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Mobile applications have become a high priority for software developers.

Researchers and practitioners are working toward improving and optimiz-

ing the energy efficiency and performance of mobile applications due to the

capacity limitation of mobile device processors and batteries. In addition,

mobile applications have become popular among end-users, developers have

introduced a wide range of features that increase the complexity of applica-

tion code.

To improve and enhance the maintainability, extensibility, and under-

standability of application code, refactoring techniques were introduced. How-

ever, implementing such techniques to mobile applications affects energy ef-

ficiency and performance. To evaluate and categorize software implementa-

tion and optimization efficiency, several metrics are introduced, such as the

Greenup, Powerup, and Speedup (GPS-UP) metrics. The first contribution

in my work is to quantitatively evaluate the impact of several refactoring
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techniques on the energy efficiency and performance of Fowler’s sample code

in mobile environments. In addition, I introduce two new categories to the

GPS-UP metrics to better categorize the impact of refactoring techniques

on mobile applications. Moreover, I explain the interrelationship between

energy efficiency and performance to provide more knowledge and insight for

mobile application developers.

Hence Fowler’s sample code is simple and does not reflect an accurate

evaluation of the refactoring techniques, I extend my work through present-

ing a case study that evaluates and categorizes the impact of refactoring

techniques when they are applied to open-source mobile applications. In

addition, I provide a comparison of the effect of refactoring techniques be-

tween the results of Fowler’s sample and open-source mobile applications.

The results of this contribution will allow software engineers and develop-

ers to understand the trade-offs between performance, energy efficiency, and

maintainability when implementing refactoring techniques.

The second contribution in my work is to modify the Orthogonal Defect

Classification (ODC) model to accommodate defects of mobile applications.

The ODC model enables developers to classify defects and track the process

of inspection and testing. However, ODC was introduced to classify defects

of traditional software. Mobile applications differ from traditional applica-

tions in many ways; they are susceptible to external factors, such as screen

and network changes, notifications, and phone interruptions, which affect

the applications’ functioning. The adapted ODC model allows me to address

newly introduced application defects found in the mobile domain, such as
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energy, notification, and Graphical User Interface (GUI). In addition, based

on the new model, I classify found defects of two well-known mobile applica-

tions. Moreover, I discuss one-way and two-way analyses. This contribution

provides developers with a suitable defect analysis technique for mobile ap-

plications.

Software reliability is an important quality attribute, and software relia-

bility models are frequently used to measure and predict software maturity.

The nature of mobile environments differs from that of PC and server en-

vironments due to many factors, such as the network, energy, battery, and

compatibility. Evaluating and predicting mobile application reliability are

real challenges because of the diversity of the mobile environments in which

the applications are used, and the lack of publicly available defect data. In

addition, bug reports are optionally submitted by end-users. In the third

contribution of my dissertation, I propose assessing and predicting the relia-

bility of a mobile application using known software reliability growth models

(SRGMs). Four software reliability models are used to evaluate the relia-

bility of an open-source mobile application through analyzing bug reports.

The results of my work enable software developers and testers to assess and

predict the reliability of mobile software applications.
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Chapter 1

INTRODUCTION

As known, the contemporary world is dependant on technology and infor-

mation. Software engineering is the approach of studying the design, devel-

opment, testing, and maintenance of software. It ensures that the software

is built correctly with satisfying all requirements [48], [12], [11]. In addition,

software quality is concerned with measuring and addressing the quality level

of software projects [32].

The quality model ISO 25010 [58] is introduced to evaluate the quality

of a software product or system. The quality model decides which quality

attributes will be considered when evaluating the properties of a software

product.

Due to the limitation of mobile device hardware capacity, the mobile ap-

plication code style is considered as a main factor, which affects the perfor-

mance, energy efficiency, and reliability of mobile applications. Thus, in this

work, three critical attributes are selected form the quality model (maintain-

ability, performance, and reliability) to be evaluated and analyzed through

the mobile application code.

Maintainability measures the level of effectiveness and efficiency when

modifying or improving a software product or system. In addition, perfor-

mance measures the utilization of the device resources that are used by a
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software product. Furthermore, reliability assesses a software product per-

forming specified functions under specified conditions for a specified period

of time.

Injecting code refactoring techniques to the code as a part of maintaining

the mobile application will affect the performance and energy efficiency. In

addition, new mobile application defects have surfaced due to the nature of

mobile environments. These new defects need to be classified to improve in-

process feedback. Moreover, based on the new type of defects, reliability of

mobile applications should be assessed and evaluated to determine product

maturity, availability, fault tolerance, and recoverability.

In this dissertation, I present three approaches (code refactoring, defect

analysis, and reliability) to improve the quality of mobile applications.

1.1. Code Refactoring

Since Apple’s and Android’s first smartphones were released, the evo-

lution of mobile applications has increased rapidly and continuously. As a

result, daily moderate or heavy use of mobile devices led to a decrease in the

batteries’ charge. Thus, researchers and practitioners have been improving

and optimizing the energy efficiency and performance of smartphone appli-

cations to extend the battery life.

One of the quality attributes of software is maintainability. In order to

achieve maintainability, the software code has to be extensible, readable, and

understandable. Fowler Martin [21] introduced refactoring to make existing

software maintainable and defined refactoring as “the process of changing a
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software system in such a way that it does not alter the external behavior

of the code yet improves its internal structure. It is a disciplined way to

clean up code that minimizes the chances of introducing bugs. In essence

when you refactor you are improving the design of the code after it has been

written”. However, refactoring also affects performance and energy efficiency

for mobile applications by adding, deleting, or moving a number of code lines.

Thus, knowing the trade-off between performance and energy efficiency when

implementing refactoring techniques is very important for mobile application

developers.

Abdulsalam et al. [1] proposed Greenup, Powerup, and Speedup (GPS-

UP) metrics to show the interrelationships between energy, performance, and

power. The GPS-UP metrics translate the effect of software optimization on

the attributes (energy, performance, and power) into a category on the GPS-

UP application energy graph. However, to better categorize the impact of

refactoring techniques on mobile applications and in response to the experi-

ment results, I introduce two new categories to the GPS-UP metrics.

Code refactoring techniques are considered software application optimiza-

tion tools. Therefore, I propose a study to investigate code refactoring tech-

niques by using the GPS-UP metrics in a mobile software system. Power is

the rate of the energy used; therefore, evaluating only Greenup (the ratio of

the total energy consumption of the non-refactored code to the total energy

consumption of the refactored code) is not sufficient to discover the reason

behind the positive or negative impact on energy efficiency. The solution is

to use Powerup which is the measure of the effect of refactoring techniques
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on the power usage inside the mobile device components. Using Greenup

with Powerup enables mobile application developers to understand the ad-

vantages and disadvantages of each refactoring technique and how it affects

the average power consumption of mobile device components.

In chapter 3, I quantitatively evaluate the impact of several refactoring

techniques on the energy efficiency and performance of Fowler’s sample code

in a mobile application. In addition, I extend this work through evaluating

the impact of refactoring techniques that are applied to the software code of

mobile applications that contain common algorithms (quick sort and binary

search), and data structures (linked list). Moreover, I evaluate the influence

of refactoring techniques on open-source mobile applications (Simple Calcu-

lator and AnotherMonitor). Finally, I provide a detailed comparison between

the results of all case studies.

1.2. Defect Analysis

Due to the importance and popularity of services that mobile applications

provide, mobile applications require a short and accurate cycle of defect

classification that is adapted to the nature of mobile environments. Ram

Chillarege [16] introduced the concept of Orthogonal Defect Classification

(ODC) for traditional software and defined it as “a concept that enables in-

process feedback to developers by extracting signatures on the development

process from defects”. ODC was originally introduced to classify defects

of traditional software, whereas the nature of mobile applications differs

somewhat. In mobile environments, new functionalities and features were
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developed, which introduced additional factors such as energy, network, in-

compatibility, Graphical User Interface (GUI), interruption, and notification.

Defects originating from these factors need to be classified for better defect

resolution. Therefore, to benefit from the ODC concept, ODC needs to be

adapted to attend to these new factors.

In chapter 4, I adapt ODC to mobile applications by considering the

characteristics of the mobile environment. This includes adding the new

factors to the ODC framework to classify defects in order to improve the

reliability of mobile applications after release. In addition, I provide one-

way and two-way analyses to accommodate the results of the classification

process. The provided classification process and analyses are based on defect

reports of two mobile applications, Tomdroid and Telegram. Tomdroid [9] is

a note-taking application that has a unique wiki-style display in the Android

platform, and Telegram [26] is a cloud-based instant messaging and voice

over IP service.

1.3. Reliability

Software reliability is a measure for controlling and maintaining the pro-

cesses of the software development life cycle (SDLC) to develop reliable soft-

ware. This measure is used during the testing process until the process’s

exit criteria are met. In addition, software reliability helps to maintain and

predict the correctness of the software [56]. Software reliability engineering

was introduced to aid in analyzing and measuring the quality of software ap-

plications. It presents the quality of the software running without producing
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defects [47] [46]. Researchers and practitioners have been improving software

reliability models to assess the reliability of different types of software.

