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Iron (oxyhydr)oxides are widespread in the environment and have a disproportionate effect 

on the fate of metal(loid)s in groundwater. Numerous studies demonstrate the effect of iron-sulfur 

dynamics on contaminant sequestration, and particle size further impacts the reactivity of iron 

(oxyhydr)oxides, including their capacity for sorption and precipitation. This study examines the 

role of particle size on the sulfidation of iron (oxyhydr)oxides. Synthetic hematite nanoparticles 

with approximate diameters of 7.1 nm and 104 nm were coated onto quartz sand and reacted with 

bisulfide by advective flow.  

Characterization of these nanoparticles revealed hydroxyls present at the hematite surface, 

with large particles having a higher hydroxide content per unit of surface area. Analysis of effluent 

from advective flow experiments show that the hematite nanoparticles undergo reductive 

dissolution of iron followed by precipitation of FeS. Iron concentrations increased with increasing 

bisulfide concentration, and ferrous iron in the effluent was higher for small particles than large 

particles when eluted with 10 mM bisulfide and lower with 0.1 and 1 mM bisulfide. Mineral 

transformations indicative of FeS precipitation occurred at 1 mM for small particles and at 10 mM 

for both particle sizes.  
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The log kFe calculated through kinetic model were -6.2 for large particles and -7.9 for small 

particles and indicates that reductive dissolution is faster for large particles. The reaction rate for 

surface area loss, RA, over time revealed that precipitation and associated surface passivation 

controlled initial surface area, influent bisulfide concentration, and initial reaction rate. Initial 

reaction rates for area and reductive dissolution of iron appear to be impacted by surface 

hydroxylation. Small particles show that reaction kinetics are not simplistic, and an optimization 

issue is present in surface mediated reactions where particle size is a factor.  

The fundamental experimentation and subsequent model developed in this study could be 

important to better quantifying the role of iron (oxyhydr)oxide nanoparticles, whether engineered 

or naturally occurring, on the sequestration of metal(loids) posing a risk to public health. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

Iron (oxyhydr)oxides often control the availability of metals and metalloids in aqueous 

environments. As an example, the reductive dissolution of iron minerals frequently mobilizes trace 

metals such as lead, arsenic, and nickel, which are hazardous to populations that rely on 

groundwater as a drinking water source (Cooper et al., 2006; Smedley & Kinniburgh, 2002). 

Mineral composition and microbial activity affect iron (oxyhydr)oxide reactivity in terms of 

reduction rates and mechanisms for trace metal sequestration following reduction (Burton et al., 

2011; Cooper et al., 2005; Poulton et al., 2004; Skinner, 2005). Ferrihydrite, goethite, and hematite 

are common iron (oxyhydr)oxides found in the environment, and pH, redox conditions, 

temperature, and competitive solution species are a few variables that influence their capacity to 

retain metals.  

Iron (oxyhydr)oxides are especially important to the fate of arsenic in groundwater, a major 

source of drinking water worldwide, as exemplified in the now well documented case of South 

Asia (Benner et al., 2008; Quicksall et al., 2008; Smedley & Kinniburgh, 2002). Arsenic 

enrichment of groundwater typically occurs naturally, but some studies suggest that anthropogenic 

activities such as pesticide use and industrial activity are also contributors to As contamination 
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(Polizzotto et al., 2008; Smedley & Kinniburgh, 2002). Sediment deposition rates and burial of 

organic matter generate conditions for iron reduction and arsenic mobilization in near surface 

sediments (Papacostas et al., 2008; Polizzotto et al., 2008; Quicksall et al., 2008). Depending on 

porewater pH, arsenate (As(V)) and arsenite (As(III)) are typically the arsenic species present in 

these systems, and iron (oxyhydr)oxides are able to retain both species (Saalfield & Bostick, 2009; 

Smedley & Kinniburgh, 2002). At circumneutral pH, arsenate preferentially sorbs onto iron 

minerals, and reduction of As(V) to As(III) is concurrent with the reductive dissolution of iron 

(oxyhydr)oxides (Saalfield & Bostick, 2009; Smedley & Kinniburgh, 2002). Sulfide influences 

iron-arsenic interactions by initiating iron reduction and forming iron sulfides (Hansel et al., 2015; 

Hellige et al., 2012; Kocar et al., 2010). Arsenic removal can occur in the presence of sulfide by 

sorption onto iron sulfides or by the precipitation of arsenic sulfides or iron arsenic sulfides (Burton 

et al., 2014; O’Day et al., 2004; Saalfield & Bostick, 2009).  

Studies on arsenic sequestration have demonstrated that sulfur redox cycling impacts the 

fate of iron in anoxic environments. Under reducing conditions, bacterial sulfate reduction 

produces sulfide and often kinetically precedes the reductive dissolution of iron (oxyhydr)oxides 

(Hansel et al., 2015; Neal et al., 2001). Iron and sulfur reduction rates and associated dissolved 

sulfide concentrations can affect the sorption of metals and the precipitation of metal sulfides 

(Hansel et al., 2015; Morse & Arakaki, 1993; O’Day et al., 2004). During the sulfidation of iron 

(oxyhydr)oxides, sulfide oxidizes to elemental sulfur (Hellige et al., 2012). Iron sulfides form by 

reaction between excess sulfide and ferrous iron, and their composition varies with system S/Fe 

ratio and the associated extent of sulfidation (Fan et al., 2017; Hellige et al., 2012). In low 

temperature, aqueous environments, reaction between an iron (oxyhydr)oxide and sulfide is likely 

to produce poorly crystalline mackinawite (FeS) (Benning et al., 2000; Wolthers et al., 2005). The 
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transformation of mackinawite to pyrite involves H2S oxidation in the presence of an oxidized 

sulfur or iron-sulfur species (Benning et al., 2000; Neal et al., 2001; Rickard, 1997).  

S/Fe ratios and reduction potentials are among several variables that affect the removal and 

retention of metals and metalloids by iron sulfides (Fan et al., 2017; Morse & Arakaki, 1993; 

Wolthers et al., 2007). For example, S/Fe ratios and metal concentrations control whether cadmium 

and arsenic sorb onto FeS or replace iron to form metal(loid)-sulfide phases (Fan et al., 2017; 

Wolthers et al., 2007). These factors could also inhibit the transformation of FeS to mackinawite 

and pyrite during arsenic sorption onto FeS (Wolthers et al., 2007). A study on the sulfidation of 

uranium-bearing ferrihydrite attributed uranium release to the formation of uranium-sulfide 

complexes and mackinawite (Townsend et al., 2019). In addition to their role in systems with 

contaminated groundwater, iron-sulfur interactions are important in the remediation of acid mine 

drainage, where oxidation of pyrite produces highly acidic mine waters that can enhance metal 

dissolution and precipitate iron oxides (Benner, Blowes, et al., 2002; Nordstrom et al., 2000).  

