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Dielectric properties of biological cells are functions of cellular structure, content, state, 

and phenotype. Dielectric spectroscopy (DS) is a nondestructive method to characterize 

dielectric properties by measuring impedance data over a frequency range. This method 

has been widely used for various applications such as counting, sizing, and monitoring 

biological cells and particles. Recently, this method has been suggested to be utilized in 

various stages of the drug discovery process due to its low sample consumption and fast 

analysis time.  

In this thesis, we have developed a lab-on-a-chip device that uses an electro-activated 

microwells array for capturing, making DS measurements on, and unloading of biological 

cells. To the best of our knowledge, this is the first microfluidic chip that combines electro‐

activated microwells and DS to analyze biological cells. We demonstrated that our device 

enabled real-time measurements of dielectric properties of live cancer cells and allowed 

the assessment of the cellular response to variations in buffer conductivity and pH. 

Moreover, we proved that this device is capable of quantitatively measuring drug effects 

on biological cells, and the results show that the proposed microfluidic system has the 

potential to be used in early stages of the drug discovery process. 
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Chapter 1 

INTRODUCTION 

 

Dielectric spectroscopy (DS) is a non-invasive, label-free, and fast technique for measuring 

type, size, and dielectric properties of biological cells in real time [1-6]. This technique 

involves the application of a small AC test voltage and measurement of AC current in a 

wide range of frequencies and provides an impedance spectrum [7, 8]. It has been shown 

that membrane capacitance and cytoplasm conductivity becomes dominant on impedance 

at frequencies around 1 MHz and 10 MHz, respectively [9]. The dielectric properties of 

cells are significant indicators of health, function, and life stage of the cells [10-13]. 

Dielectric spectroscopy can be used to examine and discriminate between tumor cells and 

healthy cells. Using impedance measurement techniques, drug-resistant breast cancer cells 

(doxorubicin resistant MCF-7 DOX) may be distinguished from their parental cells (MCF-

7 WT, wild-type) [14]. Simultaneous measurements of impedance with DS and 

fluorescence may sort between T-lymphocytes, monocytes, and neutrophils [15]. Since DS 

is non-invasive, label-free and amenable to real-time monitoring [16, 17], quantitative 

assessments of the growth rate, state of bio-reactions, and early indications of catastrophic 

events such as contamination or cessation of growth, may be obtained [18]. DS can 

investigate the real-time effects of external stimuli and drug uptake on membrane and 

cytoplasm without the need for complicated and expensive biochemical and microscopy 

techniques [19].  

To have a reliable set of cell dielectric parameters from an impedance measurement of cell 

suspension, the volume fraction of cells should be around 10%. Considering this volume 
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fraction range, the number of 5 µm radius cells in 1 ml of cell suspension should be around 

200 million. Culturing these many cells is impractical, especially for primary cells. 

Therefore, there is a need for miniaturizing dielectric spectroscopy device dimensions to 

reduce the required number of cells [20]. Microfluidic platforms operating with nano and 

microliters of samples are ideal candidates for miniaturized dielectric spectroscopy [21, 

22]. Miniaturizing the chamber allows readings to be taken with tiny sample sizes. Early 

studies investigating the dielectric nature of cells did not consider the heterogeneous nature 

of the cell population and no efforts were made to control the size of the dielectric chamber 

[23-25]. Recently, advances in micro-technology have led to microfluidics and Lab-on-a-

Chip (LOC) systems that can manipulate minimal fluid volumes. As an example, Grenier 

et al. [26] proposed a microfluidic coplanar-waveguide (CPW) sensor that accommodates 

microliters of samples. The ability to manipulate small volumes of fluid has not only 

reduced the volume of the measurement chamber but has also made possible biochemical 

and electrophysiological processes such as single cell manipulation [27], and dynamic 

control of the extracellular environment [28]. 

To collect cells and particles in a confined geometry, several cell-handling methods, 

including optical tweezers [29-32], chemical patterning [33, 34], nano-electrode array [35-

37], micro-well arrays [38-44], and combinations of the methods above [45], have been 

developed. In particular, micro-well arrays enable large scale arraying and high throughput 

measurements [46, 47]. Lee and colleagues developed a miniaturized cell-culture array for 

toxicity screening of drug candidates and their cytochrome P450-generated metabolites, 

and they showed that 2,000-fold miniaturization does not change the cytotoxicity response 

compared with a conventional 96-well microtiter plate [48]. In another study, Wada and 
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colleagues used a microfluidic cell culture system in combination with sensor cells to 

quantitatively detect cytotoxic reagents [49]. Moreover, personalized treatment can be 

performed using micro-well arrays [50, 51]. For example, Xu et al. developed an effective 

drug sensitivity platform, where they successfully assayed the sensitivities of different 

single and combined-drug chemotherapy schemes for eight patients [52].  

Many researchers used gravity to load cells inside the micro-wells [53, 54]. As an 

illustration, Yuan et al. collected a mixture of human glioma and murine fibroblast cells in 

150,000 cylindrical micro-wells and reported that more than 50% of the micro-wells were 

filled with the cells [55]. The main problem in gravity-based micro-well array loading is 

its low efficiency of cell trapping and long trapping time. To overcome this problem, 

additional cell capture mechanisms are required.  

A large number of methods have been developed to capture cells more effectively, 

including magnetic [56], optical, hydrodynamic [57], acoustic [58], and electrical forces 

[59]. Using electrical forces to capture cells have been utilized frequently due to its 

simplicity, high selectivity, contact-free approach, and its potential to be integrated into 

microfluidic systems. Combination of micro-well arrays with dielectrophoretic forcing, 

which is the motion of polarizable particles in a non-uniform electric field, enabled 

researchers to capture biological cells in confined well geometries more effectively in 

shorter periods. Electro-activated micro-wells have been used for several applications such 

as cell sorting and cell manipulation. Kim et al. proposed a microfluidic device made up 

of electro-active micro-wells to capture cells using positive Dielectrophoresis (DEP) and 

then lyse them using electroporation [60]. In another study, Cordovez et al. showed that 

electro-active micro-wells could serve to capture, store, and even repel different diameter 
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(6 to 20 μm) polystyrene particles [61]. Yoshimura et al. reported a microfluidic device 

consisting of 10,000 micro-wells to produce “cell couplets” [62].  

 After capturing, cells could be analyzed to determine their properties. Morimoto et al. used 

immunofluorescent labeling on cells and isolated them in micro-wells, where molecular 

analyses of cells were performed [63]. Kobayashi et al. used three different kinds of 

biochemical assays (immunostaining, viability/apoptosis, and fluorescence in situ 

hybridization (FISH)) for cancer cell discrimination after capturing cells by electro-

activated micro-wells [64]. Most of the published articles relied on injection of expensive 

biochemical reagents, microscopy, and molecular analysis methods to find out cell types 

and their properties. As a non-invasive, inexpensive, and label-free technique, DS could be 

used to analyze the cells after capturing them in the micro-wells. 

DEP trapping mostly requires biological cells to be suspended in a low conductivity 

medium [65]. Lower extracellular ionic concentration causes stronger polarization at the 

cell interior than the extracellular medium, which results in the collection of cells at high 

electric field regions. However, low conductivity buffers (LCB) induce changes in 

biological cells. Cells mainly respond to LCB by pumping out ions, followed by shape 

regulation [66, 67]. This results in a time-dependent dielectric property response [68]. 

Therefore, there is a critical need to consider the time-dependent dielectric response of cells 

in LCB. Moreover, extracellular pH plays an essential role in cell functions. The rate of 

cellular growth and metabolism of protein synthesis are strong functions of medium pH 

[69]. Direct measurements of cell response also have the advantages of continuous 

recording of metabolic changes in drug discovery processes [70].  
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In this dissertation, the efficiency of a new microfluidic device for capturing and then 

measuring the dielectric response of biological cells is demonstrated. We first tested our 

microfluidic device with yeast cells. The yeast cells are introduced with a low volume 

fraction (1%), and cell enrichment and unloading inside the micro-wells are established 

using positive DEP (pDEP) and negative DEP (nDEP), respectively, facilitating high 

throughput cell processing. Captured cells are analyzed using the DS method, which 

enables real-time measurements of sub-cellular dielectric properties of the biological cells. 

Furthermore, we focused on real-time measurements of PC-3, a highly metastatic prostate 

cancer cell line, and its response to changes in the external conductivity and pH. Since 

limited information about the bioelectric characteristics of PC-3 cells was available, we 

first determined the impedance of the PC-3 cell suspension using a parallel-plate electrode 

configuration and found the optimum frequencies for DEP assisted cell loading and 

unloading. Dimensions of PC-3 cells are suitable for single cell capture in the micro-wells 

allowing simultaneous DS measurement for up to 400-500 cells.  An equivalent circuit 

model was developed for the current bio-chip geometry to extract cell membrane 

capacitance and cytoplasmic resistance. After diluting the cell suspension with LCB and 

capturing the cells inside micro-wells, the impedance spectrum was recorded for two hours 

with six seconds increments, which enabled a time-dependent evaluation of the PC-3 cell 

membrane capacitance and its cytoplasmic resistance change in LCB. This is followed by 

studies on cell response to external pH alterations between pH of 7.3 and 5.8. Moreover, 

we tested the effects of the Enzalutamide anti-cancer drug on PC-3 cells using different 

quantification methods. Enzalutamide at a concentration of 100 µM was introduced to the 

cell medium, and impedance spectra were recorded for 8 hours till all the cells were dead 
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as determined by viability tests. Using the equivalent circuit model, cell data was extracted. 

Moreover, the impedance magnitude and phase angle at single frequencies were measured. 

The principal component analysis (PCA) was used to quantify the changes in PC3 cells. 

Additionally, opacity ratio was calculated as another method to quantify cells changes. 

Finally, an available technology for cells drug response was tested. The results obtained in 

this dissertation suggest that this impedance-based microfluidic device can be used to 

monitor cell state quantitatively and has potential applications in the early stages of the 

drug discovery process. 
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Chapter 2 

THEORY 

 

In this section, the basic theory behind dielectrics, polarization, and electrical forces, 

especially dielectrophoresis, is explained. 

 

2.1. Dipoles 

The electrical dipole consists of two charges with the same magnitude (𝑄𝑄), but opposite 

sign located at a distance 𝑑𝑑 from each other. The dipole moment is the vector 𝒑𝒑 directed 

from the negative to positive charge and is defined as 𝒑𝒑 = 𝑄𝑄𝒅𝒅 which has a unit of Cm, 

where 𝒅𝒅 is the vector connecting negative to the positive charge. The potential and electric 

field of a dipole at large distances (𝑟𝑟 >> 𝑑𝑑) is given as  

 𝜑𝜑 =
|𝒑𝒑| cos 𝜃𝜃
4𝜋𝜋𝜀𝜀0𝑟𝑟2

;        𝑬𝑬 =
|𝒑𝒑|

4𝜋𝜋𝜀𝜀0𝑟𝑟3
(2 cos𝜃𝜃 �̂�𝑟 + sin 𝜃𝜃 𝜃𝜃�) (2.1) 

 

The potential energy of a dipole in electric field 𝑬𝑬 is defined as 

 𝑈𝑈 = −𝑬𝑬 ∙ 𝒑𝒑 = −|𝑬𝑬|𝑄𝑄𝑑𝑑 cos𝜃𝜃 (2.2) 

   

Based on Equation 2.2, when the electric field is perpendicular to the dipole moment, the 

energy is zero, and it reaches the minimum (−𝐸𝐸𝐸𝐸) value when 𝑬𝑬 and 𝒑𝒑 are in the same 
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direction. If 𝜃𝜃 is non-zero, the dipole will orient itself such that the angle between the 

electric field and dipole moment becomes zero. 

 

2.2. Dielectrics 

A dielectric material is an electrical insulator that can be polarized by the application of an 

external electric field. The bound charges within the dielectric materials will move in 

different directions based on the charge sign and form induced dipoles. The strength of the 

induced dipole is proportional to the electric field. 

 𝑷𝑷 = 𝑛𝑛𝑛𝑛𝑬𝑬′ (2.3) 

 

where 𝑬𝑬′ is the local electric field, 𝑛𝑛 is the number of molecules per cubic meter, and 𝑛𝑛 is 

the polarizability of the material which has a unit of F/m2. Material polarization causes a 

net charge in the dielectric which is referred to as bound charges. Bound charge density is 

given as 

 𝜌𝜌𝑏𝑏 = −𝛁𝛁 ∙ 𝑷𝑷    (2.4) 

 

Dielectric materials are categorized as polar and non-polar. Polar dielectrics have a 

permanent dipole while non-polar dielectrics do not have any permanent dipole and applied 

electric field will induce a dipole within the material. 
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When a dielectric is subjected to an external electric field, different polarization 

phenomena could happen. These phenomena could be due to molecular processes 

(electronic, atomic, orientational) or long-range processes (interfacial polarization). In 

electronic polarization, the electron cloud and positive nucleus move to different directions 

in an external electric field inducing a dipole moment. For atomic polarization, the ions of 

different signs move in different directions, which causes atomic polarizability. 

Orientational polarization is because of the alignment of permanent dipoles in polar 

dielectrics. Finally, charges can be accumulated at inhomogeneous boundaries or the 

surface, resulting in interfacial polarization. 

Combining Gauss’ law and the bound charge density equation, and considering charge 

density is a summation of free (𝜌𝜌𝑓𝑓) and bound (𝜌𝜌𝑏𝑏) charges, we will have 

 𝛁𝛁 ∙ (𝜀𝜀0𝑬𝑬 + 𝑷𝑷) = 𝜌𝜌𝑓𝑓    (2.5) 

 

𝐷𝐷 = 𝜀𝜀0𝑬𝑬 + 𝑷𝑷 is called displacement field. For a linear and isotropic dielectric, 𝑷𝑷 is 

proportional to E. 

 𝑷𝑷 = 𝜀𝜀0𝜒𝜒𝑬𝑬 (2.6) 

 

where 𝜒𝜒 is the susceptibility. Displacement field can be rewritten as 

 𝑫𝑫 = 𝜀𝜀0(1 + 𝜒𝜒)𝑬𝑬 = 𝜀𝜀0𝜀𝜀𝑟𝑟𝑬𝑬 (2.7) 

 

𝜀𝜀𝑟𝑟 = 1 + 𝜒𝜒 is a dimensionless number referred as relative permittivity and is the 

proportionality constant between 𝑫𝑫 and 𝑬𝑬. 
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In order to examine the polarization of a dielectric in an AC electric field, the concept of 

complex permittivity must be introduced at first. Consider a parallel plate capacitor which 

contains a homogenous dielectric material with permittivity 𝜀𝜀 = 𝜀𝜀0𝜀𝜀𝑟𝑟 (Figure 2.1).  

 

Figure 2.1 A parallel plate electrode with a layer of dielectric material 

 

Each plate has a surface area of 𝐴𝐴, and the separation distance between two plates is 𝑑𝑑. If 

an AC voltage of angular frequency 𝜔𝜔 is applied to the plates, in case of a loss-free 

dielectric, the impedance is 

 𝑍𝑍 =
1
𝑗𝑗𝜔𝜔𝑗𝑗

;    𝑗𝑗 = 𝜀𝜀
𝐴𝐴
𝑑𝑑

 (2.8) 
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However, for lossy dielectrics with permittivity 𝜀𝜀 and conductivity 𝜎𝜎, the equivalent circuit 

model can be considered as a loss-free capacitor in parallel with a resistor (𝑅𝑅 = 𝑑𝑑
𝐴𝐴𝐴𝐴

). As a 

result, the impedance can be calculated as 

 𝑍𝑍 =
𝑅𝑅

1 + 𝑗𝑗𝜔𝜔𝑅𝑅𝑗𝑗
=

1
𝑗𝑗𝜔𝜔𝑗𝑗′

;    𝑗𝑗′ = 𝜀𝜀∗
𝐴𝐴
𝑑𝑑

 (2.9) 

 

𝜀𝜀∗ is called the complex permittivity and is given by 

 𝜀𝜀∗ = 𝜀𝜀0𝜀𝜀𝑟𝑟 − 𝑗𝑗
𝜎𝜎
𝜔𝜔

 (2.10) 

 

Another method to introduce complex permittivity is combining the charge conservation 

equation (∇ ∙ 𝑱𝑱 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, where 𝑱𝑱 is the current density) with Gauss’s law which yields 

 𝛁𝛁. �𝜀𝜀0𝜀𝜀𝑟𝑟 − 𝑗𝑗
𝜎𝜎
𝜔𝜔
�𝑬𝑬 = 0 (2.11) 

 

2.2.1. Dielectric Relaxations 

As mentioned earlier, local relaxations include atomic, electronic, and orientational. 

Atomic and orientational polarization will align with electric fields up to ~1014 Hz, and 

these mechanisms can be explained by this equation 

 𝑷𝑷𝑎𝑎,𝑒𝑒 = 𝜀𝜀0𝜒𝜒𝑎𝑎,𝑒𝑒𝑬𝑬 (2.12) 

 

However, for orientational polarization a relaxation time 𝜏𝜏𝑜𝑜𝑟𝑟 is introduced to account for 

the time needed for permanent dipoles to orient with the external electric field. This 

polarization is given by: 
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 𝑷𝑷𝑜𝑜𝑟𝑟 =
𝜀𝜀0𝜒𝜒𝑜𝑜𝑟𝑟

1 + 𝑗𝑗𝜔𝜔𝜏𝜏𝑜𝑜𝑟𝑟
𝑬𝑬 (2.13) 

 

The total polarization is the summation of atomic, electronic, and orientational 

polarizations. 