Measuring and predicting the reliability of a mobile application are real

challenges due to the following reasons. First, the nature of mobile envi-

ronments is different from that of PC and server environments. Second, in

mobile environments, new functionalities and features are introduced, such

as energy, network, incompatibility, modified and limited Graphical User In-

terface (GUI), interruption, and notification, which produce new types of

defects [7]. Third, mobile operating systems and devices are divers. Fourth,

the high demand for mobile applications from users has made the develop-

ment process fast and the functionality of mobile application more complex

[61]. Finally, after a mobile application is released, failures occur in mobile

devices. In addition to testing, software developers partially rely on bug

reports, which are optionally submitted by end-users.

To assess software reliability in mobile applications, researchers are re-

quired to spend more time and effort to evaluate the efficacy of software

reliability. Considering the characteristics of mobile applications while mea-

suring their software reliability will produce more accurate results and anal-

yses.

Predicting mobile application failures is as important to software develop-

ers as to companies and research organizations. Therefore, I propose measur-

ing the reliability of mobile applications and producing more accurate results

based on defects that are extracted from bug reports.
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The remainder of this dissertation is structured as follows: Chapter 2

presents related work. Chapter 3 explains the impact of code refactoring

techniques for energy efficiency in mobile environments. Chapter 4 explains

the adaptation of the ODC concept for mobile application defect analysis.

Chapter 5 presents an assessment and prediction of software reliability in

mobile applications. Chapter 6 contains the conclusions and perspectives.
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Chapter 2

RELATED WORK

In this chapter, I explore the related work to code refactoring analysis,

defect analysis, and reliability analysis in mobile environments.

2.1. Code Refactoring

Researchers and practitioners have presented many studies that investi-

gated the relationship between optimizing the software code, performance,

and energy efficiency. Their methodologies have different approaches, such

as offloading to solve the limitation of mobile device components, code refac-

toring techniques to make the code maintainable, and different algorithm

complexity and data structures to find which one is more effective for im-

proving performance and energy consumption.

Metri et al. [43] proposed a case study that shows the comparisons be-

tween hand-held devices’ platforms and applications for energy consumption.

The comparisons provided useful information about the providers of major

platforms, energy consumption of application design, and common practices

of application developers.

Medellin et al. [41] modularized a mobile device application by utilizing

SOA/BPEL/services design principles and proposed a service that decides

which part of the application is migrated to the cloud to be computed. This
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study proposed a new technique to exceed the limitation of mobile compu-

tation and batteries.

Fekete et al. [19] presented a technique called “offloading” and proposed

a tool that automates recognizing heavy computational tasks in mobile de-

vice systems and sends them to web services. Using outsource machines to

compute those tasks decreases energy consumption and makes mobile device

batteries last longer.

Ramirez et al. [52] presented a study that measured the energy consump-

tion of multithreading android application executing only java application

and compared it to the Android executing complex part of code in C pro-

gramming language using JNI. The study results help developers to find the

cause behind increasing mobile application energy consumption and improve

application development strategies aimed at increasing energy efficiency.

Mittal et al. [44] presented an energy emulation tool that allows devel-

opers to estimate the energy use for their mobile applications during the

developing process on the developers’ workstation. Their energy emulation

tool has the ability of scaling the emulated resources, including the process-

ing speed and network characteristics to imitate the application behavior on

a physical mobile device. In addition, the authors presented a prototype

implementation of this tool and evaluated it through comparing real device

energy measurements.

implementing refactoring techniques improve understandability, main-

tainability, and extensibility of the software code. However, the impact of

energy efficiency of each refactoring technique is not shown in the automated
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support of refactoring in IDEs. Sahin et al. [54] presented an empirical study

to explore the impact of energy efficiency for 197 application of 6 refactor-

ing techniques. Their experiment results showed the refactoring impact on

energy consumption and the capability of increasing and decreasing energy

consumption. In addition, the authors showed metrics that correlated with

energy consumption in order to predict the impact of implementing refactor-

ing techniques.

Park et al. [50] explored whether code refactoring techniques increase or

decrease energy consumption. Park’s experiment used XEEMU which is a

software power estimation tool that supports C/C++ based estimation to

analyze and evaluate Fowler’s refactoring techniques.

Silva et al. [18] presented a case study that combined object-oriented

languages with code refactoring techniques in embedded software to evaluate

the positive and negative effectiveness. The case study results showed helpful

information related to energy efficiency and CPU performance.

Morales et al. [45] proposed EARMO(An Energy-aware Refactoring Ap-

proach for Mobile Apps), a novel anti-pattern, accounts energy consumption

when refactoring mobile anti-patterns. The authors analyzed the impact of

eight types of anti-patterns on a testbed of 20 android applications. EARMO

has been evaluated by testing three multiobjective search-based algorithms.

Their experiment results show that EARMO can generate refactoring rec-

ommendations in less than a minute and remove a median of 84% of anti-

patterns. In addition, EARMO extended the battery life of a mobile phone

by up to 29 minutes, and 68% of EARMO refactoring suggestions were found
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relevant by developers.

Bunse et al. [14] proposed a case study that showed the interrelationship

between sorting algorithm complexity time and its energy efficiency in mobile

and embedded devices. However, the experiment showed that there is no

direct interrelationship between them.

Zecena et al. [65] explored and analyzed three parallelized sorting al-

gorithms (Odd-Even Sort, ShellSort, and QuickSort) by executing them on

multicore computers. The results showed that better algorithm performance

leads to more energy savings.

Comito and Talia [17] presented an experimental study that evaluated

the energy consumption of mobile devices when executing data mining algo-

rithms. Moreover, they proposed a learning machine that predicts the energy

consumption of data-intensive algorithms running on mobile devices.

Rashid et al. [53] analyzed the energy consumption of different imple-

mentations of sorting algorithms in different programming languages. The

experiment results showed that different combinations of algorithms and pro-

gramming languages change the level of energy efficiency. The Authors study

provides the basic information of selecting algorithms and identifying main

factors affecting energy consumption.

Code obfuscation prevents code piracy; however, code obfuscation has

become an important concern about its impact for energy efficiency on mobile

application. Therefore, Sahin et al. [55] presented an empirical study of

the impact of 18 code obfuscations on energy consumption. The authors’

experiment included 15 usage scenarios on 11 Android applications. The
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experiment results indicated that using code obfuscation likely to increase

energy consumption.

Hasan et al. [25] profiled the energy consumption of popular operations

performed on data collections (Java List, Map, and Set Abstractions). They

showed that using the wrong data collection type according to the profile

could lead to an increase in energy consumption that could reach 300%.

Hunt et al. [30] proposed a using lock-free data structure to improve

performance, scalability, and energy efficiency. Three different types of lock-

free and locking data structures have been implemented to run excessive

workloads and compare the execution time and the energy efficiency of each

data structure type. Using threads to access a shared data structure re-

quires synchronization of the threads and assurance of data consistency and

integrity. However, thread synchronization causes performance problems in

multithreaded programs. As a result, the lock-free data showed better per-

formance and higher energy efficiency.

Existing studies provided helpful information about the energy efficiency

of platforms and programs and presented new techniques, such as using differ-

ent types of data structures or algorithms and migrating heavy computation

to outsource machines. However, maintaining the code of these platforms

and programs is mandatory and can have a positive or negative impact on

energy efficiency. Moreover, energy efficiency is beneficial to software devel-

opers while maintaining the code and implementing refactoring techniques.

Therefore, I propose a study that analyzes the energy efficiency and perfor-

mance of mobile devices to define the interrelationship between them and
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understand the cause behind the positive or negative impact, which will pro-

vide a guideline to software engineers and developers.

2.2. Defect Analysis

With the widespread presence of traditional software, Chillarege et al.

[16] [15] introduced the ODC concept to classify defects and find their root

causes. This allows for reaching a short cycle of defect analysis during the

software development process.

With the internet and web applications have become worldwide providers

of online services, Ma and Tian [40] presented an adaptation of ODC for web

errors based on defects found in web logs, and they provided analyses of their

results to improve the reliability of web applications.

Cloud computing is the new revolution of web services by providing Soft-

ware as a Service (SaaS). Alannsary and Tian [2] proposed a defect analysis

framework by adapting ODC to SaaS. The new framework considered new

characteristics introduced in SaaS, such as multi-tenancy and isolation.

With the lack of defect classifications during black-box testing, Li et al.

[35] presented a new defect classification framework called Orthogonal De-

fect Classification for Black-box Defect (ODC-BD). The proposed framework

aims to help black-box defect analyzers and black-box testers, while enhanc-

ing the efficiency of the analysis and testing processes.

Wasserman [62] provided an overview of research issues in software en-

gineering for mobile software development. The overview included develop-

ment processes, tools, user interface design, application portability, quality,
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and security.

Different approaches inspired by the new types of faults and failures that

arise in mobile applications during and after the development process have

been discussed. Holl and Elberzhager [28] classified mobile application fail-

ures and defined the relationships between their failures and various aspects

of their faults. Lelli et al. [34] proposed a model that identifies and clas-

sifies GUIs’ faults. In their work, they presented an empirical analysis and

assessment for their model. However, a classification framework that does

not cover all types of mobile application defects hinders in-process feedback

from being fast and accurate.

Existing studies provided helpful frameworks to classify traditional soft-

ware defects in general. However, due to the popularity and high demand

of mobile applications, classifying mobile application defects is crucial to

software development. Therefore, I propose adapting the ODC concept to

mobile environments to classify the new types of defects, improve in-process

feedback, and present the results and analyses of applying my framework to

bug reports of mobile applications.