The thermodynamic and physiochemical properties of metal oxides vary as a function of 

particle size; the stability and reactivity of nanoparticles control phase transitions, dissolution 

processes, and growth mechanisms of a mineral (Bian et al., 2011; French et al., 2009; Navrotsky 

et al., 2008; Raiswell, 2011). As particle size decreases, mineral stability declines due to increases 

in positive surface energy and total free energy (Bian et al., 2011; Gilbert et al., 2003; Navrotsky 

et al., 2008). Below a certain particle size, differences in surface energies allow mineral 

polymorphs to form preferentially over phases more stable in bulk material (Gilbert et al., 2003; 

Zhang et al., 2003). Solution temperature and pH during synthesis impact particle size and the 

formation of mineral phases (Isley & Penn, 2008). Ligand sorption, pH, and ionic strength promote 

dissolution and aggregation of nanoparticles and influence growth mechanisms like Ostwald 
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ripening and oriented attachment (Bian et al., 2011; Chun et al., 2010; French et al., 2009; Gilbert 

et al., 2003; Penn & Banfield, 1998). Particle growth by Ostwald ripening involves diffusion of 

small particles to larger particles, while particles in oriented attachment aggregate along specific 

surfaces (Penn, 2004; Penn & Banfield, 1998). These processes can cause size-dependent phase 

changes. Gilbert et al. (2006) found that aggregation and growth of nanoscale TiO2 beyond a 

critical particle size initiated the transition of anatase to rutile (Gilbert et al., 2006). Ligand 

adsorption influences particle dissolution and aggregation and can induce structural and phase 

changes without significantly changing particle size (Bian et al., 2011; Keller et al., 2010; Zhang 

et al., 2003). This process enhances crystallinity of a mineral by neutralizing charges on 

nanoparticle surfaces (Gilbert et al., 2006). Adsorption of water improved mineral stability and 

allowed for the formation of more crystalline phases of TiO2 and ZnS nanoparticles (Gilbert et al., 

2003, 2006; Goodell et al., 2008; Zhang et al., 2003). The scale effects discussed above have 

implications on the reactivity of nanoparticles. 

Recent studies have shown that iron (oxyhydr)oxide nanoparticles are prevalent in the 

environment (Hochella et al., 2008; Plathe et al., 2013) and form by several pathways, including 

the oxidation of ferrous minerals or Fe(II) in porewaters and freshwaters and by transformation of 

existing nanoparticles (Raiswell, 2011). Ferrihydrite is among the most reactive iron 

(oxyhydr)oxides due to its large surface area (Michel, Ehm, Antao, et al., 2007; Raiswell, 2011). 

The kinetically preferred ferrihydrite eventually transforms to goethite and hematite, the most 

thermodynamically stable iron (oxyhydr)oxides under ambient conditions (Raiswell, 2011). 

Increasing Fe(II) concentration reduces the rate of abiotic and biotic ferrihydrite reduction and 

results in the precipitation of secondary minerals like goethite, magnetite, and lepidocrocite 

(Benner, Hansel, et al., 2002; Hansel et al., 2003, 2004). Reaction with Fe(II) is one of several 
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pathways by which ferrihydrite transitions to goethite, and the pH dependence of ferrihydrite 

solubility affects its rate of transformation (Yee et al., 2006). The ferrihydrite to hematite transition 

is a slower process that occurs by dehydration and in the absence of Fe(II) (Schwertmann & Murad, 

1983; Yee et al., 2006). Mazeina and Navrotsky (2007) found that hematite is metastable relative 

to goethite at small particle sizes due to a higher surface energy. Variations in temperature and 

surface area changes the enthalpy of water adsorption and affects the strength of water bonding to 

hematite (Mazeina & Navrotsky, 2007). In the absence of hydroxyls, hematite nanoparticles 

decline in stability and undergo a phase transition to maghemite (Chernyshova et al., 2007). 

Goethite and hematite nanoparticles become unstable as suspension pH approaches the point of 

zero charge (Xu et al., 2015). Particles have the greatest potential to aggregate by collision at this 

pH due to weak electrostatic repulsion forces (Xu et al., 2015). Dissolution rates for hematite 

nanoparticles are higher for smaller particles regardless of pH or dissolution mechanism due to 

their larger surface areas (Lanzl et al., 2012). 

Size-dependent changes in the properties of nanoparticles affect iron (oxyhydr)oxide 

reactivity and capacity to sequester metals. Goethite can incorporate divalent metals in its crystal 

structure depending on the similarity of their ionic radii relative to Fe(III) (Cooper et al., 2006; 

Hansel et al., 2005). Iron (oxyhydr)oxide nanoparticles strongly sorb Cu, As, Zn, and Pb, and 

adsorption increases with decreasing particle size (Barton et al., 2011; Dickson et al., 2017; Plathe 

et al., 2013). Other environmental conditions such as pH, temperature, and competitive species 

influence the sorption capacity of iron (oxyhydroxide) nanoparticles. For example, arsenic 

desorption caused by microbial sulfate reduction of arsenic-bearing ferrihydrite produces various 

Fe, As, and S species based on pH, iron and sulfate concentrations, and As loading (Burton et al., 

2011; Kocar et al., 2010; Saalfield & Bostick, 2009). Surface area and S/Fe ratios affect reductive 
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dissolution rates for nanoparticle iron (oxyhydr)oxides and for iron sulfide precipitation caused by 

sulfidation (Kumar et al., 2018). Similar solubility trends have been observed for the sulfidation 

of zinc oxide and copper oxide nanoparticles (Ma et al., 2013, 2014).  

The studies mentioned previously do not examine the sulfidation of iron (oxyhydr)oxide 

nanoparticles under continuous flow for minerals aside from ferrihydrite. This study investigates 

the role of particle size on the reductive dissolution of iron oxide nanoparticles of two different 

sizes by bisulfide, a product of microbial sulfate reduction and a strong reductant, under dynamic 

flow conditions. Hematite is the most stable iron (oxyhydr)oxide bulk material under ambient 

conditions and exhibits large differences in its physiochemical and thermodynamic properties at 

the nanoscale. Column experiments consist of nanoparticle hematite-coated packed sands exposed 

to varying concentrations of bisulfide under anoxic, advective flow conditions. Analyses include 

quantification of dissolved iron and bisulfide concentrations in the column effluent. An integrated 

kinetic model is developed based on effluent data to determine reaction mechanism and rate 

constants as a function of particle size. Understanding the role of size on the reactivity and stability 

of iron (oxyhydr)oxide minerals is important to consider in the fate and transport of metals and 

metalloids in groundwater where nanoparticles are present.
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CHAPTER 2  

MATERIALS AND METHODS 

 

 

 

2.1 Hematite Nanoparticle Synthesis  

 Nanoparticle hematite suspensions were synthesized in the laboratory by forced hydrolysis. 

Large hematite nanoparticles with particle diameters ranging from 30 to 50 nm were prepared 

using Method 3 in Schwertmann and Cornell (2001). The synthesis involved heating 1L of 0.001 

M HCl overnight at 98°C, adding approximately 5.405 g of FeCl3•6H2O (VWR) to the HCl the 

following day, and returning the solution to the oven for another 10 days of heating at 98°C 

(Schwertmann & Cornell, 2001). The small hematite nanoparticles ranging in diameter from 7 to 

10 nm were prepared according to a method amended by Madden et al. (2006) from Schwertmann 

and Cornell (2001). The method consisted of dripping 60 mL of a 1 M FeCl3 (Spectrum Chemical 

Mfg. Corp.) solution with a peristaltic pump (VWR Variable Flow Mini-Pump) into 750 mL of 

near boiling 18.2 MΩ distilled, deionized water (DDI) stirred with a magnetic stirrer on a hot plate 

(Madden et al., 2006). Following the initial steps in each method, both suspensions were left to 

cool overnight and washed by dialysis. Each suspension was transferred to dialysis tubing 

(Spectra/Por 7 Dialysis Membrane, Pre-treated RC Tubing, MWCO: 8 kD) and submerged in DDI 

water. The water bath was changed twice daily until the conductivity of the water stabilized and 
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nearly equaled the conductivity of DDI water. Suspensions were transferred from dialysis tubing 

and stored in high-density polyethylene (HDPE) bottles. A portion of each hematite nanoparticle 

suspension was frozen and freeze-dried for characterization. Dried samples were characterized by 

Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Brunauer-

Emmett-Teller (BET) surface area analysis, Thermogravimetric Analysis (TGA)/Derivative 

Thermogravimetry (DTG), and Differential Scanning Calorimetry (DSC).  