 𝑷𝑷𝜕𝜕𝑜𝑜𝜕𝜕 = 𝑷𝑷𝑎𝑎,𝑒𝑒 + 𝑷𝑷𝑜𝑜𝑟𝑟 = 𝜀𝜀0 �𝜒𝜒𝑎𝑎,𝑒𝑒 +
𝜒𝜒𝑜𝑜𝑟𝑟

1 + 𝑗𝑗𝜔𝜔𝜏𝜏𝑜𝑜𝑟𝑟
�𝑬𝑬 (2.14) 

 

In the low-frequency limit, 𝜒𝜒 = 𝜒𝜒𝑎𝑎,𝑒𝑒 + 𝜒𝜒𝑜𝑜𝑟𝑟 = 𝜀𝜀𝑠𝑠 − 1 and at the high-frequency limit, 𝜒𝜒 =

𝜒𝜒𝑎𝑎,𝑒𝑒 = 𝜀𝜀∞ − 1, where 𝜀𝜀𝑠𝑠 and 𝜀𝜀∞ are the relative permittivity values at low and high-

frequency limits. Combining these results,  𝜒𝜒𝑜𝑜𝑟𝑟 = 𝜀𝜀𝑠𝑠 − 𝜀𝜀∞ and Equation 2.14 can be 

written as 

 𝑷𝑷𝜕𝜕𝑜𝑜𝜕𝜕 = 𝜀𝜀0(𝜀𝜀∞ +
𝜀𝜀𝑠𝑠 − 𝜀𝜀∞

1 + 𝑗𝑗𝜔𝜔𝜏𝜏𝑜𝑜𝑟𝑟
− 1)𝑬𝑬 (2.15) 

 

As a result, the complex permittivity of the dielectric is 

 𝜀𝜀∗ = 𝜀𝜀0 �𝜀𝜀∞ +
𝜀𝜀𝑠𝑠 − 𝜀𝜀∞

1 + 𝑗𝑗𝜔𝜔𝜏𝜏𝑜𝑜𝑟𝑟
� − 𝑗𝑗

𝜎𝜎
𝜔𝜔

 (2.16) 

 

Equation 2.16 can be written in the form of 𝜀𝜀∗ = 𝜀𝜀′ − 𝑗𝑗𝜀𝜀", yielding the Debye relationships, 

 𝜀𝜀′ = 𝜀𝜀0 �𝜀𝜀∞ +
𝜀𝜀𝑠𝑠 − 𝜀𝜀∞

1 + 𝜔𝜔2𝜏𝜏𝑜𝑜𝑟𝑟2
� ;   𝜀𝜀′′ = 𝜀𝜀0 �

(𝜀𝜀𝑠𝑠 − 𝜀𝜀∞)𝜔𝜔𝜏𝜏𝑜𝑜𝑟𝑟
1 + 𝜔𝜔2𝜏𝜏𝑜𝑜𝑟𝑟2

� +
𝜎𝜎
𝜔𝜔

 (2.17) 

 

At low frequencies, the dipole follows electric field changes, and the real part is high. At 

relaxation frequency ( 1
2𝜋𝜋𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟

), dipoles fail to follow the electric field, and the real part starts 
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to decrease. The imaginary part will have a peak at relaxation frequency. The peak in the 

imaginary part is due to the heat that is generated during the alignment of the dipole, which 

is acting against the randomizing effects of the Brownian motion. In other words, the real 

part of the permittivity is the storage part, while the imaginary part is the dissipative part 

of electric energy. The static conductivity of the medium also contributes to the dissipation 

part of the complex permittivity. 

 The phenomenon described above is usually referred as dielectric relaxation, with 1
2𝜋𝜋𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟

 

being the relaxation frequency. Cole and Cole [71] modified Equation 2.16 to account for 

the distribution of relaxation times seen in experimental results. This equation is as follows 

 𝜀𝜀∗ = 𝜀𝜀0 �𝜀𝜀∞ +
𝜀𝜀𝑠𝑠 − 𝜀𝜀∞

1 + 𝑗𝑗(𝜔𝜔𝜏𝜏𝑜𝑜𝑟𝑟)1−𝛽𝛽� − 𝑗𝑗
𝜎𝜎
𝜔𝜔

 (2.18) 

 

where 𝛽𝛽 = 0 and 𝛽𝛽 = 1 represent single and infinite relaxation times, respectively. 

 

2.3. Interfacial Polarization 

In AC electrokinetics, the system usually consists of dielectric particles suspended in a 

dielectric fluid. The external electric field will cause accumulation of surface charges at 

interfaces. This surface charge is frequency-dependent and shows a dispersion behavior, 

which is known as Maxwell-Wagner interfacial polarization. 
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The interfacial polarization can be explained using a parallel plate capacitor containing two 

lossy dielectrics with different electrical properties. A schematic of the mentioned system 

is shown in Figure 2.2. 

 

Figure 2.2 A parallel plate electrode with two layers of dielectric material 

 

This system can be considered as elements in series, and the impedance of the system is 

written as 

 𝑍𝑍 =
𝑅𝑅1

1 + 𝑗𝑗𝜔𝜔𝑅𝑅1𝑗𝑗1
+

𝑅𝑅2
1 + 𝑗𝑗𝜔𝜔𝑅𝑅2𝑗𝑗2

=
1
𝑗𝑗𝜔𝜔𝑗𝑗

;    𝑗𝑗 = 𝜀𝜀∗
𝐴𝐴

𝑑𝑑1 + 𝑑𝑑2
 (2.19) 

 

Using the Debye formulations, 𝜀𝜀∗ can be written as 



 

15 
 

 𝜀𝜀∗ = 𝜀𝜀′ − 𝑖𝑖𝜀𝜀′′ = 𝜀𝜀0 �𝜀𝜀ℎ𝑓𝑓 +
𝜀𝜀𝑙𝑙𝑓𝑓 − 𝜀𝜀ℎ𝑓𝑓
1 + 𝜔𝜔2𝜏𝜏2

� − 𝑖𝑖𝜀𝜀0 �
�𝜀𝜀𝑙𝑙𝑓𝑓 − 𝜀𝜀ℎ𝑓𝑓�𝜔𝜔𝜏𝜏𝑜𝑜𝑟𝑟

1 + 𝜔𝜔2𝜏𝜏2
+

𝜎𝜎
𝜀𝜀0𝜔𝜔

� (2.20) 

 

where  𝜀𝜀ℎ𝑓𝑓, 𝜀𝜀𝑙𝑙𝑓𝑓, 𝜏𝜏, and 𝜎𝜎 are high-frequency permittivity, low-frequency permittivity, 

relaxation time, and total conductivity, respectively, and are given as 

 

𝜀𝜀ℎ𝑓𝑓 =
𝑑𝑑𝜀𝜀1𝜀𝜀2

𝑑𝑑1𝜀𝜀2 + 𝑑𝑑2𝜀𝜀1
          𝜀𝜀𝑙𝑙𝑓𝑓 =

𝑑𝑑(𝑑𝑑1𝜀𝜀1𝜎𝜎22 + 𝑑𝑑2𝜀𝜀2𝜎𝜎12)
(𝑑𝑑1𝜎𝜎2 + 𝑑𝑑2𝜎𝜎1)2  

𝜏𝜏 =
𝑑𝑑1𝜀𝜀2 + 𝑑𝑑2𝜀𝜀1
𝑑𝑑1𝜎𝜎2 + 𝑑𝑑2𝜎𝜎1

          𝜎𝜎 =
𝑑𝑑𝜎𝜎1𝜎𝜎2

𝑑𝑑1𝜎𝜎2 + 𝑑𝑑2𝜎𝜎1
 

 

(2.21) 

 

2.3.1. The effective dipole moment of a spherical particle 

Consider a dielectric sphere with radius 𝑎𝑎 and permittivity of 𝜀𝜀𝑝𝑝 inside a fluid medium with 

complex permittivity of 𝜀𝜀𝑚𝑚  and exposed to applied electric field 𝑬𝑬 = −𝐸𝐸𝒛𝒛. We want to 

find the form of particle polarization with a field superposed on 𝐸𝐸 creating a potential 𝜑𝜑 

which satisfies the following conditions: 

1. 𝜑𝜑 is continuous across sphere boundary. 

2. Net surface charge on the sphere boundary is zero 𝜀𝜀𝑚𝑚
𝜕𝜕𝜑𝜑𝑚𝑚
𝜕𝜕𝑟𝑟

| 𝑟𝑟=𝑎𝑎 = 𝜀𝜀𝑝𝑝
𝜕𝜕𝜑𝜑𝑝𝑝
𝜕𝜕𝑟𝑟

| 𝑟𝑟=𝑎𝑎. 

3. 𝜑𝜑 satisfies Laplace equation (∇2𝜑𝜑 = 0). 

4. At distances far beyond the sphere 𝜑𝜑 = −𝐸𝐸𝐸𝐸 

If the permittivities are complex and the applied field is harmonic, Equation 2.11 along 

with the same boundary conditions but with complex permittivity values can be used. As a 

result, the potential outside (𝜑𝜑𝑚𝑚) and inside (𝜑𝜑𝑝𝑝) of the sphere is derived as [72] 
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𝜑𝜑𝑚𝑚 = ��
𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑝𝑝∗ + 2𝜀𝜀𝑚𝑚∗
�
𝑎𝑎3

𝑟𝑟3
− 1� 𝐸𝐸𝑟𝑟 cos 𝜃𝜃

= 𝐸𝐸𝑎𝑎3 �
𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑝𝑝∗ + 2𝜀𝜀𝑚𝑚∗
�

cos 𝜃𝜃
𝑟𝑟2

− 𝐸𝐸𝑟𝑟 cos 𝜃𝜃 

𝜑𝜑𝑝𝑝 = −�
3𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑝𝑝∗ + 2𝜀𝜀𝑚𝑚∗
�𝐸𝐸𝑟𝑟 cos 𝜃𝜃 

 

(2.22) 

Based on Equation 2.22, it is clear that the electrical potential in the medium is a 

superposition of the potential due to the applied external field and the potential due to a 

dipole moment. Comparing this equation with the dipole moment potential field, the dipole 

moment is 

 𝒑𝒑 = 4𝜋𝜋𝜀𝜀𝑚𝑚 �
𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑝𝑝∗ + 2𝜀𝜀𝑚𝑚∗
� 𝑎𝑎3𝑬𝑬 (2.23) 

 

Equation 2.23 shows that polarizability is frequency dependent and can be explained by a 

factor called the Clausius-Mossotti factor, defined as 

 𝐾𝐾 = �
𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑝𝑝∗ + 2𝜀𝜀𝑚𝑚∗
� (2.24) 

 

Figure 2.3 shows the variations of the real and imaginary part of  𝐾𝐾 with respect to 

frequency. The real part of 𝐾𝐾 has high and low-frequency limits of 𝐴𝐴𝑝𝑝−𝐴𝐴𝑚𝑚
𝐴𝐴𝑝𝑝+2𝐴𝐴𝑚𝑚

 and 𝜀𝜀𝑝𝑝−𝜀𝜀𝑚𝑚
𝜀𝜀𝑝𝑝+2𝜀𝜀𝑚𝑚

, 

respectively. The imaginary part approaches zero at both frequency limits and has a peak 

value at relaxation frequency ( 1
2𝜋𝜋
�𝐴𝐴𝑝𝑝+2𝐴𝐴𝑚𝑚
𝜀𝜀𝑝𝑝+2𝜀𝜀𝑚𝑚

�).  
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Figure 2.3 Variation of real (solid line) and imaginary parts (dotted line) of K with 

frequency. Figure adapted from [73] 

 

 

2.3.2. The effective dipole moment of an ellipsoidal particle 

Consider an ellipsoidal particle with semi-axes 𝑅𝑅𝑥𝑥, 𝑅𝑅𝑦𝑦, and 𝑅𝑅𝑧𝑧 along the 𝑥𝑥, 𝑦𝑦, and 𝐸𝐸-axes. 

When an AC electric field 𝑬𝑬 = (𝐸𝐸𝑥𝑥,𝐸𝐸𝑦𝑦,𝐸𝐸𝑧𝑧) is applied, the potentials outside and inside of 

ellipsoid are calculated as [72] 

 𝜑𝜑𝑚𝑚 = −� 𝐸𝐸𝑘𝑘𝑘𝑘 �1 −
𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑚𝑚∗ + �𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗ �𝐿𝐿𝑘𝑘
𝐿𝐿𝑘𝑘′ �

𝑘𝑘=𝑥𝑥,𝑦𝑦,𝑧𝑧
 (2.25) 

 



 

18 
 

 𝜑𝜑𝑝𝑝 = −� 𝐸𝐸𝑘𝑘𝑘𝑘
𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑚𝑚∗ + �𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗ �𝐿𝐿𝑘𝑘𝑘𝑘=𝑥𝑥,𝑦𝑦,𝑧𝑧
 (2.26) 

 

where 𝐿𝐿𝑘𝑘 and 𝐿𝐿𝑘𝑘′  are depolarization factors along the k-axis and defined as 

 𝐿𝐿𝑘𝑘 =
𝑅𝑅𝑥𝑥𝑅𝑅𝑦𝑦𝑅𝑅𝑧𝑧

2
�

𝑑𝑑𝑑𝑑
(𝑅𝑅𝑘𝑘2 + 𝑑𝑑)𝑅𝑅𝑠𝑠

;  
∞

0

 (2.27) 

 

 𝐿𝐿𝑘𝑘′ =
𝑅𝑅𝑥𝑥𝑅𝑅𝑦𝑦𝑅𝑅𝑧𝑧

2 �
𝑑𝑑𝑑𝑑

(𝑅𝑅𝑘𝑘2 + 𝑑𝑑)𝑅𝑅𝑠𝑠
;     𝑅𝑅𝑠𝑠 = ��𝑅𝑅𝑥𝑥2 + 𝑑𝑑��𝑅𝑅𝑦𝑦2 + 𝑑𝑑��𝑅𝑅𝑧𝑧2 + 𝑑𝑑�     

∞

𝑠𝑠

 (2.28) 

 

At a point a distance 𝑟𝑟 from the ellipsoid, where 𝑟𝑟 is large, 𝐿𝐿𝑘𝑘′  is approximated as 

 

 

𝐿𝐿𝑘𝑘′ ≈
𝑅𝑅𝑥𝑥𝑅𝑅𝑦𝑦𝑅𝑅𝑧𝑧

3
1
𝑟𝑟3

 

 

(2.29) 

Using the above approximation and the method explained in section 2.3.1, the dipole 

moment in each direction is equal to 

 𝐸𝐸𝑘𝑘 = 4𝜋𝜋𝜀𝜀𝑚𝑚∗ 𝜀𝜀0
𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑚𝑚∗ + �𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗ �𝐿𝐿𝑘𝑘

𝑅𝑅𝑥𝑥𝑅𝑅𝑦𝑦𝑅𝑅𝑧𝑧
3

𝐸𝐸𝑘𝑘 (2.30) 

 

The total dipole moment 𝒑𝒑 is the summation of 𝑥𝑥, 𝑦𝑦, and 𝐸𝐸 components. 

 𝒑𝒑 = 𝐸𝐸𝑥𝑥𝑖𝑖𝑥𝑥 + 𝐸𝐸𝑦𝑦𝑖𝑖𝑦𝑦 + 𝐸𝐸𝑧𝑧𝑖𝑖𝑧𝑧 (2.31) 
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where 𝑖𝑖𝑥𝑥, 𝑖𝑖𝑦𝑦, and 𝑖𝑖𝑧𝑧 are the basis vectors in 𝑥𝑥, 𝑦𝑦, and 𝐸𝐸 directions, respectively. The 

component of the dipole moment in the E-direction is given by 

 

𝐸𝐸′ = 𝐸𝐸𝑥𝑥 cos𝜑𝜑𝑥𝑥 + 𝐸𝐸𝑦𝑦 cos𝜑𝜑𝑦𝑦 + 𝐸𝐸𝑧𝑧 cos𝜑𝜑𝑧𝑧

=
4𝜋𝜋𝑅𝑅𝑥𝑥𝑅𝑅𝑦𝑦𝑅𝑅𝑧𝑧

3
𝜀𝜀𝑚𝑚∗ 𝜀𝜀0𝐸𝐸�

𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑚𝑚∗ + �𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗ �𝐿𝐿𝑘𝑘
𝑐𝑐𝑐𝑐𝑑𝑑2𝜑𝜑𝑘𝑘

𝑘𝑘=𝑥𝑥,𝑦𝑦,𝑧𝑧
 

(2.32) 

 

where 𝜑𝜑𝑘𝑘 is the angle between 𝑘𝑘-axis and 𝐸𝐸-direction. 

 

2.4. Complex permittivity of suspensions 

2.4.1. Complex permittivity of the diluted suspension 

If we consider that the suspension consists of 𝑁𝑁 particles per unit volume and each one has 

a dipole moment of 𝐸𝐸′ in the 𝐸𝐸-direction, the polarization of the system is 𝐸𝐸 = 𝑁𝑁𝐸𝐸′ and 

displacement field is calculated as 

 𝑫𝑫 = 𝜀𝜀𝑚𝑚∗ 𝜀𝜀0𝑬𝑬 + 𝑁𝑁𝐸𝐸′ = 𝜀𝜀∗𝜀𝜀0𝑬𝑬 (2.33) 

 

As a result, the complex permittivity of oriented ellipsoids in the medium is obtained as 

 𝜀𝜀∗ = 𝜀𝜀𝑚𝑚∗ �1 + Φ�
𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑚𝑚∗ + �𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗ �𝐿𝐿𝑘𝑘
𝑐𝑐𝑐𝑐𝑑𝑑2𝜑𝜑𝑘𝑘

𝑘𝑘=𝑥𝑥,𝑦𝑦,𝑧𝑧
� (2.34) 
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where Φ is the volume fraction of particles (Φ = 4𝜋𝜋𝑅𝑅𝑥𝑥𝑅𝑅𝑦𝑦𝑅𝑅𝑧𝑧𝑁𝑁
3

). For the case of randomly 

oriented ellipsoid particles, 𝑐𝑐𝑐𝑐𝑑𝑑2𝜑𝜑𝑘𝑘 = 1
3�  and the above equation becomes 

 𝜀𝜀∗ = 𝜀𝜀𝑚𝑚∗ �1 +
1
3
Φ�

𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑚𝑚∗ + �𝜀𝜀𝑝𝑝∗ − 𝜀𝜀𝑚𝑚∗ �𝐿𝐿𝑘𝑘𝑘𝑘=𝑥𝑥,𝑦𝑦,𝑧𝑧
� (2.35) 

 

In the case of spherical particles, 𝐿𝐿𝑘𝑘 = 1
3�  and the above equation reduces to so-called 

Maxwell-Wagner relation. 

