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Probability sampling has served as the gold-standard in survey practice for many

decades. However, as many new data collection methods become available, it is possible

to improve the quality and efficiency of traditional survey practices by integrating different

sample sources. Web-based surveys from the so-called opt-in panels are one type of non-

probability sample that becoming popular these years. They often come with large sample

sizes to yield efficient estimates, but selection bias may compromise the generalizability

of results to the broader population.

Our motivating example is a survey conducted by National Marine Fisheries Service

(NMFS), which collects data to estimate catch of recreational anglers. Currently, the

samples are from two surveys, a mail survey measuring effort (# of trips made in a given

area) and an intercept survey measuring catch per unit effort (# of fish per trip by species).

The samples are combined to provide an estimate of total catch. However, NMFS is

experimenting with alternative data collection procedures that use self-reports submitted

by anglers via electronic devices, such as cell phones. The self-reports are from a non-

probability sample of anglers and may not be accurate. The objective is to improve the

quality and speed of estimation, and/or to reduce cost.

This dissertation consists two pieces of research that are both related to this problem.

The first part of this dissertation is about finding the sampling design for the current es-

timators to meet the desired precision. Currently, the estimators proposed by Liu et al.
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(2017) treat the self reports as auxiliary data to the sample of intercepts, so they are not

used directly in estimation. The estimators’ precision depend on several factors, including

reporting rate, the accuracy and representativeness of reported counts, and the size of

the dockside sample. We develop the R package OptimalFisheryDesign to compare the

estimation precision of the new estimators, investigate the effects of different factors, and

find the corresponding optimal designs for various implementations of the pilot survey.

The second part of this dissertation is to investigate whether or not better estimators

of catch can be developed by treating the large sample of voluntary reports as actual

data, rather than simply as auxiliary information to improve estimates from the dockside

sample. To integrate the non-probability sample and the probability samples, we modify

and evaluate two different weighting approaches proposed by Robbins et al. (2015): joint

weighting and disjoint weighting. In the joint weighting approach, the samples are only

representative when combined as one sample, while in disjoint weighting each sample is

weighted to be individually representative of the population, and then averaged.

In addition to PSA, we propose a new method called Adaptive Propensity Score Ad-

justment (APSA). The method serves as an indicator of whether the propensity score

model correctly predicts the selection probability. It can also reduce the selection bias

by detecting and dropping part of the non-probability sample whose selection mecha-

nism can not be explained by the model. Both the jackknife and bootstrap methods are

proposed and examined for variance estimation.
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CHAPTER 1

Introduction

1.1. Overview of Non-probability Sampling

Probability sampling has served as the gold-standard in survey practice for many

decades (Stephan, 1948; Frankel and Frankel, 1987). The essential component of prob-

ability sampling is its random selection mechanism with known probability of selection for

each sample unit. This allows valid inferences about parameters from the target popula-

tion. A probability sample, when analyzed properly, accurately represents the population

and thus avoids selection bias. Classical approaches in survey sampling are well dis-

cussed in Fuller (2011) and Lohr (2019). However, traditional survey practice has recently

been supplemented with new survey data collection methods (Couper, 2005). Many of

these have an unknown data generating process, and must be analyzed differently than

probability samples. These samples are called non-probability sample.

Compared to traditional survey practice, non-probability sampling has the advantage

that its recruitment process is more efficient and less costly, so that larger sample sizes

are feasible. It may also require less time to deploy or obtain responses. However, the

disadvantage of non-probability sampling is that the data generating process is unknown

and thus may not produce samples that can be made to represent the target population

well. This causes great challenges for making defensible inferences about the population.

The “Summary Report of the AAPOR Task Force on Non-probability Sampling” (Baker

et al., 2013), which was commissioned by the American Association of Public Opinion
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Research (AAPOR) Executive Council, summarizes three major issues that arise when

analyzing non-probability samples: (i) Large exclusion bias: The population accessible to

recruitment is likely to be a small and unrepresentative portion of the target population of

interest; (ii) Selection bias: participants from the non-probability sample may not be repre-

sentative, even for the population that was exposed to recruitment. (iii) Non-participation

bias: even though a non-probability sample may have a large sample size compared to

a probability sample, the participation rates (conditional on being recruited for the study)

are often low. Thus, one should be cautious when analyzing non-probability samples.

The remarkable usage of non-probability-sample-based surveys can be tracked back

to the 1936 election polls. In pre-election polls, the Literary Digest magazine distributed 10

million straw poll ballots, among which 2.3 million were collected. They revealed that Alf

Landon would win by a landslide over Franklin Roosevelt. However, the magazine ignored

the fact that the respondents consisted mostly of telephone owners and the magazine’s

readers, which only represented the middle-to-upper income class of the society at that

time and thus introduced severe selection bias into the sample. As a result, the Literary

Digest made an erroneous prediction. However, it is notable that Wang et al. (2015)

correctly predicted the 2012 presidential election result based on XBOX gaming players,

which demonstrates the potential value of non-probability samples if correctly used.

In addition to making inference solely based on the non-probability samples, there

are many opportunities as well as challenges of developing methods and frameworks to

combine different data sources to assist in estimation. This is known as data integration.

This area is facing challenges and opportunities in developing methods and frameworks,

as the data sources differ in their quality and suitability for answering research questions,

and many of the inexpensive data sources provide non-probability samples (Lohr et al.,

2017).
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1.2. Different Types of Non-probability Samples

Non-probability samples have long been acceptable in various research fields. For

example, in medical research, the recruitment of patients due to their accessibility and

availability results in non-probability samples that provide useful clinical findings from

experiments. For estimation of population characteristics, however, adoption of non-

probability samples for scientific inquiry has been viewed with skepticism. Lately, however,

researchers have begun to investigate whether such samples might provide useful infor-

mation. Due to different selection mechanisms, there are many types of non-probability

samples. We briefly summarize some of them here.

1. Mall intercepts: As the name suggests, the potential sample units are intercepted in

shopping malls or other public spaces. It is an efficient way of collecting samples that

is widely used in marketing research. The mall intercept process involves stopping

shoppers, screening them for qualifying characteristics, and then either conduct-

ing the interview or inviting the sample units to the appointed research facility for

a complete interview. The recruitment process could be random or by some sys-

tematic selection mechanism like stopping every tenth shopper for the interviewer

encounter.

2. River sampling: In river sampling, the responses are collected from website visitors

via online banners, ads, promotions, offers and invitations. The website visitor who

clicks on the survey link will be asked several screening questions and finally routed

to a survey based on their answers. Once the participant completes the survey, or

has been screened out of the survey, they may never be tracked again.

3. Network sampling: Also known as snowball sampling, whose future subjects are

collected by referral from the existing sample units. The initial sample units can also

be collected by convenience. As illustrated by the name, the sample group grows

like a rolling snowball. This sampling method is often used for studying hidden
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populations, such as drug users or sex workers, which are hard to reach. Estimation

from such samples can be affected by severe bias and are hard to generalize to a

broader population.

4. Quota sampling: In quota sampling, the sample units are selected to match the pop-

ulation, in terms of proportions of certain characteristics, such as age and gender.

The purpose of quota sampling is to make the sample mimic the population in terms

of the given characteristics, with the goal of reducing the bias.

5. Volunteer Panel: The volunteer panel is common in areas such as psychology, social

and medical research. Participants who are willing to take part in the study during

a certain time period voluntarily join the panel. When a panel is recruited online,

its size is often large, with thousands or even millions of members. However, the

number of active panel members in any certain time period is limited due to low

response rate.

Among the various types of non-probability samples, web-based samples from vol-

unteer panels have become most popular in recent years (Grana et al., 2014; Schonlau

et al., 2017). These panels consist of volunteers who are willing to participate and are

enlisted through various convenient methods. A web survey is a simple way of getting

access to many respondents from the target population. When collecting data through

the internet, interviewers are no longer needed. Questionnaires can be distributed at very

low cost and thus the survey can be launched easily. In our application, the volunteer

panel collects fishing trip information from fishing boat captains via cell phone or satellite

devices, which forms a non-probability sample.
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1.3. Research Objectives

This research focuses on integrating a non-probability sample with a probability sam-

ple for estimation of population total. It was motivated by a data collection method used to

collect information from the population of recreational anglers by the National Oceanic and

Atmospheric Administration (NOAA). NOAA has been pushed by the state fish and game

agencies, who carry out data collection from anglers in their marine waters, to allow new

sources of data be used as part of the fish catch estimation process called MRIP (Marine

Recreational Information Program). In particular, the anglers themselves are interested

in providing data on their catch via technologies such as cell phones or satellite devices

on their vessels. Such voluntarily submitted data can be regarded as a non-probability

sample. One approach to use these data in estimation is to think of it as part of a capture

recapture system, where the self-reported data are the capture phase and a probability

sample collected from the dockside in-person survey (MRIP) is the recapture phase. With

this use, the self reports serve as the auxiliary information to the recapture sample and

thus are not used directly in estimation.

There are two research objectives in this dissertation that are both related to this prob-

lem. The first objective is about the sample design for the capture-recapture view of

the aggregated data set. Several state fish and game agencies are interested in how to

design such a data collection method, using a cell phone app as the self-report mech-

anism. A frequently encountered question by these agencies is to determine how large

the dockside in-person survey sample is required for adequate precision given specific

self-reporting rates they hope to achieve. To address this question, we developed the R

package OptimalFisheryDesign to investigate the effects of various factors on the estima-

tion precision and to find the most cost effective designs for implementation.
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The second research objective is to determine whether or not better estimators of

catch can be developed by treating the large sample of voluntary reports as actual data,

rather than simply as auxiliary information to improve estimates from the dockside sam-

ple. To incorporate the self-reported sample directly into estimation of total, one way is

to estimate the inclusion probability for the self-reported sample by propensity score ad-

justment (PSA) (Valliant, 2019). If this step produces accurate estimation of the selection

probability, the self-reported sample will have properties of a probability sample and thus

can be weighted to make inference on the target population.

The rest of this dissertation is organized as follows. In Chapter 2, we review the

research background and estimators of total proposed by Liu et al. (2017). Chapter 3 in-

vestigates the first research objective, which is to find the optimal design for the currently

used capture-recapture approach that uses the volunteer data only as auxiliary informa-

tion. Chapter 4 investigates the second research objective, which is to develop inference

methods for a sample composed of both the probability and non-probability samples.

6



CHAPTER 2

Background

2.1. Motivating Example

The National Marine Fisheries Service (NMFS) is responsible for collecting data on

catch by the recreational fishing sector. Their data collection operations are known as the

Marine Recreational Information Program (MRIP). Data from this program are an input to

models that monitor the health of many of the nation’s fisheries. For the last 30 years,

these data have come from a pair of surveys, one to measure effort (# of trips made) and

one to measure catch per unit effort (CPUE=# of fish caught per trip), denoted as ȳ. Effort

is estimated from a retrospective household survey that collects data directly from anglers

on their trips in the previous two months, called a wave. CPUE (ȳ) is estimated from a

dockside in-person survey where sampling units are defined by time units and geography.

The interviewers must have the expertise to identify all species encountered, and so are

technicians/biologists supplied by state fish and game agencies for the coastal states.

Final estimates of catch are obtained by multiplying estimated effort and CPUE (ȳ), which

is repeated for each species, geography, and wave.

This system has recently had increasing demands. Some states are interested in in-

season management of species to prevent overfishing, requiring quicker processing of

data. Scientists need finer geographic resolution to monitor the impact on fishing stock

from events, such as the 2010 Deep-water Horizon oil spill. Current sample sizes can-

not produce sufficient estimation precision for small geographies and short time intervals.
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Increasing the sample sizes sufficiently using the current two-probability-sample method-

ology is prohibitively expensive in many cases.

Because managers and scientists want greater precision, various states are experi-

menting with alternative data collection systems. One is the electronic logbook (ELB);

this approach allows anglers to self-report their own effort and catch in (near) real time,

usually by cell phone or other communication devices. The dockside intercept survey

is still used, but its data are combined with the volunteered ELB reports. If these catch

reports could capture effort, then estimates would be available sooner since the retro-

spective household survey might be eliminated. If the catch was accurately reported at a

high rate, then estimation of CPUE (ȳ) might be improved.

Since the self-reported ELB data is not a probability sample, analysts cannot simply

substitute them for the household survey in the current estimation system. Instead, they

need new estimation methods to ensure that the catch estimates are scientifically defen-

sible. The most common approach has been to use the ELB data as auxiliary information

only. This leads to the approach mentioned in Chapter 1, where the reported and dock-

side intercept samples are viewed as a capture and recapture. Then an estimator similar

to the Lincoln-Peterson index (Le Cren, 1965) is used to estimate not the number of trips

(N), but the total catch (ty) from the trips. Several variations of the estimator have been

proposed (Liu et al., 2017, Breidt et al. 2018). Though these estimators are consistent

for total catch, their precision depends on several factors, including reporting rate, accu-

racy of the reported count, representativeness of the reporting sample and the size of

the dockside intercept sample. The sample size of the dockside intercept sample is un-

der the control of the samplers. However, the features of the reporting sample are less

controllable, since they rely on the voluntary participation of anglers in the fishery.

The agencies that consider changing to such an electronic reporting system usually

have two questions. The first one is whether the dockside intercept sample size they

already have is adequate for their precision needs if used alongside an ELB system. If
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not, they could increase it or try to influence the number or quality of reports made by

anglers to improve precision. For example, they can use outreach programs to educate

anglers about the purpose and importance of the ELB program to try to increase reporting

rate or quality.

The second question is whether a more efficient estimator can be constructed by using

the reported catch directly as data, rather than simply as auxiliary information. Currently,

the estimators of total catch (Liu et al., 2017; Breidt et al., 2018) using the volunteer

reports treat the reported catch and trips as auxiliary variables only. That is, their content

is not taken as data, but rather simply as an auxiliary variable that can be used as a

ratio estimator to help improve the estimator made from the dockside survey. However,

the reports actually include the variable whose total is being estimated from the dockside

survey (catch) and the number of catch reports is much larger among the reporting sample

than in the dockside sample. If the self reports can be correctly weighted to estimate the

total, the new estimator will take the advantage of a larger sample size and thus has better

precision.

2.2. Review of Current Estimators of Total

2.2.1. Capture-Recapture Model

Capture-recapture methods are powerful for population size estimation. Suppose we

are interested in estimating the total number of fishes, say N , in a lake. Two catch at-

tempts are made to estimate this quantity. The first attempt selects a sample of n1 fish,

which are marked and released. The second sample of n2 fish is selected randomly from

the same population, and it is found that m of them were previously caught and marked

in the first catch. Under the assumption that proportions of marked fish are the same on

average in the second sample and the population, we can equate the two proportions:
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n1

N
=
m

n2

. (2.1)

This gives the classical estimator, referred to as the Lincoln-Petersen index due to the

pioneering work of two ecologists (Le Cren 1965):

N̂ =
n1n2

m
. (2.2)

This estimator is also the maximum likelihood estimator (MLE) under a hyper-geometric

model.

2.2.2. Estimators of Total Catch from Electronic Reports

In our application, the self-reported sample and the dockside intercept sample can

be viewed as coming from a capture recapture study. Like the example introduced in

Subsection 1.4.1, the self-reported trips can be treated as the capture sample and the

dockside intercept sample as the recapture sample. Following previous notation, let N

denote the unknown population size, which is the number of recreational fishing trips. Let

y denote the fish catch from each trip and X the associated auxiliary information, which is

a vector including covariates like the sailing duration, date, and the number of passengers

on the boat. Our goal is to estimate the total fish catch ty =
∑N

i=1 yi over a population of

unknown size, rather than to estimate the population size itself.
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Figure 2.1: Visualization of the two sample sources: the self-reported sample (ELB) and
the dockside intercept sample (MRIP).

Figure 2.1 shows our target population and the two sample sources. The self-reported

sample (S1) consists of n1 trips, each containing the self-reported catch y∗ and auxiliary

information X. Due to measurement error, y∗ may be different from y, and the actual

catch y is unobservable for the self-reported trips unless it was also selected into the

dockside intercept sample (S2). S2 consists of n2 trips, each containing the actual catch y

and auxiliary information X. The overlap between the two samples contains m matched

trips with observable y, y∗ and auxiliary information X.

Pollock et al. (1994) previously considered this estimation problem, but in his applica-

tion y∗ was not available for S1. He proposed estimating ty by

t̂yp−SRS = N̂ ȳS2 , (2.3)

where N̂ = n1n2

m
and ȳS2 is the sample average of the y′s from the recaptured units. This

estimator is appropriate when S2 is a simple random sample. It can be adapted when S2

has a complex design, as we will discuss subsequently.

