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In this thesis, I investigate deep neural network based student response modeling, more

specifically Knowledge Tracing (KT). Knowledge Tracing allows Intelligent Tutoring Systems

to infer which topics or skills a student has mastered, thus adjusting curriculum accordingly.

Deep neural network based knowledge tracing models like Deep Knowledge Tracing (DKT)

and Dynamic Key-Value Memory Network (DKVMN) have achieved significant improve-

ments compared with conventional probabilistic models. There are mainly two goals in this

thesis: 1) To have a better understanding of existing deep neural network based models

and their predictions through visualization and through incorporating uncertainties. 2) To

improve the performance of student response modeling with multimodality and attention

mechanisms. In this thesis, I will first introduce the background and show why deep neural

network based knowledge tracing models might have less depth than anticipated through

visualization. Next, I propose a more practical way of alleviating the concerns of these deep

models by incorporating uncertainty for each prediction. Then, I will discuss how adding

more modalities and attention mechanisms might help improve model performance.
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Chapter 1

INTRODUCTION

Our accumulated knowledge in the past few decades is more than that of any other

time in history. Human knowledge has gone through the transition from linear growth to

exponential growth. To catch up with this speed and stay competitive, we are required to

learn more efficiently, which implies more efficient ways of instruction. However, the way we

conduct education is not very different from that of thousands of years ago. Even though

the appearance of techniques like computers and Internet greatly changed how content is

delivered. For instance, massive open online courses (MOOC) [89] allow the access to high

quality resources from rural areas. Discussions with other students from all over the world

was also made possible. However, the teaching paradigm is almost the same: students (from

all around the world) gather together in a classroom (although virtual) to learn one topic

with fixed curriculum from one teacher. Besides, the effectiveness of these online courses is

also questionable [89]. A lot of research has been conducted and we learnt that the most

effective way of learning is through one on one tutoring, thus customized curriculum could

be designed for each student [139]. However, this methodology does not scale, considering

the fact that mentors or teachers are always limited resources.

To achieve large scale individualized education, we seek Artificial Intelligence (AI) for

help. Systematic research about AI could be traced back to the 1940s [114]. Pioneering

researchers at that time include John McCarthy, Alan M. Turing, etc. The research field of

AI in education was established in the 1970s [15,16,23,116,117]. There were golden ages for

AI research and its applications when researchers failed to appreciate the difficulty. There

were also winter times when a lot of projects could not meet the high expectations of investors

and funding was cut off. Recently, we have seen the renaissance of AI research, which is

largely due to the success of deep learning [47]. Deep learning is the study of neural networks
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with many layers (could be hundreds of layers). However, it is not because we have achieved

significant breakthroughs from the algorithmic perspective. The computational model of

deep neural networks was not too much different from the ones proposed in the late 1940s and

the algorithms used to train deep neural networks, which is called backpropagation [113], was

proposed in the 1980s. Why then we waited for nearly three decades? Generally speaking,

there are two reasons. Firstly, these deep neural networks with millions of parameters usually

require a lot of training data. We did not have such amount of data available until recently.

Secondly, the training process is very computational demanding. Even in nowdays, with

current computers, the training process for a mediocre network could take days if not weeks.

Deep Learning has achieved tremendous success in fields like Natural Language Process-

ing (NLP), Computer Vision and Healthcare [31, 37, 38, 77, 132]. Yet, we still haven’t seen

very exciting breakthroughs in the field of education. Most existing intelligent tutoring sys-

tems are still very naive [139]. One student usually has to work through a fixed series of

exercises. When the system detects an incorrect response, fixed hints will be given. Thus,

one student is always in a recognized path. It is difficult to add more exercises or change

the curriculum dynamically. The passing of information is usually one way, from the system

to the student. To infer the mastery level of different skills for one student, most intelligent

tutoring systems only utilize the correctness of one problem (skill), despite the fact that

other user activities like time spent, number of hints will also be collected. However, such a

situation is understandable, since student response modeling is a much more challenging task

than object recognition, which is pretty much solved. Different students may have different

abilities when solving different problems. Different problems usually involve several different

skills with different difficult levels. These different skills could be correlated to each other.

One student who has already mastered some skill could also make mistakes (slip). One who

has not mastered the corresponding skill might have a correct guess. Other factors including

emotion, fatigue could also play important roles. Building a successful intelligent tutoring

system requires expertise from domains like education, computer science, psychology, etc.
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Intelligent Tutoring Systems (ITS) [139] is one of the applications of AI in education. A

successful intelligent tutoring system should at least include the following four modules [139]:

1) Student Knowledge Module. The system must have a good understanding of the student

currently involved. For example, which skills the student has mastered, which ones need

more practice. What’s more, an intelligent system should also take factors like emotion,

fatigue into consideration, as they could greatly impact the learning efficiency. 2) Teaching

Knowledge Module. What is the best teaching strategy for this student at the current

moment? When to intervene or motivate? 3) Communication Knowledge Module. What

is the best way to communicate with the student? Use natural language, texts or videos?

Different students may have different preferences. 4) Evaluation Knowledge Module. The

system must have an efficient way to assess the performance of a student, thus curriculum

could be adjusted to either give more remedial exercises or to move to more advanced topics.

However, we are still very far away from building such an ITS. Most current works only target

one or two modules [139]. In this thesis, I will only focus on student response modeling, more

specifically on Knowledge Tracing (KT) [25]. KT is a technique of tracking the mastery level

of each skill for one student, thus customized curriculum could be designed. It is considered as

a core component of the student knowledge module. Student response modeling is a broader

concept than knowledge tracing, but in this thesis I will use these two interchangeably.

Knowledge Tracing (KT) uses all the information available to build a ’knowledge’ model

of a student. Since this model is updated whenever new information is available, it could

’trace’ the knowledge changes of one student. This is different from other student response

modeling techniques that have a separate evaluation phase. Using this model we could

predict the next response for a student on a specific topic. Knowledge tracing allows the

inference of the mastery level of a skill for a student, thus is the key for building intelligent

tutoring systems. I will use skills, knowledge components (KCs), production rules, or topics

interchangeably in this thesis. Given a learning domain, the skills are usually discovered

manually by domain experts (although, there are some models that could automatically

discover these skills [107]). For instance, one skill could be knowing how to calculate the
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area of a circle in geometry. These skills are considered the basic learning units. For the

following discussions, I assume these skills are already given (For each problem a student

tries, we know the skill or skills related to the problem. One problem or exercise may have

several steps, with each step corresponds to one or more skills. This is domain dependent).

In section 1.1, I will briefly describe the history of knowledge tracing, introducing the

most recognized works in this field and summarizing the advantages and limitations of these

models. Learning Factors Analysis (LFA) [17] and Performance Factors Analysis (PFA) [102]

will be covered in section 1.2. Then, I will talk about Item Response Theory (IRT) [40] in

section 1.3. IRT models are widely used in the assessment community. A lot of knowledge

tracing models are built upon IRT models. A briefly description of the public datasets that

will be used throughout this thesis is presented in section 1.4. The contributions of this

thesis will be summarized in section 1.5. A declaration of previous works and the structure

of this thesis will be given in section 1.6 and 1.7.

1.1. Knowledge Tracing

Knowledge Tracing (KT) refers to the process of tracking the changes of mastery level of

skills for one student. As mentioned above, given a domain, skills are usually discovered by

domain experts manually through brainstorm. Take Geometry as an example, calculating

the area of a circle could be considered as one skill. There are underlying two assumptions

here. First, each skill is considered to be a basic learning unit and not dividable. Second,

skills in a domain are independent to each other. However, these two assumptions are usually

not hold in practice. Since these skills are discovered manually, it is not guaranteed that each

skill represents the basic learning unit. It is possible for one skill to be decomposed into sub

skills or some skills to be combined into one skill to achieve better prediction performance.

Also, some skills could be correlated to each other. A lot of research works for student

response modeling actually were proposed to tackle these problems. I will describe them in

the following sections.

4



Figure 1.1. The error rate changes with the number of opportunities to apply each rule.

This is also called the power law [25].

Our goal in learning is to master all corresponding skills in a domain. Mastery learning

[25] could be achieved if: 1) A domain knowledge is decomposed into hierarchical skill

components. 2) Prerequisite skills are learnt first before higher level skills in this hierarchy.

A curriculum is designed to make sure prerequisite skills are practiced first. Based on this

assumption, each skill component is the smallest learning unit. Figure 1.1 gives the mean

learning curve [25]. The x-axis is the number of opportunities to apply each rule and the

y-axis is the error rate. This is also called the power law, as we can see the error rate

drops monotonically with time. However, if we use a more superficial unit like exercise, no

systematic learning curve could be found (an exercise could contain more than one skill).

A set of skills from one domain defines a cognitive model. A high quality cognitive model

is a prerequisite of building successful intelligent tutoring systems. If one skill generated

through brainstorm could not actually reflect the underlying truth (could be decomposed

into sub skills), the prediction performance suffers. Prior to knowledge tracing, an intelligent

tutoring system usually uses what is called model tracing. In model tracing, an ITS has an

ideal student model and the curriculum is usually fixed. The system solves a fixed sequence

of exercises together with the student, each exercise may contain several steps, with each

step corresponds to one or several skills. When one student makes a mistake, the intelligent
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system will give some pre-programmed hints, until this student successfully moves to the next

step. Thus, this student is always in a recognized position. Apparently, this methodology

is not very efficient and flexible. All students solve the same fixed number of exercises and

no individual difference is taken for consideration. Ideally, we want to give more remedial

exercises to those students who struggle, but fewer to those who already mastered these

skills. Knowledge tracing could be used to dynamically generate a series of practices based

on the mastery level of different skills for a specific student, thus is considered to be a better

alternative to model tracing.

1.1.1. Bayesian Knowledge Tracing

Bayesian Knowledge Tracing (BKT) [25] is a type of Hidden Markov Model (HMM),

with latent variables modeling the skills and observed variables modeling the responses.

BKT assumes a binary state of one skill for a student as either mastered or not, as well as

the response of a question from a student as either correct or incorrect. It builds a model

for each student skill pair and updates the model using Bayes’s rule after observing the

responses. There are four parameters in the BKT model:

• p(L0), our prior knowledge about the probability of being in a learned state before

seeing any evidence.

• p(T ), the probability of transition from an unlearned state to the learned state after

an opportunity to apply it.

• p(G), the probability that a student will have a correct guess despite in an unlearned

state.

• p(S), the probability that a student will make a mistake (slip) even if in the learned

state.

In the standard implementation of BKT, these four parameters are item specific. In other

words, these four parameters are different from item to item, but shared by all students. No

student specific parameters means that all students learn at the same rate. There is also no
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forgetting parameters in the BKT model. Each student’s state is updated using the following

equation:

p(Ln) = p(Ln−1|evidence) + (1− p(Ln−1|evidence)) ∗ p(T ) (1.1)

Equation 1.1 means a student will be in a learnt state if this student was already in

the learnt state in the previous step or not in the learnt state but will be transferred into

this state after one attempt. The conditional probability p(Ln−1|evidence) could be easily

calculated after seeing the responses from the student. Then we could use these probabilities

to predict the next response for that student using the following equation.

p(Cis) = p(Lrs) ∗ (1− p(Sr)) + (1− p(Lrs)) ∗ p(Gr) (1.2)

The probability of a student s will have a correct response to item i associated with skill r

is the sum of 1): the probability that this student has already mastered skill r and will not

make a mistake. 2) the probability that the student has not mastered the skill r, but has a

correct guess. Please note here, we have such a model for each student item pair.

The biggest advantage of BKT is its simplicity and interpretability. However, BKT as-

sumes skills are independent, which is usually not true in the real world (The hard part is

to find independent skills, because this process is usually conducted manually by domain

experts. It is unknown if there are truly independent skills. If there are, the real problem

is how to find them). Another limitation of the BKT model is that, in the standard imple-

mentation of BKT, the parameters are skill specific, which means all students practice the

same skill will share these four parameters. This is also not true in the real world. Different

students may have different learning rate and their prior knowledge will also be different. In

the original BKT paper [25], authors discussed using different four parameters for each stu-

dent and four parameters for each skill, and then do a combination through some function.

However, it did not improve the performance.

Yudelson et al. [146] introduced student specific parameters and proposed the Individ-
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ualized Bayesian Knowledge Tracing model. Experiment results show that, incorporating

student specific parameters improves the model performance. Also, modeling the learning

rate parameter is more effective than modeling the prior knowledge parameter. The param-

eters of BKT are usually learnt using algorithms like Expectation Maximization (EM) [28]

or conjugate gradients [56].

1.1.2. Bayesian Networks for Knowledge Tracing

We can think of BKT as a simple dynamic bayesian network, in which each skill is modeled

as a hidden variable. However, skills are independent to each other in BKT (there is one

model for each student skill pair). There are some works that based on more complicated

bayesian networks can capture the relations among skills [66].

Käser et al. [66] proposed using dynamic bayesian networks (DBNs) for knowledge trac-

ing. Firstly, a hierarchical skills topology is built by domain experts. Each skill is associ-

ated with a series of parameters. For instance, for each skill S there is a guess parameter

1 − pG = p(observe = 0|S = 0) and slip parameter pS = p(observe = 0|S = 1), which are

similar to those from the BKT model. There are also parameters that model the learning

and forgetting for each skill pL, pF . The current state of some skill, for instance S3 in time

step t does not only depend on the state of S3 in its previous state, but also the states of

its parents S1 and S2. Skills are modeled as hidden variables h, while student responses are

observed data y. The learning process is to find a parameters setting θ that maximize the

likelihood for student m.

L(θ) =
∑
m

ln

(∑
hm

p(ym, hm|θ)

)

They tested on 5 different datasets and showed that explicitly modeling skills topology

could achive better results compared with models like BKT. However, the authors also argued

that the improvement is small in domains that do not require hierarchical representation,

for instance, spelling learning. One limitation of this work is the requirement of building
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Figure 1.2. Mean learning curve for a complex skill [25].

a skills topology manually by domain experts. This process is tedious when the domain

is complicated and might bring in human bias. Deep Learning based models like Deep

Knowledge Tracing (DKT) [107] and Dynamic Key-Value Memory Networks (DKVMN) try

to model skills relation implicitly. I leave the discussion of these models in later chapters.

1.2. Learning Factors Analysis and Performance Factors Analysis

The performance of student response modeling largely depends on the accuracy of the

underlying cognitive model. If the cognitive model discovered by domain experts through

brainstorm could not reflect the ground truth (or at least close to), the performance of

student response modeling may suffer. For instance, some skill might be further decomposed

into sub skills.

To alleviate this problem, Cen et al. [17] proposed a semi-automatic approach called

Learning Factors Analysis (LFA) to improve the cognitive model. They proposed a prob-

abilistic model by extending the power law model. The standard form of the probabilistic

model from LFA is given by the following equations:

m(i, j ∈ KCs, s, f) = αi +
∑
j∈KCs

(βj + γjni,j) (1.3)
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Figure 1.3. Mean learning curves for decomposed two skills [25].

p(m) =
1

1 + exp −m
(1.4)

where m is the accumulated learning, αi captures the ability for student i, βj is the difficult

level of item j. ni,j represents the number of opportunities to apply skill j for student i.

And γj is a discriminative parameter. A logistic model is used to get the probability p of

getting an item correct. Using this probabilistic model, for a given cognitive model, we

could evaluate its performance by observing how well this cognitive model fits our data.

The next part of LFA is a semi automatic way of improving the cognitive model. First,

domain experts identify which skills could be further decomposed into sub skills and which

skills could be combined into one. For example, a CIRCLE-AREA skill which is to calculate

the area of circle could be further decomposed into CIRCLE-AREA-ALONE and CIRCLE-

AREA-EMBEDDED. That is because students find it harder to calculate the area when it

is embedded in another shape, for instance a square. Figure 1.2 gives the mean learning

curve for a complex skill. As we can see, it is not very smooth and no systematic trend

is observed. After decomposing this complex skill into two sub skills, the learning curve is

more smooth, as shown in Figure 1.3. Using search algorithms like A*, through splitting

and combining nodes, a better cognitive model could be found. Two scoring functions were

used. Akaike Information Criterion (AIC) and Bayesian Information Ceriterion (BIC). The
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choice between these two is a trade off between the complexity of the model (for instance,

number of parameters) and the log likelihood.

Performance Factors Analysis (PFA) [102] also uses logistic regression to model the ac-

cumulated knowledge. It is based on Learning Factors Analysis (LFA) [17] and overcomes

the limitation that LFA only counts the opportunities in its model but ignores the responses

from the student. The model of PFA is given by:

m(i, j ∈ KCs, s, f) =
∑
j∈KCs

(βj + γjsi,j + ρjfi,j) (1.5)

where, βj is the easiness for item j. si,j is the success counts of skill j for the student i.

fi,j is the failure counts of skill j for the student i. γj and ρj are discriminative parameters.

The accumulated knowledge m is sent to a logistic function to give a probability of getting

item j correct. Compared with LFA, as we can see the student specific parameter has been

removed, since it is usually not feasible to estimate the student ability ahead of time for a

tracing model. LFA model is more used in a data mining context and it is not a knowledge

tracing model. However, after the changes, we could use PFA for knowledge tracing. PFA

calculates the accumulated learning as a function of the number of success attempts and

failure attempts for different skills. Compared with BTK, PFA punishes the model less for

each failure attempt for the student, which is believed to be one of the reasons that PFA

performs better than BTK on some datasets.

1.3. Item Response Theory

Item Response Theory (IRT) [40] is a family of probabilistic models that are widely used

in the assessment community. Strictly speaking, IRT models are not knowledge tracing

models, because they assume the student ability or the latent trait does not change with

time. For this reason, they are considered static models and are mainly used for exercises

development. However, there are a lot of knowledge tracing models that are built upon IRT.

In this section, I will first introduce the basic ideas of IRT models, then talk about their
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extensions for knowledge tracing.

IRT models assume that one student’s ability could be summarized by one single latent

variable (latent trait). With larger value of this latent variable, the probability of a correct

response is also higher. IRT models try to capture the link between this latent variable

and its manifestations (the responses). There are mainly four parameters involved in IRT

models. θs is the latent trait, modeling student s’ ability. bi models the difficult level of

each item i. ai is a discrimination parameter of item i, which is often useful when students

have similar abilities. c is the guess parameter, which is used to model the situation that a

student could have a correct guess even without mastering the corresponding skill. Based on

the number of parameters involved. IRT models could be categorized as 1-PL model, 2-PL

model and 3-PL model.

1.3.1. 1-PL, 2-PL and 3-PL Models

The most simple model is the 1-PL model and is given by Equation 1.6.

p(correct|θs, bi) =
exp(a(θs − bi))

1 + exp(a(θs − bi))
(1.6)

It involves the latent variable for the student θs and one parameter bi which is the difficult

level for item i. a is a constant in this model. We can see the 1-PL model is just a logistic

function that squashes the difference between the student ability θs and the item difficult

level bi to a number between 0 and 1. We can think of this number as the probability of

getting one item correct. The larger the difference between the student ability θs and the

difficult level of item bi, the higher the probability of having a correct response. Thus, it is

straightforward to interpret this model. There is a special case when a = 1.

p(correct|θs, bi) =
exp(θs − bi)

1 + exp(θs − bi)
(1.7)

We call it Rasch Model. In practice, the Rasch model usually performs better because it

constrains itself to measure the variables of interest. Especially when the size of the dataset is
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limited, more variables provide more challenges for estimations. However, sometimes, when

students have very close abilities, adding a discrimination parameter ai is still beneficial,

such as:

p(correct|θs, ai, bi) =
exp(ai(θs − bi))

1 + exp(ai(θs − bi))
(1.8)

Equation 1.8 indicates the 2-PL model. The discrimination parameter ai is different for each

item i. Sometimes, we also want to model the situation in which a student could have a

correct guess even without mastering the corresponding skills. We could incorporate a guess

parameter c here. The parameter c is usually selected to be 0.25 if a multiple choice question

has 4 options (0.2 for 5 options).

p(correct|θs, ai, bi) = c+ (1− c) exp(ai(θs − bi))
1 + exp(ai(θs − bi))

(1.9)

Figure 1.4 shows a 3-PL model with different values for a and b. As we can see, when

having the same value for a but different values for b, the curve moves horizontally. In the

case of having the same value for b but different values for a, larger a is more likely to

discriminate students with small ability differences.

IRT models assume the responses for different items are independent given the latent

trait variable. Thus, parameters could be simply estimated using Maximum Likelihood or

Expectation Maximization Algorithms. Once we get these parameters, they usually will not

change with time. Thus, 1-PL, 2-PL and 3-PL models are considered static models. There

are no “tracing“ in these models. But these models do give us a good starting point. We

will see in later sections how can we extend IRT models for knowledge tracing.

1.3.2. Parameters Estimation of IRT Models

Most algorithms used for the estimation of parameters of IRT models assume: 1) Given

student latent variable θ, the responses for different items are independent. 2) All students

are independent from each other. We usually will have two settings of parameters in IRT
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Figure 1.4. Item response theory 3-PL model with different discriminative parameter a and

difficult level b values.

models: student related parameters θ and item related parameters φ. If we know either

of them, to estimate the other parameters is easy based on our assumptions. However,

sometimes, it is required to estimate these two types of parameters simultaneously. I will

describe two popular algorithms that are all based on likelihood maximization. A more

comprehensive description of these algorithms could be found in [64].

Joint Maximum Likelihood (JML) assumes both the student latent variable θ and

item related parameters φ (includes discrimination parameter a, difficult parameter b, etc)

are unknown, but fixed. The likelihood L(θ, φ,X) could be decomposed into
∏

s Ls(θs|xs, φ),

which could be maximized with respect to θs and φ.