 
𝜀𝜀∗ − 𝜀𝜀𝑚𝑚∗

𝜀𝜀∗ + 2𝜀𝜀𝑚𝑚∗
= Φ

𝜀𝜀∗ − 𝜀𝜀𝑝𝑝∗

𝜀𝜀∗ + 2𝜀𝜀𝑝𝑝∗
 (2.35) 

 

2.4.2. Complex permittivity of concentrated suspension 

For concentrated particle suspensions, the interaction between induced dipoles must be 

considered. However, effective medium theory can be applied here, which assumes that 

each particle is dispersed in the effective medium, including particles. The change in 

complex permittivity 𝑑𝑑𝜀𝜀∗ due to the addition of particles can be calculated by substituting 

𝜀𝜀∗ + 𝑑𝑑𝜀𝜀∗ for 𝜀𝜀∗, 𝜀𝜀∗ for 𝜀𝜀𝑚𝑚∗ , and Φ with 𝑑𝑑Φ
′

1−Φ′ in Equation 2.35 (Φ is the volume fraction of 

particles in suspension) and integrating the equation till we reach the final volume fraction. 

 � −
𝑑𝑑Φ′

1 −Φ′ = �
3

𝜀𝜀∗�𝜀𝜀∗ − 𝜀𝜀𝑝𝑝∗�
��

1
𝜀𝜀∗ + �𝜀𝜀𝑝𝑝∗ − 𝜀𝜀∗�𝐿𝐿𝑘𝑘𝑘𝑘=𝑥𝑥,𝑦𝑦,𝑧𝑧

�
−1

𝑑𝑑𝜀𝜀∗
𝜀𝜀∗

𝜀𝜀𝑚𝑚∗

Φ

0
 (2.36) 
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For spherical particles, the above equation reduces to so-called Bruggemann-Hanai 

mixture relation. 

 1 −Φ = �
𝜀𝜀∗ − 𝜀𝜀𝑝𝑝∗

𝜀𝜀𝑚𝑚∗ + 2𝜀𝜀𝑝𝑝∗
� �
𝜀𝜀𝑚𝑚∗

𝜀𝜀∗
�
1
2
 (2.37) 

 

2.4.3. Shell models 

The simplest model of a biological cell is a single shell model that takes into account the 

cell membrane and the cytoplasm. Consider an ellipsoid with outer and inner semiaxes of 

𝑅𝑅𝑘𝑘 and 𝑅𝑅𝑖𝑖𝑘𝑘 along the 𝑘𝑘-axis, and inner and shell complex permittivities of 𝜀𝜀1∗ and 𝜀𝜀2∗. By 

solving the Laplace equation and calculating dipole moment, the complex permittivity of 

the shell ellipsoid particle along k-axis (𝜀𝜀𝑝𝑝𝑘𝑘∗ ) is calculated as [72] 

 𝜀𝜀𝑝𝑝𝑘𝑘∗ = 𝜀𝜀2∗ �1 +
𝜐𝜐(𝜀𝜀1∗ − 𝜀𝜀2∗)

𝜀𝜀2∗ + (𝜀𝜀1∗ − 𝜀𝜀2∗)(𝐿𝐿𝑖𝑖𝑘𝑘 − 𝜈𝜈𝐿𝐿𝑘𝑘)� (2.38) 

 

With 

 

𝐿𝐿𝑖𝑖𝑘𝑘 =
𝑅𝑅𝑖𝑖𝑥𝑥𝑅𝑅𝑖𝑖𝑦𝑦𝑅𝑅𝑖𝑖𝑧𝑧

2
�

𝑑𝑑𝑑𝑑
�𝑅𝑅𝑖𝑖𝑘𝑘2 + 𝑑𝑑�𝑅𝑅𝑖𝑖𝑠𝑠

;    𝑅𝑅𝑖𝑖𝑠𝑠 = ��𝑅𝑅𝑖𝑖𝑥𝑥2 + 𝑑𝑑��𝑅𝑅𝑖𝑖𝑦𝑦2 + 𝑑𝑑��𝑅𝑅𝑖𝑖𝑧𝑧2 + 𝑑𝑑�
∞

0
;    𝜈𝜈

=
𝑅𝑅𝑖𝑖𝑥𝑥𝑅𝑅𝑖𝑖𝑦𝑦𝑅𝑅𝑖𝑖𝑧𝑧
𝑅𝑅𝑥𝑥𝑅𝑅𝑦𝑦𝑅𝑅𝑧𝑧

 

(2.39) 

 

 For spherical biological cells, the cytoplasm is covered with a thin membrane. As a result, 

the complex permittivity of the cell as given by the single shell model (Figure 2.4a) is 
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 𝜀𝜀𝑐𝑐∗ = 𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗
𝛾𝛾3 + 2 �

𝜀𝜀𝑐𝑐𝑦𝑦𝜕𝜕∗ − 𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗

𝜀𝜀𝑐𝑐𝑦𝑦𝜕𝜕∗ + 2𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗ �

𝛾𝛾3 − �
𝜀𝜀𝑐𝑐𝑦𝑦𝜕𝜕∗ − 𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗

𝜀𝜀𝑐𝑐𝑦𝑦𝜕𝜕∗ + 2𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗ �
 (2.40) 

 

Here, 𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑐𝑐𝑦𝑦𝑐𝑐 subscripts indicate the membrane and the cytoplasm, respectively. The 

factor 𝛾𝛾 is a function of the cell radius, 𝑎𝑎, and the membrane thickness, 𝑑𝑑𝑚𝑚𝑒𝑒𝑚𝑚, and can be 

expressed as 𝛾𝛾 = 𝑎𝑎/(𝑎𝑎 − 𝑑𝑑𝑚𝑚𝑒𝑒𝑚𝑚).  

A more complex model is often used to model eukaryotic cells is the double shell model 

(Figure 2.4b). Eukaryotic cells have a nucleus enclosed within membranes. The double 

shell model approximates the cell as two concentric shells: The outer representing the cell 

membrane and the inner representing the nuclear envelope. Between the two shells lies the 

conductive cytoplasm. At the center of the cell lies the nucleoplasm. The complex 

permittivity of the double shell model can be formulated by successive application of 

Equation 2.38 that shows the complex permittivity of a single shell ellipsoid. For spherical 

biological cells, the double-shell model can be expressed as [74] 

 𝛾𝛾1 = 𝑅𝑅𝑛𝑛𝑒𝑒/(𝑅𝑅𝑛𝑛𝑒𝑒 − 𝑑𝑑𝑛𝑛𝑒𝑒) (2.41) 

 𝛾𝛾2 = (𝑅𝑅𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙 − 𝑑𝑑𝑚𝑚𝑒𝑒𝑚𝑚)/𝑅𝑅𝑛𝑛𝑒𝑒 (2.42) 

 𝛾𝛾3 = 𝑅𝑅𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙/(𝑅𝑅𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙 − 𝑑𝑑𝑚𝑚𝑒𝑒𝑚𝑚) (2.43) 

 𝜀𝜀1∗ = 𝜀𝜀𝑛𝑛𝑒𝑒∗
𝛾𝛾13 + 2 �

𝜀𝜀𝑛𝑛𝑝𝑝∗ − 𝜀𝜀𝑛𝑛𝑒𝑒∗
𝜀𝜀𝑛𝑛𝑝𝑝∗ + 2𝜀𝜀𝑛𝑛𝑒𝑒∗

�

𝛾𝛾13 − �
𝜀𝜀𝑛𝑛𝑝𝑝∗ − 𝜀𝜀𝑛𝑛𝑒𝑒∗
𝜀𝜀𝑛𝑛𝑝𝑝∗ + 2𝜀𝜀𝑛𝑛𝑒𝑒∗

�
 (2.44) 
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 𝜀𝜀2∗ = 𝜀𝜀𝑐𝑐𝑦𝑦𝜕𝜕∗
𝛾𝛾23 + 2 �

𝜀𝜀1∗ − 𝜀𝜀𝑐𝑐𝑦𝑦𝜕𝜕∗

𝜀𝜀1∗ + 2𝜀𝜀𝑐𝑐𝑦𝑦𝜕𝜕∗ �

𝛾𝛾23 − �
𝜀𝜀1∗ − 𝜀𝜀𝑐𝑐𝑦𝑦𝜕𝜕∗

𝜀𝜀1∗ + 2𝜀𝜀𝑐𝑐𝑦𝑦𝜕𝜕∗ �
 (2.45) 

 𝜀𝜀𝑐𝑐∗ = 𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗
𝛾𝛾33 + 2 � 𝜀𝜀2

∗ − 𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗

𝜀𝜀2∗ + 2𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗ �

𝛾𝛾33 − � 𝜀𝜀2
∗ − 𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗

𝜀𝜀2∗ + 2𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗ �
 (2.46) 

 

Here, 𝑚𝑚𝑚𝑚𝑚𝑚, 𝑐𝑐𝑦𝑦𝑐𝑐, 𝑛𝑛𝑚𝑚 and 𝑛𝑛𝐸𝐸 subscripts denote the cell membrane, cytoplasm, nuclear 

envelope and nucleoplasm properties respectively. The cell and nuclear radii are denoted 

by 𝑅𝑅𝑐𝑐𝑒𝑒𝑙𝑙𝑙𝑙 and 𝑅𝑅𝑛𝑛𝑒𝑒, respectively. The cell membrane thickness and the nuclear membrane 

thickness are denoted by 𝑑𝑑𝑚𝑚𝑒𝑒𝑚𝑚 and 𝑑𝑑𝑛𝑛𝑒𝑒, respectively. 

 

Figure 2.4 Schematic for the Single-Shell and Double shell models. 
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2.5. Electrical forces on particles 

2.5.1. Electrophoresis 

Electrophoresis is the motion of charged particles in a fluid subjected to the uniform 

electric field. Electrophoresis of positively and negatively charged particles are called 

cataphoresis and anaphoresis, respectively. Electrophoresis is rooted in Coulomb force on 

a particle which is given by a surface integral as 

 𝐹𝐹𝐸𝐸𝐸𝐸 = 𝑄𝑄𝑬𝑬 = � 𝜎𝜎𝑞𝑞𝑑𝑑𝑑𝑑𝑬𝑬
𝑠𝑠

 (2.47) 

 

where Q and 𝜎𝜎𝑝𝑝 denote total charge and charge density, respectively. In an AC electric 

field, this force causes oscillatory motion with time-average equal to zero. 

When a charged particle is placed in an aqueous medium, a double layer form. The double 

layer consists of two distinct regions: 1. Stern layer which is immobile and comprised of 

ions with opposite charge to the surface charge, 2. The diffuse layer which mostly consists 

of counterions. Because of the presence of the double layer, the charged particle appears 

to have zero net charges. However, when it is placed in an electric field, it moves. The 

diffuse layer has ions with opposite sign of surface charge, and they would move into the 

direction opposite to particle movement in a vacuum. As a result, the moving ions push the 

particle in the opposite direction, which is the same direction that the particle would move 

in a vacuum. 

 



 

25 
 

2.5.2. Dielectrophoresis (DEP) 

Consider a dipole in a non-uniform electric field, as shown in Figure 2.5. The two charges 

will have different exerted forces, and the net force is equal to 

 𝑭𝑭 = 𝑄𝑄𝑬𝑬(𝑟𝑟 + 𝑑𝑑) − 𝑄𝑄𝑬𝑬(𝑟𝑟) (2.48) 

 

Using the Taylor series expansion, the above equation can be rewritten as 

 𝑭𝑭 = 𝑄𝑄𝑬𝑬(𝒓𝒓) + 𝑄𝑄(𝒅𝒅 ∙ 𝛁𝛁)𝑬𝑬 + 𝐻𝐻.𝑂𝑂.𝑇𝑇 − 𝑄𝑄𝑬𝑬(𝑟𝑟) ≈ (𝒑𝒑 ∙ 𝛁𝛁)𝑬𝑬 (2.49) 

 

Based on this equation, a non-uniform electric field is necessary to have a non-zero force. 

Dielectrophoresis is the motion of polarizable particle suspended in an electrolyte solution 

and subjected to a spatially non-uniform electric field. Assume an applied potential of 

frequency 𝜔𝜔, the instantaneous applied field at location 𝑟𝑟 and time 𝑐𝑐 is given by 

 𝐸𝐸(𝑟𝑟, 𝑐𝑐) = 𝑅𝑅𝑚𝑚[𝐸𝐸(𝑟𝑟)𝑚𝑚𝑗𝑗𝑗𝑗𝜕𝜕] (2.50) 
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Figure 2.5 Electrical forces on a dipole moment in a non-uniform electric field 

 

Based on Equations 2.23 and 2.50, the instantaneous dipole moment value for a spherical 

particle of radius a at time t is 

 𝐸𝐸(𝑐𝑐) = 𝑅𝑅𝑚𝑚[4𝜋𝜋𝜀𝜀𝑚𝑚𝑎𝑎3𝐾𝐾𝐸𝐸(𝑟𝑟)𝑚𝑚𝑗𝑗𝑗𝑗𝜕𝜕] (2.51) 

 

From Equation 2.49, the DEP force is  

 𝐹𝐹𝐷𝐷𝐸𝐸𝐸𝐸(𝑐𝑐) = 𝑅𝑅𝑚𝑚�𝐸𝐸𝑚𝑚𝑗𝑗𝑗𝑗𝜕𝜕� ∙ ∇ 𝑅𝑅𝑚𝑚�𝐸𝐸𝑚𝑚𝑗𝑗𝑗𝑗𝜕𝜕� (2.52) 

 

Substituting for the effective dipole moment from Equation 2.51, the time-averaged DEP 

force on a homogenous spherical particle of radius 𝑅𝑅 is 
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 〈𝐹𝐹𝐷𝐷𝐸𝐸𝐸𝐸〉 = 2𝜋𝜋𝜀𝜀0𝜀𝜀𝑚𝑚𝑅𝑅3𝑅𝑅𝑚𝑚[𝐾𝐾]∇|𝐸𝐸|2 (2.53) 

 

Based on Equation 2.53, the sign of 𝑅𝑅𝑚𝑚[𝐾𝐾] shows the DEP force direction. If the particle 

is more polarizable than the medium, 𝑅𝑅𝑚𝑚[𝐾𝐾] is positive and the DEP force will move the 

particle to higher electric field region. This phenomenon is called positive dielectrophoresis 

(pDEP). However, if the medium is more polarizable than the particle, 𝑅𝑅𝑚𝑚[𝐾𝐾] will be 

negative, and the DEP force will push the particle to lower electric field regions. Similarly, 

this phenomenon is called negative dielectrophoresis (nDEP). The frequency at which 

𝑅𝑅𝑚𝑚[𝐾𝐾] changes sign is called the cross-over frequency.  
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Chapter 3 

DIELECTROPHORETIC ASSISTED LOADING AND UNLOADING OF MICRO-WELLS 
FOR IMPEDANCE SPECTROSCOPY 

 

Dielectric spectroscopy (DS) is a non-invasive, label-free, and fast technique for measuring 

dielectric properties of biological cells in real time. We demonstrate a microchip that 

consists of electro-activated micro-well arrays for positive dielectrophoresis (pDEP) 

assisted cell capture, DS measurements, and negative dielectrophoresis (nDEP) driven cell 

unloading; thus, providing a high throughput cell analysis platform. To the best of our 

knowledge, this is the first microfluidic chip that combines electro-activated micro-wells 

and DS to analyze biological cells. Device performance is tested using Saccharomyces 

Cerevisiae (yeast) cells. DEP response of yeast cells is determined by measuring their 

Clausius-Mossotti (K) factor using biophysical models in a parallel plate micro-electrode 

geometry. This information is used to determine the excitation frequency to load and 

unload wells. The effect of yeast cells on the measured impedance spectrum was examined 

both experimentally and numerically. A good match between the numerical and 

experimental results establishes the potential use of the microchip device for extracting 

sub-cellular properties of biological cells in a rapid and non-expensive manner. 

3.1. Materials and Methods 

Photolithography supplies (photoresists, developers, and remover) were purchased from 

Microchem Corp. (Westborough, MA, USA). All other chemicals used were of analytical 
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grade and obtained from Sigma-Aldrich (St Louis, MO, USA). All solutions were prepared 

with 18 MΩ·cm ultrapure water obtained from Millipore Alpha-Q water system (Bedford, 

MA, USA). A Leo-Zeiss 1450VPSE variable pressure electron microscope equipped with 

an EDAX Genesis 4000 XMS System was used for SEM characterization. SEM images 

were taken at 3000X magnification factor and 5 kV resolution. Yeast cells (Saccharomyces 

cerevisiae) were grown in a shaking incubator at 30°C and under constant shaking speed 

at 250 rpm. The growth medium (YEPD Broth) consisted of 20 g/l peptone, 10 g/l yeast 

extract, 20 g/l dextrose dissolved in deionized water. The cells were collected at the 

stationary growth phase after one day of culture in the shaking incubator, and they were 

harvested by centrifugation for 2 min at 3000 rpm and suspended in low conductivity 

buffers (LCB). The harvested cells were spheroidal and 6 µm in diameter. LCB is an 

isotonic buffer consisting of 229 mM sucrose, 16 mM glucose, 1 μM CaCl2, and 5 mM 

Na2HPO4 in double distilled water (pH 7.4).  

 

3.1.1 Photolithography 

The microfluidic chips used for experiments were fabricated using standard 

photolithography techniques. Figure 3.1 shows the fabrication procedure. First, the glass 

substrates were cleaned for 10 minutes using ultrasonic cleaning in 1 M KOH solution, 

acetone, and isopropyl alcohol (IPA), respectively, followed by rinsing with type-1 

deionized (DI) water, and drying with Nitrogen. The slides were then placed on a hot plate 

that was kept at 140oC for 15 minutes to be completely dried. The positive photoresist 

(S1813) was spin coated on the slides using a two-step process with the following rotation 

speeds: 1,000 rpm for 10 s and 4,000 rpm for 30 s with 300 rpm/s acceleration/deceleration. 
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Coated slides were soft baked on a hot plate at 115oC for 1 minute, and then, they were 

exposed to 110 mJ/cm2 UV light through a transparency mask using Karl SUSS MJB3 

mask aligner. The UV exposed area was dissolved in MF-26A developer solution by 

immersing the slides inside the solution for 10 s. The developed slides were cleaned using 

DI water and dried by the gentle flow of Nitrogen. Afterward, the slides were placed inside 

sputter coater (EMS300TD, Emitech). The sputter coater was adjusted to coat slides with 

3 nm Chromium layer and 22 nm gold layer. The slides were then immersed in PG remover 

solution at 80oC to remove the unexposed photoresist and metal layers on top of it. In the 

next step, negative photoresist (SU8-3025) was spin coated under the same conditions as 

those used for the positive photoresist. The photoresist was then soft baked on a hot plate 

at 95oC for 12 minutes and was exposed to 400 mJ/cm2 UV light. Immediately after 

exposure, the slides were post-exposure baked on a hot plate at 95oC for 3 minutes and 40 

seconds. Finally, the slides were immersed in SU8 developer to remove the unexposed 

areas.  
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Figure 3.1 Microfabrication process of a DEP chip using two-step photolithography 

process. a) Electrode fabrication, b) micro-wells and micro-channel fabrication, and c) 

electrode alignment and device assembly. 

