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Probability sampling has served as the gold-standard in survey practice for many
decades. However, as many new data collection methods become available, it is possible
to improve the quality and efficiency of traditional survey practices by integrating different
sample sources. Web-based surveys from the so-called opt-in panels are one type of non-
probability sample that becoming popular these years. They often come with large sample
sizes to yield efficient estimates, but selection bias may compromise the generalizability
of results to the broader population.

Our motivating example is a survey conducted by National Marine Fisheries Service
(NMFS), which collects data to estimate catch of recreational anglers. Currently, the
samples are from two surveys, a mail survey measuring effort (# of trips made in a given
area) and an intercept survey measuring catch per unit effort (# of fish per trip by species).
The samples are combined to provide an estimate of total catch. However, NMFS is
experimenting with alternative data collection procedures that use self-reports submitted
by anglers via electronic devices, such as cell phones. The self-reports are from a non-
probability sample of anglers and may not be accurate. The objective is to improve the
quality and speed of estimation, and/or to reduce cost.

This dissertation consists two pieces of research that are both related to this problem.
The first part of this dissertation is about finding the sampling design for the current es-

timators to meet the desired precision. Currently, the estimators proposed by Liu et al.



(2017) treat the self reports as auxiliary data to the sample of intercepts, so they are not
used directly in estimation. The estimators’ precision depend on several factors, including
reporting rate, the accuracy and representativeness of reported counts, and the size of
the dockside sample. We develop the R package OptimalFisheryDesign to compare the
estimation precision of the new estimators, investigate the effects of different factors, and
find the corresponding optimal designs for various implementations of the pilot survey.

The second part of this dissertation is to investigate whether or not better estimators
of catch can be developed by treating the large sample of voluntary reports as actual
data, rather than simply as auxiliary information to improve estimates from the dockside
sample. To integrate the non-probability sample and the probability samples, we modify
and evaluate two different weighting approaches proposed by Robbins et al. (2015): joint
weighting and disjoint weighting. In the joint weighting approach, the samples are only
representative when combined as one sample, while in disjoint weighting each sample is
weighted to be individually representative of the population, and then averaged.

In addition to PSA, we propose a new method called Adaptive Propensity Score Ad-
justment (APSA). The method serves as an indicator of whether the propensity score
model correctly predicts the selection probability. It can also reduce the selection bias
by detecting and dropping part of the non-probability sample whose selection mecha-
nism can not be explained by the model. Both the jackknife and bootstrap methods are

proposed and examined for variance estimation.
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CHAPTER 1

Introduction

1.1. Overview of Non-probability Sampling

Probability sampling has served as the gold-standard in survey practice for many
decades (Stephan, 1948; Frankel and Frankel, 1987). The essential component of prob-
ability sampling is its random selection mechanism with known probability of selection for
each sample unit. This allows valid inferences about parameters from the target popula-
tion. A probability sample, when analyzed properly, accurately represents the population
and thus avoids selection bias. Classical approaches in survey sampling are well dis-
cussed in Fuller (2011) and Lohr (2019). However, traditional survey practice has recently
been supplemented with new survey data collection methods (Couper, 2005). Many of
these have an unknown data generating process, and must be analyzed differently than

probability samples. These samples are called non-probability sample.

Compared to traditional survey practice, non-probability sampling has the advantage
that its recruitment process is more efficient and less costly, so that larger sample sizes
are feasible. It may also require less time to deploy or obtain responses. However, the
disadvantage of non-probability sampling is that the data generating process is unknown
and thus may not produce samples that can be made to represent the target population
well. This causes great challenges for making defensible inferences about the population.
The “Summary Report of the AAPOR Task Force on Non-probability Sampling” (Baker

et al., 2013), which was commissioned by the American Association of Public Opinion

1



Research (AAPOR) Executive Council, summarizes three major issues that arise when
analyzing non-probability samples: (i) Large exclusion bias: The population accessible to
recruitment is likely to be a small and unrepresentative portion of the target population of
interest; (ii) Selection bias: participants from the non-probability sample may not be repre-
sentative, even for the population that was exposed to recruitment. (iii) Non-participation
bias: even though a non-probability sample may have a large sample size compared to
a probability sample, the participation rates (conditional on being recruited for the study)

are often low. Thus, one should be cautious when analyzing non-probability samples.

The remarkable usage of non-probability-sample-based surveys can be tracked back
to the 1936 election polls. In pre-election polls, the Literary Digest magazine distributed 10
million straw poll ballots, among which 2.3 million were collected. They revealed that Alf
Landon would win by a landslide over Franklin Roosevelt. However, the magazine ignored
the fact that the respondents consisted mostly of telephone owners and the magazine’s
readers, which only represented the middle-to-upper income class of the society at that
time and thus introduced severe selection bias into the sample. As a result, the Literary
Digest made an erroneous prediction. However, it is notable that Wang et al. (2015)
correctly predicted the 2012 presidential election result based on XBOX gaming players,

which demonstrates the potential value of non-probability samples if correctly used.

In addition to making inference solely based on the non-probability samples, there
are many opportunities as well as challenges of developing methods and frameworks to
combine different data sources to assist in estimation. This is known as data integration.
This area is facing challenges and opportunities in developing methods and frameworks,
as the data sources differ in their quality and suitability for answering research questions,
and many of the inexpensive data sources provide non-probability samples (Lohr et al.,

2017).



1.2. Different Types of Non-probability Samples

Non-probability samples have long been acceptable in various research fields. For
example, in medical research, the recruitment of patients due to their accessibility and
availability results in non-probability samples that provide useful clinical findings from
experiments. For estimation of population characteristics, however, adoption of non-
probability samples for scientific inquiry has been viewed with skepticism. Lately, however,
researchers have begun to investigate whether such samples might provide useful infor-
mation. Due to different selection mechanisms, there are many types of non-probability

samples. We briefly summarize some of them here.

1. Mall intercepts: As the name suggests, the potential sample units are intercepted in
shopping malls or other public spaces. It is an efficient way of collecting samples that
is widely used in marketing research. The mall intercept process involves stopping
shoppers, screening them for qualifying characteristics, and then either conduct-
ing the interview or inviting the sample units to the appointed research facility for
a complete interview. The recruitment process could be random or by some sys-
tematic selection mechanism like stopping every tenth shopper for the interviewer

encounter.

2. River sampling: In river sampling, the responses are collected from website visitors
via online banners, ads, promotions, offers and invitations. The website visitor who
clicks on the survey link will be asked several screening questions and finally routed
to a survey based on their answers. Once the participant completes the survey, or

has been screened out of the survey, they may never be tracked again.

3. Network sampling: Also known as snowball sampling, whose future subjects are
collected by referral from the existing sample units. The initial sample units can also
be collected by convenience. As illustrated by the name, the sample group grows

like a rolling snowball. This sampling method is often used for studying hidden



populations, such as drug users or sex workers, which are hard to reach. Estimation
from such samples can be affected by severe bias and are hard to generalize to a

broader population.

4. Quota sampling: In quota sampling, the sample units are selected to match the pop-
ulation, in terms of proportions of certain characteristics, such as age and gender.
The purpose of quota sampling is to make the sample mimic the population in terms

of the given characteristics, with the goal of reducing the bias.

5. Volunteer Panel: The volunteer panel is common in areas such as psychology, social
and medical research. Participants who are willing to take part in the study during
a certain time period voluntarily join the panel. When a panel is recruited online,
its size is often large, with thousands or even millions of members. However, the
number of active panel members in any certain time period is limited due to low

response rate.

Among the various types of non-probability samples, web-based samples from vol-
unteer panels have become most popular in recent years (Grana et al., 2014; Schonlau
et al., 2017). These panels consist of volunteers who are willing to participate and are
enlisted through various convenient methods. A web survey is a simple way of getting
access to many respondents from the target population. When collecting data through
the internet, interviewers are no longer needed. Questionnaires can be distributed at very
low cost and thus the survey can be launched easily. In our application, the volunteer
panel collects fishing trip information from fishing boat captains via cell phone or satellite

devices, which forms a non-probability sample.



1.3. Research Objectives

This research focuses on integrating a non-probability sample with a probability sam-
ple for estimation of population total. It was motivated by a data collection method used to
collect information from the population of recreational anglers by the National Oceanic and
Atmospheric Administration (NOAA). NOAA has been pushed by the state fish and game
agencies, who carry out data collection from anglers in their marine waters, to allow new
sources of data be used as part of the fish catch estimation process called MRIP (Marine
Recreational Information Program). In particular, the anglers themselves are interested
in providing data on their catch via technologies such as cell phones or satellite devices
on their vessels. Such voluntarily submitted data can be regarded as a non-probability
sample. One approach to use these data in estimation is to think of it as part of a capture
recapture system, where the self-reported data are the capture phase and a probability
sample collected from the dockside in-person survey (MRIP) is the recapture phase. With
this use, the self reports serve as the auxiliary information to the recapture sample and

thus are not used directly in estimation.

There are two research objectives in this dissertation that are both related to this prob-
lem. The first objective is about the sample design for the capture-recapture view of
the aggregated data set. Several state fish and game agencies are interested in how to
design such a data collection method, using a cell phone app as the self-report mech-
anism. A frequently encountered question by these agencies is to determine how large
the dockside in-person survey sample is required for adequate precision given specific
self-reporting rates they hope to achieve. To address this question, we developed the R
package OptimalFisheryDesign to investigate the effects of various factors on the estima-

tion precision and to find the most cost effective designs for implementation.



The second research objective is to determine whether or not better estimators of
catch can be developed by treating the large sample of voluntary reports as actual data,
rather than simply as auxiliary information to improve estimates from the dockside sam-
ple. To incorporate the self-reported sample directly into estimation of total, one way is
to estimate the inclusion probability for the self-reported sample by propensity score ad-
justment (PSA) (Valliant, 2019). If this step produces accurate estimation of the selection
probability, the self-reported sample will have properties of a probability sample and thus

can be weighted to make inference on the target population.

The rest of this dissertation is organized as follows. In Chapter 2, we review the
research background and estimators of total proposed by Liu et al. (2017). Chapter 3 in-
vestigates the first research objective, which is to find the optimal design for the currently
used capture-recapture approach that uses the volunteer data only as auxiliary informa-
tion. Chapter 4 investigates the second research objective, which is to develop inference

methods for a sample composed of both the probability and non-probability samples.



CHAPTER 2

Background

2.1. Motivating Example

The National Marine Fisheries Service (NMFS) is responsible for collecting data on
catch by the recreational fishing sector. Their data collection operations are known as the
Marine Recreational Information Program (MRIP). Data from this program are an input to
models that monitor the health of many of the nation’s fisheries. For the last 30 years,
these data have come from a pair of surveys, one to measure effort (# of trips made) and
one to measure catch per unit effort (CPUE=# of fish caught per trip), denoted as 3. Effort
is estimated from a retrospective household survey that collects data directly from anglers
on their trips in the previous two months, called a wave. CPUE (y) is estimated from a
dockside in-person survey where sampling units are defined by time units and geography.
The interviewers must have the expertise to identify all species encountered, and so are
technicians/biologists supplied by state fish and game agencies for the coastal states.
Final estimates of catch are obtained by multiplying estimated effort and CPUE (3), which

is repeated for each species, geography, and wave.

This system has recently had increasing demands. Some states are interested in in-
season management of species to prevent overfishing, requiring quicker processing of
data. Scientists need finer geographic resolution to monitor the impact on fishing stock
from events, such as the 2010 Deep-water Horizon oil spill. Current sample sizes can-

not produce sufficient estimation precision for small geographies and short time intervals.
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Increasing the sample sizes sufficiently using the current two-probability-sample method-

ology is prohibitively expensive in many cases.

Because managers and scientists want greater precision, various states are experi-
menting with alternative data collection systems. One is the electronic logbook (ELB);
this approach allows anglers to self-report their own effort and catch in (near) real time,
usually by cell phone or other communication devices. The dockside intercept survey
is still used, but its data are combined with the volunteered ELB reports. If these catch
reports could capture effort, then estimates would be available sooner since the retro-
spective household survey might be eliminated. If the catch was accurately reported at a

high rate, then estimation of CPUE (y) might be improved.

Since the self-reported ELB data is not a probability sample, analysts cannot simply
substitute them for the household survey in the current estimation system. Instead, they
need new estimation methods to ensure that the catch estimates are scientifically defen-
sible. The most common approach has been to use the ELB data as auxiliary information
only. This leads to the approach mentioned in Chapter 1, where the reported and dock-
side intercept samples are viewed as a capture and recapture. Then an estimator similar
to the Lincoln-Peterson index (Le Cren, 1965) is used to estimate not the number of trips
(N), but the total catch (¢,) from the trips. Several variations of the estimator have been
proposed (Liu et al., 2017, Breidt et al. 2018). Though these estimators are consistent
for total catch, their precision depends on several factors, including reporting rate, accu-
racy of the reported count, representativeness of the reporting sample and the size of
the dockside intercept sample. The sample size of the dockside intercept sample is un-
der the control of the samplers. However, the features of the reporting sample are less

controllable, since they rely on the voluntary participation of anglers in the fishery.

The agencies that consider changing to such an electronic reporting system usually
have two questions. The first one is whether the dockside intercept sample size they

already have is adequate for their precision needs if used alongside an ELB system. If

8



not, they could increase it or try to influence the number or quality of reports made by
anglers to improve precision. For example, they can use outreach programs to educate
anglers about the purpose and importance of the ELB program to try to increase reporting

rate or quality.

The second question is whether a more efficient estimator can be constructed by using
the reported catch directly as data, rather than simply as auxiliary information. Currently,
the estimators of total catch (Liu et al., 2017; Breidt et al., 2018) using the volunteer
reports treat the reported catch and trips as auxiliary variables only. That is, their content
is not taken as data, but rather simply as an auxiliary variable that can be used as a
ratio estimator to help improve the estimator made from the dockside survey. However,
the reports actually include the variable whose total is being estimated from the dockside
survey (catch) and the number of catch reports is much larger among the reporting sample
than in the dockside sample. If the self reports can be correctly weighted to estimate the
total, the new estimator will take the advantage of a larger sample size and thus has better

precision.

2.2. Review of Current Estimators of Total

2.2.1. Capture-Recapture Model

Capture-recapture methods are powerful for population size estimation. Suppose we
are interested in estimating the total number of fishes, say N, in a lake. Two catch at-
tempts are made to estimate this quantity. The first attempt selects a sample of n; fish,
which are marked and released. The second sample of n, fish is selected randomly from
the same population, and it is found that m of them were previously caught and marked
in the first catch. Under the assumption that proportions of marked fish are the same on

average in the second sample and the population, we can equate the two proportions:



ooz (2.1)

This gives the classical estimator, referred to as the Lincoln-Petersen index due to the

pioneering work of two ecologists (Le Cren 1965):

o ning

N =

(2.2)

o
This estimator is also the maximum likelihood estimator (MLE) under a hyper-geometric

model.