 Hematite-coated sands were prepared by mixing each suspension with 1 kg sand (Acros 

sea sand, washed) and were oven-dried between 50°C and 80°C. Each mixture was passed through 

the no. 40 (0.420 mm) and no. 200 (0.074 mm) sieves to determine if hematite coating onto the 

sand was effective. Sand grains were estimated to have sizes within these sieves, while hematite 

nanoparticles were expected to pass through the smallest sieve and into the catch pan. Coated sand 

in the catch pan was removed from the bulk sample.  

2.2. Experiment Solutions 

 Each column was eluted with a conditioning solution and a reaction solution. Individual 

stock solutions of bisulfide and sodium were prepared by dissolving Na2S•9H2O (Acros) and 

NaClO4•H2O (EM Science) in DDI water. Conditioning solution was composed of 0.023 mM Rb+ 

(Elemental Scientific Rb in 1% HNO3, 1000 µg/mL) and 10 mM Na+. Rb+ was used to examine 

non-reactive breakthrough from each column, while Na+ was used to maintain ionic strength in the 

solution. Reaction solution contained bisulfide and was prepared by diluting a sodium sulfide stock 

solution to concentrations ranging from 0.01 mM to 10 mM with the same concentrations of Rb 

and Na used in the conditioning solution. All solutions were prepared in an anaerobic chamber 

(Coy Laboratory Products, Vinyl Anaerobic Chamber) and adjusted to pH 8 ± 0.1 using 1M HCl 

and 0.1 NaOH solutions. DDI (18.2 MΩ) water was used in all solutions.  
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2.3. Advective Flow Experiments 

 Column studies consisted of flowing bisulfide solution up a borosilicate glass column 

(Kimble Kontes, 10 cm, I.D. 1 cm) packed with hematite-coated sands. Coated sands were packed 

with DDI water and eluted with conditioning solution for approximately 1 hour, or an exchange 

of 10 pore volumes. Reaction solution was transferred from the anaerobic chamber to a bottle 

connected to the peristaltic pump (Thermo Scientific FH100M Multichannel Pump). Bisulfide 

oxidation in the bottle was mitigated by flowing a maximum solution volume of 500 mL per run 

and by using an air lock to constantly purge the head space with a positive pressure of nitrogen. 

Conditioning and reaction solutions were passed upward into the packed column at a flow rate 

between 1.05 and 1.15 mL/min and collected at 4 mL intervals using a fraction collector (Spectrum 

CF-2 Fraction Collector). The tubes were subsampled or fully sacrificed to measure post reaction 

bisulfide and ferrous iron in solution. Dissolved bisulfide was quantified at 12 to 24 mL intervals, 

and the remaining samples were prepared elemental analysis for iron and rubidium by ICP-MS. 

Figure 1 shows the setup of the column experiments, and Table 1 lists the conditions of each 

column experiment. 

 Batch experiments were conducted prior to running these columns to determine if 

sulfidation of hematite nanoparticles would have contrasting effects as a function of particle size 

and bisulfide concentration. The method and results for this experiment are discussed in Appendix 

B.  
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Table 1. Summary of Column Experiments 

 

 

 

Figure 1. Setup of column experiments. The bisulfide solution bottle contained three ports: 

solution outlet, N2 inlet, and N2 outlet. Nitrogen flowed through the inlet to fill the head space of 

the bottle and mitigate sulfide oxidation. Gas was continuously pumped out through the nitrogen 

outlet and into a beaker filled with water. The peristaltic pump transferred bisulfide solution from 

the bottle and upwards into the column. Column effluent travels from the top of the column, 

through a drop counter, and into individual tubes in the fraction collector.  

Column  

Contents 

Bisulfide 

Concentration 

(mM) 

Volume 

Eluted 

(mL) 

Total 

time 

(hours) 

Average 

Flow Rate 

(mL/min) 

Initial pH Solution Matrix 

Sand (control) 1 500 6.92 1.10 8.22 

10 mM Na+, 

0.023 mM Rb+ 

(aq) 

Small 

Particles 

(coated sand) 

0.01 500 7.18 1.06 8.14 

1 500 6.68 1.14 7.85 

10 351 5.18 1.13 8.18 

Large 

Particles 

(coated sand) 

0.01 500 6.82 1.10 8.35 

1 500 7.02 1.08 7.69 

10 500 6.87 1.12 8.09 
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2.4. Analytical Methods 

2.4.1. Brunauer-Emmett-Teller (BET) Surface Area Analysis  

Specific surface area and particle size of the two, freeze-dried hematite suspensions were 

determined using a 7-point N2 adsorption/desorption isotherm collected on the Quantachrome 

Nova 2000e. Suspensions were weighed and outgassed (or degassed) overnight at approximately 

40ºC in pellet cells. The following day, samples were cooled, reweighed, and analyzed for surface 

area by N2 adsorption at 77.3 K. The nanoparticle diameter (dBET) of each suspension was 

calculated using Equation 1, which assumes a cubic particle shape and a hematite density of 5.24 

g/cm3 (Housaindokht & Nakhaei Pour, 2012; Nakhaei Pour et al., 2014).  

dBET=
6

ρA
× 1000 (1) 

In this equation, ρ is the density of hematite in g/cm3 and A is the surface area in m2/g.  

2.4.2. Thermogravimetric Analysis/Differential Scanning Calorimetry (TGA/DSC) 

Thermal analyses by TGA/DTG and DSC of hematite suspensions were examined for 

hydroxylation and phase changes using a Perkin Elmer STA 6000. Samples were heated from 30°C 

to 800°C at 10°C/min in the presence of nitrogen. Prior to the analysis of these suspensions, a 

thermogram of an aluminum oxide ceramic crucible was collected as a baseline and subtracted 

from the thermal data of each sample to remove the effects of heating the crucible. The residual 

weight percent of hematite at each temperature interval was calculated by 

wt % =
m

m0

×100 (2) 
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where m is the mass of the sample at a given temperature and m0 is the initial mass of the sample. 

DTG was determined by taking the derivative of Equation 1 with respect to temperature every 5°C 

and is given by  

d(wt%)

dT
=

(m2-m1) m0⁄

T2-T1

×100 (3) 

where T1 and T2 are temperature, and m2 and m1 are the masses recorded at T1 and T2. A 5-point 

moving average was applied to these results to remove noise and smooth the curve. 

 Peak area analysis of nanoparticle suspension DSC results were used to determine 

enthalpies of dehydroxylation (ΔHrxn). The analyses consisted of finding the area under the curve 

for peaks in the 150 to 400 °C range by Riemann sum. A baseline was established by determining 

a slope between two end points of each peak and was used in to determine peak height in the 

calculations. Hess’s Law was used to compare literature values by calculating the ΔHrxn of 

dehydroxylation for various iron hydroxides from enthalpies of formation (ΔHf). 

2.4.3. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) 

A Perkin Elmer Frontier FTIR Spectrometer with a GladiATR attachment fitted with a 

diamond ATR crystal was used to collect FTIR spectra to characterize hematite nanoparticles from 

the column experiments. Hematite nanoparticle suspensions were freeze-dried for analysis while 

hematite-coated sands were air dried in the oven. Each sample spectrum consisted of a background 

scan followed by four scans over the range of 4000 cm-1 to 250 cm-1 using a deuterated triglycine 

sulfate (DTGS) detector.  

