pNorm = sqrt(assemble(inner(p D, p D)*dx(mesh)))

rel err 21 = error L21/ENorm

rel err 22 = error L22/HNorm

rel err 23 = error L23/UNorm

rel err 24 = error L24/pNorm

print(’At t = ’, t)

print(’relative error ||E - E ex||/||E|| = ’, rel err 21)

print(’relative error ||H - H ex||/||H|| = ’, rel err 22)

print(’relative error ||U - U ex||/||U|| = ’, rel err 23)

print(’relative error ||p - p ex||/||p|| = ’, rel err 24)

# Update previous solution

bfU n.assign(bfU)

We shall now dissect our FEniCS program in detail.

from fenics import *

from ufl import nabla div
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import numpy as np

import matplotlib.pyplot as plt

The first line in the program imports the key classes UnitSquareMesh, FunctionSpace, Function,

and so forth, from the FEniCS library. All FEniCS programs for solving PDEs by the finite element method

normally start with this line. The second line imports the operation of matrix divergence. NumPy is the

fundamental package for scientific computing with Python and Matplotlib is a comprehensive library for

creating static, animated, and interactive visualizations in Python.

# Create mesh and define function space

# Load mesh

mesh = UnitCubeMesh(10, 10, 10)

This sets the domain Ω as a unit cube, and create a mesh on it. There are totally 10×10×10 uniformly

distributed nodes.

# Build function space

D1 = FiniteElement("N1curl", mesh.ufl cell(), 1)

B1 = FiniteElement("RT", mesh.ufl cell(), 1)

V = VectorElement("Lagrange", mesh.ufl cell(), 1)

Q = FiniteElement("Lagrange", mesh.ufl cell(), 1)

element = MixedElement([D1, B1, V, Q])

W = FunctionSpace(mesh, element)

The third argument “1” specifies the degree of the finite element. We have used Nedéléc element of

order 1 (P1 in the P−
r Λk family), Raviart-Thomas element of order 1 (N1f1 in the P−

r Λk family), and linear

Lagrange elements for the test functions in the first, second, third and fourth equations, respectively. W is

the mixed element function space, each vector in W can be divided into four parts which corresponds to D1,

B1, V and Q, using split command. The function space can also be divided, as we will see later.

# Exact solutions, boundary conditions and known functions

E ex = Expression((’sin(pi*x[1])*sin(pi*x[2])*exp(-t)’,\

’sin(pi*x[2])*sin(pi*x[0])*exp(-t)’, \

’sin(pi*x[0])*sin(pi*x[1])*exp(-t)’), degree = 2, t = 0)
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This is a way to define functions in FEniCS, the argument degree is a parameter that specifies how the

expression should be treated in computations. On each local element, FEniCS will interpolate the expression

into a finite element space of the specified degree. t=0 is a typical way to treat the time in FEniCS, that is,

first declare time as a parameter and initialize it to zero, then update its value in the time loop.

def boundary(x, on boundary):

return on boundary

The argument on boundary is True if x is on the physical boundary of the mesh, so in the present

case, where we are supposed to return True for all points on the boundary, we can just return the supplied

value of on boundary.

bcD = DirichletBC(W.sub(0), Constant((0.0, 0.0, 0.0)), DomainBoundary())

bcB = DirichletBC(W.sub(1), Constant((0.0, 0.0, 0.0)), DomainBoundary())

bcu = DirichletBC(W.sub(2), Constant((0.0, 0.0, 0.0)), DomainBoundary())

bcp = DirichletBC(W.sub(3), Constant(0.0), boundary)

bc = [bcD, bcB, bcu, bcp]

Our boundary conditions are n× E = 0, u = 0 and p = 0 on the boundary. W.sub(i) corresponds to

the ith subspace of W . Boundary conditions for each equation are specified by calling corresponding W ’s

subspaces. Then, as we constructed the big space W for the four spaces, we declare a vector of boundary

conditions, call it bc.

# Define expressions used in variational forms

dt = Constant(dt)

Declare dt as a Constant object to use it later in declaring bilinear and linear forms.

# Define initial value

bfU n = project(U 0, W)

# solutions got from last time step

E n, H n, bfu n, p n = split(bfU n)

Here, bfU = (E, H, bfu, p) is the unknown vector used in solving the big linear system. Variables with

subscript n denote the solution obtained from the last step. In each step, bfU is recalculated and then its

value is passed to bfU n as in the next step, the solution in the last step. bfU n is divided to calculate
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errors.

# Define variational problem

E, H, bfu, p = TrialFunctions(W)

D, B, bfv, q = TestFunctions(W)

We can directly do this because FEniCS knows that W is comprised of four parts, and the order of the

spaces is preserved as in the command element = MixedElement([D1, B1, V, Q]).

# bilinear form

a = epsilon0*inner(E, D)*dx +dt*sigma0*inner(E, D)*dx - dt*inner(H, curl(D))*dx\

- dt*L0*inner(nabla grad(p), D)*dx + mu0*inner(H, B)*dx

+ dt*inner(curl(E), B)*dx\

+ lambda0*inner(nabla div(bfu), nabla div(bfv))*dx\

+ G0*inner(nabla grad(bfu), nabla grad(bfv))*dx\

+ c0*inner(p, q)*dx + alpha0*inner(nabla div(bfu), q)*dx

- alpha0*inner(p, nabla div(bfv))*dx\

- dt*L0*inner(E, nabla grad(q))*dx + dt*kappa0*inner(nabla grad(p),

nabla grad(q))*dx\

L = dt*inner(J, D)*dx + epsilon0*inner(E n, D)*dx + mu0*inner(H n, B)*dx\

+ inner(f, bfv)*dx + inner((c0*p n + dt*g), q)*dx\

+ alpha0*inner(nabla div(bfu n), q)*dx

Here we can see one of the great features of FEniCS. The declaration of the bilinear forms and linear

forms are very similar to mathematical formula written in a text file. People with no experience with FEniCS

can certainly read these commands. The command nabla grad can be used to calculate the gradient for

both a scalar and a vector.

for nn in range(num steps):

# Update current time

t += T/ num steps

E ex.t = t

H ex.t = t

J.t = t

u D.t = t
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p D.t = t

f.t = t

g.t = t

Here we update the time of each function.

# Solve variational problem

solve(a == L, bfU, bc)

Here we can see another great feature of FEniCS. We can use a to include all bilinear forms and L to

include all linear forms. Then, simply calls solve(a == L, bfU, bc will ask FEniCS to calculate the

solution after applying bc) and store it in bfU. FEniCS knows which space each function belongs to and

will automatically assemble linear systems and solve.
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