We now review three estimators of total catch proposed by Liu et al. (2017). One is

a generalization of t̂yp−SRS which can be used when the intercept sample has a complex

design. The other two are also based on the capture-recapture idea, but make use of
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self-reported catch available from the probability samples. Following their notation, let ri

be the reporting indicator (ri = 1 if the ith trip is included in S1, 0 otherwise) and wi be

the inverse of the selection probability, or sampling weight, for the ith trip in S2. Then

n̂1 =
∑

i∈s2 wiri, p̂1 =
∑

i∈s2 wiri/
∑

i∈s2 wi and ̂̄y =
∑

i∈s2 wiyi/
∑

i∈s2 wi are estimators of

number of reports (n1), reporting rate (p1) and CPUE (ȳ), all made from S2.

The generalization of Pollock’s estimator for a complex design has the form of a ratio

estimator with auxiliary variable ri and ratio Bp = ty
n1

:

t̂yp =
n1

p̂1

̂̄y = n1
t̂y
n̂1

. (2.4)

The second estimator is also a ratio estimator with auxiliary variable riy
∗
i and ratio

Bc = ty
ty∗

:

t̂yc = ty∗

∑
i∈s2 wiyi∑
i∈s2 wiriy

∗
i

= ty∗
t̂y

t̂y∗
, (2.5)

where ty∗ =
∑

i∈S1
y∗ is the total catch from self-reported trips. This estimator can be

thought of as making a multiplication adjustment to account for unreported catch.

The third estimator is adapted from an optimal linear combination of the previous two,

t̂yp and t̂yc:

t̂MR = (1− w)t̂yp + wt̂yc, (2.6)

where 0 ≤ w ≤1. Ideally, w would be chosen so that it minimizes the variance. This is

a special case of a multivariate ratio estimator proposed by Olkin (1958). In practice, w

needs to be estimated from the sample. Under the simplified situation where the recapture

sample (intercept dockside sample S2) is a simple random sample and the self reports

are accurate (y = y∗), the variance minimizing value of w is wSRS = ty∗/ty. This can be

estimated by ŵSRS =
ty∗

t̂yc
. By substituting this value for w in equation 2.6, even when S2 is

not a simple random sample, we obtain:
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t̂y2 = ty∗ +
n1

n̂1

(t̂y − t̂y∗). (2.7)

t̂y2 is similar to a regression estimator (Section 4, Lohr, 2019), and can be thought of as

making an additive adjustment to account for unreported catch.

All the proposed estimators use the self-reported catch as auxiliary data only. Liu

et al. (2017) showed that these estimators will improve the estimation precision when the

auxiliary variables are highly correlated with the variable of interest. This corresponds to

the situation when the reporting rate is high and the reported catch is accurate. Besides

possibly improved precision, all three estimators have another advantage over estimators

of total made from the intercept sample alone. As noted earlier, the intercept sample

can have substantial under-coverage in areas where a substantial fraction of angling sites

are inaccessible private sites. Thus the Horvitz-Thompson estimator of total made from

the probability sample alone is biased downward. However, this is not necessarily true

for the proposed estimators. Specifically, if the average catch, average reported catch,

and reporting rate are the same for trips ending in public and private sites, then all three

estimators are approximately unbiased (Stokes et al., 2019a). This is the reason these es-

timators are preferred for all areas where there is a non-negligible fraction of trips ending

in private (inaccessible) fishing sites.
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CHAPTER 3

OptimalFisheryDesign: An R package for Fishery Sampling Designs

In this Chapter, we introduce the R package OptimalFisheryDesign to aid in the

sample design as we described in Chapter 2. It designs samples for obtaining data to use

for the total catch estimation using estimators proposed by Liu et al. (2017). The package

helps the analysts investigate:

1. the estimation precision of the three estimators under different combinations of the

dockside intercept sample size and reporting rate,

2. the trade-offs between the dockside intercept sample size and the reporting rate of

the three estimators with respect to the estimation precision,

3. the optimal sampling designs of the three estimators under budget constraints.

3.1. The General Approach to Investigate the Fishery Sampling Design

Our goal is to provide a tool for the analyst to help determine the required sample size

or reporting rate to obtain a specified precision requirement. More specifically, we want

to find the minimum dockside intercept sample size to achieve a specified precision given

reporting rate or vice versa, for each of the three estimators t̂yp, t̂yc and t̂y2. Since there

are different combinations of the dockside intercept sample size and reporting rate for the

same precision, we are also interested in finding the most cost-effective designs under

budget constraints.
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To find such designs, we rely on the percent standard error (PSE) expressions for the

three estimators. The PSE is a measure of the estimator’s precision that is used by NMFS

for sample design. According to NMFS, a PSE value greater than 50% indicates a very

imprecise estimate.

The PSEs of the three estimators are defined by the ratio of their corresponding stan-

dard deviations over the total catch (ty). To approximate their standard deviations when

the intercept sample is from a complex design, we adjust their standard deviations when

the dockside intercept sample is a simple random sample by the design effect (deff ),

which is an input made by the user. The design effect is a factor that summaries the

effects of various complexities in the sample design, especially those of clustering and

stratification (Kish, 1995). Plausible ranges of the design effect are likely to be known by

organizations who regularly use complex designs for their dockside intercept sample. Liu

et al. (2017) provided expressions (A.9) - (A.12) in Appendix A to approximate the three

estimators’ standard deviations when the dockside intercept sample is a simple random

sample (SRS). Hence, we have:

PSE(t̂yp) ≈

√
V ar(t̂yp)/deff

ty
(3.1)

≈

√(
1− n2

N

)
n2/deff

{
CV 2

y + (1 +
1

p1

)− 2
ȳ1

ȳ

}
,

PSE(t̂yc) ≈

√
V ar(t̂yc)/deff

ty
(3.2)

≈

√√√√(1− n2

N

)
n2/deff

{
CV 2

y + (1 +
1

p1

)− 2
ȳ1

ȳ
+

CV 2
1y∗

p1

− 2
ȳ1

ȳ
R1,yy∗CV1yCV1y∗

}
,
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PSE(t̂y2) ≈

√
V ar(t̂y2)/deff

ty
(3.3)

≈

√(
1− n2

N

)
n2/deff

{
CV 2

y + (1 +
1

p1

)− 2
ȳ1

ȳ
+ p1

ȳ∗1
ȳ
CV1y∗(

ȳ∗1
ȳ
CV1y∗ − 2

ȳ1

ȳ
R1,yy∗CV1y)

}
,

where ȳ is the overall mean catch, ȳ1 is the mean catch among the self-reported trips, ȳ∗1

is the mean of y∗ in the reporting sample, CVy is the coefficient of variance of y, CV1y and

CV1y∗ are the coefficients of variation of y and y∗ in the reporting sample, and R1,yy∗ is the

correlation coefficient of y and y∗ in the reporting sample.

It is clear from Equations (3.1), (3.2) and (3.3) that the precision of all three estima-

tors can be improved by either increasing the dockside intercept sample size (n2) or the

reporting rate (p1). If one or the other of the two factors is fixed, the three expressions

can help the analyst determine whether the other can be increased sufficiently to meet

precision requirements, given the other parameters affecting the PSE.

The other parameters that affect the PSE may not always be available to the sample

designer. Hence, we clarify what parameters would be required for the designer to provide

and what defaults can be used when some parameters are difficult to predict. These

parameters can be classified into two groups.

The first group includes parameters describing the catch distribution (ȳ, CVy) and the

design effect (deff ) of the dockside intercept sample. These are parameters that the

analyst who has data from past intercept sampling is likely to be able to approximate or

predict, so they are required to be provided.

The second group includes parameters related to reporting characteristics, which are

ȳ1, CV1y, ȳ∗1, CV1y∗ and R1,yy∗. These parameters may be more difficult to predict for a

sample designer that has no experience with an ELB system. For example, If a user

has not implemented an electronic reporting system before, he or she will not be able

to provide estimates about how complete and representative is the self-reported sample
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(p1,ȳ1, CV1y, ȳ
∗
1, CV1y∗) and how accurate the reports are (R1,yy∗). In that case, the user

may provide estimates from a ELB implementation in another state, or use default values.

Our approach does not require that these parameters be specified, but rather will provide

default settings when they are not. The default settings are: 1) the self reports are accu-

rate (R1,yy∗ = 1), 2) when none of the ȳ1, CV1y, ȳ∗1 and CV1y∗ can be specified, the self

reports are assumed representative of the population (ȳ = ȳ1 = ȳ∗1, CVy = CV1y = CV1y∗),

3) when either one pair of (ȳ1, CV1y) or (ȳ∗1, CV1y∗) cannot be specified, the user can

choose one of the two following measurement error models to calculate one missing pair

from the other:

3a) The classical measurement error model (CME) (Carroll et al., 2006):

y∗ = y + e,

where e ∼ (0, αS2
y), with y and e independent. Under CME, R1,yy∗ = 1√

1+α
, CV1y =

CV1y∗/
√

1 + α.

3b) The Berkson model (Berkson, 1950):

y = y∗ + e,

where e ∼ (0, βS2
y∗), with y and e independent. Under the Berkson model, R1,yy∗ = 1√

1+β
,

CV1y = CV1y∗
√

1 + β.

So far, we have discussed all parameters in Equations (3.1), (3.2) and (3.3) based

on the given dockside intercept sample size (n2) and the reporting rate (p1). When the

dockside intercept sample size (n2) changes, the second set of parameters except R1,yy∗

can be affected and we assume the first set of parameters and R1,yy∗ do not change.

However, when the reporting rate (p1) changes, the first set of parameters can’t be affected

but the second set of parameters can change dynamically. This is because the change of
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the reporting rate (p1) will affect the representativeness and accuracy of the self-reported

sample (Clearly, as p1 approaches 1, CV1y = CVy, so the parameters are related.). To

model this dynamic relationship, we make the following assumptions so ȳ1, CV1y, ȳ∗1, CV1y∗

can be specified as a function of p1 (Appendix A):

1. when the reporting rate (p1) increases, the new self-reports are representative of the

anglers who did not report before,

2. when the reporting rate (p1) decreases, the losing self reports are representative of

the current self-reported sample,

3. the accuracy of the self-reported sample (R1,yy∗ ) does not change.

3.2. The R package OptimalFisheryDesign

3.2.1. Overview

The package OptimalFisheryDesign (available on Github: Charlieliu004/Fishery-

OptimalDesign) aims to investigate and compare the effect of the dockside intercept sam-

ple size (n2) and the reporting rate (p1) on the precision of the three estimators: t̂yp, t̂yc

and t̂y2. The package can help the user understand what would be required to design an

efficient ELB system for a particular species. For example, it can provide the PSE for a

catch estimate for a specified intercept sample size over a range of reporting rates. This

can help the user determine whether or not obtaining a desired PSE is feasible, given the

known characteristics of the intercept sample. It can also be used to select a cost-effective

designs for a given precision and cost.
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The package can be used to inform the user either for planning a pilot study (pre-ELB

implementation stage) or to adjust an ongoing ELB operation. The user can input what is

known about the required parameters of catch and reported catch, and the package will

use modeling and default settings described in Subsection 3.1 to supply the rest. Clearly,

the more accurate the information the user can provide, the more realistic the outcomes

provided will be.

3.2.2. Description of the Functions and Their Inputs

The package has 5 functions, with the key inputs summarized in Table 3.1. The first

function CV_population is used to calculate the mean and CV of the catch for the dock-

side intercept sample and the self-reported sample. The function CV_population requires

three inputs: the percentage of fishing trips with non-zero landings for the whole sample,

and the mean and variance of catch from such trips.

The remaining four functions are InterceptSampleSize, ReportingRate, Tradeoff and

OptimalDesign. All require at a minimum that the user supply the parameters of the catch

distribution (ȳ and CVy) for the species that can be calculated by CV_population and the

design effect of the dockside intercept sample. The characteristics of the self-reported

sample are also needed by the four functions as optional inputs, or default values will

be assigned. To describe the self-reported sample, the current reporting rate (p1) and

at least one pair of parameters: (ȳ1, CV1y) or (ȳ∗1, CV1y∗) are required at minimum, with

the remaining parameters supplied by default if not specified. Next, we describe the four

functions and their specific inputs.

The function InterceptSampleSize investigates the effect of the dockside intercept

sample size on the PSE of the three estimators. It requires the additional inputs of the

target reporting rate (target_p1) and target precision (target_PSE). For a given reporting

rate, the function displays PSE (t̂yp), PSE (t̂yc) and PSE (t̂y2) as functions of the dockside
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intercept sample size. The function also provides the dockside intercept sample sizes

required for the three estimators to achieve their target precision. If the current dockside

intercept sample size (n_obs) is specified as the optional input, the three estimators’ PSEs

for the current intercept sample size and reporting rate will also be specified.

The function ReportingRate investigates the effect of the reporting rate on the PSE for

the three estimators. It requires the additional inputs of the the target dockside intercept

sample size (target_n2) and target precision (target_PSE). Under the target dockside

intercept sample size, the function displays PSE (t̂yp), PSE (t̂yc) and PSE (t̂y2) as functions

of the reporting rate. The function also specifies the reporting rates required for the three

estimators to achieve their target precisions.

The function Tradeoff investigates the trade-offs between the dockside intercept sam-

ple size and reporting rate for each estimator to achieve the target PSE. It requires the

additional input of the target precision (target_PSE). Under the target PSE, the function

displays the required dockside intercept sample sizes for the three estimators as functions

of the reporting rate. If the target dockside intercept sample size (target_n2) is specified

as the optional input, the function will specify the required reporting rates for the three

estimators to achieve their target precisions.

The function OptimalDesign provides the optimal sampling designs that achieve the

smallest PSE for each of the three estimators. It requires the additional input of the

cost ratio (cost_ratio) and budget (RelBudget). The cost ratio is defined as the cost of

increasing one percent reporting rate over the cost of recruiting one dockside intercept

sample unit, and the budget is defined in terms of the largest possible dockside sample

size that could be collected. Given the cost ratio and budget, the function displays PSE

(t̂yp), PSE (t̂yc) and PSE (t̂y2) as functions of the reporting rate. If the current dockside

intercept sample size is specified as the optional input, the optimal designs of the three

estimators will be determined based on the current design.
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Table 3.1: Outline of the key arguments for the package OptimalFisheryDesign.

Argument Description Corresponding
Statistics Function

Landings_pct Percentage of fishing trips with
non-zero landings

CV_populationLandings_mean Mean of catch among fishing
trips with non-zero landings

Landings_var Variance of catch among fishing
trips with non-zero landings

Mean_dockside Mean fish catch of the dockside
intercept sample ȳ

InterceptSampleSize
ReportingRate

Tradeoff
OptimalDesign

CVy CV of the dockside intercept
sample CV y

p1_obs Current reporting rate p1

Mean_report Mean fish catch of the
self-reported sample ȳ1

CVy_report CV of the self-reported sample CV1y

Mean_report_s
Mean fish catch of the

self-reported sample containing
measurement error

ȳ∗1

CVy_report_s CV of the self-reported sample
containing measurement error CV1y∗

deff Design effect of the dockside
intercept sample deff

R

Correlation coefficient of the
actual fish catch and its

self-reported value among the
self-reported sample

R1,yy∗

type

Types of measurement error
model. “CME” refers to the

classical measurement model,
“Berkson” refers to the Berkson

model

n_obs Current dockside intercept
sample size n2

InterceptSampleSize
OptimalDesign

target_p1 Desired reporting rate p1 InterceptSampleSize

target_n2 Desired dockside intercept
sample size n2

ReportingRate
Tradeoff

target_PSE Desired estimation precision
InterceptSampleSize
ReportingRate

Tradeoff

cost_ratio

Relative cost for increasing one
percent reporting rate in terms

of increasing the number of
dockside intercept trips

OptimalDesign

RelBudget

Budget in terms of the most
possible dockside intercept
sample size that could be

collected under the current
budget

OptimalDesign
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3.3. Case Study

In this section, we illustrate the usage of the FisheryOptimalDesign package by exam-

ining a case study on the estimation of the total Red Snapper catch from charter boats in

Alabama. In this example, the input parameters are estimated from an ELB experiment

conducted in Alabama, which includes both the dockside intercept sample and the self-

reported sample. We first describe that data, and then explain how the package could be

used for planning the most cost effective designs.

In our example, the dockside intercept sample was collected by NOAA’s Marine Recre-

ational Information Program (MRIP), which interviewed anglers during dockside creel sur-

veys, selected according to a complex sample design. The frame of the design consisted

of locations crossed with time blocks. The time blocks were stratified by weekday and

weekend, while the locations were selected based on a probability proportional to size

(PPS) design. The size was measured by “pressure”, which was meant to capture the

average number of anglers using a particular site in past years. Data about catch/discard

counts of different fish species and number of anglers were collected from every vessel

intercepted during sampled shifts and locations. Vessel registration numbers were also

recorded and used, along with day and time, to identify matches to the self-reported trips.

In this example, the dockside intercept sample contained 211 charter trips. We assume

the design effect was 1.4, based on the estimate from a similar survey.