Marginal Maximum Likelihood (MML) takes a different approach from JML. MML

assumes the student latent trait is sampled from some distribution F (θ). This distribution

does not need to be continuous. By integrating out the student latent variable, we have a

marginal distribution

Pr(xs|φ) =

∫
θ

Ls(θ|xs, φ)dF (θ) (1.10)
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Thus, we have the marginal likelihood for the parameters φ:

L(φ|X) =
∏
s

Pr(xs|φ) (1.11)

There are other algorithms available for the parameters estimation like Conditional Max-

imum Likelihood and Bayesian Estimation with Markov Chain Monte Carlo, interested read-

ers could refer to this survey [64].

1.3.3. IRT Extensions for Knowledge Tracing

As discussed above, IRT models are static models, which means the student ability

(latent variable) does not change with time. Because IRT models were first developed for

psychometrics. In the context of education, these models are often used for assessment

and items development. Parameters are estimated using algorithms like Marginal Maximum

Likelihood [64]. Using a wright plot we could easily see the distributions of the student

abilities and item difficulties. However, there are a lot of knowledge tracing models that

are built upon IRT models. In this section, I will discuss some of the works that are most

recognized by the learning science community.

One possible way of using IRT for knowledge tracing without much modification could

be conducted like this. A portion of the dataset is reserved for parameters estimation (for

example, 20%). Once we have all the values for these parameters, the values of non-human

related parameters will be fixed. When making a prediction of the response for time index

t, we will estimate the human related parameters using all the data till time t − 1. Please

note here, we assume the data used for item parameters estimation include all skills. The

human related parameters will be reevaluated after the response at each time step. But, the

item related parameters will be fixed.

Now, let’s take a look at another approach of extending IRT models for KT. The proba-

bility of getting an item i correct could be expressed using KT:
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P (yi,t|yi,1, yi,2, ...yi,t−1) =
∑
l∈(0,1)

P (yi,t|kt = l)P (kt = l|yi,1, yi,2, ...yi,t−1) (1.12)

where l is the knowledge state, 1 represents learnt and 0 represents unlearnt. To combine

IRT with KT, we could replace the emission probability P (yi,t|kt = l) with an IRT model,

which is basically a logistic function. The combined model becomes:

P (yi,t|yi,1, yi,2, ...yi,t−1) =
∑
l∈(0,1)

logistic(di, θs, cl)P (kt = l|yi,1, yi,2, ...yi,t−1) (1.13)

The logistic model is parameterized with the difficult level of an item di, the student ability

θs and a bias cl indicating if the current student is in a learnt state or not. In [70], the

authors compared two works that combined IRT and KT: FAST [46] and LFKT [69]. These

two models only differ in the training process and the way these parameters are learnt. A

detailed description could be found in [70].

Another recent work [144] combines deep neural networks with IRT, exploiting the rep-

resentational power of deep neural networks and the interpretability of IRT model. In this

work, the authors use deep neural networks to learn the student ability θi and item difficult

level bj, then these two variables will be used by an IRT model to make a final prediction.

More knowledge tracing models based on deep neural networks will be discussed in the next

chapter.

Models like BKT, LFA and PFA share one common advantage: interpretability. In

other words, all the parameters used are meaningful and the features are easy to explain.

For example, the guess parameter in BKT model represents the probability of having a

correct guess even in an unlearnt state. However, deep learning based models which we will

talk in the next chapter do not have this advantage. How the final decisions are made for

those models are unclear and the features learnt by the deep neural network models are

hard to explain. The advantage of deep learning models is the ability to learn hierarchical

representation, which will be described in chapter 2.
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1.4. Datasets

The public datasets that are used throughout this thesis are described below. Novel

dataset will also be used when evaluating multimodality and will be discussed in detail in

the corresponding chapter. In the following datasets, I have removed students with less

than three attempts and those having empty values for some features when considering

multimodality. The statistics of each dataset used for different purposes will be given in

corresponding sections. In this section, I give an overall description of these datasets.

Assistment skill builder 09-10 The ASSISTment system is an online tutoring system

originally built on 8th grade MCAS test items (mathematics) [42]. The grade 8 mathematics

test includes the following five domains: The number system, Expressions and equations,

Functions, Geometry, Statistics and probability. A sample test item looks like the following:

Between which pair of numbers on a number line does
√

6 lie?

A. 2.3 and 2.5

B. 2.5 and 2.7

C. 2.7 and 2.9

D. 2.9 and 3.1

This dataset is gathered in school year 2009-2010 and is one of the most used datasets

for comparing knowledge tracing models. A student is considered to have mastered one

skill when meeting some criterion (for instance, correctly answered three problems related

to that skill in a row). After mastery, different problems related to other skills are given.

Xiong et al. [140] reported a duplication issue in the 09-10 dataset and created a variant

of the dataset with duplicates removed. Authors of this dataset have been noticed and the

duplication issue has been fixed. I use an updated version of skill builder 09-10 dataset with

removed duplicate entries, directly downloaded from this link1. Since there are different

1https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/
skill-builder-data-2009-2010
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versions of this 09-10 dataset used in the wild by researchers, the results reported in this

study might be marginally different from those reported in other works.

KDD 2010: The 2010 KDD cup challenge [122] is to predict student performance. Data

were collected from the Carnegie Learning’s Cognitive Tutoring System (Algebra system and

the Bridge to Algebra system) for K12 education from school year 2008 to 2009. The system

covers the following mathematics strands: Number and operations, Geometry, Measurement,

Probability and statistics, and Algebra. A sample question looks like Find the unique factor

pairs of 72. In this dataset, students are required to solve problems, with each problem

consisting of several steps. Each step is associated with one or more knowledge components

(skills).

OLI Engineering statics 2012 Fall: The Carnegie Mellon’s Open Learning Initiative

(OLI) is an online platform that provides customized learning. Compared with the previous

two learning systems, OLI aims for higher education. The OLI Engineering Statics course [74]

is the study of methods for quantifying the forces between bodies. The data were collected

for the term 2012 Fall. A sample question looks like the following:

Can the combination of forces A & B be represented as a couple?

A. definitely not

B. maybe

C. definitely yes

When one problem or step involves more than one skill, different dataset handles this

situation differently. For the assistment 09-10 dataset. It has two versions available. For one

version, if one problem has two skills associated, there will be two transactions in the dataset

with the same response. For the second collapsed version, these two skills will be combined

into one new skill. Such that there is only one transaction in the dataset. I used the previous

version. For the other two datasets, a new skill is formed if there are more than one skill

associated with the step. The first two datasets are from the domain of mathematics and

the last is from engineering. This is justified by the fact that these domain is well defined,
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in which it is much easier to define skills like AREA-CALCULATION. It is much harder to

define suitable skills in other domains like literature. I leave investigations in other domains

for future work. Also, for the following discussions, I assume all the skills related to these

problems (steps) are known, I do not discuss techniques to automatically find these skills.

1.5. Contributions

In this section, I summarize all the contributions of this thesis. I investigate deep neu-

ral network based student response modeling. There are mainly two goals in this thesis:

1) To have a better understanding of existing deep neural network based models and their

predictions through visualization and through incorporating uncertainties. This is what I

call interpretable deep models for knowledge tracing. 2) To improve the performance of

student response modeling with multimodality and attention mechanisms. Even though all

the methodologies are evaluated in the context of student response modeling, many of the

contributions also influence the machine learning community. I mark those contributions

with bold font. I divide my contributions into five general areas, listed as follows:

• Explanation about why deep knowledge tracing has less depth than anticipated. These

contributions have been disseminated in the work [33].

– I design and use simulated data and activation vectors to analyze

question-answering behaviors in high dimensional space.

– I modify and explore the deep knowledge tracing model, finding that some irrel-

evant information is reinforced in the recurrent architecture.

– I find that an untrained deep knowledge tracing model (with gradient descent

applied only to layers outside the recurrent architecture) can be trained to achieve

similar performance as a fully trained deep knowledge tracing architecture.

• Proposed a practical way of incorporating uncertainties in student response modeling

[35].

– I empirically show that Monte Carlo alone is not sufficient to learning
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the data variance.

– I propose a regularizer that could guide the training process to result

in sensible uncertainties.

– I propose using simulated data to quantitatively understand the gen-

erated uncertainties.

• The EduAware system, that uses tablet based features to improve student performance

prediction [36].

– An evaluation of EduAware in a user study with 21 college students is presented,

showing that EduAware can identify if a user will respond correctly or incor-

rectly to specific questions with 87.7% accuracy (without use of any personalized

calibration data)

– An analysis of the most important types of features for predicting responses by

comparing different model performances as complementary feature sets are in-

cluded or excluded. Recursive feature elimination is employed to understand the

most important aspects. Both methods reveal that tablet interactions significantly

improve prediction accuracy.

– Different levels of generalization by altering training sets is investigated. The con-

clusion is that performance suffers significantly without content-specific training

data.

• I propose using neural architecture search for optimal recurrent cell design for knowl-

edge tracing [34].

– I propose a new recurrent cell which performs better than the LSTM cell using

reinforcement learning. McNemar’s test is conducted, showing the predictions

from the proposed cell and LSTM cell are significantly different.

– I propose the concept of sub-model sampling as a method of regulariza-

tion for NAS methods, finding that sub-model sampling is an effective

strategy to mitigate overfitting.
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• I propose better performance knowledge tracing models by combining neural architec-

ture search, multimodality and attention mechanisms.

– I extend neural architecture search to multimodality for the looking of the best

fusion architecture. I show the found fusion architecture performs better than

simple concatenation.

– I propose to combine network architecture search and multimodal fu-

sion search. To my best knowledge, it is the first model that combines

these two ideas in a unified methodology.

– I investigate attention mechanisms in the context of knowledge tracing.

– I propose using a new metric, weighted AUC (wAUC) for the assessment of knowl-

edge tracing models. Compared with AUC, wAUC could be used to measure how

one model performs with time.

Other research works completed during my doctoral study, but not included in this

dissertation:

• Swapped Face Detection using Transfer Learning and Human Subjects assessment [38].

This is a collaborative work with Zohreh Raziei, Eric C Larson, Eli V Olinick, Paul

Krueger and Michael Hahsler. In this study, we created a large swapped face dataset

and built a deep convolutional neural network using transfer learning for the detection

of swapped faces.

• Measuring Oxygen Saturation with Smartphone Cameras using Convolutional Neural

Networks [37]. This is a collaborative work with Damoun Nassehi and Eric C. Lar-

son. In this work, we collected video data using smartphone cameras, then built a

convolutional neural network to estimate the oxygen saturation in arterial blood.

• PupilNet, Measuring Task Evoked Pupillary Response using Commodity RGB Tablet

Cameras: Comparison to Mobile, Infrared Gaze Trackers for Inferring Cognitive Load

[132]. This is a collaborative work with Chatchai Wangwiwattana and Eric C Larson.

In this work, we collected video data using tablet cameras and built a convolutional

neural network to estimate the pupil changes intrigued by different cognitive load.
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1.6. Declaration of Previous Works

• Part of Chapter 3 was published in the educational data mining conference in 2019 [33].

• Part of Chapter 4 was published in the Neurocomputing journal, 2020 [35].

• Part of Chapter 5 was published in the Interactive Learning Environments journal,

2019 [36].

However, these initial drafts have been repurposed and greatly extended. New analysis

are also added. While I am writing this thesis, some new analysis of chapter 5 are being

published in the learning @scale conference [34].

1.7. Structure of Dissertation

We have seen conventional probabilistic models for knowledge tracing. The biggest ad-

vantage of these models is interpretability. It’s easy to interpret the features and each

parameter. Deep neural network based models do not share this advantage. In Chapter 2, I

will introduce the basic concepts of deep learning and its application for knowledge tracing.

I propose interpretable deep neural networks for knowledge tracing. This is tackled from two

perspectives. In chapter 3, I use visualization to analyze the behaviors of Deep Knowledge

Tracing (DKT) in high dimensional space. This allows a better understanding of the inner

workings of deep neural network based knowledge tracing models. Modeling uncertainties for

knowledge tracing will be covered in Chapter 4. Extending the deep neural network based

knowledge tracing models with multimodality and attention mechanisms will be discussed

in Chapter 5 and Chapter 6. A summary of this dissertation and future research will be

presented in Chapter 7.
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Chapter 2

DEEP LEARNING AND STUDENT RESPONSE MODELING

We have seen significant improvements deep neural network models have achieved in do-

mains like image processing, natural language processing and healthcare [31,37,77]. What’s

more, a lot of these models have been deployed in the real world with the help of tools like

Tensorflow and Pytorch [7,101]. Use face recognition technique built on convolutional neural

networks [77] to unlock screen or make a payment has been a common practice. In May

2017, AlphaGo Master [119] beat KeJie, the world ranked No.1 professional Go player in a

three game match. The empirical success of deep neural networks has encouraged researchers

in the learning science community to take similar approaches. Several deep neural network

based knowledge tracing models have been proposed in recent years [8,98,107,144,149]. All

these deep neural network based models have achieved better performance compared with

conventional probabilistic models like BKT and PFA. However, deep neural network based

models have limitations too. It is not clear, given a task, how one model adapts its weights

during training. Thus, most researchers use these models as black boxes. Further research

are needed to fully understand these models.

In this chapter, I introduce deep neural networks and their applications in knowledge

tracing. In Section 2.1, I give a brief description of deep neural networks. I will mainly

describe two types of neural networks: recurrent neural network and memory augmented

network. In Section 2.2, I will introduce Neural Architecture Search (NAS), which is a very

promising technique for the automatic design of neural architectures. Evaluation of deep

neural network based models will be discussed in Section 2.3. Then I will discuss the KT

models based on these deep neural networks, their advantages and limitations in Section 2.4.

In the next chapter, I present the work that tries to open the black box of deep knowledge

tracing through visualization. Specifically, using activation vector and synthetic data, I
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explain why deep knowledge tracing model might has less depth than anticipated.

2.1. Deep Neural Networks

Deep Neural Networks or Deep Learning [78] refers to the study of using deep artificial

neural networks to automatically learn hierarchical representations. Despite the fact that

the concept Deep Learning was coined a few years ago, artificial neural networks have been

in existence for decades. The idea of artificial neural network was loosely inspired by how

biological neural network works (To keep it short, I will use neural network instead of using

its whole name artificial neural network in the following texts). The first computational

neural network model was proposed in 1943 by Warren MuCulloch and Walter Pitts [90].

Figure 2.1 shows the MuCulloch-Pitts Neuron. For each input xi there is a corresponding

weight parameter wi. Then an activation function is applied on the summation
∑
wixi. This

process is to simulate how the actual biological neuron works in our brain. The dendrites take

electrical signals as input, when the accumulated electrical signal is above some threshold,

it fires and pass this signal through axon to other neurons (Note this is just a simplified

process of how the biological neuron actually works). We could put together multiple such

neurons to form a layer. Use multiple layers we could form a neural network as shown in

Figure 2.2.

For a regression task, take the output from the neural network h(xi) and the true label

yi, we could construct the following loss function:

J(θ) =
1

2N

N∑
i=1

(h(xi)− yi)2 (2.1)

where N is the number of total samples in the dataset, θ refers to all the parameters. We

could use cross entropy loss for a classification task. For complex models like deep neural

networks, the loss function is usually very complicated and non-convex. Thus, it is often

impossible to find a global optimal. Instead, we usually randomly initialize the weights

of one neural network, then iteratively tweak the weights to minimize the loss function.
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Figure 2.1. MuCulloch-Pitts neuron

Backpropagaton [113] is an application of chain rule to calculate the partial derivative of the

loss function J(θ) with respect to each parameter W k
ji. Here, W k

ji represents the weights for

the ith input of the jth neuron in layer k. Once we have the partial derivatives, we could

update our weights using gradient descent algorithms [112].

W k
ji = W k

ji − α
∂

∂W k
ji

J(W k
ji) (2.2)

where α is the learning rate. For complex models like deep neural networks, we could only

hope to find a good local optimal. Thus, the initialization of the weights [45,54] and the choice

of learning rate usually play important roles on what local optimal we are ended up with.

Popular gradient descent based optimizers include Adam [72], RMSprop [5], Adadelta [148],

etc. Neural networks differ in the number of layers, the width of each layer, activation

function used, etc.

We call neural networks like the one shown in Figure 2.2 shallow networks, because it only

has one input layer, two hidden layers and one output layer. Deep neural networks usually

contain tens (even hundreds) of layers. Even though, it has been proved that feedforward

neural network with only one hidden layer, as long as it is wide enough, is able to approximate

any functions [27]. However, deep but narrow networks are often preferred for at least two

reasons: 1) It saves parameters. 2) Deep neural networks allow the learning of hierarchical

representation, which is especially useful for imaging processing. For example, in an object
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Figure 2.2. A simple artificial neural network with one input layer, two hidden layers and

one output layer.

recognition task as shown in Figure 2.3. The first layer is our input image, which we call input

layer. The first hidden layer could learn simple edges. The second hidden layer takes the

output from the first hidden layer and learns stuff like corners and contours (from edges).

Similarly, higher layers could learn more complex objects. The last layer will output our

classification. Such deep neural networks need a lot of data for training and the training

process usually takes several days or even weeks on a modern computer.

There are different kinds of neural networks. The most recognized ones are convolutional

neural network (CNN) [80] and recurrent neural network (RNN) [113]. CNNs are widely used

in tasks that involve images or videos processing [77]. RNNs are often used for sequence

to sequence modeling like natural language processing or time series modeling. Since I will

mainly use RNNs in this study, I will give a brief description of the most common RNNs.

For readers who are interested in CNNs or other deep learning models could refer to the

deep learning book from Goodfellow et al. [47].

2.1.1. Recurrent Neural Networks

We call neural networks like the one shown in Figure 2.2 feedforward networks. Because

information goes one way from the input layer to the output layer. Recurrent neural network
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Figure 2.3. A neural network model learns hierarchical representation [47].

(RNN), on the other hand, has a loop which allows information to be passed from one step

to the next. This is useful, because it allows access to previous information for the current

computation, which is usually required for tasks like machine translation. Figure 2.4 shows

an unrolled recurrent neural network. xt is the input for time step t. ht is the hidden state.

The hidden state is calculated using the following equation:

ht = σ(Wi · [ht−1, xt] + bi) (2.3)

where σ is the activation function, Wi and bi are learnable parameters. Usually the hidden

state ht will be sent to another output layer to get the final predictions.

yt = σ(Wo · ht + bo) (2.4)
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Figure 2.4. An unrolled recurrent neural network [6].

As we can see, the recurrent neural network takes both the current time step input xt as

well as the previous hidden state ht−1. It is believed this hidden state ht could accumulate

knowledge across a long distance. However, the vanilla RNN usually does not work very well

in practice, especially when the input consists of data that across long distance. In practice,

we usually use variants of the vanilla recurrent neural network, including Long Short Term

Memory (LSTM) [58], Gated Recurrent Unit (GRU) [22], etc. The architecture of LSTM is

shown in Figure 2.5. An LSTM unit consists of the following parts:

ft = σ(Wf · [ht−1, xt] + bf ) (2.5)

it = σ(Wi · [ht−1, xt] + bi) (2.6)

C̃t = tanh(WC · [ht−1, xt] + bC) (2.7)

Ct = ft ∗ Ct−1 + it ∗ C̃t (2.8)

ot = σ(Wo · [ht−1, xt] + bo) (2.9)

ht = ot ∗ tanh(Ct) (2.10)

where σ refers to a logistic (sigmoid) function, · refers to dot products, ∗ refers to element-

wise vector multiplication, and [, ] refers to vector concatenation. Different from the vanilla

recurrent cell, the LSTM has a memory cell ct as well as the hidden state ht. The assumption

is all useful information will be stored in this memory cell ct. And there are three gates called
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Figure 2.5. Long Short Term Memory (LSTM) network [6].

input gate it, forget gate ft and output gate ot that decide which information should be stored

into this cell and which information to erase. The new hidden state ht is generated using

equation 2.10. The above equations will be used for visualization and help us understand

the inner workings of Deep Knowledge Tracing [107] in the next chapter.

Recurrent neural networks are usually trained using a variant of Backpropogation called

Backpropogation through time (BPTT) [134]. RNNs face unique challenges compared with

feedforward neural networks. Gradients could easily explode or vanish when the input se-

quence is long. Truncated BPTT or gradients clipping are usually used for RNNs to mitigate

these issues [99].

2.1.2. Memory Augmented Networks

Recurrent neural networks are known to have problems learning dependency of knowledge

across long time steps. Therefore, much research has been conducted trying to solve this

issue. Memory augmented neural networks are one such attempt. The main idea of memory

augmented neural network is to use an external storage (memory) to keep information across

long time steps. However, we will see that the functionality of this external memory is very

similar to the cell c in LSTM, especially when recurrent structures are used. Figure 2.6 shows

the End-to-End Memory Network [123] that analyzes a question and short answer task. The
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Figure 2.6. End to End Memory Network [123].

short answer sentences are embedded using matrices A and C to the input and output space

separately. The asked question, q, is also embedded using an embedding matrix B. An inner

product of the embedded question and the input space is used to produce weights, as shown

in eq (2.11).

w(i) =
f(d(q,M(i)))∑N
i f(d(q,M(i)))

(2.11)

r =
N∑
i

w(i)M(i) (2.12)

A weighted sum from the output space is used to predict an answer (equation 2.12), which

may be further processed using a fully connected layer. The above process consists of one hop.

Multiple hops can be used to process multiple questions in sequence, thus the architecture

is recurrent. This End to End Memory Network is differentiable, therefore can be trained

using gradient descent algorithms. This type of memory network is essentially learning the

embedding matrices only and there is no mechanism to ’write’ into memory (as described

below).
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Figure 2.7. Neural Turing Machine [50].

Another type of memory network is Neural Turing Machine (NTM) [50]. Figure 2.7

gives the overall architecture of NTM. There are mainly two parts in this architecture:

the controller and the memory. The controller is typically a recurrent neural network or

feedforward network. The controller emits outputs that adjust ‘read’ and ‘write’ heads that

map outputs to different parameters such as a weighting vector. The heads are typically

fully connected layers. NTM supports explicitly writing to the memory:

Mt = (1−Rt)Mt−1 + At (2.13)

where Rt is the erase matrix and At is the addition matrix, both are produced by the heads.