2.3. Reliability

Due to the high demand of complex heterogeneous software, software

reliability models have become more useful to assessing and predicting the

correctness of the software. Lyu [39] presented software reliability models

in practice to help researchers and practitioners quantitatively address the

characteristics of the SDLC. In addition, these models guide developers and
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testers to understand and apply software reliability techniques.

Tian et al. [60] evaluated the reliability of web applications after deter-

mining their defects and usage. In addition, the possibility of enhancing web

application reliability was inspected. The author used the characteristics of

web applications as a base to classify web defects. The website workload

was measured and characterized at different levels and perspectives, and

combined with the failure information about the website to evaluate the op-

erational reliability. The experiment results indicate the efficacy and benefits

of the authors’ approach.

Many SRGMs for estimating and predicting the reliability of software

have been developed and introduced. However, some of these models show

inaccurate results, such as delayed S-shape and the exponential type, which

indicates that these models may not fit when spending effort that is not

constant on testing to detect faults. Therefore, Huang et al. [29] reviewed

the logistic testing effort function that can be used to describe the amount

of testing effort spent on software testing. In addition, the author proposed

how to integrate the logistic testing-effort function into software reliability

models. The proposed models show more accurate results compared to the

traditional SRGMs.

Software as a Service (SaaS) is a software distribution model that is pro-

vided through cloud computing. Alannsary and Tian [3] proposed a method

for measuring and predicting the reliability of SaaS. The authors analyzed

web server log files to extract failure data. The input domain reliability

model was used to measure the operational reliability. SRGMs were used to
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measure the growth in SaaS reliability.

The Application Programming Interface (API) is an interface, which is

used to allow clients and servers to interact. Bokhary and Tian [13] proposed

a framework for measuring the reliability of APIs. The authors followed

a three-stage approach to collect available failure data, and then the API

reliability was estimated. In addition, the authors introduced a case study

based on Google Map APIs and showed the effectiveness and success of the

proposed framework.

New technologies have been added to mobile phones due to the high de-

mand of end-users. Consequently, the predicted field failure rate has deviated

from the actual rate. Therefore, developing new methods for predicting the

failure rate before the release has become a challenge for researchers and

practitioners. Perera [51] presented a reliability prediction method to over-

come the inapplicable traditional reliability prediction methods and deliver

more accurate results.

The number of lines of code of software applications in mobile devices has

increased to millions. Development organizations must produce predictable

fault-free software products. Almering et al. [4] presented an empirical study

to assess the reliability of software and validate SRGMs during the integration

and test phases. In addition, the capability of the prediction model was

compared to predictions by experts. Moreover, obtaining solid reliability

assessment and prediction before software release using SRGMs was shown

to be possible.
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Researchers have proposed studies to assess the software reliability of

mobile operating systems and applications. Ivanov et al. [31] presented a

comparison between the reliability of three operating systems in mobile en-

vironments by applying SRGMs. In addition, Meskini [42] evaluated the

reliability of three mobile applications by applying SRGMs to failure data

extracted from mobile devices. However, to successfully assess and predict

software reliability, the characteristics of mobile environments must be con-

sidered. Therefore, to achieve more accurate results in this work, I propose

applying software reliability growth models to defect data extracted from

bug reports.
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Chapter 3

Code Refactoring

As presented in Chapter 1, refactoring techniques are used to optimize

software code. Evaluating the impact of these techniques in mobile environ-

ments for energy and performance will help developers enhance the quality

of the software. In this chapter, Section 3.1 presents the methodology of the

study. Section 3.2 explains the experiment preparation. Section 3.3 provides

the experiment setup and execution. Section 3.4 presents four case stud-

ies. Section 3.5 provides a discussion and analysis of the experiment results.

Finally, Section 3.6 presents threats to validity.

3.1. Methodology

The main objective of this study is to profile the positive and negative

impact of refactoring techniques on mobile application code using GPS-UP

metrics to determine whether the impact on performance and energy con-

sumption caused by refactoring is beneficial. Previous studies measured

performance or energy efficiency without finding the interrelationship be-

tween them. The goal of finding the interrelationship between performance

and energy efficiency is to find the cause of increasing or decreasing energy

consumption when refactoring techniques are implemented. Therefore, this

study focuses on assessing the positive or negative impact of refactoring on
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mobile application code. The impact of refactoring techniques on mobile ap-

plication code has rarely been investigated, and previous experiments ended

up just measuring performance or energy consumption for desktop appli-

cations. my approach quantitatively evaluates and categorizes refactoring

techniques when implemented to applications in mobile environments.

3.2. Experiment Preparation

Following is a description of the experiment preparation, including a list

of the selected refactoring techniques, an explanation of GPS-UP metrics and

the categories, and the lines of code changed when each refactoring technique

is implemented.

3.2.1. Selection of Code Refactoring Techniques

From Fowler’s 72 code refactoring techniques, 21 code refactoring tech-

niques were selected. The selection of these techniques was based on two

conditions. First, the selected refactoring technique has to change the inter-

nal structure of the software code in order to have an effect on the energy

efficiency and performance of the mobile application software. Second, there

are different groups of refactoring techniques; therefore, at least one refac-

toring technique was selected from each group.

Below is a list of the selected code refactoring techniques organized in the

order they were introduced in Fowler’s book:

1. Composing Methods
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(a) Extract Method

(b) Inline Method

(c) Inline Temp

(d) Replace Temp with Query

(e) Split Temporary Variable

(f) Remove Assignments to Parameters

(g) Replace Method with Method Object

2. Moving Features Between Objects

(a) Move Method

(b) Move Field

(c) Extract Class

(d) Inline Class

3. Organizing Data

(a) Self Encapsulate Field

(b) Replace Data Value with Object

(c) Replace Array with Object

(d) Replace Type Code with State Strategy

4. Simplifying Conditional Expressions

(a) Decompose Conditional

(b) Replace Conditional with Polymorphism
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5. Making Method Calls Simpler

(a) Add Parameter

(b) Remove Parameter

6. Dealing with Generalization

(a) Pull Up Field

(b) Pull Up Method.

3.2.2. Greenup, Powerup, and Speedup Metrics

GPS-UP metrics are used to categorize code refactoring techniques after

implementing them to the software code. Each refactoring technique im-

plemented to the software code is categorized into one of the ten categories

shown in Fig. 3.1. The original GPS-UP metrics had eight categories. In my

work, I added two more categories in response to the experiment results.

The execution time of the mobile application (T) in second(s) and the

energy consumption of the mobile application in joule(s) are measured in

order to calculate Speedup and Greenup. Speedup indicates the ratio of

the non-refactored code runtime to the refactored code runtime. Greenup

indicates the ratio of the total energy consumption of the non-refactored code

to the total energy consumption of the refactored code. The interrelationship

between Speedup and Greenup presents Powerup which is the ratio of the

average power consumption:
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EBR = TBR ∗ PBR ,

EAR = TAR ∗ PAR ,
(3.1)

where the Power Before Refactoring (PBR) is the average energy consump-

tion before refactoring the software code, and the Power After Refactoring

(PAR) is the average energy consumption after refactoring the software code.

Speedup(s) =
TBR

TAR
, (3.2)

where the Time Before Refactoring (TBR) is the total runtime before refac-

toring the application software code, and the Time After Refactoring (TAR)

is the total runtime after refactoring the application software code.

Greenup(j) =
EBR

EAR
, (3.3)

where the Energy Before Refactoring (EBR) is the total energy consump-

tion before refactoring the application software code, and the Energy After

Refactoring (EAR) is the total energy consumption after refactoring the ap-

plication software code.

Powerup =
Speedup

Greenup
, (3.4)

if the value of PowerUp is greater than 1, this indicates that the implemented

code refactoring technique changed the software code to be less efficient by

consuming more energy. If the value of PowerUp is less than 1, this indicates
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Figure 3.1: GPS-UP application energy efficiency graph.

that the implemented code refactoring technique changed the software code

to be more efficient in energy consumption by consuming less energy.

3.2.3. GPS-UP Metrics Categories

There are ten categories in the GPS-UP metrics which are split into two

groups. The first group (categories 1 to 5) as a green category group indicates

that the refactoring technique increased the energy efficiency (reduced energy

consumption). The second group (categories 6 to 10) as a red category

group indicates that the refactoring technique decreased the energy efficiency

(increased energy consumption). I added two categories to the GPS-UP

metrics because some of the refactoring techniques results did not fall in the

original eight GPS-UP metrics categories. Table 3.1 shows the mapping of

the GPS-UP metrics categories in the original work [1] and the GPS-UP

23



Table 3.1: GPS-UP Categories Mapping, Where Speedup Is (S) and

Powerup Is (P)

Cat. in study Cat. in ref. [1] Condition

1 1 P <1 and S >1

2 2 P =1 and S >1

3 Newly added S =1 and P <1

4 3 P >1, S >1, and S >P

5 4 P <1, S <1, and S >P

6 5 P >1, S >1, and S <P

7 6 P <1, S <1, and S <P

8 7 P =1 and S <1

9 Newly added S =1 and P >1

10 8 P >1 and S <1

metrics categories in my work.

1. Category 1 is when Powerup < 1 and Speedup > 1. This category indi-

cates that the refactoring technique improved the energy efficiency and

performance. The cache memory consumes less energy and is faster

than RAM memory. Therefore, the refactoring technique in this cat-

egory can be used when CPU computation uses more cache memory

than RAM memory.