The self-reported sample was collected by the Gulf of Mexico Charter Boat E-logbook

Project (ELB), which allowed captains to self report their fishing trip information. In our

example, the ELB sample contained 1628 self-reported trips. We used a reporting rate

of p1 = 11% since that was the estimate from the sample. Among the 1628 self-reported

trips, 24 were matched to trips from the MRIP sample. Following previous notation, let y

and y∗ be the total red snapper catch (harvest) of a trip from the MRIP and ELB sample,

respectively. Based on the 24 matched trips, the correlation coefficient of y and y∗ was
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estimated to be R1,yy∗ = 0.85.

Table 3.2 lists the summary statistics for the trips with non-zero fish catch from the

MRIP and ELB sample. The statistics listed under “Overlap” were calculated from the

matched trips. Table 3.3 lists the total recreational red snapper catch estimated by the

three estimators and their corresponding PSEs.

Table 3.2: Descriptive statistics of the recreational Red Snapper catch by Charter boat
from the MRIP Sample and ELB Sample.

MRIP Overlap ELB

Percentage of the trips with landings 0.46 0.7 0.94

Mean of catch among the trips with landings 14.62 15.36 16.5

Variance of catch among the trips with landings 113.71 73.5 101.29

Table 3.3: Three estimates of the total recreational Red Snapper catch and their corre-
sponding PSEs.

Estimate of Total Catch PSE (%)

t̂yp 69, 191 22.8

t̂yc 42, 112 29.4

t̂y2 57, 600 22.5

The package FisheryOptimalDesign can be used to understand how the precision

of the three estimators would be improved by either increasing the dockside intercept

sample size or the reporting rate, and what are the most cost-effective designs for the

three estimators given a specified budget.

3.3.1. Install the FisheryOptimalDesign Package

To install the package FisheryOptimalDesign from Github into R, we can use the "in-

stall_github" function in the "devtools" package:

R > i n s t a l l . packages ( " dev too ls " )
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R > l i b r a r y ( dev too ls )

R > i n s t a l l _ g i t h u b ( " C h a r l i e l i u 0 0 4 / FisheryOpt imalDesign " )

R > l i b r a r y ( " FisheryOpt imalDesign " )

3.3.2. Usage of the Function “CV_population”

To estimate ȳ, CV y from the MRIP sample, ȳ1, CV1y from the matched sample and

ȳ∗1, CV1y∗ from the ELB sample, we apply the “CV_population” function by inputting the

statistics listed in Table 3.2:

R > #MRIP

R > CV_population (0 .46 ,14 .62 ,113.71)

R > #ELB_est

R > CV_population (0 .73 ,15 .15 ,80 .56)

R > #ELB

R > CV_population (0 .94 ,16 .51 ,101.29)

The outputs from the function “CV_population” are listed in Table 3.4, where the mean

catch under “MRIP”, “Overlap” and “ELB” are estimates of ȳ, ȳ1 and ȳ∗1, respectively. The

CV s under “MRIP”, “Overlap” and “ELB” are estimates of CVy, CV1y and CV1y∗, respec-

tively.

Table 3.4: Summary statistics of the recreational Red Snapper catch by Charter boat from
the MRIP sample and ELB sample.

MRIP Overlap ELB

Mean catch 6.55 15.52 11.06

CV 1.57 0.68 0.92

From Table 3.4, we see that the mean catch from the self reported sample is higher

than that of the intercept sample. This is typical for the self-reported catch, as anglers

may feel less motivated to report low or no catch.
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3.3.3. Usage of the Function "InterceptSampleSize"

Suppose we want to reduce the PSE to 16% for all three estimators by increasing the

intercept sample size (n2) with the current reporting rate. To find the required sample sizes

for the three estimators, we use the “InterceptSampleSize” function with the following

inputs:

R > InterceptSampleSize (CVy = 1.57 , Mean_dockside = 6.55 ,

+ target_p1 = 0.11 , target_PSE = 16 ,

+ Mean_report = 15.52 , CVy_report = 0.68 ,

+ Mean_report_s = 11.06 , CVy_report_s = 0.92 ,

+ p1_obs = 0.11 , R = 0.85 , d e f f =1.4)

The “InterceptSampleSize” function produces Figure 3.1, which displays PSE (t̂yp),

PSE (t̂yc) and PSE (t̂y2) as functions of the dockside intercept sample size (n2) for the

reporting rate p1 = 0.11. From Figure 3.1, the PSEs of all three estimators decrease as

the sample size increases. All PSE curves in Figure 3.1 are steep when the sample size

is small, which indicates the efficiency of the dockside intercept sample in reducing the

PSE in this situation. In addition, PSE (t̂yp) and PSE (t̂y2) are very close over the range

of the sample size, while PSE (t̂yc) is always higher than the other two. This shows the

inefficiency of t̂yc compared to t̂yp and t̂y2: to achieve the target PSE of 16%, the dockside

intercept sample size should be increased from 211 to 427, 710 and 416 for t̂yp, t̂yc and t̂y2,

respectively.
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Figure 3.1: Effect of the dockside intercept sample size (n2) on PSE for total recreational
Red Snapper catch by Charter boat.

3.3.4. Usage of the Function “ReportingRate”

Suppose we want to reduce the PSE to 16% for all three estimators by increasing the

reporting rate (p1) of the ELB sample. To find the required reporting rates for the three

estimators, we use the “ReportingRate” function with the following inputs:

R > Report ingRate (CVy = 1.57 , Mean_dockside = 6.55 ,

+ target_n2 = 211 , target_PSE = 16 ,

+ Mean_report = 15.52 , CVy_report = 0.68 ,

+ Mean_report_s = 11.06 , CVy_report_s = 0.92 ,

+ p1_obs = 0.11 , R = 0.85 , d e f f =1.4)
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The “ReportingRate” function produces Figure 3.2, which displays PSE (t̂yp), PSE (t̂yc)

and PSE (t̂y2) as functions of the reporting rate (p1) for the current dockside intercept

sample size n2 = 211. Figure 3.2 shows the PSEs of all the three estimators decrease

as the reporting rate (p1) increases, as we would expect. When the reporting rate is low

(< 25%), PSE(t̂yp) and PSE(t̂y2) are very close , while PSE(t̂yc) is higher. This indicates

t̂yc is less efficient than t̂yp and t̂y2 under this scenario: to achieve the target PSE of 16%

with the same sample size, the reporting rate must be increased from 11% to 32%, 47%

and 27% for t̂yp, t̂yc and t̂y2, respectively.

Figure 3.2 also expresses similar information as Figure 3.1: increasing the reporting

rate when it is low is useful for reducing the PSE. However, it becomes less useful when

the reporting rate is high.
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Figure 3.2: Effect of the ELB sample’s reporting rate (p1) on PSE for total recreational Red
Snapper catch by Charter boat.
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3.3.5. Usage of the Function “Tradeoff ”

As we showed previously, the PSE can be reduced by either increasing the dockside

intercept sample size (n2) or increasing the reporting rate (p1) of the ELB sample. To com-

pare the efficiency of the two strategies, we use the “Tradeoff ” function with the following

inputs:

R > Tradeof f (CVy = 1.57 , Mean_dockside = 6.55 ,

+ target_n2 = 211 , target_PSE = 16 ,

+ Mean_report = 15.52 , CVy_report = 0.68 ,

+ Mean_report_s = 11.06 , CVy_report_s = 0.92 ,

+ p1_obs = 0.11 , R = 0.85 , d e f f =1.4)

The “Tradeoff ” function produces Figure 3.3, which displays the dockside intercept

sample size (n2) as functions of the ELB sample’s reporting rate (p1) for the three esti-

mators to achieve the target PSE. From Figure 3.3, all three curves are steep when the

reporting rate is low. This indicates that by increasing the ELB sample’s reporting rate can

greatly reduce the required dockside intercept sample sizes for the three estimators. We

also notice that t̂yp, unlike the other two estimators, does not gain much additional value

in precision when reporting rate increases beyond a certain point. This is likely because

the estimator does not use the reported catch, but only the number of reported trips in

estimation. However, it is still unclear which point on the curve costs least and thus be the

most cost-effective designs. This is because the cost ratio as we defined in Subsection

3.2.2 has not been considered.
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sample’s reporting rate (p1) for total recreational Red Snapper catch by Charter boat.

3.3.6. Usage of the Function “OptimalDesign”

Suppose we want to find the most cost-effective designs for all three estimators to

achieve the target PSE of 16%, and the cost ratio as we defined in Subsection 3.2.2 is 15.

Suppose the budget is either sufficient for increasing the dockside intercept sample units

from 211 to 391 or increasing the reporting rate from 11% to 23%. Under this cost ratio

and budget, the agency cannot afford to reach the target PSE by purely increasing the

dockside intercept sample size (n2) or the ELB sample’s reporting rate (p1) for all three es-

timators, as demonstrated by Figure 3.1 and Figure 3.2. In this case, the “OptimalDesign”

function could provide the most cost-effective sampling design with the following inputs:
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R > OptimalDesign (CVy = 1.57 , Mean_dockside = 6.55 ,

+ c o s t _ r a t i o = 15 , RelBudget = 180 ,

+ Mean_report = 15.52 , CVy_report = 0.68 ,

+ Mean_report_s = 11.06 , CVy_report_s = 0.92 ,

+ n_obs = 211 , p1_obs = 0.11 , R = 0.85 , d e f f = 1 .4 )

The “OptimalDesign” function produces Figure 3.4, which displays PSE (t̂yp), PSE (t̂yc)

and PSE (t̂y2) for all possible combinations of the dockside intercept sample size (n2) and

the reporting rate (p1) of the ELB sample given the budget and cost ratio. Figure 3.4 also

provides the optimal sampling designs for the three estimators in the top legend.

The optimal design for t̂yp to reach the target PSE of 16% is by increasing the dockside

intercept sample size from 211 to 316, and increasing the reporting rate from 11% to 16%.

Similar to t̂yp, the optimal design for t̂y2 to reach the target PSE is by increasing the

dockside intercept sample size from 211 to 301, and increasing the reporting rate from

11% to 17%. However, the optimal design for t̂yc can only reach a PSE of 21%, which

is by increasing the dockside intercept sample size from 211 to 331, and increasing the

reporting rate from 11% to 15%.
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Figure 3.4: Optimal sampling design for total recreational Red Snapper catch by Charter
boat.

So far, the total cost for this new design is: 211 + 11× 15 + 180 = 556. The “OptimalDe-

sign” function also provides the optimal sampling designs that ignore the current design

under this total cost for the three estimators with the following inputs:

R > OptimalDesign (CVy = 1.57 , Mean_dockside = 6.55 ,

+ c o s t _ r a t i o = 20 , RelBudget = 556 ,

+ Mean_report = 15.52 , CVy_report = 0.68 ,

+ Mean_report_s = 11.06 , CVy_report_s = 0.92 ,

+ n_obs = NULL, p1_obs = 0.11 ,

+ R = 0.85 , d e f f = 1 .4 )
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The “OptimalDesign” function produces Figure 3.5. The optimal designs for the three

estimators are provided in the top legend, which are similar to the designs provided in

Figure 3.4. Under the given budget and cost ratio, the optimal design for t̂yp can reach the

PSE of 16%, with the dockside intercept sample size of 331 and the reporting rate of 15%.

The optimal design for t̂y2 can reach the PSE of 16%, with the dockside intercept sample

size of 316 and the reporting rate of 16%. However, the optimal design for t̂yc can only

reach the PSE of 21%, with the dockside intercept sample size of 346 and the reporting

rate of 14%.
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Figure 3.5: Optimal pilot sampling design for total recreational Red Snapper catch by
Charter boat.
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3.4. Discussion

The approach implemented in the R package OptimalFisheryDesign allows the user

to calculate the sample characteristics, investigate the effect of the two sample sources,

understand the trade-offs between the two sample sources, compare the performance of

all the three estimators, and determine their optimal sampling strategies. However, the

sample designer should be cautious when designing the survey based the package for

several reasons.

First, the sample designer may not be able to provide an accurate cost ratio, which

may compromise the conclusions from the optimal designs provided by the package. For

example, the cost of collecting the self reports involves many aspects such as the cost of

setting up and maintaining the electronic reporting system. As a result, it may be hard to

estimate the average cost for increasing the reporting rate by one percent compared to the

cost for recruiting one more dockside intercept sample unit. As a solution, we recommend

that the researcher examine a range of values for the cost ratio when determine how to

best distribute their budget.

Second, the sample designer should notice that the package assumes a constant cost

ratio for different reporting rates, which may not be true in practice. For example, when

the current reporting rate is low, it may be feasible to increase the reporting rate by putting

more ads or setting a regulation that requires the anglers to report. On the other hand,

when the current reporting rate is high, it may be difficult to increase the reporting rate

further with any new policy. This is because the anglers who don’t report in this situation

are more likely to be the ones who are reluctant to do so. However, it is still reasonable

to assume the cost ratio is relatively stable within a certain range. For example, the cost

ratio may not change dramatically when the reporting rate increases from 10% to 15%.
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Last, the sample designer should be aware that the package does not consider the

effect of non-sampling errors, which may bias the conclusions. For example, the estima-

tion approach requires matching of units in the two samples, an operation that can prove

difficult in practice. The quality and quantity of the matched units will affect the estimation

precision of ȳ1, CV1y, R1,yy∗, which are the inputs of different functions in the package.

Another challenge of the design is how to control the independence of the two sample

responses; i.e., to assure that reporting is not influenced by the trip being included in the

intercept sample. All three estimators require this assumption for validity. Detailed dis-

cussions and recommendations about such issues can be found in Stokes et al. (2019b).
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CHAPTER 4

Alternative Estimation of Total Approaches Based on Non-probability Sampling

In this chapter, we investigate the viability of using the self-reported sample (non-

probability sample) to augment the size of the dockside intercept sample (probability

sample) for estimating the total fish catch. However, this approach only works for highly

recognizable species since we must assume that the self reports are accurate. This led

us to the non-probability sampling literature.

There has been much recent research in the sampling literature on how to make use

of non-probability sample data in a more principled way. This is due to the increased

availability of inexpensive, easily accessible, and large sets of data from various data

collection operations, such as internet samples, electronic device data (voluntarily or in-

voluntarily produced), and operational data of various forms. We briefly review them in

the next section.

4.1. Literature Review of Non-probability Sample Estimation Methods

There are four main approaches to make estimates from non-probability samples: de-

sign based, model based, doubly robust and calibration. All the approaches attempt to

improve estimation by using auxiliary information and rely on either a reference sample or

the parameters of the population. The reference sample is usually a high quality probabil-

ity sample from the population, but may not contain the outcome variable. Here we briefly

review the four approaches.
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4.1.1. Design Based Approach

The design based approach refers to creation of pseudo-inclusion probabilities for

the non-probability sample, which is usually done by propensity score adjustment (PSA)

(Lee, 2006; Lee and Valliant, 2009; Schonlau et al., 2009; Valliant and Dever, 2011).

The propensity score model was originally developed for observational studies to reduce

the bias due to confounding variables (Rosenbaum and Rubin, 1983). In the context of

non-probability sampling, the PSA method is carried out by combining the non-probability

sample with a probability sample, and estimating the selection probability for the non-

probability sample. The estimated probability is then used to create pseudo-weights for

the units in the non-probability sample. This allows a Horvitz-Thompson type estimator

to be constructed, which is known as the inverse probability weighted (IPW) estimator.

To build the propensity score model, the non-probability sample and probability sample

are required to share a set of covariates. Although sometimes not explicitly stated in the

current studies, the PSA method assumes no overlap between the two sample sources,

otherwise it will be ambiguous to determine the membership of the sample units. This

assumption is reasonable when the two samples are from a very large population, since

then the chance for a sample unit to be included in both samples is negligible. However,

this assumption could be violated in practice when the population size is relatively small,

as in our case.

In order for the PSA method to be effective at eliminating selection bias, the strong

ignorability assumption must be met. This assumption requires that the selection mech-

anism for the non-probability sample be independent of the outcome variable, either un-

conditionally or conditionally on other covariates that are observable. When the selection

probabilities are accurately estimated, the resulting IPW estimator is asymptotically un-

biased. However, this assumption can be violated in two ways: 1) when the inclusion

probability for the non-probability sample depends on the response variable, which is the
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case of not missing at random (NMAR); 2) when not every sample unit in the population

has a positive probability to be included in the non-probability sample.

Unfortunately, the two situations are commonly encountered in the context of non-

probability data. For example, people who do recreational fishing tend to self-report their

fish catch if they have a harvest, and not otherwise. So unless there are other available

variables that predict the trips with no catch, the PSA method will fail to remove the se-

lection bias from the self-reported data. The second situation can be illustrated by the

fact that not every fisherman in the recreational fishery population has a self-reporting

device (such as a cell phone)(Liu et al., 2017), so they have zero chance to be included

in the non-probability sample. On the other hand, if the response variable for those that

are included is similar to those with no probability of inclusion, the procedure could still

perform well.