2.2.2. Estimators of Total Catch from Electronic Reports

In our application, the self-reported sample and the dockside intercept sample can
be viewed as coming from a capture recapture study. Like the example introduced in
Subsection 1.4.1, the self-reported trips can be treated as the capture sample and the
dockside intercept sample as the recapture sample. Following previous notation, let N
denote the unknown population size, which is the number of recreational fishing trips. Let
y denote the fish catch from each trip and X the associated auxiliary information, which is
a vector including covariates like the sailing duration, date, and the number of passengers
on the boat. Our goal is to estimate the total fish catch ¢, = Ef; 1 yi over a population of

unknown size, rather than to estimate the population size itself.
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Figure 2.1: Visualization of the two sample sources: the self-reported sample (ELB) and
the dockside intercept sample (MRIP).

Figure 2.1 shows our target population and the two sample sources. The self-reported
sample (S;) consists of n; trips, each containing the self-reported catch y* and auxiliary
information X. Due to measurement error, y* may be different from y, and the actual
catch y is unobservable for the self-reported trips unless it was also selected into the
dockside intercept sample (S;). Sz consists of n, trips, each containing the actual catch y
and auxiliary information X. The overlap between the two samples contains m matched

trips with observable y, y* and auxiliary information X.

Pollock et al. (1994) previously considered this estimation problem, but in his applica-

tion y* was not available for S;. He proposed estimating ¢, by

~

typ_srRs = Ngng (2.3)

where N = M2 and ys, is the sample average of the y's from the recaptured units. This
estimator is appropriate when S, is a simple random sample. It can be adapted when S,

has a complex design, as we will discuss subsequently.

We now review three estimators of total catch proposed by Liu et al. (2017). One is
a generalization of z?ypstg which can be used when the intercept sample has a complex

design. The other two are also based on the capture-recapture idea, but make use of
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self-reported catch available from the probability samples. Following their notation, let r;
be the reporting indicator (r; = 1 if the " trip is included in S;, O otherwise) and w; be

the inverse of the selection probability, or sampling weight, for the ** trip in S,. Then

A

AL =D ses, WiTis PL = Yies, Wili) D e, Wi ANA Y = 3.0 wiy; /3., w; are estimators of

number of reports (n,), reporting rate (p;) and CPUE (y), all made from S;.

The generalization of Pollock’s estimator for a complex design has the form of a ratio

estimator with auxiliary variable r; and ratio 5, = Z—j

typ = TYy=ny—. (24)

ty

Ly

Dics, WilYi .

tye =ty =
ye = ly " y
Ziesz Wil Y,

, (2.5)

where t,- = ¢ v is the total catch from self-reported trips. This estimator can be

thought of as making a multiplication adjustment to account for unreported catch.

The third estimator is adapted from an optimal linear combination of the previous two,
typ and t,.:

tA]\/[R = (1 — w)fyp + U)fyc, (26)

where 0 < w <1. Ideally, w would be chosen so that it minimizes the variance. This is
a special case of a multivariate ratio estimator proposed by Olkin (1958). In practice, w
needs to be estimated from the sample. Under the simplified situation where the recapture
sample (intercept dockside sample S,) is a simple random sample and the self reports
are accurate (y = y*), the variance minimizing value of w is wsgs = t,/t,. This can be
estimated by wsrs = % By substituting this value for w in equation 2.6, even when S, is

not a simple random sample, we obtain:
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- ny~ o«
tyg =ty + ﬁ_l(ty — ). (2.7)
1

t,2 is similar to a regression estimator (Section 4, Lohr, 2019), and can be thought of as

making an additive adjustment to account for unreported catch.

All the proposed estimators use the self-reported catch as auxiliary data only. Liu
et al. (2017) showed that these estimators will improve the estimation precision when the
auxiliary variables are highly correlated with the variable of interest. This corresponds to
the situation when the reporting rate is high and the reported catch is accurate. Besides
possibly improved precision, all three estimators have another advantage over estimators
of total made from the intercept sample alone. As noted earlier, the intercept sample
can have substantial under-coverage in areas where a substantial fraction of angling sites
are inaccessible private sites. Thus the Horvitz-Thompson estimator of total made from
the probability sample alone is biased downward. However, this is not necessarily true
for the proposed estimators. Specifically, if the average catch, average reported catch,
and reporting rate are the same for trips ending in public and private sites, then all three
estimators are approximately unbiased (Stokes et al., 2019a). This is the reason these es-
timators are preferred for all areas where there is a non-negligible fraction of trips ending

in private (inaccessible) fishing sites.
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CHAPTER 3

OptimalFisheryDesign: An R package for Fishery Sampling Designs

In this Chapter, we introduce the R package OptimalFisheryDesign to aid in the
sample design as we described in Chapter 2. It designs samples for obtaining data to use
for the total catch estimation using estimators proposed by Liu et al. (2017). The package

helps the analysts investigate:

1. the estimation precision of the three estimators under different combinations of the

dockside intercept sample size and reporting rate,

2. the trade-offs between the dockside intercept sample size and the reporting rate of

the three estimators with respect to the estimation precision,

3. the optimal sampling designs of the three estimators under budget constraints.

3.1. The General Approach to Investigate the Fishery Sampling Design

Our goal is to provide a tool for the analyst to help determine the required sample size
or reporting rate to obtain a specified precision requirement. More specifically, we want
to find the minimum dockside intercept sample size to achieve a specified precision given
reporting rate or vice versa, for each of the three estimators i,,, t,. and #,,. Since there
are different combinations of the dockside intercept sample size and reporting rate for the
same precision, we are also interested in finding the most cost-effective designs under

budget constraints.
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To find such designs, we rely on the percent standard error (PSE) expressions for the
three estimators. The PSE is a measure of the estimator’s precision that is used by NMFS
for sample design. According to NMFS, a PSE value greater than 50% indicates a very

imprecise estimate.

The PSEs of the three estimators are defined by the ratio of their corresponding stan-
dard deviations over the total catch (¢,). To approximate their standard deviations when
the intercept sample is from a complex design, we adjust their standard deviations when
the dockside intercept sample is a simple random sample by the design effect (def f),
which is an input made by the user. The design effect is a factor that summaries the
effects of various complexities in the sample design, especially those of clustering and
stratification (Kish, 1995). Plausible ranges of the design effect are likely to be known by
organizations who regularly use complex designs for their dockside intercept sample. Liu
et al. (2017) provided expressions (A.9) - (A.12) in Appendix A to approximate the three
estimators’ standard deviations when the dockside intercept sample is a simple random

sample (SRS). Hence, we have:

o Var(iy)/deff
PSE((,,) ~ t (3.1)

~ ( _%){ 2 i _ @}
N\/nz/deff OVt ) =25

) \/Var(fyc)/deff

PSE(t,. -
Y

(3.2)

2

— CVe

(1 - ﬂ) 1 Y1 ly Y1
- N
~ J —vERT {ng B ) =25 = 9B R . OV OV

D1 ) P1
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Var(t,s)/d
PSE(i,;) ~ /e (ttyz)/ o7 (3.3)

(1—%) LN TR 7 7
=L COV2+ (14 =) =25 + p1 2OV (ZCVyye — 2Ry ,,-CV,
\/nz/deff{ v ) 2 e OV (G OV = 2 OV ¢
where 3 is the overall mean catch, gy, is the mean catch among the self-reported trips, 7;
is the mean of y* in the reporting sample, C'V,, is the coefficient of variance of y, C'V;, and
C'Vi,- are the coefficients of variation of y and y* in the reporting sample, and R, ,,- is the

correlation coefficient of y and y* in the reporting sample.

It is clear from Equations (3.1), (3.2) and (3.3) that the precision of all three estima-
tors can be improved by either increasing the dockside intercept sample size (n;) or the
reporting rate (p;). If one or the other of the two factors is fixed, the three expressions
can help the analyst determine whether the other can be increased sufficiently to meet

precision requirements, given the other parameters affecting the PSE.

The other parameters that affect the PSE may not always be available to the sample
designer. Hence, we clarify what parameters would be required for the designer to provide
and what defaults can be used when some parameters are difficult to predict. These

parameters can be classified into two groups.

The first group includes parameters describing the catch distribution (y, CV,) and the
design effect (def f) of the dockside intercept sample. These are parameters that the
analyst who has data from past intercept sampling is likely to be able to approximate or

predict, so they are required to be provided.

The second group includes parameters related to reporting characteristics, which are
o, CViy, 97, CViy- @and Ry ,,-. These parameters may be more difficult to predict for a
sample designer that has no experience with an ELB system. For example, If a user
has not implemented an electronic reporting system before, he or she will not be able

to provide estimates about how complete and representative is the self-reported sample
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(p1.91, CVay, U5, C'V4,+) @and how accurate the reports are (R, ,,-). In that case, the user
may provide estimates from a ELB implementation in another state, or use default values.
Our approach does not require that these parameters be specified, but rather will provide
default settings when they are not. The default settings are: 1) the self reports are accu-
rate (R, ,,~ = 1), 2) when none of the y,, C'Vy,, 37 and CV;,~ can be specified, the self
reports are assumed representative of the population (g = g, = g7, CV,, = CVy, = CVy+),
3) when either one pair of (y,, CV3,) or (g7, C'Vi,-) cannot be specified, the user can
choose one of the two following measurement error models to calculate one missing pair

from the other:
3a) The classical measurement error model (CME) (Carroll et al., 2006):
y'=y+te,

where e ~ (0,asS}), with y and e independent. Under CME, R,,,- = =, CVi, =
CVig/V1+ .

3b) The Berkson model (Berkson, 1950):

y=y +e,
where e ~ (0, 3S}.), with y and e independent. Under the Berkson model, Ry, = 7=,

CViy = CViy /T T B.

So far, we have discussed all parameters in Equations (3.1), (3.2) and (3.3) based
on the given dockside intercept sample size (ny) and the reporting rate (p;). When the
dockside intercept sample size (n,) changes, the second set of parameters except R, ;-
can be affected and we assume the first set of parameters and R, ,,- do not change.
However, when the reporting rate (p;) changes, the first set of parameters can’t be affected

but the second set of parameters can change dynamically. This is because the change of
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the reporting rate (p;) will affect the representativeness and accuracy of the self-reported
sample (Clearly, as p, approaches 1, C'V;, = CV,, so the parameters are related.). To
model this dynamic relationship, we make the following assumptions so g, CVy,, 47, CViy-

can be specified as a function of p; (Appendix A):

1. when the reporting rate (p;) increases, the new self-reports are representative of the

anglers who did not report before,

2. when the reporting rate (p;) decreases, the losing self reports are representative of

the current self-reported sample,

3. the accuracy of the self-reported sample (R, ,,- ) does not change.

3.2. The R package OptimalFisheryDesign

3.2.1. Overview

The package OptimalFisheryDesign (available on Github: Charlieliu004/Fishery-
OptimalDesign) aims to investigate and compare the effect of the dockside intercept sam-
ple size (ny) and the reporting rate (p;) on the precision of the three estimators: i,,, i,
and t,,. The package can help the user understand what would be required to design an
efficient ELB system for a particular species. For example, it can provide the PSE for a
catch estimate for a specified intercept sample size over a range of reporting rates. This
can help the user determine whether or not obtaining a desired PSE is feasible, given the
known characteristics of the intercept sample. It can also be used to select a cost-effective

designs for a given precision and cost.
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The package can be used to inform the user either for planning a pilot study (pre-ELB
implementation stage) or to adjust an ongoing ELB operation. The user can input what is
known about the required parameters of catch and reported catch, and the package will
use modeling and default settings described in Subsection 3.1 to supply the rest. Clearly,
the more accurate the information the user can provide, the more realistic the outcomes

provided will be.

3.2.2. Description of the Functions and Their Inputs

The package has 5 functions, with the key inputs summarized in Table 3.1. The first
function CV_population is used to calculate the mean and CV of the catch for the dock-
side intercept sample and the self-reported sample. The function CV_population requires
three inputs: the percentage of fishing trips with non-zero landings for the whole sample,

and the mean and variance of catch from such trips.

The remaining four functions are InterceptSampleSize, ReportingRate, Tradeoff and
OptimalDesign. All require at a minimum that the user supply the parameters of the catch
distribution (y and C'V,)) for the species that can be calculated by CV_population and the
design effect of the dockside intercept sample. The characteristics of the self-reported
sample are also needed by the four functions as optional inputs, or default values will
be assigned. To describe the self-reported sample, the current reporting rate (p;) and
at least one pair of parameters: (y;, C'V4,) or (y;, C'Vi,-) are required at minimum, with
the remaining parameters supplied by default if not specified. Next, we describe the four

functions and their specific inputs.

The function InterceptSampleSize investigates the effect of the dockside intercept
sample size on the PSE of the three estimators. It requires the additional inputs of the
target reporting rate (target_pl) and target precision (target_PSFE). For a given reporting
rate, the function displays PSE (¢,,), PSE (f,.) and PSE (¢,,) as functions of the dockside
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intercept sample size. The function also provides the dockside intercept sample sizes
required for the three estimators to achieve their target precision. If the current dockside
intercept sample size (n_obs) is specified as the optional input, the three estimators’ PSEs

for the current intercept sample size and reporting rate will also be specified.

The function ReportingRate investigates the effect of the reporting rate on the PSE for
the three estimators. It requires the additional inputs of the the target dockside intercept
sample size (target_n2) and target precision (target_PSFE). Under the target dockside
intercept sample size, the function displays PSE (i,,), PSE (¢,.) and PSE (#,,) as functions
of the reporting rate. The function also specifies the reporting rates required for the three

estimators to achieve their target precisions.

The function Tradeoff investigates the trade-offs between the dockside intercept sam-
ple size and reporting rate for each estimator to achieve the target PSE. It requires the
additional input of the target precision (target_ PSE). Under the target PSE, the function
displays the required dockside intercept sample sizes for the three estimators as functions
of the reporting rate. If the target dockside intercept sample size (target_n2) is specified
as the optional input, the function will specify the required reporting rates for the three

estimators to achieve their target precisions.

The function OptimalDesign provides the optimal sampling designs that achieve the
smallest PSE for each of the three estimators. It requires the additional input of the
cost ratio (cost_ratio) and budget (RelBudget). The cost ratio is defined as the cost of
increasing one percent reporting rate over the cost of recruiting one dockside intercept
sample unit, and the budget is defined in terms of the largest possible dockside sample
size that could be collected. Given the cost ratio and budget, the function displays PSE
(t,p), PSE (f,.) and PSE (t,,) as functions of the reporting rate. If the current dockside
intercept sample size is specified as the optional input, the optimal designs of the three

estimators will be determined based on the current design.
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Table 3.1: Outline of the key arguments for the package OptimalFisheryDesign.