2.4.4. Ultraviolet-Visible Spectroscopy (UV-Vis) 

A Thermo Scientific Evolution 201 ultraviolet-visible (UV-Vis) spectrometer with a dual 

silicon photodiode detector was used to measure bisulfide in the column effluent according to the 

methylene blue method by developed by Cline (1969). Two reagents were prepared to measure 
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bisulfide concentrations in the ranges of 3 to 40 µM and 40 to 250 µM by dissolving N,N-dimethyl-

p-phenylenediamine sulfate (Alfa Aesar, 98%) and ferric chloride hexahydrate (VWR) in 500 mL 

of 50% (v/v) hydrochloric acid (Trace Metal Grade, Fisher Chemical). Standards corresponding 

to these reagent ranges were diluted from the Na2S•9H2O stock solution mentioned in Section 2.2. 

Both bisulfide standards and diamine reagents were prepared in the anaerobic chamber, and 

reagents were then stored in amber bottles and refrigerated. Prior to analysis, reagent was added 

to each sample and standards on the benchtop. The lower concentration reagent was used on the 

samples eluted with 0.1 mM bisulfide or collected at the beginning of the higher bisulfide 

concentration experiments, and the higher concentration reagent was added to the remainder of the 

samples. In some cases, samples were diluted with DDI water in order to be quantified with the 

available standards. Samples were transferred to cuvettes following the addition of the reagent and 

analyzed by UV-Vis. The absorbance at approximately 670 nm was used to calculate the 

concentration of bisulfide using  

C∑S=F (A-Ab) (4) 

where C∑S is the hydrogen sulfide concentration, F is slope calculated from the calibration curve, 

A is the absorbance of the sample, and Ab is the absorbance of a blank.  

2.4.5. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) 

A Thermo Scientific X-Series 2 inductively coupled plasma mass spectrometer (ICP-MS) 

was used in collision cell technology with kinetic energy discrimination (CCT-KED) mode to 

measure the concentration of dissolved iron and rubidium in samples. Standards for the calibration 

curve were prepared for a range of 2 to 60 µg/L from an iron stock solution (prepared from Ultra 

Scientific 1000 ug/mL Fe in 2% HNO3) and 2 to 50 µg/L from a rubidium stock (prepared from 



 

25 

 

Elemental Scientific 1000 ug/mL Rb in 1% HNO3). Blanks of 5% HNO3 were analyzed every 12 

samples to monitor cross contamination throughout the run.  

Effluent samples were transferred into 1 mL microcentrifuge tubes and centrifuged (Fisher 

Scientific accuSpin Micro 17) at 13.3 rpm x 1000 for 10 minutes to remove any solids from 

washout or precipitation in the samples. The solution from these tubes was diluted with 5% trace 

metal nitric acid. Second and third dilutions were done to measure rubidium and iron in samples 

beyond the calibrant range when analyzing first dilutions. All nitric acid solutions were prepared 

using DDI (18.2MΩ) water.  

2.4.6. Integrated Kinetic Rate Model  

A model estimating dissolution-precipitation kinetics was developed based on the 

elemental analysis of iron by ICP-MS. Equations 5 through 8 are the dissolution and precipitation 

reactions used in the model and are based on studies by Poulton et al. (2004) and Rickard (1995).  

Fe2O3 (s) + HS
- + 5H

+
 → 2Fe2+ + S0 + 3H2O (5) 

Fe2+ + HS
-
 → FeS (s) + H+ (6) 

Fe2+ + 2HS
-
 → Fe(HS)

2
 (s) (7) 

Fe(HS)
2
 (s) → FeS (s) + H2S (8) 

 

The rate of dissolution, RFe, is given by Equation 9, in which kFe is the rate constant for iron 

dissolution, A0 is the initial surface area in m2/L, [HS-] is the bisulfide concentration, and n1 is the 

reaction order (Poulton et al. 2004). Equation 10 is the modified RFeS from Rickard (1995), where 

kFeS is the rate constant for FeS precipitation, [Fe] is the concentration of ferrous iron in solution, 

and n2 is the reaction order. Rickard (1995) describes FeS precipitation as a two-step process given 

by Equations 7 and 8, but a combination of reactions between Equations 6 and 8 is likely to produce 
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FeS in the column. Based on these equations, n2 is expected to be between 1 and 2. Using the 

measured pH values of influent solutions listed in Table 1, the dominant sulfur species is bisulfide 

in these experiments.   

RFe= kFeA[HS
-
]
0

n1 (9) 

RFeS= kFeS[Fe][H2S]
0

n2 
(10) 

The net reaction for dissolved iron in the effluent at time t is given by Equation 11, which is the 

difference between total iron dissolved (Equation 9) and the iron removed from solution through 

FeS precipitation (Equation 10). In addition to these reaction rates, the rate of surface area loss due 

to FeS precipitation is given by Equation 11, a modified equation from Rickard (1995) in which 

kA is the rate constant for surface area loss. This model assumes first order degradation of surface 

area due to passivation from precipitation based on physical observations of columns and iron data 

from column effluent.  

RA = 
dA

dt
 = -kAA0[HS

-
]
0

n2 (11) 

A=A0e-kA[HS-]
0

n2t (12) 

Integration of Equation 11 results in Equation 12, which was substituted into Equation 13. Steps 

leading from Equation 13 from Equation 29 are shown below.  

RFe(net) = 
d[Fe]

dt
= kFeA[HS

-
]
0

n1-kFeS[Fe][HS
-]

0

n2 (13) 
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RFe(net) = 
d[Fe]

dt
= kFeA0e-kA[HS-]

0

n2 t[HS
-
]
0

n1-kFeS[Fe][HS
-]

0

n2 (14) 

Let,  

a = kFeA0[HS
-
]
0

n1 (15) 

b = kA[HS
-]

0

n2 (16) 

c = kFeS[HS
-]

0

n2 (17) 

Substitution of a, b, and c (Equations 15 through 17)  

d[Fe]

dt
= ae-bt - c[Fe] (18) 

d[Fe]

dt
+ c[Fe] = ae-bt (19) 

(e
ct

)
d[Fe]

dt
 + (ect)c[Fe]= (e

ct
)ae-bt (20) 

 cect= (ce
ct

)
'
 (21) 

(e
ct

)
d[Fe]

dt
- (ce

ct
)
'
[Fe] = ae(c-b)t (22) 

(e
ct

)
d[Fe]

dt
- (ce

ct
)
'
[Fe] = (e

ct
[Fe])

'
  (23) 

(e
ct

[Fe])
'
 = ae(𝑐-b)t (24) 

∫(e
ct

[Fe])
'
dt = ∫ae(c-b)t dt (25) 

ect[Fe] + C1= ∫ae(c-b)t dt (26) 



 

28 

 

[Fe]=
∫ae(c-b)t dt-C1

ect
 (27) 

[Fe]=
ae(c-b)t 

(c-b)ect
-
C1

ect
 (28) 

Substituting a, b, and c (Equations 15-17) back into Equation 28 yields 

[Fe] = −
C1

ekFeS[HS-]
0

n2 t
+

kFeA0[HS
-]

0

n1

[HS
-]

0

n2(kFeS-kA)e
kA[HS-]

0

n2t
 (29) 

[Fe] = −
C1

ekFeS[HS-]
0

n2t
+

kFeA0[HS
-]

0

n1-n2

(kFeS-kA)e
kA[HS-]