4.1.2. Model Based Approach

The model based approach aims to predict the outcome variable from the auxiliary

information and then project the non-probability sample to the target population (Valliant,

2019). The generalized regression model (GREG) is commonly used for such a predic-

tion purpose. For estimating the population total, this is done by modeling the relationship

between the outcome variable and covariates based on the non-probability sample, esti-

mating the outcome variable for the non-sampled units, and then summing the predictions

for the non-sampled units and the outcomes from the non-probability sample. To construct

the estimator, the population totals of the covariates are required, which can be obtained

from census data or estimated from a reference sample from other sources that contain

such information.
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Compared to the design based approach where individual level information is required

for the reference sample, the model based approach only requires the population level

summary statistics for some key variables. Another distinction between the two ap-

proaches is that the model based approach assumes the randomness is from the model

instead of the process of generating the non-probability sample. As a result, if the re-

lationship between the outcome variable and the covariates was correctly modeled, the

estimator from the model based approach is asymptotically unbiased. This advantage

makes the model based approach promising when the data to be analyzed has rich aux-

iliary information. However, the model based approach relies on the assumption that

the model fitted by the non-probability sample also fits the non-sampled units. If the

selection mechanism for the non-probability sample is NMAR, then the models for the

non-probability sample and non-sampled units might be different.

4.1.3. Doubly Robust Estimation

As a combination of the design based approach and model based approach, dou-

bly robust estimation has also been proposed in the context of non-probability sampling

(Chen et al., 2018). As the name suggests, doubly robust estimator is asymptotically un-

biased if either the pseudo-inclusion probability, the generalized regression model or both

are correctly specified. Valliant (2019) demonstrated through simulation studies that the

doubly robust estimator is generally the least biased with smallest mean squared error

(MSE) compared to the estimators from PSA or GREG.

4.1.4. Calibration

The calibration approach aims to adjust the auxiliary information in the non-probability

samples to the probability sample such that the weighted distribution for covariates in the

non-probability sample is similar to that of the population. General calibration methods

involve post-stratification (Bethlehem, 2010), raking and generalized regression weighting

38



(Deville and Särndal, 1992). Valliant and Dever (2011) demonstrated through simulation

studies the potential for bias reduction by calibrating the non-probability sample, and its

performance is comparable to PSA. They observed that, as with PSA, when the inclusion

probability for the non-probability sample is associated with the outcome variable, the

calibration adjustment will fail.

4.1.5. Other Approaches

There are other approaches to make inference from the non-probability sample. Rivers

(2007) proposed the idea of nearest neighbor matching, which selects sample units from

the non-probability sample that have similar auxiliary information to the sample units in

the reference sample. The selected non-probability sample units are then expected to

mimic the characteristics of the reference sample. Liu et al. (2017) took a different ap-

proach of using a non-probability sample to estimate total recreational red snapper catch

in Texas. As described previously, they proposed the ratio estimators that augments data

from a probability sample with data from an overlapping non-probability sample. The

non-probability sample is treated as auxiliary variables in the ratio estimators. Thus, the

estimators do not require either weighting adjustment for the non-probability sample or the

representativeness of the non-probability sample. However, their approach does require

matching of units in the two samples, an operation that can prove difficult in practice.

The effectiveness of the aforementioned methods depends on the quality of auxiliary

information, such as how well it can explain the selection mechanism or the outcome

variable. As summarized by Baker et al. (2013), there are still many obstacles that need

to be overcome while dealing with non-probability samples: (i) unlike probability sampling,

there is no single framework that adequately encompasses all of non-probability sampling;

(ii) making inferences for any non-probability sample require some reliance on modeling

assumptions; (iii) if non-probability samples are to gain wider acceptance among survey

researchers, there must be an accompanying set of measures for evaluating their quality.
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Our application differs in several ways from the typical scenarios considered in non-

probability sampling. Most of the current approaches are conducted for the situation

that the outcome variable is available for the non-probability sample, where the reference

sample only contains the auxiliary information. In our application, the outcome variable

is also available in the reference sample. We can take advantage of this extra piece of

information by using the outcome variable in estimation and treating its value as a bench-

mark. Our reference sample is relatively small, which makes the model based approach

less efficient, as we will have to build the prediction model on the reference sample and

predict the outcome variable for the non-probability sample. Another distinction of our

application is the non-negligible overlap between the non-probability sample and the ref-

erence sample, whose inclusion probability for the non-probability sample is also need to

be estimated.

4.2. Pilot Study

In our application, we focus on the design based approach and aim to estimate the

pseudo-inclusion probability for the non-probability sample, so that the two samples can

be treated together as an augmented probability sample. The design based approach

makes use of the additional information, which can be in the form of a probability sample

from the same population or even census level information. Because our self-reported

sample is so large, the question arises as to whether these methods could be beneficial

in our application.

To gain an idea of how much improvement over the current estimators is possible if we

could “convert” our non-probability sample to a probability one, we conducted a simple

pilot study. Our goal was to determine whether or not the potential advantage, making the

most optimistic assumptions, is large enough to suggest this would be a fruitful approach

to pursue. The simplified scenario we examined included the following assumptions: (a)
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y∗ = y (perfect reporting), (b) the self-reported sample (S1) behaves like a simple random

sample, and (c) our pseudo selection probability (n1/N) is accurately estimated. We also

suppose for simplicity that our probability sample is a simple random sample. In this case,

the combined sample S = S1 ∪ S2 is also a simple random sample from the population

with sample size nS = n1 + n2 −m, where m is the overlap sample size as we defined in

Subsection 2.2.2. Then a reasonable estimator of total t̂SRS has the same form of t̂yp−SRS:

t̂SRS = N̂ ȳS, (4.1)

where N̂ = n1n2

m
and ȳS =

∑
i∈S yi/nS, which is the sample average of the y′s from the

combined sample S = S1 ∪ S2. The variance of t̂SRS (see Appendix B) can be approxi-

mated by:

V (t̂SRS) ≈ N2

E(nS)
{S2

y(1−
E(nS)

N
) + ȳ2E(nS)

n2

(1− p1)

p1

(1− n2

N
)}, (4.2)

where E(nS) = n1 + n2− n1n2

N
. Under this simplified scenario, we have ȳ =ȳ∗1 = ȳ1, CVy =

CV1y = CV1y∗ and R1,yy∗ = 1. Thus the variance of t̂y2 becomes easy to compare to that

of t̂SRS.

To compare V (t̂y2) with V (t̂SRS), we set N = 15000, n2 = 400 and ȳ = 10. Figure

2.1 displays the ratios of V (t̂y2)/V (t̂SRS) as functions of the reporting rate (p1) for a range

of CVy : 1, 2, 3, 4. The ratios are greater than 1 for all conditions, which shows that

t̂SRS is less variable compared to t̂y2. This meets our expectation, since the reported

data are fully used as sample data rather than just as auxiliary data as t̂y2 does. As the

reporting rate (p1) increases, the variance ratios also increase, which indicates that t̂SRS

will have a greater advantage compared to t̂y2. Figure 2.1 also illustrates that t̂SRS has

more advantage than t̂y2 when the population has a larger CVy, for the same reporting

rate. This information is valuable as it allows us to consider using different estimators

for different fish species. For example, t̂y2 may be preferable for estimating catch for a
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Figure 4.1: Effect of the reporting rate (p1) on the variance ratio V (t̂y2)/V (t̂SRS) for different
CVys: 1, 2, 3, 4.

fish species with small CVy, like Red Snapper. However, there are many other valuable

fish species, like Spanish Mackerel and Vermilion Snapper, and especially rare species,

whose CVy are large.

Of course in a real application, the selection probability for the non-probability sample

will have to be estimated using a method such as PSA, which undoubtedly will decrease

the advantage. In addition, if the available auxiliary information does not completely ex-

plain the selection mechanism so that bias is introduced, the new estimator will be further

disadvantaged. However, this exercise suggests that the most promising place to look for

possible improvement from this approach is in estimating catch for fish species with large
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CVy, which are the ones where the current method is sometimes inadequately precise.

4.3. Propensity Score Adjustment (PSA)

Let

αi = P (i ∈ S2|Xi) , i ∈ 1, 2, ..., N (4.3)

denote the inclusion probability for the ith sample unit in the probability sample S2, and its

weight is the reciprocal of the inclusion probability:

wi = 1/αi = 1/P (i ∈ S2|Xi) , i ∈ 1, 2, ..., N. (4.4)

This weight is known from the probability sampling design if the analyst is the sample

designer. If the analyst is only a secondary data user, he will still know the weight if it is

included on the data file. In our application, this weight is known.

We denote the selection probability for the ith sample unit in the non-probability sample

S1 by:

βi = P (i ∈ S1|Xi), i ∈ 1, 2, ..., N. (4.5)

Then the selection probability for the unit i in the combined sample S = S1 ∪ S2 can be

expressed as:

qi = P (i ∈ S|Xi) = αi + βi − αiβi, i ∈ 1, 2, ..., N. (4.6)

We also denote the conditional probability for the ith unit in the non-probability sample

(S1) given that it is in the combined sample (S) by:

γi = P (Di = 1|i ∈ S,Xi) =
βi

αi + βi − αiβi
, i ∈ 1, 2, ..., N, (4.7)

where Di = 1 if i ∈ S1 and Di = 0 otherwise.
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To create the pseudo-weight for sample unit i, the inclusion probabilities βi, qi and γi

must be estimated. First, the conditional probability γi can be estimated by a propensity

score model. We denote this design-based estimator by γ̂i. By solving equation (4.7), we

can estimate the inclusion probability βi by:

β̂i =
αiγ̂i

1− γ̂i + αiγ̂i
, i ∈ 1, 2, ..., N. (4.8)

Thus, the probability that sample unit i is included in the combined sample can be esti-

mated by:

q̂i = αi + β̂i − αiβ̂i =
αi

1− γ̂i + αiγ̂i
, i ∈ 1, 2, ..., N. (4.9)

Calculation of β̂i and q̂i from equations (4.8) and (4.9) require that αi is also known or

estimable for unit i from the non-probability sample. Even though this quantity is usually

unknown, it could be determined in our application. This is because the selection proba-

bility αi is controlled by the dock location and return time of the trip, which are contained in

the self reports. When αi is unknown for the ith unit in the non-probability sample, Robbins

et al. (2015) suggested to assign the same inclusion probability to every non-probability

sample units, which is the average of the inclusion probabilities from the probability sam-

ple units. Other approaches to estimate this quantity can be found in Elliott et al. (2017).

Equipped with the estimated inclusion probability from equation (4.9), the non-probability

sample can be weighted to represent the population either by itself or combined with the

probability sample, which leads to two weighting schemes: joint weighting and disjoint

weighting. Robbins et al. (2015) proposed the two approaches for estimating the popula-

tion mean, and they found that joint weighting always provide smaller estimation variance

while disjoint weighting can be used to detect whether the two samples are well integrated

by comparing their estimates. We adapt the two weighting schemes into our application

for estimating the population total with unknown population size. We now describe our
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two proposed estimation approaches.

4.3.1. Joint Weighting

In joint weighting, we construct a single estimate of total based on the combined sam-

ple: S = S1 ∪ S2. Thus, the inclusion probability for the ith unit in the combined sample S

is estimated by q̂i in equation (4.9), and its estimated pseudo-weight is the reciprocal of

q̂i:

ŵi,joint = 1/q̂i, i ∈ S = S1 ∪ S2.

Consequently, we can construct the Horvitz-Thompson type estimator:

t̂y,joint−HT =
∑
i∈S

ŵi,jointyi. (4.10)

In our application, however, the estimator in equation (4.10) will be biased downward

due to undercoverage in the dockside sample, as discussed previously. Thus the joint

weighting estimator of total we propose takes the form of t̂yp and has the expression:

t̂y,joint = N̂̂̄y =
n1

p̂1

̂̄y =
n1∑

i∈S2
wiri/

∑
i∈S2

wi

∑
i∈S ŵi,jointyi∑
i∈S ŵi,joint

, (4.11)

where N̂ is the estimator of the population total, ̂̄y is the estimator of the mean catch

and ri is the reporting indicator as we defined in Subsection 1.4.2. Thus, the role of the

non-probability sample is to improve estimation for the mean catch, but not population

size.
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4.3.2. Disjoint Weighting

In disjoint weighting, each sample is weighted to be individually representative of the

population. The disjoint weighting estimator of total is then a weighted average of the

estimators of total from both samples. For the non-probability sample (S1), the estimated

pseudo-inclusion probability for the ith unit is β̂i = α̂iγ̂i
1−γ̂i+α̂iγ̂i , i ∈ S1, and its weight can

be expressed as ŵi,disjoint = 1/β̂i, i ∈ S1. If undercoverage was not a problem, the nat-

ural estimator of total would be a weighted average of the two Horvitz-Thompson type

estimators:

t̂y,disjoint−HT = θ
∑
i∈S1

ŵi,disjointyi + (1− θ)
∑
i∈S2

wiyi. (4.12)

In our application, however, we must protect against undercoverage in the probability

sample, and thus propose the estimator of total t̂y,disjoint, which takes the form of t̂yp and

has the expression:

t̂y,disjoint = N̂̂̄y =
n1

p̂1

(θ

∑
i∈S1

ŵi,disjointyi∑
i∈S1

ŵi,disjoint
+ (1− θ)

∑
i∈S2

wiyi∑
i∈S2

wi
). (4.13)

As suggested by Robbins et al. (2015), the parameter θ is chosen to minimize the Kish

approximation of the estimator’s design effect and has the form:

θ =

(∑
i∈S2

α−1
i

) (∑
i∈S1

β̂−2
i

)
(∑

i∈S2
α−1
i

) (∑
i∈S1

β̂−2
i

)
+
(∑

i∈S2
α−2
i

) (∑
i∈S1

β̂−1
i

) . (4.14)
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4.4. Adaptive Propensity Score Adjustment (APSA)

The propensity score adjustment (PSA) method was developed to help reduce the

selection bias of a non-probability sample (e.g., Valliant and Dever, 2011; Lee and Valliant,

2009). However, this method will not remove the bias if the strong ignorability assumption

on which the propensity score model relies is violated. In our application, for example,

if the self-reported trips are only from the boats with more than 15 anglers, then the

estimated inclusion probability for the self-reported sample is unreliable for the boats with

less than 15 anglers. This is either because the trips with less than 15 anglers have zero

probability to self report or the self-reported sample does not allow that probability to be

estimated even if it is positive, as there are no such sample cases in the self-reported

sample. However, if we have some evidence that the trips with less than 15 anglers

can be represented by part of the trips with more than 15 anglers, the strong ignorability

assumption still holds.

Here we propose a new approach called the adaptive propensity score adjustment

(APSA) method. Our method is based on the current PSA method, but adds a step that

provides an indicator of model failure. The APSA method is also designed to reduce

the selection bias by using only part of the non-probability sample for PSA, as we will

describe later. When the outcome variable y is available for both the probability and non-

probability samples, the APSA method uses the fact that when the selection probability

is correctly estimated by the propensity score model, sample units with similar propensity

scores should have similar outcome values. We will first justify this argument and then

describe the new method.
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4.4.1. Comparison between Causal Inference and Non-probability sampling

In the context of non-probability sampling, the propensity score γi = P (Di = 1|i ∈

S,Xi) is the conditional probability that unit i is in the non-probability sample (S1) given

that it is in the combined sample (S) and has auxiliary information Xi. This setup fits the

non-probability sample into the causal inference framework: the non-probability sample

can be treated as the treatment group and the probability sample is treated as the control

group.

As in causal inference, we assume two potential outcomes for the sample units: y0 if

the sample unit i is in the probability sample and y1 if it is in the non-probability sample.

The strong ignorability assumption for the self-reporting mechanism in the non-probability

sampling context can be stated as: (y1, y0)⊥Di | i ∈ S,Xi and 0 < γ < 1. In plain words,

this means that 1) all possible confounding variables which affect both the non-probability

sample selection mechanism and the outcome variable are measured in Xi, 2) there is a

positive probability for every unit in the population to be selected into the non-probability

sample.

In causal inference, the quantity to be estimated is the average treatment effect, de-

fined as E(y1) − E(y0). However, in non-probability sampling, whether the sample unit is

selected into the probability sample or non-probability sample does not affect the outcome

value and we always have: y0 = y1 and E(y1 − y0) = 0. In practice, we can only observe

either y0 or y1 if there is no overlap between the probability sample and the non-probability

sample. Under the strong ignorability assumption, the expected difference between the

outcomes from the probability sample and the non-probability sample is a function of the

estimated propensity score γi, and can be expressed as:

E(y1|γi, Di = 1)− E(y0|γi, Di = 0) = E(y1 − y0|γi). (4.15)
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As the outcome for a sample unit does not change regardless of its membership, the last

term in equation (4.15) equals 0. The above argument established the following theorem

in the context of non-probability sampling, which corresponds to Theorem 4 established

by Rosenbaum and Rubin (1983) in the context of causal inference.