Argument Description

Corresponding Function

Statistics

Percentage of fishing trips with

Landings_pct non-zero landings

Mean of catch among fishing

Landings_mean trips with non-zero landings

Variance of catch among fishing

Landings_var trips with non-zero landings

Mean fish catch of the dockside
intercept sample

CV of the dockside intercept
sample

Current reporting rate
Mean fish catch of the
self-reported sample

CV of the self-reported sample

Mean fish catch of the
self-reported sample containing
measurement error

Mean_dockside

CVy
p1_obs
Mean_report

CVy_report
Mean_report_s

CV of the self-reported sample
containing measurement error

Design effect of the dockside
intercept sample

CVy_report_s

deff

Correlation coefficient of the
actual fish catch and its
R
self-reported value among the
self-reported sample

Types of measurement error
model. “CME” refers to the
classical measurement model,
“Berkson” refers to the Berkson
model

type

Current dockside intercept

n_obs X
sample size

target_p1 Desired reporting rate

Desired dockside intercept

target_n2 .
sample size

target_PSE Desired estimation precision

Relative cost for increasing one
percent reporting rate in terms
of increasing the number of
dockside intercept trips

cost_ratio

Budget in terms of the most
possible dockside intercept
sample size that could be
collected under the current
budget

RelBudget

<

deff

Up)

Mo

CV_population

InterceptSampleSize

ReportingRate
Tradeoff

OptimalDesign

InterceptSampleSize
OptimalDesign

InterceptSampleSize
ReportingRate
Tradeoff

InterceptSampleSize
ReportingRate
Tradeoff

OptimalDesign

OptimalDesign
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3.3. Case Study

In this section, we illustrate the usage of the FisheryOptimalDesign package by exam-
ining a case study on the estimation of the total Red Snapper catch from charter boats in
Alabama. In this example, the input parameters are estimated from an ELB experiment
conducted in Alabama, which includes both the dockside intercept sample and the self-
reported sample. We first describe that data, and then explain how the package could be

used for planning the most cost effective designs.

In our example, the dockside intercept sample was collected by NOAA’s Marine Recre-
ational Information Program (MRIP), which interviewed anglers during dockside creel sur-
veys, selected according to a complex sample design. The frame of the design consisted
of locations crossed with time blocks. The time blocks were stratified by weekday and
weekend, while the locations were selected based on a probability proportional to size
(PPS) design. The size was measured by “pressure”, which was meant to capture the
average number of anglers using a particular site in past years. Data about catch/discard
counts of different fish species and number of anglers were collected from every vessel
intercepted during sampled shifts and locations. Vessel registration numbers were also
recorded and used, along with day and time, to identify matches to the self-reported trips.
In this example, the dockside intercept sample contained 211 charter trips. We assume

the design effect was 1.4, based on the estimate from a similar survey.

The self-reported sample was collected by the Gulf of Mexico Charter Boat E-logbook
Project (ELB), which allowed captains to self report their fishing trip information. In our
example, the ELB sample contained 1628 self-reported trips. We used a reporting rate
of p1 = 11% since that was the estimate from the sample. Among the 1628 self-reported
trips, 24 were matched to trips from the MRIP sample. Following previous notation, let y
and y* be the total red snapper catch (harvest) of a trip from the MRIP and ELB sample,

respectively. Based on the 24 matched trips, the correlation coefficient of y and y* was
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estimated to be R, ,,- = 0.85.

Table 3.2 lists the summary statistics for the trips with non-zero fish catch from the
MRIP and ELB sample. The statistics listed under “Overlap” were calculated from the
matched trips. Table 3.3 lists the total recreational red snapper catch estimated by the

three estimators and their corresponding PSEs.

Table 3.2: Descriptive statistics of the recreational Red Snapper catch by Charter boat
from the MRIP Sample and ELB Sample.

MRIP Overlap ELB

Percentage of the trips with landings 0.46 0.7 0.94

Mean of catch among the trips with landings 14.62 15.36 16.5
Variance of catch among the trips with landings 113.71 73.5 101.29

Table 3.3: Three estimates of the total recreational Red Snapper catch and their corre-
sponding PSEs.

Estimate of Total Catch PSE (%)

" 69,191 22.8
tye 42,112 29.4
ty2 57,600 22.5

The package FisheryOptimalDesign can be used to understand how the precision
of the three estimators would be improved by either increasing the dockside intercept
sample size or the reporting rate, and what are the most cost-effective designs for the

three estimators given a specified budget.

3.3.1. Install the FisheryOptimalDesign Package

To install the package FisheryOptimalDesign from Github into R, we can use the "in-

stall_github" function in the "devtools" package:

R > install.packages("devtools")
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R > library (devtools)
R > install_github ("Charlieliu004/FisheryOptimalDesign")
R > library ("FisheryOptimalDesign")

3.3.2. Usage of the Function “CV_population”

To estimate y, C'Vy from the MRIP sample, y;, CV;, from the matched sample and
yi, CVy,« from the ELB sample, we apply the “CV_population” function by inputting the

statistics listed in Table 3.2:

R > #MRIP

R > CV_population(0.46,14.62,113.71)
R > #ELB_ est

R > CV_population(0.73,15.15,80.56)
R > #ELB

R > CV_population(0.94,16.51,101.29)

The outputs from the function “CV_population” are listed in Table 3.4, where the mean
catch under “MRIP”, “Overlap” and “ELB” are estimates of y, y; and y;, respectively. The
CV's under “MRIP”, “Overlap” and “ELB” are estimates of C'V,, CV;, and CV},-, respec-
tively.

Table 3.4: Summary statistics of the recreational Red Snapper catch by Charter boat from
the MRIP sample and ELB sample.

MRIP Overlap ELB
Mean catch 6.55 15.52 11.06
cvVv 1.57 0.68 0.92

From Table 3.4, we see that the mean catch from the self reported sample is higher
than that of the intercept sample. This is typical for the self-reported catch, as anglers

may feel less motivated to report low or no catch.
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3.3.3. Usage of the Function "InterceptSampleSize"

Suppose we want to reduce the PSE to 16% for all three estimators by increasing the
intercept sample size (n3) with the current reporting rate. To find the required sample sizes

for the three estimators, we use the “InterceptSampleSize” function with the following

inputs:

R > InterceptSampleSize (CVy = 1.57,Mean_dockside = 6.55,

+ target_p1 = 0.11,target PSE = 16,

+ Mean_report = 15.52,CVy_report = 0.68,

+ Mean_report_s = 11.06,CVy_report_s = 0.92,
+ pi_obs = 0.11, R = 0.85,deff =1.4)

The “InterceptSampleSize” function produces Figure 3.1, which displays PSE (i,,),
PSE (,.) and PSE (i,,) as functions of the dockside intercept sample size (n.) for the
reporting rate p; = 0.11. From Figure 3.1, the PSEs of all three estimators decrease as
the sample size increases. All PSE curves in Figure 3.1 are steep when the sample size
is small, which indicates the efficiency of the dockside intercept sample in reducing the
PSE in this situation. In addition, PSE (¢,,) and PSE (¢,,) are very close over the range
of the sample size, while PSE (¢,.) is always higher than the other two. This shows the
inefficiency of #,. compared to #,, and #,,: to achieve the target PSE of 16%, the dockside
intercept sample size should be increased from 211 to 427, 710 and 416 for t,, t,. and ,,,

respectively.
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Figure 3.1: Effect of the dockside intercept sample size (n,) on PSE for total recreational
Red Snapper catch by Charter boat.

3.3.4. Usage of the Function “ReportingRate”

Suppose we want to reduce the PSE to 16% for all three estimators by increasing the
reporting rate (p;) of the ELB sample. To find the required reporting rates for the three

estimators, we use the “ReportingRate” function with the following inputs:

R > ReportingRate (CVy = 1.57,Mean_dockside = 6.55,

+ target_n2 = 211,target_ PSE = 16,

+ Mean_report = 15.52,CVy_report = 0.68,

+ Mean_report_s = 11.06,CVy_report_s = 0.92,
+ pi_obs = 0.11, R = 0.85,deff =1.4)
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The “ReportingRate” function produces Figure 3.2, which displays PSE (f,,), PSE (Z,.)
and PSE (f,,) as functions of the reporting rate (p;) for the current dockside intercept
sample size n, = 211. Figure 3.2 shows the PSEs of all the three estimators decrease
as the reporting rate (p;) increases, as we would expect. When the reporting rate is low
(< 25%), PSE(t,,) and PSE(t,,) are very close , while PSE(t,.) is higher. This indicates
t,. is less efficient than £, and #,, under this scenario: to achieve the target PSE of 16%
with the same sample size, the reporting rate must be increased from 11% to 32%, 47%

and 27% for t,,, t,. and t,,, respectively.

Figure 3.2 also expresses similar information as Figure 3.1: increasing the reporting
rate when it is low is useful for reducing the PSE. However, it becomes less useful when

the reporting rate is high.

Effect of the Reporting Rate on PSE
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Figure 3.2: Effect of the ELB sample’s reporting rate (p;) on PSE for total recreational Red
Snapper catch by Charter boat.
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3.3.5. Usage of the Function “Tradeoff”

As we showed previously, the PSE can be reduced by either increasing the dockside
intercept sample size (ny) or increasing the reporting rate (p;) of the ELB sample. To com-

pare the efficiency of the two strategies, we use the “Tradeoff” function with the following

inputs:

R > Tradeoff (CVy = 1.57,Mean_dockside = 6.55,

+ target_n2 = 211, target PSE = 16,

+ Mean_report = 15.52,CVy_report = 0.68,

+ Mean_report_s = 11.06,CVy_report_s = 0.92,
+ pl_obs = 0.11, R = 0.85,deff =1.4)

The “Tradeoff” function produces Figure 3.3, which displays the dockside intercept
sample size (ny) as functions of the ELB sample’s reporting rate (p;) for the three esti-
mators to achieve the target PSE. From Figure 3.3, all three curves are steep when the
reporting rate is low. This indicates that by increasing the ELB sample’s reporting rate can
greatly reduce the required dockside intercept sample sizes for the three estimators. We
also notice that 7,,, unlike the other two estimators, does not gain much additional value
in precision when reporting rate increases beyond a certain point. This is likely because
the estimator does not use the reported catch, but only the number of reported trips in
estimation. However, it is still unclear which point on the curve costs least and thus be the
most cost-effective designs. This is because the cost ratio as we defined in Subsection

3.2.2 has not been considered.
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Figure 3.3: Relationship between the dockside intercept sample size (n;) and the ELB
sample’s reporting rate (p;) for total recreational Red Snapper catch by Charter boat.

3.3.6. Usage of the Function “OptimalDesign”

Suppose we want to find the most cost-effective designs for all three estimators to
achieve the target PSE of 16%, and the cost ratio as we defined in Subsection 3.2.2 is 15.
Suppose the budget is either sufficient for increasing the dockside intercept sample units
from 211 to 391 or increasing the reporting rate from 11% to 23%. Under this cost ratio
and budget, the agency cannot afford to reach the target PSE by purely increasing the
dockside intercept sample size (ny) or the ELB sample’s reporting rate (p;) for all three es-
timators, as demonstrated by Figure 3.1 and Figure 3.2. In this case, the “OptimalDesign”

function could provide the most cost-effective sampling design with the following inputs:
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R > OptimalDesign(CVy = 1.57,Mean_dockside = 6.55,

+ cost_ratio = 15, RelBudget = 180,

+ Mean_report = 15.52,CVy_report = 0.68,

+ Mean_report_s = 11.06,CVy_report_s = 0.92,

+ n_obs = 211, pi_obs = 0.11, R = 0.85,deff = 1.4)

The “OptimalDesign” function produces Figure 3.4, which displays PSE (f,,), PSE (,.)
and PSE (t,,) for all possible combinations of the dockside intercept sample size (n,) and
the reporting rate (p;) of the ELB sample given the budget and cost ratio. Figure 3.4 also

provides the optimal sampling designs for the three estimators in the top legend.

The optimal design for #,, to reach the target PSE of 16% is by increasing the dockside
intercept sample size from 211 to 316, and increasing the reporting rate from 11% to 16%.
Similar to #,,, the optimal design for #,, to reach the target PSE is by increasing the
dockside intercept sample size from 211 to 301, and increasing the reporting rate from
11% to 17%. However, the optimal design for fyc can only reach a PSE of 21%, which
is by increasing the dockside intercept sample size from 211 to 331, and increasing the

reporting rate from 11% to 15%.
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Figure 3.4: Optimal sampling design for total recreational Red Snapper catch by Charter
boat.

So far, the total cost for this new design is: 211+ 11 x 15+ 180 = 556. The “OptimalDe-
sign” function also provides the optimal sampling designs that ignore the current design

under this total cost for the three estimators with the following inputs:

R > OptimalDesign(CVy = 1.57,Mean_dockside = 6.55,

+ cost_ratio = 20, RelBudget = 556,

+ Mean_report = 15.52,CVy_report = 0.68,

+ Mean_report_s = 11.06,CVy_report_s = 0.92,
+ n_obs = NULL, p1_obs = 0.11,

+ R = 0.85,deff = 1.4)
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The “OptimalDesign” function produces Figure 3.5. The optimal designs for the three
estimators are provided in the top legend, which are similar to the designs provided in
Figure 3.4. Under the given budget and cost ratio, the optimal design for ,, can reach the
PSE of 16%, with the dockside intercept sample size of 331 and the reporting rate of 15%.
The optimal design for #,, can reach the PSE of 16%, with the dockside intercept sample
size of 316 and the reporting rate of 16%. However, the optimal design for #,. can only
reach the PSE of 21%, with the dockside intercept sample size of 346 and the reporting
rate of 14%.

Optimal Sampling Design
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Figure 3.5: Optimal pilot sampling design for total recreational Red Snapper catch by
Charter boat.
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3.4. Discussion

The approach implemented in the R package OptimalFisheryDesign allows the user
to calculate the sample characteristics, investigate the effect of the two sample sources,
understand the trade-offs between the two sample sources, compare the performance of
all the three estimators, and determine their optimal sampling strategies. However, the
sample designer should be cautious when designing the survey based the package for

several reasons.

First, the sample designer may not be able to provide an accurate cost ratio, which
may compromise the conclusions from the optimal designs provided by the package. For
example, the cost of collecting the self reports involves many aspects such as the cost of
setting up and maintaining the electronic reporting system. As a result, it may be hard to
estimate the average cost for increasing the reporting rate by one percent compared to the
cost for recruiting one more dockside intercept sample unit. As a solution, we recommend
that the researcher examine a range of values for the cost ratio when determine how to

best distribute their budget.

Second, the sample designer should notice that the package assumes a constant cost
ratio for different reporting rates, which may not be true in practice. For example, when
the current reporting rate is low, it may be feasible to increase the reporting rate by putting
more ads or setting a regulation that requires the anglers to report. On the other hand,
when the current reporting rate is high, it may be difficult to increase the reporting rate
further with any new policy. This is because the anglers who don'’t report in this situation
are more likely to be the ones who are reluctant to do so. However, it is still reasonable
to assume the cost ratio is relatively stable within a certain range. For example, the cost

ratio may not change dramatically when the reporting rate increases from 10% to 15%.
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Last, the sample designer should be aware that the package does not consider the
effect of non-sampling errors, which may bias the conclusions. For example, the estima-
tion approach requires matching of units in the two samples, an operation that can prove
difficult in practice. The quality and quantity of the matched units will affect the estimation
precision of y,, CVy,, Ri .-, Which are the inputs of different functions in the package.
Another challenge of the design is how to control the independence of the two sample
responses; i.e., to assure that reporting is not influenced by the trip being included in the
intercept sample. All three estimators require this assumption for validity. Detailed dis-

cussions and recommendations about such issues can be found in Stokes et al. (2019b).
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CHAPTER 4

Alternative Estimation of Total Approaches Based on Non-probability Sampling

In this chapter, we investigate the viability of using the self-reported sample (non-
probability sample) to augment the size of the dockside intercept sample (probability
sample) for estimating the total fish catch. However, this approach only works for highly
recognizable species since we must assume that the self reports are accurate. This led

us to the non-probability sampling literature.