 

3.1.2. Device assembly 

The channels for fluid flow were fabricated using 70 µm thickness double-sided tapes 

(DST) that were cut by a craft cutter (Silver Bullet). Finally, the slide containing the micro-

wells and the electrode was aligned with the top electrode using the mask aligner. The 

assembled device was placed in a convection oven at 75oC to enhance adherence of the 

double-sided tape to glass slides. Figure 3.2a shows the assembled microfluidic device 

composed of micro-wells and the microchannel sandwiched between an electrode pair. 
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Figure 3.2b illustrates the orientation of micro-wells on the gold electrode. There are 441 

micro-wells in a 21×21 array, where each column is placed with an offset relative to the 

neighboring column to increase the chance of trapping the cells in a flow-through system. 

This configuration also maximizes the volume fraction of cells in the device. Figure 3.2c 

is the SEM image of one of the micro-wells. It can be seen that the wells are fully developed 

in the SU-8 developing process. Smooth well-corners reduce extremely high electric fields 

at the edges and decrease the probability of cell attachment on well-corners due to pDEP. 

The inlet and outlet ports of the microchannel were drilled using a diamond drill bit before 

joining the two parts. Two pieces of PDMS were used to ensure leak-free fluidic port 

connections. Strong irreversible binding between PDMS and glass was obtained using an 

oxygen plasma cleaner. Copper tape was used for electrical connections, and the 

connection between the copper tape and gold electrode was achieved using silver epoxy 

(MG chemicals). Figure 3.2d illustrates the working principle of the microfluidic device. 

Firstly, biological cells are captured inside the micro-wells using the pDEP force, and then 

the microfluidic device is connected to a high precision impedance analyzer (HP Agilent 

4194A), and the impedance spectra are measured. Finally, cells are extracted from the wells 

using nDEP forces, and they are directed towards the outlet using fluid flow generated by 

a syringe pump. 
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Figure 3.2 a) Assembled microfluidic chip, b) a microscopy picture of the gold electrode 

and micro-wells, c) SEM image of one micro-well, d) the working principle of the 

microfluidic device, and e) The computational domain consisting of a medium solution, 

SU-8, and spherical yeast cells. The yeast cells are modeled consisting of an inner 

cytoplasm covered by a membrane modeled as an interface. 

 

3.1.3. Experimental setup 

The thickness of the electrodes is about 25 nm, which maintains its transparent nature and 

allows observation of biological cells between the electrode pairs under a microscope. Most 

of the previous studies used ITO (Indium Tin Oxide) as transparent electrodes. However, 

the resistivity of ITO (3.0-160×10-4 Ω.cm [75]) is higher than gold (2.04×10-5 Ω.cm [76]). 
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The transparency of thin gold electrodes, its low resistivity, bio-compatibility [77], and 

chemical inertness led us to select gold as the electrode material. To image the biological 

cells, the microfluidic device was placed on an inverted microscope stage (Olympus IX81). 

The inlet port was connected to a syringe pump (NE-4000) to feed the microfluidic device 

with a 1% yeast cell suspension, and the outlet port was connected to a drain. Electrical 

ports were connected to a function generator (Tektronix AFG3102) which was 

programmed to apply AC signals with a desired amplitude and frequency for DEP assisted 

loading and unloading of the micro-wells. After capturing the cells, the electrical ports 

were connected to high and low terminals of a high precision impedance analyzer (HP 

Agilent 4194A) through a test fixture (HP 16047A). Impedance measurements were 

performed in 1 kHz-40 MHz frequency range, and the measured data were recorded using 

MATLAB R2014b software. 

 

3.1.4. Numerical modeling 

The computational domain consists of spherical cells located at the bottom of a 30×30×30 

µm well. The well itself is placed in a microchannel with 70 µm depth. A schematic of the 

simulation domain is shown in Figure 3.2e. The bottom part of the domain (the well-

surroundings) is made up of negative photoresist SU-8. Top and inside of the well (except 

cells) is filled with a solution. The cells were modeled as spherical membranes 

encapsulating the cytoplasm. The material electrical properties used in the numerical 

simulations are as follows. The SU-8 photoresist has a relative permittivity of 3.2 and 

negligible electrical conductivity [78]. The medium is a low conductivity buffer (LCB) 
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which has a relative permittivity of 80 and electrical conductivity of 0.05 S/m. Dielectric 

properties of Saccharomyces Cerevisiae (yeast) cells were measured in a microfluidic 

device consisting of parallel plate electrodes in a microchannel, and the subcellular 

electrical properties were calculated using the methodology given in [79]. Yeast cells’ inner 

cytoplasm and outer layer are found to have relative permittivities of 60 and 12.6 and 

electrical conductivities of 0.3376 and 6.27×10-5 S/m, respectively. These results are in 

good agreement with previously published results [80]. 

The electric field was modeled using a combination of Gauss’ and charge conservation 

equations in the frequency domain, as shown in Equation 2.11:  

 ∇. �𝜀𝜀0𝜀𝜀𝑟𝑟 − 𝑗𝑗
𝜎𝜎
𝜔𝜔
�𝑬𝑬 = 0 (2.11) 

 

where 𝜎𝜎 is the electrical conductivity, 𝑬𝑬 is the electric field and is equal to negative 

gradients of electric potential 𝑬𝑬 = −∇𝜑𝜑. Also, 𝜀𝜀𝑟𝑟 and 𝜀𝜀0 represent relative permittivity and 

vacuum permittivity, respectively.  

Electrodes are located at the bottom and top surfaces of the domain. Boundary conditions 

on the electrodes were 1 V and 0 V for the bottom and top surfaces, respectively. All side 

surfaces were considered periodic due to a large number of wells, separated 15 µm from 

each other. The contact impedance boundary condition was used to represent the cell 

membrane, which approximates a thin layer of material that obstructs the flow of current 

normal to the boundary, but does not introduce any additional conduction path tangential 

to the boundary. COMSOL Multiphysics software was used for discretization of the 

geometry and numerical solution of the equations above in the frequency domain. Grid 
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refinement studies were done to ensure the convergence of the numerical solution. More 

information on grid refinement study is presented in the Appendix (Figure 3.A1).  

 

 3.1.5. DEP Theory and Dielectric Spectroscopy 

DEP is the motion of polarizable particles suspended in an ionic solution and subjected to 

a spatially non-uniform external electric field. The time-averaged dielectrophoretic force 

generated by the constant phase electric field is given by Equation 2.53: 

 〈𝐹𝐹𝐷𝐷𝐸𝐸𝐸𝐸〉 = 2𝜋𝜋𝜀𝜀0𝜀𝜀𝑚𝑚𝑅𝑅3𝑅𝑅𝑚𝑚[𝐾𝐾]∇|𝐸𝐸|2 (2.53) 

 

where 𝑅𝑅 is the radius of the particle, 𝜀𝜀0 is permittivity of vacuum,  𝜀𝜀𝑟𝑟 is relative permittivity 

of the medium, ∇𝐸𝐸2 is the gradient of the square of the electric field, and 𝑅𝑅𝑚𝑚[𝐾𝐾(𝜔𝜔)] is the 

real part of the Clausius-Mossotti factor, which is written as  𝐾𝐾(𝜔𝜔) = 𝜀𝜀𝑝𝑝∗ −𝜀𝜀𝑚𝑚∗

𝜀𝜀𝑝𝑝∗ +2𝜀𝜀𝑚𝑚∗
, where *, 𝐸𝐸, 

and 𝑚𝑚 denotes complex value, particle, and medium, respectively. The complex 

permittivity is calculated as  𝜀𝜀∗ = 𝜀𝜀 − 𝑗𝑗𝐴𝐴
𝑗𝑗

, where 𝜀𝜀 is the permittivity,  𝜎𝜎 is the conductivity, 

𝑗𝑗 = √−1  and 𝜔𝜔 is the angular frequency. The sign of 𝑅𝑅𝑚𝑚[𝐾𝐾(𝜔𝜔)] distinguishes positive and 

negative DEP responses. Particles more polarizable than the medium are pulled towards 

higher electric fields and exhibit pDEP response, while particles less polarizable than the 

medium are repelled towards lower electric fields and exhibit nDEP. 

Dielectric spectroscopy is a well-known non-invasive technique to measure the electrical 

properties of cell suspensions. In this method, a small AC voltage is applied to a cell 

suspension, and the response current is measured. The impedance is then calculated by 
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dividing the voltage by current. This process is repeated in the desired frequency range, 

and analyzing impedance spectrum enables determination of the dielectric properties of 

individual components of the suspension. Since the applied voltage for dielectric 

spectroscopy is very small (200 mV) and the process is very fast (<5 s), the spectroscopy 

signal will not have a considerable effect on the cell packing. Sabuncu et al. [79] developed 

a microfluidic device to analyze the impedance spectrum of cell suspensions. In this 

method, the effect of electrode polarization is extracted by fitting the impedance spectrum 

into a combination of the constant phase element and Cole-Cole model [72]. Fitting the 

corrected dielectric spectrum using the Maxwell-Wagner mixture model [72] allows 

determination of the Clausius-Mossotti factor. Moreover, modeling biological cells using 

single-shell and double-shell models allows the extraction of the dielectric properties of 

sub-cellular components [79]. 

 

3.2 Results and Discussion 

The electric field lines will be concentrated within the micro-wells, exhibiting high electric 

fields inside the micro-wells and lower electric fields outside of the micro-wells due to the 

electrodes’ orientation. The numerically calculated electric fields are given in Figure 3.3. 

These electric field gradients enable DEP-based cell manipulation. For example, cells can 

be loaded into the micro-wells using pDEP frequency, where Re(K) is positive, and they 

can be unloaded changing frequency to nDEP one, where Re(K) becomes negative.  
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Figure 3.3 Simulated electric field distribution in a cross-sectional plane located in the 

middle of a micro-well 

 

To determine the frequencies for loading and unloading the micro-wells, the real part of 

the K factor is calculated using a device with parallel plate electrodes, and the procedure is 

explained by Sabuncu et al. [79]. The details of the K factor measurement is presented in 

the Appendix. Figure 3.4a shows the time-averaged real part of the K factor for yeast cells 

suspended in LCB (0.05 S/m) in 1 kHz-40 MHz frequency range at different periods. The 

time-averaged data was obtained using repeated measurements at every two minutes in 10-

minute periods. This figure illustrates the time-dependent behavior of yeast cells that could 

result from the ion exchange between the cell cytoplasm and LCB medium. Results show 

negligible changes in the crossover frequency within 10 minutes, while the DEP 

E [V/m] 
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experiments are conducted within a couple of minutes following the introduction of cells 

to the device.  

Using K spectrum of cells at 0-10 minutes, pDEP and nDEP responses are expected at f = 

5 MHz and f = 10 kHz frequencies, respectively. These frequencies were tested 

experimentally using the micro-well setup. In the experiments, the flow was initiated at 1 

ml/hr flow rate, and simultaneously, the electrodes were energized at 2 Vpp AC voltage to 

manipulate the cells. Figures 3.4b and 3.4c verify DEP response of yeast cells suspended 

in 0.05 S/m LCB, at 5 MHz and 10 kHz, respectively. These figures clearly show that at 5 

MHz, cells are captured inside the micro-wells by gravitational and pDEP forces, while at 

10 kHz, nDEP pushes the yeast cells outside the wells, against gravity. Finally, the cells 

are washed away, and the microchip is free of the cells, as shown in Figure 3.4d. Strong 

nDEP forces overwhelming the gravitational force are crucial for unloading the device. 

Simple force equilibrium relations for a single yeast cell estimates that it takes more than 

1 minute for cells to occupy the wells under gravitational and buoyancy forces. 

Furthermore, not all the cells will settle down inside the micro-wells by these forces.  
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Figure 3.4 a) The real part of Clausius-Mossotti factor (Re(K)) for yeast cells suspended 

at 0.05 S/m LCB solution as a function of frequency for 0-10, 10-20, and 20-30 minutes 

time periods after being placed in the LCB solution from growth media. The procedure 

for extracting Clausius-Mossotti factor is the same as in [79]. The response of yeast cells 

to 2Vpp AC electric field at b) f = 5 MHz, and c) f = 10 kHz, d) clean array after the yeast 

cells are washed away. 
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Experimental impedance results (Figure 3.5) show that on the impedance spectra, there is 

a considerable effect of cells being concentrated inside the micro-wells than just having 

randomly dispersed cells between the electrodes.  

 

Figure 3.5 Comparison between impedance data for yeast cells captured inside micro-

wells and not captured. 

 

Moreover, the pDEP force was applied for 5 seconds at four different initial yeast 

concentrations (0.5, 1.5, 2.5, and 3.5%) in a 0.05 S/m LCB solution to show the effect of 

degree of loading in the micro-wells. The impedance magnitude data is shown in Figure 

3.6. Experimental results show that the results for 0.5, 1.5, and 2.5% are different, but after 

2.5%, the impedance magnitude data reaches a steady state, which suggests that micro-

wells are fully loaded. Furthermore, the electrodes are energized for different periods, and 

the analysis shows that after 10 s, the impedance spectrum does not change, which means 

that the micro-wells are full. As a result, it is concluded that the loading efficiency of the 
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DEP device is 60-70 cells per well in 10 s using a 1% volume fraction yeast cell suspension 

at 2 Vpp and 5 MHz excitation. 

 

Figure 3.6 Impedance magnitude value spectrum for applying pDEP for 5 seconds at 

different initial yeast concentration in 0.05 S/m LCB solution. 

 

Yeast growth medium has a conductivity of around 0.20 S/m, whereas mammalian cells 

cultures have a conductivity on the order of 1 S/m. At high conductivities (~1 S/m), pDEP 

is non-existent for mammalian cells [81]. Moreover, for high conductivity buffers, the 

electrode polarization effect dominates the system, and the DS is not accurate. However, 

for yeast cells, pDEP still is strong enough to capture cells in their growth medium, and the 

experiments conducted at 0.20 S/m medium conductivity, which is close to the yeast 

growth medium, demonstrates that the device is capable of manipulating yeast cells in their 

growth medium. To find out how the presence of yeast cells will change the impedance 

spectrum of the device, yeast cells are suspended in 0.01, 0.05, and 0.20 S/m LCB 

solutions, and the suspension is fed to the microfluidic device using a syringe pump. The 
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yeast cells are captured inside the wells by applying AC signal with 2 Vpp amplitude and 5 

MHz frequency for 10 seconds, and the impedance spectrum of cells is measured in 1 kHz 

– 40 MHz frequency range. Each experiment is repeated three times, and the averaged 

values are shown in Figure 3.7. Figures 3.A2a and 3.A2b show the normalized standard 

deviation of the impedance magnitude and the phase angle. 

The normalized standard deviation in all cases is less than 1% in a significant range of the 

frequency spectrum. Figure 3.7a shows the impedance magnitude and phase angle variation 

as a function of frequency for both 0.05 S/m LCB and yeast cells suspended in 0.05 S/m 

LCB. The figure illustrates that introducing the cells will increase the impedance value at 

low frequencies, where the cell membrane effectively insulates the cytoplasm, and the 

current can only flow around the cells. As a result, the presence of cells adds extra 

resistance to the current flow and increases impedance. As the frequency increases, the cell 

membrane becomes more permeable to AC electric field, and current flow through the cell 

starts to depend on the ratio of the complex conductivity of the cytoplasm to that of the 

bulk solution. Finally, the interfacial polarization happens, and the AC current across the 

cell membranes increases. Since the cytoplasm conductivity is higher than the medium 

conductivity, the presence of cells decreases the impedance at higher frequencies. Based 

on phase angle graphs, the presence of cells increases the absolute value of phase angle at 

lower frequencies because cell membrane acts as an insulator, and the system is more 

capacitive. However, at higher frequencies, the cell membrane becomes permeable to 

electric currents, and the system is more resistive, which means a decrease in the absolute 

value of the phase angle. Figures 3.7b and 3.7c illustrate the impedance magnitude and 

phase angle variation as a function of frequency for yeast cells suspended in 0.01, 0.05, 
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and 0.20 S/m LCB solution. Figures 3.7b and 3.7c show that increasing conductivity 

decreases impedance and phase angle value, and the system becomes less resistive.  

 

 

Figure 3.7 a) Experimentally measured impedance spectrum of microchip device for pure 

LCB and yeast suspended in 0.05 S/m LCB. Lines show the results for pure LCB while 

symbols show yeast suspended LCB. b) Experimentally measured impedance value and 

c) phase angle for yeast cells suspended in 0.01, 0.05, and 0.2 S/m LCB. 

 

Simulations are performed in the 1 kHz-40 MHz frequency range, and the impedance 

spectra are calculated. It should be noted that the real device consists of 441 identical wells 

that can be considered as parallel elements. As a result, the computational impedance is 
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divided by 441 to be compared with experimental results. Figures 3.8a and 3.8b depict the 

experimental and numerical impedance spectra for both LCB and yeast suspended in LCB 

at 0.05 S/m conductivity. Comparisons between numerical and experimental results show 

good qualitative agreements with less than 10% error in the 100 kHz – 20 MHz range, 

where the interfacial dispersion occurs. The discrepancy in the lower frequency region is 

mainly due to the electrode polarization (EP) effects in the experiments, which dominates 

the system and is not considered in the simulations. EP happens due to charge accumulation 

at the electrode/electrolyte interface, causing significant potential drop and the formation 

of a high impedance at the interface [77]. The discrepancy in the higher frequency region 

mainly arises from the experimental inductance effects at frequencies above 20 MHz. 