Theorem 1 Suppose the selection mechanism for the non-probability sample is strongly

ignorable and γi is the propensity score. Then the expected difference in the observed

outcome between the probability sample and non-probability sample at γi is equal to 0,

that is,

E(y1|γi, Di = 1)− E(y0|γi, Di = 0) = 0.

Even though our purpose is not comparing the difference between the probability

sample and the non-probability sample outcomes, the theorem provides a way to check

whether the strong ignorability assumption is violated. If a non-zero difference exists be-

tween the means from the probability sample and non-probability sample with the same

propensity score, it indicates a model failure and thus the propensity score adjustment is

unreliable. This comparison can be conducted by post-stratification based on the propen-

sity scores (Rosenbaum and Rubin, 1984), and will be described in the next section.

4.4.2. Adaptive Propensity Score Adjustment (APSA) Algorithm

The first step in the proposed algorithm is to post-stratify the probability sample and

non-probability sample into subgroups such that the propensity scores within each sub-

group are similar. If the strong ignorability assumption holds, the means of the response

y from the two samples within each subgroup are expected to be similar. If the response

from the two samples are different within a certain subgroup, the corresponding non-

probability sample units will be dropped. This is because their selection mechanism can-

not be explained by the current model, and thus makes the selection bias non-adjustable.
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Here we describe the APSA algorithm that performs the above procedure:

Step 1: Calculate the propensity scores for every unit of the full sample S = S1 ∪ S2,

Step 2: Sort the estimated propensity scores from smallest to largest and form the

sample into 10 subgroups by decile points,

Step 3: Within each subgroup, conduct hypothesis testing to compare the means of

the outcome variable between the two samples,

Step 4: Identify the subgroups with significant p-values, discard units from the non-

probability sample but keep the units from the probability sample for such subgroups,

Step 5: Re-calculate propensity scores for the retained sample and re-conduct the

PSA method.

From APSA, the new combined sample contains the full probability sample and the

non-discarded part of the non-probability sample. Based on the new combined sam-

ple, we re-calculate the estimators from the joint weighting and the disjoint weighting

approaches, and denote them by t̂y,joint−adp and t̂y,disjoint−adp. If the probability sample did

not have under-coverage, we could also compute the Horvitz-Thompson type estimators

based on the new combined sample using joint weighting or disjoint weighting, which are

denoted by t̂y,joint−HT−adp and t̂y,disjoint−HT−adp.

We also note that the non-discarded part of the non-probability sample cannot be ad-

justed to represent the population on its own, which makes t̂y,disjoint−adp and t̂y,disjoint−HT−adp

unreliable. So we should not use the two estimators if we discard some of the non-

probability samples.
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4.5. Variance Estimation

Now, we describe two replication based methods to estimate the variance of the pro-

posed estimators, and then evaluate them by simulation studies based on data similar to

that of the motivating example.

Taylor series linearization is often used for variance estimation in survey practice, and it

has been applied in several non-probability sampling studies. However, as demonstrated

by simulation studies, the method underestimates the actual variance of estimators of

means from non-probability samples (e.g. Lee and Valliant, 2009, Robbins et al., 2015).

This is because the method treats the estimated propensity score as the actual selection

probability, and thus ignores its estimation variance. Alternative approaches to variance

estimation can be conducted by the jackknife and bootstrap methods (e.g. Kim and Wang,

2019, Valliant, 2019). They are resampling techniques that may be able to reflect the

added variation from the estimated propensity scores.

For the jackknife method, Section 4.4 of Wolter (2007) (page 169) states that no the-

ory actually justifies the jackknife method for nonlinear estimators for general complex

sample designs. However, it has been shown to work well empirically, and there are the-

oretical results for some simple complexities, such as strata. To apply the empirically

based jackknife method when there is a complex design, we leave out K PSUs at a time

within a stratum and redistribute their weight across other units in that stratum, even if

the PSUs are unequally weighted. We apply this method in our application to examine its

performance.

We apply this empirically based jackknife method to estimate the variance of the PSA

estimators t̂y, joint and t̂y, disjoint. In our application, the probability sample contains design

information about PSUs and strata (Weekday/Weekend), but the non-probability sam-

ple only contains information about strata. Therefore, we adapt the jackknife method
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by treating each trip from the non-probability sample as a PSU. Then for each jackknife

replicate, we leave out one PSU from the probability sample and K − 1 PSUs from the

non-probability sample from the same stratum. The value of K is determined by the

number of PSUs in the probability sample.

However, there is a problem when applying a jackknife for variance estimation to the

APSA estimators t̂y,joint−adp and t̂y,disjoint−adp. An intuitive justification for the jackknife as

a method of variance estimation is that the leave-K-out pseudo-values are independent

and identically distributed. When a different number of observations are dropped from the

sample in different replicates, they are based on different sample sizes. Thus they can not

be justified as even approximately identically distributed. Therefore, we adapt the jack-

knife method by conditioning on the retained sample from APSA to estimate the variance

of t̂y,joint−adp and t̂y,disjoint−adp. The retained sample from each replicate has a constant

sample size, which makes the intuitive notion of iid pseudo-values more plausible. This is

done by the conditional decomposition:

V ar(t̂y,joint−adp/t̂y,disjoint−adp) = E[V ar(t̂y,joint−adp/t̂y,disjoint−adp|retained sample)] (4.16)

+ V ar[E(t̂y,joint−adp/t̂y,disjoint−adp|retained sample)].

The first term on the right hand side of equation (4.16) is estimated by applying the

jackknife method on the retained sample while treating the APSA estimators as PSA

estimators, so the dropping mechanism from the APSA method is not applied here.

Since it is almost impossible to enumerate all possible retained samples from the APSA

method, the second term on the right hand side of equation (4.16) is approximated by

V ar(E(t̂y,joint−adp/t̂y,disjoint−adp|number of retained subgroups)), which is estimated from

the jackknife replicates of the original sample.
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For the bootstrap method, we apply the standard procedure as described in Wolter

(2007) to estimate the variance of the PSA estimators t̂y, joint and t̂y, disjoint. This is done

by resampling the PSUs from each stratum for each replicate. For the APSA estima-

tors t̂y,joint−adp and t̂y,disjoint−adp, we apply the bootstrap method based on the conditional

decomposition (equation 4.16), which is the same way as we apply the jackknife method.

4.6. Simulation Studies

4.6.1. Simulation Settings

So far, we have proposed 4 estimators that use the non-probability sample, for cases

where under-coverage in the probability sample is a concern as in our application. They

are: t̂y, joint, t̂y, disjoint,t̂y,joint−adp and t̂y,disjoint−adp, all of which are alternatives to the current

ratio estimators. The four estimators differ in how they weight the units from the two

samples, including whether they give the unit a non-zero weight at all. To assess the

efficiency of the different weighting strategies, we conducted two simulation studies to

evaluate the four estimators in situations where the strong ignorability assumption is and

is not met. The first simulation study aimed to study the performance of the four estimators

when the probability sample is a SRS. The second simulation study aimed to study the

performance of the four estimators when the probability sample is drawn according to a

complex design. We used the stratified cluster design with PSUs selected randomly from

each stratum in this simulation. This design mimicked the actual design that was used

by the Access Point Angler Intercept Survey (APAIS) to collect the dockside intercept

sample. In the simulation studies, we used the ratio estimator t̂y2 as our benchmark for

comparison. This is because t̂y2 was shown to have good performance under a wider

range of scenarios than the other two ratio estimators (Liu et al., 2017).
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To maintain the relationship between the catch and auxiliary information for the trips,

a pseudo-population of recreational fishing trips was formed by using all the self reports

from a NMFS experimental electronic logbook study (ELB). This study was conducted to

estimate the catch of all Gulf of Mexico fish species caught by charter boat from 2016 -

2017. The self reported sample contained 15771 trip records. We treated this data as

if it was the true population. In addition to the catch counts by species, the self reports

contained several other variables describing the trip, which are listed in Table 4.1. The

variable of interest y is defined as the sum of the fish caught (Kept) and discarded dead

(ReleasedDead) for all species for each trip. We refer to this variable as catch. To avoid

extreme values in self-reporting, we truncated every numerical variable by the 1.5 IQR

rule except the outcome variable y.

In this pseudo-population, the primary sampling unit (PSU) was defined as a combi-

nation of location (County), Wave (Wave), return time (Shift) and time period (Weekend).

If a PSU contained more than 100 trips, it was randomly segmented into several PSUs

to make sure all PSUs had size less than 100. This definition aimed to mimic the actual

PSUs collected by the Access Point Angler Intercept Survey (APAIS) for the dockside in-

tercept sample. In this population, there were 956 PSUs and the average number of trips

per PSU was 16. The strata were defined as whether the trip was made on a weekday

or weekend. There were 495 (52%) PSUs from a weekday and 461 (48%) PSUs from a

weekend.

To compare the performance of t̂y,joint, t̂y,disjoint, t̂y,joint−adp,t̂y,disjoint−adp with t̂y2, both

simulation studies followed a 4 × 4 × 4 factorial design. The three factors are: 1) prob-

ability sample size, which is the dockside intercept sample size in our application. 2)

non-probability sample size, provided as reporting rate of the self-reported sample in our

application (p1 = n1/N ); 3) non-probability sample selection mechanism, which is the self

reporting mechanism in our application.
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Table 4.1: Description of variables in the pseudo-population for simulation.

Variable Name Type Model Inclusion Description

Trip ID Cat. No Identification number of each trip

Kept Cont. Yes Fish caught by species

Release Cont. Yes Alive fish released by species

ReleasedDead Cont. Yes Dead fish released by species

CaptainName Cat. No Captain’s name of the boat

Latitude Cont. No Latitude when self-reported

Longitude Cont. No Longitude when self-reported

NbPassengers Cont. Yes Number of passengers on the boat

NbAnglers Cont. Yes Number of anglers on the boat

NbCrew Cont. Yes Number of Crew on the boat

DepthPrimary Cont. Yes Depth of the sea when fishing

Hours Cont. Yes Fishing duration

Shift Cat. No
Return time: 1 (00:00 AM - 8:00 AM) ,

2 (8:00 AM - 4:00 PM), 3 (4:00PM - 12:00 PM )

Weekend Cat. Yes Weekend: 1, Weekday:0

State Cat. Yes Home state of the boat: AL, FL, LA, MS, TX

County Cat. No Home county of the boat

Wave Cat. No Fishing waves: 1 - 6

Name Cat. No Name of the boat

For the first factor, the probability sample sizes (n2) were set to 200, 400, 600 and 800

for the SRS design. For the complex design, the probability sample sizes (nPSU ) were

determined by the number of PSUs, which were set to 30, 40, 50 and 60. For the second

factor, the non-probability sample sizes were set to 3154, 4731, 6308 and 7885, which

corresponded to the four reporting rates: p1 = 0.2, 0.3, 0.4, 0.5. For each combination

of the probability sample and non-probability sample sizes, 4 different non-probability

sample selection mechanisms were examined from the missing data perspective: Missing

Complete at Random (MCAR), Missing at Random (MAR) and two that are Not Missing at

Random (NMAR), one of which we denoted as the Large Catch case. Now we describe

the 4 selection mechanisms.
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1) Missing Completely at Random (MCAR)

This scenario was intended to examine the performance of the proposed estimators

when the non-probability sample is free of selection bias. It was conducted by drawing the

non-probability sample as a simple random sample from the population. In this situation,

the selection mechanism of the non-probability sample is independent of the outcome

variable unconditionally upon the auxiliary information X, which is analogous to the notion

of data that is missing completely at random.

2) Missing at Random (MAR)

This scenario was intended to examine the performance of the proposed estimators

when the selection mechanism of the non-probability sample is independent of the out-

come variable conditionally upon the auxiliary information X, which corresponds to the

notion of data that is missing at random (MAR). This scenario was conducted by gener-

ating the selection probability of the non-probability sample sample from a pre-specified

model:

log(
βi

1− βi
) = 0.3×NbPassengers+0.2×Release+0.1×Hours−0.2×Weekend, i = 1, 2...N.

(4.17)

In this model, βi is the probability for the ith trip to be included in the non-probability

sample. The correlation between the selection probability and outcome variable y from

this model is 0.42. For each reporting rate, the generated selection probabilities were

multiplicatively adjusted to sum to the expected non-probability sample size.

3) Large Catch Case

This scenario was intended to examine the bias reduction ability of the proposed es-

timators when the non-probability sample contains large selection bias. To simulate this

situation, we partitioned the population into two strata: the first stratum contained the trips

with the largest fish catch of the population, and the size of the stratum was set to be 30%
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of the non-probability sample size. The second stratum was the rest of the population.

For the non-probability sample of sizes 3154, 4731, 6308 and 7885, the sizes of the first

stratum were set to 946, 1419, 1892 and 2365, respectively. The non-probability sample

was drawn as a stratified sample from the population, and it contained all sample units

from the first stratum and a simple random sample from the second stratum. In this sce-

nario, even though the inclusion mechanism depends on the response variable y, it allows

every unit in the population to have a positive inclusion probability.

4) Not Missing at Random (NMAR)

This scenario was intended to examine the performance of the proposed estimators

when the non-probability sample has under-coverage and its selection mechanism de-

pends on the outcome variable y. To simulate this situation, we partitioned the population

into two strata based on whether or not the number of fish catch was greater than 7. The

small-catch stratum contained 2602 trips and the large-catch stratum contained 13169

trips. The non-probability sample was drawn as a simple random sample only from the

large-catch stratum. In this scenario, the average catch of the large-catch subgroup was

31.89 and the average catch of the population was 27.03. When the selection mechanism

depends on the response variable and can not be explained by the auxiliary informa-

tion X, the strong ignorability assumption is violated. In addition, the generated non-

probability sample has no chance of including a portion of the population units, resulting

in under-coverage.

The estimator of γi = P (Di = 1|S,Xi) was based on fitting the following model:

log

(
γi

1− γi

)
= b0 + b1 ×NbPassengers+ b2 ×Release+ b3 ×Hours+ b4 × nbAnglers+

b5 ×NbCrew + b6 ×DepthPrimary + b7 × State+ b8 ×Weekend. (4.18)

We acknowledge that this model may not always be the most predictive one for each

replicate of the simulation, but we decided to use the same model for all scenarios for
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computational efficiency. In a real application, there are several steps to find the best

model, such as conducting a variable selection procedure and checking the balance on

covariates.

Both simulations examined 64 settings (4 probability sample sizes × 4 non-probability

sample sizes × 4 non-probability sample inclusion mechanisms), with K = 3, 000 pairs of

probability sample and non-probability sample generated independently under each set-

ting. Within each replicate, the proposed estimators t̂y, joint, t̂y, disjoint, t̂y,joint−adp, t̂y,disjoint−adp

and t̂y2 were calculated. In our population, the actual total catch ty = 426.38× 103.

To aggregate the findings across all iterations, the empirical mean, variance and mean

squared error (MSE) were calculated for each estimator over the 3, 000 replicates. To

assess the performance of each estimator in terms of bias reduction, the relative bias

of each estimator was computed as the difference between the empirical mean and the

actual total catch divided by the actual total catch.

Based on the the jackknife and bootstrap variance estimates, the proportion of repli-

cates for which the 95% confidence interval includes the actual total catch was recorded

for each estimator. These proportions are denoted as Coverage in the following results.

The relative bias for the jackknife and bootstrap variance estimated for each estimator

were also calculated as the difference between the mean of the estimated variance and

the empirical variance divided by the empirical variance. A negative bias means the corre-

sponding estimator is biased downward. These proportions are reported as percentages

and denoted as RelBias in the following results.

For the APSA method, the Wilcoxon rank sum test with significance level of 0.05 was

used to compare the means between the two sample sources. For every replicate, the

number of subgroups that have a non-significant p-value was recorded and is denoted by

#subgroup in the following discussion. This is the number of subgroups that the APSA

method determines to be integrated well by the PSA method. After applying the APSA
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method, the value of #subgroup was also calculated for the retained sample. In the sim-

ulation studies, t̂y,joint−adp and t̂y,disjoint−adp were computed only if the value of #subgroup

from the retained sample was higher than that of the full sample.

4.6.2. Simulation Results

We present the results when the probability sample was a SRS with the self-reporting

rate of 0.3. Simulation results for the complex design for this simulation settings can

be found in Appendix C. For both simulation studies, the patterns of the result revealed

by this reporting rate remains true for all the other self-reporting rates. In general, the

performance of the five estimators are slightly worse in the complex design compared to

the SRS design, which is due to the smaller effective sample sizes.