There has been much recent research in the sampling literature on how to make use
of non-probability sample data in a more principled way. This is due to the increased
availability of inexpensive, easily accessible, and large sets of data from various data
collection operations, such as internet samples, electronic device data (voluntarily or in-
voluntarily produced), and operational data of various forms. We briefly review them in

the next section.

4.1. Literature Review of Non-probability Sample Estimation Methods

There are four main approaches to make estimates from non-probability samples: de-
sign based, model based, doubly robust and calibration. All the approaches attempt to
improve estimation by using auxiliary information and rely on either a reference sample or
the parameters of the population. The reference sample is usually a high quality probabil-
ity sample from the population, but may not contain the outcome variable. Here we briefly

review the four approaches.
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4.1.1. Design Based Approach

The design based approach refers to creation of pseudo-inclusion probabilities for
the non-probability sample, which is usually done by propensity score adjustment (PSA)
(Lee, 2006; Lee and Valliant, 2009; Schonlau et al., 2009; Valliant and Dever, 2011).
The propensity score model was originally developed for observational studies to reduce
the bias due to confounding variables (Rosenbaum and Rubin, 1983). In the context of
non-probability sampling, the PSA method is carried out by combining the non-probability
sample with a probability sample, and estimating the selection probability for the non-
probability sample. The estimated probability is then used to create pseudo-weights for
the units in the non-probability sample. This allows a Horvitz-Thompson type estimator
to be constructed, which is known as the inverse probability weighted (IPW) estimator.
To build the propensity score model, the non-probability sample and probability sample
are required to share a set of covariates. Although sometimes not explicitly stated in the
current studies, the PSA method assumes no overlap between the two sample sources,
otherwise it will be ambiguous to determine the membership of the sample units. This
assumption is reasonable when the two samples are from a very large population, since
then the chance for a sample unit to be included in both samples is negligible. However,
this assumption could be violated in practice when the population size is relatively small,

as in our case.

In order for the PSA method to be effective at eliminating selection bias, the strong
ignorability assumption must be met. This assumption requires that the selection mech-
anism for the non-probability sample be independent of the outcome variable, either un-
conditionally or conditionally on other covariates that are observable. When the selection
probabilities are accurately estimated, the resulting IPW estimator is asymptotically un-
biased. However, this assumption can be violated in two ways: 1) when the inclusion

probability for the non-probability sample depends on the response variable, which is the
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case of not missing at random (NMAR); 2) when not every sample unit in the population

has a positive probability to be included in the non-probability sample.

Unfortunately, the two situations are commonly encountered in the context of non-
probability data. For example, people who do recreational fishing tend to self-report their
fish catch if they have a harvest, and not otherwise. So unless there are other available
variables that predict the trips with no catch, the PSA method will fail to remove the se-
lection bias from the self-reported data. The second situation can be illustrated by the
fact that not every fisherman in the recreational fishery population has a self-reporting
device (such as a cell phone)(Liu et al., 2017), so they have zero chance to be included
in the non-probability sample. On the other hand, if the response variable for those that
are included is similar to those with no probability of inclusion, the procedure could still

perform well.

4.1.2. Model Based Approach

The model based approach aims to predict the outcome variable from the auxiliary
information and then project the non-probability sample to the target population (Valliant,
2019). The generalized regression model (GREG) is commonly used for such a predic-
tion purpose. For estimating the population total, this is done by modeling the relationship
between the outcome variable and covariates based on the non-probability sample, esti-
mating the outcome variable for the non-sampled units, and then summing the predictions
for the non-sampled units and the outcomes from the non-probability sample. To construct
the estimator, the population totals of the covariates are required, which can be obtained
from census data or estimated from a reference sample from other sources that contain

such information.
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Compared to the design based approach where individual level information is required
for the reference sample, the model based approach only requires the population level
summary statistics for some key variables. Another distinction between the two ap-
proaches is that the model based approach assumes the randomness is from the model
instead of the process of generating the non-probability sample. As a result, if the re-
lationship between the outcome variable and the covariates was correctly modeled, the
estimator from the model based approach is asymptotically unbiased. This advantage
makes the model based approach promising when the data to be analyzed has rich aux-
iliary information. However, the model based approach relies on the assumption that
the model fitted by the non-probability sample also fits the non-sampled units. If the
selection mechanism for the non-probability sample is NMAR, then the models for the

non-probability sample and non-sampled units might be different.

4.1.3. Doubly Robust Estimation

As a combination of the design based approach and model based approach, dou-
bly robust estimation has also been proposed in the context of non-probability sampling
(Chen et al., 2018). As the name suggests, doubly robust estimator is asymptotically un-
biased if either the pseudo-inclusion probability, the generalized regression model or both
are correctly specified. Valliant (2019) demonstrated through simulation studies that the
doubly robust estimator is generally the least biased with smallest mean squared error

(MSE) compared to the estimators from PSA or GREG.

4 .1.4. Calibration

The calibration approach aims to adjust the auxiliary information in the non-probability
samples to the probability sample such that the weighted distribution for covariates in the
non-probability sample is similar to that of the population. General calibration methods

involve post-stratification (Bethlehem, 2010), raking and generalized regression weighting
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(Deville and Sarndal, 1992). Valliant and Dever (2011) demonstrated through simulation
studies the potential for bias reduction by calibrating the non-probability sample, and its
performance is comparable to PSA. They observed that, as with PSA, when the inclusion
probability for the non-probability sample is associated with the outcome variable, the

calibration adjustment will fail.

4.1.5. Other Approaches

There are other approaches to make inference from the non-probability sample. Rivers
(2007) proposed the idea of nearest neighbor matching, which selects sample units from
the non-probability sample that have similar auxiliary information to the sample units in
the reference sample. The selected non-probability sample units are then expected to
mimic the characteristics of the reference sample. Liu et al. (2017) took a different ap-
proach of using a non-probability sample to estimate total recreational red snapper catch
in Texas. As described previously, they proposed the ratio estimators that augments data
from a probability sample with data from an overlapping non-probability sample. The
non-probability sample is treated as auxiliary variables in the ratio estimators. Thus, the
estimators do not require either weighting adjustment for the non-probability sample or the
representativeness of the non-probability sample. However, their approach does require

matching of units in the two samples, an operation that can prove difficult in practice.

The effectiveness of the aforementioned methods depends on the quality of auxiliary
information, such as how well it can explain the selection mechanism or the outcome
variable. As summarized by Baker et al. (2013), there are still many obstacles that need
to be overcome while dealing with non-probability samples: (i) unlike probability sampling,
there is no single framework that adequately encompasses all of non-probability sampling;
(i) making inferences for any non-probability sample require some reliance on modeling
assumptions; (iii) if non-probability samples are to gain wider acceptance among survey

researchers, there must be an accompanying set of measures for evaluating their quality.

39



Our application differs in several ways from the typical scenarios considered in non-
probability sampling. Most of the current approaches are conducted for the situation
that the outcome variable is available for the non-probability sample, where the reference
sample only contains the auxiliary information. In our application, the outcome variable
is also available in the reference sample. We can take advantage of this extra piece of
information by using the outcome variable in estimation and treating its value as a bench-
mark. Our reference sample is relatively small, which makes the model based approach
less efficient, as we will have to build the prediction model on the reference sample and
predict the outcome variable for the non-probability sample. Another distinction of our
application is the non-negligible overlap between the non-probability sample and the ref-
erence sample, whose inclusion probability for the non-probability sample is also need to

be estimated.

4.2. Pilot Study

In our application, we focus on the design based approach and aim to estimate the
pseudo-inclusion probability for the non-probability sample, so that the two samples can
be treated together as an augmented probability sample. The design based approach
makes use of the additional information, which can be in the form of a probability sample
from the same population or even census level information. Because our self-reported
sample is so large, the question arises as to whether these methods could be beneficial

in our application.

To gain an idea of how much improvement over the current estimators is possible if we
could “convert” our non-probability sample to a probability one, we conducted a simple
pilot study. Our goal was to determine whether or not the potential advantage, making the
most optimistic assumptions, is large enough to suggest this would be a fruitful approach

to pursue. The simplified scenario we examined included the following assumptions: (a)
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y* =y (perfect reporting), (b) the self-reported sample (.S;) behaves like a simple random
sample, and (c) our pseudo selection probability (n,/N) is accurately estimated. We also
suppose for simplicity that our probability sample is a simple random sample. In this case,
the combined sample S = S; U S, is also a simple random sample from the population
with sample size ng = n; + ny — m, where m is the overlap sample size as we defined in

Subsection 2.2.2. Then a reasonable estimator of total #srs has the same form of ,,, sps:

tsrs = N@S, (4.1)

where N = M2 and gs = Y ,cq¥i/ns, Which is the sample average of the y's from the
combined sample S = S; U S,. The variance of iszs (see Appendix B) can be approxi-

mated by:

N o Elng),  ,E(ns) (1-p)
Elng) v TN T

where E(ng) = ny +ny — ®2. Under this simplified scenario, we have y =y = 1, CV, =

Ny

-2y @)

V(tsrs) ~

CVy, = CVy~ and Ry ,,- = 1. Thus the variance of ¢,, becomes easy to compare to that

of tASRS-

To compare V (t,,) with V(tsrs), we set N = 15000, n, = 400 and § = 10. Figure
2.1 displays the ratios of V' (f,5)/V (tsrs) as functions of the reporting rate (p,) for a range
of C'V, : 1, 2, 3, 4. The ratios are greater than 1 for all conditions, which shows that
tsrs is less variable compared to 7,,. This meets our expectation, since the reported
data are fully used as sample data rather than just as auxiliary data as #,, does. As the
reporting rate (p,) increases, the variance ratios also increase, which indicates that tgzs
will have a greater advantage compared to #,,. Figure 2.1 also illustrates that 755 has
more advantage than f,, when the population has a larger CV,, for the same reporting
rate. This information is valuable as it allows us to consider using different estimators

for different fish species. For example, #,, may be preferable for estimating catch for a
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Figure 4.1: Effect of the reporting rate (p,) on the variance ratio V (¢,2)/V (tsrs) for different
cvys:1,2,3, 4.

fish species with small C'V,, like Red Snapper. However, there are many other valuable

fish species, like Spanish Mackerel and Vermilion Snapper, and especially rare species,

whose C'V,, are large.

Of course in a real application, the selection probability for the non-probability sample
will have to be estimated using a method such as PSA, which undoubtedly will decrease
the advantage. In addition, if the available auxiliary information does not completely ex-
plain the selection mechanism so that bias is introduced, the new estimator will be further
disadvantaged. However, this exercise suggests that the most promising place to look for

possible improvement from this approach is in estimating catch for fish species with large
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C'V,, which are the ones where the current method is sometimes inadequately precise.

4.3. Propensity Score Adjustment (PSA)

Let
o =P(i€SX,),i€1,2,...,N (4.3)

denote the inclusion probability for the i** sample unit in the probability sample S, and its

weight is the reciprocal of the inclusion probability:

wZ:]_/Oélzl/P(ZGSQ|XZ), ZEl,Q,,N (44)

This weight is known from the probability sampling design if the analyst is the sample
designer. If the analyst is only a secondary data user, he will still know the weight if it is

included on the data file. In our application, this weight is known.

We denote the selection probability for the it sample unit in the non-probability sample
S by:

Then the selection probability for the unit 7 in the combined sample S = S; U S5 can be
expressed as:

g =P(ie€SX)=a;+ B —aifs, i€1,2,...,N. (4.6)

We also denote the conditional probability for the i unit in the non-probability sample

(S1) given that it is in the combined sample (S) by:

Bi

, =P(D;,=1lie §X;,)) = ———,
i ( | ) a; + B — B

iel,2,.., N, (4.7)

where D, = 1ifi € S; and D; = 0 otherwise.
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To create the pseudo-weight for sample unit 4, the inclusion probabilities 5;, ¢; and ~;
must be estimated. First, the conditional probability 7; can be estimated by a propensity
score model. We denote this design-based estimator by ;. By solving equation (4.7), we
can estimate the inclusion probability 3; by:

Bi=— 0 12 .. N (4.8)

~

1A+ ad

Thus, the probability that sample unit 7 is included in the combined sample can be esti-

mated by:

s

~

1 — 5 + iy

Calculation of 3; and ¢; from equations (4.8) and (4.9) require that «; is also known or
estimable for unit i from the non-probability sample. Even though this quantity is usually
unknown, it could be determined in our application. This is because the selection proba-
bility «; is controlled by the dock location and return time of the trip, which are contained in
the self reports. When «; is unknown for the 7" unit in the non-probability sample, Robbins
et al. (2015) suggested to assign the same inclusion probability to every non-probability
sample units, which is the average of the inclusion probabilities from the probability sam-

ple units. Other approaches to estimate this quantity can be found in Elliott et al. (2017).

Equipped with the estimated inclusion probability from equation (4.9), the non-probability
sample can be weighted to represent the population either by itself or combined with the
probability sample, which leads to two weighting schemes: joint weighting and disjoint
weighting. Robbins et al. (2015) proposed the two approaches for estimating the popula-
tion mean, and they found that joint weighting always provide smaller estimation variance
while disjoint weighting can be used to detect whether the two samples are well integrated
by comparing their estimates. We adapt the two weighting schemes into our application

for estimating the population total with unknown population size. We now describe our
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two proposed estimation approaches.

4.3.1. Joint Weighting

In joint weighting, we construct a single estimate of total based on the combined sam-
ple: S = S, U S,. Thus, the inclusion probability for the ** unit in the combined sample S
is estimated by ¢; in equation (4.9), and its estimated pseudo-weight is the reciprocal of
Qi

Wi joint = 1/Gi, 1 € S =51 U Ss.

Consequently, we can construct the Horvitz-Thompson type estimator:

ty joint_rT = Z Wi jointYi- (4.10)
i€S
In our application, however, the estimator in equation (4.10) will be biased downward
due to undercoverage in the dockside sample, as discussed previously. Thus the joint
weighting estimator of total we propose takes the form of #,, and has the expression:
1~ n Zies ﬁ)i,jomtyi

y,jotnt ~ ~ ’
P ZiESQ wiri/ziesz W; Zies Wi, joint

~ A

(4.11)

where N is the estimator of the population total, 7 is the estimator of the mean catch
and r; is the reporting indicator as we defined in Subsection 1.4.2. Thus, the role of the
non-probability sample is to improve estimation for the mean catch, but not population

size.
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4.3.2. Disjoint Weighting

In disjoint weighting, each sample is weighted to be individually representative of the
population. The disjoint weighting estimator of total is then a weighted average of the
estimators of total from both samples. For the non-probability sample (S;), the estimated
pseudo-inclusion probability for the " unit is 3; = #, i € Si, and its weight can
be expressed as w; gisjoint = 1/f3;,i € Si. If undercoverage was not a problem, the nat-
ural estimator of total would be a weighted average of the two Horvitz-Thompson type

estimators:

tydisjomnt_nr = 0> Widisjornei + (1= 0) > wy;. (4.12)
i€S] i€S2

In our application, however, we must protect against undercoverage in the probability

sample, and thus propose the estimator of total fy,disjm-nt, which takes the form of Eyp and

has the expression:

A PN cg, Wi disjointYi icS, Wili
ty,disjoint = N:’j = @(921651 ;d gointy + (1 - Q)M) (413)
P Zz’eSl Wi, disjoint Zie 5, Wi

As suggested by Robbins et al. (2015), the parameter 0 is chosen to minimize the Kish

approximation of the estimator’s design effect and has the form:

(ZieSz O‘i_l) (Ziesl Bz’_2>

0 — :
(ZiESQ 04;1) (zi681 B;2> + (ZiESQ O‘iiz) (Zz’esl B;1>

(4.14)
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4.4. Adaptive Propensity Score Adjustment (APSA)

The propensity score adjustment (PSA) method was developed to help reduce the
selection bias of a non-probability sample (e.g., Valliant and Dever, 2011; Lee and Valliant,
2009). However, this method will not remove the bias if the strong ignorability assumption
on which the propensity score model relies is violated. In our application, for example,
if the self-reported trips are only from the boats with more than 15 anglers, then the
estimated inclusion probability for the self-reported sample is unreliable for the boats with
less than 15 anglers. This is either because the trips with less than 15 anglers have zero
probability to self report or the self-reported sample does not allow that probability to be
estimated even if it is positive, as there are no such sample cases in the self-reported
sample. However, if we have some evidence that the trips with less than 15 anglers
can be represented by part of the trips with more than 15 anglers, the strong ignorability

assumption still holds.