NTM is also end to end differentiable.

However, both of these memory augmented networks have one common issue—they all

use soft attention. In other words, each read and write is applied to the whole memory,

which is not a scalable solution. For example, increasing the memory size will increase

the sparsity of information, making it difficult to train and reducing the benefits of large

memory. Moreover, writing to the whole memory could also overwrite previously important
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information. To solve this problem, several methods have been proposed. Sparse addressing

memory (SAM) and reinforcement learning neural turing machine [110,147] are two popular

proposed solutions. SAM could run 1000x faster and 3000x less physical memory than non

sparse models. Besides, it can scale to tasks requiring 100,000s of time steps and memories.

There are at least two significant benefits of the introduction of sparse addressing. First, it

decouples memory size from computation. Second, information can be selectively written to

specific locations in memory, avoiding being repeatedly overwritten, which could potentially

improve performance.

2.2. Neural Architecture Search

A lot of successful deep neural network architectures are developed by experienced experts

through trial and errors. Apparently, this process is tedious and not very efficient. Neural

Architecture Search (NAS) [84, 105, 152] aims to find good architectures for some specific

task automatically and has gained more and more attention in the past few years. It has

been shown that some architectures found through NAS have achieved better performance

than those developed manually by human experts [41]. We can think of NAS as a discrete

optimization problem, thus any discrete optimization algorithms could be used for NAS. For

instance, Evolutionary algorithms [9]. Evolutionary algorithm is one of those earliest used

for NAS. The idea is to represent the neural network architecture with a fixed size vector.

For example, the first element in this vector could be the type of the first layer (conv layer,

max pooling layer, etc). Off springs are generated using mutations of the parents vectors.

The generated architectures are evaluated based on some metrics (accuracy on a validation

set). This process keeps going until we have found some good architectures or we hit the

maximum number of iterations. If we look more closely, we could further decompose the

model finding problem into architecture search and parameters optimization. In such cases,

Evolutionary algorithms are usually used together with gradient based methods, in which

Evolutionary algorithms are used for finding the architecture, and gradient based methods

are used to optimize the weights.

32



Other techniques used for NAS include Reinforcement Learning (RL) [100, 105, 152],

gradient based methods [39, 115, 131], sequential model based optimization (SMBO) [84],

etc. For a comprehensive survey of NAS, readers could refer to this survey [41]. In this

thesis, I mainly focus on NAS using reinforcement learning and sequential model based

optimization.

2.2.1. NAS using Reinforcement Learning

Reinforcement learning (RL) [124] deals with the problem of an agent interacting with its

environment. The agent can take a series of actions. For each action, there might or might

not be a reward. The agent also has access to the current state of the environment. The goal

of RL is to come up with a strategy of taking actions to maximize the accumulated rewards.

There are some unique challenges in RL. For example, the reward might be delayed. Besides,

in a series of actions that result in a reward, some actions might actually be harmful. A

good introduction of RL is presented in [124]. We can cast neural architecture search as a

reinforcement learning problem as shown in Figure 2.8 [152]. There is a controller (recurrent

neural network in this case) which acts as our agent. The outputs of this controller are

actions which we could further decode into network architectures. In the case of recurrent

neural network controller, there will be a sequence of outputs. If our goal is to generate a

convolutional neural network, we could interpret the first output as the size of filter, the

second output as the number of filters, etc. Then we can build and train this architecture

and use the accuracy of this model on a validation set as the reward. This reward will guide

the controller to output better architectures. A lot of RL algorithms could be used here like

REINFORCE [137], Policy gradient [125], Deep Q network [92], etc.

One tradeoff we have to face is that NAS is usually very computational demanding. This

is understandable, since the training of one mediocre size model could take several hours if

not several days and NAS has to train and evaluate each generated model. To constrain the

NAS problem at a maintainable level, we could either restrict the search space or reduce the

training time of a single model. To prevent the search space from going extremely large,
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Figure 2.8. Neural architecture search using reinforcement learning [152].

researchers usually search a single unit cell, which could be stacked to form deep models.

For instance, we could search a convolve block and then stack several of these blocks to form

a deep CNN for image processing. Or we could search a recurrent cell that will be used

in a recurrent neural network. Parameters sharing is an effective way of reducing training

time [105]. The idea of parameters sharing is that weights are shared among all sub-models.

Figure 2.9 shows an example of recurrent cell search. Each node (layer) is fully connected to

its previous nodes. The outputs of earlier nodes will be used as inputs to later nodes and a

later node could choose the output of any its previous node. We can regard model search as

sampling a sub graph from the global graph. A sampled sub graph (model) is indicated as

red arrow in this figure. Node 1 is the input node, node 4 and node 5 are leaf nodes and their

outputs will be combined to generate the final predictions. A fully connected layer involves

the operation of a matrix multiplication and activation function. For the input node, the

following computations are performed:

ct1 = φ(xt ·W (x,c)
0 + ht−10 ·W c

0 )

ht1 = ct1 ∗ f1(xt ·W
(x,h)
0 + ht−10 ·W h

0 ) + (1− ct1) ∗ ht−10
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Figure 2.9. Parameters sharing among all sub models. Higher level nodes are fully connected

with lower level nodes.

where φ and f1 are both activation functions. For sub sequence layers, the following compu-

tations are performed:

ctl = φ(htj,l ·W c
j,l)

htl = ctl ∗ fl(htj,l ·W h
j,l) + (1− ctl) ∗ htj,l

where φ and fl are activation functions, Wj,l is the weights from node j to node l. This

is similar to the highway recurrent network [151]. At the beginning, all the weights are

randomly initialized (other initialization techniques could also be use, like the Kaiming

initialization [54] or Xavier initialization [45]). After we trained a sampled model, the corre-

sponding weights changed. When we train subsequence models, these weights will be used as

the starting point instead of reinitialization. This weights sharing technique greatly reduce

the training time. I also find this sub-model sampling process might be an effective way of

mitigating overfitting. I will go into more details about this in Chapter 5 when I present the

work for automatic knowledge tracing cell design.

2.2.2. Sequential Model Based Optimization

Sequential model based optimization (SMBO) [84] assumes that the search space could be

gradually unfolded from simple to complex. For example, when constructing a recurrent cell,

the model becomes more and more complex when more layers are added. Lying in the heart

of SMBO is a function that could predict the accuracy of a generated model. This function is
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usually called surrogate function. The search starts from the simplest case (for example only

one layer), after all possible models are trained. The architectures and their accuracies will be

used to train the surrogate model. Then more complex models are unfolded (by adding more

layers). When the search space becomes too large to train all possible models, a sampling

process is taken. In this case, the surrogate function will be used to predict the accuracies of

these models. Then k models are sampled (with higher accuracy, higher the probability to be

sampled. This allows exploration of all possible architectures). Then the sampled k models

are trained. Their accuracies and architectures are then used again to update the surrogate

function. Thus, it is an alternative process. Compared with reinforcement learning, SMBO

is simpler and more stable. The NAS problem shown in Figure 2.9 could also be solved

using SMBO instead of reinforcement learning. Because the sampled architectures could

be encoded as a sequence of list like [[p1, a1], [p2, a2], ...[pi, ai]], where pi stands for previous

node and ai stands for activation function, we could use a recurrent neural network as our

surrogate function. SMBO has been proved to produce as well as good architectures while at

the same time reducing the exploration space [104]. In chapter 5, I will dive into the details

about how to use SMBO for multimodal fusion and architecture search.

2.3. Evaluation of Deep Neural Networks

After building our model, the next step is to evaluate its performance. For machine

learning models, a key insight is that we are not interested in the performance of our model

on the dataset that we used for training (training set), but the performance on unseen data.

Using a complex model with enough parameters, we could get zero error in the training data.

But this model’s performance on unseen data will be bad. This is what we call the problem

of overfitting. We build machine learning models for prediction. In other words, we care

about the model’s generalization ability. Thus, a common practice is to split the dataset in

hand into two parts: training set and testing set. We train our model using the training set

and report the performance on the testing set. This method is also called holdout method.

However, one problem about the holdout method is that it is very sensitive to how we split
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the dataset. The distributions of samples with different classes might be very different in

the training set and testing set. A better way is to use cross validation.

2.3.1. Cross Validation

The idea of K fold cross validation is to split the dataset into K folds. We use K-1 folds

for training and the remaining one fold for testing. This process is repeated K times to

make sure all folds have been used for testing. Figure 2.10 shows an example of 10 fold cross

validation. The final score is averaged across all folds. There is an improved version of cross

validation called stratified cross validation, in which the class proportions are the same for

all folds. Stratified cross validation usually yield better estimates. If we set K=N, where

N is the number of samples in the dataset, this special case is called leave one out cross

validation (LOOCV). LOOCV is often used when the dataset is small. There is a similar

concept called leave one subject out cross validation (LOSOCV), in which N-1 subjects’ data

are used for training, one subject’s data is used for testing. In LOSOCV, there are usually

more than one sample from one subject. LOSOCV could be used to prevent one model from

learning subject specific information, thus is often used in the context of medical diagnosis.

Now, let’s consider a more complicated situation, hyperparameters selection. Models

like deep neural networks usually involve a lot of hyperparameters like batch size, learning

rate, number of neurons for each layer, etc. Unlike the weights associated with each neuron

that could be learnt, the values of these hyperparameters need to be decided beforehand.

The selection of these hyperparameters might have a big impact on the performance of the

model. If we use the testing set to select our hyperparameters, that is we try different

combinations of hyperparameters and choose the best one. We are overfitting our testing

set. Because deep neural networks might have millions of parameters, it is very easy for

these models to adjust parameters to remember the noise in the dataset. If we use the model

tuned on the testing set for future predictions. The performance might be disappointing.

Thus, one solution is to use a separate dataset for validation. We use the validation set for

hyperparameters search. In the case of holdout method, we could split the original dataset
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Figure 2.10. 10 fold cross validation, reported performance are averaged across 10 folds.

Image source from [4].

into three parts: training set, validation set and testing set. In the case of cross validation,

we could use the technique called nested cross validation. That is, for the K-1 folds for

training, we apply another cross validation, further partition this training set into a smaller

training set and validation set. Thus, we are using the inner loop for model selection and

the outer loop for model evaluation. However, in practice, it is not uncommon to only report

the cross validation score.

2.3.2. Statistical Significance Test

Statistical significance test is used to help quantify whether a result is due to chance. To

compare the performance of two models, z-score is the most straightforward option. If we

consider each prediction as a Bernoulli trial, then the number of correct predictions X follows

a Binomial distribution X ∼ Bin(m|N, u), where N is the total tries and m is the correct

prediction, u is the mean. When N is large enough, we could use Normal approximation to

get the z-score:
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z =
ACC1 − ACC2√

σ2
1 + σ2

2

where ACC1 and ACC2 are the accuracies of two different models on two independent testing

set. σ1 and σ2 are accuracy variances and could be calculated using the following equation:

σ2 =
ACC(1− ACC)

n

Thus, if our p value is below some threshold (For example, 0.05), this means our null hypoth-

esis claim is very unlikely. Then we accept our alternative hypothesis that the result is not

due to chance. However, the z score method usually does not work very well in practice [32].

A more preferred method is to use McNemar’s test [91], which focuses on the distributions

of predictions. The test is applied to a 2x2 table as shown below:

Model 2 positive Model 2 negative Row total

Model 1 positive a b a+b

Model 1 negative c d c+d

Column total a+c b+d n

The null hypothesis and alternative hypothesis are:

H0 : pb = pc

H1 : pb 6= pc

The McNemar’s test statistic is:

χ2 =
(b− c)2

b+ c

χ has a chi-squared distribution. If the results are significant, it will reject the null hypoth-

esis, in favor of the alternative hypothesis. Thus, the predictions from these two models

are considered different. For deeper discussions of statistical significance testing and their
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applications in machine learning, readers could refer to [12,29,32].

However, it is not very common to find research papers from the machine learning com-

munity use significance test. On one hand, a lot of significance test techniques have their

limitations and might not be suitable for machine learning models [32]. On the other hand,

the datasets involved in machine learning are usually very large and the training process

might take several days if not weeks, this is especially true for deep neural network models.

Thus, it is impractical to run this training process N time to get N numbers for the require-

ments of some significance tests. I provide McNemar’s test in this dissertation, despite its

limitations.

2.4. Deep Neural Network Based Models for Knowledge Tracing

I have introduced the basic ideas of deep neural networks and some popular architectures

like RNNs and memory networks in the previous sections. Now, I will describe two popular

deep neural network based knowledge tracing models. Deep Knowlegde Tracing (DKT)

[107] and Dynamic Key-Value Memory Network (DKVMN) [149]. These two models have

achieved better performance compared with conventional models like BKT and PFA. These

two models also inspired a lot other research utilizing deep learning techniques in the learning

science community.

2.4.1. Deep Knowledge Tracing

A knowledge tracing model uses historical activities to predict the future performance.

In the simplest case, the historical activities is a sequence of correct/incorrect responses.

Thus, it is natural to use recurrent neural network for knowledge tracing. Piech et al. [107]

first proposed Deep Knowledge Tracing (DKT) model as shown in Figure 2.11. As we can

see it is standard recurrent neural network. The RNN cell used, which is not shown in the

figure could be the standard cell or LSTM. The input to this model is a one hot encoding of

the skill id and the correctness of the problem. For example, if there are M skills, the size

of the input vector will be 2 ∗M . The authors tried other options, like encoding the skill id
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Figure 2.11. Deep Knowledge Tracing Model [107].

and correctness separately, but unsuccessful. The output layer of the model is a vector of

probabilities of getting each skill correct. For example, the assistment 09-10 dataset has 124

skills. So the size of the output vector is 124, with each element corresponds to each skill.

However, this output vector is not trained as a whole. For each student, the DKT models

take the combination of the skill id and correctness from the previous problem to predict

the next problem. The next problem id will be used to pick the corresponding element in

the output vector, based on which the cost function is created. Also, the DKT model does

not distinguish different students.

One argument of why DKT is so successful is because the hidden state ht could capture

the accumulated learning of a student and the relations between different skills. Even though

each element of the output vector is designed to represent the probability of getting each skill

correct. I found that these skills usually change in the same direction at the same time [33].

In other words, either most of these skills are correlated to each other, or the DKT model

is only learning an overall ’ability’ model instead of tracking each skill separately. I will go

into the details in the next chapter.
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Figure 2.12. Dynamic Key-Value Memory Network for knowledge tracing [149].

2.4.2. Dynamic Key-Value Memory Network for Knowledge Tracing

Dynamic key-value memory network for knowledge tracing (DKVMN) [149] is based on

the work from Weston et al. [135]. The architecture of DKVMN is shown in Figure 2.12.

DKVMN has one static key memory Mk, which is the embeddings of all skills. The content

of Mk does not change with time. DKVMN also has one dynamic value memory M v
t for

storing the current mastery level of corresponding skills. The content of M v
t is updated after

each response. There are two stages involved in the DKVMN model. In the read stage, a

query skill qt is first embedded to get kt. Then a correlation weight is calculated:

wt(i) = Softmax(kTt M
k(i))
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The mastery level of skill q is thus calculated as follows:

rt =
∑

wt(i)M
v
t (i)

The authors concatenate the query skill qt with rt to get the final output pt arguing that

the difficult level of each skill might be different. The second stage is to update the memory

network M v
t . The embedding of the combination of the skill query qt and the actual correct-

ness rt is used to create an erase vector et and an add vector at. The new value matrix is

updated using the following equations:

M̃ v
t (i) = M v

t−1(i)[1− wt(i)et]

M v
t (i) = M̃ v

t (i) + wt(i)at

However, I tested DKVMN model on two different datasets and did not see improvements

compared with DKT, though one may argue that DKVMN is more interpretable than DKT.

I will compare my proposed models with DKT and DKVMN in chapter 5 and 6. In the next

chapter, I will first discuss some limitations of these deep neural network based knowledge

tracing models.
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Chapter 3

TOWARDS INTERPRETABLE DEEP NEURAL NETWORK MODELS FOR

STUDENT RESPONSE MODELING

How one deep neural network adapts its weights during training? Based on what strate-

gies a decision is made? Is the learnt representation meaningful? With the wide success

of deep neural networks, the requests for interpretable models are also increasing. These

questions need to be seriously considered before deployment in critical domains like medical

diagnosis, planning and control. But why interpretability is important to use? What is the

exact definition of interpretable models?

Motivations of interpretability differ across research, but many argue that interpretability

is a necessary condition for trust [71]. Given an input, can we trust the predictions? Machine

learning models are trained using a training set. Our assumption is this training set will

be a good representative of the real world data (classes distribution for example). However,

what will happen if we have an input which is from a totally different distribution? For

example, if we have built a model to classify different species of dogs, what will happen if

we give this model a cat? trust is a subjective word, but it reflects some truth that we want

our model to take actions that human beings will take. If the model behaves similarly as

human beings when making decisions, we could relinquish control. In the dog classification

case, humans will express great uncertainty when given an image of cat. Thus, we hope our

model could also output great uncertainty (either output an uncertainty score together with

the prediction, or use other mechanisms). This is a typical example of out of distribution

problem. We could trust a model if it tends to make mistakes on inputs that human beings

will also make mistakes and is accurate on inputs that human beings are accurate. However,

this is often not guaranteed, especially for deep neural network models. Deep neural network

models could be easily fooled [97]. For example, we could create some adversarial images

44



just by changing some pixel values to fool a convolutional neural network [126].

For the second question, unfortunately, as discussed in [18, 83] there is also no unique

answer and interpretability is not a monolithic concept. May be it is more appropriate to ask

what properties an interpretable model should have, or what extra information we could get

from interpretable models? In Section 3.1, I will discuss the main properties an interpretable

model should have. For a more detailed discussion, readers could refer to these works [18,83].

In Section 3.2, I use visualization to open the black box of DKT model, allowing a better

understanding of inner workings.

3.1. Interpretable Deep Learning

What extra information we could get for these interpretable models compared with those

’uninterpretable’ models? In this section, I discuss the main properties an interpretable

model should have, taking the categorization from [83].

3.1.1. Transparency

Transparency is the opposite of black-boxness. There are several aspects about trans-

parency [83]. Simulatability means take the input and all the parameters of the model, we

could calculate the output manually in a reasonable time. If we tweak the parameters a little

bit, we will have a good estimate about what will happen. In other words, we have a clear

understanding of each computation step involved. However, this definition is vague and it

seems simple models are equivalent to transparent models. Decomposability requires an

intuitive explanation of the parameters and features. Consider the case of a linear model, a

large weight usually indicates the importance of the corresponding feature. Both Bayesian

Knowledge Tracing (BKT) [25] and Performance Factors Analysis (PFA) [102] models are

designed in a way that each parameter has a semantic meaning. For example, the guess

and slip parameter in the BKT model reflect the probability that a student could have a

correct guess and make a mistake despite of mastery of a skill, respectively. BKT attempts

to explicitly model these parameters and use them to infer a binary set of skills as mas-
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Figure 3.1. Activation of filter maps for first and 5th CONV layer of AlexNet when looking

at a cat. With each square corresponds to one filter map [1].

tered or not mastered. However, more research works are needed to refine these notions of

interpretability.

Both Simulatability and Decomposability are challenging for deep neural network

models. A mediocre sized deep neural network could easily have millions of parameters, thus

to calculate the output manually is nearly impossible. Besides, try to explain the meaning

of each parameter is also impractical. Thus most of interpretable deep learning works focus

on Post-hoc interpretability.

3.1.2. Post-hoc Interpretability

For deep neural networks, we usually take different approaches to interpret the learnt

model. These approaches all try to extract extra information after one model has been

trained. Thus, we call this kind of intrepretability Post-hoc interpretability. Krening et

al. choose to train a separate model to output text explanations about the decisions [75].

However, this requires additional labeled data and we are adding another black-box in order

to explain the original one. In computer vision community, visualization is a common tool

used to understand convolutional neural networks. One option is to visualize the activations
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of filters for different layers. Figure 3.1 shows the activations of filter maps for the first and

5th CONV layer of AlexNet when the input is an image of cat. Each square corresponds to

one filter map. When we go deeper with more filters, the activations become quite sparse.

We can also choose to visualize the weights [1]. However, these kinds of visualization is still

not straightforward to explain.

We could also take a totally different approach. After trained the model, we fix the

weights, but adjust the input image to enhance the activations of some class. By modifying

the input image, we have a visual clue about what features the trained model is looking

for. This is the technique behind Google’s DeepDream Project [3]. Instead of modifying one

image, we could also prepare a large dataset of images. Sending all these images through

the trained network and rank them based on the activations of some neuron. We could

check these top ranked images to have a better understanding of what this neural network

is looking for [44].

Given one image, to elucidate what spatial area our classifiers are concentrating upon

to classify an image as dog or cat, we could use the Gradient-weighted Class Activation

Mapping (Grad-CAM) visualization technique [118]. Grad-CAM starts by calculating the

gradients of the score for class c (before the softmax) with respect to the feature maps of

the last convolutional layer. The gradients are then global average-pooled as weights. By

inspecting these weighted activation maps, we can see which portions of the image have

significant influence in classification.

3.2. Open the Black Box of DKT Model

The mechanisms of DKT are not well understood by the research community. That

is, none of the parameters are mapped to a semantically meaningful measure or how the

decisions are made for different skills, which diminishes our ability to understand the DKT

model. There have been some attempts to explain why DKT works well but these studies

treat DKT model more like a black box, without studying the state space that underpins

the recurrent neural network [68,140]. However, sometimes, a still understanding of how the
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model works is as important as the performance. In this section, I take a Post-hoc approach,

trying to use visualization to understand the inner workings of DKT model. My goal of

this study is to inspire more research towards interpretable neural network based models for

knowledge tracing and also provide directions for future research.