2. Category 2 is when Powerup = 1, and Speedup > 1. This category

indicates that the refactoring technique improved only the performance

and maintained the same level of energy efficiency. The refactoring

technique in this category can be used when the performance is more

important than the energy efficiency in heavy and linear computations.
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3. Category 3 (newly added to the categories) is when Speedup = 1 and

Powerup < 1. This category indicates that the refactoring technique

improved only the energy efficiency and maintained the same level of

performance. The refactoring technique in this category can be used

when energy efficiency is more important than performance in order to

make mobile device batteries last for a longer time.

4. Category 4 is when Powerup > 1, Speedup > 1, and Speedup >

Powerup. This category indicates that the refactoring technique slightly

improved the performance whereas the level of energy efficiency was de-

creased. The refactoring technique in this category can be used when

performance is needed while the amount of the energy required is not

high, such as parallel computations.

5. Category 5 is when Powerup < 1, Speedup < 1, and Speedup >

Powerup. This category indicates that the refactoring technique re-

duced the performance to consume less energy. The refactoring tech-

nique in this category can be used when adjusting the performance to

achieve better energy efficiency.

6. Category 6 is when Powerup > 1, Speedup > 1, and Speedup <

Powerup. This category indicates that the refactoring technique im-

proved the performance; however, the increase in the energy consump-

tion exceeded the improvement in the performance. The refactoring

technique in this category can be used when using parallel computa-

tions with parallel devices where more energy is consumed, but the

performance level does not increase.
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7. Category 7 is when Powerup < 1, Speedup < 1, and Speedup <

Powerup. This category indicates that the refactoring technique de-

creased the performance and increased the energy efficiency; however,

the more computations the software runs, the more energy that will be

consumed, which leads to decreased the energy efficiency.

8. Category 8 is when Powerup = 1, Speedup < 1. This category indi-

cates that the refactoring technique decreased the average of the per-

formance, and the energy efficiency did not improve.

9. Category 9 (newly added to the categories) is when Speedup = 1 and

Powerup > 1. This category indicates that the refactoring technique

maintained the same level of performance and reduced the energy effi-

ciency, such as when a mobile device performs heavy computation and

the battery charge is consumed faster.

10. Category 10 is when Powerup > 1, Speedup < 1. This category indi-

cates that the refactoring technique increased the energy consumption

and decreased the performance. The refactoring technique is needed

only when the requirement to make the application software code main-

tainable is more important than the performance and energy consump-

tion.

3.3. Experiment Setup and Execution

Two versions of the application software code (non-refactored and refac-

tored) are compared for each code refactoring technique by using the GPS-
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UP metrics in order to show the improvement or decline in performance and

energy efficiency.

3.3.1. Experiment Execution Setup

The scenario of the experiment contains seven steps:

1. Develop Fowler’s sample code in Android Studio to create a mobile

application.

2. Run the application in Android mobile platform.

3. Measure energy consumption and performance.

4. Apply a code refactoring technique to the code.

5. Run the application again.

6. Measure energy consumption and performance.

7. Apply results to GPS-UP Metrics to evaluate and categorize the code

refactoring technique.

3.3.2. Experiment Environment

Android Studio was used to develop a mobile application that runs the

sample code to measure the code refactoring techniques. The application

was installed on a Samsung Galaxy S5 smartphone and an LG Nexus 5X

smartphone. The specifications of each mobile device are listed in Table 3.2

and Table 3.3, respectively.
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Table 3.2: Samsung Galaxy S5 Specifications

Category Specifications

Processors Qualcomm Snapdragon 801 Processor, 2.5GHz

Quad-core Krait 400 Adreno 330 GPU

Memory RAM: 2GB

Storage Internal: 32GB

Platform Android 6.0 Marshmallow, TouchWiz UI

Table 3.3: LG Nexus 5X Specifications

Category Specifications

Processors Qualcomm Snapdragon 808 Processor, 1.8GHz

Hexa-core 64-bit Adreno 418 GPU

Memory RAM: 2GB

Storage Internal: 32GB

Platform Android 6.0 Marshmallow

3.3.3. Energy Measurement Tool

PowerTutor [64] is the application used to measure energy consumption

in my study. This application was developed for Android mobile devices to

measure and display the power consumed by the device components and any

running application. In addition, PowerTutor enables software developers to

monitor changes in software energy efficiency while modifying the software

design or code. PowerTutor has a power consumption estimation within 5%.
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3.4. Case Studies

There were four case studies presented to profile code refactoring tech-

niques, Fowler’s sample code, common algorithms code, AnotherMonitor ap-

plication, and Simple Calculator application. The energy consumption and

execution time of the mobile application were measured ten times before

implementing each refactoring technique, and ten times after implementing

each refactoring technique. After the average, median, and variance of each

ten runs were calculated and analyzed, there were no extreme score, and

the average value was found as the best value to be applied to the GPS-UP

metrics. Then, Greenup, Speedup, and Powerup were calculated in order to

categorize each refactoring technique.

3.4.1. Flower’s Sample Code

I developed Fowler’s sample code into a mobile application and imple-

mented the chosen 21 refactoring techniques to the software code to measure

the energy consumption and performance as in [50] [18] [54]. The results were

applied to the GPS-UP metrics to categorize the refcatoring techniques. Ta-

ble 3.4 and Table 3.8 illustrates the results of the Samsung Galaxy S5 and

LG Nexus 5X respectively.

3.4.2. Common Algorithms Code

In this experiment, I implement a mobile application with a code that

has a common data structure (linked list) and two algorithms (quick sort and
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Table 3.4: GPS-UP Metrics Categories for 21 Code Refactoring Techniques

for Fowler’s sample code in the Samsung Galaxy S5, Where (s) Is Second(s)

and (j) Is Joule(s)

Samsung Galaxy S5 AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC

Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed

Inline Method 62.36 11.37 59.46 9.91 1.15 1.05 0.91 C1 264 4

Move Method 61.43 11.06 58.47 8.80 1.26 1.05 0.84 C1 288 16

Inline Class 63.38 12.78 58.50 9.56 1.34 1.08 0.81 C1 298 5

Remove Parameter 60.67 10.00 58.50 9.62 1.04 1.04 1.00 C2 360 6

Pull Up Field 60.59 10.71 60.45 10.50 1.02 1.00 0.98 C3 354 10

Pull Up Method 60.61 10.55 60.50 10.40 1.01 1.00 0.99 C3 354 5

Inline Temp 60.55 10.84 58.51 10.63 1.02 1.03 1.01 C4 264 2

Remove Assignments to Parameters 61.44 10.97 59.45 10.69 1.03 1.03 1.01 C4 272 3

Replace Type Code with State Strategy 62.60 10.46 60.43 10.39 1.01 1.04 1.03 C4 320 20

Replace Method with Method Object 60.65 10.69 59.44 11.86 0.90 1.02 1.13 C6 274 15

Move Field 61.72 10.73 61.30 11.70 0.92 1.01 1.10 C6 288 10

Replace Array with Object 62.41 11.04 59.98 11.74 0.94 1.04 1.11 C6 306 19

Extract Class 60.28 12.28 62.84 12.39 0.99 0.96 0.97 C7 298 20

Replace Data Value with Object 62.00 11.44 63.12 11.63 0.98 0.98 1.00 C8 296 10

Decompose Conditional 61.13 11.13 60.94 12.12 0.92 1.00 1.09 C9 335 6

Replace Temp with Query 62.37 11.30 62.59 11.70 0.97 1.00 1.03 C9 265 7

Split Temporary Variable 60.16 10.68 60.38 12.09 0.88 1.00 1.13 C9 270 4

Extract Method 61.14 11.10 62.13 11.84 0.94 0.98 1.05 C10 263 7

Self Encapsulate Field 61.42 12.54 63.10 14.18 0.88 0.97 1.10 C10 293 3

Replace Conditional with Polymorphism 63.21 10.17 64.13 12.91 0.79 0.99 1.25 C10 340 17

Add Parameter 59.15 9.85 61.02 11.10 0.89 0.97 1.09 C10 354 6

Table 3.5: GPS-UP Metrics Categories for 10 Code Refactoring Techniques

for common algorithms code in the Samsung Galaxy S5, Where (s) Is

Second(s) and (j) Is Joule(s)

Samsung Galaxy S5 - Common Algorithms AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC

Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed

Inline Method 88.49 28.86 86.19 27.16 1.06 1.03 0.97 C1 310 8

Move Method 89.01 29.35 86.52 28.17 1.04 1.03 0.99 C1 310 20

Remove Parameter 89.07 28.82 88.28 28.53 1.01 1.01 1.00 C2 310 8

Inline Temp 88.88 28.77 87.52 28.48 1.01 1.02 1.01 C4 310 5

Replace Array with Object 88.66 27.99 87.26 29.84 0.94 1.02 1.08 C6 310 25

Decompose Conditional 88.43 29.07 89.48 29.35 0.99 0.99 1.00 C8 310 10

Replace Temp with Query 88.57 28.30 88.79 29.61 0.96 1.00 1.04 C9 310 11

Split Temporary Variable 88.38 28.39 88.48 29.67 0.96 1.00 1.04 C9 310 5

Extract Method 87.54 27.74 88.82 29.09 0.95 0.99 1.03 C10 310 9

Add Parameter 87.32 28.36 88.78 29.20 0.97 0.98 1.01 C10 310 6
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Table 3.6: GPS-UP Metrics Categories for 6 Code Refactoring Techniques

for AnotherMonitor Application in the Samsung Galaxy S5, Where (s) Is

Second(s) and (j) Is Joule(s)