Figure 4.2 displays the empirical MSE for each estimator from all four self-reporting

mechanisms: MCAR, MAR, Large Catch Case and NMAR. Table 4.2 lists the means of

#subgroup for both the full sample and retained sample from the APSA method under

each setting.

Table 4.2: The means of #subgroup from the APSA method when the probability sample
is a SRS based on 3,000 replicates for scenarios: MCAR, MAR, Large Catch Case and
NMAR.

#subgroup
Probability Sample Size (n2)

200 400 600 800

MCAR Full Sample 9.56 9.56 9.53 9.56

Retained Sample 9.79 9.78 9.76 9.77

MAR Full Sample 9.45 9.41 9.41 9.51

Retained Sample 9.68 9.64 9.64 9.73

Large Catch Case Full Sample 6.47 4.8 4.31 4.06

Retained Sample 8.23 8.45 8.25 8.07

NMAR Full Sample 7.07 6 5.48 5.08

Retained Sample 7.86 7.71 7.55 7.21
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Figure 4.2: Empirical MSE of the five estimators when the probability sample is a SRS
and the reporting rate is 30% based on 3,000 replicates for scenarios: MCAR, MAR,
Large Catch Case and NMAR.
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In the MCAR and MAR scenarios, t̂y, joint, t̂y, disjoint, t̂y,joint−adp and t̂y,disjoint−adp have

smaller MSE compared to t̂y2. The performance of the PSA and APSA estimators are

similar, which demonstrate their potential of providing improvement over t̂y2. From Table

4.2, the means of #subgroup for the full sample are above 9 in the two scenarios. This

indicates that for most of the subgroups, the means of the response from the two sam-

ples within each subgroup are similar. Thus, we conclude that the two samples can be

integrated well by the PSA and APSA methods. In the Large Catch and NMAR scenarios,

however, both the PSA and APSA estimators have larger MSEs compared to those of t̂y2.

The means of #subgroup for the full sample are around 5 in most of the settings, which

indicates a model failure as the discrepancy of the response between the two samples

still exist in many subgroups. Thus, there is a limit to the ability of the propensity-based

pseudo-weights method to handle large selection bias. However, the means of #subgroup

of the retained sample are higher than those of the full sample for all settings of each sce-

nario, which shows that the representativeness of the retained sample can be improved

by the APSA method. Similar results for the complex design are shown in Figure C.1 and

Table C.1 with the same conclusion. Next, we investigate the four scenarios in detail.

Table 4.3 lists the relative bias of each estimator as a percentage for the four scenar-

ios. In the MCAR and MAR scenarios, all the estimators are nearly unbiased. However,

the non-probability sample in the MAR scenario contains moderate selection bias as the

correlation between the selection probability of the non-probability sample and the re-

sponse is 0.42. Thus, this scenario demonstrates the bias reduction ability of the PSA

and APSA estimators when the self-reporting mechanism is correctly modeled.

In the Large Catch Case, Table 4.3 shows that the PSA estimators fail to adjust the

selection bias. However, the APSA estimators remove most of the selection bias, which

demonstrates their bias reduction ability compared to the PSA estimators. In the NMAR

case, all PSA and APSA estimators fail to adjust the selection bias in all settings, which

is due to the violation of the strong ignorability assumption and the under-coverage of
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the non-probability sample. As a result, the remaining selection bias becomes a major

source of the inflated MSE in Figure 4.2. Compared to other estimators, t̂y,disjoint−adp has

the largest MSE with a positive relative bias for all probability sample size settings. This

is because the APSA method tends to drop the non-probability sample units with low re-

sponse value in this scenario, which increases the selection bias in the non-discarded

part of the self-reported sample and thus be less representative of the population. How-

ever, compared to t̂y,disjoint−adp, t̂y,joint−adp mitigates such un-representativeness and has

the smallest bias and MSE for all the PSA and APSA estimators.

In addition, as showed in Table 4.2 and Table 4.3, there is a clear trend in the Large

Catch Case and NMAR scenarios that when the probability sample size increases, both

the relative bias and the mean of #subgroup of t̂y,joint−adp decrease. This pattern indi-

cates that the increased probability sample size improves the bias reduction ability of

t̂y,joint−adp, which is because both the propensity score model and the Wilcoxon rank sum

test become more reliable as the probability sample size increases. Similar results for the

complex design are shown in Table C.2 with the same conclusion.

Table 4.4 lists the coverage rates and the relative bias of the jackknife and bootstrap

variance estimates of the five estimators, along with their empirical variance for the MCAR

and MAR scenarios. Overall, the bootstrap method outperforms the jackknife method and

its coverage rates are close to the nominal level, 0.95, for all estimators across all settings.

The coverage rates from the APSA estimators are lower than those of the PSA estimators

and t̂y2, for both the jackknife and bootstrap methods, which indicates that the variance

of the APSA estimators are underestimated in the two scenarios. This is because the

dropping mechanism might have erroneously dropped part of the non-probability sample

to make the two samples more similar, which made the estimates less variable. We also

notice that the empirical variance for the PSA and APSA estimators are smaller than that

of t̂y2, which demonstrates the advantage of the PSA and APSA estimators by involving a

larger sample size into estimation.
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Table 4.3: Relative bias of the five estimators when the probability sample is a SRS and
the reporting rate is 30% based on 3,000 replicates for scenarios: MCAR, MAR, Large
Catch Case and NMAR.

PSA APSA Ratio Estimator

n2 t̂y,joint t̂y,disjoint t̂y,joint−adp t̂y,disjoint−adp t̂y2

MCAR 200 0.01 0.01 0.01 0.01 0.01

400 0.00 0.00 0.00 0.00 0.00

600 0.00 0.00 0.00 0.00 0.01

800 0.00 0.00 0.00 0.00 0.00

MAR 200 0.00 0.00 0.00 0.00 0.01

400 0.00 0.00 0.0 0.00 0.01

600 0.00 0.00 0.00 0.00 0.00

800 0.00 0.00 -0.01 0.00 0.00

Large Catch Case 200 0.32 0.32 0.15 0.17 0.01

400 0.31 0.31 0.06 0.07 0.01

600 0.30 0.29 0.03 0.05 0.00

800 0.29 0.28 -0.02 0.04 0.00

NMAR 200 0.09 0.09 0.08 0.12 0.01

400 0.08 0.08 0.06 0.09 0.00

600 0.07 0.08 0.05 0.07 0.00

800 0.07 0.07 0.04 0.05 0.00

Table 4.5 lists the coverage rates and the relative bias of the jackknife and bootstrap

variance estimates of the five estimators, along with their empirical variance for the Large

Catch Case and NMAR scenarios. Due to the large selection bias, the confidence inter-

vals based on the jackknife and bootstrap methods fail to capture the actual total catch

for the PSA and APSA estimators. However, the coverage rates for the ratio estimator t̂y2

remain close to their nominal level for all the settings as expected. Similar results for the

complex design are shown in Table C.6 and Table C.7 with the same conclusion.
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From the four non-probability sample selection mechanisms, we have demonstrated

that both the PSA and APSA estimators can handle moderate selection bias and the

value of #subgroup can serve as an indicator of whether the samples are integrated well.

Obviously, a user will not know whether the data selection pattern is one of the safe

settings or not. Therefore, it is still unclear how the user would know when it is safe to

use estimators from APSA or PSA, and when it is not. To investigate this uncertainty,

we analyzed the simulation results from a different perspective: the simulation results

from the four scenarios were combined, and then classified based on #subgroup from

each replicate. Thus, the replicates with the same number of retained subgroups were

aggregated and analyzed in the same way as previously described. The results were

categorized into four groups: 10, 9, 8 and less than 8 retained subgroups. We still choose

to present the results for all possible probability sample sizes when the reporting rate was

0.3. For both simulation studies, the patterns of the result revealed by this reporting rate

remain true for all the other reporting rates.

Figure 4.3 displays the empirical MSE for each estimator when the numbers of retained

subgroups are 10, 9, 8 and less than 8. When #subgroup is 10, the MSEs of the PSA

and APSA estimators are lower than those of t̂y2 for all probability sample sizes. When

#subgroup is 9, the APSA estimators have the smallest MSEs compared to those of the

PSA estimators and t̂y2. When #subgroup is less than 9, the MSEs of the PSA and APSA

estimators become larger than those of t̂y2, especially when the probability sample size is

small (n2 = 200).

Table 4.6 lists the relative bias of each estimator as a percentage based on #subgroup.

It indicates when the PSA and APSA estimators can handle the selection bias (#subgroups ≥

9 ) and when they can’t (#subgroups < 9). As we discussed before, a similar trend ap-

pears for t̂y,joint−adp among all numbers of retained subgroups that when the probability

sample size increases, its relative bias decreases. We also notice that the relative bias

of the APSA estimators are smaller than those of the PSA estimators for all settings,
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which confirms the bias reduction ability of the APSA estimators compared to the PSA

estimators. However, t̂y2 is approximately unbiased for all settings. Similar results for the

complex design are shown in Figure C.2 and Table C.5 with the same conclusion.
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Figure 4.3: Empirical MSE of the five estimators when the probability sample is a SRS
and the reporting rate is 30% based on 3,000 replicates for different Number of retained
subgroups: 10, 9, 8 and Less Than 8.
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Table 4.6: Relative bias of the five estimators when the probability sample is a SRS
and the reporting rate is 30% based on 3,000 replicates for different number of retained
subgroups: 10, 9, 8 and Less Than 8.

PSA APSA Ratio Estimator
#subgroup n2 t̂y,joint t̂y,disjoint t̂y,joint−adp t̂y,disjoint−adp t̂y2

10 200 0.72 0.72 0.72 0.72 0.89

400 0.43 0.45 0.43 0.45 0.68

600 0.09 0.1 0.09 0.1 0.42

800 0.04 0.04 0.04 0.04 0.26

9 200 2.38 2.38 1.26 1.23 1.03

400 0.15 0.16 0.16 0.11 0.29

600 0.28 0.3 0.11 0.08 0.75

800 -0.18 -0.16 0.00 -0.02 0.18

8 200 12 11.98 8.46 8.94 1.7

400 3.38 3.47 2.3 2.62 2.09

600 1.49 1.52 1.54 1.62 1.31

800 -0.16 -0.18 -0.47 -0.55 0.19

Less Than 8 200 22.19 22.07 11 13.75 0.58

400 19.88 19.69 3.86 13.94 0.41

600 18.47 18.27 1.79 16.35 0.37

800 17.5 17.27 0.58 17.09 0.2

Table 4.7 and Table 4.8 list the coverage rates and the relative bias of the jackknife

and bootstrap variance estimates of the five estimators, along with their empirical vari-

ance based on the number of retained subgroups. Overall, the bootstrap method outper-

forms the jackknife method. When #subgroup is 10, the coverage rates from the bootstrap

method for all estimators are close to their nominal level, 0.95. When #subgroup is 9,

the coverage rates from the bootstrap method for the APSA estimators and t̂y2 are com-

parable and close to 0.95. However, when #subgroup is less than 9, both the jackknife

and bootstrap variance estimates fail to capture the actual variance of the PSA and APSA

estimators in most of the settings, while their performance on t̂y2 are consistently reliable.

From Table 4.7, it is also notable that the empirical variance of the APSA estimators are
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the smallest among all settings when #subgroup is 10 or 9. As a conclusion, we suggest

to use t̂y,joint−adp instead of t̂y2 when #subgroup is greater than 8, and its variance should

be estimated by the bootstrap method. Similar results for the complex design are shown

in Table C.6 and Table C.7 with the same conclusion.
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4.7. Case Studies

The purpose of this example is to illustrate when the proposed PSA and APSA esti-

mators can be successful alternatives to the ratio estimator t̂y2. The dockside intercept

sample (MRIP) and the self reported sample (ELB) used in this example came from an

ELB experiment conducted in Florida, which was described in Section 3.3. The dockside

intercept sample (MRIP) contained 1142 charter trips and the self reported sample (ELB)

contained 4649 charter trips. Among the two samples, there were 86 matched trips. We

assume the self reports were accurate and every boat was able to self report. Since nei-

ther sample had clear PSU information available to us, we defined the PSU as described

in Subsection 4.6.1.

The PSA and APSA methods were applied to integrate the two samples and estimate

the total catch of two fish species: Red Snapper and Red Porgy. They represent two types

of fishing targets whose total abundance are of interest to NOAA. Red Snapper is a high

value and commonly targeted species in Gulf of Mexico. Since the late 1990s, annual

recreational landings of this fishery have passed 5 million pounds, while it was less than

500,000 pounds prior to 1950. Certain regulations on fishing season and bag limits have

been implemented to protect this population from overfishing. By contrast, Red Porgy is

often caught by recreational anglers in the Gulf of Mexico as an off-target species. Few

regulations has been set on this population.

4.7.1. Summary Statistics

The differences in nature, value and regulations between the two fish species result

in different catch distributions. Table 4.9 lists the summary statistics of catch for the two

species. For both species, the percentages of trips with landings, average catch and

variance from the dockside intercept sample are much lower than those from the self-

reported sample. By contrast, the CVs from the dockside intercept sample are larger
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than those from the self-reported sample. This shows that anglers tend to report their trip

when they have a harvest. Compared to Red Snapper, the difference of catch distributions

between the two samples for Red Porgy is smaller. This indicates the self reports on Red

Porgy is more representative of its fishery population.

Table 4.9: Summary statistics of the MRIP sample and ELB sample for the Red Snapper
and Red Porgy catches.

Red Snapper Red Porgy

MRIP ELB MRIP ELB

Percentage of the trips with landings 0.07 0.38 0.11 0.27

Mean of catch 0.58 4.61 1.29 3.41

Variance of catch 7.72 63.55 32.57 70.75

CV 4.79 1.72 4.42 2.46

The auxiliary information from the two samples were also explored to investigate the

difference. Table 4.10 shows the 5 variables that were used to build the propensity score

model. The numbers of released Red Snapper and Red Porgy were used separately to

build their own propensity score models. Statistical tests (wilcoxon wanked sum test for

non-categorical variables and χ2 test for categorical variables) were conducted for every

variable to decide whether differences between the two samples are significant.

Table 4.10 shows a considerable difference in all variables between the two samples.

For example, the average number of anglers from the self-reported sample is higher than

the dockside intercept sample, which may indicate that larger boats are more likely to

report their trip information. Among the self-reported sample, 74% of the trips targeted

valuable fish species, while this proportion is only 16% for the dockside intercept sample.

This suggests that anglers tend to report more on purposive trips rather than recreational

only. It is also notable that the numbers of released Red Porgy were small from both

samples. This could be due to either of the following two reasons: 1) anglers tend to keep

Red Porgy if they catch one since they are not regulated, 2) anglers tend not to make note

of how many Red Porgy they released, so nothing is recorded, and thus 0 is imputed.
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Table 4.10: Covariates of the propensity score model for the total Red Snapper and Red
Porgy catches by Charter boat.

Variable Name Type Description
Mean

P-value
MRIP ELB

Number of Anglers Cont. Number of anglers on the boat 3.87 6.05 0.00

Weekend Cat.
1: The trip is made on weekend

0.42 0.29 0.00
0: The trip is made on weekday

Hours Cont. Fishing duration 4.03 3.29 0.00

Target Cat.
1: The trip targets on Red Snapper,

0.16 0.74 0.00Vermilion Snapper, King Mackerel

and Red Grouper. 0: Otherwise

Red Snapper Released Cont. Alive Red Snapper fish released 1.52 7.39 0.00

Red Porgy Released Cont. Alive Red Porgy fish released 0.00 0.43 0.00

4.7.2. The PSA Method

To assess how the decision to report could be explained by these variables, the

propensity score models were built on the combined sample to predict the probability for a

trip to be reported. The models for Red Snapper and Red Porgy shared the same covari-

ates; NumberofAnglers, Weekend, Hours and Target, while the number of released Red

Snapper was included in the model for Red Snapper and the number of released Red

Porgy was included in the model for Red Porgy. The resulting propensity scores were

used to calculate sample weights for the PSA method.

The model estimates for Red Snapper and Red Porgy are tagged as PSA in Table

4.11. All variables are significant at the 5% level. The estimates are similar from both

models, and they illustrate a similar reporting manner as noted in Table 4.9: A trip is more

likely to be self reported with a clear fishing target and when it involves more anglers.

In addition, both models indicate that a trip is more likely to be self reported when it is

made on a weekday with a shorter duration, and with a harvest as reflected by the larger

number of fish released.
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4.7.3. Balance Assessment

To assess whether homogeneous trips from the two samples have been successfully

grouped by the propensity score model, the combined sample was segmented into 10

subgroups based on the estimated propensity score and the balance of covariates were

checked across all subgroups by statistical tests. The subgroups were defined as de-

scribed in Subsection 4.4.2 for the APSA method. The Wilcoxon ranked sum test was

used for non-categorical variables and χ2 test was used for categorical variables. Fisher’s

exact test was used as the alternative to χ2 test when it was not applicable due to small

category size.