Another critical point here is the presence of two distinct impedance changes observed in 

Figure 8b. The first impedance change (~ 105 - 106 Hz) is due to the cell membrane 

polarization at moderate frequencies and the second one (~4×106 - 4×107 Hz) is related to 

medium-SU8 interfacial dispersion. 
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Figure 3.8 Comparison between numerical and experimental Impedance data (magnitude 

and phase angle) for a) pure LCB solution (0.05 S/m), and b) yeast cells suspended in 

LCB. Solid and dashed lines represent experimental impedance magnitude and phase 

angle results, while circles and triangles show numerical impedance magnitude and phase 

angle values. 
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3.3. Conclusion 

In this chapter, we fabricated and tested a fully integrated microfluidic device consisting 

of electroactive micro-well arrays for capturing biological cells and measuring the 

impedance spectrum of trapped cell suspension.  Transparent nature of 25 nm thick gold 

electrodes enables monitoring biological cells using an optical microscope. DEP response 

of yeast cells was predicted by calculating the real part of the Clausius-Mossotti factor 

using a previously established method. Fast loading and unloading of yeast cells were 

observed using positive and negative DEP. The effect of cells on the impedance spectrum 

was experimentally studied. Moreover, numerical impedance results have shown good 

agreement with the experimental data, for the high frequency range.  

Experimental data show the capability of the microfluidic device in measuring the 

dielectric spectrum of biological cells. This device could potentially be used to extract sub-

cellular properties of biological cells. Since the cells are stably trapped inside the micro-

wells, external stimuli could be altered at will, and the cell responses can be measured in 

real time. Furthermore, cell unloading capability of the device enables measurements of 

different batches of cells. Future work will focus on developing analytical and numerical 

methods to relate the sub-cellular dielectric properties with impedance spectrum, and how 

the changes in external stimuli affect sub-cellular properties. This requires the development 

of a reliable equivalent circuit model for the device. 
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3.4. Appendix  

 

3.4.1. Procedure for extracting electrode polarization effect in parallel plate electrodes: 

Unit capacitance (C0) and stray capacitance (Cf) are measured using the impedance of the 

microfluidic chamber filled with air and DI water. The details of the microfluidic chamber 

are given in a previous study [10]. The unit and stray capacitances are, respectively: 

 𝑗𝑗𝑜𝑜 =
�1

𝑍𝑍𝐷𝐷𝐷𝐷� − 1
𝑍𝑍𝑎𝑎𝑖𝑖𝑟𝑟� �

79𝜔𝜔
�  (3.A1) 

 𝑗𝑗𝑓𝑓 =
�1

𝑍𝑍𝐷𝐷𝐷𝐷� − 𝑗𝑗𝜔𝜔𝑗𝑗𝑜𝑜(1 𝑀𝑀𝐻𝐻𝐸𝐸)�
𝜔𝜔
�  (3.A2) 

 

where ZDI and Zair correspond to the impedance of the chamber filled with DI and air, 

respectively. 

The chamber was filled with a yeast cell suspension of known volume fraction, and the 

impedance is measured in between 1 kHz to 40 MHz to obtain the CM factor. The measured 

impedance consists of the cell suspension impedance and the electrode polarization effect. 

The electrode polarization effect was modeled using a constant phase element (CPE) 

model. 

 𝑍𝑍𝜕𝜕𝑜𝑜𝜕𝜕 = 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 +
𝐾𝐾−1

(𝑗𝑗𝜔𝜔)𝛼𝛼 (3.A3) 
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where K and α are the CPE model constants. The complex permittivity of the suspension 

is calculated as: 

 𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠∗ =
� 1
𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠

−𝑗𝑗𝑗𝑗𝐶𝐶𝑓𝑓�

𝑗𝑗𝑗𝑗𝐶𝐶𝑜𝑜
=

��𝑍𝑍𝑡𝑡𝑜𝑜𝑡𝑡−
𝐾𝐾−1

(𝑗𝑗𝑗𝑗)𝛼𝛼�
−1
−𝑗𝑗𝑗𝑗𝐶𝐶𝑓𝑓�

𝑗𝑗𝑗𝑗𝐶𝐶𝑜𝑜
  (3.A4) 

 

Based on the Cole-Cole model, the suspension complex permittivity is written as: 

 𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠∗ = 𝜀𝜀∞′ + 𝜀𝜀𝑠𝑠′−𝜀𝜀∞′

1+(𝑖𝑖𝑗𝑗𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟)𝛽𝛽
− 𝑖𝑖𝜎𝜎/𝜔𝜔𝜀𝜀𝑜𝑜   (3.A5) 

 

where 𝜀𝜀𝑠𝑠′  and 𝜀𝜀∞′  are the low and high frequency limit of the suspension permittivity, 𝜎𝜎 and 

𝜏𝜏𝑟𝑟𝑒𝑒𝑙𝑙 are the effective suspension conductivity and dielectric relaxation time constant, and 

𝛽𝛽 is the exponent parameter of the Cole-Cole equation that varies between 0 and 1. The 

fitting procedure varied the values of the parameters (𝐾𝐾, 𝑛𝑛, 𝜀𝜀𝑠𝑠′ , 𝜀𝜀∞′ , 𝜏𝜏𝑟𝑟𝑒𝑒𝑙𝑙, 𝜎𝜎, and 𝛽𝛽) until the 

difference between the measured suspension complex permittivity and Cole-Cole model is 

minimized. The values of 𝐾𝐾 and 𝑛𝑛 are used to extract the electrode polarization effect and 

find out 𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠 and 𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠∗ . 

 

3.4.2. Procedure for extracting sub-cellular properties using Maxwell-Wagner and single 

shell model 

In this study, we used a single shell model for yeast cells, which is a reasonable assumption, 

since the cell wall has nearly the same conductivity and dielectric constant as those of the 

suspending medium for our conductivity range. Based on Asami [49], for KCl suspensions 
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with KCl concentrations ranging 1mM-80mM, which corresponds to ~0.01-1.3 S/m, a 

single shell model is appropriate. Based on the single shell model, the complex permittivity 

of a yeast cell is a function of cytoplasmic and membrane electrical properties, and the cell 

geometry. The complex permittivity of the cell is given by Equation 2.40: 

 

𝜀𝜀𝑐𝑐∗ = 𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗
𝛾𝛾3 + 2 �

𝜀𝜀𝑐𝑐𝑦𝑦𝜕𝜕∗ − 𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗

𝜀𝜀𝑐𝑐𝑦𝑦𝜕𝜕∗ + 2𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗ �

𝛾𝛾3 − �
𝜀𝜀𝑐𝑐𝑦𝑦𝜕𝜕∗ − 𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗

𝜀𝜀𝑐𝑐𝑦𝑦𝜕𝜕∗ + 2𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚∗ �
 

(2.40) 

 

Based on the Maxwell-Wagner model, the cell suspension complex permittivity is given 

by Equation 2.35: 

 
𝜀𝜀∗ − 𝜀𝜀𝑚𝑚∗

𝜀𝜀∗ + 2𝜀𝜀𝑚𝑚∗
= Φ

𝜀𝜀∗ − 𝜀𝜀𝑝𝑝∗

𝜀𝜀∗ + 2𝜀𝜀𝑝𝑝∗
 (2.35) 

 

The fitting procedure varied the values of the parameters (𝜎𝜎𝑚𝑚𝑒𝑒𝑑𝑑,𝜎𝜎𝑚𝑚𝑒𝑒𝑚𝑚, 𝜀𝜀𝑚𝑚𝑒𝑒𝑚𝑚,𝜎𝜎𝑐𝑐𝑦𝑦𝜕𝜕) until 

the difference between measured and fitted suspension complex permittivity is minimized. 

It should be noted here that the values for medium and cytoplasm permittivity were fixed 

at 80 and 60, respectively [82]. 

 

3.4.3. Grid Refinement Study 

To ensure convergence of the numerical solution, five different grid resolutions were 

considered, and the variation of impedance magnitude at f = 1 MHz with the number of 

grid elements is shown in Figure 3.A1. This figure shows that by increasing the number of 



 

51 
 

elements, impedance value decreases and finally becomes constant when the number of the 

elements reaches 100,000. As a result, around 100,000 elements were used for simulations. 

 

Figure 3.A1 Variation of impedance value with the number of computational elements 
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Figure 3.A2 The normalized standard deviation (standard deviation divided by mean) of 

a) impedance magnitude, and b) phase angle for yeast cells suspended in 0.01, 0.05, and 

0.20 S/m LCB solution. 
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Chapter 4 

ON-CHIP ELECTRICAL IMPEDANCE MEASUREMENTS OF BIOLOGICAL CELLS IN 
RESPONSE TO EXTERNAL STIMULI 

 

Dielectric spectroscopy (DS) is a non-invasive technique for real-time measurements of 

the impedance spectra of biological cells. DS enables characterization of cellular dielectric 

properties such as membrane capacitance and cytoplasmic conductivity. We have 

developed a lab-on-a-chip device that uses an electro-activated micro-wells array for 

capturing, making DS measurements of, and unloading of biological cells. In chapter 3, it 

was shown that the device could load, unload, and measure yeast cells. However, each well 

may contain up to 60-70 cells, but the exact well loading and volume fractions are 

unknown. In this chapter, we targeted characterization of mammalian cells, which has a 

bigger size than yeast cells and can individually fill up single wells.  Impedance 

measurements were conducted at 0.2 V in 10 kHz - 40 MHz range with six-seconds time 

resolution. An equivalent circuit model was developed to extract the cell membrane 

capacitance and cell cytoplasmic conductivity from the impedance spectra. A human 

prostate cancer cell line, PC-3, was used to evaluate the device performance. Suspension 

of PC-3 cells in low conductivity buffers (LCB) enhanced their dielectrophoretic trapping 

and impedance response. We report the time course of the variations in dielectric properties 

of PC-3 cells suspended in LCB and their response to sudden pH change from a pH of 7.3 

to a pH of 5.8. Importantly, we demonstrate that our device enabled real-time 

measurements of dielectric properties of live cancer cells, and allowed the assessment of 
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the cellular response to variations in buffer conductivity and pH. These data support further 

development of this device towards single-cell measurements. 

4.1.Materials and Methods 

4.1.1. Chip Fabrication  

Photolithography supplies (photoresists, developers, and remover) were purchased from 

Microchem Corp. (Westborough, MA, USA). All other chemicals used were of analytical 

grade and obtained from Sigma-Aldrich (St Louis, MO, USA). All solutions were prepared 

with 18 MΩ·cm ultrapure water obtained from Millipore Alpha-Q water system (Bedford, 

MA, USA). Glass slides were cleaned using the same protocol as in Chapter 3. The 

electrode structures were fabricated using lift-off photolithography method, and micro-

wells were created using negative photoresist SU8. The microfluidic channel was made up 

of double-sided tape. The fluidic ports were drilled by a diamond drill bit, and the copper 

tape was used for electrical connections. To assemble the device, the electrode pair was 

aligned using Karl SUSS MJB3 mask aligner. Finally, they were clamped and put in a 

convection oven at 75oC to enhance adhesion between the slides.  

A top view of three main layers of the microfluidic device is shown in Figure 4.1a. The 

bottom layer is a 1×1 mm square shape gold electrode on a glass slide and covered with 

negative SU8 photoresist except for 30×30×30 μm features as the micro-wells and the 

electrical connection port. The geometry is the same as used in previous chapters. Figure 

1a shows the top view of different layers and side view of the assembled microfluidic 

device along with relevant device dimensions. 
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Figure 4.1 a) Top view of the microfluidic device layers and side view of the assembled 

device; b) Schematics of the experimental setup. 

 

4.1.2. Experimental setup 

The experimental setup is shown in Figure 4.1b. A syringe pump (New Era Pump System 

Inc., NE4000) delivers the cell suspension to the inlet of the microfluidic device, and the 

outlet was collected in a drain. The suspension contains PC-3 cells at a concentration of 

105 cells/mL, and the flow rate was fixed at 1 mL/hr. The electrodes were excited using a 

function generator (Tektronix AFG3102) to provide sinusoidal AC electric fields at desired 

amplitudes and frequencies for cell capture and release purposes. The cells were captured 
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inside the micro-wells by applying 2 Vpp at a predetermined frequency to induce DEP 

response that pulls them into the micro-wells. After the cells were captured, the rest of the 

cell suspension inside microchannel is washed with LCB towards the drain via a polyvinyl 

chloride (PVC) tube. Then, the microfluidic device was connected to the impedance 

analyzer to record the impedance spectrum. A high precision impedance analyzer (HP 

Agilent 4194A) was used for impedance measurement in the 10 kHz - 40 MHz frequency 

range. Using a medium integration time setting (i.e., the period over which the analyzer 

measures the input signal), each impedance measurement sweep takes six seconds for 401 

discrete, logarithmically spaced frequencies. The output data of impedance analyzer was 

transferred to a PC using a General-Purpose Interface Bus (GPIB) cable, and then the data 

were processed using Matlab (R2014b) software. A CCD camera (Hamamatsu Orca, 

C11440) connected to an inverted microscope (Olympus IX81) was used for cell 

visualization, and images were recorded through an imaging software (CellSens). Once the 

DS measurements were over (~6 s), the device was reconnected to the function generator, 

and the cells were released from the micro-wells by applying 2 Vpp at a predetermined 

frequency to induce DEP response that pushes them out of the micro-wells (~10 s). The 

released cells were washed to the drain by simultaneously applying pressure driven flow 

using the syringe pump. 

 

4.1.3. Cell Preparation and Viability Test 

PC-3 cells were attained from the American Type Culture Collection (ATCC). The PC-3 

cells were cultured in RPMI (Roswell Park Memorial Institute) 1640 growth medium 
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(Sigma Aldrich). RPMI growth medium was supplemented with 10% fetal bovine serum, 

with penicillin (100 IU/ml) and streptomycin (100 μg/ml) [83]. Cells were grown in an 

incubator (Thermo Scientific) at 37oC with 5% CO2 atmosphere. For subculture, the cells 

were washed with PBS and incubated with 0.05% trypsin-EDTA solution (Sigma Aldrich) 

for 10 min with the same conditions to detach the cells from a petri dish. The growth 

medium was then added to inhibit the effect of trypsin and cells were centrifuged for 5 

minutes at 1000 rpm and re-suspended in a LCB solution for DS measurements or DEP 

experiments. The harvested cells were spheroidal and 22.0 ± 4 µm in diameter.  LCB is the 

most commonly used medium for DEP-based particle trapping, manipulation, or 

separation. It is a mixture of isotonic sucrose/dextrose solution and a small amount of salts. 

Cells were suspended in an LCB solution containing 229 mM sucrose, 16 mM glucose, 

1μM CaCl2, and 5 mM Na2HPO4 in type 1 DI water (pH 7.3) for experiments after washing 

with isotonic buffer. The conductivity of LCB was adjusted by adding PBS and measured 

using a conductivity meter (Con11, Oakton). The pH value of the LCB solution was 

adjusted by adding sodium phosphate mono/dibasic solution, and pH was measured using 

a pH meter (Orion Versastar, Thermo Scientific). 

The Trypan Blue exclusion test was used to determine the viability of cells in LCB. After 

adding PC-3 cells to LCB, the resulting cell sample was diluted in Trypan Blue dye of an 

acid azo exclusion medium by preparing a 1:1 dilution with a 0.4% Trypan Blue solution 

(Sigma Aldrich). After that, a hemocytometer was filled with the suspension and incubated 

for 1 minute. Because of cell membrane selectivity, Trypan Blue was not absorbed through 

a viable cell membrane, while it passes through the dead cells membranes and makes them 

have a distinctive blue color under the microscope. After loading with cells, the 
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hemocytometer was placed under the inverted microscope stage, and images were recorded 

using the CCD camera. Finally, the images were analyzed with ImageJ [84] software and 

cell viability was determined. 

 

4.1.4. Equivalent Circuit Modeling 

Electrodes in contact with an electrolyte experience Electrode Polarization (EP) effects due 

to the shielding of the applied electrode potential by the mobile counterions in the 

electrolyte [85]. This undesirable effect becomes dominant in high conductivity media and 

affects impedance measurements typically at 0-100 kHz range. It is common to 

theoretically model the EP effect with double layer capacitance in series with the whole 

system [86]. For practical applications, the constant phase element (CPE) model predicts 

the non-ideal behavior of the EP more precisely and effectively [85]. CPE impedance 

model is defined as [87]: 

 𝑍𝑍𝐶𝐶𝐸𝐸𝐸𝐸 =
1

𝐾𝐾(𝑗𝑗𝜔𝜔)𝛼𝛼 (4.1) 

where 𝐾𝐾 and 𝑛𝑛 are the CPE coefficient and exponent, respectively. The parameter 𝑛𝑛 

changes from zero to one corresponding to purely resistive and capacitive interfacial 

impedance, respectively. For our microfluidic device, the equivalent circuit model depicted 

in Figure 4.2a-b is proposed for filled and empty wells.  
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Figure 4.2 Proposed equivalent circuit model for a) filled and b) empty micro-wells. c) 

The equivalent circuit model for the microfluidic device. 