Samsung Galaxy S5 - AnotherMonitor AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC

Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed

Inline Method 87.54 17.42 84.47 15.53 1.12 1.04 0.92 C1 2394 70

Inline Temp 87.57 17.44 86.55 17.29 1.01 1.01 1.00 C2 2394 15

Replace Array with Object 87.56 17.49 85.52 18.49 0.95 1.02 1.08 C6 2394 60

Extract Method 87.59 17.44 87.78 18.55 0.94 1.00 1.06 C9 2394 75

Decompose Conditional 87.32 17.47 88.96 18.47 0.95 0.98 1.04 C10 2394 60

Split Temporary Variable 87.47 17.52 88.57 18.44 0.95 0.99 1.04 C10 2394 25

Table 3.7: GPS-UP Metrics Categories for 6 Code Refactoring Techniques

for Simple Calculator Application in the Samsung Galaxy S5, Where (s) Is

Second(s) and (j) Is Joule(s)

Samsung Galaxy S5 - Simple Calculator AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC

Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed

Inline Method 62.21 11.00 61.52 9.98 1.10 1.01 0.92 C1 700 21

Inline Temp 62.34 10.56 61.52 10.43 1.01 1.01 1.00 C2 700 10

Replace Array with Object 61.78 10.33 60.16 11.00 0.94 1.03 1.09 C6 700 15

Extract Method 62.82 10.39 62.99 11.28 0.92 1.00 1.08 C9 700 35

Decompose Conditional 62.76 11.81 63.25 12.11 0.98 0.99 1.02 C10 700 29

Split Temporary Variable 61.16 11.32 62.33 12.02 0.94 0.98 1.04 C10 700 17
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Table 3.8: GPS-UP Metrics Categories for 21 Code Refactoring Techniques

for Fowler’s sample code in the LG Nexus 5X, Where (s) Is Second(s) and (j)

Is Joule(s)

LG Nexus 5X AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC

Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed

Inline Method 67.68 13.20 66.54 12.70 1.04 1.02 0.98 C1 264 4

Move Method 67.81 12.39 63.94 10.56 1.17 1.06 0.90 C1 288 16

Inline Class 66.18 13.18 62.71 11.03 1.19 1.06 0.88 C1 298 5

Remove Parameter 62.67 13.22 61.41 12.82 1.03 1.02 0.99 C1 360 6

Pull Up Field 65.82 12.41 64.63 11.63 1.07 1.02 0.95 C1 354 10

Pull Up Method 65.50 13.27 65.37 12.39 1.07 1.00 0.94 C3 354 5

Inline Temp 66.85 13.17 63.99 12.96 1.02 1.04 1.03 C4 264 2

Remove Assignments to Parameters 66.78 13.13 68.57 12.12 1.08 0.97 0.90 C5 272 3

Replace Type Code with State Strategy 66.67 13.76 68.14 12.64 1.09 0.98 0.90 C5 320 20

Replace Method with Method Object 68.28 13.35 66.30 14.69 0.91 1.03 1.13 C6 274 15

Move Field 64.30 13.73 62.80 14.42 0.95 1.02 1.08 C6 288 10

Extract Class 64.79 13.78 63.49 14.24 0.97 1.02 1.05 C6 298 20

Replace Array with Object 66.77 13.29 64.35 13.88 0.96 1.04 1.08 C6 306 19

Decompose Conditional 66.17 12.96 66.24 14.40 0.90 1.00 1.11 C9 335 6

Extract Method 64.51 12.74 68.13 14.82 0.86 0.95 1.10 C10 263 7

Replace Temp with Query 66.36 14.33 68.11 15.28 0.94 0.97 1.04 C10 265 7

Split Temporary Variable 67.36 13.12 68.87 14.39 0.91 0.98 1.07 C10 270 4

Replace Data Value with Object 63.65 12.17 66.25 14.10 0.86 0.96 1.11 C10 296 10

Self Encapsulate Field 64.46 12.62 66.91 14.21 0.89 0.96 1.08 C10 293 3

Replace Conditional with Polymorphism 65.55 13.42 66.89 14.55 0.92 0.98 1.06 C10 340 17

Add Parameter 63.49 12.51 64.98 13.20 0.95 0.98 1.03 C10 354 6

Table 3.9: GPS-UP Metrics Categories for 10 Code Refactoring Techniques

for common algorithms code in the LG Nexus 5X, Where (s) Is Second(s)

and (j) Is Joule(s)

LG Nexus 5X - Common Algorithms AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC

Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed

Inline Method 89.17 29.02 85.80 26.13 1.11 1.04 0.94 C1 310 8

Move Method 88.34 29.31 86.99 27.45 1.07 1.02 0.95 C1 310 20

Remove Parameter 88.86 29.02 87.86 28.83 1.01 1.01 1.00 C2 310 8

Inline Temp 88.25 29.18 86.65 28.89 1.01 1.02 1.01 C4 310 5

Replace Array with Object 89.00 28.99 87.09 30.19 0.96 1.02 1.06 C6 310 25

Decompose Conditional 88.80 28.87 89.76 29.04 0.99 0.99 1.00 C8 310 10

Replace Temp with Query 88.79 29.05 88.95 31.03 0.94 1.00 1.07 C9 310 11

Split Temporary Variable 88.71 29.63 88.84 30.84 0.96 1.00 1.04 C9 310 5

Extract Method 88.87 28.85 91.05 30.79 0.94 0.98 1.04 C10 310 9

Add Parameter 88.92 28.42 90.29 30.88 0.92 0.98 1.07 C10 310 6
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Table 3.10: GPS-UP Metrics Categories for 6 Code Refactoring Techniques

for AnotherMonitor Application in the LG Nexus 5X, Where (s) Is Second(s)

and (j) Is Joule(s)

LG Nexus 5X - AnotherMonitor AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC

Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed

Inline Method 89.14 18.45 85.51 17.68 1.04 1.04 1.00 C2 2394 70

Inline Temp 89.45 18.55 85.68 18.35 1.01 1.04 1.03 C4 2394 15

Replace Array with Object 87.43 19.09 89.29 19.31 0.99 0.98 0.99 C7 2394 60

Extract Method 88.87 18.64 88.91 18.74 0.99 1.00 1.01 C9 2394 75

Decompose Conditional 88.50 18.30 89.59 19.10 0.96 0.99 1.03 C10 2394 60

Split Temporary Variable 87.93 17.98 89.14 18.79 0.96 0.99 1.03 C10 2394 25

Table 3.11: GPS-UP Metrics Categories for 6 Code Refactoring Techniques

for Simple Calculator Application in the LG Nexus 5X, Where (s) Is

Second(s) and (j) Is Joule(s)

LG Nexus 5X - Simple Calculator AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC

Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed

Inline Method 63.67 10.37 62.28 10.10 1.03 1.02 1.00 C2 700 21

Inline Temp 63.04 10.17 61.71 10.03 1.01 1.02 1.01 C4 700 10

Replace Array with Object 62.99 10.91 64.13 10.99 0.99 0.98 0.99 C7 700 15

Extract Method 62.75 10.03 62.86 11.28 0.89 1.00 1.12 C9 700 35

Decompose Conditional 63.21 11.09 63.68 11.82 0.94 0.99 1.06 C10 700 29

Split Temporary Variable 63.22 11.26 63.84 13.11 0.86 0.99 1.15 C10 700 17
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binary search) in Java code [14] [65] [53] [25]. The linked list contains 4,500

objects. Ten code refactoring techniques are applicable to the application

code. After we implemented each refactoring technique to the code, results

were applied to the GPS-UP metrics to categorize each refactoring technique.

Table 3.5 and Table 3.9 illustrate the results of the Samsung Galaxy S5 and

LG Nexus 5X, respectively.

3.4.3. Two Open-Source Applications

To generalize our experiment results, we chose two commonly used ap-

plications from F-Droid [36] software repository to measure the impact of

6 refactoring techniques on energy consumption and performance in a real

open-source mobile application as in [43] [44] [24] [20] [5].

AnotherMonitor [22] is a mobile application that monitors and records

CPU utilization and memory usage. It generates graphic results in 0.5, 1, 2

and 4 second intervals. To perform the experiment and measure the appli-

cation energy consumption and performance, the interval time was disabled

and swapped with a loop that has 20k iterations. Six code refactoring tech-

niques out of the 21 were applicable to the mobile application code. After

implementing each refactoring technique to the code, the results were applied

to the GPS-UP metrics to categorize the used refactoring technique. Table

3.6 and Table 3.10 illustrate the results of the Samsung Galaxy S5 and LG

Nexus 5X, respectively.

Simple Calculator [33] is a mobile application that performs simple math-

ematical functions. Decimal numbers were injected as an input to the ap-
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plication code, to eliminate the human factor and measure the application

energy consumption and performance. Six code refactoring techniques out

of the 21 were applicable to the mobile application code. After we imple-

mented each refactoring technique to the code, the results were applied to

the GPS-UP metrics to categorize each refactoring technique. Table 3.7 and

Table 3.11 illustrate the results of the Samsung Galaxy S5 and LG Nexus

5X, respectively.

3.5. Discussion

Following is an explanation of the technical reasons behind the positive

or negative improvement for each refactoring technique shown in the result

of my case studies.