Here we propose a new approach called the adaptive propensity score adjustment
(APSA) method. Our method is based on the current PSA method, but adds a step that
provides an indicator of model failure. The APSA method is also designed to reduce
the selection bias by using only part of the non-probability sample for PSA, as we will
describe later. When the outcome variable y is available for both the probability and non-
probability samples, the APSA method uses the fact that when the selection probability
is correctly estimated by the propensity score model, sample units with similar propensity
scores should have similar outcome values. We will first justify this argument and then

describe the new method.
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4.4.1. Comparison between Causal Inference and Non-probability sampling

In the context of non-probability sampling, the propensity score v, = P(D; = 1]i €
S, X;) is the conditional probability that unit ¢ is in the non-probability sample (.S;) given
that it is in the combined sample (S) and has auxiliary information X;. This setup fits the
non-probability sample into the causal inference framework: the non-probability sample

can be treated as the treatment group and the probability sample is treated as the control

group.

As in causal inference, we assume two potential outcomes for the sample units: y if
the sample unit i is in the probability sample and y;, if it is in the non-probability sample.
The strong ignorability assumption for the self-reporting mechanism in the non-probability
sampling context can be stated as: (y1,v0) L D;|i € S, X; and 0 < v < 1. In plain words,
this means that 1) all possible confounding variables which affect both the non-probability
sample selection mechanism and the outcome variable are measured in X;, 2) there is a
positive probability for every unit in the population to be selected into the non-probability

sample.

In causal inference, the quantity to be estimated is the average treatment effect, de-
fined as E(y;) — E(yo). However, in non-probability sampling, whether the sample unit is
selected into the probability sample or non-probability sample does not affect the outcome
value and we always have: y, = y; and E(y; — yo) = 0. In practice, we can only observe
either y, or y; if there is no overlap between the probability sample and the non-probability
sample. Under the strong ignorability assumption, the expected difference between the
outcomes from the probability sample and the non-probability sample is a function of the

estimated propensity score v;, and can be expressed as:

E(yilvi, Di = 1) — E(yo|vi, Di = 0) = E(y1 — yolv:)- (4.15)
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As the outcome for a sample unit does not change regardless of its membership, the last
term in equation (4.15) equals 0. The above argument established the following theorem
in the context of non-probability sampling, which corresponds to Theorem 4 established

by Rosenbaum and Rubin (1983) in the context of causal inference.

Theorem 1 Suppose the selection mechanism for the non-probability sample is strongly
ignorable and ~; is the propensity score. Then the expected difference in the observed
outcome between the probability sample and non-probability sample at ~; is equal to 0,

that is,

E(y1vi, Di = 1) — E(yolvi, Ds = 0) = 0.

Even though our purpose is not comparing the difference between the probability
sample and the non-probability sample outcomes, the theorem provides a way to check
whether the strong ignorability assumption is violated. If a non-zero difference exists be-
tween the means from the probability sample and non-probability sample with the same
propensity score, it indicates a model failure and thus the propensity score adjustment is
unreliable. This comparison can be conducted by post-stratification based on the propen-

sity scores (Rosenbaum and Rubin, 1984), and will be described in the next section.

4.4.2. Adaptive Propensity Score Adjustment (APSA) Algorithm

The first step in the proposed algorithm is to post-stratify the probability sample and
non-probability sample into subgroups such that the propensity scores within each sub-
group are similar. If the strong ignorability assumption holds, the means of the response
y from the two samples within each subgroup are expected to be similar. If the response
from the two samples are different within a certain subgroup, the corresponding non-
probability sample units will be dropped. This is because their selection mechanism can-

not be explained by the current model, and thus makes the selection bias non-adjustable.
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Here we describe the APSA algorithm that performs the above procedure:
Step 1: Calculate the propensity scores for every unit of the full sample S = S; U S,

Step 2: Sort the estimated propensity scores from smallest to largest and form the

sample into 10 subgroups by decile points,

Step 3: Within each subgroup, conduct hypothesis testing to compare the means of

the outcome variable between the two samples,

Step 4: Identify the subgroups with significant p-values, discard units from the non-

probability sample but keep the units from the probability sample for such subgroups,

Step 5: Re-calculate propensity scores for the retained sample and re-conduct the

PSA method.

From APSA, the new combined sample contains the full probability sample and the
non-discarded part of the non-probability sample. Based on the new combined sam-
ple, we re-calculate the estimators from the joint weighting and the disjoint weighting
approaches, and denote them bY ¢, jint_adp AN Ty gisjoint_adp- If the probability sample did
not have under-coverage, we could also compute the Horvitz-Thompson type estimators
based on the new combined sample using joint weighting or disjoint weighting, which are

denoted by ty,joint,HT,adp and ty,disjointfHTfadp'

We also note that the non-discarded part of the non-probability sample cannot be ad-
justed to represent the population on its own, which makes t, 4isjoint _adp @NA ty disjoint BT adp
unreliable. So we should not use the two estimators if we discard some of the non-

probability samples.
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4.5. Variance Estimation

Now, we describe two replication based methods to estimate the variance of the pro-
posed estimators, and then evaluate them by simulation studies based on data similar to

that of the motivating example.

Taylor series linearization is often used for variance estimation in survey practice, and it
has been applied in several non-probability sampling studies. However, as demonstrated
by simulation studies, the method underestimates the actual variance of estimators of
means from non-probability samples (e.g. Lee and Valliant, 2009, Robbins et al., 2015).
This is because the method treats the estimated propensity score as the actual selection
probability, and thus ignores its estimation variance. Alternative approaches to variance
estimation can be conducted by the jackknife and bootstrap methods (e.g. Kim and Wang,
2019, Valliant, 2019). They are resampling techniques that may be able to reflect the

added variation from the estimated propensity scores.

For the jackknife method, Section 4.4 of Wolter (2007) (page 169) states that no the-
ory actually justifies the jackknife method for nonlinear estimators for general complex
sample designs. However, it has been shown to work well empirically, and there are the-
oretical results for some simple complexities, such as strata. To apply the empirically
based jackknife method when there is a complex design, we leave out K PSUs at a time
within a stratum and redistribute their weight across other units in that stratum, even if
the PSUs are unequally weighted. We apply this method in our application to examine its

performance.

We apply this empirically based jackknife method to estimate the variance of the PSA
estimators t}h joint @Nd t}h disjoint- IN OUr application, the probability sample contains design
information about PSUs and strata (Weekday/Weekend), but the non-probability sam-

ple only contains information about strata. Therefore, we adapt the jackknife method
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by treating each trip from the non-probability sample as a PSU. Then for each jackknife
replicate, we leave out one PSU from the probability sample and K — 1 PSUs from the
non-probability sample from the same stratum. The value of K is determined by the

number of PSUs in the probability sample.

However, there is a problem when applying a jackknife for variance estimation to the
APSA estimators t, joimt_adp aNd L, gisjoint_adp- AN intuitive justification for the jackknife as
a method of variance estimation is that the leave-K-out pseudo-values are independent
and identically distributed. When a different number of observations are dropped from the
sample in different replicates, they are based on different sample sizes. Thus they can not
be justified as even approximately identically distributed. Therefore, we adapt the jack-
knife method by conditioning on the retained sample from APSA to estimate the variance
of Ewomt_adp and fy,disjomt_adp. The retained sample from each replicate has a constant
sample size, which makes the intuitive notion of iid pseudo-values more plausible. This is

done by the conditional decomposition:

Var(tAyijintfadp/fy,diSjOmtfadp) = E[VaT(fy,jointfadp/fy,disjoint,adp|r€tain€d sample)] (41 6)

+ Var [E(nyOmLadp/fy,disjoi7madp |retained sample)].

The first term on the right hand side of equation (4.16) is estimated by applying the
jackknife method on the retained sample while treating the APSA estimators as PSA
estimators, so the dropping mechanism from the APSA method is not applied here.
Since it is almost impossible to enumerate all possible retained samples from the APSA
method, the second term on the right hand side of equation (4.16) is approximated by
Var(E(fyyjomt_adp/fydisjomt_adp\number of retained subgroups)), which is estimated from

the jackknife replicates of the original sample.
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For the bootstrap method, we apply the standard procedure as described in Wolter
(2007) to estimate the variance of the PSA estimators E% joint @nd E% disjoint- 1NIS IS done
by resampling the PSUs from each stratum for each replicate. For the APSA estima-
tors z?yvjomtfadp and z?y,dz-sjomtfadp, we apply the bootstrap method based on the conditional

decomposition (equation 4.16), which is the same way as we apply the jackknife method.

4.6. Simulation Studies

4.6.1. Simulation Settings

So far, we have proposed 4 estimators that use the non-probability sample, for cases
where under-coverage in the probability sample is a concern as in our application. They
are: t, joints ty. disjoint sty joint_adp @NA Ty gisioint_adp, all Of which are alternatives to the current
ratio estimators. The four estimators differ in how they weight the units from the two
samples, including whether they give the unit a non-zero weight at all. To assess the
efficiency of the different weighting strategies, we conducted two simulation studies to
evaluate the four estimators in situations where the strong ignorability assumption is and
is not met. The first simulation study aimed to study the performance of the four estimators
when the probability sample is a SRS. The second simulation study aimed to study the
performance of the four estimators when the probability sample is drawn according to a
complex design. We used the stratified cluster design with PSUs selected randomly from
each stratum in this simulation. This design mimicked the actual design that was used
by the Access Point Angler Intercept Survey (APAIS) to collect the dockside intercept
sample. In the simulation studies, we used the ratio estimator 7,, as our benchmark for
comparison. This is because t,, was shown to have good performance under a wider

range of scenarios than the other two ratio estimators (Liu et al., 2017).
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To maintain the relationship between the catch and auxiliary information for the trips,
a pseudo-population of recreational fishing trips was formed by using all the self reports
from a NMFS experimental electronic logbook study (ELB). This study was conducted to
estimate the catch of all Gulf of Mexico fish species caught by charter boat from 2016 -
2017. The self reported sample contained 15771 trip records. We treated this data as
if it was the true population. In addition to the catch counts by species, the self reports
contained several other variables describing the trip, which are listed in Table 4.1. The
variable of interest y is defined as the sum of the fish caught (Kept) and discarded dead
(ReleasedDead) for all species for each trip. We refer to this variable as catch. To avoid
extreme values in self-reporting, we truncated every numerical variable by the 1.5 IQR

rule except the outcome variable y.

In this pseudo-population, the primary sampling unit (PSU) was defined as a combi-
nation of location (County), Wave (W ave), return time (Shi ft) and time period (W eekend).
If a PSU contained more than 100 trips, it was randomly segmented into several PSUs
to make sure all PSUs had size less than 100. This definition aimed to mimic the actual
PSUs collected by the Access Point Angler Intercept Survey (APAIS) for the dockside in-
tercept sample. In this population, there were 956 PSUs and the average number of trips
per PSU was 16. The strata were defined as whether the trip was made on a weekday
or weekend. There were 495 (52%) PSUs from a weekday and 461 (48%) PSUs from a

weekend.

To compare the performance of &, joint, ty.disjoints Ly joint_adpsty.disjoint_adp With T2, both
simulation studies followed a 4 x 4 x 4 factorial design. The three factors are: 1) prob-
ability sample size, which is the dockside intercept sample size in our application. 2)
non-probability sample size, provided as reporting rate of the self-reported sample in our
application (p; = n,/N); 3) non-probability sample selection mechanism, which is the self

reporting mechanism in our application.
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Table 4.1: Description of variables in the pseudo-population for simulation.

Variable Name Type Model Inclusion Description
Trip ID Cat. No Identification number of each trip
Kept Cont. Yes Fish caught by species
Release Cont. Yes Alive fish released by species
ReleasedDead Cont. Yes Dead fish released by species
CaptainName  Cat. No Captain’s name of the boat
Latitude Cont. No Latitude when self-reported
Longitude Cont. No Longitude when self-reported
NbPassengers Cont. Yes Number of passengers on the boat
NbAnglers Cont. Yes Number of anglers on the boat
NbCrew Cont. Yes Number of Crew on the boat
DepthPrimary  Cont. Yes Depth of the sea when fishing
Hours Cont. Yes Fishing duration
Shift Cat. No Return time: 1 (00:00 AM - 8:00 AM) ,
2 (8:00 AM - 4:00 PM), 3 (4:00PM - 12:00 PM )
Weekend Cat. Yes Weekend: 1, Weekday:0
State Cat. Yes Home state of the boat: AL, FL, LA, MS, TX
County Cat. No Home county of the boat
Wave Cat. No Fishing waves: 1 -6
Name Cat. No Name of the boat

For the first factor, the probability sample sizes (n,) were set to 200, 400, 600 and 800
for the SRS design. For the complex design, the probability sample sizes (nps;;) were
determined by the number of PSUs, which were set to 30, 40, 50 and 60. For the second
factor, the non-probability sample sizes were set to 3154, 4731, 6308 and 7885, which
corresponded to the four reporting rates: p; = 0.2, 0.3, 0.4, 0.5. For each combination
of the probability sample and non-probability sample sizes, 4 different non-probability
sample selection mechanisms were examined from the missing data perspective: Missing
Complete at Random (MCAR), Missing at Random (MAR) and two that are Not Missing at
Random (NMAR), one of which we denoted as the Large Catch case. Now we describe

the 4 selection mechanisms.
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1) Missing Completely at Random (MCAR)

This scenario was intended to examine the performance of the proposed estimators
when the non-probability sample is free of selection bias. It was conducted by drawing the
non-probability sample as a simple random sample from the population. In this situation,
the selection mechanism of the non-probability sample is independent of the outcome
variable unconditionally upon the auxiliary information X', which is analogous to the notion

of data that is missing completely at random.
2) Missing at Random (MAR)

This scenario was intended to examine the performance of the proposed estimators
when the selection mechanism of the non-probability sample is independent of the out-
come variable conditionally upon the auxiliary information X, which corresponds to the
notion of data that is missing at random (MAR). This scenario was conducted by gener-
ating the selection probability of the non-probability sample sample from a pre-specified

model:

Bi
1 =G

) = 0.3x NbPassengers+0.2x Release+0.1x Hours—0.2xWeekend, i =1,2...N.
(4.17)

log(

In this model, j3; is the probability for the i** trip to be included in the non-probability
sample. The correlation between the selection probability and outcome variable y from
this model is 0.42. For each reporting rate, the generated selection probabilities were

multiplicatively adjusted to sum to the expected non-probability sample size.
3) Large Catch Case

This scenario was intended to examine the bias reduction ability of the proposed es-
timators when the non-probability sample contains large selection bias. To simulate this
situation, we partitioned the population into two strata: the first stratum contained the trips

with the largest fish catch of the population, and the size of the stratum was set to be 30%
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of the non-probability sample size. The second stratum was the rest of the population.
For the non-probability sample of sizes 3154, 4731, 6308 and 7885, the sizes of the first
stratum were set to 946, 1419, 1892 and 2365, respectively. The non-probability sample
was drawn as a stratified sample from the population, and it contained all sample units
from the first stratum and a simple random sample from the second stratum. In this sce-
nario, even though the inclusion mechanism depends on the response variable v, it allows

every unit in the population to have a positive inclusion probability.
4) Not Missing at Random (NMAR)

This scenario was intended to examine the performance of the proposed estimators
when the non-probability sample has under-coverage and its selection mechanism de-
pends on the outcome variable y. To simulate this situation, we partitioned the population
into two strata based on whether or not the number of fish catch was greater than 7. The
small-catch stratum contained 2602 trips and the large-catch stratum contained 13169
trips. The non-probability sample was drawn as a simple random sample only from the
large-catch stratum. In this scenario, the average catch of the large-catch subgroup was
31.89 and the average catch of the population was 27.03. When the selection mechanism
depends on the response variable and can not be explained by the auxiliary informa-
tion X, the strong ignorability assumption is violated. In addition, the generated non-
probability sample has no chance of including a portion of the population units, resulting

in under-coverage.