 

The current between two electrodes has at most three different paths. It can flow through 

the SU8 part, the solution inside the micro-well, and through the trapped cell for the case 

of filled wells. These three paths are modeled as SU8 capacitance (𝑗𝑗SU8), the micro-well 

solution resistance for empty and filled cases (𝑅𝑅𝑤𝑤,𝑒𝑒 and 𝑅𝑅𝑤𝑤,𝑓𝑓), and cytoplasmic resistance 

(𝑅𝑅cyt) in series with membrane capacitance (𝑗𝑗mem) as the cell model, respectively. Outside 

the micro-well, the electric current flows through the solution inside the microchannel 

which can be represented as a resistor (𝑅𝑅𝑐𝑐ℎ). In both filled and empty micro-wells, the EP 

effect is modelled as a CPE element (𝑍𝑍𝐶𝐶𝐸𝐸𝐸𝐸) in series with the circuit. The impedance of 

empty (𝑍𝑍𝑒𝑒) and filled (𝑍𝑍𝑓𝑓) micro-wells are calculated as: 
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 𝑍𝑍𝑒𝑒 = 𝑍𝑍𝐶𝐶𝐸𝐸𝐸𝐸 + 𝑅𝑅𝑐𝑐ℎ +
1

1
𝑅𝑅𝑤𝑤,𝑒𝑒

+ 𝑗𝑗𝜔𝜔𝑗𝑗𝑆𝑆𝑆𝑆8
 (4.2) 

 𝑍𝑍𝑓𝑓 = 𝑍𝑍𝐶𝐶𝐸𝐸𝐸𝐸 + 𝑅𝑅𝑐𝑐ℎ +
1

1
𝑅𝑅𝑤𝑤,𝑓𝑓

+ 𝑗𝑗𝜔𝜔𝑗𝑗𝑆𝑆𝑆𝑆8 + 1

�𝑅𝑅𝑐𝑐𝑦𝑦𝜕𝜕 + 1
𝑗𝑗𝜔𝜔𝑗𝑗𝑚𝑚𝑒𝑒𝑚𝑚

�

 (4.3) 

Electric current inside the SU8 is assumed uniform, and the following analytical 

formulation is used to calculate the SU8 capacitance: 

 𝑗𝑗𝑆𝑆𝑆𝑆8 = 𝜀𝜀𝑟𝑟,𝑆𝑆𝑆𝑆8𝜀𝜀0
𝐴𝐴𝑆𝑆𝑆𝑆8
𝑐𝑐

 (4.4) 

where 𝜀𝜀𝑟𝑟,𝑆𝑆𝑆𝑆8 is relative permittivity of SU8 material (𝜀𝜀𝑟𝑟 = 3.2), 𝐴𝐴𝑆𝑆𝑆𝑆8 is the SU8 surface 

area, and 𝑐𝑐 is the SU8 thickness. After application of pDEP for cell capture, 𝑛𝑛𝑓𝑓 number of 

micro-wells will be filled with cells and 𝑛𝑛𝑒𝑒 wells will be empty. Each micro-well is 

considered as a parallel element with the rest and a parasitic capacitance (𝑗𝑗𝑓𝑓), as shown in 

Figure 4.2c, is parallel to the whole system. The total impedance of the proposed equivalent 

circuit is calculated as follows: 

 𝑍𝑍𝜕𝜕𝑜𝑜𝜕𝜕 =
1

𝑛𝑛𝑓𝑓
𝑍𝑍𝑓𝑓

+ 𝑛𝑛𝑒𝑒
𝑍𝑍𝑒𝑒

+ 𝑗𝑗𝜔𝜔𝑗𝑗𝑓𝑓
 (4.5) 

To find the individual electrical components, real and imaginary parts of the experimental 

results are fitted into the real and imaginary parts of the proposed equivalent circuit model 

using a non-linear least square method. The fitting criterion is finding a minimum to the 

sum of squares of the following matrix by employing the Marquardt-Levenberg algorithm 

as previously shown [79]: 

 ∆= [∆𝑟𝑟,𝑓𝑓1 ,  …  ∆𝑟𝑟,𝑓𝑓𝑛𝑛 ,∆𝑖𝑖,𝑓𝑓1 ,  …∆𝑖𝑖,𝑓𝑓𝑛𝑛] (4.6) 
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where  ∆𝑟𝑟,𝑓𝑓𝑗𝑗 and ∆𝑖𝑖,𝑓𝑓𝑗𝑗 are defined as: 

 ∆𝑟𝑟,𝑓𝑓𝑗𝑗= 1 − �
𝑟𝑟𝑚𝑚𝑎𝑎𝑟𝑟�𝑍𝑍𝑚𝑚,𝑗𝑗�
𝑟𝑟𝑚𝑚𝑎𝑎𝑟𝑟�𝑍𝑍𝑓𝑓𝑖𝑖𝜕𝜕,𝑗𝑗�

� ,   ∆𝑖𝑖,𝑓𝑓𝑗𝑗= 1 − �
𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖�𝑍𝑍𝑚𝑚,𝑗𝑗�
𝑖𝑖𝑚𝑚𝑎𝑎𝑖𝑖�𝑍𝑍𝑓𝑓𝑖𝑖𝜕𝜕,𝑗𝑗�

� (4.7) 

In the above equations, subscripts m and fit denote the measured and fitted data, 

respectively. This fit will yield CPE parameters (𝐾𝐾 and 𝑛𝑛), 𝑅𝑅𝑐𝑐ℎ, 𝑅𝑅𝑤𝑤,𝑓𝑓, 𝑅𝑅𝑤𝑤,𝑒𝑒, 𝑗𝑗𝑓𝑓, and cell 

parameters (𝑗𝑗𝑚𝑚𝑒𝑒𝑚𝑚 and 𝑅𝑅𝑐𝑐𝑦𝑦𝜕𝜕). ne and nf are determined by the microscopy image of the 

trapped cells. For consistency, 10 random sets of initial conditions were employed in the 

optimization algorithm. A solution is considered correct only if the results from multiple 

initial conditions converge to a single global solution set. Finally, the average values are 

reported. 

4.2.Results and Discussion 

4.2.1. DEP Response Prediction 

In this study, the optimum pDEP and nDEP frequencies required for loading and unloading 

the micro-wells with PC-3 cells were determined by measuring the dielectric properties of 

PC-3 cells in a microfluidic device with parallel plate electrode configuration [79], which 

provided the 𝑅𝑅𝑚𝑚[𝑗𝑗𝑀𝑀] for PC-3 cell suspensions in LCB, as previously described [79]. 

Impedance measurements of suspension were repeated 5 times for each 10 minute period 

and the averaged data was reported. Fig. 4.3a shows the time-averaged 𝑅𝑅𝑚𝑚[𝐾𝐾] for PC-3 

cells measured in 1 kHz - 10 MHz frequency range at different time periods. The results 

revealed that the 𝑓𝑓𝑐𝑐 of PC-3 cells increased with time. The PC-3 cells showed the pDEP 

response for an hour at frequencies above 100 kHz, with an 𝑓𝑓𝑐𝑐 around 40 kHz at the 
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beginning (0-10min) of the measurement period, and an 𝑓𝑓𝑐𝑐  of 100 kHz after incubation in 

LCB for 60 minutes. Cancer cells are known to go under time-dependent cytoplasmic and 

membrane re-modelling through the shedding of cytoplasm in LCB [88]. Since the 

conductivity of cell decreases in LCB because of ion leakage, the 𝑅𝑅𝑚𝑚[𝐾𝐾] became more 

negative and 𝑓𝑓𝑐𝑐 shifts to higher frequencies, consistent with published studies [89]. 

According to the DS measurements with parallel plate electrodes, 5 MHz was chosen to 

trap the cells in the wells, because it yielded the highest CM factor and consequently the 

largest pDEP force for a given electric field magnitude. The device was energized at 20 

kHz for unloading. The applied voltage was kept at 2 Vpp (peak to peak voltage) to reduce 

the effects of Faradaic reactions, Joule heating, and electroporation [90-92].   
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Figure 4.3 a) The real part of CM factor for PC-3 cells suspended in LCB at various times 

b) captured PC-3 cells after 20s of pDEP application at 2 Vpp and 5 MHz frequency. The 

inset shows a sample of individual empty and filled micro-wells. 

 

4.2.2. DS Measurements 

PC-3 cells with a concentration of 105 cells/mL were introduced into the microfluidic 

device at 1 mL/hr flow rate. The conductivity and pH of the external medium was 0.05 S/m 
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and 7.3, respectively. To trap the cells using pDEP, AC voltage of 5 MHz with 2 Vpp 

amplitude was applied between the top and bottom electrodes. Once the majority of the 

wells were filled with PC-3 cells, the function generator was turned off, and the floating 

cells were washed with a continuous flow of LCB solution by increasing the flow rate (5 

mL/hr). By using pDEP, 96% of wells were successfully filled with single PC-3 cells in 

less than 20 seconds. Figure 4.3b shows a picture of the trapped cells in the wells, as well 

as a zoomed view of empty and filled individual micro-wells. Subsequently, the impedance 

of the cell suspension was measured in the 10 kHz - 40 MHz frequency range. In the next 

step, the recorded impedance data were fitted to the equivalent circuit model using 

MATLAB software. One representative example of the raw experimental data that fit with 

the proposed equivalent circuit model is shown in Fig 4.4. Figures 4.4a and 4.4b represent 

the experimental and fitted impedance values and phase angles of PC-3 cell suspension in 

LCB with pH of 7.3 in 10 kHz - 40 MHz frequency range, obtained five minutes after the 

cell suspension process. We found that the impedance spectrum of the circuit model 

exhibited a similar trend with the experimental data, validating the proposed equivalent 

circuit model. Small discrepancies between the model and experimental data were due to 

EP impedance that dominates the impedance data in the low-frequency spectrum. 
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Figure 4.4 Experimental and fitted a) impedance value and b) phase angle of the PC-3 

cell suspension in LCB with pH=7.3 in the 10 kHz - 40 MHz frequency range obtained 

five minutes after the suspension of PC3 cells within LCB. 

 

Furthermore, the sensitivity of the impedance to each element in the equivalent circuit is 

calculated and plotted in Figure 4.5. The sensitivity is defined as 𝜕𝜕|𝑍𝑍|
𝜕𝜕𝜕𝜕

, where 𝑥𝑥 is the element 

in the equivalent circuit model. Sensitivity results show that each element has a relatively 

high sensitivity in a specific frequency region and this proves the importance of all the 

elements considered in the model. 
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Figure 4.5 Impedance sensitivity to the equivalent circuit model elements 

 

4.2.3. PC-3 Cells Response to LCB Suspension 

To observe how PC-3 cells respond to suspension in LCB, their impedance spectrum at 

LCB with a pH of 7.3 was measured for two hours with a six-second resolution. Each 

impedance spectrum was fitted to the equivalent circuit model and cell parameters (𝑗𝑗mem 

and 𝑅𝑅𝑐𝑐𝑦𝑦𝜕𝜕) extracted. Figure 4.6 shows the changes in membrane capacitance and 

cytoplasmic resistance after PC-3 cells suspended in LCB. This figure showed that cell 

membrane capacitance decreased drastically after mixing PC-3 cells with LCB and it 

reached a steady state within an hour. The decrease in membrane capacitance was 

attributed to the cell cytoskeletal tension, which caused the cells to round up into a pseudo-

spherical shape after being released into the suspension. Since, a sphere has the smallest 
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surface area for any given volume, the membrane capacitance, which is proportional to the 

membrane surface area, decreased after cell suspension in LCB. Moreover, this figure 

showed an increase in the cytoplasmic resistance, likely caused by osmotic imbalance 

generated by efflux of intracellular-ions, and resulting in time dependent increase in 

cytoplasmic resistance [88]. 

 

Figure 4.6 Time-dependent variations in the membrane capacitance and cytoplasmic 

resistance after suspension of PC-3 cells in LCB. 

 

4.2.4. PC-3 Cells Response to pH change 

To study how PC-3 cells respond to external pH changes, the PC-3 cells were trapped 

inside micro-wells using a LCB solution with a pH of 7.3 (normal pH environment). After 

1 minute, the external solution was changed to a LCB solution with a pH of 5.8 (acidic 

environment). Finally, the external pH was reversed to 7.3 after 10 minutes.  
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Figure 4.7 illustrates the extracted cell membrane and cytoplasmic resistance with 

changing external pH values. The gray shaded region shows the time that extracellular pH 

was kept at 5.8. In the first minute of pH change, the cells responded rapidly to the sudden 

stresses applied with pH changes. This response could be related to cytoskeleton changes 

and ion transport through cell membrane ion channels and pumps. The remodeling, 

elongation, shortening, and architectural organization of the actin filaments may be a result 

of signaling cascades set by environmental cues [93], including changes in conductivity, 

pH, nutrition, etc. Using a theoretical model, Naumowicz et al. demonstrated the pH 

dependence of lipid membranes formed by 1:1 a phosphatidylcholine-phosphatidylserine 

mixture [94]. They concluded that the electrical capacitance of the analyzed bilayer had a 

minimum value around a pH of 4.2 and increased as the pH decreased or increased. Our 

data (Figure 4.7) suggested that the PC-3 membrane capacitance was lower with a pH of 

5.8 compared with a pH of 7.3, which is consistent with prior studies [94]. Further, for the 

first time, we have defined a profile of the changes in cell membrane capacitance and 

cytoplasmic resistance over time. When the pH was reversed at 10 minutes, the membrane 

capacitance increased, and the cytoplasmic resistance decreased. These changes could be 

attributed to changes in cytoskeleton remodeling and increased influx of ions.  At 14 

minutes, the PC-3 cells relaxed, and the changes in membrane capacitance and cytoplasmic 

resistance were reversed to normal conditions. At 20 minutes, the PC-3 cells reached a new 

state with lower membrane capacitance and higher cytoplasmic resistance compared to the 

initial state. 
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Figure 4.7 Extracted cell membrane and cytoplasmic resistance with changing external 

pH values. The white region shows pH=7.3 and gray regions indicate pH=5.8. 

 

4.2.5. Viability Tests 

To check the cell activity, viability tests were conducted at two different pH values in LCB 

(pH of 5.8, and 7.3) using the Trypan Blue exclusion method. Figures 4.8a and 4.8b show 

the viable and dead cells at these two different pH values after 1 hour. Since dead cells are 

permeable to Trypan Blue dye, they can be distinguished as dark particles in the grayscale 

figures. Figures 4.8c and 4.8d show the percentile viability of PC-3 cells suspended in LCB 

for pH of 7.3 and 5.8 over 120 minutes period. Based on these figures, after two hours of 

suspension of PC-3 cells in LCB, less than 10% of the cells were dead at either pH of 7.3 

or 5.8. Moreover, these data confirmed that cancer cell viability decreased in acidic 

conditions [95]. Viability studies of PC-3 cells in growth medium showed 90-100% 

viability for 24 hours [96], while the current results in LCB at pH of 7.3 and 5.8 show the 
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same viability range during the impedance measurements. These findings indicated that 

the measured dielectric response was driven by live PC-3 cells, which showed the 

applicability of the lab-on-a-chip device in biomedical and clinical settings.     

 

Figure 4.8 Viable and dead PC-3 cells in LCB with a) pH=7.3 and b) pH=5.8 after 1 

hour. Percentile viability of PC-3 cells in LCB with c) pH=7.3 and d) pH=5.8. 
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4.3.Conclusion 

In this chapter, we presented a lab-on-a-chip device for real-time measurement of 

biological cells’ response to external stimuli, such as sudden changes in the buffer 

conductivity and pH. The device captured cells in a micro-well array using pDEP, followed 

by the DS measurements and a nDEP assisted cell unloading processes. Well dimensions 

determined the number of cells that can be trapped in each micro-well. We defined the 

device performance for cancer cells using the PC-3 cell line using 30 µm square wells. PC-

3 cells suspended in 0.05 S/m LCB exhibited a time-dependent response, where their 

membrane capacitance and cytoplasmic resistance decrease and increase by time, 

respectively. Alterations of the extracellular pH between 7.3 and 5.8, changed cellular 

dielectric parameters, likely related to the organization of actin filaments and ion flux 

regulations as a response to pH alterations but not due to changes in cell viability. These 

data demonstrated the applicability of our microfluidic chip to measure the dielectric 

properties of live cancer cells with specialized LCB.  
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Chapter 5 

QUANTIFICATION OF CELL DEATH USING AN IMPEDANCE BASED MICROFLUIDIC 
PLATFORM 

 

Recently, the utilization of the DS method has been suggested in various stages of the drug 

discovery process due to low sample consumption and fast analysis time. In this chapter, 

we used a previously developed microfluidic system explained in chapter 4 to confine 

single PC-3 cells in micro-wells using dielectrophoretic forces and perform the impedance 

measurements. PC-3 cells are treated with 100 µM Enzalutamide, and their impedance 

response is recorded until the cells are dead as predicted with viability tests. Four different 

approaches are used to analyze the impedance spectrum. Equivalent circuit modeling is 

used to extract the cell electrical properties as a function of time. Principal component 

analysis (PCA) is used to quantify cellular response to the drug as a function of time. Single 

frequency measurements are conducted to observe the cell's response over time. Finally, 

opacity ratio (OR) is utilized as an additional quantification method. This device is capable 

of quantitatively measuring drug effects on biological cells and detecting cell death. 

Moreover, an available technology was tested for drug response, and its advantages and 

drawbacks were explained. The results show that the proposed microfluidic system has the 

potential to be used in the early stages of the drug discovery process. 
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5.1. Materials and Methods 

5.1.1. Device Fabrication 

The microfluidic chips were fabricated using standard photolithography on glass 

substrates. The microfabrication process is extensively explained in chapter 3. In summary, 

after cleaning glass substrates, transparent gold electrodes were fabricated using a lift-off 

process. Micro-wells were transferred to the electrodes using SU-8 photolithography. 

Finally, inlet, outlet, and electrical ports were attached, and the slides were aligned. The 

only difference here is that micro-well geometry was changed from cubic to cylindrical. 

As a result, the sharp corners that may induce extra charge concentrations were eliminated. 

Figure 5.1a shows a side view of the device. Figure 5.1b is the schematic of the 

experimental setup with a syringe pump for providing the cell suspension and a function 

generator/impedance analyzer for cell capture/impedance measurements. Figures 5.1c and 

5.1d illustrate the Scanning Electron Microscopy (SEM) images of the micro-wells array 

and a single micro-well. There exist 576 micro-wells with 30 µm diameter and 15 µm 

separation distance between well edges. 
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Figure 5.1 a) Side view of the microfluidic device, b) experimental setup, c) SEM image 

of the micro-wells array, and d) SEM image of an individual micro-well. 

 

5.1.3. Cell Preparation 

PC-3 cells were obtained from the American Type Culture Collection (ATCC), which were 

extracted from a 62-year-old Caucasian male. The cell line is cultured in RPMI 1640 

growth medium (Sigma Aldrich) supplemented with 5% fetal bovine serum (FBS), 

penicillin (100 IU/ml), and streptomycin (100 µg/ml). Cells are grown in an incubator 

(Thermo Scientific) at 37oC with 5% CO2 atmosphere. Figure 5.2 shows snapshots of PC-

3 cell culture during the three days. The harvested cells were spheroidal and 22.0 ± 4 µm. 