3.2.1. Experiment Setup

To investigate the DKT model, I perform a number of analyses based upon the activations

within the recurrent neural network. I also explore different training protocols and clustering

of the activations to help elucidate what is learned by the DKT model. In these analyses,

I use the “ASSISTmentsData 2009-2010(b) dataset” which is created by Xiong et al. after

removing duplicates [140]. Like Xiong et al., I also use LSTM unit in this study. The

mathematical elements that comprise each unit are given from equation 2.5 to 2.10.

For visualization purposes, I log the six intermediate outputs for each input during testing

and concatenate these outputs into a single “activation” vector, at = [ft, it, C̃t, Ct, ot, ht]. I

want to see how this activation vector changes when the model sees more and more inputs.

In the DKT model, the hidden state of RNN, ht is connected to an output layer yt, which

is a vector whose size equals to the number of skills. We can interpret each element in

yt as an estimate that the student would answer a question from each skill correctly, with

larger positive number denoting that the student is more likely to answer correctly and

more negative numbers denoting that the student is unlikely to respond correctly. Thus, a

student who had mastered all skills would ideally obtain an yt of all ones. A student who

had mastered none of the skills would ideally obtain an yt of all negative ones. A sigmoid

function could be applied on top of these logits to convert them to probabilities between 0

and 1.

Deep neural networks usually work in high dimensional space and are difficult to visualize.

The activation vector at has more than one thousand dimensions. Thus, I need to use

dimensionality reduction techniques to identify clusters. T-distributed Stochastic Neighbor

Embedding (t-SNE) [87] is a nonlinear dimensionality reduction technique that well suited
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Figure 3.2. First two components of T-SNE of the activation vector for first time step

inputs. Numbers are skill identifiers, blue for correct input, orange for incorrect input.

for this purpose. Figure 3.2 plots the first two reduced components (using t-SNE [87]) of

the activation vector, at, at the first time step (t = 0) for a number of different students.

The numbers in the plot are skill identifiers. I use color blue to denote a correct response

and the color orange to denote an incorrect response. From reducing the dimensionality of

the at vector for each student, we can see that the activations show a distinct clustering

between whether the questions were answered correctly or incorrectly. We might expect

to observe sub-clusters of the skill identifiers within each of the two clusters but we do

not. This observation supports the hypothesis that correct and incorrect responses are

more important for the DKT model than skill identifiers. However, perhaps this lack of sub-

clusters is inevitable because we are only visualizing the activations after one time step—this

motivates the analysis in the next section.

3.2.2. Prediction Vector Changes and Relation Among Skills

In this section, I try to understand how the prediction vector of one student changes as

this student answers more questions from the question bank. This will help us understand the

direct impacts an input has on the prediction vector. Figure 3.3 plots the prediction vector
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Figure 3.3. The prediction changes for one student, 23 steps, correct input is marked blue,

incorrect input is marked orange.

difference (current prediction vector - previous prediction vector) for each question response

from one particular student (steps are displayed vertically and can be read sequentially from

bottom to top). The horizontal axis denotes the skill identifier and the color of the boxes

in the heatmap denote the change in the output vector yt. The first row in the heatmap

(bottom) is the starting values for yt for the first input. As we can see, if the student

answers correctly, most of the values increase (warm color). On the other hand, when an

incorrect response occurs, most of the predictions decreases (cold color). This makes intuitive

sense. We expect a number of skills to be related so correct responses should add value and

incorrect responses should subtract value. We can further observe that changes in the yt

vector diminish if the student correctly or incorrectly answers a question with the same skill

several times repeatedly. For example, observe from step 14 to step 19, where the student

50



correctly answers questions associated with skill #113. Eventually the changes in yt come

to a steady state. However, occasionally, we can also notice, a correct response will result in

decreases in the prediction vector (observe step 9). This behavior is difficult to justify from

our experience, as correctly answering a question should not decrease the mastery level of

other skills. Yeung et al. have similar findings when investigating single skills [145]. Observe

also that step 9 coincides with a transition in skills being answered (from skill #120 to

#113). Even so, it is curious that switching from one skill to another would decrease values

in yt even when the response is correct. From this observation, one potential way to improve

the DKT model could be adding punishment for such unexpected behaviors (for example,

in the loss function of the recurrent network).

3.2.3. Using Synthetic Data

From the previous section analysis, we see from step 14 to step 19, the student correctly

answers questions associated with skill #113 and the changes in yt diminish—perhaps an

indication that the vector is converging. Also, from Figure 3.3, we see that for each correct

input, most of the elements of yt increase by some margin, regardless of the input skill. To

have a better understanding of this convergence behavior, I simulate how the DKT model

would respond to an Oracle Student, which will always answer each skill correctly. I simulate

how the model responds to the Oracle Student correctly answering 100 questions from one

skill. I repeat this for three randomly selected skills.

I plot the convergence of each skill using the activation vector at reduced to a two-

dimensional plot using t-SNE (Figure 3.4 Left). The randomly chosen skills are #7. #8,

and #24. As we can see, each of the three skills starts from a different location in the 2-D

space. However, they all converge to near the same location in space. In other words, it

seems DKT is learning one “oracle state” and this state can be reached by practicing any

skill repeatedly, regardless of the skill chosen. I verified this observation with a number of

other skills (not shown) and find this behavior is consistent. Therefore, I hypothesize that

DKT is learning a ‘student ability’ model, rather than a ‘per skill’ model like BKT. To make
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Figure 3.4. Left: Activation vector changes for 100 continuous correctness of randomly

picked 3 skills Right: Activation vector difference of randomly picked 3 skills through time.

this observation more concrete, in Figure 3.4 right, I plot the euclidean distance between

the current time step activation vector, at, and the previous activations, at−1, we can see

the difference becomes increasingly small after 20 steps. Moreover, the euclidean distance

between each activation vector learned from each skill becomes extremely small, supporting

the observation that not only is the yt output vector converging, but all the activations inside

the LSTM network are converging. I find this behavior curious because it means that the

DKT model is not remembering what skill was used to converge the network to an ‘oracle

state.’ Remembering the starting skill would be crucial for predicting future performance

of the student, yet the DKT model would treat every skill identically. I also analyzed a

process where a student always answers responses incorrectly and found there is a similar

phenomenon with convergence in an anti-oracle state.

Figure 3.5 shows the skills prediction vector after answering correctly 20 times in a row.

We can see the predictions of most skills are above 0.5, regardless of the specific practice skill

used by the Oracle Student. I argue that the DKT model is not really tracking the mastery

level of each skill, it is more likely learning an ‘ability model’ from the responses. Once a

student is in this oracle state, DKT will assume that the student will answer most of the

questions correctly from any skill. I hypothesize that this behavior could be mitigated by
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Figure 3.5. Prediction vector after 20 steps for skill #7, #8, #24.

using an “attention” vector during the decoding of the LSTM network [129]. Self attention

in recurrent networks decodes the state vectors by taking a weighted sum of the state vectors

over a range in the sequence (weights are dynamic based on the state vectors). For DKT,

this attention vector could also be dynamically allocated based upon the skills answered in

the sequence, which might help facilitate remembering long-term skill dependencies. I will

discuss the application of attention mechanisms for knowledge tracing in chapter 6.

3.2.4. Temporal Impact

Recurrent neural networks are typically well suited for tracking relations of inputs in a

sequence, especially when the inputs occur near one another in the sequence. However, long

range dependencies are more difficult for the network to track [129]. In other words, the

predictions of RNN models will be more impacted by recent inputs. For knowledge tracing,

this is not a desired characteristic. Consider two scenarios as shown below: For each scenario,

the first line is the skill numbers and the second line are responses (1 for correctness and
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Figure 3.6. DKT predictions from two different students. The blue line is the prediction of

correctness from DKT. The red line is the actual response correctness(1 or 0).

0 for incorrectness). Both two scenarios have the same number of attempts for each skill

(4 attempts for skill #9, 3 attempts for skill #6 and 2 attempts for skill #24). Also, the

ordering of correctness within each skill is the same (e.g., 1, 0, 0, 0 for skill #9).

For models like BKT, there is a separate model for each skill. Thus, the relative order of

different skills presented has no influence, as long as the ordering within each skill remains

the same. In other words, for each skill the ordering of correct and incorrect attempts

remains the same, but different skills can be shuffled into the sequence. For BKT, it will

learn the same model from these two scenarios, but it may not be the case for DKT. The

DKT model is more likely to predict incorrect response after seeing three incorrect inputs in

a row because it is more sensitive to recent inputs in the sequence. This means, for the first

54



Scenario #1

Skill ID 6 6 9 9 9 9 24 24 6

Correct 1 1 1 0 0 0 0 0 1

Scenario #2

Skill ID 9 9 9 9 6 6 6 24 24

Correct 1 0 0 0 1 1 1 0 0

scenario, first attempt of skill #24 (in bold) will be more likely predicted incorrect because

it follows three incorrect responses. For the second scenario, first attempt of skill #24 (in

bold) is more likely to be predicted correct. Thus the DKT model might perform differently

on the given scenarios.

Figure 3.6 gives two typical excerpts from the real dataset for two students. In the top

example, after several correct inputs, the DKT model has a high probability of predicting

the next item correct, regardless of the skill (70%). Similarly, in the bottom example, after

several incorrect inputs, the DKT model has a low probability of predicting the next item

correct (8%), regardless of the skill. That means, if a student has mastered an easy skill

previously but then fails three attempts of more difficult exercises, the DKT would predict

that the student would also fail the already mastered skill. I am only giving two samples

here due to limited space, but this kind of behavior is universal across students, which I

will talk more next. Again, I hypothesize that this behavior could be mitigated by using

an “attention” vector that allows the DKT to use the whole weighted history as additional

inputs.

Khajah et al. also alluded to this recency effect in [68]. In this study, I examine this

phenomenon in a more quantitative way. I shuffle the dataset in a way that keeps the

ordering within each skill the same, but spreads out the responses in the sequence. This

change should not change the prediction ability of models like BKT. The results are shown

in Table 3.1 and Table 3.2 using standard evaluation criteria for this dataset. All results are

based on a five-fold cross validation of the dataset. When comparing DKT on the original

dataset to the “spread out” dataset ordering, we see that the relative ordering of skills has
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Table 3.1. Area under the ROC curve

PFA BKT DKT
DKT

(spread)

DKT

(untrained)

09-10 (a) 0.70 0.60 0.81 0.72 0.79

09-10 (b) 0.73 0.63 0.82 0.72 0.79

09-10 (c) 0.73 0.63 0.75 0.71 0.73

14-15 0.69 0.64 0.70 0.67 0.68

KDD 0.71 0.62 0.79 0.76 0.76

Table 3.2. Square of linear correlation (r2) results

PFA BKT DKT
DKT

(spread)

DKT

(untrained)

09-10 (a) 0.11 0.04 0.29 0.15 0.25

09-10 (b) 0.14 0.07 0.31 0.14 0.26

09-10 (c) 0.14 0.07 0.18 0.14 0.15

14-15 0.09 0.06 0.10 0.08 0.09

KDD 0.10 0.05 0.21 0.17 0.17

significant negative impact on the performance of the model. From these observations, we

see the behaviors of DKT is more like PFA which counts prior frequencies of correct and

incorrect attempts other than BKT and the design of the exercises could have a huge impact

on the model (For example, the arrangements of easy and hard exercises).

3.2.5. Is the RNN Representation Meaningful?

In a recently published paper, Wieting et al. [136] argue that RNNs might not be learning

a meaningful state vector from the data. They show that a randomly initialized RNN model

(with only Wo and bo trained) can achieve similar results to models where all parameters are

trained. This result is worrying because it may indicate that the RNN performance is due

mostly to simply mapping input data to random high dimensional space. Once projected into

the random vector space linear classification can perform well because points are more likely
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to be separated in a sparse vector space. The actual vector space may not be meaningful.

I perform a similar experiment in training the DKT model. I randomly initialize the DKT

model and only train the last linear layer (Wo and bo) that maps the output of LSTM ht to

the skill vector, yt. As shown in Table 3.1 and Table 3.2, the untrained recurrent network

performs similarly to the trained network.

3.2.6. Conclusion

In this chapter, I propose interpretable deep neural networks for knowledge tracing. To

achieve transparency is usually hard for deep neural networks, thus most existing approaches

try to interpret deep models in a post-hoc way. I visualized the activation vector at using

dimensionality reduction technique and analyzed the behaviors of DKT through time. I have

also analyzed the temporal sequence behavior of DKT using qualitative and quantitative

analyses. I find that the DKT model is most likely learning an ‘ability’ model, rather

than tracking each individual skill. Moreover DKT is significantly impacted by the relative

ordering of skills presented. I also discover that a randomly initialized DKT with only

the final linear layer trained achieves similar results to the fully trained DKT model. In

other words, the DKT model performance gains may stem from mapping input sequences

into a random high dimensional vector space where linear classification is easier because

the space is sparse. This is a worrying conclusion because it means the underlying recurrent

representation may not be reliable nor semantically meaningful. Several mitigating measures

are suggested, including the use of a loss function that mitigates unwanted behaviors and

the use of an attention model to better capture long term skill dependencies.
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Chapter 4

UNCERTAINTIES IN STUDENT RESPONSE MODELING

Deep learning models are primarily trained using Backpropagation [113] and once trained,

the weights are fixed. Thus, we can think of these models as deterministic functions. For

each input xi, there is always a corresponding output yi. But what if we have an input xi

that is far from the distribution of the training data, how do we interpret the output? A

real world example is from a 2016 car accident that the assisted driving system confused

the sky with the bright side of a trailer [67]. Directly targeting this problem is difficult. A

more feasible way is to make the model learn some uncertainty level about the prediction

associated with the input data in a supervised or unsupervised manner.

In the previous chapter, I proposed interpretable deep neural network models for knowl-

edge tracing and analyzed the behaviors of DKT using visualization. We have learnt that the

DKT model may not actually track each skill, but only learns an oracle state. By opening

the black box of DKT, I aim to have a better understanding of how decisions are made.

In this chapter, I take a different approach and propose a practical way of alleviating the

worries caused by the opaqueness of these deep learning based models, which is to model

the uncertainty for each prediction. Thus, we could leave decisions to human experts if the

uncertainty level is high. To investigate uncertainty modeling in DKT, I first examine a

popular way of modeling data dependent uncertainties using Monte Carlo and show how

it is insufficient to model variance in data. Second, I provide a way of incorporating un-

certainties by regularizing the cross entropy loss function explicitly. At last, I evaluate the

proposed method both in three different real datasets and in a more controlled way using

synthetic data. Using synthetic data allows us to quantitatively understand the generated

uncertainties. The results show that the proposed method provides comparable results to

standard deep knowledge tracing models as well as meaningful prediction uncertainties.
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4.1. Uncertainties in Deep Learning

In this section I will talk about how to incorporate uncertainties into deep models. I will

mainly discuss two types of uncertainties: Epistemic uncertainty and Aleatoric uncertainty.

Epistemic uncertainty is also called model uncertainty. It is caused by the fact that there are

many models that could have generated the dataset in hand. This kind of uncertainty could

be reduced by collecting more data. Aleatoric uncertainty is caused by measurements or

observations thus is considered irreducible. In the real world, it can be difficult to differentiate

these two types of uncertainties [30], such that hybrid uncertainties consisting of entangled

epistemic and aleatoric factors exist. However, in this study, I do not explicitly model hybrid

uncertainties, but focus more on the analysis of uncertainties in isolation.

4.1.1. The Uncalibrated Fact of Deep Neural Networks

Before diving into the discussion of two different types of uncertainties, there is still

one question that needs to be answered. For a classification task, a deep neural network

will output a probability distribution, reflecting the likelihood of different classes. And the

class having the largest probability is chosen as the prediction. Why can’t we just use this

probability as a proxy of our uncertainty level? What exactly does the output of a deep

neural network model tell you? From the frequentist perspective of probability theory [62],

the output probability from a model reflects the true likelihood. For example, if a diagnosis

system detects that a patient has cancer with the probability of 80%, then 80 out of 100

patients with similar symptoms indeed have cancer. If the output from a probabilistic model

reflects the true likelihood, then we call this model is calibrated. For a classification task,

the output logits from a neural network usually will be sent to a softmax function to get a

probability distribution among different classes. One surprising recent finding is that modern

deep neural networks are not well calibrated [51]. Figure 4.1 shows the confidence histograms

and reliability diagrams for the 5-layer LeNet [79] and 110-layer ResNet [55] on the CIFAR-

100 dataset [76]. The average confidence of the ResNet is mucher higher than the average

accuracy. Thus, we may not use the output probabilities as a proxy for the measurement of
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Figure 4.1. Confidence histograms (top) and reliability diagrams (bottom) for a 5-layer

LeNet and a 110-layer ResNet on the CIFAR-100 Dataset [51].

uncertainty. For a detailed discussion about the possible causes of uncalibrated outputs and

ways to fix that, readers could refer to this work [51].

4.1.2. Epistemic Uncertainty

If we view a neural network as a probabilistic model P (y|x,w). Given training data D

= {(xi, yi), i = 1,...,N}, we could get the parameter w using maximum likelihood estimate

(MLE):

wMLE = argmax
w

N∑
i=1

logP (yi|xi,w) (4.1)

Regularisation term is not shown here for simplicity. Global optimal is usually not

accessible for deep models. Iterative methods like gradient descent could be used to get a
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local optimal, such local optimal could usually give satisfying results in practice. Bayesian

Deep Learning assumes a distribution over the weights of a neural network. Given the

training data D, we could get the posterior distribution of weights P (w|D). The predictive

distribution is given by P (ŷ|x̂) = EP (w|D)[P (ŷ|x̂,w)] for a prediction ŷ of a test item x̂.

There are several works that tried to incorporate uncertainties into deep models [67] [43] [48].

They all tackle this problem using a bayesian approach. However, integrating over all w is

usually intractable and approximate approaches are used in practice. A lot of approximation

algorithms have been proposed.

The extensive study of bayesian neural network could date back to the 90s [88] [94]. In

his Ph.D thesis, Neal discussed the classes of prior distributions of weights when the network

width goes into infinity. He solved the integration of posterior using hybrid Monte Carlo.

However, these works in the early days used shallow networks. When network gets deeper,

new challenges come.

Graves et al. [48] took the variational inference approach which approximates the pos-

terior distribution with a tractable distribution qθ(w). The optimal distribution qθ(w) is

choosen by minimizing the Kullback-Leibler(KL) divergence between P (w|D) and qθ(w)

defined by:

KL{qθ(w)||p(w|D)} :=

∫
qθ(w) log

qθ(w)

p(w|D)
dw (4.2)

Specificlly, Graves et al. discussed using both delta approximating distribution and

factorised Gaussian distribution in their work.

Gal [43] ties approximate inference in bayesian models to stochastic regularisation tech-

niques like dropout [120], thus avoiding the necessity to modify the original model.

4.1.3. Aleatoric Uncertainty

All the above works I have talked about tried to approximate the posterior distribution

in one way or another. Epstemic uncertainty could be derived by sampling the weights of

61



the network. On the other hand, aleatoric uncertainty could be derived by applying some

noise distribution to the output of the network. Kendall et al. talked about applying a

Gaussian distribution to the output, the variance σi of which will also be an output of the

network [67].

x̂i,t = fWi + σW
i εt, εt ∼ N (0, I) (4.3)

When applied to a classification task. They sample the logits T times and using the

following loss function:

Lx =
∑
i=1

log
1

T

∑
t

exp(x̂i,t,c − log
∑
c′

exp x̂i,t,c′) (4.4)

Despite the fact the number T could be large, the whole process is still efficient, because

for each input, there is only one pass through the network. The sampling happens after we

get fWi and σi

However, when I directly apply their loss function for classification task, the output un-

certainty is not meaningful. Based on Kendall’s work, in this study, I introduce a regularizer,

which could provide much better explanation about the output as well as maintaining good

performance.

4.2. Uncertainties for Knowledge Tracing

In the previous section I introduced two kinds of uncertainties: Epistemic uncertainty

and Aleatoric uncertainty. I now demonstrate how to incorporate these uncertainties into a

deep knowledge tracing model. I will evaluate these uncertainties separately and my main

focus will be on the aleatoric uncertainty. While these two kinds of uncertainties could be

combined in one model without changing the optimization process, I observed that modeling

epistemic uncertainties is not as effective as modeling aleatoric uncertainties in the context of

knowledge tracing. This observation is consistent with the results from [67] despite coming

from a different domain. The architecture of the model in this study is shown in Figure 4.2.
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Figure 4.2. Architecture of Deep Knowledge Tracing model with uncertainties.

The input to this model is one hot encoding of the correctness and the corresponding skill

id. For each output vector pt, containing the probabilities of getting different skills correct,

there is a corresponding uncertainty vector ut, which gives the uncertainty level for each

predicted skill.

4.2.1. Aleatoric Uncertainty

Data dependent uncertainty or aleatoric uncertainty is caused by noise in the observa-

tions or measurements and is considered irreducible (other than via improvements in the

measurement device). In the context of knowledge tracing, one can think of these uncertain-

ties as being caused by factors like the difficult level of an item, corresponding guess-ability

of an item, etc. For example, items that are too easy or too difficult will have lower uncer-

tainties because students are more likely to get them correct or incorrect. However, for items

with difficulty levels in the middle range, the uncertainties might be higher. Fixed weights

63



for a deep neural network results in a deterministic function, thus if input xi has normally

distributed noise, the output should also have normally distributed noise. In previous works,

to model the aleatoric uncertainty Kendall et al. [67] proposed for the model to output a

variance σi for each prediction f(xi)
W. Then ŷi is calculated by:

ŷi,t = f(xi)
W + σW

i εt, εt ∼ N (0, I) (4.5)

Here t denotes the time when a sampling occurs. This method is a combination of supervised

learning and unsupervised learning because we are not given a label for the variance. The

expected value of ŷi, however, is often intractable.