The estimator of v, = P(D; = 1|5, X;) was based on fitting the following model:

log (1 i ) = by + by X NbPassengers + by X Release + bs x Hours + by X nbAnglers+

- N

bs x NbCrew + bg x DepthPrimary + by x State + bg x Weekend. (4.18)

We acknowledge that this model may not always be the most predictive one for each

replicate of the simulation, but we decided to use the same model for all scenarios for
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computational efficiency. In a real application, there are several steps to find the best
model, such as conducting a variable selection procedure and checking the balance on

covariates.

Both simulations examined 64 settings (4 probability sample sizes x 4 non-probability
sample sizes x 4 non-probability sample inclusion mechanisms), with K = 3,000 pairs of
probability sample and non-probability sample generated independently under each set-
ting. Within each replicate, the proposed estimators ¢, joint, ty. disjoint: ty joint_adps ty.disjoint _adp

and t,, were calculated. In our population, the actual total catch ¢, = 426.38 x 10°.

To aggregate the findings across all iterations, the empirical mean, variance and mean
squared error (MSE) were calculated for each estimator over the 3,000 replicates. To
assess the performance of each estimator in terms of bias reduction, the relative bias
of each estimator was computed as the difference between the empirical mean and the

actual total catch divided by the actual total catch.

Based on the the jackknife and bootstrap variance estimates, the proportion of repli-
cates for which the 95% confidence interval includes the actual total catch was recorded
for each estimator. These proportions are denoted as Coverage in the following results.
The relative bias for the jackknife and bootstrap variance estimated for each estimator
were also calculated as the difference between the mean of the estimated variance and
the empirical variance divided by the empirical variance. A negative bias means the corre-
sponding estimator is biased downward. These proportions are reported as percentages

and denoted as RelBias in the following results.

For the APSA method, the Wilcoxon rank sum test with significance level of 0.05 was
used to compare the means between the two sample sources. For every replicate, the
number of subgroups that have a non-significant p-value was recorded and is denoted by
#subgroup in the following discussion. This is the number of subgroups that the APSA

method determines to be integrated well by the PSA method. After applying the APSA
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method, the value of #subgroup was also calculated for the retained sample. In the sim-
ulation studies, t, joint_adp AN %, disjoint_adp WEre computed only if the value of #subgroup

from the retained sample was higher than that of the full sample.

4.6.2. Simulation Results

We present the results when the probability sample was a SRS with the self-reporting
rate of 0.3. Simulation results for the complex design for this simulation settings can
be found in Appendix C. For both simulation studies, the patterns of the result revealed
by this reporting rate remains true for all the other self-reporting rates. In general, the
performance of the five estimators are slightly worse in the complex design compared to

the SRS design, which is due to the smaller effective sample sizes.

Figure 4.2 displays the empirical MSE for each estimator from all four self-reporting
mechanisms: MCAR, MAR, Large Catch Case and NMAR. Table 4.2 lists the means of
#subgroup for both the full sample and retained sample from the APSA method under

each setting.

Table 4.2: The means of #subgroup from the APSA method when the probability sample
is a SRS based on 3,000 replicates for scenarios: MCAR, MAR, Large Catch Case and
NMAR.

Probability Sample Size (n.)

# subgroup
200 400 600 800
MCAR Full Sample 9.56 9.56 9.53 9.56
Retained Sample 9.79 9.78 9.76  9.77
MAR Full Sample 945 941 941 9.51

Retained Sample 9.68 9.64 9.64 9.73

Large Catch Case Full Sample 6.47 4.8 4.31 4.06
Retained Sample 8.23 845 8.25 8.07

NMAR Full Sample 707 6 548 5.08
Retained Sample 7.86 7.71 7.55 7.21
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Figure 4.2: Empirical MSE of the five estimators when the probability sample is a SRS
and the reporting rate is 30% based on 3,000 replicates for scenarios: MCAR, MAR,
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In the MCAR and MAR scenarios, t,. joint, Ly. disjoints Ly joint_adp @NA ty disjoint_adp NAVE
smaller MSE compared to ,,. The performance of the PSA and APSA estimators are
similar, which demonstrate their potential of providing improvement over ¢,,. From Table
4.2, the means of #subgroup for the full sample are above 9 in the two scenarios. This
indicates that for most of the subgroups, the means of the response from the two sam-
ples within each subgroup are similar. Thus, we conclude that the two samples can be
integrated well by the PSA and APSA methods. In the Large Catch and NMAR scenarios,
however, both the PSA and APSA estimators have larger MSEs compared to those of .
The means of #subgroup for the full sample are around 5 in most of the settings, which
indicates a model failure as the discrepancy of the response between the two samples
still exist in many subgroups. Thus, there is a limit to the ability of the propensity-based
pseudo-weights method to handle large selection bias. However, the means of # subgroup
of the retained sample are higher than those of the full sample for all settings of each sce-
nario, which shows that the representativeness of the retained sample can be improved
by the APSA method. Similar results for the complex design are shown in Figure C.1 and

Table C.1 with the same conclusion. Next, we investigate the four scenarios in detail.

Table 4.3 lists the relative bias of each estimator as a percentage for the four scenar-
ios. In the MCAR and MAR scenarios, all the estimators are nearly unbiased. However,
the non-probability sample in the MAR scenario contains moderate selection bias as the
correlation between the selection probability of the non-probability sample and the re-
sponse is 0.42. Thus, this scenario demonstrates the bias reduction ability of the PSA

and APSA estimators when the self-reporting mechanism is correctly modeled.

In the Large Catch Case, Table 4.3 shows that the PSA estimators fail to adjust the
selection bias. However, the APSA estimators remove most of the selection bias, which
demonstrates their bias reduction ability compared to the PSA estimators. In the NMAR
case, all PSA and APSA estimators fail to adjust the selection bias in all settings, which

is due to the violation of the strong ignorability assumption and the under-coverage of
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the non-probability sample. As a result, the remaining selection bias becomes a major
source of the inflated MSE in Figure 4.2. Compared to other estimators, iy,disjomt_adp has
the largest MSE with a positive relative bias for all probability sample size settings. This
is because the APSA method tends to drop the non-probability sample units with low re-
sponse value in this scenario, which increases the selection bias in the non-discarded
part of the self-reported sample and thus be less representative of the population. How-
ever, compared t0 t, disjoint_adp» Ly joint_adp Mitigates such un-representativeness and has

the smallest bias and MSE for all the PSA and APSA estimators.

In addition, as showed in Table 4.2 and Table 4.3, there is a clear trend in the Large
Catch Case and NMAR scenarios that when the probability sample size increases, both
the relative bias and the mean of #subgroup of fwomtfadp decrease. This pattern indi-
cates that the increased probability sample size improves the bias reduction ability of
ty.joint_adp» Which is because both the propensity score model and the Wilcoxon rank sum
test become more reliable as the probability sample size increases. Similar results for the

complex design are shown in Table C.2 with the same conclusion.

Table 4.4 lists the coverage rates and the relative bias of the jackknife and bootstrap
variance estimates of the five estimators, along with their empirical variance for the MCAR
and MAR scenarios. Overall, the bootstrap method outperforms the jackknife method and
its coverage rates are close to the nominal level, 0.95, for all estimators across all settings.
The coverage rates from the APSA estimators are lower than those of the PSA estimators
and £,, for both the jackknife and bootstrap methods, which indicates that the variance
of the APSA estimators are underestimated in the two scenarios. This is because the
dropping mechanism might have erroneously dropped part of the non-probability sample
to make the two samples more similar, which made the estimates less variable. We also
notice that the empirical variance for the PSA and APSA estimators are smaller than that
of ,2, which demonstrates the advantage of the PSA and APSA estimators by involving a

larger sample size into estimation.
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Table 4.3: Relative bias of the five estimators when the probability sample is a SRS and
the reporting rate is 30% based on 3,000 replicates for scenarios: MCAR, MAR, Large
Catch Case and NMAR.

PSA APSA Ratio Estimator
L) fy,joz’nt gy,disjm’nt fy,jomt_adp fy,dz‘sjomt_adp £y2
MCAR 200 0.01 0.01 0.01 0.01 0.01
400 0.00 0.00 0.00 0.00 0.00
600 0.00 0.00 0.00 0.00 0.01
800 0.00 0.00 0.00 0.00 0.00
MAR 200 0.00 0.00 0.00 0.00 0.01
400 0.00 0.00 0.0 0.00 0.01
600 0.00 0.00 0.00 0.00 0.00
800 0.00 0.00 -0.01 0.00 0.00
Large Catch Case 200 0.32 0.32 0.15 0.17 0.01
400 0.31 0.31 0.06 0.07 0.01
600 0.30 0.29 0.03 0.05 0.00
800 0.29 0.28 -0.02 0.04 0.00
NMAR 200 0.09 0.09 0.08 0.12 0.01
400 0.08 0.08 0.06 0.09 0.00
600 0.07 0.08 0.05 0.07 0.00
800 0.07 0.07 0.04 0.05 0.00

Table 4.5 lists the coverage rates and the relative bias of the jackknife and bootstrap
variance estimates of the five estimators, along with their empirical variance for the Large
Catch Case and NMAR scenarios. Due to the large selection bias, the confidence inter-
vals based on the jackknife and bootstrap methods fail to capture the actual total catch
for the PSA and APSA estimators. However, the coverage rates for the ratio estimator 7,
remain close to their nominal level for all the settings as expected. Similar results for the

complex design are shown in Table C.6 and Table C.7 with the same conclusion.
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From the four non-probability sample selection mechanisms, we have demonstrated
that both the PSA and APSA estimators can handle moderate selection bias and the
value of #subgroup can serve as an indicator of whether the samples are integrated well.
Obviously, a user will not know whether the data selection pattern is one of the safe
settings or not. Therefore, it is still unclear how the user would know when it is safe to
use estimators from APSA or PSA, and when it is not. To investigate this uncertainty,
we analyzed the simulation results from a different perspective: the simulation results
from the four scenarios were combined, and then classified based on #subgroup from
each replicate. Thus, the replicates with the same number of retained subgroups were
aggregated and analyzed in the same way as previously described. The results were
categorized into four groups: 10, 9, 8 and less than 8 retained subgroups. We still choose
to present the results for all possible probability sample sizes when the reporting rate was
0.3. For both simulation studies, the patterns of the result revealed by this reporting rate

remain true for all the other reporting rates.

Figure 4.3 displays the empirical MSE for each estimator when the numbers of retained
subgroups are 10, 9, 8 and less than 8. When #subgroup is 10, the MSEs of the PSA
and APSA estimators are lower than those of #,, for all probability sample sizes. When
#subgroup is 9, the APSA estimators have the smallest MSEs compared to those of the
PSA estimators and fyz. When #subgroup is less than 9, the MSEs of the PSA and APSA
estimators become larger than those of #,,, especially when the probability sample size is

small (ny = 200).

Table 4.6 lists the relative bias of each estimator as a percentage based on #subgroup.
It indicates when the PSA and APSA estimators can handle the selection bias (* subgroups >
9 ) and when they can't (#subgroups < 9). As we discussed before, a similar trend ap-
pears for Eydomt_adp among all numbers of retained subgroups that when the probability
sample size increases, its relative bias decreases. We also notice that the relative bias

of the APSA estimators are smaller than those of the PSA estimators for all settings,
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which confirms the bias reduction ability of the APSA estimators compared to the PSA
estimators. However, ,, is approximately unbiased for all settings. Similar results for the

complex design are shown in Figure C.2 and Table C.5 with the same conclusion.

Number of Retained Subgroups: 10 Number of Retained Subgroups: 9
o Estimators 8 |-
\ —— tyjoint L{mj D\
8 \ ty disjoint \\
a1 Ujoint_adp ] N\
™ \ - tydisjoint_adp S ° §\
e \ - Yy @ Y \
Q \ \ \
8 N \ o <\
& N\ 24\
w \ w N AN
0w o NN 0 AN
S S A \ N = 3 N
S o \ N S IS '\'\ \‘
\ \ \\\ o
3 ] \ BN S W\ o
0 \ N D ~
— °. ~ N — I S
\‘\ \\\\ ~
b= ~OD = T oo
S P~ — S L TS~
- ~o ‘-\._\\f\ a — 8 =~\,:_\“D
T~ o N °
T T T T R T T T
200 400 600 800 200 400 600 800
Probability Sample Size n, Probability Sample Size n,
Non-probability sample with 30% Response Rate Non-probability sample with 30% Response Rate
Number of Retained Subgroups: 8 Number of Retained Subgroups: <8
8
£ 4 '\
IS —
o *
o
§ 1 § | \‘
% % — \ .
=3 . N b= B
© . \ © -0
o \ o °-< PR
— o N \\ — RS .-
8 — R o °
® |0~ N 3
~< D
— g
by W
~.
RN
S 0O~
§ | \ ] - — ~—_ o
=1 -—e |\  HTem—=——_ [ o
T T T T S T T T T
200 400 600 800 200 400 600 800
Probability Sample Size n, Probability Sample Size n,
Non-probability sample with 30% Response Rate Non-probaility sample with 30% Response Rate

Figure 4.3: Empirical MSE of the five estimators when the probability sample is a SRS
and the reporting rate is 30% based on 3,000 replicates for different Number of retained
subgroups: 10, 9, 8 and Less Than 8.