3.5.1. Green Categories

The refactoring techniques that fell in this green area improved perfor-

mance or energy efficiency or both together. The Inline Method technique

replaced the method call with its body which eliminates the fetch-decode-

execute cycle to call the method. The Move Method technique reduced the

cost of the queries between two classes by moving the method to the class

that has more features with it. The Inline Class technique deleted the class

that is not needed very often and moved its work to another class.

The Remove Parameter technique deleted the parameter that is no longer

needed in the method. As a result, the recent two refactoring techniques

eliminated the extra load in the memory. The Pull Up Field technique moved
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the field that the two subclasses had into the upper class which reduced the

cost of duplicate parameters.

The Pull Up Method technique which improved only the energy efficiency

and maintained the same level of performance. The refactoring technique

moved the same method that the two subclasses had into the upper class

which reduced the energy consumption to allocate one method in the memory

instead of two duplicate methods.

The Inline Temp technique improved the performance more than the en-

ergy efficiency. Deleting temporary variables reduced the time for fetching

the unnecessary temporary variable from the main and cache memories. As

SpeedUp is greater than PowerUp, the Inline Temp technique is still consid-

ered a positive improvement to the energy efficiency.

The following refactoring techniques did not improve performance and

maintained the same level of energy efficiency which is considered a positive

improvement. The Remove Assignment to Parameter technique assigned a

value to a local variable instead of a parameter which improved maintainabil-

ity and readability. The Replace Type Code With State Strategy technique

changed the behavior of the class by adding subclasses for the type of object

which made the code updateable. In addition, because there was no change

in performance and energy efficiency, these refactoring techniques are still

considered green categories.
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3.5.2. Red Categories

The refactoring techniques that consumed more energy although several

refactoring techniques improved performance. When the method is long and

the Extract Method technique cannot be implemented to the code, The Re-

place Method with Method Object technique is the solution to turn the

method into an object with its attributes in order to split the long method

into short methods and that makes the code better organized and faster.

However, the code consumed more energy because of the extra computing

and allocation of the extra attributes and methods.

The Move Field technique moved the field to the class that uses the field

more than its original class; therefore, the technique improved performance

only by reducing unnecessary queries from two classes to the field. The Ex-

tract Class technique split the class that did the work of two classes which

improved performance; however, this technique did not improve energy effi-

ciency because of the increase in the number of classes in the memory.

The Replace Array With Object technique changed the array that had

different types of elements into an object and the different types of elements

into the object’s attributes which made the code more understandable and

faster over the cost of consuming more energy for accessing the object’s

attributes instead of the array’s elements.

The Decompose Conditional technique replaced each part of a compli-

cated condition if-then-else into a method which is more readable and un-

derstandable; however, calling the created methods costs more energy. The
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Extract Method technique extracted part of the long method to be in a new

separate method. As a result, the refactoring technique downgraded the per-

formance and energy efficiency for calling the new method. However, this

technique is still beneficial because the new method can be called by other

methods.

The Replace Temp With Query technique replaced the temporary vari-

able and its references with a query from a method which made the CPU

execute the method every time there is reference to the temporary variable.

The positive improvement is that the created query and its method can be

used by other methods. The Split Temporary Variable technique replaced a

temporary variable that is assigned to two values with two temporary vari-

ables which made the code more understandable. The price was sacrificing

performance and energy by loading two variables instead of one to the mem-

ory.

The Self Encapsulate Field technique added a Get Method to access the

field instead of directly accessing the field in order to achieve encapsulation.

However, the Set and Get methods are extra, which lead to consuming more

time and energy to execute. The Replace Data Value with Object technique

replaced the data attribute that needed more data or behavior with an object

which means creating a new class for the object; therefore, creating a new

class made the CPU and RAM slower and consumed more energy.

The Replace Conditional with Polymorphism technique replaced the con-

dition that chooses different tracks and different objects with a subclass and

method for each object; similarly, adding classes leads to the same result for
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performance and energy efficiency. The last refactoring technique, the Add

Parameter technique added a parameter to the method that needed more

information which means more energy is needed to access this parameter

from the RAM. These refactoring techniques did not improve performance

or energy efficiency despite being useful for reaching maintainability.

3.5.3. Analysis and Comparison

The four case studies are compared next to each other in Table 3.12 based

on GPS-UP metrics categories for refactoring techniques. In Fowler’s Sam-

ple, the categories of the 21 refactoring techniques are slightly different in the

two mobile environments. However, the 21 refactoring techniques fell within

the same green or red area of the GPS-UP metrics. In common algorithms,

the 10 refactoring techniques fell exactly in the same GPS-UP metrics cate-

gories in both mobile environments (Samsung Galaxy 5S and LG Nexus 5X)

because the code is very simple and only has one Java class. In Another

Mobile and Simple Calculator, the categories of the 6 refactoring techniques

fell in the same GPS-UP metrics categories in each mobile environment.

However, within the same application, different mobile environments led to

slightly different GPS-UP metrics categories within the same green or red

area. However, in all case studies, each refactoring technique had the same

impact on energy consumption and performance in each mobile application

code and environment.
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3.6. Threats to Validity

The main threat to the validity of my results is the possibility of getting

different results when testing refactoring techniques in different mobile oper-

ating systems and devices; moreover, it will prevent us from generalizing my

experiment results. Thus, testing these techniques in different environments

will minimize this threat.

Another threat to validity is that I tested only Fowler’s refactoring tech-

niques in Fowler’s sample code; therefore, I need to test these refactoring

techniques in real-world mobile applications in order to get additional exper-

iment results and better insights.
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Chapter 4

Defect Analysis

As explored in Chapter 2, adapting the ODC model to classify mobile

application defects will improve in-process feedback and finding the root

cause. In this chapter, Section 4.1 explains the proposed method to adapt

ODC to mobile environments. Section 4.2 presents a case study. Section 4.3

provides an analysis of results and discussion.

4.1. New Methodology

When mobile software development started, mobile applications were

small with only a few thousand lines of code compared to traditional software.

Since then, mobile software development has grown exponentially and has

become more complex. Software engineering and software quality were ap-

plied to mobile software development to ensure its accuracy. This introduced

new requirements that need to be considered during the development process,

such as power consumption, interacting with other mobile applications and

environments, screen and sensor handling, and limitations of mobile devices.

The characteristics of mobile application environments were examined

and studied to identify the differences between defects of traditional software

and those of mobile applications. In the original ODC, defect types were

characterized as function, interface, assignment, checking, timing/serializa-
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Figure 4.1: Mapping of Mobile Application Defect Report components to

ODC components

tion, build/package/merge, and algorithm. However, there are new defects

that cannot be classified using the original ODC. Therefore, the proposed

framework caters for mobile application defects. As shown in bold in Table

4.1, I added the following defect types to the original ODC. A brief descrip-

tion for each defect type is provided below:

1. Energy : Mobile devices consume energy from batteries to run, whereas

PCs use power. Due to excessive runs of application code, defects start

arising by consuming more energy.
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2. Network : In mobile environments, networks change rapidly. Due

to improper handling of these changes, mobile applications produce

defects and cause crashing or freezing.

3. Incompatibility : Due to the variety of mobile devices and their oper-

ating systems, mobile environments do not support some mobile appli-

cations or their features; therefore, defects are produced from lacking

to consider mobile environment limitations.

4. GUI : There is a strong relationship between user interface and mo-

bile screen properties such as size, touch, landscape, color, brightness,

etc. Since the user interface is essential when working with mobile ap-

plications, in my proposed framework, I extracted the user-interface

subcategory from the function defect type and created a new defect

type called GUI.

5. Interruption : Mobile devices get interrupted by calls, messages, alerts,

etc. Improper handling of these interruption may cause defects that

make mobile applications stop responding.

6. Notification : Many different types of mobile notifications may pro-

duce defects by giving false notifications (time, place, or content).

To properly classify defects using bug reports, components of these re-

ports (title, description, reproduce, and importance) are mapped to the com-

ponents of the ODC model (type, impact area, trigger, source, and severity)

as illustrated in Figure 4.1. This enables performing one-way, two-way, and

multi-way analyses.
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4.2. Case Study

Canonical has developed a website and a web application called Launch-

pad [37] to allow open-source software to be developed and maintained by

end-user developers. Launchpad has 42,947 projects and 1,779,680 bug re-

ports. I chose two popular mobile applications from Launchpad. First, the

Tomdroid [9] is a note-taking application that has a unique wiki-style display

in the Android platform. In addition, Tomdroid has a format that enables

syncing notes with the Tomboy application [23]. Second, the Telegram [26]

is a cloud-based instant messaging and voice-over IP service. The reporting

bug site categorizes bugs by severity (critical, high, medium, low, wishlist,

and undecided). Tomdroid had 220 bug reports [10], and Telegram had 246

bug reports [27]. In my study, I only considered bugs that had severity levels

from critical to low. Wishlist bugs were discarded since they were not consid-

ered defects. Undecided bugs were ignored due to they were not categorized.

Therefore, 131 defects for Tomdroid and 68 defects for Telegram were appli-

cable for my case study. Furthermore, each bug was manually studied and

classified based on one of the defect types available in the proposed ODC

framework. This classification process was preformed by three individuals

with computer science backgrounds specifically in software engineering.