Figure 5.3 show snapshots of filled and empty micro-wells.  
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Figure 5.2 Snapshots of PC-3 cell culture after a) 24 hours, b) 48 hours, and c) 72 hours.  

 

 

Figure 5.3 Microscopy images of a) empty and b) filled micro-wells. 

 

After about 90% of the petri dish area was covered with cells in 72 hours, the growth 

medium was extracted, and cells were washed with 1X PBS, and TrypLE was added to 

detach the cells from the surface. TrypLE is a direct replacement for trypsin with high 

specificity and low damage to the cells. After incubating the cells with TrypLE for 5 

a b c 
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minutes, the complete growth medium was added, and the suspension was transferred to 

centrifuge tubes. The cell suspension was centrifuged at 1000 rpm for 5 minutes, and the 

supernatant was extracted, and the fresh medium was added. The final solution was 

transferred to a petri dish to be cultured inside the incubator. For DEP experiments and DS 

measurements, cells were suspended in low conductivity buffer (LCB) solution containing 

229 mM sucrose, 16 mM glucose, and 1 µM CaCl2 in DI water. The solution pH was 

adjusted to 7.3 by adding sodium phosphate mono/dibasic (NaH2PO4/Na2HPO4) solution. 

For viability tests, the Trypan Blue extraction test was performed using a 1:1 dilution with 

0.4% Trypan Blue Solution. 

 

5.1.4. Principal Component Analysis 

Principal component analysis (PCA) is a statistical method for reduction of a large set of 

variables into a smaller set with preserving as much of the variance in the data. Other names 

used for this reduction method are proper orthogonal decomposition (POD) and singular 

value decomposition (SVD). This method is probably the most popular dimension-

reduction method in all scientific fields. The data table consists of I rows and J columns 

representing the observations and variables to be analyzed by PCA. More information of 

how PCA works is given in the appendix. The data table consists of rows having the 

impedance value spectrum at each 30 second time interval for 8 hours.  
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5.2. Results and Discussion 

A conventional parallel plate configuration is used to extract Re(K) of PC-3 cells 

suspended in LCB. The method to extract this parameter has been extensively explained in 

our previous study [79]. Figure 5.4 shows the extracted Re(K) for PC-3 cells suspended in 

LCB. The frequency at which Re(K) changes sign is referred to as the cross over frequency 

(fc), which is about 40 kHz for the PC-3 cells. According to the DS measurements, 5 MHz 

was chosen to trap the PC-3 cells inside the micro-wells, since this frequency yields the 

highest positive value for Re(K). 

 

Figure 5.4 Re(K) of PC-3 cells suspended in LCB 
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5.2.1. Viability Test 

The Trypan Blue extraction test was used to calculate the viability of PC-3 cells exposed 

to 100 µM Enzalutamide. PC-3 cells are androgen independent, and Enzalutamide at low 

concentrations cannot cause fast damages to the cell [97, 98]. That is the reason we used a 

high drug concentration so that the changes can be observed in several hours. Figure 5.5 

represents the percentile viability of PC-3 cells suspended in a LCB and 100 µM 

Enzalutamide mixture. Based on this figure, cells exposed to 100 µM Enzalutamide will 

die after 8 hours. As a result, the on-chip experiments were performed for about 8 hours to 

make sure that all cells will die by the end of the experiment. 

 

Figure 5.5 Percentile viability of PC-3 cells exposed to 100 µM Enzalutamide. 

 

 5.2.2. DS Measurements 

For drug tests, PC-3 cells were mixed with LCB containing 100 µM Enzalutamide. The 

mixture is pumped through the microfluidic channel at 2 µl/min volumetric flowrate. 
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Afterward, the electrodes are energized at 4 Vpp with 5 MHz frequency to capture the cells. 

The cell capture process is monitored under the microscope, and it is observed that all the 

micro-wells are filled with PC-3 cells within 30 s. More information on the cell loading 

process is given in chapters 3 and 4. Finally, the microfluidic device is connected to a high 

precision impedance analyzer, and the impedance spectra of trapped cells population are 

recorded continuously for 8 hours. Each impedance measurement is repeated three times, 

and the averaged data is reported in this chapter. Figure 5.6 shows the normalized standard 

deviation (standard deviation divided by mean) of the healthy cells’ impedance value and 

phase angle in the frequency range. It is evident that the normalized standard deviation is 

less than 1% in the whole frequency spectrum. 

 

Figure 5.6 Normalized standard deviation of impedance value and phase angle of healthy 

cells. 
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 Using the equivalent circuit model explained in chapter 4, the EP effect is extracted. 

Figures 5.7a-b show the impedance and phase angle spectra before and after the EP effect 

is extracted 2 hours after drug injection. It is evident that EP overshadows impedance 

spectrum at lower frequencies, and it is necessary to extract this effect before further 

analyses. Figures 5.7c-d show the impedance and phase angle spectra of freshly captured 

cells, and the same cell sample after 2 and 8 hours, after subtraction of the EP effects. Based 

on the impedance spectra, the freshly captured cells show higher impedance magnitudes at 

lower frequencies while they experience a lower value at higher frequencies. Undamaged 

cells have healthy integrated membranes, while damaged cells lose their membrane 

integrity resulting in an outflow of ions to the exterior medium, which in turn increases 

overall impedance value at higher frequencies. Based on Figure 5.7d, the phase angle 

changes at higher frequencies is low. However, there is a recognizable change in the phase 

angle at low and medium frequencies. This can be explained since healthy cells have an 

integrated membrane which acts as an insulator and makes the system more capacitive 

(lower phase angle) compared to the damaged cells. The other important point here is the 

presence of two distinct dispersion regions for the fresh sample which can be detected by 

inflection points in impedance spectrum. These two dispersion regions are related to the 

cell membrane polarization (~ 100kHz) and SU8-medium polarization (~ 10 MHz), 

respectively. However, when the cells are exposed to Enzalutamide for a longer time, the 

first dispersion region starts to vanish due to the membrane damage. 
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Figure 5.7 a) Impedance spectra and b) phase angle of PC-3 cells treated with 100 µM 

Enzalutamide for two hours before and after EP extraction. c) Impedance spectra and d) 

phase angle spectra of PC-3 cells treated with 100 µM Enzalutamide at 0, 2, and 8 hours. 

 

5.2.3. Equivalent Circuit Analysis 

The equivalent circuit model was used to evaluate the membrane capacitance and 

cytoplasmic resistance of PC-3 cells treated with 100 µM Enzalutamide for 0, 2, 4, 6, and 

8 hours. Figure 5.8 shows the extracted cell parameters for 8 hours. The error bars indicate 
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the changes in Rcyt and Cmem due to variations in initial conditions used for fitting the 

impedance data with the equivalent circuit model. The initial conditions were selected 

randomly in ±200% range of the values measured in the previous chapters. Based on Figure 

5.8a, Cmem started from a value of 1.57×10-11 F and decreased slightly to 1.40×10-11 F as 

the cells were exposed to the drug for 8 hours. This 12.1% decrease in membrane 

capacitance is related to rounding up of the cells to a spherical shape due to cell cytoskeletal 

tension after releasing in LCB [99]. Figure 5.8b shows that Rcyt has a value of 7.64×105 Ω 

for healthy cells and increases as the cells are degraded. The dead cells (after 8 hours) have 

an Rcyt of 1.43×106 Ω, which is 87.2% larger than the live cells. This makes Rcyt a good 

indicator in discriminating between live and dead cells. The increase in Rcyt is due to efflux 

of cytoplasmic ions to the extracellular medium, which happens because of membrane 

degradation and ionic diffusion.  
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Figure 5.8 Extracted a) membrane capacitance and b) cytoplasmic resistance of PC-3 

cells over 8 hours. 

 

5.2.4. Single Frequency Measurements 

Figure 5.9 shows the impedance value and phase angle changes at 10 kHz, 100 kHz, and 1 

MHz frequency. At 10 kHz, the trend is slightly decreasing, showing that cell impedance 

is descending because of the membrane damage (as evidenced by the cell viability 

experiments). Moreover, the phase angle graph shows that the system becomes more 

resistive over time. At higher frequencies (100 kHz and 1 MHz), impedance value increases 
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with time, which is due to the outflow of ions from cell cytoplasm. Additionally, phase 

angle graphs predict a more resistive system over time. However, for 1 MHz phase angle 

changes only slightly, which agrees with the results presented in Figure 5.7.  

 

Figure 5.8 Changes over time in a) Impedance value and b) phase angle of PC-3 cells 

treated with 100µM Enzalutamide. 

 

5.2.5. Principal Component Analysis 

The principal component analysis was performed on impedance value and phase angle 

spectra of PC-3 cells exposed to 100 µM Enzalutamide. The data table consists of rows 

having the impedance value spectrum at each time step.  Figure 5.9a shows the scree plot 

of first 20 eigenvalues. The order of the first two components is two orders larger than the 
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third one. As a result, the first two components are enough to represent all the data. PCA 

results show that the first two principal components explain 99.6% of the variation in the 

data (PC1: 74.5%, PC2: 25.1%). Figure 5.9b illustrates the coefficients of the first two 

principal components. The coefficients show the relative weight of each variable in the 

component. This graph clearly shows what frequencies contribute more to which principal 

components. PC1 is more related to high frequencies, while PC2 has more contribution 

from lower frequencies. These coefficient plots have also been calculated for impedance 

spectra after eliminating the EP effect and stray capacitances and are shown in Figure 5.10. 

 

Figure 5.9 a) Scree plot of first 20 components, and b) first two principal component 

coefficients. 
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Figure 5.10 a) First principal component and b) second principal component coefficient 

of raw impedance data, after EP elimination, and after EP & stray capacitance 

elimination. 

 

These figures suggest that eliminating EP and stray capacitance does not have a 

considerable effect on PC coefficients. As a result, PCA can be performed on raw data 

without losing accuracy. The value that the impedance spectra (each row in the data table) 

have in the PC coordinate system are called scores. Figure 5.11a shows the score plot of 

the first two PCs. Each data point in this graph represents the impedance spectrum at a 

time. From this graph, the data points are finally accumulated in a vertical region. Figure 

5.11b shows the time variation of PC1 and PC2 score values. 
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Figure 5.11 a) Score plot of the first two principal components and b) PC score variations 

with respect to time. 

 

 Based on this figure, PC1 score value reaches a constant value after 8 hours showing that 

the cells are completely dead. However, the PC2 score value is still changing with time. It 

is mostly because the smaller contribution of PC2 with respect to PC1 in representing the 

data. To clarify the changes in PC2 score values, PCA was performed by changing the 

starting frequency to 1, 10, 25, and 50 kHz. Table 5.1 shows the components eigenvalues 

and % of variance explained using various starting frequencies. Based on this table, the 1st 

PC eigenvalue is not very sensitive to the starting frequency while the 2nd PC eigenvalue 

decreases dramatically with increasing starting frequency. As a result, the % of variance 

explained by 2nd PC is sensitive to the starting frequency, and it is practically unimportant 

for starting frequencies more than 25 kHz as its value and contribution to variance 

decreases beyond this frequency.  
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Table 5.1 Eigenvalues and % of variance explained using different starting frequencies. 
Starting 

frequency 

Eigenvalue, 1st PC Eigenvalue, 2nd PC % of variance explained, 

1st PC 

% of variance explained, 

2nd PC 

1 kHz 297.831 100.890 74.272 25.160 

10 kHz 265.535 47.472 84.565 15.118 

25 kHz 261.333 17.233 93.668 6.177 

50 kHz 252.796 7.838 96.857 3.003 

 

Additionally, PCA was done on the data set with different starting frequencies, and the 

PC1, and PC2 score results are shown in Figure 5.12.  

 

Figure 5.12 a) PC1 and b) PC2 score changes as a function of time for different starting 

frequencies 

 

This figure clearly shows that both PC1 and PC2 score values are consistent with changing 

starting frequency up to 50 kHz. As a result of this and the low contribution of PC2, it is 

concluded that PC1 score value itself is enough to represent the cellular condition. 



 

89 
 

Moreover, PCA was performed on the phase angle spectrum. Figure 5.13 show the score 

plot of PC1 and PC2 and their variation with respect to time. Comparing Figures 5.11 and 

5.13, it is concluded that both impedance and phase angle spectra follow approximately the 

same trend and values for the first two principal components. As a result, performing PCA 

on either impedance or phase angle spectrum will be enough to quantify cell condition. 

 

Figure 5.13 a) Phase angle spectra score plot of the first two principal components and b) 

PC score variations with respect to time. 

 

5.2.6. Opacity Ratio Measurement 

The ratio of the impedance magnitude at a high frequency to a low frequency is known as 

the opacity ratio (OR). This parameter is often utilized to normalize the impedance data for 

cell size heterogeneity in different cell cultures. In this study, we used 1 MHz and 10 kHz 

as the high, and low-frequency signal, and the opacity itself is normalized with the initial 

opacity ratio value. These two frequency points are selected such that both membrane and 

cytoplasm effects could be considered. At 10 kHz, membrane blocks current flow to the 
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cytoplasm while at 1 MHz, the current penetrates the cytoplasm. The initial opacity ratios 

for 100 µM was 0.812. Figure 5.14 shows the changes in normalized opacity ratio (OR) 

for PC-3 cells exposed to 100 µM Enzalutamide. This figure illustrates that normalized OR 

increases with time. Opacity increases with either decreasing of the membrane capacitance 

or increasing of the cytoplasmic resistance. As a result, opacity changes are in good 

agreement with cell parameter calculations. After 8 hours, the normalized OR reaches a 

plateau of about 1.16. This plateau means that the cells lost their dynamics, and cell death 

has been completed. 

 

Figure 5.13 Normalized OR of PC-3 cells treated with 100 µM Enzalutamide. Initial OR 

was 0.812. 
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5.3. Available Technologies 

In the previous sections, we tested the microfluidic device with one high concentration 

drug. However, to make sure that dielectric spectroscopy can detect the cell death process 

with lower doses and different cell lines, we used the ECIS (Electric Cell-Substrate 

Impedance Sensing) system (Applied Biophysics, Inc., Troy, NY) to measure impedance 

values of a confluent layer of cells adhered to the bottom of wells. For our experiments, we 

used 8W10E+ PET electrode arrays, which contains eight wells. Each well consists of two 

interdigitated electrodes with four fingers, and each finger has five 250 µm diameter active 

electrodes. This means that each well has a total of 40 active electrode sites and can 

measure approximately 2000-4000 cells. Arrays are connected to the impedance analyzer 

using an array station. A flat shielded cable which can easily exit the incubator through the 

rubber seal of the inner glass door connects the array station to the impedance analyzer. 

Continuous impedance measurements were conducted at 62.5 Hz-64 kHz frequency range. 

A computer was connected to the impedance analyzer to record the impedance and display 

the results in real time. Figure 5.14 shows a view of the experimental setup, the array 

holder, and 8W10E+ electrodes. 
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Figure 5.14 A view of the experimental setup, the array holder, and 8W10E+ electrodes 

with 40 active electrode sites in each well 

 

For the impedance measurements, MCF-7 and DU-145 cell lines were used. MCF-7 is a 

breast cancer cell line extracted from a 69-year-old Caucasian woman. MCF-7 cell line 

was cultured in RPMI 1640 growth medium (Sigma-Aldrich) supplemented with 10% FBS 

(Fetal Bovine Serum) and 5% penicillin-streptomycin. Cells are grown in an incubator at 

37oC with 5% CO2 atmosphere. For cell passaging, the cells are incubated with 0.05% 

trypsin-EDTA solution (Sigma-Aldrich) for 4 min inside the incubator to detach the cells 

Impedance Analyzer 

Array Holder 

8W10E+ Electrode 

Incubator 
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from the Petri dish. The growth medium is then added to inhibit the effect of trypsin and 

cells are centrifuged for 4 min at 2000 rpm and re-suspended in the growth medium. DU-

145 is a human prostate cancer cell line derived from a central nervous system metastasis 

of a 69-year old Caucasian man. The culture atmosphere and passaging protocol are the 

same as the MCF-7 cell line. For the drug, Mitoxantrone was used, which is an anti-cancer 

chemotherapy drug for advanced prostate cancer, Acute Myelogenous Leukemia (AML), 

breast cancer, and non-Hodgkin’s lymphoma. 

Before running ECIS experiments, the electrical stabilization method is used to clean the 

electrodes. In this method, the wells are filled with complete medium, and then the 

electrodes will introduce a high current which will remove the molecules adsorbed on the 

gold surface. After stabilization, the medium is removed from the wells, and 450 µL 

monodisperse cell suspension is added to all wells. Our trials show that using cell 

suspensions with a concentration of 1.8×106 cells/well will achieve confluence following 

attachment and spreading. The electrode arrays are placed inside the incubator to let the 

cells attach to the surface and confluence the well bottom. In cell culture biology, 

confluence means the surface is covered with the cells, and no space is left for the cells to 

grow as a monolayer. Afterward, 50 µL of drug with different concentrations is gently 

added to each well. The arrays are slid into slots of the array holder, and the connections 

are checked by performing a series of rapid impedance measurements. If there is any 

problem in arrays connection, it can be solved by repositioning the arrays. After ensuring 

the connections, the device is placed inside the incubator, and impedance measurements of 

each well at 12 different predefined frequencies between 62.5 Hz-64 kHz is continuously 

conducted. Our data collection showed that each impedance spectrum measurement for 
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each well takes approximately 13.6 seconds. The real and imaginary parts of the impedance 

were recorded in a text file and then transferred to MATLAB software for analysis 

purposes. 

450 µL of MCF-7 cells suspended in 0.5% DMSO was added to the wells with a 

concentration of 1.8×106 cells/well and were incubated for 8 hours to attach the bottom 

well and reach the confluency. 50 µL of Mitoxantrone drug with a concentration of 50, 

500, and 5000 nM were added to the wells. For control, for a series of wells, 50 µL of 

DMSO was added. Each dose was repeated for four wells, and two trials of each dose were 

performed to ensure repeatability of the measurements. After connecting the slides, 

continuous impedance measurements were conducted for 96 hours. 