67



Table 4.6: Relative bias of the five estimators when the probability sample is a SRS
and the reporting rate is 30% based on 3,000 replicates for different number of retained
subgroups: 10, 9, 8 and Less Than 8.

PSA APSA Ratio Estimator

#subgroup Na gy,joint tAy,dz'sjoint fy,jomt_adp fy,disjomt_adp tAyQ
10 200 0.72 0.72 0.72 0.72 0.89
400 0.43 0.45 0.43 0.45 0.68

600 0.09 0.1 0.09 0.1 0.42

800 0.04 0.04 0.04 0.04 0.26

9 200 2.38 2.38 1.26 1.23 1.03

400 0.15 0.16 0.16 0.11 0.29

600 0.28 0.3 0.11 0.08 0.75

800 -0.18 -0.16 0.00 -0.02 0.18

8 200 12 11.98 8.46 8.94 1.7

400 3.38 3.47 2.3 2.62 2.09

600 1.49 1.52 1.54 1.62 1.31

800 -0.16 -0.18 -0.47 -0.55 0.19

Less Than8 200 22.19 22.07 11 13.75 0.58
400 19.88 19.69 3.86 13.94 0.41

600 18.47 18.27 1.79 16.35 0.37

800 175 17.27 0.58 17.09 0.2

Table 4.7 and Table 4.8 list the coverage rates and the relative bias of the jackknife
and bootstrap variance estimates of the five estimators, along with their empirical vari-
ance based on the number of retained subgroups. Overall, the bootstrap method outper-
forms the jackknife method. When #subgroup is 10, the coverage rates from the bootstrap
method for all estimators are close to their nominal level, 0.95. When #subgroup is 9,
the coverage rates from the bootstrap method for the APSA estimators and ,, are com-
parable and close to 0.95. However, when #subgroup is less than 9, both the jackknife
and bootstrap variance estimates fail to capture the actual variance of the PSA and APSA
estimators in most of the settings, while their performance on ¢, are consistently reliable.

From Table 4.7, it is also notable that the empirical variance of the APSA estimators are
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the smallest among all settings when #subgroup is 10 or 9. As a conclusion, we suggest
to use z?womt_adp instead of fyg when #subgroup is greater than 8, and its variance should
be estimated by the bootstrap method. Similar results for the complex design are shown

in Table C.6 and Table C.7 with the same conclusion.
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4.7. Case Studies

The purpose of this example is to illustrate when the proposed PSA and APSA esti-
mators can be successful alternatives to the ratio estimator 7,,. The dockside intercept
sample (MRIP) and the self reported sample (ELB) used in this example came from an
ELB experiment conducted in Florida, which was described in Section 3.3. The dockside
intercept sample (MRIP) contained 1142 charter trips and the self reported sample (ELB)
contained 4649 charter trips. Among the two samples, there were 86 matched trips. We
assume the self reports were accurate and every boat was able to self report. Since nei-
ther sample had clear PSU information available to us, we defined the PSU as described

in Subsection 4.6.1.

The PSA and APSA methods were applied to integrate the two samples and estimate
the total catch of two fish species: Red Snapper and Red Porgy. They represent two types
of fishing targets whose total abundance are of interest to NOAA. Red Snapper is a high
value and commonly targeted species in Gulf of Mexico. Since the late 1990s, annual
recreational landings of this fishery have passed 5 million pounds, while it was less than
500,000 pounds prior to 1950. Certain regulations on fishing season and bag limits have
been implemented to protect this population from overfishing. By contrast, Red Porgy is
often caught by recreational anglers in the Gulf of Mexico as an off-target species. Few

regulations has been set on this population.

4.7.1. Summary Statistics

The differences in nature, value and regulations between the two fish species result
in different catch distributions. Table 4.9 lists the summary statistics of catch for the two
species. For both species, the percentages of trips with landings, average catch and
variance from the dockside intercept sample are much lower than those from the self-

reported sample. By contrast, the CVs from the dockside intercept sample are larger
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than those from the self-reported sample. This shows that anglers tend to report their trip
when they have a harvest. Compared to Red Snapper, the difference of catch distributions
between the two samples for Red Porgy is smaller. This indicates the self reports on Red

Porgy is more representative of its fishery population.

Table 4.9: Summary statistics of the MRIP sample and ELB sample for the Red Snapper
and Red Porgy catches.

Red Snapper  Red Porgy
MRIP ELB MRIP ELB
Percentage of the trips with landings 0.07 0.38 0.11  0.27

Mean of catch 0.58 4.61 1.29 3.41
Variance of catch 7.72 6355 3257 70.75
cv 479 172 442 2.46

The auxiliary information from the two samples were also explored to investigate the
difference. Table 4.10 shows the 5 variables that were used to build the propensity score
model. The numbers of released Red Snapper and Red Porgy were used separately to
build their own propensity score models. Statistical tests (wilcoxon wanked sum test for
non-categorical variables and y? test for categorical variables) were conducted for every

variable to decide whether differences between the two samples are significant.

Table 4.10 shows a considerable difference in all variables between the two samples.
For example, the average number of anglers from the self-reported sample is higher than
the dockside intercept sample, which may indicate that larger boats are more likely to
report their trip information. Among the self-reported sample, 74% of the trips targeted
valuable fish species, while this proportion is only 16% for the dockside intercept sample.
This suggests that anglers tend to report more on purposive trips rather than recreational
only. It is also notable that the numbers of released Red Porgy were small from both
samples. This could be due to either of the following two reasons: 1) anglers tend to keep
Red Porgy if they catch one since they are not regulated, 2) anglers tend not to make note

of how many Red Porgy they released, so nothing is recorded, and thus 0 is imputed.
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Table 4.10: Covariates of the propensity score model for the total Red Snapper and Red
Porgy catches by Charter boat.

Mean
Variable Name Type Description © P-value
MRIP ELB
Number of Anglers Cont. Number of anglers on the boat 3.87 6.05 0.00

1: The trip is made on weekend

Weekend Cat. 042 0.29 0.00
0: The trip is made on weekday
Hours Cont. Fishing duration 403 3.29 0.00
1: The trip targets on Red Snapper,
Target Cat.  Vermilion Snapper, King Mackerel 0.16 0.74  0.00

and Red Grouper. 0: Otherwise
Red Snapper Released Cont.  Alive Red Snapper fish released 1.52 7.39 0.00
Red Porgy Released  Cont. Alive Red Porgy fish released 0.00 043 0.00

4.7.2. The PSA Method

To assess how the decision to report could be explained by these variables, the
propensity score models were built on the combined sample to predict the probability for a
trip to be reported. The models for Red Snapper and Red Porgy shared the same covari-
ates; Numberof Anglers, Weekend, Hours and Target, while the number of released Red
Snapper was included in the model for Red Snapper and the number of released Red
Porgy was included in the model for Red Porgy. The resulting propensity scores were

used to calculate sample weights for the PSA method.

The model estimates for Red Snapper and Red Porgy are tagged as PSA in Table
4.11. All variables are significant at the 5% level. The estimates are similar from both
models, and they illustrate a similar reporting manner as noted in Table 4.9: A trip is more
likely to be self reported with a clear fishing target and when it involves more anglers.
In addition, both models indicate that a trip is more likely to be self reported when it is
made on a weekday with a shorter duration, and with a harvest as reflected by the larger

number of fish released.
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4.7.3. Balance Assessment

To assess whether homogeneous trips from the two samples have been successfully
grouped by the propensity score model, the combined sample was segmented into 10
subgroups based on the estimated propensity score and the balance of covariates were
checked across all subgroups by statistical tests. The subgroups were defined as de-
scribed in Subsection 4.4.2 for the APSA method. The Wilcoxon ranked sum test was
used for non-categorical variables and y? test was used for categorical variables. Fisher’s
exact test was used as the alternative to x? test when it was not applicable due to small

category size.

Figure 4.4 shows the p-values of every covariate across every subgroup from the
propensity score models for the two species. Overall, all covariates except Target are
balanced across all subgroups. The variable T'arget is not balanced in many subgroups:
6, 8 and 10 for Red Snapper and 4, 5, 6, 7 and 10 for Red Porgy. This may due to the large
proportion of trips with clear fishing targets in the self-reported sample, which makes the

adjustment unsuccessful.
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Figure 4.4: Balance check for covariates from the PSA and APSA methods for Red Snap-
per and the PSA method for Red Porgy.
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4.7.4. The APSA Method

Next we applied the APSA method to estimate catch for the two species, using the
estimated propensity scores as described in the previous section. For Red Snapper, Table
4.12 lists the numbers of trips from both samples, their mean catches and the p-value of
the Wilcoxon rank sum test for each subgroup. Figure 4.5 shows the catch distributions

within each subgroup from both samples. Table 4.12 shows that most of the MRIP trips
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are from the first 3 subgroups, which include trips that are less likely to be reported. By
contrast, the self-reported trips dominate subgroups 5 to 10, which contain trips that are
more likely to be reported. The mean catch increases from subgroups 1 to 10 among
both samples, which indicates that a trip is more likely to be reported when its fish catch
is larger. Similar data for Red Porgy are shown in Table D.1 and Figure D.1 with the same

conclusion, which can be found in Appendix D.

Table 4.12 also shows that the catch distributions of Red Snapper are significantly
different between the two samples for the first three subgroups. Figure 4.5 shows that
while most of the trips in the three subgroups have zero Red Snapper catch, the self-
reported sample contains relatively more trips with non-zero catch, which causes the
difference. Red Porgy, by contrast, has similar catch distributions in the two samples
across all subgroups, which indicates a good balance on the catch distributions between

the two samples. This can be seen from Table D.1 and Figure D.1 in Appendix D.

Table 4.12: Numbers of trips for Red Snapper from the MRIP and ELB samples within
each subgroup based on the PSA method.

Subgroup Number of Number of Mean Catch

P-value
Number MRIP Trips ELB Trips MRIP ELB
1 469 116 0.01 0.51 0.00
2 236 325 0.07 0.33 0.02
3 138 428 0.38 1.15 0.04
4 80 494 143 1.78 0.22
5 44 534 1.75 2.32 0.59
6 40 521 208 272 0.88
7 22 550 432 432 0.97
8 12 555 5.83 6.02 0.88
9 7 563 9.29 7.86 0.50
10 8 563 925 1263 0.38
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Number of Red Snapper Catch

Subgroup 1 Subgroup 2
N N
“ — MRIP i — MRIP
— ELB — ELB
2 ® Q
‘m © o
e
[
o< <
o o
= =
o o
1 0 1 2 3 4 5 0 2 4 6 8 10 12
Subgroup 3 Subgroup 4
N
- — MRIP — MRIP
. — ELB @ — ELB
%’ S
3
g p
o o o P L.
o o
0 2 4 6 8 10 12 0 10 15
Subgroup 5 Subgroup 6
o — MRIP s — MRIP
o — ELB © — ELB
2 =
5 < .
[aJ=t e
N
o
= A~ — =
o o
0 5 10 15 0 2 4 6 8 10 12
Subgroup 7 ° Subgroup 8
© — MRIP ° — MRIP
© — ELB < — ELB
2 s
[
0 o s
o
= =
o o
0 5 10 15 0 10 15 20
Subgroup 9 Subgroup 10
< — MRIP 3 — MRIP
© — ELB — ELB
2 <
£ S
& o
(o o~
o
= =
o o
0 5 10 15 0 5 10 15 20 25

Number of Red Snapper Catch

Figure 4.5: Distributions of the Red Snapper catch from the MRIP and ELB samples within
each subgroup based on the PSA method.
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To estimate the total catch for Red Snapper by the APSA method , we dropped the
self-reported sample from the first three subgroups and recalculated the propensity score
for the retained sample. Table 4.11 shows the new model estimates listed under APSA.
The estimates of covariates are similar to those of the original model except the variable
Target. The estimate of odds ratio for T'arget increased from 11.05 to 65.79. This is be-
cause the proportion of trips with a clear target species among the dropped self-reported
sample is only 1.2%, which is much lower than 74% of the full self-reported sample. Con-
sequently, the proportion of trips with clear a target species is even higher in the retained
self-reported sample. This strengthens the variable’s predictability. Figure 4.4 shows the
result of a balance check on covariates from the new model. Not surprisingly, almost
all covariates are balanced well across the subgroups except the variable T'arget. Table
4.13 lists the number of trips from both samples, the mean catch and the P-value of the
Wilcoxon rank sum test within each subgroup based on the new estimated propensity
scores. After dropping the self-reported sample from the first three subgroups, the catch
distributions of Red Snapper are similar between the two samples across all subgroups.
Such a balance is also confirmed by Figure 4.6. For Red Porgy, since the catch distribu-
tions between the two samples were already balanced across all subgroups based on the

PSA method, no self-reported trip was dropped.

4.7.5. Estimation Results

Table 4.14 shows the estimates of total from both the PSA method, the APSA method
and the ratio estimator fyz, along with estimates of standard error from the jackknife and
bootstrap estimators. The bootstrap variance estimation was based on 100 replicates. For
Red Snapper, t, joint_aap Provides a very close estimate compared to the ratio estimator
t,2, while its jackknife and bootstrap standard deviations are slightly higher than theose
of #,5. It is also notable that even though the APSA estimators employs a smaller sample

size compared to the PSA estimators, their jackknife and bootstrap standard errors are
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Figure 4.6: Distributions of the Red Snapper catch from the MRIP and ELB samples within
each subgroup based on the APSA method.
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Table 4.13: Numbers of trips for Red Snapper from the MRIP and ELB samples within
each subgroup based on the APSA method.

Subgroup Number of Number of Catch Mean

P-value
Number MRIP Trips ELB Trips MRIP ELB
1 485 7 0.01 0.00 0.84
2 373 111 0.27 045 0.08
3 70 424 141 1.86 0.24
4 35 446 1.66 2.06 0.83
5 36 498 1.39 2.38 0.40
6 22 425 3.32 3.68 0.94
7 15 469 6.20 5.38 0.68
8 6 479 7.33 6.33 0.72
9 7 481 9.86 8.86 063
10 7 481 8.29 1350 0.21

smaller than those of the PSA estimators. This indicates that the self-reported sample
is better integrated with the MRIP sample by the APSA method. However, by losing the
advantage of the larger sample size, the estimators from PSA and APSA have larger

variance compared to %, in this case and would not be preferred.

For Red Porgy, since no trip was dropped from the self-reported sample, £, j,in: and
ty.joint_adp Provide the same estimates, and they are very close to ¢,,. The jackknife and
bootstrap standard errors for all the PSA and APSA estimators are smaller than those of
t,o. Based on the simulation results as we discussed earlier, we recommend to use 7,
for Red Snapper and to Use , joint OF t, joint_adp fOr Red Porgy in this example. We also

recommend to used the bootstrap method for variance estimation.
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Table 4.14: Estimates of total by the PSA estimators, APSA estimators and ¢,, for Red
Snapper and Red Porgy by Charter boat from the MRIP Sample and ELB Sample.