4.3. Analyses of the Results and a Discussion

Classifying defects of mobile applications provides one-way, two-way, and

multi-way analyses. I analyzed the descriptions and importance of the bug
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Table 4.2: One-Way Analysis Based On Defect Severity

Severity
Tomdroid Telegram

# of Defects # of Defects

Critical 5 5

High 52 21

Medium 36 33

Low 38 9

Table 4.3: One-Way Analysis Based On Defect Type

Type
Tomdroid Telegram

# of Defects # of Defects

Function 6 14

Interface 3 1

Checking - -

Assignment 47 17

Timing/Serialization 11 -

Build/Package/Release 1 1

Documentation - -

Algorithm 3 2

Energy - 2

Network - 5

Incompatibility 29 5

GUI 26 10

Interruption 2 1

Notification 3 10
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Figure 4.2: Tomdroid: Two-Way Analysis Based On Defect Severity and

Type

reports for the selected mobile applications to identify the severity level and

type for each defect. In addition, I performed one-way analysis by examining

one of the proposed ODC attributes, such as type and/or severity, in order

to focus on areas where defects were highly dense. Moreover, I performed

two-way analysis by examining the intersection between type and severity to

explore areas that were not covered in the one-way analysis.
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Table 4.4: Tomdroid: Two-Way Analysis Based On Defect Severity and

Type

Severity Type # of Defects

Critical

Assignment 1

Timing/Serialization 1

Incompatibility 3

High

Assignment 20

Timing/Serialization 7

Incompatibility 17

GUI 6

Notification 2

Medium

Function 2

Assignment 15

Timing/Serialization 2

Build/Package/Release 1

Algorithm 2

Incompatibility 5

GUI 7

Interruption 2

Low

Function 4

Interface 3

Assignment 11

Timing/Serialization 1

Algorithm 1

Incompatibility 4

GUI 13

Notification 1
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Table 4.5: Telegram: Two-Way Analysis Based On Defect Severity and

Type

Severity Type # of Defects

Critical

Network 2

Incompatibility 2

Notification 1

High

Function 1

Assignment 4

Algorithm 1

Energy 1

Network 2

Incompatibility 3

GUI 5

Interruption 1

Notification 3

Medium

Function 11

Interface 1

Assignment 9

Algorithm 1

Energy 1

Network 1

GUI 3

Notification 6

Low

Function 2

Assignment 4

Build/Package/Release 1

GUI 2
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Figure 4.3: Telegram: Two-Way Analysis Based On Defect Severity and

Type
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4.3.1. One-Way Analysis

One-way analysis can be done by analyzing one attribute of the ODC

framework at a time. The severity and type defect attributes are used to

find those areas with high defect rates that need attention to reduce the

number of defects and eliminate their root causes.

Table 4.2 illustrates the classification of defects by severity level for both

mobile applications. Most defects in the Tomdroid application were produced

with high severity, indicating that developers should focus on these defects

and find their root causes. However, no red flags were raised for the Telegram

application since most defects were classified as medium severity.

Table 4.3 illustrates the classification of defects by the type attribute. For

both applications, most defects were produced for the assignment type, rais-

ing a red flag about the level of the programmers’ skills and experience. For

Tomdroid, the second most found defects were produced for the incompatibil-

ity and GUI defect types, indicating that developers need to be aware of the

application’s interactions with different systems, and improve the handling

of the user interface and device screen. For Telegram, The function defect

type showed that the software development stages-analysis and design-were

producing the second highest number of defects in the application. In addi-

tion, the GUI and notification defect types also had high numbers of defects,

indicating that the handling of the application notifications need to be im-

proved, and the user interface and screen states need to be properly designed

and adjusted to the nature of the mobile environment.
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4.3.2. Two-Way Analysis

Two-way analysis can be done by analyzing the intersection between two

of the ODC attributes, allowing the information that is related to the defects

to be displayed, identify their root causes, and find the best solutions. In this

case study, I analyzed the intersection between the type and severity defect

attributes.

Table 4.4 and Figure 4.2 illustrate that the high rate of defects was con-

centrated in the intersection between the attribute severity: high and the

types: assignment and incompatibility. This confirms that programmers are

injecting the code with faults as shown in the one-way analysis, which may

indicate their lack of programming experience or skills. This might also sug-

gest improving the code testing stage before the mobile application release.

Table 4.5 and Figure 4.3 illustrate that the high rate of defects was con-

centrated in the intersection between the attribute severity: medium and the

types: function, assignment, and notification. Since the severity was medium,

this does not raise much concern. However, the types function and notifica-

tion indicate that the analysis and design stages need to be performed with

more consideration of the mobile environment’s characteristics and nature.

4.3.3. Discussion

This paper demonstrated adapting the ODC concept to mobile environ-

ments to confirm its feasibility. Defects generated from mobile environments

and related to new types, such as energy and notification, can be classified

by the original ODC. However, it will provide misleading information related
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to the defect’s origin and may lead to not exposing the root cause, which

can prevent finding the best solution. Exposing mobile application defects

by implementing the proposed ODC framework will benefit developers in ac-

quiring short and accurate in-process feedback. In addition, classifying the

two mobile application defects proved that the proposed ODC adaptation

is significantly effective for defect classification and resolution, specifically

when implementing one-way and two-way analyses.
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Chapter 5

Reliability

5.1. Methodology

The evolution of mobile software development started with the develop-

ment of applications for mobile devices with a few thousand lines of code.

Today, mobile applications have become more complex due to the high de-

mand from end-users. Software engineering and software quality are involved

to ensure the accuracy of the new functionalities and features of mobile ap-

plications. This introduces new requirements which need to be considered to

improve the stability and reliability of mobile applications.

The nature of mobile environments is different from that of PC and server

environments. In addition, mobile application developers rarely share appli-

cation defect data generated during the testing phase. Therefore, due to the

lack of failure data for mobile applications, I propose using bug reports to

analyze defect data and measure, assess, and predict application reliability.

The proposed method consists of the following:

• Phase 1: Extract mobile application defects from the bug report repos-

itory.

• Phase 2: Analyze the bug reports found to discard those that are not
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related to software reliability, such as defects that originate from the

mobile operating system or hardware.

• Phase 3: Weigh each bug report based on its classification as shown in

Table 5.1.

Table 5.1: Suggested Bug Report Weight

Importance Weight

Critical

1
High

Medium

Low

Wishlist 0

Undecided Defect validity ratio

• Phase 4: Relate the date of each bug report to the total number of

days since the release day of the mobile application.

• Phase 5: Assess and evaluate the reliability of the selected mobile ap-

plication and predict its future reliability using SRGMs.

• Phase 6: Use the purification rate and the standard error of the esti-

mate for assurance.
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5.2. Case Study

Measuring and predicting reliability in mobile applications are carried

out through the testing stage, collecting defect data from the bug report

repository, and applying the most commonly used SRGMs. In this chapter, I

selected an open-source mobile application as a case study because its failure

data is available for developers and end-users to present the adequacy of the

selected SRGMs in mobile applications.

Table 5.2: Weighted Bug Reports: Version 1

Importance Number of bug reports Weight

Critical 2 1

High 13 1

Medium 22 1

Low 9 1

Wishlist 25 0

Undecided 43 0.65

5.2.1. Defect Data Set

The bug reports are extracted from the bug report repository of Launch-

pad [38]. Launchpad classifies bug reports based on importance and status.

For importance, the bug reports are classified as critical, high, medium, low,

wishlist, and undecided. For status, the bug reports are classified as new,

incomplete, invalid, confirmed, in progress, fix committed, fix released, under
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Table 5.3: Weighted Bug Reports: Version 2

Importance Number of bug reports Weight

Critical 3 1

High 8 1

Medium 11 1

Low 0 1

Wishlist 3 0

Undecided 111 0.88

consideration for removal, triaged, and won’t fix. For this study, I also chose

the open-source mobile application, Telegram [26] [27]. Telegram in Launch-

pad has two versions. Version 1 has 114 bug reports from 5 September 2014

to 7 April 2016 and version 2 has 136 bug reports from 8 April 2016 to 4

December 2019.

I weigh each bug report based on its validity. Valid bug reports whose

importance levels range from critical to low are weighted 1. Wishlist bug

reports are weighted 0 because they are not considered valid defects. Unde-

cided bug reports could be valid 1 or wishlist 0. Therefore, I calculate the

weight of an undecided bug report based on the ratio of the valid bug reports

to the total of valid and wishlist bug reports as illustrated in Table 5.2 and

Table 5.3.

The following equation is used to determine the undecided bug report
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weight:

Uweight =
C +H +M + L

C +H +M + L+W
, (5.1)

where C is critical, H is high, M is medium, L is low, W is wishlist, and U is

undecided.

Applying Equation 5.1, I get the following ratio of the undecided bug

report for version 1 of the Telegram application:

2 + 13 + 22 + 9

71
= 0.65. (5.2)

The ratio of the undecided bug report for version 2 of The Telegram

application is calculated as follows:

3 + 8 + 11

25
= 0.88. (5.3)

5.2.2. Modeling SRGMs

The main goal of introducing many software reliability growth models

is to assess and analyze reliability growth through software testing and re-

lated defect arrival and removal. Non-homogeneous Poisson process (NHPP)

software reliability models were developed to overcome the inconsistency of

failure occurrence intervals. The NHPP models assume defects that are dis-

covered during the testing phase are removed without introducing new de-

fects, and the mobile application used in the field environment is the same

as that used during the testing phase. In this case study, I use the following

three commonly used SRGMs and Song’s newly proposed model et al. [57]:
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• The Goel-Okumoto model by Goel and Okumoto [49] is one of the most

frequently used of the NHPP models and is defined as:

m(t) = N(1 − e−bt) , (5.4)

where N is the estimated total defects, and b is a constant.