Figure 5.15 shows the time variations of the MCF-7 impedance changes (|𝑍𝑍| − |𝑍𝑍|@𝑐𝑐 =

0) for control (0 M Mitoxantrone), 50, 500, and 5000 nM Mitoxantrone concentrations at 

1, 8, 32, and 64 kHz frequencies. This graph shows that in all frequencies, the 50 nM case 

shows very similar behavior with the control case. In both cases, the impedance value 

firstly increases. After that, in both cases, the impedance change starts to decrease. The 

increase in impedance value is mostly due to the growth of cells in growth medium or low 

drug condition. The decrease in impedance value is an indicator that cell growth has 

stopped and cells are undergoing the death process either by apoptosis, necrosis, or nutrient 

shortage. So, we concluded that 50 nM drug dose has an insignificant effect on cell death. 

The results for the 500 nM Mitoxantrone case show a slighter increase in impedance value 

followed by a decrease. From this graph, we can conclude that this drug dose is decreasing 

cell growth and causing cell death afterwards. The results for 5000 nM drug dose show a 

continuous decrease in impedance value at all frequencies. This continuous decrease 
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indicates that this high dose totally stops cell growth and immediately initiates the death 

process. Another critical point here is that for control and low drug dose (50 nM), the final 

impedance signal is different from the final signal of high drug doses (500 and 5000 nM). 

However, high drug doses which will cause total cell death till the end of the experiment 

show the same final impedance behavior for 1, 8, 32, and 64 kHz frequencies. 

450 µL of DU-145 cells suspended in 0.5% DMSO was added to the wells with a 

concentration of 1.8×106 cells/mL and were incubated for 8 hours to attach the bottom well 

and reach the confluency. The same methodology as the MCF-7 was used for drug 

introduction, and the experiments were performed for about 150 hours. 

 

Figure 5.15 Impedance change of MCF-7 cell layer at different drug concentrations and 

frequencies 
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Figure 5.16 shows the time variations of the DU-145 impedance changes for control (0 M 

Mitoxantrone), 50, 500, and 5000 nM Mitoxantrone concentrations at 1, 8, 32, and 64 kHz 

frequencies. The impedance changes of cells in their growth medium shows an increase till 

30 hours followed by a plateau till 80 hours. The plateau will then undergo a slight increase 

until 120 hours, followed by a slight decrease. These changes are attributed to the cell 

growth and shortage in cell nutrition after a long time.  

 

Figure 5.16 Impedance change of DU-145 cell layer at different drug concentrations and 

frequencies 

 



 

97 
 

The impedance changes for 50 nM drug dose shows similar behavior to cells in the growth 

medium for the first 30 hours. However, after 30 hours, it starts to decrease, showing the 

effect of the drug. After 72 hours, the cells show resistance to the drug, and impedance 

increases. Finally, after 120 hours, the impedance starts to decrease again, which is an 

indicator of a shortage of nutrients as well as drug effect.  

For the case of 500 nM drug, the trend is the same as 50 nM. However, since the drug dose 

is higher, the first increase in impedance is lower and different than the other two cases. 

Furthermore, the second increase in impedance, which is a result of drug resistance 

disappeared. Finally, the impedance results revealed that in the case of 5000 nM drug, the 

impedance change is continuously decreasing till it reaches a plateau which shows a stop 

in cell function and is an indicator of cell death. In the case of very high concentration, 

there is a very rapid decrease in impedance, which becomes smaller with time and finally 

reaches a plateau representing cell death. 

The final impedance changes for the MCF-7 and DU-145 cells at different concentration, 

and at 1, 8, 32, and 64 kHz are plotted in Figure 5.17. Two-tailed t-test was performed on 

the final impedance change values. The results show that the final value for MCF-7 of 

control and 50 nM except for 1 kHz are not significantly different (p<0.01). Additionally, 

the final value of 500 and 5000 nM are not statistically different as well (p<0.01). Figures 

5.17a-b show that all the impedance change absolute values decrease with increasing 

frequency. However, for DU-145 at 1 kHz, strange behavior is observed. This behavior is 

probably due to the very compact configuration of DU-145 cells, which blocks the electric 

currents and prevents impedance changes at that frequency. For the case of DU-145 and 
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MCF-7 cells, the final impedance change decreases with increasing drug concentration 

except for 1 kHz in the case of DU-145. 

 

Figure 5.17 Final impedance change values for MCF-7 and DU-145 at different drug 

concentrations and frequencies 

 

Above results show that Applied Biophysics technology can detect the changes in 

impedance due to drug application. For the frequency range used in this device, growth, 

and decay of the cells are related to increase and decrease in impedance values. Since the 

number of frequency points measured in this device is so limited (maximum 12 points) and 

it is mostly in the low-frequency region where EP overshadows the measurements, 

electrical circuit modeling, and PCA will not yield reliable results. The other limitation of 

this technology is the high number of cells needed for measurements. Moreover, the growth 

medium is not changed, and the combined effects of nutrients shortage and drug effect are 

measured. 
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5.4. Conclusion 

In this study, we fabricated and tested an impedance-based microfluidic device to position 

biological cells inside micro-wells and performed impedance measurements. The PC-3 

prostate cancer cell line was used to demonstrate the performance of the device for drug 

testing purposes. We used conventional dielectric spectroscopy devices to measure the 

frequencies at which PC-3 cells could be captured inside 30 µm diameter micro-wells. 

Clausius-Mossotti factor results show that at 5 MHz, PC-3 cells experience the highest 

pDEP force. After capturing the cells inside the micro-wells, 100 µM Enzalutamide was 

injected into the microfluidic device, and impedance measurements were performed in the 

10 kHz-40 MHz frequency range. Viability tests on PC-3 cells treated with 100 µM 

Enzalutamide suggest that after about 8 hours, all the cells will die. As a result, impedance 

measurements were performed in 8 hours. Impedance results show that cells dying exhibit 

a different spectrum than the healthy ones. Live cells impedance spectra have two 

dispersion regions, while for dead cells, the first dispersion region disappears.   

An equivalent circuit model was used to extract cellular electric properties. Cmem started 

from a value of 1.57×10-11 F and decreased slightly to 1.40×10-11 F while Rcyt started from 

a value of 7.64×105 Ω for healthy cells and increases to 1.43×106 Ω for dead cells. Single 

frequency measurements show that at higher frequencies (>100 kHz) cell dynamics could 

be captured while lower frequencies are overshadowed with EP effects.  

PCA was performed on impedance spectra, and principal component score values at each 

time step were used to quantify cell state at each time step. PCA results show that 

eliminating EP effect or stray capacitance does not affect PCA outcome. As a result, PCA 



 

100 
 

can be performed on raw data. Moreover, it was shown that PC score values do not change 

considerably by changing the starting frequency value up to 50 kHz. It means that data 

acquisition would be faster. Additionally, it was shown that the PC1 score starts from -3.43 

and converged to 0.95 for the dead cells.  

Finally, opacity ratio was introduced to better capture cell dynamics undergoing death 

process. The results show that OR increases by about 16% for the dead cells compared to 

fresh cells. Available technology for drug screening purposes was tested for two different 

cell lines, and the results show that impedance data can detect cell growth and decay. 

Moreover, the limitations of this technology with our proposed technology was discussed.  
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5.5. Appendix 

5.5.1. PCA Analysis Procedure 

The data table is shown with matrix X, and each element of this data table is represented 

by xi,j. Before performing PCA, the data is usually centered, so the mean of each column 

is equal to zero. The data analysis will start with p-dimensional feature vectors and 

projecting them into q-dimensional subspace such that the variance in data is preserved as 

much as possible. These q-directions are called principal components which span the sub-

space. 

In order to simplify the explanation, a one-dimensional projection is firstly considered. If 

a p-dimensional vector 𝑥𝑥𝚤𝚤���⃗  is projected to the unit vector 𝜔𝜔��⃗ , the coordinate in p-dimensional 

space is (𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ )𝜔𝜔��⃗ . Since the vector 𝑥𝑥𝚤𝚤���⃗  is centered, the mean of the projections will equal to 

zero: 

 
1
𝑛𝑛
�(𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ )𝜔𝜔��⃗  = ��
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�𝑥𝑥𝑖𝑖
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� .𝜔𝜔��⃗ �𝜔𝜔��⃗
𝑛𝑛

𝑖𝑖=1

= 0 (5.A1) 

 

By using the projected vector instead of the original vector, some errors will happen. The 

difference between the imaged vector and the real vector is the residual of the projection, 

which is calculated as: 

 
‖𝑥𝑥𝚤𝚤���⃗ − (𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ )𝜔𝜔��⃗ ‖2 = ‖𝑥𝑥𝚤𝚤���⃗ ‖2 − 2(𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ ) (𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ ) + ‖𝜔𝜔��⃗ ‖2 

= ‖𝑥𝑥𝚤𝚤���⃗ ‖2 − 2(𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ )2 + 1 
(5.A2) 
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By adding all these residuals across all the vectors, Residual Sum of Squares for vector 𝜔𝜔��⃗  

(𝑅𝑅𝑑𝑑𝑑𝑑(𝜔𝜔��⃗ )) is calculated: 

 �(‖𝑥𝑥𝚤𝚤���⃗ ‖2 − 2(𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ )2 + 1)
𝑛𝑛

𝑖𝑖=1

= �𝑛𝑛 + �‖𝑥𝑥𝚤𝚤���⃗ ‖2
𝑛𝑛

𝑖𝑖=1

� − 2�(𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ )2
𝑛𝑛

𝑖𝑖=1

 (5.A3) 

 

In order to have the best representation of actual data, 𝑅𝑅𝑑𝑑𝑑𝑑(𝜔𝜔��⃗ ) must be minimized. The 

first term in the right-hand side is independent of 𝜔𝜔��⃗ . As a result, the second term needs to 

be maximized. However, for the sake of calculations 1
𝑛𝑛
∑ (𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ )2𝑛𝑛
𝑖𝑖=1  will be maximized in 

this case. We know that the mean of a square is equal to the square of the mean added with 

the variance. 

 1
𝑛𝑛
�(𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ )2
𝑛𝑛

𝑖𝑖=1

= �
1
𝑛𝑛
�(𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ )
𝑛𝑛

𝑖𝑖=1

�
2

+ 𝑉𝑉𝑎𝑎𝑟𝑟[𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ ] (5.A4) 

 

Since the data are centered, the optimization problem will reduce to maximizing the 

variance of the projections (𝑉𝑉𝑎𝑎𝑟𝑟[𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ ]). 

Now if we stack our n data vectors into a 𝑛𝑛 × 𝐸𝐸 matrix, then projections are given by 𝑋𝑋𝜔𝜔. 

Then the variance is: 

 
𝜎𝜎𝑗𝑗���⃗
2 =

1
𝑛𝑛
�(𝑥𝑥𝚤𝚤���⃗ .𝜔𝜔��⃗ )2
𝑖𝑖=1

=
1
𝑛𝑛

(𝑿𝑿𝑿𝑿)𝑇𝑇(𝑿𝑿𝑿𝑿) =
1
𝑛𝑛
𝑿𝑿𝑇𝑇𝑿𝑿𝑇𝑇𝑿𝑿𝑿𝑿 = 𝑿𝑿𝑇𝑇 𝑿𝑿

𝑇𝑇𝑿𝑿
𝑛𝑛

𝑿𝑿

= 𝑿𝑿𝑇𝑇𝑽𝑽𝑿𝑿 

(5.A5) 
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The aim is finding vector 𝑿𝑿 that maximizes 𝑿𝑿𝑇𝑇𝑽𝑽𝑿𝑿 with the constraint 𝑿𝑿𝑻𝑻𝑿𝑿 = 𝑰𝑰. The 

Lagrangian multiplier technique can be used here for solving this optimization problem. In 

this method, a new variable (Λ), called a Lagrange multiplier, is introduced. In this 

problem, the Lagrange function is written as: 

 𝑢𝑢 = 𝑿𝑿𝑇𝑇𝑽𝑽𝑿𝑿− 𝜆𝜆(𝑿𝑿𝑇𝑇𝑿𝑿 − 1) (5.A6) 

 

To find the optimized values of 𝑿𝑿 for the function 𝑢𝑢, the derivative of 𝑢𝑢 relative to 𝑿𝑿 is 

computed and then is set to zero: 

 
𝜕𝜕𝑢𝑢
𝜕𝜕𝑿𝑿

= 2𝑽𝑽𝑿𝑿 − 2𝜆𝜆𝑿𝑿 = 0 (5.A7) 

 

 𝑽𝑽𝑿𝑿 = 𝜆𝜆𝑿𝑿 (5.A8) 

 

Equation 5.A8 shows that the “to be found” vector 𝑿𝑿 is an eigenvector of the covariance 

matrix 𝑽𝑽, and the one providing the largest variance is associated with the largest 𝜆𝜆. The 

variance can also be computed by combining Equations 5.A5 and 5.A8: 

 𝜎𝜎𝑗𝑗���⃗
2 = 𝑿𝑿𝑇𝑇𝑽𝑽𝑿𝑿 = 𝜆𝜆 (5.A9) 

 

Equation 5.A9 illustrates that eigenvalues of 𝑽𝑽 are the variance of the data explained by 

the eigenvector. As a result, the fraction of the data explained by each eigenvector 

(principal component) is equal to: 
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 𝑓𝑓𝑗𝑗 =
𝜆𝜆𝑗𝑗

∑ 𝜆𝜆𝑖𝑖
𝑝𝑝
𝑖𝑖=1

 (5.A10) 
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Chapter 6 

SUMMARY AND FUTURE RESEARCH 

 

This dissertation introduces a new microfluidic device which can capture biological cells 

in confined geometries, namely micro-wells, measure the cell responses using dielectric 

spectroscopy, and finally release the cells. To show the capabilities of the device, yeast 

cells were used. However, small sizes of yeast cells compared to micro-wells size prevents 

measurement of cell parameters. As a result, the PC-3 cell line was used in the microfluidic 

device, and its response to conductivity and pH change was measured. Moreover, the 

response of PC-3 cell to an anti-cancer drug was measured, and the impedance data were 

analyzed using different methods. 

6.1 Summary of the current work 

In chapter 1, a brief introduction to DS and its potential applications is given. Afterward, 

different methods for positioning cells and particles are discussed, and DEP as a contact-

free and straightforward approach is introduced. Finally, we discussed how the 

combination of DEP and DS could fulfill the requirements of this research. 

Chapter 2 elaborates on polarization theory and different relaxation phenomena. 

Specifically, interfacial polarization theory is given, and its effect on dipole moment of 

particles is thoroughly discussed. Afterward, the complex permittivity of a suspension of 

particles is elucidated, and different mixture models are discussed. Finally, the theory of 

electrical forces on particles, especially the DEP force, is explained. 
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In chapter 3, the microchip that consists of electro-activated micro-well arrays for positive 

dielectrophoresis (pDEP) assisted cell capture, DS measurements, and negative 

dielectrophoresis (nDEP) driven cell unloading is demonstrated. Device performance is 

tested using Saccharomyces Cerevisiae (yeast) cells at different conditions. Moreover, 

numerical simulations are performed and are compared with experimental results. 

Chapter 4 investigates the dielectric spectroscopy of single PC-3 cells inside each micro-

well. An equivalent circuit model was developed to extract the cell membrane capacitance 

and cell cytoplasmic conductivity from the impedance spectra. We report the time course 

of the variations in dielectric properties of PC-3 cells suspended in LCB and their response 

to sudden pH change from a pH of 7.3 to a pH of 5.8. 

Chapter 5 focuses on the application of the microfluidic device to measure the anti-cancer 

drug response of PC-3 cells. Equivalent circuit modeling is used to extract the cell electrical 

properties as a function of time. Principal component analysis (PCA) is used to quantify 

cellular response to the drug as a function of time. Single frequency measurements are 

conducted to observe how the cell's response over time. Finally, opacity ratio (OR) is 

defined as an additional quantification method. Moreover, an available technology from 

Applied Biophysics is tested for two different cell lines, and drawbacks of this technology 

are explained. 

6.2 Future Research 

As the conductivity of a medium increases, the EP effect overshadows the impedance 

spectrum, especially in the low-frequency region. As a result, the sensitivity of the 
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measurements decreases. Moreover, high conductivity medium decreases DEP effects 

drastically such that pDEP force vanishes for the whole frequency spectrum and the nDEP 

force become so weak that it is not able to release the cells. Our group has developed an 

electrochemical deposition technique to coat electrodes with gold nanostructures. The 

increased surface area due to deposition of nanostructures decreases electrical impedance 

at the interface. In the future, we plan to use the same methodology to find out the optimum 

materials and electrochemical deposition conditions to decrease electrode polarization 

effect and increase the sensitivity of our measurements. Figure 6.1 shows a trial of coating 

the electrodes with nanostructures as well as the drastic decrease in EP effect by using 

modified electrodes at high conductivity medium. 

 

Figure 6.1 a) Microscopy and b) SEM images of the coated electrodes. c) Impedance 

spectrum of PBS (1.5 S/m) measured with planar and coated electrodes. 
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Our current device can measure the impedance of a 400-500 cell population. However, 

cell-to-cell differences always exist, and average measurements of a population may not 

indicate the behaviors of individual cells. As a result, there is a great need to develop 

technologies that can measure cellular heterogeneity. For the future, our microfluidic 

device could be extended for single-cell measurements. For the electrode configuration, in 

this case, parallel strip electrodes will be fabricated for top and bottom electrodes, and they 

will face each other and cross at 90o angle. This configuration enables single particle/cell 

handling and impedance measurements at strips junction by activating relevant top and 

bottom electrodes. Figure 6.1 shows a side view of the bottom and top substrates as wells 

as electrodes configuration and alignments of slides. 

 

Figure 6.2 Side view of a) bottom and b) top substrate. c) Electrode configuration and d) 

alignment of top and bottom substrates. 
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 The top and bottom electric connections would have an N:1 multiplexer (N is the number 

of electrode strips). The multiplexer is software controlled through a USB by an Arduino 

or an equivalent dedicated circuitry that can be programmed to perform capture/release 

functions and the impedance measurements for all possible electrode pairs on top and 

bottom.  
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