Eŷi∼N (f(xi)W,σW
i )[ŷi] (4.6)

Therefore a number of researchers use Monte Carlo methods to approximate this value. Let’s

define the binary cross entropy loss for instance i as:

Lbce(yi, xi) = −[yi · log σ(xi) + (1− yi) · log(1− σ(xi))]

Here σ is the sigmoid function that compresses the raw logit output to (0, 1). Thus, we have

the loss function proposed by Kendall et al. [67]:

Lkendall =
∑
i

Lbce(yi,
1

T

∑
t

σ(ŷi,t)) (4.7)

where T is the sampling number, I use 100 in the experiment.

4.2.2. A Theoretical Analysis of Kendall’s method

In this section, I motivate why using Kendall’s loss function directly could not produce

sensible variance. Figure 4.3 shows a sigmoid function and its first derivative:
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Figure 4.3. Demonstration of sampled logit and its relation to output variance.

σ(x) =
1

1 + e−x
(4.8)

∂

∂x
σ(x) = σ(x)(1− σ(x)) (4.9)

For a binary classification problem. Let’s first consider the case when the output logit

f(xi)
W is larger than 0. And we have its corresponding probability σ(f(xi)

W) as shown in

Figure 4.3. The first derivative of the sigmoid function on the left side of this logit is larger

than that on the right side. Because our noise has 0 mean and variance σWi . If we sample

the logit T times, the averaged probability will be less than the probability σ(f(xi)
W) when

the logit is greater than 0:

1

T

∑
t

σ(ŷi,t) < σ(f(xi)
W) (4.10)

The larger the output variance, the smaller the averaged probability will be. Thus, to

minimize the loss function when target is 1, as shown below:
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− log(
1

T

∑
t

σ(ŷi,t)) (4.11)

The training process will make the output variance small, thus to make 1
T

∑
t σ(ŷi,t) as

close to σ(f(xi)
W as possible. This makes intuitive sense that when you have a correct

prediction, the variance should be small. But if you have an incorrect prediction (the correct

label is 0 in this case). Then it will increase the variance to make the sampled probability

as close to 0.5 as possible. However, Kendall’s approach does not distinguish the difference

of logits as long as they are all correct. In other words, if the correct label is 1, the model

will put a small variance for both a logit of 0.6 and logit of 0.9. What we want is we want

our model to output more variance when its a 0.6 than 0.9. Because 0.9 is a closer estimate

to the true label of 1. Similarly, for values when the logit is below 0, the output probability

will be increased, making the average probability closer to 0.5. This will similarly incentivize

the model to place a small variance on any correctly labeled logit below 0.

Our goal is to create a model that has high confidence level (low variance) for predictions

with increased accuracy. Conversely, the model should make predictions with low confidence

(high variance) when predictions may not have high accuracy (at least not as high as these

with high confidence level). I achieve this behavior by introducing the following regulariza-

tion. This regularization term is the most important aspect of the proposed method :

Lr =
∣∣log

(
γLbce(f(xi)

W, yi)/σi
)∣∣ (4.12)

The regularization penalizes the loss function to a lesser extent when the prediction is in-

correct but variance is large. Thus, the undistorted loss and variance change in proportion.

We also do not want the variance values to grow without bound, so I introduce an L2-

regularization term:

Lg = ||σW
i ||2 (4.13)
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The final loss function then becomes:

Lproposal =
∑
i=1

[Lbce(f(xi)
W, yi) + λLr + βLg] (4.14)

γ is a hyperparameter to make the value

Lr = γLbce(f(xi)
W, yi)/σi

close to 1. λ and β are two hyperparameters that control the relative tradeoff between these

two regularization terms.

4.2.3. Epistemic Uncertainty

Epistemic uncertainty is also called model uncertainty. It is caused by the fact there are

numerous models that could have generated the dataset in hand. This uncertainty could be

reduced by collecting more data. The bayesian approach for modeling uncertainties for deep

learning models is to assume the weights of these models are not fixed, but sampled from

a distribution. The final prediction is generated by integrating overall all possible weights,

which is apparently intractable. There are a lot of works proposed to approximate this

prediction. Gal et al. [43] proposed using stochastic regularization techniques like dropout.

The key insight is to turn on dropout during the testing phase. For a classification task,

prediction probability is approximated by:

p(y = c|x,D) =
1

T

T∑
t

softmax(f(x)Wt) (4.15)

T is the total number of sampling. The uncertainty can be summarized using the entropy

H(p) = −
∑

c pc · log pc [67].

The biggest advantage of using dropout is that we do not need to modify the origi-

nal model. Thus, we can apply this technique to almost any deep neural network model.

However, I also observed that, when dropout is turned on during testing, the performance
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worsens slightly. These results are discussed in more detail in the results section.

4.2.4. Model Training

Deep knowledge tracing model uses recurrent neural network with LSTM cell [107]. The

mathematical elements that comprise each unit are given from equation 2.5 to 2.10. The

architecture of our network is shown in Figure 4.2. Different from Deep Knowledge tracing

model, we have two output vectors decoded from the hidden state: the prediction vector

and uncertainty vector. the model is trained end to end using the Adam optimizer. I use

batch size 32, hidden state size 200 and the learning rate is set to be 0.1. The model is

implemented using pytorch 1.1.0 and trained on a GTX 1080 node.

4.3. Datasets

I evaluate the proposed methodology on several datasets and compare it with the model

proposed by Kendall et al. [67]. The specifics of each datasets are given in Table 5.3. I have

removed students with less than three attempts. Despite the Assistment skill builder 09-10

and 14-15 datasets, KDD 2010 dataset, I also use the following synthetic dataset:

Synthetic-5: To evaluate the proposed methodology in a more controlled way, I created

a synthetic dataset similar to the one used in the original DKT model [107]. I construct this

synthetic data as follows: I assume each student has an ability α and each question has a

difficulty β. The probability of a student with α ability getting a problem with difficult β

correct is modeled using Item Response Theory [40].

p(correct|α, β) = c+
1− c

1 + exp (β − α)
(4.16)

Where c is the guess probability (usually set to 0.25 if there are four choices, 0.2 if there

are five). Note here I am not using the dataset directly from [107], but created my own,

such that I would be able to access the probabilities of generating the responses. This is

important to quantitatively evaluate the uncertainties. I am using this synthetic data only
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Table 4.1. Dataset Summary

# Records # Students # Records Per Student # Skills

Assistment 09-10 338,001 3,884 87 124

Assistment 14-15 822,938 19,523 42 100

KDD 2010 510,749 557 916 100

Synthetic-5 200,000 4000 50 5

for evaluating the proposed methodology—I am not proposing a mature assessment model.

The pseudo code used to generate this dataset is given in Algorithm 1.

4.4. Results

The goal of this study as mentioned above is to build a model capable of providing a rea-

sonable confidence level for each prediction. If we interpret the output variances as a measure

of confidence level, lower variance should signify high confidence. I will first empirically show

why Monte Carlo sampling alone may not help learn the data dependent variance. Then,

I will compare the aleatoric uncertainties and epistemic uncertainties generated using the

proposed method with Kendall’s. Finally, I will investigate these uncertainties quantitatively

using synthetic data.

4.4.1. Monte Carlo Sampling for Variance

As previously discussed, if input xi is drawn from normally distributed noise, the output

is often also normally distributed. Thus, we can model the aleatoric uncertainty by making

the model output a variance σi for each prediction f(xi)
W [67]. Then ŷi is calculated by:

ŷi,t = f(xi)
W + σW

i εt, where εt ∼ N (0, I) (4.17)

Where t denotes the time when a sampling occurs. I investigate this methodology using

Monte Carlo simulation and find that it does not produce a meaningful data dependent vari-

ance. Figure 4.4 shows the loss and output variance for each batch over time (I use batch
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size of 32 and plot the average variance). Distorted loss is calculated using the noisy logit,

ŷi, and the target. Undistorted loss is calculated using the raw logit, f(xi)
W and target.

As we can see, both the distorted loss and undistorted loss decrease with time. However,

the output variance rarely changes over all training iterations and batches. This strongly

implies that the model does not learn any data dependent variance, regardless of training

iterations. I repeat the experiments with T=100, T=500 and T=1000 and the result is the

same. This result is perhaps not very surprising—we cannot rely on an unsupervised output

to learn a meaningful data dependent variance. Instead, we must give the model some useful

information to guide the learning process. I achieve this by explicitly regularizing the loss

function.
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Figure 4.4. Monte Carlo Sampling for different T, distorted loss is calculated using the noisy

logit (ŷi) and the target. Undistorted loss is calculated using the raw logit. (f(xi)
W) and

target.

4.4.2. Aleatoric Uncertainty

With aleatoric uncertainty, we are modeling the effect of noise level of the input data on

the model output. In the context of knowledge tracing, this noise is a combination of human

factors like guess, slip, etc. and the difficulty level of the problem itself. Intuitively, mediocre

students answering medium difficulty level problems should exhibit high uncertainties. On

the other hand, very talented or poor performing students should exhibit lower uncertainties.

To capture this behavior, I divide the variance values into different percentiles as shown in

Table 4.2 and Table 4.3. In these data, performance is categorized by the aforementioned

percentiles. As we can see, using the proposed methodology, the proposed model achieves

the best performance when the the value of the variance is less than 25th percentile. The

performance and variance percentile groupings follow each other almost monotonically—

as the percentile increases, the performance worsens. If the DKT model is calibrated, we

may just use the output logits as a proxy for uncertainties and should be able to see similar

patterns. I did not further investigate this and leave it for future research. On the other hand

the performance of Kendall’s method is not consistent across percentiles. I believe, since the

normal distribution is symmetric, the added punishment from Kendall’s method could either

increase or decrease the original logit with the same probability. On the other hand, the

proposed method produces low variance for small undistorted loss and large variance for
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Table 4.2. Area under the ROC curve (AUC), Grouped by Different Aleatoric Uncertainty

Assistment 09-10 Assistment 14-15

Proposal Kendall’s Proposal Kendall’s

Overall 0.7499 0.7554 0.6905 0.6856

σ <25% 0.7854 0.7512 0.7132 0.6920

σ <50% 0.7646 0.7439 0.7005 0.6874

σ >50% 0.7227 0.7454 0.6684 0.6837

σ >75% 0.7165 0.7558 0.6625 0.6827

DKT (Baseline) 0.7483 0.6908

KDD 2010 Synthetic-5

Proposal Kendall’s Proposal Synthetic

Overall 0.8125 0.7966 0.7410 0.7440

σ <25% 0.8233 0.7923 0.7614 0.7522

σ <50% 0.8146 0.7921 0.7480 0.7469

σ >50% 0.8101 0.7999 0.7090 0.7309

σ >75% 0.8123 0.7999 0.6925 0.7235

DKT (Baseline) 0.8003 0.7433

large undistorted loss. The punishment will be large if the undistorted loss and variance

diverge from each other.

4.4.3. Epistemic Uncertainty

Epistemic uncertainty is caused by the limited number of data points. There might be

numerous processes that could have generated the dataset we have. And, it is understood

that most epistemic uncertainty can be explained away with more data.

I evaluate epistemic uncertainty on three different models and the results are shown in

Table 4.4 and 4.5. The training process is the same as for aleatoric uncertainties. The

difference is in the testing process. During testing, I turn on dropout and sample the logit T

times for each prediction. The entropy is used as our uncertainty. As we can see modeling
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Table 4.3. Square of linear correlation (r2) for Different Aleatoric Uncertainty

Assistment 09-10 Assistment 14-15

Proposal Kendall’s Proposal Kendall’s

Overall 0.1895 0.1828 0.0956 0.0917

σ <25% 0.2708 0.1946 0.1127 0.0982

σ <50% 0.2213 0.1813 0.1017 0.0930

σ >50% 0.1500 0.1829 0.0787 0.0893

σ >75% 0.1419 0.2017 0.0756 0.0871

DKT (Baseline) 0.1860 0.0944

KDD 2010 Synthetic-5

Proposal Kendall’s Proposal Kendall’s

Overall 0.2540 0.2293 0.1460 0.1496

σ <25% 0.2792 0.2252 0.1410 0.1606

σ <50% 0.2578 0.2237 0.1382 0.1502

σ >50% 0.2499 0.2338 0.1199 0.1377

σ,>75% 0.2623 0.2351 0.1068 0.1318

DKT (Baseline) 0.2339 0.1499

epistemic uncertainties does not always improve the performance. It is not as effective as

modeling aleatoric uncertainties, which is consistence with the observations from [67].

4.4.4. Synthetic Data

When uncertainties are evaluated in tasks like image segmentation, subjective judgement

could be used. Although, such subjective judgement is useful for evaluating a single model,

to compare different models, we need a more quantitative method. Thus, I created a syn-

thetic dataset, in which I have access to the actual probabilities that generated the student

responses—that is, we know the c, α, and β values in Equation 4.16. Recall that the α

parameter corresponds to student ability, with higher values denoting greater ability. The

pseudo code used to generate these student responses is shown in Algorithm 1. I assume
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Table 4.4. Area under the ROC curve (AUC) for Different Epistemic Uncertainty

Assistment 09-10 Assistment 14-15

Proposal Kendall’s DKT Proposal Kendall’s DKT

Overall 0.7438 0.7468 0.7481 0.6873 0.6894 0.6902

H(p) <25% 0.7648 0.7794 0.7862 0.5996 0.5960 0.5973

H(p) <50% 0.7389 0.7440 0.7537 0.6278 0.6269 0.6162

H(p) >50% 0.6492 0.6473 0.6460 0.6064 0.6120 0.6165

H(p) >75% 0.5866 0.5822 0.5800 0.5619 0.5741 0.5843

KDD 2010 Synthetic-5

Proposal Kendall’s DKT Proposal Kendall’s DKT

Overall 0.7976 0.8128 0.8095 0.7423 0.7421 0.7373

H(p) <25% 0.7658 0.7944 0.7870 0.6234 0.6236 0.6344

H(p) <50% 0.7396 0.7678 0.7643 0.6615 0.6609 0.6556

H(p) >50% 0.7037 0.7165 0.7141 0.6349 0.6351 0.6294

H(p) >75% 0.6358 0.6459 0.6448 0.5808 0.5847 0.5811

students with high mastery level (large α) should behave consistently and are therefore eas-

ier to predict (compared with students in the middle range of ability). I hope the proposed

model could give low variance outputs on these students because the model can be more

certain about this consistent behavior. However, the relationship is not so simple. When

a student starts responding to questions, the model should output high variance because it

knows little about the student. As the student undertakes more and more attempts, the

model should become more familiar with the student and the uncertainties should decrease.

Figure 4.5 illustrates this behavior by plotting the average uncertainties during the 50

exercises that a student undergoes. The average uncertainty for each exercise is plotted for

the top performing students (denote as large α values in the key). These students are the top

25% performing students in our synthetic dataset. Similarly, mid-range performing students

are selected from the α values in the 25% to 50% percentiles. All students work on the same

50 exercises in the same order, which means that the β parameters are identical across all
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Table 4.5. Square of linear correlation (r2) for Different Epistemic Uncertainty

Assistment 09-10 Assistment 14-15

Proposal Kendall’s DKT Proposal Kendall’s DKT

Overall 0.1806 0.1839 0.1864 0.0909 0.0951 0.0960

H(p) <25% 0.3401 0.3626 0.3813 0.0205 0.0165 0.0137

H(p) <50% 0.2457 0.2556 0.2712 0.0421 0.0396 0.0258

H(p) >50% 0.0701 0.0674 0.0661 0.0342 0.0399 0.0432

H(p) >75% 0.0229 0.0205 0.0196 0.0121 0.0174 0.0240

KDD 2010 Synthetic-5

Proposal Kendall’s DKT Proposal Kendall’s DKT

Overall 0.2261 0.2561 0.2475 0.1478 0.1471 0.1433

H(p) <25% 0.2643 0.3550 0.3373 0.0141 0.0142 0.0174

H(p) <50% 0.1933 0.2560 0.2423 0.0383 0.0377 0.0363

H(p) >50% 0.1272 0.1451 0.1407 0.0553 0.0557 0.0526

H(p) >75% 0.0563 0.0654 0.0651 0.0196 0.0216 0.0202

students. Thus, we can just look at the α values. I use α values from 25% to 50% as the

medium values to compensate the fact that one student could always guess the item correct

with probability 25% (parameter c in Equation 4.16). From Figure 4.5 left, we can see the

average uncertainties both decrease for both groups of students. However, the group with

large α decrease much faster, which is consistent with our intuition. These high performing

students can have their responses predicted with greater certainty than mid range students.

This behavior is exactly what is expected for an uncertainty measure. Figure 4.5 right plots

the uncertainties for Kendall’s method. However, these uncertainties do not follow any con-

sistent pattern. This strongly supports the hypothesis that the proposed method captures

aleatoric uncertainty in the dataset, whereas Kendall’s method does not.
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Figure 4.5. Average uncertainties change with 50 exercises attempts for our proposed method

and Kendall’s method for high performing students and mid-range performing students.

Notice that our proposed method becomes more certain as a students responds to more

questions. Moreover, for high performing students, this uncertainty can be significantly

reduced.

4.5. Discussion

In this chapter, I proposed a way of incorporating prediction uncertainties into deep

neural network models in the context of knowledge tracing. I first empirically showed that

Monte Carlo sampling alone may not help learn the data dependent variance. Next, I

proposed the methodology by explicitly regularizing the loss function to incentivize expected

behavior. I evaluated our methodology on three different real datasets. The results show

that the proposed model can provide comparable results as well as a confidence level for

each prediction. To further quantitatively understand our model, I created a synthetic

dataset with known uncertainty patterns. With access to the simulated data, we were able

to understand the generated uncertainties in a quantitative way. I also showed that our

model follows the expected behavior on the synthetic data, whereas other methods do not.

While the results are promising, there is considerable room for further improvement in this

research space, which I leave for future work.
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Chapter 5

INCORPORATING MORE MODALITIES FOR STUDENT RESPONSE MODELING

We see, hear, smell and touch the surroundings in this world. We combine all these infor-

mation from different channels to better understand what is happening. For instance, we use

both voice and gestures to communicate with each other. Now, the explosion of the number

of different sensors, especially those embedded in mobile devices, greatly extends our ability

to feel the world. A machine learning problem is unimodal, if it only involves one modality.

In this study, I will use the same definition of modality as used in [111]. When observing a

phenomenon or system using multiple sensors, the output of each sensor is termed a modal-

ity. I will loosely use modalities as features extracted either manually or learnt by models.

Conventional object recognition classifiers only involve images, natural language processing

only deals with voice signal. To accomplish truly machine intelligent, we must take multiple

modalities into consideration. There are at least three benefits [11] that multimodality could

provide. First, all modalities observed the same phenomenon that may result in more robust

predictions. Second, multi modalities may provide complementary information. Third, a

multimodal system could still work if one of the modalities is missing. Numerical empirical

results have shown that adding more modalities does improve the performance [96,109,121].

In this chapter, I will first present the EduAware system which is a collaborative work

with Doyle et al. [36] in section 5.1. EduAware uses multimodality features from the tablet

to predict student performance. In section 5.2, I will briefly introduce different ways of fusing

mutli modalties. Then, I will review some works that use multimodality for knowledge tracing

in section 5.3. We will see, the way they use these multi modals are still the legacy from

conventional methods (features are extracted manually and simply concatenated). Simply

concatenation does provide a way for multimodal fusion, however, it does not fully exploits

the hierarchical representation ability of deep neural networks. Besides, it is known that
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simply concatenation makes it hard to learn intra-modal relations [111]. At last, I will

explain how to apply NAS for multimodal fusion.

5.1. The EduAware Learning Module

In this section, I will present a context-aware, tablet-based learning module for adult ed-

ucation. Specifically, I focus on adult education in healthcare–teaching learners to perform

a medical screening procedure. Previous works on performance prediction were mostly eval-

uated on Learning Management Systems (LMS), Massive Open Online Courses (MOOC),

or web based Intelligent Tutoring Systems (ITS) [53,60,95,106,142]. The popularity of mo-

bile devices like smart phones and tablets extends the realm of education and provides new

interaction features. Based upon how learners navigate through the learning module (e.g.,

swipe-speed and click duration, among others), I use machine learning to predict what com-

prehensive test questions a user will answer correctly or incorrectly. Compared with other

context aware learning applications, this is the first time tablet-based navigation gestures

have been used to support learning assessment. Figure 5.1 shows a participant using the

learning tool.

The interactions performed with tablets, like swipe speed and click duration, could pro-

vide a rich feature set to use for characterizing student performance. Recent research indi-

cates that keystroke dynamics (such as mouse movement, keystroke, etc.) can reveal aspects

of the cognitive state of a user [14, 130], motivating its possible inclusion for educational

applications. In particular, I ask: is there a relationship between tablet-based

interactions and learners’ answer responses that reveals how a learner will re-

spond to assessment questions? A user study involving 21 participants was conducted,

showing the system can predict how users respond to test questions with 87.7% accuracy

without user-specific calibration data. This is compared to item response theory methods

which achieve about 70% accuracy. I also investigate which attributes are most responsible

for making predictions.
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Figure 5.1. A participant using the EduAware learning tool.

5.1.1. Summary of Tablet Learning Modules

The learning module focuses upon instructing individuals to perform cervical cancer

screening (VIA). This learning process is chosen because there is a vast shortage of trained

public health workers that understand the screening procedure. Future work will investigate

how EduAware can promote online learning for health workers. The current study, however,

focuses on contributions in task prediction. This work could be easily extended for knowledge

tracing.

Iterative methods were used for selecting material from the popular courses to be included

in the learning tool [20, 73, 103]. The tool is broken into 14 sections as numbered in Figure

5.2. These numbered blocks are included in each description below:

• Introduction: Learn about why cervical screening is important and how to navigate

tablet application. Comprised of items 1-4 in Figure 5.2.

• Module 1: Learn how to calculate sensitivity and specificity and understand why

they are important. Comprised of items 5-6.