0

n2 t
 (30) 

C1
*
=

kFeA0[H2S]
0

n1-n2

kFeS-kA

 (31) 

Equation 30 is used in the model to calculate rate constants by finding the minimum value of the 

sum of squares based on the variance between collected data and model results. C1 is an integration 

constant, and C1* in Equation 31 is the expected value for the constant C1 when t=0 and is used as 

a benchmark to constrain C1 and the model. 
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CHAPTER 3  

RESULTS 

 

 

 

3.1. Characterization of Hematite Nanoparticles 

3.1.1 Particle Size by BET Surface Area Analysis  

 BET surface area analysis shows an order of magnitude difference between small and large 

particle diameters. The calculated diameters of both particles using Equation 1 are listed in Table 

2. Small particles have an approximate diameter of 7.1 nm, and the large particles are 

approximately 104 nm in diameter. The small particle diameter is in close agreement with the 7.3 

nm diameter measured by Madden et al. (2006), and TEM results in their study show that the 

particle shape from this synthesis was pseudo-hexagonal rather than spherical (Madden et al., 

2006). Schwertmann and Cornell (2000) reported a particle diameter of 30 to 50 nm for the large 

particle synthesis, which is much lower than the particle size calculated here through BET results. 

The order of magnitude difference in particle diameter still confirms that the synthesis methods 

produce hematite nanoparticles of significantly different sizes. 
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Table 2. Approximate particle diameter calculated from BET surface area 

Particle Size ABET (m
2/g) dBET (nm) 

Small 161.089 7.1 

Large 10.979 104 

3.1.2. Thermal Analysis by TGA/DSC/DTG 

Thermal analysis of hematite nanoparticles showed weight loss and energetic changes 

caused by water loss. Previous studies have reported that adsorbed, or surface, water is released 

below 150°C, while structural water leaves at temperatures ranging from 150°C to 400°C 

(Darezereshki, 2011; Gualtieri & Venturelli, 1999; Michel, Ehm, Liu, et al., 2007; Yao & Millero, 

1996).  Figure 2 shows the residual weight percent of each hematite sample over the temperature 

range, while percentages and proportions attributed to surface and structural water in each sample 

are given in Table 3. The percentage mass loss was significantly larger for small particles than for 

large particles. The total amount of water released between 30°C and 400°C was 16.86% for small 

particles and 2.05% for large particles. The weight percent lost from the removal of surface water 

was 9.25% for small particles and 0.84% for large particles. The weight percent attributed to 

structural water was 7.61% for small particles and 1.21% for large particles. The percentages of 

surface and structural water were higher for the small particles and make up a larger portion of 

their composition. Using BET surface areas from Table 2, structural hydration at the surface was 

47 mg/m2 for small particles and 110 mg/m2 for large particles. Despite having a lower percent 

weight loss in TGA results, large particles have more structural water at the surface relative to 

small particles when normalized to available surface area. These results indicate that the particles 

exhibit large differences in water content due to particle size and specific surface area.  
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Figure 2. TGA thermogram for small and large hematite nanoparticles. TGA thermogram for 

small (blue) and large (orange) hematite nanoparticles heated from 30°C to 400°C. Weight loss 

below 150°C is attributed to adsorbed water, while weight loss between 150°C and 400°C is 

associated with structural water. 

 

 

Table 3. Weight percent attributed to adsorbed water and hydroxyl groups as hematite 

nanoparticles are heated up to 400°C 

Particle 

Size 

Total Percent  

Weight loss (wt.%) 

Percent Weight Loss from 

Surface Water (wt.%) 

Percent Weight Loss from 

Hydroxyl Groups (wt.%) 

Structural 

Hydration 

(mg/m2) 30-400 ˚C 30-150 ˚C 150-400 ˚C 

Small 16.86 9.25 7.61 47 

Large 2.05 0.84 1.21 110 
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Figure 3. Smoothed DTG thermograms for large (top) and small (bottom) particles heated from 

30°C to 400°C. Endothermic peaks generally correspond to regions associated with adsorbed water 

surface hydroxylation observed in TGA (Figure 2) and DSC (Figure 4) results. Development of 

smoothed DTG plots consisted of subsampling from the results by 5°C and was followed by a 5-

point boxcar smoothing.  

DTG and DSC thermograms further exhibit peaks in the 30°C to 400°C region associated 

with the release of surface and structural water. DTG for small particles in Figure 3 show a large 

well containing two endothermic peaks at approximately 68°C and 124°C and a low intensity peak 

between 250°C and 300°C. Endothermic peaks between 250°C and 350°C are present for large 

particles, but the size and intensity of these peaks were much smaller than those observed for small 

particles. The peaks at approximately 58°C, 205°C, and 215°C could be insignificant due to their 

small size and low intensity. Noise in the DTG plot for large particles is greater due to the order 
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of magnitude difference in the derivative values relative to the small particles. The DSC plot in 

Figure 4 shows an endothermic peak at approximately 250°C for both particle sizes and a second 

endothermic peak at approximately 314°C for small particles only. These peaks occur in the range 

known for the removal of hydroxides and is typically associated with the dehydration of goethite 

(Darezereshki, 2011; Gualtieri & Venturelli, 1999; Yao & Millero, 1996). DTG and DSC results 

are consistent with weight loss measurements from TGA and indicate the presence of surface and 

structural water in the designated ranges.  

Further analysis of DSC and DTG thermograms and comparison of these data to TGA 

results are useful in understanding size-dependent differences caused by dehydration of structural 

water. Enthalpies of reaction in the 150 to 400°C for the dehydration of hematite nanoparticles, or 

ΔHrxn, are 53.8 KJ/mol for small particles and 103.2 KJ/mol for large particles. Enthalpies of 

reaction for nanoparticles were compared to literature values for iron hydroxides by calculating 

ΔHrxn from Hess’s Law. Table 4 shows that the ΔHrxn values calculated for the hematite 

suspensions, where small particles are in close agreement with goethite (53.4 KJ/mol) and large 

particles are close to ferrihydrite (109 KJ/mol) dehydroxylation. However, these enthalpies may 

differ because the literature values were measured at STP, while DSC data reported in this study 

were measured over a range of temperatures. Also, the formula for ferrihydrite used in the 

calculation refers to often used hydrous ferric oxide rather than the formula given by Michel 

(2007). These data further indicate that the hematite nanoparticles have an iron hydroxide character 

observed in TGA results.  
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Figure 4. DSC thermograms for small and large particles heated from 150°C to 400°C. Peaks in 

this region are a result of the removal of structural water consistent with dehydration. 

 

Table 4. Calculated ΔHrxn (KJ/mol) of iron (oxyhydr)oxides 

 

 ΔHf 

(KJ/mol) 
Reaction 

ΔHrxn* 

(KJ/mol) 
Source 

Small Particles  Fe2O(3-x/2)(OH)x = Fe2O3+xH2O 53.8  

Large Particles  Fe2O(3-x/2)(OH)x = Fe2O3+xH2O 103.2  

Literature Values 

Goethite -560.7 2FeOOH = Fe2O3 + H2O 53.4 (Majzlan et al., 2003) 

Lepidocrocite -7.19.4 2FeOOH = Fe2O3 + H2O 30.8 (Majzlan et al., 2003) 

Akageneite -554.7 2FeOOH = Fe2O3 + H2O 41.4 (Navrotsky et al., 2008) 

Ferrihydrite -830.3 2Fe(OH)3 = Fe2O3 + 3H2O 109 (Navrotsky et al., 2008) 

*Values used for hematite and water in the calculations: ΔHf (Fe2O3) = -826.2 KJ/mol and ΔHf 

(H2O vapor) = -241.8 KJ/mol. Values are from USGS Bulletin 2131 (1995). 
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3.1.3. ATR-FTIR 

FTIR spectra consist of bands associated with Fe-O and O-H bonds for hematite 

nanoparticles. Figures 5 and 6 are FTIR spectra of small and large particles for the ranges of 800 

cm-1 to 300 cm-1 and 1800 cm-1 to 800 cm-1, respectively. Table 5 lists the bands identified from 

these spectra and band assignments according to literature. The spectrum for large particles in 

Figure 5 exhibits two absorption peaks at approximately 441 cm-1 and 524 cm-1 that can be assigned 

to the stretching of Fe-O bonds (Chernyshova et al., 2007; El Afifi et al., 2016; Tadic et al., 2019). 