PSA APSA

Red Snapper fy,jomt gy,disjoz'nt fy,jomt,adp fy,dz‘sjomt,adp fyz
Estimate (x10?) 61.73  77.32 64.65 71.28 64.38
SE(jackknife) (x10°) 14.67  20.57 12.59 16.44 12.30
SE(bootstrap) (x10°) 22.29  33.45 18.60 25.17 18.62

Red Porgy fy,jomt Ey,disjoz’nt lfy,jomt_adp lfy,dz‘sjomt_adp £y2
Estimate (x10?) 123.16 135.01 123.16 135.01 123.80
SE(jackknife) (x10%) 26.15  33.85 26.15 33.85 37.93
SE(bootstrap) (x10°) 45.37  51.99 45.37 51.99 56.72

4.8. Discussion and Future Research Plans

Based on the simulation results, both the PSA and APSA estimators have shown their
potential of being useful alternatives to the current ratio estimator #,,. However, they
have certain limits in handling the selection bias. Compared to the PSA method, the
APSA method can reduce the selection bias by comparing the two samples based on
the propensity score, detecting and leaving out the non-representative part of the non-
probability sample. We also conclude that the joint weighting approach is more reliable
than the disjoint weighting approach. In addition, the performance of the APSA method
will benefit from a larger sample size of the probability sample. The number of retained
subgroups from the APSA method can serve as an indicator of whether the PSA and
APSA estimators are better than the current ratio estimators. As a conclusion, we recom-
mend to USe , jyint_ad, iNstead of ¢,, when the number of retained subgroups is greater

than 8, and the bootstrap variance estimation method is preferable.

However, there are some concerns of generalizing the PSA and APSA methods in
our application. As showed in the case studies, the PSA and APSA methods are not

as straightforward to use as the ratio estimators are. Even though we have specified
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the situations when they can be successful alternatives to the ratio estimators, it raises
the time concern for NOAA to apply the new methods for every species. Since NOAA
is responsible to estimate hundreds of fish species across different waves, areas and
modes, it is time consuming to build the propensity score model for every single case.
However, there are many situations when the ratio estimators couldn’t provide precise
estimates. For example, in Chapter 3 we showed that the PSEs of the ratio estimators
will be increased for the species with large CV, small dockside intercept sample size and
low reporting rate. Thus, we recommend NOAA to consider using the PSA and APSA

estimators for such situations first.

There is also much work that needs to be done to make this research complete. First,
in this research we have assumed the self reports are accurate. Unfortunately, this is
not true in practice. As we observed from the matched trips from the dockside intercept
sample and the self reports, there are a considerable number of trips whose catch are
different from the two sample sources. There are two reasons that may cause this dif-
ference. The first reason is due to the non-sampling error that the two trips are actually
mismatched. Stokes et al. (2019a) studied the effect of non-sampling error on the ratio
estimators. However, it is still unclear how the non-sampling error will affect the PSA and
APSA estimators. The second reason is due to the measurement error contained in the
self reports. One way to address this issue is to study the relationship between the actual
catch and the reported catch from the overlap of the two samples, and then predict the
actual catch based on the self-reported catch for the rest of the self-reported sample. The
prediction variance can be estimated by multiple imputation. However, by doing so, the
variance of the PSA and APSA estimators will be greatly increased, which compromises
their advantage of having a larger sample size. This is because the prediction model
is built on the matched trips, whose sample size is much smaller than the self-reported
sample. So other ways of dealing with the measurement error need to be studied for the

PSA and APSA methods.
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Second, in this study we assumed every trip in the population has a positive chance
to be self reported. However, in practice the self-reported sample has the coverage issue
that only the boat with the self-reporting device installed has the chance to report. The
coverage issue can be ignored if the boat with the device is representative of the popula-
tion. In our case studies, this assumption was met for Red Porgy even though it was not
clearly stated. This is because the propensity model balanced the two sample sources
well without considering the device factor. However, if this is not true, as the Red Snapper
case, we can partition the population into two domains based on whether the boat has
the self reporting device and make separate total estimation for each domain. In some

applications, such as charter boats, this is known for the entire fleet.

Third, the sensitivity of our estimators to model mis-specification needs more scrutiny.
The model mis-specification can be caused by two reasons: 1) the model doesn’t include
the relevant variables, 2) the model includes irrelevant variables. In the NMAR scenario of
our simulation studies, we studied the effect of the first reason. However, our simulation
didn’t consider the effect of the second reason, as we used the same model for all sce-
narios. As a result, it is unclear how much bias occurs from a mis-specified model. We
would expect that the performance of both the PSA and APSA estimators be improved in

our simulation if the model was correctly specified in each replicate.

For the relative sample size issue, the simulation results show that the performance of
the APSA methods will benefit from a larger sample size of the probability sample. How-
ever, for a given non-probability sample size, it is unclear how large a probability sample
size is required for the APSA method to provide a reliable estimate. As showed in Fig-
ure 4.3, when the number of retained subgroups is greater than 8, the performance of
fwm-ntfadp is consistently better than the ratio estimator fyg regardless of the probability
sample size. However, when the number of retained subgroups is 8 and the probability
sample size is small (ny = 200), t,o outperforms #, join:_adp- This may not be problem-

atic so far for the cases we studied, as the ratio of the probability sample size over the
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non-probability sample size was 1142/4649 = 0.24, which was close to the largest ratio
in the simulation settings (800/3154 = 0.25). Under this ratio, 7, join:_aq, Showed good
performance from the simulation results. However, this problem needs to be addressed
when the self-reporting rate is getting higher in the future. On the other hand, if the self-
reporting rate is high enough, the non-probability sample will resemble a simple random

sample and adjustment will be less important.

Fourth, it is worth investigating whether machine learning models (such as k-nearest
neighbors, support vector machine) can be successful alternatives to the traditional propen-
sity score model that used in our study. They have shown to be able to remove selection
bias more efficiently than logistic regression when used for PSA (Ferri-Garcia and Rueda,
2020). However, the machine learning models require a very large training data set to
guarantee their prediction accuracy. In addition, the new models may not be able to indi-

cate a model failure, as the APSA method does.

Last, the idea of the APSA method can be applied to many non-probability sampling
applications, as it offers a way to indicate whether the non-probability sample is being
correctly used. For the situations when the response variable is not available for the
probability sample, one could try to apply the APSA method on the covariates that is

highly correlated with the response variable.
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APPENDIX A

The Mean, Variance and CV of the New Self-reported Sample

Under the assumptions discussed in Section 3.1, the relationships between p; and #;,
CViy, 57, CVy,+ can be specified as follows. When the reporting rate (p,) decreases from
the current level, the values of ;, C'Vy,, 7 and C'V;,- does not change. When the reporting
rate increases by §, denote the mean and variance of the target population, the self-
reported sample, the anglers who do not report and the new self-reported sample by (g,

S2), 1, S3,), Wres SE,.0) AN (19,46, S3y . 1s)» FESPECtively. By the following relationships:

y=pi1 + (1= p1)Jie (A.1)

and
Sj = plsfy + (1 — pl)Sfy,c +p1(1 = p1) (i1 — 1e)s (A.2)

we could get:
i e Y —DPin (A.3)
I—p
and
52 _ p152
SIQy,c = yl &l — D1 (?jl - gl,c)Q- (A4)
— D1

Then the mean and variance for the new self-reported sample have the expressions:

; A5
p1+0 (A-5)

gl 2p1+6 —

and
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g2 _ p1512y + 5512%6 p1o(y1 — gl,c>2
1y,p1+90 1 + 5 (Pl i 5)2

As a result,

S
CVigprys = 2120 (A.7)
Y1,p1+6
Similarly, when the self reports contains measurement error, the average catch among
the new self-reported sample is:

L, Pyt + 0y,

yl,p1+5 = P+ 5 ) (A8)

where y; . = % is the average catch among the anglers who do not report. Denote the
variance of catch of the original self-reported sample by Sfy*, then the variance of catch

among the new self-reported sample is:

plS%y* + 55%}/*,0 plé(ﬂf - gic)2
p1+9 (p1 + 6)?

, (A.9)

2 _
Sly*,1+5 -

S2—-p1S2 .
where §2 , = Zv

i e T — (U — 7; ) is the variance of catch among the anglers who do

not report. As a result,

CViye _ S (A.10)

sP1+6 —x
1,p1+0

88



APPENDIX B

Large Sample Variance of tgzg

We derive the variance of

- o s
tsrs = Nys = HWQ% (B.1)

discussed in Section 4.2. In the simplified case, both the non-probability sample (.S;)
and the probability sample (S;) are simple random samples with sample sizes n; and
nsy, respectively. The random components in equation B.1 is the overlap size m and the

sample average ¥s.

First, the overlap size m follows a hypergeometric distribution with parameters N, ny, and n,,

SO

E(m) = n}\? and Var(m) = 711712(]]\[\[2—(]7\”;1)_(]1\; — n2). (B.2)

Second, as yg is the sample average from a simple random sample with size ng = n; +

ny — m, its variance has the expression:

Var(ys) = E(Var(gs/m)) + Var(E(gs|m)) (B.3)

2
ny+ng —m Sy
N ny+n,—m

1 _ nitns—m
=SIE(————)+0
ny+mne —m
1 — ni+na—E(m)
~ S —
Y ny + no — E(m)

=FE((1- )+ Var(y)
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Next, we have:

Cov(m, ys) = E(Cov(m, gslm)) + Cov(E(m|m), E(gs|m))

=0.

(B.4)

The variance of {55 can be approximated using Taylor linearizaiton when sample size is

large:
Var(isps) = var(nmfn—s) (B.5)
= wdndVar(2)
~ min{ (s V(i) + (= eV (m) = 2 s Cou(n )}
L o
~ E](\ZS){s;u - E%S)) yzz%(l =) (N —n2)}
s postsa - 2y pERI o)y,

I nin
where E(ng) = ny +ny — 72,
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APPENDIX C

Simulation Results from the Complex Design

Table C.1: The mean of #Subgroup based on the APSA method when the probability
sample is drawn according to a complex design based on 3,000 replicates for scenarios:

MCAR, MAR, Large Catch Case and NMAR.

Probability Sample Size (npsy)

Fsubgroup 30 40 50 60
MCAR Full Sample 9.36 9.36 9.36 9.37
Retained Sample 9.59 9.59 9.6 9.6
MAR Full Sample 9.38 9.32 9.33 9.34

Retained Sample

Large Catch Case Full Sample
Retained Sample

NMAR Full Sample
Retained Sample

9.61 9.56 9.59 9.56
6.19 4.97 4.55 4.3
8.13 8.22 8.09 7.94
6.61 5.73 5.34 4.97
7.67 7.45 7.3 6.98

91



Missing Completely At Random Missing At Random

Estimators

——tyjoint

3000
|

ty,disjoint
ty‘jmm?adp
o - ty‘d\sjoinLadp
ty2

3000
|

2500
2500

10°MSE
2000
|
10°MSE
2000
|

S S
n w0
— —
g _ S 8 .
s o S
- \: 3
T T T T T T T T
30 40 50 60 30 40 50 60
Probability Sample Sample Size npgy Probability Sample Size npsy
Non-probaility sample with 30% Response Rate Non-probaility sample with 30% Response Rate
Large Catch Case Not Missing At Random
8
o —]
8 e g o_\
8 \ ° .
o _|
. CH
. \ . °
2 7 I - S
— ™
o
% o % L(O) T
= 9 S o
5 87 5
S S - 8 |
o
N
o L o
S | '~ o ]
B S 3
= ~ o
. S |
0—— O Trmm 0 memm e o a
o = =0 0O—— o .
T T T T T T T T
30 40 50 60 30 40 50 60
Probability Sample Size npsy Probability Sample Size npsy
Non-probaility sample with 30% Response Rate Non-probaility sample with 30% Response Rate

Figure C.1: Empirical MSE of the five estimators when the probability sample is according
to a complex design and the reporting rate is 30% based on 3,000 replicates for scenarios:
MCAR, MAR, Large Catch Case and NMAR.
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Table C.2: Relative bias of the five estimators when the probability sample is according to
a complex design and the reporting rate is 30% based on 3,000 replicates for scenarios:
MCAR, MAR, Large Catch Case and NMAR.

PSA APSA Ratio Estimator

npsu tAy,joint fy,disjomt fy,jomt_adp fy,disjomt_adp fyz

MCAR 30 0.01 0.01 0.01 0.01 0.01
40 0.00 0.00 0.00 0.00 0.01

50 0.00 0.00 0.00 0.00 0.01

60 0.00 0.00 0.00 0.00 0.00

MAR 30 0.00 0.00 0.00 0.00 0.01
40 0.00 0.00 0.00 0.00 0.01

50 0.00 0.00 0.00 0.00 0.00

60 0.00 0.00 -0.01 -0.01 0.00

Large Catch Case 30 0.31 0.3 0.11 0.16 0.01
40 0.29 0.29 0.02 0.04 0.00

50 0.28 0.27 -0.01 0.02 0.00

60 0.27 0.26 -0.03 0.02 0.00

NMAR 30 0.08 0.08 0.06 0.09 0.01
40 0.08 0.08 0.05 0.09 0.00

50 0.07 0.08 0.05 0.09 0.00

60 0.07 0.07 0.04 0.08 0.00
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Figure C.2: Empirical MSE of the five estimators when the probability sample is according
to a complex design and the reporting rate is 30% based on 3,000 replicates for different
number of retained subgroups: 10, 9, 8 and Less Than 8.
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Table C.5: Relative bias of the five estimators when the probability sample is drawn ac-
cording to a complex design and the reporting rate is 30% based on 3,000 replicates for
different number of retained subgroups: 10, 9, 8 and Less Than 8.

PSA APSA Ratio Estimator
#SUbgTOUP npsu fy,jomt fy,dz‘sjomt fy,jamt,adp fy,dz’sjomt,adp fyz
10 30 0.61 0.63 0.61 0.63 0.75
40 0.24 0.27 0.24 0.27 0.45
50 -0.11 -0.08 -0.11 -0.08 0.24
60 -0.24 -0.22 -0.24 -0.22 -0.03
9 30 2.21 2.26 1.41 1.41 1.32
40 0.04 0.11 0.02 0.05 0.32
50 0.35 0.41 0.06 0.04 0.77
60 -0.16 -0.1 -0.03 -0.05 0.26
8 30 9.89 9.95 6.65 7.15 2.24
40 3.64 3.8 2.31 2.61 2.91
50 1.34 1.45 0.88 1.03 1.22
60 0.51 0.64 0.39 0.53 0.49
LessThan8 30 19.69 19.56 7.86 12.26 0.21
40 18.22 18.05 3.27 12.68 0.21
50 17.15 16.98 1.73 14.78 0.22
60 16.53 16.33 0.59 15.35 0.19
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APPENDIX D
The Results from the PSA Method for Red Porgy

Table D.1: Numbers of trips for Red Porgy from the MRIP and ELB samples within each
subgroup based on the PSA method.

Subgroup Number of Number of Catch Mean

P-value
Number MRIP Trips ELB Trips MRIP ELB
1 473 127 0.09 0.07 0.09
2 220 323 0.95 098 0.11
3 143 428 272 156 0.40
4 85 496 246 210 0.73
5 46 562 1.41 151 0.37
6 37 209 251 275 0.80
7 31 574 239 278 0.30
8 9 503 2.33 3.33 0.96
9 8 568 475 449 0.24
10 4 559 225 6.14 0.24
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Figure D.1: Distributions of the Red Porgy catch from the MRIP and ELB samples within
each subgroup based on the PSA method.
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