• Module 2: Learn the potential of a screening program to reduce cancer deaths and

improve the lives of women. Comprised of items 7-8.
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Figure 5.2. A flowchart of the learning tool with callouts of various modules.

• Module 3: Understand how the VIA screen-and-treat approach works and why it

benefits low resource areas. Comprised of items 9-10.

• Identifications: (Video) How to identify precancerous cervical lesions and judge

severity. Comprised of items 11-12.

• Comprehensive Test: Have an understanding of sensitivity, specificity, the neces-

sity of scalable screening procedures, the specifics of the screen-and-treat approach,

and have the ability to identify the severity of precancerous cervical lesions with high

confidence. Comprised of item 13.

• Exit Survey: An exit survey and interview is conducted to collect feedback. Com-

prised of item 14.
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Self-assessments from module 1 to 3 all have multiple choice questions while in identifi-

cation exercises, users are presented with images of cervixes and they must distinguish as

negative, positive, or positive invasive. The comprehensive test module contains 22 questions

covering all material from the learning modules. It is these comprehensive test questions that

I seek to predict user responses to with EduAware. All questions are new to the users, but

cover some similar content to questions from the self-assessments and cervical lesion iden-

tification exercises. Unlike the self-assessments, the comprehensive test does not provide

feedback on the correctness of the answers.

5.1.2. Tablet-based Features

The learning app is designed in a way that encourages natural interactions. For example,

the sliding page transition between quiz questions and response feedback is controlled by

adaptive animations–the user can swipe quickly or slowly and the interface will move with

their swipe speed (i.e., direct manipulation). For each question in the self-assessments, 6

features are collected. All features are continuous valued except where noted and are grouped

as follows:

• If the self-assessment response is correct (binary). Abbreviated: Res.

• Response navigation features (not specific to tablet). Abbreviated: Navi.

– the cumulative time a learner spends on the quiz for each module (the time passed

since the first quiz loads until the user selects the response).

– the time a learner spends on answering a self-assessment question.

– the time a learner spends reviewing response feedback to a self-assessment.

• Tablet interactions, Abbreviated: Tablet

– the button tap duration for selecting the response (i.e., how long a user kept

his/her finger on a button when answering).

– the review tap duration (i.e., how long a user kept his/her finger on a the “con-

tinue” button when navigating).
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• Aggregated features of the learning materials, not including quiz parts. Abbreviated:

Agg. (i.e., Averaged swipe time, time spent on each module).

• Bag of gestures: gestures that participants perform on the screen that are not related

to navigation including swipes, taps, failed swipes, long presses, video fast-forwarding,

rewind, play, and pause. Abbreviated: Bag

These divisions above will help us have a more fine grained understanding of which

features are most predictive in later analysis. The final set of features (Bag), are eight tablet

interactions that are not directly related to navigation on the tablet. They occur infrequently

and are logged throughout the learning module. Because they are sparse features, they are

aggregated into an eight element count vector of the number of times they occurred (similar

to bag-of-words feature extraction typically used in text analysis [65]).

5.1.3. Study Design

21 participants were recruited by word of mouth, email, class announcements, and flyers.

All participants were volunteers and were compensated for their time. All experimental pro-

cedures were IRB approved. Each timeslot was scheduled for one hour and each participant

was given an Apple iPad and headphones used to eliminate audible distractions and for video

media as shown in Figure 5.1. All experiments were conducted in a controlled room.

The demographics of all participants are described in Table 5.1. No participants reported

any learning disabilities. Additionally, all participants were asked to describe any experience

they had with online learning, cancer knowledge, medical experience. Researchers coded

the responses as no, some, or extensive. All coding was performed by two researchers inde-

pendently. Both researchers coded responses identically, revealing that the responses were

straightforward to interpret.

The scores of the comprehensive test range from 50% up to 77%. The average score is

63% and median is 64%. To assess the difficulty of the items in the learning module and

further analyze performance I use item response theory (IRT) [128]. After calculating the

difficulty of each question, the ability of each person can also be estimated directly from the
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Table 5.1. Participant Demographics

Participant Demographics

Race
White=16, Asian=4,

Hispanic/Latino=1

Gender Female=15, Male=6

Education College Enrolled=16, BS=4, MS=1

Previous Experience with:

Medicine Extensive=0, Some=6, No=15

Cancer Extensive=0, Some=5, No=16

Online Learning Extensive=0, Some=7, No=14

IRT model. This is typically known as person-ability and part of the joint estimation of the

model. I use maximum likelihood estimation to assess the fit and expectation maximization

to optimize the parameters [127].

Explanation (item): Figure 5.3 (right) shows an item response map (also called

a Wright-map [138]) summarizing the IRT model. I combine the responses of the self-

assessment questions and the comprehensive test questions, resulting in 18+22=40 ques-

tions. The map shows a dense display of these combined questions on the x-axis versus the

estimated difficulty on the y-axis for each question. The y-scale is arbitrary, but negative

values denote easier questions and positive values denote harder questions. The points are

color-coded based upon if they came from the self-assessments or the comprehensive test.

Result (item): In the self-assessment, multiple-choice questions are relatively unchal-

lenging to participants as indicated by the negative values for each question. About half of

the lesion identification questions are fairly challenging in the assessment (positive values),

although the remaining half are about as difficult as the multiple-choice questions. In the

comprehensive test, the information is more challenging, partly due to a multiple-choice

question (regarding interpretation of screening sensitivity) and the identification exercises.

Participants have considerable difficulty with lesion identification, especially Q16, which had

widespread lesions that decreased contrast to healthy tissue.
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Figure 5.3. A Wright Map summarizing the item difficulty and person-ability as estimated

by our IRT model. The dark band corresponds to questions selected for prediction analysis.

Implication (ability): For predicting responses, we should not include questions that

are overly easy or overly difficult. Questions that are too difficult or too easy will be relatively

easy to predict user response (i.e., always predict wrong or always predict correct). However,

test questions with difficulties nearer to zero are less likely to be predicted by chance because

users respond to them correctly or incorrectly with about the same frequency. The dark

band in the Wright Map denotes which questions are most difficult to predict from the

comprehensive test: Q1-Q4, Q10-Q15, Q17, and Q20-Q22. In analysis, I mainly focus on

these questions because they are the most challenging to predict.

Explanation (ability): The person-ability (Figure 5.3 left) is plotted on the same y-

axis scale as the item difficulty, as a histogram binned upon the number of participants

with the corresponding person-ability score. Negative values can be interpreted as less

capable learners. Positive values are more capable learners. The individuals are also grouped

by whether they had any previous medical experience, denoted by color stacking in the

histogram.

Result (ability): When grouping the person-ability histogram by prior medical expe-

rience, those who had medical experience scored marginally higher than those who did not.

Even so, based on a t-test of the two groups, we cannot say that the means are different
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(p = 0.11). However, because the p-value is borderline a larger sample might be warranted

to understand if a real difference exists. Regardless of statistical significance, the impact

of having previous medical experience appears to be marginal, if any difference does exist.

When comparing ability with whether the participant has prior cancer knowledge, we cannot

say the means are statistically different (p >0.5).

Implication (item): The overall performance on the module is fairly poor. Regardless

of medical experience, the participants struggled to answer questions correctly. In particular,

the visual identification questions are quite difficult for the participants. However, this

module is only one of many involved in teaching individuals about precancerous lesions and

screening–it is recommended that individuals see 50-100 images before they are prepared to

diagnose a human cervix based on inspection [24].

5.1.4. Predicting Student Responses

To compare the proposed method with IRT models, an analysis of IRT using this data

is conducted. I calculated the accuracy of Rasch, 2PL, 3PL models using similar methods

from [63]. All models are cross validated using leave-one-participant-out cross-validation,

where no user-specific data is used for training when that user is in the test fold. Table

5.2 describes the performance of these different models. Results are summarized for all

questions (Table 5.2 right) and for the “Hard to Classify” subset of questions described in

the previous section (Table 5.2 left). I report the average accuracy and the average F1-

score of these models. These metrics are averaged across all 21 participants and across all

questions. In this context, accuracy can be defined as the percentage of occurrences where

the model correctly predicted that the user would answer a response as correct/incorrect.

F1-score is similar to accuracy, but places emphasis on the positive class predictions (i.e., a

weighted average of precision and recall). I define the positive class in our examples as when

the learner incorrectly answers a question, thus placing more emphasis on the ability of the

model to predict errors from the learner. Both accuracy and F1-score in Table 5.2 result in

similar conclusions about comparing each model.
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Table 5.2. Model accuracy and F1 score for various methods of predicting student responses.

Subset Questions (N=14) All Questions (N = 22)

Model Accuracy F1-Score Accuracy F1-Score

Majority Classifier 67.3% 0.731 77.2% 0.826

Rasch 67.3% 0.731 77.2% 0.826

2PL 67.6% 0.726 76.4% 0.815

3PL 69.3% 0.747 77.4% 0.827

EduAware (Res. only) 70.4% 0.737 79.2% 0.833

EduAware (All features) 87.7% 0.892 90.2% 0.922

Among these IRT models, the best performance I get is from 3PL model, having the

accuracy of 69.3% and 77.4% compared to a simple majority classifier with accuracy of 67.3%

and 77.2%. One interesting observation here is that the Rasch model has the same accuracy

as the majority classifier. I hypothesize this is because discrimination and guess-ability are

meaningful for this task, which the Rasch model does not consider. The performance of

EduAware is superior to the IRT models and the difference is statistically significant.

I train a separate model for each question in the comprehensive test. The features for

each model are selected from data logged during all the self-assessments. As mentioned in

the feature extraction section, I investigate 6 features for each self-assessment question. This

results in a total of (18 questions) x (6 features) = 108 features to use for prediction. All

features are preprocessed to have zero mean and unit standard deviation. 7 aggregated fea-

tures and 8 bag-of-gestures features (discussed previously) are also collected. These features

are not included in our results presentation because they never provided any performance

improvements.

The machine learning model for a single question uses 108 features to predict if a user

answers the question correctly. Because we have 108 features and 21 training examples, this

prediction problem is clearly under-constrained. As such, I impose strict feature selection

and cross-validation techniques to guard against over-fitting. First, I employ less expressive

algorithms, opting to use a model with linear decision boundaries: logistic regression. Second,
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Figure 5.4. Model performance in predicting each subset question, paired t-test t = 4.9873,

p < 0.001 for 3PL model, t = 5.3033, p < 0.001 for majority classifier.

I use recursive feature elimination (RFE) [19] to iteratively eliminate coefficients in the

linear models with small magnitude. Finally, to guard against over-fitting I employ leave-

one-participant-out cross-validation. RFE is run inside this cross-validation loop so that

no data snooping is possible across folds. That is, I use a nested cross validation where

RFE parameters are selected and trained in the inner loop and then applied to the left-out

participant in the outer loop. While this means that the chosen features might be different for

each participant, I have noticed that the selected features for a specific question are similar

across participants. That is, the highest magnitude features in the models are almost always

identical and never are the feature sets disjoint across participants. Because I use leave-

one-participant-out cross-validation, the evaluation mirrors a scenario where no user-specific

training data is used–that is, no user-specific calibration is required.

Figure 5.4 shows the accuracy of EduAware in predicting responses for comprehensive

test questions in the subset of “Hard to predict” (N=14 questions). I also show accuracy for
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Figure 5.5. Sorted accuracies of different feature subsets and combinations of feature subsets.

Error bars signify the 95% interval.

the 3PL model and majority classifier. The majority classifier simply assumes that the user

will answer the question the way most other students answered the question. Statistically

superior performance is calculated by paired t-test with p < 0.01 designating rejection of the

null-hypothesis. The statistically best performing algorithms are denoted with an asterisk.

For all but three questions (Q1, Q4, Q17), EduAware is the statistically superior performer.

For Q4 and Q17, EduAware is one of the statistically best performers.

5.1.5. Which Feature Subsets Are Most Important?

In this analysis, I use the following subset of features:

• Res.: using self-assessment responses only, 18 features

• Tablet features: these features are specific to tablet, 18x2=36 features

• Navi. features: like time spent, review time etc, 18x3=54 features
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• Using various combinations of the above subsets. For example, Res.+Tablet or Navi.+Tablet.

Figure 5.5 shows the accuracy for each subset of features and combination of subsets. Us-

ing responses only results in performance that is only slightly better than IRT. The addition

of response navigation interactions does improve performance, but tablet gestures provide a

substantially greater improvement.

It is interesting that tablet navigation gestures can better predict performance on the

comprehensive test than how participants responded to self-assessments. It may be that these

features capture the confidence with which a user responds, whereas response data does not.

Finally, Figure 5.5 shows that each subset of features add new independent information to

the model, as indicated by the improved performance when using all features. This indicates

that the interaction of all the features subsets is important to capture, not one single element.

However, it is still unclear which of the features are most responsible for prediction. This

will be addressed in the next analysis.

5.1.6. What Specific Features Are Most Important?

One method of interpreting features is to review which features are selected by RFE

iteration. I seek to answer, of the six different types of features, which features are chosen the

most? However, because I use RFE in a cross-validation loop and this loop is run separately

for every question and every held-out user in the test fold, there are about (21 users) × (14

questions) = (294 groups) of selected features. To keep the results tractable, I summarize

which of the six feature types were selected for each question on the comprehensive test.

Recall that some questions were thrown out because users always responded correctly or

incorrectly. I only report results on the “Hard to predict” comprehensive test questions.

Figure 5.6 summarizes the features selected and what percentages of RFE trials in which

they were selected. That is, for each question, I show a stacked bar plot of the percentage

of runs for which the feature was selected. For example, for question 1, the model only

employed features related to review time, but question 14 used information from all six

feature types.
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Figure 5.6. Feature categories selected by RFE for each comprehensive test question.

The comprehensive test multiple-choice questions (Figure 5.6, Leftmost 5 columns) tend

to be predicted using the review tap duration that participants use to move to the next

question, the responses for each questions(correct or not) and the total time spent on review.

For identification questions (Figure 5.6, rightmost 9 columns), the features selected are more

evenly distributed except Q17 and Q20. Another observation is the accumulative time is

seldom selected, it could due to that important information are already been captured by

features like time spent, review time spent. These observations have several interesting

implications. It is interesting to see click duration and review click duration are so often

chosen. One explanation could be the time spent on clicks reflects some confidence level of

the participant. Interestingly, the questions that EduAware performs poorly correspond to

the questions with only one or two features selected—Q1, Q4 and Q17. This highlights the
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Figure 5.7. Performance of EduAware versus the number of questions used to train the

system for each participant.

importance of a multi-modal approach toward inferring user performance (and possibly user

context). This may imply that multiple features are essential for capturing which users are

confused by the material when variability in the answers is expected.

5.1.7. How Many Self-assessment Exercises Are Required?

In previous analyses, I used features from all 18 self-assesment exercises. In this analysis,

I investigate how many self-assessment exercises students need to conduct before the Edu-

Aware module can predict their responses on the comprehensive test. To explore this, I add

features from each self-assessment gradually, one at a time. The self-assessment features are

added chronologically. All cross validation and feature selection methods remain the same.

For this analysis, I also investigate three different feature subsets:

• Using only responses (Res.).

• Using responses and Tablet interactions (Res.+Tablet).

• Using response, Tablet, and Generic interactions (All features).

Figure 5.7 shows the accuracy of the models versus the number of self-assessment exercises
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used to as training. The area plots around each curve correspond to standard error in the

mean. Using responses only does not appear to perform better than a majority classifier

until at least 17 of the 18 self-assessments are answered. For the other subsets, as we add

more questions, the accuracy improves and stabilizes at 80% after 9 questions. When using

all features, there is another jump in accuracy once 16 of the 18 questions are included and

again when all questions are included. This implies that a multi-modal approach captures

more relevant features to the prediction task. Furthermore, this improvement over using

only responses is apparent early in the self-assessment. For example, once four questions

are completed, there is a clear separation in the performances. Even so, EduAware cannot

achieve 87.7% performance until all the self-assessment examples are used for training. It is

also unclear if more training exercises would further increase the performance of EduAware,

or if the performance is beginning to plateau.

5.1.8. Conclusion

I present EduAware, an adult learning module that can determine what comprehen-

sive test questions users will answer correctly based upon their earlier responses, navigation

timing, and tablet specific gestures. I have shown the importance of modeling navigation

behavior and touch gestures in addition to the responses from periodic self-assessments. In

particular, I have answered our original question: navigation gestures significantly increase

the ability of a system to predict learner responses. These contextual features can be pow-

erful predictors of student performance on a comprehensive test. I evaluated the efficacy of

the tool for 21 users, showing that near 87.7% of all user responses could be predicted. I

trained different machine learning models and performed analysis on which features are most

predictive. Furthermore, I explored adjusting the number of exercises employed in training.

One limitation of this study is that the dataset is small (21 participants). In the future, I

hypothesize that EduAware could be used to provide just-in-time interventions that increase

retention for intelligent tutoring systems by predicting which questions a specific user will

struggle with, and then providing additional assistance.
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5.2. Multimodal Fusion

The models used in the EduAware learning app (Logistic regression , SVM) are very

simple. Thus, I didn’t consider the problem of multimodal fusion. In this section, I review

different ways of multimodal fusion, preparing for the discussions in the following sections.

Prior to the appearance of Deep Learning, there are mainly two ways that multi modalities

could be used in a machine learning model. The first one is to combine different modalities

at the very beginning. For example, simply concatenate different modalities into one big

vector. We hope, the model could learn all useful information from this vector. This method

is also called early fusion. Another way is to train a different model for each modality,

then combine the outputs from these models to make a final decision. This is similar to

the ensemble modeling and also known as late fusion or decision level fusion. Deep neural

networks can learn hierarchical representations, thus making intermediate fusion possible.

5.2.1. Early Fusion

Figure 5.8 (a) shows an example of early fusion. For early fusion, either raw data or

manually extracted features could be used. However, using raw data could be quite chal-

lenging since data from different modalities might have different sampling rate. Besides,

some data might be continuous, while others are discrete. Thus, some pre-processing steps

must be taken before they could be merged. Automatically learnt representation could also

be used. For example, we could use a fully connected layer in deep neural networks to learn

an embedding for each modality. We assume these features from different modalities con-

tain complementary information. However, in practice, some features might be just noise.

In such cases, feature selection techniques could be used [19]. Based on some performance

metrics, features are ranked from the most relevant to least relevant and those least relevant

features will be discarded. We have seen the use of Recursive Feature Elimination (RFE) [52]

technique in the EduAware learning module to keep the most relevant features for student

performance prediction. Feature selection is a huge research field by its own, interested

readers could refer to this survey [19].
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Figure 5.8. Different levels of fusion. (a) Early level fusion, (b) Late level fusion, (c)

intermediate level fusion.

Another potential problem for the early fusion is the final combined feature vector might

be very big, thus suffering the curse of high dimensionality. In such cases, dimensionality

reduction techniques like Principal Component analysis (PCA) or t-SNE could be used.

Zhang et al. [150] use Auto-Encoder [57] to learn a concise representation of the concatenated

modalities for knowledge tracing.

5.2.2. Late Fusion

Figure 5.8 (b) shows an example of late fusion. Late fusion or decision level fusion trains

a separate model for each modality and does not have most of the problems early fusion has.

For example, in a video classification task, we could use a RNN for the acoustic data and a

CNN for visual data. The acoustic data and visual data could have different sampling rate.

Then we could combined the decisions from these two models using a fully connected layer.

The advantage of late fusion is it allows the building of a specific model for each modality

that is supposed to maximise the utilization of that modality. Decision level fusion may

perform well when different modalities are highly heterogeneous. Different models usually

make different assumptions about the data and may make different errors. Thus, combining

the decisions at the very end might be beneficial. The idea of late fusion is similar to ensemble
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modeling.

5.2.3. Intermediate Fusion

Neither early fusion nor late fusion is proved to perform better than the other in all situ-

ations. Which methodology to use highly depends on the application. The reason why deep

learning is so successful on perceptual tasks is its ability to learn hierarchical representations.

Features are learnt from data automatically instead of manually crafted. Thus, it seems a

natural next step to use deep learning to learn a representation from multi modalities. Fig-

ure 5.8 (c) shows an example of intermediate fusion. As we can see intermediate fusion

allows features from different modalities to be gradually integrated. Empirical results have

shown the advantages of intermediate fusion. However, to use intermediate fusion, we still

need to decide the fusion architecture first (which modalities to fuse at which level). Such

kind of intermediate fusion using deep learning is also called deep multimodal learning [111].

Deep multimodal learning has been applied to a lot of applications including human activity

recognition and medical applications, etc. Radu et al. [109] conducted a study of human

activity and context recognition using sensor data collected from mobile devices.

One of the research focuses on deep multimodal learning is models that could enforce

inter-modality and intra-modality relationship. Learning a shared representation across

many modalities is especially helpful, in case, some of which are missing due to sensor

failures or other reasons. Another focus is multimodal fusion structure search. As I have

mentioned, even though deep learning allows features to be gradually fused. Human experts

need to decide beforehand the fusion structure. Neural architecture search (NAS) has been

well explored for unimodal tasks and we have already seen several models found using NAS

that perform better than those manually crafted [152]. It seems a natural step to apply

NAS for tasks involving multimodality. The search process usually starts by extending a

seed architecture with new connections or replacing old activation functions with new ones.

Thus, NAS is basically a discrete optimization problem. We could use heuristic search, revo-

lutionary algorithms or reinforcement learning for this purpose. In this study, I mainly focus
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on reinforcement learning and heuristic search.

5.3. Multimodality for Knowledge Tracing

In this section, I describe knowledge tracing in the context of multimodality. I will first

introduce the related works. Then, I present my work exploring the best fusion architecture

of different modalities for knowledge tracing using NAS. I will first discuss using NAS in

the simplest situation, in which only one modality is involved. Then I extend that work

to multimodality cases. I will mainly talk about three different ways of doing mulitmodal

fusion using NAS. Current metrics used for knowledge tracing include area under the curve

(AUC) and r squared (r2). However, both these two metrics could not measure how one

model performs with time. Thus, I propose using weighted AUC that could measure how

one model performs after it sees more and more responses.