• The S-shaped model by Yamada et al. [63]) is also an NHPP model,

which predicts the cumulative defects in each given time (t) with con-

stants b > 0 and N > 0 and is defined as:

m(t) = N(1 − (1 + bt)e−bt) , (5.5)

where b and N can be estimated from observation data.

• The Musa-Okumoto model by Musa et al. [46] is a logarithmic execu-

tion time model. This model is a different type of NHPP model and is

defined as:

m(r) =
1

φ
log(λ0φr + 1) , (5.6)

where r is the measurement of the CPU-time execution, λ0 is the in-

tensity of the initial failure, and φ is a model parameter.

• A newly proposed model, which was presented by Song et al. [57] to

measure software reliability while considering the uncertainty of oper-

ating systems and learn-curve in the fault detection rate function, is as
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follows:

m(t) = N

(
1 − β

β + ln(a+e
bt

1+a
)

)α
, (5.7)

where α >= 0 and β >= 0 are constant.

5.3. Discussion and Analysis

After the selected SRGMs are applied to the weighted defect data sets,

the reliability assessment and prediction of the case study are analyzed and

discussed.

Figure 5.1: Bug Reports Distribution Over Time for Version 1 (Left) and

Version 2 (Right)
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Figure 5.2: Valid Bug Reports Distribution for Version 1 (Left) and

Version 2 (Right)

5.3.1. Reliability Assessment

After I weight each bug report for a valid defect, I plot the cumulative

weighted defects over calendar time for Telegram version 1 and version 2. In

the plot, the y-axis represents the cumulative number of defects, and x-axis

represents the cumulative arrival day for each defect. Figure 5.1 shows the

distribution of all bug reports, and Figure 5.2 shows the valid and weighted

bug reports over time for both versions of the Telegram application. Version

1 contains 114 bug reports with a total of 76.6 cumulative defects. Version

2 contains 136 bug reports with a total of 119.68 cumulative defects.

To fit any SRGM model, the following should be satisfied. First, be aware

of the used SRGM model assumptions. Second, the mobile application is

62



tested by the same testing methodology in the same environment. Third, if

the mobile application has new capabilities, the failure history should reflect

these changes. Finally, the defect data set shows that the mobile application

is reaching growth in reliability.

After plotting Telegram version 1 and version 2, version 1 plot shows

that this version had ended before it reached a stable phase. Therefore, it

was excluded from implementing SRGMs. Furthermore, SRGMs will only

be fitted to version 2 for assessment and prediction. Figure 5.3 shows the

fitted Goel-Okumoto, S-shaped, Musa-Okumoto, and Song’s model on the

number of defects over time. Table 5.4 shows the SRGM equation for the

total number of defects over time.

As SRGMs are used to measure the growth in software reliability, there is

a need to understand and evaluate the change in reliability. This is achieved

through calculating the purification level ρ: The closer ρ is to 1, the more

reliability growth in the application. When all failures are removed, ρ will

become 1. This implies that the greater the ρ value, the more reliability

growth I will have [59]:

ρ =
λ0 − λτ
λ0

= 1 − λτ
λ0
, (5.8)

where the initial or peak failure rate for the models is represented by λ0. The

final failure rate is represented by λτ .
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For further investigation and assurance of the results, I calculate the

standard error of estimate (SEOE) to measure the accuracy of the SRGM

predictions. The SEOE is defined as follows:

σest =

√∑
(Y − Y ′)2

N
, (5.9)

where σest is the standard error of the estimate, Y is an actual defect, Y ′ is a

predicted defect, and N is the total number of defects. The numerator is the

sum of the squared differences between the actual defects and the predicted

defects.

Table 5.5 lists the ρ values of the selected SRGMs for version 2 of the mo-

bile application, representing the potential reliability improvement estimated

by the SRGMs.

Continuous testing and fault removal will lead to a decrease in the failure

rate, or what is referred to as improvement in potential reliability, to be

between 93.8% and 99.4% in version 2, which is significant.

Table 5.5 also shows the SEOE for the SRGMs in version 2 is between

0.288 and 0.735. This indicates that the most fitting model is Goel-Okumoto,

and the prediction is close to the real data based on the calculated small

values as shown in the results.
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Figure 5.3: SRGMs Fitted on Valid Failures for Version 2
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Table 5.4: SRGM Equations Fitted on Valid Failures For Version 2

SRGM Equation

Goel-Okumoto µ(t) = 113.9(1 − e−0.005897t)

S-shaped µ(t) = 103.43603(1 − (1 + 0.01591t)e−0.01591t)

Musa-Okumoto µ(τ) = 1/0.02788 ln((0.02788 ∗ 1.23059t) + 1)

Song’s model µ(t) = 197.211
(
1 − 9

9+ln( 197.211+e0.2705t

1+197.211
)

)0.2705
Table 5.5: Purification and SEOE Values of Selected SRGMs

SRGM
Version 2

ρ SEOE

Goel-Okumoto 0.994 0.228

S-shaped 0.938 0.735

Musa-Okumoto 0.98 0.423

Song’s model 0.975 0.469

5.3.2. Reliability Prediction

To test the prediction of the selected SRGMs, I use the undecided bug

report weight for version 2 as a percentage to select the number of failures.

Therefore, I use the first 88% of the defects to predict the last 12%. Figure

5.4 shows the prediction of the selected SRGMs where the vertical line sepa-

rates the selected failures from the predicted failures. In addition, Table 5.6

shows the fitted model equations for the selected SRGMs. The results show

that the models’ predictions are not far from the actual failures. Therefore,

developers can use known SRGMs to evaluate and predict the reliability of

mobile applications.
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Figure 5.4: SRGMs Fitted on Partial Valid Failures for Version 2
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Table 5.6: SRGM Equations Fitted on Partial Valid Failures for Version 2

SRGM Equation

Goel-Okumoto µ(t) = 109.46932(1 − e−0.00636t)

S-shaped µ(t) = 92.79993(1 − (1 + 0.01911t)e−0.01911t)

Musa-Okumoto µ(τ) = 1/0.02134 ln((0.02134 ∗ 0.92742t) + 1)

Song’s model µ(t) = 200.4941
(
1 − 9

9+ln( 200.4941+e0.2669t

1+200.4941
)

)0.2669
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Chapter 6

SUMMARY, CONCLUSION, AND PERSPECTIVE

6.1. Accomplishments and Future Work

In this dissertation, I provided three contributions, code refactoring anal-

ysis, defect analysis, and reliability analysis, in order to improve the quality

of mobile software.

In the first contribution, I provided an evaluation of code refactoring tech-

niques for energy consumption in mobile software systems by using GPS-UP

metrics. I also introduced two new categories to the GPS-UP metrics to bet-

ter categorize the impact of refactoring techniques on mobile applications. I

presented a case study using GPS-UP metrics to evaluate refactoring tech-

niques in Fowler’s sample code. In addition, I extend my work through evalu-

ating refactoring techniques in mobile application code that contains common

algorithms(Quick Sort and Binary Search) and data structures(Linked List)

and two real open-source mobile applications(Simple Calculator and Anoth-

erMonitor). Moreover, I provide a comparison between the results of all case

studies.

Follow-up work in this area includes evaluating additional code refactoring

techniques in open-source mobile applications running in different mobile

software systems to generalize our refactoring technique profile. In addition,
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different metrics will be used to evaluate the impact of refactoring techniques

and provide a comparison between the metrics results.

This work was published by:

• The 16th International Conference on Software Engineering Research

and Practice(SERP, 2018) [6].

• International Journal of Computer Applications (IJCA, 2020) [8].

In the second contribution, I proposed adapting the ODC model to mo-

bile environments to classify defects during software development and after

release. New characteristics and factors of mobile environments and applica-

tions were studied and considered, which led to adding new defect types to

the original ODC framework. In addition, a case study was presented where

defects from bug reports were extracted and classified based on the proposed

framework. Moreover, I provided one-way and two-way analyses and dis-

cussed their results. Our work will make in-process feedback more accurate

during mobile software development and improve software reliability.

Follow-up work in this area includes classifying defects of mobile applica-

tions from different mobile environments in order to generalize my findings.

This work was published at:

• The 28th International Conference on Software Engineering and Data

Engineering(SEDE, 2019) [7].

In the third contribution, I proposed measuring the reliability of mobile

applications based on defects extracted from bug reports. The proposed pro-

cess is composed of six steps. First, extract and characterize the bug reports
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for an open-source mobile application. Second, analyze the bug reports to

discard ones that are not related to software reliability. Third, weight the

bug reports based on their classification. Fourth, relate the date of each

bug report to the total number of days since the release day of the mobile

application. Fifth, assess and evaluate the reliability of the selected mobile

application and predict its future reliability using SRGMs. Finally, use the

purification rate and the SEOE for assurance and provide the fitted SRGM

equations.

The results demonstrated that the reliability of mobile applications can

be evaluated and predicted using SRGMs through defect data extracted from

bug reports. This enables developers to evaluate and predict the reliability

of mobile applications.

Follow-up work in this area includes assessing and predicting more open-

source mobile application in different mobile environments.

This work was accepted by:

• Journal of Software Engineering and Applications (JSEA, 2020).
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