However, Fe-O bonds in small particles absorb energy in a diffusive manner, peaks are not 

discernible and cannot be assigned a band position. The large particle spectrum also has a band at 

909 cm-1 that corresponds to the Fe-O-H bending mode found in goethite (Ruan et al., 2001; Xiao 

et al., 2017; Zamiri et al., 2014). The frequency band at 1635 cm-1 in the small particle spectrum 

is assigned to the O-H bending mode for water and related to the presence of surface water (Apte 

et al., 2007; Darezereshki, 2011; Nasrazadani, 1997; Seehra et al., 2004). The low intensity bands 

at 1353 cm-1 and 1472 cm-1 could be assigned to bending modes for Fe-O-H and Fe-O observed in 

goethite and ferrihydrite IR spectra (Nasrazadani, 1997; Rout et al., 2012; Seehra et al., 2004). 

Spectra for both particles exhibit a broad, low intensity band between 3300 and 3350 cm-1, which 

is close to the O-H stretching mode caused by the adsorption of water (Darezereshki, 2011; Seehra 

et al., 2004; Walter et al., 2001). FTIR results further confirm the presence of adsorbed and 

structural water observed in thermal analysis. 

 

 

 

 

 

 

 

 



 

36 

 

Table 5. Assignment of absorption bands from FTIR spectra for hematite nanoparticles 

 

Absorption 

(cm-1) 
Functional Group 

Absorption Bands 

from literature  

(cm-1) 

Reference 

441 Fe-O stretching mode 460, 430 
(Chernyshova et al., 2007; 

Tadic et al., 2019) 

524 Fe-O stretching mode 537, 515 
(El Afifi et al., 2016; Tadic et 

al., 2019) 

909 Fe-O-H bending mode 890, 900 
(Ruan et al., 2001; Xiao et al., 

2017; Zamiri et al., 2014) 

1353 Fe-O-H bending mode 1365, 1389, 1392 
(Nasrazadani, 1997; Rout et 

al., 2012; Seehra et al., 2004) 

1472 Fe-O bending mode 1493, 1572 
(Rout et al., 2012; Seehra et 

al., 2004) 

1635 O-H bending mode 1630, 1637 
(Apte et al., 2007; 

Darezereshki, 2011) 

3315 O-H stretching mode  3423, 3400, 3440 
(Darezereshki, 2011; Seehra et 

al., 2004; Walter et al., 2001) 

3354 O-H stretching mode 3423, 3400, 3440 
(Darezereshki, 2011; Seehra et 

al., 2004; Walter et al., 2001) 
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Figure 5. FTIR spectra for small (blue) and large (orange) hematite nanoparticles from 800 cm-1 

to 300 cm-1. Absorption bands in this region correspond to Fe-O stretching modes for iron oxides. 

 

 

 

 

 

 

 

 

 

 

 
 

Fe-O stretching modes 
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Figure 6. FTIR spectra for small (blue) and large (orange) hematite nanoparticles from 1800 cm-

1 to 800 cm-1. Absorption bands in this region are associated with structural water or Fe-OH bonds 

characteristic of iron hydroxides.  

 

3.2. Column Experiments  

3.2.1 ICP-MS Results  

 ICP-MS iron data demonstrate differences in ferrous iron concentrations, a result of 

reductive dissolution of hematite nanoparticles, in column effluent across particle size and 

bisulfide concentrations. In all experiments, breakthrough of ferrous iron in the effluent occurred 

within 20 minutes of reaction. Figures 7 and 8 demonstrate release of ferrous iron concentrations 

in column effluent over time. Small particles with 0.1 mM bisulfide (Figure 7A) showed maximum 

dissolved iron of approximately 0.3 µM in solution within the first 12 minutes of reaction and 

declined to baseline levels of 0.1 µM or less. Large particles exposed to 0.1 mM bisulfide (Figure 

8A) exhibited higher iron release throughout the experiment, with concentrations ranging from 0.6 

O-H  
bending mode Fe-O  

bending mode 

Fe-O-H  
bending mode 

Fe-O-H  
bending mode 
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and 0.8 µM between 100 and 150 minutes of reaction and declining to 0.2 µM by the end of the 

run.  

 Small particles eluted with 1 mM bisulfide resulted in two peaks. Figure 7C shows a peak 

occurring in the first 50 minutes of the experiment with maximum dissolved iron concentration of 

approximately 0.75 µM. A second peak occurs between 200 and 250 minutes with iron in the 

effluent reaching 1.5 µM. Large particles released iron into solution almost linearly at 1 mM 

bisulfide (Figure 8C), with maximum iron release of approximately 4 µM occurring by the end of 

the experiment. Similar to the 0.1 bisulfide experiments, large particles had higher ferrous iron 

concentrations in solution than measured in small particles.  

 Both particle sizes showed maximum iron release with the first 20 minutes of reaction 

when reacted with 10 mM bisulfide, and ferrous iron concentrations declined over the course of 

each reaction. Maximum iron concentrations were between 25 and 30 µM for small particles 

(Figure 7E) and between 5 and 10 µM for large particles (Figure 8E). Unlike the 0.1 and 1 µM 

bisulfide column runs, iron release is greater for small particles.  

 Results for non-reactive breakthrough of rubidium are presented in Appendix C for all 

columns.  

3.2.2 UV-Vis Spectroscopy Results 

 Analysis of bisulfide in the column effluent by UV-Vis showed that smaller particles had 

lower bisulfide in solution relative to large particles for all three concentrations used in the 

experiments. Effluent from reaction between small particles and 0.1 mM bisulfide (Figure 7B) 

contained little to no bisulfide throughout the run. Between 15 and 35 µM of bisulfide were 

measured in solution for large particles at 0.1 mM bisulfide (Figure 8B), and concentrations 

increased as the experiment progressed. Small particles contained between 200 and 400 µM 
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bisulfide in the effluent during reaction with 1 mM bisulfide (Figure 7D). Large particles exhibited 

a similar trend and concentration of bisulfide in the effluent (Figure 8D), but these samples had 

partially oxidized prior to reagent addition and analysis. Bisulfide concentrations in large particle 

columns are expected to be higher than small particles. Small particle effluent from the 10 mM 

bisulfide experiment (Figure 7F) contained between 2000 and 10000 µM bisulfide in the samples. 

Effluent concentrations did not exhibit the gradual increase in concentration observed at lower 

bisulfide concentrations. Nearly all effluent samples from the large particles reaction with 10 mM 

bisulfide contained approximately 10000 µM bisulfide (Figure 8F).  