5.3.1. Related Work

The EduAware learning module used a small dataset (21 participants), thus conventional

machine learning models like Logistic regression, SVMs [26] were used. The popularity of

platforms like CMU datashop [2] allows the collection of data from thousands of students

with millions of transactions. Such amount of data allows the possibility of using deep

learning models for knowledge tracing. These platforms or Intelligent Tutoring Systems

usually not only log the correctness of a response, but also things like how many attempts

this student has tried, what is the result of the first try, how much time was spent on an

item, etc. DKT model only uses the correctness as input. In this section, I will discuss

two works that use both multimodality and deep learning for knowledge tracing. However,

they only evaluated simple concatenation of different modalities, neglecting the hierarchical

representation learning ability of deep neural networks.

Based on the DKT model, Zhang et al. [150] tried including more features like response

time, attempt count, first action, etc. These features are logged by most intelligent tutoring

systems. Figure 5.9 shows the overall architecture of their model. The only difference from
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Figure 5.9. DKT Model with more features [150].

the DKT model is the input. Features are first discretized if they are continuous. Then

these features are concatenated to form one input vector. However, this input vector is

very big. Thus, they used Auto-Encoder [57] to learn a representation with much lower

dimensionality, which is the v′ as shown in the Figure 5.9. They evaluated this model

on different datasets and the results show improved performance. However, the way they

incorporate these features are pretty naive (simply concatenation). I believe more mature

fusion techniques could be used to further improve the performance.

Yang et al. [143] proposed a similar work. However, instead of discretizing features

first, they used a decision tree which could handle both continuous and discrete input. The

decision tree will first take in all the features and then output a prediction about the next

response. The predicted response is combined with the actual response to form a 4 bit one-

hot encoding (1000, 0010, 0100, 0001 representing true positive, false positive, false negative

and true negative respectively), as shown in Figure 5.10. This one hot encoding then is

concatenated with the original one hot encoding of correctness and exercise tag to form the

final input. They evaluated this technique on several datasets and the results also show

improved performance compared with using only the correctness as input.
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Figure 5.10. DKT Model with more features and decision tree classifier [143].

5.3.2. Recurrent Cell Search in The Case of One Modality

Before we move on to discuss more complicated situations using NAS for multimodality,

let’s first consider the case where there is only modality involved. Recurrent cell architec-

tures like LSTM, GRU were proposed and evaluated in the context of sequence to sequence

modeling (for example, neural machine translation). Although LSTM has achieved good

performance for the task of knowledge tracing, we do not know if its architecture is optimal

for knowledge tracing. Thus, I propose using NAS for automatic recurrent cell design for

knowledge tracing. I take similar approaches as in [105] and the search space I use is similar

to the one shown in Figure 2.9. The process of neural architecture search could easily take
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Figure 5.11. Discovered recurrent cell for knowledge tracing.

days or weeks, even on GPU nodes. Thus, I only use four nodes in our global graph in the

experiments. To further reduce training time, I only train on sequences where students have

fewer than 200 attempts. At each iteration, the controller samples a sub-graph representing

one cell. After selection, a recurrent neural network with this cell is built and trained for

one epoch. I split the dataset into two parts: 80% is used for training and 20% used for

validation. After one epoch training, I calculate the reward using the validation dataset.

The reward is inversely proportional to the validation loss. The cell discovered from NAS is

shown in Figure 5.11. The output is calculated using the following equations:

ct1 = sigmoid(xt ·W (x,c)
0 + ht−10 ·W c

0 )

ht1 = ct1 ∗ tanh(xt ·W (x,h)
0 + ht−10 ·W h

0 ) + (1− ct1) ∗ ht−10

ct2 = sigmoid(ht1 ·W c
1,2)

ht2 = ct2 ∗ ReLU(ht1 ·W h
1,2) + (1− ct2) ∗ ht1

ct3 = sigmoid(ht1 ·W c
1,3)

ht3 = ct3 ∗ ReLU(ht1 ·W h
1,3) + (1− ct3) ∗ ht1

ct4 = sigmoid(ht1 ·W c
1,4)

ht4 = ct4 ∗ ReLU(ht1 ·W h
1,4) + (1− ct4) ∗ ht1

Here we have leaf nodes 2, 3, and 4. Their outputs are averaged and used as the final
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Table 5.3. Dataset Statistics

Records Students Skills

Assistment 09-10 338,001 3,884 123

KDD 2010 510,749 557 100

Table 5.4. Results Comparison

AUC R2

Assistment 09-10
LSTM 0.7378 0.1705

NAS 0.7411 0.1747

KDD-2010
LSTM 0.8103 0.2462

NAS 0.8119 0.2545

output. Thus

output = (ht2 + ht3 + ht4)/3

The dataset statistics are summarized in Table 5.3 and the results are shown in Table

5.4. As we can see, our found cell performs better than the LSTM cell on these two datasets,

even though the improvement is not that large. I did McNemar’s test on the predictions

from these two models and the results are significantly different (p < 0.01).

After I derive the cell architecture, I train it from scratch using all training data available.

However, I find that the model performance is slightly worse compared to the performance

in the model search process. This might be caused by the fact I only used 20% data for

validation and I picked the architecture with highest performance for this 20% data. In

other words, our found architecture may overfit this 20% data. Another hypothesis is that

the sub-model sampling process may act as a form of regularization. To test this hypothesis,

I divide the training process into two phases. In the first phase, besides training our found

cell, there is a probability (0.9) to sample a random sub-graph from the global search space.

This probability decreases with epochs. In the second phase, I fix the model to be the one

found as shown in Figure 5.11. This training process indeed improves the results. I am not

certain if this type of regularization is suitable for other classification tasks and leave this
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for future work.

This initial analysis of using NAS for automatic RNN cell design is encouraging. To

reduce the training time, I used a relative small search space and was able to find at least

as good cell architecture as LSTM for knowledge tracing. I also tried to increase the search

space by including two more layers. However, I did not see improvements. That means more

complicated architectures do not always improve performance. I hope this work has proved

the promising potential of using NAS for knowledge tracing and will inspire more research

work in this direction.

5.3.3. Fusion Structure Search for Multimodality

We have seen using NAS could help us design better cell architecture for knowledge

tracing in the previous section. Now, let’s consider the case of multimodal fusion. Existing

works that utilize multimodality for knowledge tracing only considered the case of simple

concatenation. It is known that simple concatenation makes it harder for the model to learn

intra modality relations. Besides, not all modalities are useful for improving predictions and

some of them may be just noise. This is particularly true in the case of knowledge tracing.

All existing intelligent tutoring systems try to log as many information as possible. And

these logged features are highly heterogeneous. However, it is unknown if all the logged

data are actually helpful. So, great care need to be taken when combining these different

modalities for knowledge tracing. The features considered in this study include the following:

• Response. This is a binary variable indicating either one correct or incorrect answer

for the current problem. For models like DKT and DKVMN, this modality is the only

one used.

• Time spent. The total time spent on the current problem. This is a continuous variable.

• Attempts. This feature indicates how many opportunities the current student has had

for applying the associated skill.

• Hints. How many possible hints are there for this problem. This one is problem specific.
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Figure 5.12. NAS for multimodality fusion with each skill has its own separate encoder.

• First Action. This is a binary variable indicating whether one student tries to attempt

or ask for hint. If this student asked for a hint, the response is set to incorrect.

In this section, I consider the best way to fuse different modalities while using a simple

recurrent cell like LSTM. The architecture is shown in Figure 5.12. Two significant differences

from the DKT is that I use multimodality and we have a separate encoder for each skill.

Piech et al. [107] also discussed to encode the skill id and correctness separately. However,

they did not get as good results as using one-hot encoding. Also, they did not give the

details about how they conducted separate encoding. In my proposed architecture. Each

skill has a separate encoder, which is a fully connected layer. Using a separate encoder has

at least two benefits here. Firstly, I argue that each skill is different from others at some

degree, thus using a separate encoder allows the catch of uniqueness of that skill. Secondly,

it is more convenient to combine more modalities. The final fused representation could just

go through the corresponding encoder and there is no need to worry about one-hot encoding.
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To make sure the performance improvement is due to the actual fusion structure, not because

of the using of separate encoders, I did an experiment only using the response and separate

encoders. I find the results are similar to the ones from DKT model.

Each modality will be first embedded using an embedding layer. Thus, there is no need to

worry about if the input is discrete (responses) or continuous (time spent). I use embedding

size 100, this is the same for all modalities. I consider the problem of which modalities to fuse

at which order and what activation function to use. The architecture could be encoded as a

list of sequence of numbers. For example, the fusion architecture [[m1, m2, f0], [m4, m3, f1]]

could be interpreted as: Fuse modality 1 and modality 2 first using activation function 0 (say

tanh). Then fuse in another modality 3 (here 4 means the fused representation of modality

1 and modality 2) using the activation function 1. This fusion architecture search process

is also a features selection process. Thus, harmful or noisy features will be automatically

filtered out. In the experiment set up, modalities response, time spent, attempts, first action

and hints have corresponding indices, 0, 1, 2, 3 and 4. I used three activation functions

relu, tanh and sigmoid, with corresponding indices 0, 1 and 2. Even though, the number

of modalities and types of activation functions used in this study is small. The proposed

methodology could be easily extended to any number of modalities and activation functions.

Adding more modalities could be considered as gradually increase the complexity of the

sampled space. Thus, I use SMBO instead of reinforcement learning in this study.

5.3.4. Extending sub-graph Sampling to Multimodality

In the previous section. I applied NAS for multimodal fusion search while keeping the cell

architecture fixed (LSTM). Now I consider the possibility of combining multimodal fusion

search with architecture search. Most of the existing research works involving NAS focus

on architecture search for one modality [93, 105, 108]. There are few works that combine

multimodal fusion search and architecture search within one methodology. One exception

is the work from Pérez-Rúa et al. [104]. However, they only used two modalities. They

used two pre-trained networks for two different modalities. Each modality is represented
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Figure 5.13. Extend sub-graph sampling to multimodality.

by a pre-trained multi-layer neural network. Their goal is to extract representations from

different layers from these two modalities and fuse them in a specific order to achieve good

prediction performance. Strictly speaking, their work is representation search from two

different modalities, and not modality search.

NAS is very computational demanding for one modality alone, needless to say adding

more modalities. In this and the following section, I discuss how could we combine multi-

modal fusion search and architecture search within one methodology. Right now, let’s focus

on how can we extend the sub-graph sampling process discussed in section 5.3.2 to multi-

modality. Our proposed architecture is shown in Figure 5.13. Similarly, each node (layer)

is fully connected with its previous nodes and it could choose the input from any of these

previous nodes. The difference is, instead of one input node, we have multiple input nodes

with one for each modality. Again, I first apply an embedding layer for each modality to get

a representation easier for further processing. We can see this search space is a superset of

the one we discussed in section 5.3.2. Within this methodology, any amount of modalities

could be fused at any layer. The sampled architecture could also be represented by a list

of sequence of numbers [[p1, a1], [p2, a2],...]. pi refers to the previous node and ai refers

to the activation function. The red arrows in Figure 5.13 indicates a sampled architecture.
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Figure 5.14. Extend LSTM cell for Multimodality.

Modality 1 is used as input to node 2 and then further node 4. Modality 2 is used as input

by node 3, then further by node 5. The outputs from node 4 and 5 will be combined as the

final output. This sampled architecture could be encoded as [[1, 0], [2, 0], [2, 1], [3, 1]] (We

can not see the activation functions used in Figure 5.13). However, one limitation of this

architecture is that each node only takes one input from its previous layers. That means

Modality 1 and modality 2 could not be used at the same time by node 2.

5.3.5. Extend the LSTM Cell for Multimodality

The third attempt I tried is to extend the LSTM cell for multimodality. My proposed

architecture is shown in Figure 5.14. I use the architecture similar to LSTM. However, instead

of using the sigmoid and tanh activation functions as in LSTM, I make them tunable. I use

one such LSTM variant unit for one modality. All the modalities share the same memory cell

c and hidden state h. The search process is to find in which order to fuse what modalities and

what activation functions to use. Similarly, one sampled architecture could be represented

as a list of sequence of numbers. For example, [[1, 2, 0], [2, 2, 2]] represents the architecture

that first incorporates modality 1 and use activation functions 2 and 0 for φ1 and φ2. Then

incorporate modality 2 and use activation functions 2 and 2 for φ1 and φ2. However, I did

not see significant improvements using this methodology. More research might be needed to
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understand if this methodology is useful; however my initial investigations did not support

this methodology as promising. Thus, I will not further discuss this model in the results

section. But I hope this could still inspire researchers from other communities.

5.3.6. A New Metric for The Measurement of Performance With Time

Area under the curve (AUC) and coefficient of determination (r2) are two standard

metrics used for knowledge tracing. However, neither method is designed to be used to

measure how one model performs with time. That is, does the model perform better after

it sees more responses from one student? Thus, I propose to use weighted AUC (wAUC)

for this purpose [82]. For a series of items to be predicted i ∈ {1, ..., n}. There is a series of

corresponding weights {w1, w2, ...wn}. Let S1 = {i : yi = 1} be the set of positive examples.

S0 = {i : yi = 1} be the set of negative examples. Weighted false positive rate and weighted

true positive rate could be defined as follows:

FPR =
1

W0

∑
i∈S0

I[yi = 1]wi

TPR =
1

W1

∑
i∈S1

I[yi = 1]wi

where, W0 =
∑

i∈S0
wi is total negative weights and W1 =

∑
i∈S1

wi is the total positive

weights. Thus, weighted ROC curve could be plotted for all thresholds. Weighted AUC

could be used in cases in which we want to emphasize low false positive rate, etc. In our

case, to measure how the knowledge tracing model performs with time. We could assign

more weights to those most recent responses. One simple strategy is to increase the weight

by one each time the student sees the same skill. For example. If one student sees the

following sequence of skills

22, 22, 3, 3, 3, 22, 99
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Table 5.5. Dataset Statistics for Multimodality

Records Students Skills

Assistment 09-10 337,236 3,884 123

Oli Engineering Statics

2012 Fall
344,403 566 1251

The corresponding weights will be

1, 2, 1, 2, 3, 3, 1

This strategy of weight assigning is simple, but is also sensitive to measures that occur

later in the sequence. I believe more mature weights assigning strategies using domain

knowledge could be investigated. However, as an initial analysis, this simple metric and

weight assigning strategy allows us to measure how one model performs with time. I hope

this work could inspire more knowledge tracing model measurement research in the future.

5.3.7. Results

It is difficult to perform a fair comparison between two different deep neural network

models for a number of reasons. Firstly, we only have a limited understanding of how

neural networks function or make exact use of training data. Secondly, techniques like batch

normalization [61], weights initialization, learning rate, regularization, selection of optimizer,

and many others can have a significant impact on the performance of models. Can one

model with a novel weight initialization technique be considered a different model? What

exacerbated this problem is that one set of hyperparameters that works well on one dataset

might not work well on another dataset. To explore all possible hyperparameters combination

is also impractical. A recent paper [13] states that a simple model with careful picked settings

could achieve better results than many deep neural network models. Thus, the success of

complicated models have might due to the fine tuning of hyperparameters, not because they

have better decision strategies. Machine learning model evaluation is a complicated research

107



Table 5.6. Comparision of different models for knowledge tracing. SM stands for Single

Modality. MM stands for multimodality. SC stands for simple concatenation. FS stands for

fusion search.

Assistment 09-10 Oli Statics 2012

r2 AUC wAUC r2 AUC wAUC

SM

DKT(Baseline 1) 0.1628 0.7326 0.7367 0.4106 0.8819 0.8622

DKVMN (Baseline 2) 0.1507 0.7299 0.7354 0.3557 0.8793 0.8614

NAS cell 0.1678 0.7364 0.7408 0.4169 0.8844 0.8661

MM

DKT + SC 0.1743 0.7371 0.7441 0.4316 0.8884 0.8734

DKT + FS 0.1844 0.7454 0.7493 0.4239 0.8863 0.8651

NAS Extend 0.1829 0.7458 0.7545 0.4348 0.8902 0.8779

topic, until a better standard is proposed in the machine learning community. In my work,

to make a fair comparison, I follow the conventions from other researchers. I did a reasonable

amount of hyperparameters tuning (limited only by time and available computation) for the

baseline models used in this study (DKT and DKVMN) and I limit the tuning parameters

to learning rate, weight decay, the epilson value of adam optimizer. However, I would not

claim that I am using the best hyperparameters combination and I believe it is always

possible to improve these numbers shown in Table 5.6 by tweaking a little bit more on

these hyperparameters. Thus, I hope readers will focus more on the architecture innovations

and other contributions. Despite the fact that there is no significant test on most deep

neural network papers, I did McNemar’s test on the predictions. Although these significance

testing tools have their own limitations [32]. And some of the underlying assumptions might

be violated. For example, the dataset I used is not i.i.d data (independently and identically

distributed data). They are more like time series data.

Since the process of neural architecture search is highly time consuming and we have

two different datasets. The methodology I took is I use the assistment 09-10 dataset for the

finding of best architectures, then I apply these architecture to the Oli Engineering Statics

dataset. In other words, I did not perform architecture search for the Oli Engineering Statics

dataset. The statistics of the datasets used are shown in Table 5.5. The found architecture
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using architecture search is evaluated on the dataset only. I believe the performance might

be further improved if I conduct NAS on this specific dataset. Another reason of taking this

approach is I want to see if the architectures found in one dataset could also generalize to

another. In other words, I want to see if some modality fusions are helpful when making

predictions in unseen datasets.

The results are shown in Table 5.6. As we can see, incorporating more modalities does

help improve the performance. I performed Mcnemar’s test (with p < 0.01) on the predictions

from the NAS Extend model and the DKT model. The results show significant difference.

However, we also notice that the improvement is not very big. One possible explanation is

that both datasets are noisy, which makes it hard for the model to learn meaningful relations

among modalities. For example, for the time spent feature, there are some transactions

with time spent values less than 1 second. Thus, I argue better procedures for collecting

these data for future research. Besides, it seems the improvement is more obvious on the

assistment 09-10 dataset than on the Oli Statistic 2012 Dataset. This could be explained

by the fact that I used assistment 09-10 for NAS. In short, from the results, the found

architectures do generalize to the Oli statics dataset. Besides, we could always run the

same methodology separately on a new dataset to see if that could further improve the

performance (but we need to consider the tradeoff here, since this process is computational

demanding). Because it is possible, due to settings, one modality may have more signal than

another in different datasets. In this case, NAS may return different architectures for two

different datasets. Readers should be aware of the difference between the generalizability

of the models discovered by the methodology and the generalizability of the methodology

itself.

My found best model for DKT + FS is [[1, 2, 2], [3, 4, 2], [0, 5, 1]]). Intuitively, this result

can be interpreted as combine time spent and attempts first using activation function tanh,

then merge in first action using activation function tanh. At last, merge in the response

using activation function sigmoid. The best model for NAS extend is [[3, 1], [0, 0]]. This

model means using the first action as the input for node 1 and use sigmoid activation
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function. Then, use the response as the input for the node 2 and apply activation fucntion

relu. The output of the node 1 and node 2 will be combined to generate the final output.

From the discovered best architectures, both the response and the first action are selected.

I also noticed the performances of these architectures decrease significantly if I exclude the

response modality. This makes intuitive sense, since a correct response indicates that there is

a high probability that this student has mastered the corresponding skill. And the response

is the only modality used for models like DKT and DKVMN (I do not consider skill id

as a separate modality). The modality first action is also selected for two models. This

modality indicates if one student chooses to answer the problem or takes other actions, for

instance, ask for a hint. If one student asked for a hint, the response will be automatically

marked as incorrect. Thus, there are two different situations that may result in an incorrect

response and we should be aware the difference. In one situation, student A tried to answer

the problem but got an incorrect response. On the other hand, student B asked for a hint,

thus resulted in an incorrect response. This first action modality might reflect the different

confidence levels of these two students for some skill. Our model may have learnt assigning

different mastery level probabilities for these two situations. Another observation is that

using all modalities available might worsen the performance. This is especially true if the

dataset itself is noisy. I evaluated the proposed models on two different datasets from the

domains of mathematics and engineering separately. There are two reasons why I chose

these datasets. Firstly, it is easier to define a skill in these domains. For example, we can

consider calculating the area of a circle as one skill. It is much harder to define such skills

in other domains like literature, where there usually have lots of open ended questions. The

second reason is these two public datasets are most often used, so it is easier to compare my

proposed models with others. However, I believe my proposed models are generalizable to

domains as long as skills could be precisely defined.
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Chapter 6

ATTENTION MECHANISMS AND KNOWLEDGE TRACING

To motivate the methods used in this chapter, I make parallels to the human visual

system. There are two modes of our visual processing [81]: Focal vision and Ambient vision.

Focal vision allows us to see an object clearly, but is limited to a small central area (usually

two degrees). Ambient vision is usually ’blurry’, but it helps us be aware of our surroundings

and is used for navigation. Take reading as an example, there are only several words that are

clear to us one at a time (Focal vision), but we are also aware of the whole paragraph and

know where to look for next words (Ambient vision). Similarly, when we look at an image

of dog, we automatically focus our eyes on the dog with ’high resolution’ while ignoring the

background with ’low resolution’. Both focal vision and ambient vision play important roles

in our life. Attention mechanisms are loosely inspired by how our vision system works. The

idea of attention mechanisms is not new, but we have seen its renaissance in recent years with

the popularity of deep learning [10]. The attention mechanism allows our model to focus

on the most important information for inference by assigning different weights to different

representation dynamically. For an object recognition task, it allows a model to focus on the

objects rather than on the background. For a translation task, it allows a model to focus on

the most relevant words when decoding the next word. From previous discussions in chapter

3, I have shown some limitations of the DKT model and discussed the attention mechanism

as a potential way to mitigate these issues. Therefore, in this chapter, I am seeking to answer

the following question:

• Does adding attention mechanisms improve the performance of deep neural network

based knowledge tracing models?