Figure 4.4 shows the p-values of every covariate across every subgroup from the

propensity score models for the two species. Overall, all covariates except Target are

balanced across all subgroups. The variable Target is not balanced in many subgroups:

6, 8 and 10 for Red Snapper and 4, 5, 6, 7 and 10 for Red Porgy. This may due to the large

proportion of trips with clear fishing targets in the self-reported sample, which makes the

adjustment unsuccessful.
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Figure 4.4: Balance check for covariates from the PSA and APSA methods for Red Snap-
per and the PSA method for Red Porgy.
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4.7.4. The APSA Method

Next we applied the APSA method to estimate catch for the two species, using the

estimated propensity scores as described in the previous section. For Red Snapper, Table

4.12 lists the numbers of trips from both samples, their mean catches and the p-value of

the Wilcoxon rank sum test for each subgroup. Figure 4.5 shows the catch distributions

within each subgroup from both samples. Table 4.12 shows that most of the MRIP trips
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are from the first 3 subgroups, which include trips that are less likely to be reported. By

contrast, the self-reported trips dominate subgroups 5 to 10, which contain trips that are

more likely to be reported. The mean catch increases from subgroups 1 to 10 among

both samples, which indicates that a trip is more likely to be reported when its fish catch

is larger. Similar data for Red Porgy are shown in Table D.1 and Figure D.1 with the same

conclusion, which can be found in Appendix D.

Table 4.12 also shows that the catch distributions of Red Snapper are significantly

different between the two samples for the first three subgroups. Figure 4.5 shows that

while most of the trips in the three subgroups have zero Red Snapper catch, the self-

reported sample contains relatively more trips with non-zero catch, which causes the

difference. Red Porgy, by contrast, has similar catch distributions in the two samples

across all subgroups, which indicates a good balance on the catch distributions between

the two samples. This can be seen from Table D.1 and Figure D.1 in Appendix D.

Table 4.12: Numbers of trips for Red Snapper from the MRIP and ELB samples within
each subgroup based on the PSA method.

Subgroup Number of Number of Mean Catch
P-value

Number MRIP Trips ELB Trips MRIP ELB

1 469 116 0.01 0.51 0.00

2 236 325 0.07 0.33 0.02

3 138 428 0.38 1.15 0.04

4 80 494 1.43 1.78 0.22

5 44 534 1.75 2.32 0.59

6 40 521 2.08 2.72 0.88

7 22 550 4.32 4.32 0.97

8 12 555 5.83 6.02 0.88

9 7 563 9.29 7.86 0.50

10 8 563 9.25 12.63 0.38
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Figure 4.5: Distributions of the Red Snapper catch from the MRIP and ELB samples within
each subgroup based on the PSA method.
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To estimate the total catch for Red Snapper by the APSA method , we dropped the

self-reported sample from the first three subgroups and recalculated the propensity score

for the retained sample. Table 4.11 shows the new model estimates listed under APSA.

The estimates of covariates are similar to those of the original model except the variable

Target. The estimate of odds ratio for Target increased from 11.05 to 65.79. This is be-

cause the proportion of trips with a clear target species among the dropped self-reported

sample is only 1.2%, which is much lower than 74% of the full self-reported sample. Con-

sequently, the proportion of trips with clear a target species is even higher in the retained

self-reported sample. This strengthens the variable’s predictability. Figure 4.4 shows the

result of a balance check on covariates from the new model. Not surprisingly, almost

all covariates are balanced well across the subgroups except the variable Target. Table

4.13 lists the number of trips from both samples, the mean catch and the P-value of the

Wilcoxon rank sum test within each subgroup based on the new estimated propensity

scores. After dropping the self-reported sample from the first three subgroups, the catch

distributions of Red Snapper are similar between the two samples across all subgroups.

Such a balance is also confirmed by Figure 4.6. For Red Porgy, since the catch distribu-

tions between the two samples were already balanced across all subgroups based on the

PSA method, no self-reported trip was dropped.

4.7.5. Estimation Results

Table 4.14 shows the estimates of total from both the PSA method, the APSA method

and the ratio estimator t̂y2, along with estimates of standard error from the jackknife and

bootstrap estimators. The bootstrap variance estimation was based on 100 replicates. For

Red Snapper, ty,joint−adp provides a very close estimate compared to the ratio estimator

t̂y2, while its jackknife and bootstrap standard deviations are slightly higher than theose

of t̂y2. It is also notable that even though the APSA estimators employs a smaller sample

size compared to the PSA estimators, their jackknife and bootstrap standard errors are
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Figure 4.6: Distributions of the Red Snapper catch from the MRIP and ELB samples within
each subgroup based on the APSA method.
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Table 4.13: Numbers of trips for Red Snapper from the MRIP and ELB samples within
each subgroup based on the APSA method.

Subgroup Number of Number of Catch Mean
P-value

Number MRIP Trips ELB Trips MRIP ELB

1 485 7 0.01 0.00 0.84

2 373 111 0.27 0.45 0.08

3 70 424 1.41 1.86 0.24

4 35 446 1.66 2.06 0.83

5 36 498 1.39 2.33 0.40

6 22 425 3.32 3.68 0.94

7 15 469 6.20 5.38 0.68

8 6 479 7.33 6.33 0.72

9 7 481 9.86 8.86 063

10 7 481 8.29 13.50 0.21

smaller than those of the PSA estimators. This indicates that the self-reported sample

is better integrated with the MRIP sample by the APSA method. However, by losing the

advantage of the larger sample size, the estimators from PSA and APSA have larger

variance compared to t̂y2 in this case and would not be preferred.

For Red Porgy, since no trip was dropped from the self-reported sample, t̂y,joint and

t̂y,joint−adp provide the same estimates, and they are very close to t̂y2. The jackknife and

bootstrap standard errors for all the PSA and APSA estimators are smaller than those of

t̂y2. Based on the simulation results as we discussed earlier, we recommend to use t̂y2

for Red Snapper and to use t̂y,joint or t̂y,joint−adp for Red Porgy in this example. We also

recommend to used the bootstrap method for variance estimation.
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Table 4.14: Estimates of total by the PSA estimators, APSA estimators and ty2 for Red
Snapper and Red Porgy by Charter boat from the MRIP Sample and ELB Sample.

PSA APSA

Red Snapper t̂y,joint t̂y,disjoint t̂y,joint−adp t̂y,disjoint−adp t̂y2

Estimate (×103) 61.73 77.32 64.65 71.28 64.38

SE(jackknife) (×106) 14.67 20.57 12.59 16.44 12.30

SE(bootstrap) (×106) 22.29 33.45 18.60 25.17 18.62

Red Porgy t̂y,joint t̂y,disjoint t̂y,joint−adp t̂y,disjoint−adp t̂y2

Estimate (×103) 123.16 135.01 123.16 135.01 123.80

SE(jackknife) (×106) 26.15 33.85 26.15 33.85 37.93

SE(bootstrap) (×106) 45.37 51.99 45.37 51.99 56.72

4.8. Discussion and Future Research Plans

Based on the simulation results, both the PSA and APSA estimators have shown their

potential of being useful alternatives to the current ratio estimator t̂y2. However, they

have certain limits in handling the selection bias. Compared to the PSA method, the

APSA method can reduce the selection bias by comparing the two samples based on

the propensity score, detecting and leaving out the non-representative part of the non-

probability sample. We also conclude that the joint weighting approach is more reliable

than the disjoint weighting approach. In addition, the performance of the APSA method

will benefit from a larger sample size of the probability sample. The number of retained

subgroups from the APSA method can serve as an indicator of whether the PSA and

APSA estimators are better than the current ratio estimators. As a conclusion, we recom-

mend to use t̂y,joint−adp instead of t̂y2 when the number of retained subgroups is greater

than 8, and the bootstrap variance estimation method is preferable.

However, there are some concerns of generalizing the PSA and APSA methods in

our application. As showed in the case studies, the PSA and APSA methods are not

as straightforward to use as the ratio estimators are. Even though we have specified
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the situations when they can be successful alternatives to the ratio estimators, it raises

the time concern for NOAA to apply the new methods for every species. Since NOAA

is responsible to estimate hundreds of fish species across different waves, areas and

modes, it is time consuming to build the propensity score model for every single case.

However, there are many situations when the ratio estimators couldn’t provide precise

estimates. For example, in Chapter 3 we showed that the PSEs of the ratio estimators

will be increased for the species with large CV, small dockside intercept sample size and

low reporting rate. Thus, we recommend NOAA to consider using the PSA and APSA

estimators for such situations first.

There is also much work that needs to be done to make this research complete. First,

in this research we have assumed the self reports are accurate. Unfortunately, this is

not true in practice. As we observed from the matched trips from the dockside intercept

sample and the self reports, there are a considerable number of trips whose catch are

different from the two sample sources. There are two reasons that may cause this dif-

ference. The first reason is due to the non-sampling error that the two trips are actually

mismatched. Stokes et al. (2019a) studied the effect of non-sampling error on the ratio

estimators. However, it is still unclear how the non-sampling error will affect the PSA and

APSA estimators. The second reason is due to the measurement error contained in the

self reports. One way to address this issue is to study the relationship between the actual

catch and the reported catch from the overlap of the two samples, and then predict the

actual catch based on the self-reported catch for the rest of the self-reported sample. The

prediction variance can be estimated by multiple imputation. However, by doing so, the

variance of the PSA and APSA estimators will be greatly increased, which compromises

their advantage of having a larger sample size. This is because the prediction model

is built on the matched trips, whose sample size is much smaller than the self-reported

sample. So other ways of dealing with the measurement error need to be studied for the

PSA and APSA methods.
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Second, in this study we assumed every trip in the population has a positive chance

to be self reported. However, in practice the self-reported sample has the coverage issue

that only the boat with the self-reporting device installed has the chance to report. The

coverage issue can be ignored if the boat with the device is representative of the popula-

tion. In our case studies, this assumption was met for Red Porgy even though it was not

clearly stated. This is because the propensity model balanced the two sample sources

well without considering the device factor. However, if this is not true, as the Red Snapper

case, we can partition the population into two domains based on whether the boat has

the self reporting device and make separate total estimation for each domain. In some

applications, such as charter boats, this is known for the entire fleet.

Third, the sensitivity of our estimators to model mis-specification needs more scrutiny.

The model mis-specification can be caused by two reasons: 1) the model doesn’t include

the relevant variables, 2) the model includes irrelevant variables. In the NMAR scenario of

our simulation studies, we studied the effect of the first reason. However, our simulation

didn’t consider the effect of the second reason, as we used the same model for all sce-

narios. As a result, it is unclear how much bias occurs from a mis-specified model. We

would expect that the performance of both the PSA and APSA estimators be improved in

our simulation if the model was correctly specified in each replicate.

For the relative sample size issue, the simulation results show that the performance of

the APSA methods will benefit from a larger sample size of the probability sample. How-

ever, for a given non-probability sample size, it is unclear how large a probability sample

size is required for the APSA method to provide a reliable estimate. As showed in Fig-

ure 4.3, when the number of retained subgroups is greater than 8, the performance of

t̂y,joint−adp is consistently better than the ratio estimator t̂y2 regardless of the probability

sample size. However, when the number of retained subgroups is 8 and the probability

sample size is small (n2 = 200), t̂y2 outperforms t̂y,joint−adp. This may not be problem-

atic so far for the cases we studied, as the ratio of the probability sample size over the
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non-probability sample size was 1142/4649 = 0.24, which was close to the largest ratio

in the simulation settings (800/3154 = 0.25). Under this ratio, t̂y,joint−adp showed good

performance from the simulation results. However, this problem needs to be addressed

when the self-reporting rate is getting higher in the future. On the other hand, if the self-

reporting rate is high enough, the non-probability sample will resemble a simple random

sample and adjustment will be less important.

Fourth, it is worth investigating whether machine learning models (such as k-nearest

neighbors, support vector machine) can be successful alternatives to the traditional propen-

sity score model that used in our study. They have shown to be able to remove selection

bias more efficiently than logistic regression when used for PSA (Ferri-García and Rueda,

2020). However, the machine learning models require a very large training data set to

guarantee their prediction accuracy. In addition, the new models may not be able to indi-

cate a model failure, as the APSA method does.

Last, the idea of the APSA method can be applied to many non-probability sampling

applications, as it offers a way to indicate whether the non-probability sample is being

correctly used. For the situations when the response variable is not available for the

probability sample, one could try to apply the APSA method on the covariates that is

highly correlated with the response variable.
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APPENDIX A

The Mean, Variance and CV of the New Self-reported Sample

Under the assumptions discussed in Section 3.1, the relationships between p1 and ȳ1,

CV1y, ȳ∗1, CV1y∗ can be specified as follows. When the reporting rate (p1) decreases from

the current level, the values of ȳ1, CV1y, ȳ∗1 and CV1y∗ does not change. When the reporting

rate increases by δ, denote the mean and variance of the target population, the self-

reported sample, the anglers who do not report and the new self-reported sample by (ȳ,

S2
y ), (ȳ1, S2

1y), (ȳ1,c, S2
1y,c) and (ȳ1,p1+δ, S2

1y,p1+δ), respectively. By the following relationships:

ȳ = p1ȳ1 + (1− p1)ȳ1,c, (A.1)

and

S2
y = p1S

2
1y + (1− p1)S2

1y,c + p1(1− p1)(ȳ1 − ȳ1,c)
2, (A.2)

we could get:

ȳ1,c =
ȳ − p1ȳ1

1− p1

(A.3)

and

S2
1y,c =

S2
y − p1S

2
1y

1− p1

− p1(ȳ1 − ȳ1,c)
2. (A.4)

Then the mean and variance for the new self-reported sample have the expressions:

ȳ1,p1+δ =
p1ȳ1 + δȳ1,c

p1 + δ
, (A.5)

and
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S2
1y,p1+δ =

p1S
2
1y + δS2

1y,c

p1 + δ
+
p1δ(ȳ1 − ȳ1,c)

2

(p1 + δ)2
. (A.6)

As a result,

CV1y,p1+δ =
S1y,1+δ

ȳ1,p1+δ

. (A.7)

Similarly, when the self reports contains measurement error, the average catch among

the new self-reported sample is:

ȳ∗1,p1+δ =
p1ȳ
∗
1 + δȳ∗1,c
p1 + δ

, (A.8)

where ȳ∗1,c =
ȳ−p1ȳ∗1
1−p1 is the average catch among the anglers who do not report. Denote the

variance of catch of the original self-reported sample by S2
1y∗, then the variance of catch

among the new self-reported sample is:

S2
1y∗,1+δ =

p1S
2
1y∗ + δS2

1y∗,c

p1 + δ
+
p1δ(ȳ

∗
1 − ȳ∗1,c)2

(p1 + δ)2
, (A.9)

where S2
1y∗,c =

S2
y−p1S2

1y∗

1−p1 − p1(ȳ∗1− ȳ∗1,c)2 is the variance of catch among the anglers who do

not report. As a result,

CV1y∗,p1+δ =
S1y∗,1+δ

ȳ∗1,p1+δ

. (A.10)
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APPENDIX B

Large Sample Variance of t̂SRS

We derive the variance of

t̂SRS = N̂ ȳS = n1n2
ȳS
m

(B.1)

discussed in Section 4.2. In the simplified case, both the non-probability sample (S1)

and the probability sample (S2) are simple random samples with sample sizes n1 and

n2, respectively. The random components in equation B.1 is the overlap size m and the

sample average ȳS.

First, the overlap sizem follows a hypergeometric distribution with parametersN, n1, and n2,

so

E(m) =
n1n2

N
and V ar(m) =

n1n2(N − n1)(N − n2)

N2(N − 1)
. (B.2)

Second, as ȳS is the sample average from a simple random sample with size nS = n1 +

n2 −m, its variance has the expression:

V ar(ȳS) = E(V ar(ȳS|m)) + V ar(E(ȳS|m)) (B.3)

= E((1− n1 + n2 −m
N

)
S2
y

n1 + n2 −m
) + V ar(ȳ)

= S2
yE(

1− n1+n2−m
N

n1 + n2 −m
) + 0

≈ S2
y(

1− n1+n2−E(m)
N

n1 + n2 − E(m)
).
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Next, we have:

Cov(m, ȳS) = E(Cov(m, ȳS|m)) + Cov(E(m|m), E(ȳS|m)) (B.4)

= 0.