3.2.3 Mineral Transformations 

Figures 9 and 10 show that mineral transformations occurred in the small particles eluted 

with 1 and 10 mM bisulfide and in large particles reacted with 10 mM bisulfide. Small particles 

reacted with 1 mM bisulfide partially transformed from yellow to black solids approximately 5 to 

10 cm from the inlet. The entire column of small particles eluted with 10 mM bisulfide transformed 

by 177 minutes or 200 mL of collected column effluent. Only large particles eluted with 10 mM 

bisulfide partially transformed between 2 and 10 cm from the inlet. The black precipitate forming 

in the column is likely to be disordered mackinawite (Rickard, 1995; Saalfield & Bostick, 2009; 

Wolthers et al., 2005).  
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Figure 7. Ferrous iron (left) and bisulfide (right) release in column effluent for small particles 

eluted with 0.1 mM (A and B), 1 mM (C and D), and 10 mM (E and F) bisulfide.  
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Figure 8. Ferrous iron (left) and bisulfide (right) release in column effluent for large particles 

eluted with 0.1 mM (A and B), 1 mM (C and D), and 10 mM (E and F) bisulfide. 
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CHAPTER 4  

DISCUSSION 

 

 

 

4.1. Hematite Nanoparticle Characterization  

Solid-phase characterization demonstrates differences in the physical properties of the 

nanoparticles. BET results show an order of magnitude difference in particle size between the two 

suspensions. Non-discernible or low intensity bands present in the IR spectra for small particles 

suggest low crystallinity or disorder caused by a decreasing particle size (Chernyshova et al., 

2007). DSC results for small particles have broad, less defined peaks than in large particles.  

The synthesis of solid-phase characterization results indicate that both hematite 

suspensions have some iron hydroxide character at the nanoparticle surface. O-H and Fe-O-H 

bands are present for both particles in FTIR-ATR spectra. Thermal data agree with these results, 

and based on enthalpies, variable intensities, and directionality of (endothermic) peaks observed 

in DSC, water loss between 150 and 400ºC is identified as dehydroxylation at the hematite 

nanoparticle surface typically found in goethite or ferrihydrite. Large particles have a lower weight 

percent of hydroxyls (2.05%) relative to small particles (16.86%). However, large particles have 

greater hydroxylation per surface area (110 mg/m2 versus 47 mg/m2). The enthalpies for 

dehydroxylation from DSC agree with these results, where ΔHrxn is 103.2 KJ/mol for large particles 
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and 53.8 KJ/mol for small particles. The combined results show that while small particles have 

very high specific surface area and hydroxyl content paired with low crystallinity similar to 

ferrihydrite, large particles have more hydroxyls on an area normalized basis. Chernyshova et al., 

(2007) found that hydroxyls provide stability to nanoparticles and inhibit phase transitions often 

observed with decreasing particle size and can be important beyond a critical particle size. These 

differences in particle surface character due to scale influence the reaction mechanism of 

sulfidation in advective flow experiments. 

4.2. Advective Flow Experiments 

Ferrous iron concentrations increase with bisulfide concentration, but iron concentrations 

and trends vary across all experiments (Figures 7 and 8). Ferrous iron release is highest in small 

particles reacting with 10 mM sulfide, and 1 mM and 0.1 mM bisulfide have lower concentrations 

of iron in the effluent relative to large particles. In the reaction between small particles and 1 mM 

bisulfide (Figure 7C), the first peak could be associated with reductive dissolution of Fe, and based 

on Figure 9, the second peak could coincide with the color change observed in the upper half of 

the column. Based on the black color of the solids and the column conditions, the hematite could 

have transformed to FeS such as disordered mackinawite (Rickard, 1995; Saalfield & Bostick, 

2009; Wolthers et al., 2005). The second peak has a higher concentration and duration, and images 

of the column reveal incomplete precipitation relative to the 10 mM column experiment. Large 

particles show increasing iron concentrations in the effluent and no color change over the course 

of the run (Figure 8C), suggesting that reductive dissolution of iron is the main process occurring 

in the column. Both particle sizes show a similar shape and trend in iron release over time. The 

small particle column changes color entirely, while solids transform partially in the large column. 

The 10 mM columns (Figures 7E and 8E) show the expected trend of reductive dissolution of 
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hematite releasing maximum concentrations of iron at the beginning of each experiment, followed 

by a decline as precipitation occurs. Iron concentrations are also lower for large particles at this 

concentration, which contrasts the results for the 0.1 and 1 mM experiments, but this could indicate 

that more of the reduced iron remained in the column through FeS precipitation. Due to the low 

concentrations of iron release, the 0.1 mM bisulfide reaction data for iron (Figure 7A and 8A) act 

as a baseline. 

4.3. Integrated Kinetic Rate Model 

 Modeling of the column experiments presented in the previous chapter produced fits across 

all ferrous iron plots versus time (Figures 7 and 8). Model results are listed in Table 6 and fits are 

shown in Figures 11 and 12. Nearly all of the parameters manipulated in the model are consistent 

across the various sulfide concentration experiments within small standard deviations. The 

exception is the kinetic constant for iron reductive dissolution. The kFe for both particle sizes differs 

by just less than two orders of magnitude, with the logkFe for large particles being -6.2±0.2 and -

7.9±0.5 for small particles. These values indicate that large particles have a faster dissolution rate. 

The greater hydroxylation per surface area (110 mg/m2) could be causing faster reaction rates, 

resulting in higher concentrations of ferrous iron in both the 0.1 mM and 1 mM bisulfide 

experiments (relative to small particles. Greater hydroxylation could represent a lower degree of 

hematite crystallinity and more iron hydroxide character. Iron hydroxides like goethite and 

ferrihydrite promote faster solubility than hematite.  

In comparison to log kFe values measured by Poulton et al. (2004), the rate constant falls 

between hydrous ferrous oxide (-5.1) and hematite (-6.4), while the small particles are closer to 

goethite (-7.1). The logkFeS values calculated by Rickard (1995) were between approximately 2 to 

7, but the values reported in this study fall slightly below this range. This difference could be due 
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to the variable iron concentration used in this study, whereas the Fe(II) concentration was constant 

in Rickard (1995). Based on the chemical reactions that may be occurring in the column 

experiments, the n2 value is closer to reaction order of 1 than 2. The n1 value from Poulton et al. 

(2004) is within range of value calculated by the authors in their experiments. The parameters 

stagnant across both particle sizes suggest that reaction order, bisulfide concentration, surface area, 

and FeS precipitation may not influence dissolution rates. Parameter values for each experiment 

are shown in the Appendix.  

Table 6. Average values of parameters generated through kinetic modeling. 

 

 
Small Particles Large Particles 

log kFe -7.9 ±0.5 -6.2 ±0.2 

log kFeS 1.5 ±0.2 1.4 ±0.2 

log kA -2.7 ±0.4 -2.5 ±0.5 

log [HS-]0 3.0 ±1.0 3.0 ±1.0 

n1 0.6 ±0.1 0.6 ±0.0 

n2 1.1 ±0.2 1.0 ±0.1 

log(-C1) -5.0 ±0.6 -5.2 ±0.2 

log(-C1*) -5.0 ±0.6 -5.1 ±0.2 

 

Despite these results, differences are observed between the experiment and model in 

Figures 11 and 12. The largest variation appears for both particles sizes with the 1 mM bisulfide. 