In section 6.1, I will first introduce the motivations, the problems of current deep neural

network models, and different kinds of attention mechanisms. In section 6.2, I investigate two
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possible ways of applying attention mechanisms for deep neural network based knowledge

tracing; followed by discussion of the results and limitations.

6.1. Attention Mechanisms

Why do we need attention mechanisms? What problems does our current model have?

Figure 6.1 shows a sequence to sequence machine translation model. For simplicity, I am

not showing the embedding layer (which is often required for a translation task) and other

details. This model consists of an encoder and a decoder. The encoder transforms the

input sentence from one language into some high dimensional representation. The decoder

then transforms the high dimensional representation into an output sentence in another

language. The assumption is two different language sentences with the same meaning share

the same representation in some high dimensional space. In Figure 6.1, both the encoder and

the decoder are recurrent neural networks, as introduced in chapter 2. Thus, the input and

output sentences could have different length. At each time step, one word is encoded into the

hidden state and passed to the next step. The last hidden state of the encoder, which is also

called the context vector, is used as one of the input for the decoder. We assume this hidden

state vector will be a good summary of the input sentence. However, it usually does not

work very well when the input sentence becomes very long, especially for a vanilla recurrent

network because the information about the initial words could be overwritten (or forgotten).

Variants of recurrent neural networks have been proposed including the Long Short Term

Memory (LSTM) and Gated Recurrent Unit (GRU) [22], trying to solve this long dependency

issue. The cell architectures of these models do allow them to store more information, thus

improve the overall performance. However, they did not solve the main problem, so methods

of using the entire encoder outputs were proposed, with attention [59]. In other words, for

the decoder to work well, it should have access to the whole input sentence (but with different

attention/weights), not just the last hidden state of the encoder. Attention mechanisms are

also widely used in image processing tasks [141]. In such cases, convolutional neural networks

(CNNs) are usually used instead of recurrent neural networks. These models used attention
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Figure 6.1. Sequence to sequence modeling with encoder and decoder. Here <EOS> marks

the end of a sentence.

in the CNN model to focus on the most informative regions of an image by assigning more

weight. In this study, I mainly use recurrent architectures for knowledge tracing, thus I will

not further expand upon the details of attention mechanisms for CNNs.

6.1.1. Attention for Recurrent Neural Networks

I now propose how can we use attention mechanisms to solve the problem proposed in the

previous section. The proposed attention mechanism is not specific to machine translation

task, but generalizes to any model that uses a recurrent architecture. When building a

translation model like the one shown in Figure 6.1, the next prediction yt is usually a function

of the hidden state of the decoder st−1 and the previous output yt−1, yt = f(st−1, yt−1). s0

is the context vector from the encoder. The problem here is all the information from the

input sentence is stored in st. A natural improvement that we could think of is to make

the function f(st−1, yt−1) have access to the whole sentence when making a prediction. We

could add another parameter to this function yt = f(st−1, yt−1, ct). Here ct is a vector

that will be dynamically calculated for each time step when making a prediction. This is

actually the approach taken in [10]. Their model is shown in Figure 6.2. A bidirectional

LSTM [49] is used as the encoder in their paper. However, using any single one directional

recurrent neural network will also work. A bidirectional LSTM is just putting two single
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Figure 6.2. The encoder-decoder model with additive attention mechanism [133].

LSTM together, thus the model will have access to both forward and backward information.

It is commonly used for language modeling. For bidirectional LSTM, a new hidden state is

formed by concatenating the forward and backward hidden states.

ht = [
−→
ht ,
←−
ht ] (6.1)

The extra ct in the function yt = f(st−1, yt−1, ct) is dynamically calculated as a weighted

sum of all ht. Here, we use ht to denote the hidden state of the encoder, use st to denote

the hidden state of the decoder. The key point of the attention mechanism is to calculate a

vector of weights. Thus, ct = αt,ihi. The equation used in [10] is shown below:

αt,i =
exp(score(st−1, hi))∑n
j=1 exp(score(st−1, hj))

(6.2)

The score function is used to measure how ’related’ the most recent hidden state of the

decoder st−1 is with all the hidden states of the encoder. Different attention mechanisms
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usually differ in the choice of the score function. In [10], they used a feedforward neural

network.

score(h, s) = vTa tanh(Wa[h, s]) (6.3)

where va and Wa are learnable parameters. It is interesting that meaningful weights can be

learnt using simple iterative optimization process and optimizers like Stochastic Gradient

Descent (SGD) [112]. Different kinds of attention mechanisms are proposed in recent years

[21, 86, 129, 141]. They usually differ in the choice of the score function and its parameters.

I will describe some of the most recognized ones in following sections.

6.1.2. Self Attention

The first thing we need to consider when using attention mechanisms is, in a machine

learning language, what two vectors are related and should be used for the calculation of

weights. In other words, what are the parameters of the score function. In a machine trans-

lation task, we have a sequence of words as our inputs. Our target is another sequence of

words in a different language. Thus it makes sense to use the hidden state of source input

ht and hidden state of the decoder st−1 to calculate the score. We assume different words

in the input sentence contribute differently when generating the current output word. How-

ever, if we only want to learn the correlation between the current word of a sentence and

the rest, we could replace st−1 with hτ , τ 6= t. We call this self attention and it has proved

quite successful in tasks like machine reading and image captioning. Figure 6.3 shows the

correlation between the current word and the words in memories using self attention in a

machine reading task [21]. Color red represents the current word, color blue indicates the

degree of activation. As we can see, words like ’The’, ’is’, ’a’ usually have lower activations.

This means, these words have low correlation with the current word. On the other hand,

verbs like ’chasing’ or descriptive words like ’criminal’ are highly correlated with the current

word.
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Figure 6.3. Color red represents the current word, Color blue indicates the degree of memory

activation. [21]

6.1.3. Soft/Hard Attention

One advantage of most deep learning models is that they are differentiable, which means

they could be trained end to end using algorithms like backpropogation. In the case of

machine translation, to achieve differentiability when applying attention mechanisms, we

usually calculate the weights for all relevant states. In other words, it attends to all the words

(hidden states) of the input sentence for a translation task. For example, in Figure 6.2, all the

hidden states ht have been assigned weights. For image related tasks, weights are calculated

for all pixels. This kind of attention mechanism is called soft attention. Soft attention is

mathematically convenient and can be easily represented as matrix multiplications. However,

one disadvantage is that it is very computational demanding if the input sequence is very

long or the image is high resolution. A more serious problem is weights might be forced to

be assigned to noisy hidden states. In contrast, hard attention only calculates the weights

for a subset of the input, thus saving computational power. Moreover, it allows us to focus

on the portion that is important to us. One limitation of hard attention is the whole model

usually can not be trained end to end. They are usually trained using algorithms like

REINFORCE [137]. Xu et al. used a stochastic method to select which image patch to focus
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on when generating the next word [141]. Another similar concept to soft/hard attention is

called global/local attention [86]. Global attention attends to all pixels or words. On the

other hand, local attention attends to a fixed size window. For neural machine translation

tasks, the window could be the latest k words used for translation. Both global and local

attention are differentiable, thus could be trained end to end. For a more comprehensive

discussion of attention mechanisms, readers are referred to this survey, which provides an

excellent discussion of the recent trends and methods [133].

6.1.4. The Transformer

Attention is designed to solve the long range dependency problem; in its simplest form,

it is a vector of weights. In this work, I make use of the attention mechanism applied to

recurrent network—however recent work has shown that the recurrent structure, for lan-

guage understanding, is not necessarily required for good performance. While I do not

employ this methodology in the current work, its discussion is warranted in the context of

attention models. Most existing works use attention mechanisms together with recurrent

neural networks or convolutional neural networks. A recent work from Vaswani et al. [129]

proposed the Transformer model and demonstrated that only using attention mechanisms,

dispensing any recurrent and convolutional architectures, can achieve superior results. At

the same time, this approach takes less time to train because it naturally can be computed

with parallelism. The Transformer model consists of an encoder and decoder, just like other

sequence to sequence model. However, there is no recurrent or convolutional component in

this architecture. Both the encoder and decoder are a stack of mixed attention layers and

feed-forward layers. The Transformer architecture uses multi-headed attention mechanisms

in which three matrices are used to map the input into ‘Value’, ‘Key’, and ‘Query’ vectors.

These matrices are jointly trained with the entire model.

The Transformer model has no recurrence structure. Instead, it uses positional encoding

to make use of the order of sequence. They incorporate sin and cos functions into dimensions
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of the embedding as shown below:

PEpos,2i = sin(pos/100002i/dmodel)

PEpos,2i+1 = cos(pos/100002i/dmodel)

where pos is the position, i is the dimension. No recurrence structure makes parallel training

possible, thus dramatically reducing the training time. The state of art language model

BERT [31] is also built upon the Transformer model. Because this methodology is not used

in my current research, I do not expand on additional details for Transformer networks.

At this point, we have a general understanding of what problems recurrent neural net-

works faced and how attention mechanisms have helped in solving the long time dependency

issue. I also introduced different types of attention mechanisms. In the next section, I will

discuss possible ways of applying attention mechanisms for knowledge tracing. Even though

it is possible to dispense the recurrence structure like the Transformer model when applying

attention, most existing deep neural network based models for knowledge tracing still use

recurrence structure. My goal in this study is to see if adding attention mechanisms could

further improve the performance of these models. Thus, I will not consider using the Trans-

former in this work, which would be proposing a totally new model rather than answering

our attention-based research question. I leave investigation of the Transformer architecture

in knowledge tracing to future work.

6.2. Attention Mechanisms and Knowledge Tracing

There are two strategies to apply attention mechanisms when involving both recurrent

neural networks and multimodality. One strategy is that attention mechanisms might help

the model learn which modalities are more important than others. Combining attention

mechanisms and deep multimodal learning has been explored in other fields like video classi-

fication, video description [59,85]. Hori et al. [59] use attention for multimodal fusion in the

context of video description. Previous works on video description used simple concatenation.
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Figure 6.4. NAS Extend Model with Attention Mechanism. The recent hidden states are

cached in the pool.

Hori et al. argued that different modalities may carry different task relevant information

at different times. For instance, two musical instruments may look similar, but will pro-

duce very different sounds. In this case, we probably should give more weights to the voice

modality. On the other hand, when a person is brushing their teeth, the watering sound

may be just noise and should be assigned less weights. Another strategy is to use attention

mechanisms to overcome the long time dependency issue. In Chapter 3, I explained why

deep knowledge tracing might have less depth than anticipated. Instead of tracking each

skill, the DKT model is more likely learning an ‘ability’ state. Once in an oracle state, the

model will predict all skills correct. This behavior is partly due to the fact that RNN can

not adequately track information across long sequences. Thus, I hypothesize that allowing

the DKT model to access the history performance might help improve the performance.

In the previous chapter, I used NAS to automatically look for which modalities are

most useful when making predictions. Thus, I assumed unimportant modalities would be

automatically ‘filtered’ out in this process. However, another thinking is that modalities used
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Figure 6.5. NAS Extend Model with Attention Mechanism. The recent hidden states for

skill #9 are cached in the pool.

in the knowledge tracing context are ‘thin’ compared with those used in video classification.

For example, an image as one modality could include very rich information. On the other

hand, modalities like time spent may only narrowly reflect a ’confidence level’. Thus, in this

study I take the second strategy, which is to use attention mechanisms to overcome the long

term dependency issue.

Before discussing my proposed architectures, let’s first take another look at the DKVMN

model. There are two memories involved in this model. The key memory Mk is an embedding

of all skills and is immutable. The value memory M v
t stores the mastery level information

for different skills and is updated for each iteration. When there is a query, qk, it will

first be multiplied by an embedding matrix A to get an embedding vector, kt. Then, a

weight vector is calculated wt(i) = Softmax(kTt M
k(i)). This is also called location based

attention [86]. The learnt attention vector wt represents the correlation between current skill

and other skills. Thus such attention mechanisms could not solve the long time dependency

issue. It might be effective when these skills are highly correlated and making one prediction
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requires the knowledge of other skills. As we already saw in Table 5.6, this kind of attention

mechanism did not improve results.

Thus, a natural step to improve performance is to allow one model to access previous

hidden states. My first proposed architecture is shown in Figure 6.4. At the bottom of

this architecture could be any recurrent cell, including the DKVMN model. In this work, I

use the best architecture found in the previous studies, the NAS extend model. The hidden

states are cached in a fixed size pool. All these cached hidden states are used for the decoding

of the prediction vector. This is similar to the idea of local attention [86], thus our model

is differentiable and could be trained end to end. The weights are automatically calculated

using an attention layer (a feedforward neural network).

wt = tanh(Wa[ht]) (6.4)

where Wa is a trainable matrix. The context vector for decoding the prediction vector is

then a weighted some of these cached states.

ct =
∑
t

wtht (6.5)

Here we rely on the attention layer solely to generate reasonable weights. The design con-

sideration behind this model is that adding the history performance of one student might

improve the predictions. Different pool size m ∈ [3, 5, 10] are investigated. However, none

of these investigations significantly improved the model performance. My first assumption

is that perhaps I need to use hidden states from the beginning, since the latest hidden state

might already include all the information about the recent performance. Thus hidden states

with distances like ht, ht−d, ht−d∗2... are used in which d ∈ [10, 20, 50] is another hyperparam-

eter. Unfortunately, this change does not improve the performance.

My second attempt of applying attention mechanism is shown in Figure 6.5. The dif-

ference from the previous model is that, in this model, instead of using the general cached

hidden states for decoding, I use cached hidden states for specific skills we want to predict.
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Table 6.1. Comparision of different models for knowledge tracing. SM stands for Single

Modality. MM stands for multimodality. SC stands for simple concatenation. FS stands for

fusion search. A stands for attention.

Assistment 09-10 Oli Statics 2012

r2 AUC wAUC r2 AUC wAUC

SM

DKT (Baseline 1) 0.1628 0.7326 0.7367 0.4106 0.8819 0.8622

DKVMN (Baseline 2) 0.1507 0.7299 0.7354 0.3557 0.8793 0.8614

NAS cell 0.1678 0.7364 0.7408 0.4169 0.8844 0.8661

MM

DKT + SC 0.1743 0.7371 0.7441 0.4316 0.8884 0.8734

DKT + FS 0.1844 0.7454 0.7493 0.4239 0.8863 0.8651

NAS Extend 0.1829 0.7458 0.7545 0.4348 0.8902 0.8779

NAS Extend + A 0.1842 0.7465 0.7548 0.4315 0.8894 0.8767

For example, if we want to predict skill 9, the cached ‘latest hidden states for skill 9’ will

be used. This means we have one pool for each skill. Different pool size m ∈ [3, 5, 10] are

tried. However, the improvement is still limited. In Table 6.1, we can see it only improve the

results by a small average margin on the assistment 09-10 dataset. And it gives slightly worse

results on the Oli Engineering Statics dataset. This inconsistency in performance leads me

to conclude that attention mechanisms are not well suited for the application of knowledge

tracing (at least using the proposed methodologies).

One explanation why attention mechanisms help in neural machine translation task is

that the words in a sentence have strong correlations. In other words, they follow the rule of

grammar. However, the sequence of question answering attempts from one student does not

follow any such rule. The attempts might follow some curriculum, but the choice of ‘which

problems to solve’ seems quite flexible. Moreover, the sequences of attempts from different

students are highly heterogeneous. In such cases, attention mechanisms might not be able to

learn meaningful weights. Another explanation is related to DKT model architecture and its

variants. These models might not be able to effectively utilize history for predictions. Deep

neural network based models can easily get stuck in local optimal, thus it is possible these

architectures are in a location that could only use the latest hidden state for decoding. We
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already seen in chapter 3 that DKT model and its variants might not be able to distinguish

different skills, which also might explain why using a separate cache pool for different skills

does not help. Thus, further research is needed to see if attention mechanisms could help in

the case of deep neural networks based knowledge tracing. Even so, in the absence of new

research, we conclude that the gains from using attention in knowledge tracing are limited.
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Chapter 7

CONCLUSION

7.1. Conclusion

In this thesis, I investigated deep neural network based models for student response mod-

eling. There are two goals in this thesis: 1) To have a better understanding of deep neural

network based student response modeling through visualization and through incorporating

uncertainties. 2) To investigate the performance of student response modeling with mul-

timodality and attention mechanisms. In this chapter, I summarize the main studies that

have been conducted and intuit their conclusions.

Many researchers, especially those not entrenched in the machine learning community,

use deep neural networks as black boxes. However, a clear understanding of how these

models make decisions is highly important. Thus, I proposed interpretable deep neural

network models for student response modeling. First, I proposed using a post-hoc approach

to interpret the DKT model through visualization. I concatenated the intermediate outputs

from the DKT model, forming the activation vector. Both synthetic and real data were used

as input to analyze the behaviors of DKT in high dimensional space. Through visualization of

the activation vector, we observed that the DKT model might not be tracking each different

skill. Instead it is more likely learning an ‘oracle state’ and, once in this oracle state, one

student has very high probabilities of getting all skills correct. One student could use any

practice skill to get into this oracle state, which is not a desirable behavior of the model.

Also, the learnt high dimensional representation might not be meaningful. Some possible

ways of improving the DKT model are also discussed.

The second approach to interpretable deep neural networks is to make the model learn

an uncertainty score for each prediction. Thus, decisions could be left to human beings
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when the uncertainty is high. I achieved this goal through extending Kendall’s work [67]

by regularizing the loss function. Two types of uncertainties: aleatoric uncertainty and

epistemic uncertainties are discussed. My proposed model was able to achieve comparable

performance as the DKT model, while at the same time providing meaningful uncertainty

scores. To quantitatively analyze the uncertainties, I also proposed using synthetic data

in which we have access to the actual probabilities that generated these responses. I also

argued that if two models have similar overall performance, the one whose performance gets

better with time is preferred. Because of this, a new metric for weighted AUC, which could

measure how one model performs with time, was also proposed.

I also investigated using multimodality to improve the performance of student response

modeling. As an initial study, I presented the EduAware system which is a tablet based

adult learning module. Interactive features like swipe speed, time spent, click duration,

etc. were used to predict the student performance on a final comprehensive test. I found

that adding more features significantly improved the performance. An analysis of which

features are important for making predictions was also provided. However, one limitation

is that the dataset used in EduAware is small, thus only simple machine learning models

like logistic regression and linear support vector machines are evaluated. To investigate

multimodality in the context of deep learning, two public datasets with millions of records

were employed. Firstly, I discussed the using of neural architecture search when there is only

one modality. Using reinforcement learning and parameters sharing technique, a recurrent

cell is discovered. The discovered recurrent cell achieved superior performance compared

to the traditional LSTM cell. Statistical test shows the results are significantly different.

Furthermore, I proposed three methods for using neural architecture search in the context

of multimodality. First, I used NAS to automatically look for the best fusion structure while

keeping the recurrent cell fixed (LSTM). Second, I extended neural architecture search to

the case of multimodality, automatically looking for the best recurrent cell and modalities

combination for knowledge tracing within one methodology. Third, an attempt to extend

the LSTM cell for multimodal fusion is also discussed. The discovered architectures perform
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better than both the DKT and DKVMN models on the two public datasets. Limitations of

proposed methods are also discussed.

Finally, I investigated the attention mechanisms for deep neural network based knowledge

tracing models. Various types of attentions mechanisms were discussed. Two possible ways

of applying the attention mechanisms to knowledge tracing were evaluated. However, I found

the proposed attention mechanism is inconsistent, only improving the performance in one

dataset by a small margin. I hypothesized how this might be due to the heterogeneous fact

of student response data. Thus, more research is needed for applying attention mechanisms

for knowledge tracing.

7.2. Contributions to Other Research Fields

I described the contributions of this dissertation in section 1.5. Even though the proposed

studies are conducted in the domain of student response modeling, some of which might be

inspiring for researchers from other fields.

• Use visualization to analyze the behaviors of deep neural network models [33]. The

use of synthetic data allows the analysis of behaviors of deep neural networks in the

extreme conditions. These behaviors might not be accessible using real world data and

might help us understand how decisions are made.

• I proposed a regularizer that could guide the training process to result in sensible

uncertainties [35]. In this study, I discussed the issues of existing methodologies. These

theoretical discussions are domain independent. And I believe the proposed approach

of regularizing the loss function is generalizable to domains other than student response

modeling.

• I proposed a way of combining multimodal fusion search and cell architecture search

within one framework. To my best knowledge, this is the first architecture that com-

bines these two. This framework is also domain independent. Besides, the sub-graph

sampling process might be an effective way of preventing overfitting [34].
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• I proposed using a new metric, weighted AUC (wAUC) and a simple weight assigning

strategy. wAUC could be used to measure how one model performs with time. I hope

this work will inspire more research in this direction.

• I discussed two ways of applying attention mechanisms on recurrent models. The

results show attention mechanisms will not be helpful in all cases, especially when the

data is very heterogeneous.

7.3. Future Research

Compared with other domains, the problem of noisy data is more serious in the domain

of student response modeling—and it is difficult to detect outliers. Outliers could manifest

in different ways considering student responses. For instance, one student might switch

applications on the computer, resulting in a long time spent feature. To build robust models

and do fair comparisons, we must make sure our data is solid and clean. I propose to tackle

this problem in two ways: The first one is to develop a more robust outliers detector for

students data. Unsupervised clustering algorithms might be used for this purpose. The

second approach is to use synthetic data. There are at least two benefits of using synthetic

data. The first benefit is scalability. Deep Learning based models require a lot of training

data, using synthetic data could save huge amount of data collection time. The second

benefit is synthetic data provide a way to do fair comparisons between different models,

since we also have access to the backend generative models. Generative adversarial networks

might be useful in this case. Even so, the value of actual data, even with noise sources,

cannot be overstated.
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