The variance of t̂SRS can be approximated using Taylor linearizaiton when sample size is

large:

V ar(t̂SRS) = V ar(n1n2
ȳS
m

) (B.5)

= n2
1n

2
2V ar(

ȳS
m

)

≈ n2
1n

2
2{(

1

E(m)
)2V ar(ȳS) + (− ȳ

(E(m))2
)2V ar(m)− 2

ȳ

(E(m))3
Cov(m, ȳS)}

≈ N2{S2
y(

1− n1+n2−E(m)
N

n1 + n2 − E(m)
) +

ȳ2

n1n2

(N − n1)(N − n2)

N − 1
}

≈ N2

E(nS)
{S2

y(1−
E(nS)

N
) + ȳ2E(nS)

p1Nn2

(1− p1)(N − n2)}

≈ N2

E(nS)
{S2(1− E(nS)

N
) + ȳ2E(nS)

n2

(1− p1)

p1

(1− n2

N
)},

where E(nS) = n1 + n2 − n1n2

N
.

90



APPENDIX C

Simulation Results from the Complex Design

Table C.1: The mean of #Subgroup based on the APSA method when the probability
sample is drawn according to a complex design based on 3,000 replicates for scenarios:
MCAR, MAR, Large Catch Case and NMAR.

#subgroup
Probability Sample Size (nPSU )

30 40 50 60

MCAR Full Sample 9.36 9.36 9.36 9.37

Retained Sample 9.59 9.59 9.6 9.6

MAR Full Sample 9.38 9.32 9.33 9.34

Retained Sample 9.61 9.56 9.59 9.56

Large Catch Case Full Sample 6.19 4.97 4.55 4.3

Retained Sample 8.13 8.22 8.09 7.94

NMAR Full Sample 6.61 5.73 5.34 4.97

Retained Sample 7.67 7.45 7.3 6.98
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Figure C.1: Empirical MSE of the five estimators when the probability sample is according
to a complex design and the reporting rate is 30% based on 3,000 replicates for scenarios:
MCAR, MAR, Large Catch Case and NMAR.
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Table C.2: Relative bias of the five estimators when the probability sample is according to
a complex design and the reporting rate is 30% based on 3,000 replicates for scenarios:
MCAR, MAR, Large Catch Case and NMAR.

PSA APSA Ratio Estimator

nPSU t̂y,joint t̂y,disjoint t̂y,joint−adp t̂y,disjoint−adp t̂y2

MCAR 30 0.01 0.01 0.01 0.01 0.01

40 0.00 0.00 0.00 0.00 0.01

50 0.00 0.00 0.00 0.00 0.01

60 0.00 0.00 0.00 0.00 0.00

MAR 30 0.00 0.00 0.00 0.00 0.01

40 0.00 0.00 0.00 0.00 0.01

50 0.00 0.00 0.00 0.00 0.00

60 0.00 0.00 -0.01 -0.01 0.00

Large Catch Case 30 0.31 0.3 0.11 0.16 0.01

40 0.29 0.29 0.02 0.04 0.00

50 0.28 0.27 -0.01 0.02 0.00

60 0.27 0.26 -0.03 0.02 0.00

NMAR 30 0.08 0.08 0.06 0.09 0.01

40 0.08 0.08 0.05 0.09 0.00

50 0.07 0.08 0.05 0.09 0.00

60 0.07 0.07 0.04 0.08 0.00

93



Ta
bl

e
C

.3
:C

ov
er

ag
e

ra
te

an
d

re
la

tiv
e

bi
as

of
th

e
ja

ck
kn

ife
an

d
bo

ot
st

ra
p

va
ria

nc
e

es
tim

at
es

fo
rt

he
fiv

e
es

tim
at

or
s

w
ith

th
ei

r
em

pi
ric

al
va

ria
nc

e
(×

10
8
)w

he
n

th
e

pr
ob

ab
ili

ty
sa

m
pl

e
is

dr
aw

n
ac

co
rd

in
g

to
a

co
m

pl
ex

de
si

gn
an

d
th

e
re

po
rt

in
g

ra
te

is
30

%
ba

se
d

on
3,

00
0

re
pl

ic
at

es
fo

rs
ce

na
rio

s:
M

C
A

R
an

d
M

A
R

.

P
S

A
A

P
S

A
R

at
io

E
st

im
at

or

S
ce

na
rio

n
P
S
U

t̂ y
,j
o
in
t

t̂ y
,d
is
jo
in
t

t̂ y
,j
o
in
t −
a
d
p

t̂ y
,d
is
jo
in
t −
a
d
p

t̂ y
2

C
ov

er
ag

e
Va

r
R

el
B

ia
s

C
ov

er
ag

e
Va

r
R

el
B

ia
s

C
ov

er
ag

e
Va

r
R

el
B

ia
s

C
ov

er
ag

e
Va

r
R

el
B

ia
s

C
ov

er
ag

e
Va

r
R

el
B

ia
s

(%
)

(%
)

(%
)

(%
)

(%
)

M
C

A
R

30
JK

93
.4

23
.9

4
-0

.0
6

93
.3

6
24

.2
6

-0
.0

6
92

.0
7

24
.4

4
-0

.1
7

92
.0

7
24

.6
4

-0
.1

6
91

.7
6

31
.5

4
-0

.0
7

B
oo

t
92

.6
8

-0
.0

6
92

.6
8

-0
.0

5
92

.3
7

-0
.0

8
92

.1
6

-0
.0

8
91

.4
4

-0
.0

7

40
JK

93
.2

4
13

.8
6

-0
.0

7
93

.1
6

14
.2

3
-0

.0
7

91
.5

9
14

.4
4

-0
.1

8
91

.6
3

14
.7

1
-0

.1
8

92
.2

8
18

.6
4

-0
.0

8

B
oo

t
93

.6
-0

.0
6

93
.6

-0
.0

6
93

.0
8

-0
.0

9
93

.1
6

-0
.0

9
91

.9
6

-0
.1

50
JK

93
.3

6
9.

73
-0

.0
5

93
.4

10
.0

6
-0

.0
5

91
.5

4
10

.1
6

-0
.1

7
91

.5
4

10
.5

5
-0

.1
8

92
.8

4
12

.9
-0

.0
5

B
oo

t
93

.7
2

-0
.0

3
93

.6
4

-0
.0

3
93

.2
8

-0
.0

9
93

.2
8

-0
.0

9
93

-0
.0

6

60
JK

94
.1

6
7.

39
-0

.0
2

94
.1

2
7.

72
-0

.0
2

91
.9

7
7.

79
-0

.1
5

91
.9

3
8.

1
-0

.1
5

93
.4

8
9.

49
0.

02

B
oo

t
93

.5
6

0.
01

93
.7

2
0

93
.2

9
-0

.0
4

93
.6

7
-0

.0
5

93
.5

6
0.

01

M
A

R

30
JK

93
.0

4
22

.9
-0

.0
6

93
.2

23
.2

2
-0

.0
6

91
.1

9
23

.7
3

-0
.1

5
91

.1
9

23
.9

4
-0

.1
4

92
.3

2
31

.8
2

-0
.0

9

B
oo

t
92

.6
-0

.0
5

92
.7

2
-0

.0
5

92
-0

.0
8

92
-0

.0
8

91
.6

-0
.1

1

40
JK

94
.3

6
12

.6
9

-0
.0

1
94

.3
6

12
.9

6
-0

.0
1

92
.5

8
13

.0
9

-0
.1

1
92

.4
6

13
.3

-0
.1

1
93

.7
2

17
.0

7
-0

.0
1

B
oo

t
94

.2
4

0.
01

94
.1

2
0.

01
93

.3
5

-0
.0

3
93

.3
5

-0
.0

3
92

.8
4

-0
.0

3

50
JK

92
.5

6
9.

62
-0

.0
7

92
.4

4
9.

89
-0

.0
7

90
.3

6
9.

98
-0

.1
7

90
.1

5
10

.1
6

-0
.1

7
93

.0
8

12
.7

4
-0

.0
5

B
oo

t
92

.9
2

-0
.0

6
93

.2
-0

.0
6

91
.9

4
-0

.1
1

92
.2

8
-0

.1
1

92
.6

4
-0

.0
7

60
JK

93
.2

8
7.

11
-0

.0
2

93
.2

4
7.

33
-0

.0
2

91
.1

7.
55

-0
.1

5
91

.1
4

7.
74

-0
.1

4
93

.5
2

9.
43

-0
.0

2

B
oo

t
93

.4
4

-0
.0

1
93

.4
4

0
92

.3
9

-0
.0

7
92

.5
6

-0
.0

7
93

.3
2

-0
.0

4

94



Ta
bl

e
C

.4
:C

ov
er

ag
e

ra
te

an
d

re
la

tiv
e

bi
as

of
th

e
ja

ck
kn

ife
an

d
bo

ot
st

ra
p

va
ria

nc
e

es
tim

at
es

fo
rt

he
fiv

e
es

tim
at

or
s

w
ith

th
ei

r
em

pi
ric

al
va

ria
nc

e
(×

10
8
)w

he
n

th
e

pr
ob

ab
ili

ty
sa

m
pl

e
is

dr
aw

n
ac

co
rd

in
g

to
a

co
m

pl
ex

de
si

gn
an

d
th

e
re

po
rt

in
g

ra
te

is
30

%
ba

se
d

on
3,

00
0

re
pl

ic
at

es
fo

rs
ce

na
rio

s:
La

rg
e

C
at

ch
C

as
e

an
d

N
M

A
R

.

P
S

A
A

P
S

A
R

at
io

E
st

im
at

or

S
ce

na
rio

n
P
S
U

t̂ y
,j
o
in
t

t̂ y
,d
is
jo
in
t

t̂ y
,j
o
in
t −
a
d
p

t̂ y
,d
is
jo
in
t −
a
d
p

t̂ y
2

C
ov

er
ag

e
Va

r
R

el
B

ia
s

C
ov

er
ag

e
Va

r
R

el
B

ia
s

C
ov

er
ag

e
Va

r
R

el
B

ia
s

C
ov

er
ag

e
Va

r
R

el
B

ia
s

C
ov

er
ag

e
Va

r
R

el
B

ia
s

(%
)

(%
)

(%
)

(%
)

(%
)

30
JK

28
.8

8
34

.4
2

-0
.1

4
28

.9
6

33
.6

1
-0

.1
4

69
.6

1
38

.0
9

-0
.6

3
57

.5
37

.0
5

-0
.5

8
94

.6
11

.1
3

-0
.0

5

B
oo

t
31

.4
4

-0
.1

2
31

.9
6

-0
.1

2
77

.2
-0

.5
64

.9
6

-0
.4

6
93

.6
-0

.0
7

La
rg

e
40

JK
6.

72
17

.9
2

-0
.1

2
7.

32
17

.2
8

-0
.1

2
69

.3
9

16
.4

-0
.6

9
41

.0
5

17
.5

1
-0

.7
1

94
.7

6
5.

86
0.

01

C
at

ch
B

oo
t

7.
48

-0
.0

9
8.

08
-0

.0
9

79
.9

2
-0

.4
8

47
.5

7
-0

.6
2

93
.4

4
-0

.0
3

C
as

e
50

JK
2.

04
11

.9
9

-0
.1

2.
48

11
.5

1
-0

.1
1

64
.2

6
10

.8
7

-0
.7

4
24

.2
12

.7
8

-0
.7

6
94

.8
4

3.
93

0.
07

B
oo

t
2.

04
-0

.0
7

2.
52

-0
.0

7
77

.0
9

-0
.5

3
28

.6
-0

.6
8

94
.1

2
0.

02

60
JK

0.
64

9.
28

-0
.1

3
0.

8
8.

67
-0

.1
2

58
.3

7.
8

-0
.7

6
17

.4
5

8.
81

-0
.7

6
95

.1
6

3.
08

0.
06

B
oo

t
0.

64
-0

.0
8

0.
84

-0
.0

6
71

.1
7

-0
.5

4
20

.5
5

-0
.6

8
95

.0
8

0.
02

N
M

A
R

30
JK

92
.1

2
23

.2
4

-0
.0

9
92

.0
4

23
.1

8
-0

.0
9

76
.9

4
24

.1
2

-0
.5

9
73

.0
9

24
.6

5
-0

.5
7

92
.7

2
25

.4
7

-0
.0

5

B
oo

t
92

-0
.0

6
91

.8
4

-0
.0

6
85

.3
3

-0
.3

5
80

.9
7

-0
.3

5
92

.2
8

-0
.0

5

40
JK

88
.8

8
12

.1
-0

.0
4

88
.2

8
12

.0
7

-0
.0

3
68

.4
1

13
.3

7
-0

.6
6

57
.1

6
14

.5
2

-0
.6

5
92

.4
8

13
.9

5
-0

.0
2

B
oo

t
89

.3
6

0
89

.2
0.

01
80

.6
-0

.4
1

69
.9

6
-0

.4
3

92
.2

8
-0

.0
4

50
JK

84
.4

8
8.

76
-0

.0
7

83
.0

8
8.

78
-0

.0
7

62
.8

6
10

.1
7

-0
.7

1
46

.1
7

11
.5

7
-0

.7
93

.3
2

10
.0

9
-0

.0
3

B
oo

t
85

.4
8

-0
.0

2
84

.4
4

-0
.0

2
77

.1
-0

.4
7

59
.6

2
-0

.5
93

.4
8

-0
.0

4

60
JK

83
6.

53
-0

.0
4

81
.6

6.
53

-0
.0

3
61

7.
6

-0
.7

2
42

.3
8.

79
-0

.7
1

93
.5

6
7.

35
0.

03

B
oo

t
84

.6
0.

01
82

.8
0.

02
75

.9
5

-0
.4

6
57

.2
5

-0
.5

93
.0

4
0.

02

95



10
00

15
00

20
00

25
00

30
00

Probability Sample Size nPSU

10
6 M

S
E

30 40 50 60

●

●

●

●

●

●

●

●

●

●

●

●

Number of Retained Subgroups: 10

Non−probability sample with 30% Response Rate

●

●

●

Estimators
ty,joint
ty,disjoint
ty,joint_adp
ty,disjoint_adp
ty2

10
00

15
00

20
00

25
00

30
00

Probability Sample Size nPSU

10
6 M

S
E

30 40 50 60

●

●

●

●

●

●

●

●

●

●

●

●

Number of Retained Subgroups: 9

Non−probability sample with 30% Response Rate

10
00

20
00

30
00

40
00

50
00

60
00

Probability Sample Size nPSU

10
6 M

S
E

30 40 50 60

●

●

●

●

●

●

●

●

●

●

●
●

Number of Retained Subgroups: 8

Non−probability sample with 30% Response Rate

20
00

40
00

60
00

80
00

10
00

0

Probability Sample Size nPSU

10
6 M

S
E

30 40 50 60

●

●

●

●

●

●

●
●

●

●

●
●

Number of Retained Subgroups: <8

Non−probaility sample with 30% Response Rate

Figure C.2: Empirical MSE of the five estimators when the probability sample is according
to a complex design and the reporting rate is 30% based on 3,000 replicates for different
number of retained subgroups: 10, 9, 8 and Less Than 8.
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Table C.5: Relative bias of the five estimators when the probability sample is drawn ac-
cording to a complex design and the reporting rate is 30% based on 3,000 replicates for
different number of retained subgroups: 10, 9, 8 and Less Than 8.

PSA APSA Ratio Estimator
#subgroup nPSU t̂y,joint t̂y,disjoint t̂y,joint−adp t̂y,disjoint−adp t̂y2

10 30 0.61 0.63 0.61 0.63 0.75

40 0.24 0.27 0.24 0.27 0.45

50 -0.11 -0.08 -0.11 -0.08 0.24

60 -0.24 -0.22 -0.24 -0.22 -0.03

9 30 2.21 2.26 1.41 1.41 1.32

40 0.04 0.11 0.02 0.05 0.32

50 0.35 0.41 0.06 0.04 0.77

60 -0.16 -0.1 -0.03 -0.05 0.26

8 30 9.89 9.95 6.65 7.15 2.24

40 3.64 3.8 2.31 2.61 2.91

50 1.34 1.45 0.88 1.03 1.22

60 0.51 0.64 0.39 0.53 0.49

Less Than 8 30 19.69 19.56 7.86 12.26 0.21

40 18.22 18.05 3.27 12.68 0.21

50 17.15 16.98 1.73 14.78 0.22

60 16.53 16.33 0.59 15.35 0.19
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APPENDIX D

The Results from the PSA Method for Red Porgy

Table D.1: Numbers of trips for Red Porgy from the MRIP and ELB samples within each
subgroup based on the PSA method.

Subgroup Number of Number of Catch Mean
P-value

Number MRIP Trips ELB Trips MRIP ELB

1 473 127 0.09 0.07 0.09

2 220 323 0.95 0.98 0.11

3 143 428 2.72 1.56 0.40

4 85 496 2.46 2.10 0.73

5 46 562 1.41 1.51 0.37

6 37 209 2.51 2.75 0.80

7 31 574 2.39 2.78 0.30

8 9 503 2.33 3.33 0.96

9 8 568 4.75 4.49 0.24

10 4 559 2.25 6.14 0.24
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Figure D.1: Distributions of the Red Porgy catch from the MRIP and ELB samples within
each subgroup based on the PSA method.
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