These deviations indicate that the model is not capturing a process or accounting for a variable 

influencing iron release. One factor that could affect these reactions is pH. While influent pH was 

fixed between 7.5 and 8.5 at the beginning of all experiments, it was not monitored over the course 

of the experiment. Monitoring both influent and effluent pH could determine whether pH is 
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conservative while interacting with the coated sand or if oxidation is occurring somewhere in the 

apparatus.  
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Figure 11. Model fits (blue) relative to experimental data for ferrous iron (orange) in effluent for 

small particles eluted with 0.1 mM (A), 1 mM (B), and 10 mM (C) bisulfide.  
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Figure 12. Model fits (blue) relative to experimental data for ferrous iron (orange) in effluent for 

larger particles eluted with 0.1 mM (A), 1 mM (B), and 10 mM (C) bisulfide.  
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Figure 13. The logarithm of the reaction rate for surface area loss (log RA) as a function of time.  

The modeling results discussed above only explain iron dissolution results and not the 

trends observed in FeS precipitation. Figure 13 shows the log RA for surface area loss as a function 

of time for all experiments. The plot shows that the 10 mM reactions have the sharpest decline in 

reactive surface area compared to the other columns, and the three experiments with FeS 

precipitation have the highest initial RA values and maintain the fastest precipitation rates over the 

majority of the reaction period. These results suggest that FeS precipitation is dependent on the 

initial bisulfide concentration and surface area. 

The advective flow experiments and model results deviate from the expectation that small 

particles are more reactive and likely to have faster dissolution and precipitation kinetics. 

However, this study has shown that surface area alone cannot be only factor influencing these 
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reactions, and the mechanism needs to be taken into account. Here, an optimization issue arises 

during surface mediated reactions for small particles. Reaction kinetics may differ from expected 

trends if the small particles are below a critical size and undergo significant changes in their 

properties.  
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CHAPTER 5  

CONCLUSION 

 

 

 

This study shows that particle size influences reductive dissolution and precipitation 

mechanisms during the sulfidation of hematite nanoparticles under advective flow conditions. 

Characterization of synthetic nanoparticles with approximate diameters of 7.1 nm and 104 

nm show that both suspensions had hydroxides present at the particle surface. The ΔHrxn values 

and ATR-FTIR results confirm the presence of hydroxyls at the surface of these suspensions. 

Hydroxylation per surface area was higher for large particles even through small particles had a 

higher total hydroxide content. Hydroxylation appears to be an important factor in the reactivity 

of these particles.  

The model developed to estimate rate constants and reaction orders for the advective flow 

experiments shows that large particles have faster reaction rates than small particles. The greater 

hydroxylation per surface area appears to influence dissolution rate while the remainder of the 

parameters manipulated in the model do not change significantly across particle size. However, 

departures in iron release between the model and experiment results indicate that the model does 

not account for certain variables or processes occurring in the columns. The graphical 
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representation of RA versus time showed that a combination of initial surface area and bisulfide 

concentration cause surface passivation and FeS precipitation.  

Examining the role of particle size on iron-sulfur dynamics through a pure end-member 

experiment conducted in this study could advance knowledge of iron (oxyhydr)oxide nanoparticle 

reactivity in the environment. Understanding the surface area effects of these particles could play 

a role in the fate of trace metals and metalloids such as arsenic or lead in groundwater that pose a 

public health risk (Hochella et al., 2008). Whether these minerals are naturally occurring or 

engineered for use in permeable reactive barriers, the properties of iron (oxyhydr)oxide 

nanoparticles are important to consider in the sequestration of contaminants (Plathe et al., 2013).   

Nanoparticle physiochemical properties such as sulfidation can be predicted if fundamental 

studies provide an understanding of particle size controls on surface reactivity. Specifically, the 

size-dependent kinetics of iron oxide sulfidation could be predictable through a model of type 

developed in this study. Further, surface passivation due to FeS precipitation is modelled as a 

function of initial reactive surface area, typically a function of size. These fundamental results 

have wide-ranging implications.  

In Fe-As-S systems in South Asia where elevated arsenic concentrations in groundwater 

are a major concern, accurate prediction of iron (oxyhydr)oxide reactivity could aid in providing 

safe drinking water for the population. In engineered remediation solutions such as permeable 

reactive barriers and in-situ precipitation strategies through injection, the model derived here from 

the advective flow experiments could better determine the efficacy of engineered iron oxide 

nanoparticles in removing metals and metalloids like arsenic from water. Surface area and particle 

size are important to consider when developing conclusions about natural systems, which are more 

complex relative to this study. 
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Appendix A. Nanoparticle Suspension Characterization
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Appendix B. Batch Experiments 

 Batch experiments show a relationship between bisulfide concentration and particle size 

through elemental analysis and physical changes to the hematite nanoparticles during reaction. 

Figures 7A and 7B demonstrate that suspension color in the tubes of coated sands for small and 

large particles darken as bisulfide concentration increases. Only reaction between the small 

particle-coated sand and 32 mM bisulfide produced a black precipitate indicative of iron sulfide 

formation. This physical change was not observed for large particles reacted with 32 mM bisulfide 

and suggests that sulfidation of hematite nanoparticles and precipitation of iron sulfide is size-

dependent. Table 4 shows that the increase in reduced iron concentrations with increasing bisulfide 

concentration is consistent with physical observations except for the reaction between large 

particles and 32 mM bisulfide. Bisulfide concentrations of 0.31 mM and above produced higher 

iron concentrations for smaller particles. Further experimentation is necessary to determine if iron 

release is greater for large particles than small particles at lower bisulfide concentrations and if 

iron concentrations are consistently lower for large particles reacted with 32 mM bisulfide. ICP-

MS results for this experiment were quantifiable except for the reaction between small particles 

and 32 mM bisulfide, where raw counts were beyond the calibrant range. Overall, the physical 

changes and reduced iron concentration in each experiment indicate that hematite reactivity is 

greater for small particles with increasing bisulfide concentration.  
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Figure B1. Physical changes resulting from reaction between bisulfide ranging in concentration 

from 0.0032 mM to 32 mM and nanoparticle hematite-coated sands for small (A) and large (B) 

particles. 

Table B1. Ferrous iron concentrations from sulfidation of hematite nanoparticles at varying 

bisulfide concentrations in batch reaction. 

Bisulfide concentration (mM) 
 

Ferrous iron concentration (mM) 

Small Particles  Large Particles 

0.0032 0.00020 0.00052 

0.032 0.00070 0.0012 

0.32 0.043 0.0038 

3.2 0.072 0.020 

32 0.18 0.013 
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Appendix C. Rubidium in Effluent from Column Experiments 

 

Figure C1. Rb+ elution across 0.1 mM (A and B), 1 mM (C and D), and 10 mM (E and F). 

Concentrations briefly decline in the first 20 minutes of reaction with bisulfide solution but achieve 

near constant values that are significantly higher than the ferrous iron concentrations in the 

effluent.  
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Appendix D. Integrated Kinetic Rate Model Column Experiment Results 

Table D1. Values for parameters across all column experiments 

Parameters Small Particles Large Particles 

Bisulfide 

concentration 
10 mM 1 mM 0.1 mM 10 mM 1 mM 0.1 mM 

log kFe -7.3 -8.0 -8.3 -6.0 -6.4 -6.3 

log kFeS 1.5 1.7 1.2 1.2 1.5 1.5 

log kA -2.3 -3.0 -2.8 -2.1 -3.0 -2.5 

log [HS-]0 4.0 3.0 2.0 4.0 3.0 2.0 

n1 0.6 0.6 0.5 0.6 0.6 0.6 

n2 1.4 1.0 1.0 1.1 1.0 1.0 

log(-C1) -4.4 -5.6 -4.9 -5.0 -5.3 -5.1 

log(-C1*) -4.4 -5.5 -4.9 -4.9 -5.3 -5.1 
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