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Measurement error and missing data are two common problems in wildlife population
surveys. These data are collected from the environment and may be missing or measured
with error when the observer’s ability to see the animal is obscured. Methods such as video
transects for estimating red snapper abundance and aerial surveys for estimating moose
population sizes are highly affected by these problems since total abundance will be under-
estimated if missing and mismeasured counts are ignored. We shall refer to this problem
as visibility bias; it occurs when the true counts are observed when visibility is high, par-
tially observed when visibility is low (mismeasured), and unobservable when visibility is lost
(missing). In addition, data from animal population surveys are often sparse since not all
sampled regions are inhabited by the species.

In this dissertation, we examine several multiple imputation techniques which can be
used to correct measurement error in sparse count data that are subject to visibility bias.
We consider several off-the-shelf imputation models such as normal, Poisson, zero inflated
Poisson imputation, and predictive mean matching. In addition, we develop and examine a
Hierarchical Bayes Zero Inflated Poisson imputation model which we refer to as HBZIP, and
a modified hot deck imputation approach. Each of the method’s performance is evaluated
in a simulation study for the purpose of estimating total abundance and habitat occupancy

rate.



We further assess the robustness of the HBZIP model against visibility model misspeci-
fication and incorporate Bayesian model averaging to reduce the impact of visibility model
uncertainty. For illustration, we implement the HBZIP imputation model on real data col-
lected from moose population surveys and compare its results to an existing weighting ad-
justment approach. Finally, we present another simulation study based on the moose data
to examine the model’s performance when the sampling design is complex and discuss future

directions of the research.
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Chapter 1

Introduction

Measurement error and missing data are two common problems in wildlife population
surveys. These data are collected from the environment and may be missing or measured
with error when the observer’s ability to see the animal is obscured. Methods such as video
transects for estimating red snapper abundance and aerial surveys for estimating moose pop-
ulation sizes are highly affected by these problems since abundance will be underestimated
if missing and mismeasured counts are ignored. We shall refer to this problem as visibility
bias; it occurs when the true counts are observed when visibility is high, partially observed
when visibility is low (mismeasured), and unobservable when visibility is lost (missing). In
addition, data from animal population surveys are often sparse since not all sampled regions
are inhabited by the species. In that case, the frequency of zeroes in the data exceeds its

expected frequency under the assumed count distribution (zero-inflated).

Methods such as measurement error correction and weighting adjustment have been used
to correct visibility bias. In a traditional measurement error correction framework, distri-
butional parameters of the error distribution can be estimated from a validation sample or
repeated measurements. These quantities are then used to adjust the estimators so that
they are approximately unbiased or consistent estimators of the population or model param-
eters under study. Therefore, the correction method will vary depending on the parameter
of interest. The analysts must select the appropriate correction method and cannot merely
implement the same method of analysis as the ones used for complete data. Weighting
adjustment, on the other hand, is a design-based adjustment method in which unobserved
counts are treated as a non-response problem. It is a routine procedure in survey sampling

to compensate for survey nonresponse. This method, however, does not allow adjustments



when the response rate is 0; hence, it is unable to adjust the unobserved data when visibility

is completely lost.

Another way to deal with mismeasured data is to discard them. Though imperfect,
mismeasured data still contain information about the true data; therefore, users may want
to avoid discarding data they know are mismeasured and preserve as much information as
possible.  When data are not just obscured but completely missing, a common approach
for preserving information is multiple imputation. Recently, it has also been proposed as
a remedy for measurement error (Cole et al., 2006; Reiter and Raghunathan, 2007). The
idea behind multiple imputation for mitigating measurement error is similar to the regular
imputation for missing data: the true counts are not observed; therefore, plausible values of

the true counts are generated stochastically from the assumed model.

Multiple imputation methods are available through most statistical computing software
and are relatively easy to implement. They perform well for a broad range of data types so
that new models for different types of data have not always been needed. Furthermore, they
are also not analysis specific, allowing users of the imputed data to perform the same type
of analysis used for complete data. Multiple imputation incorporates not only variability
from the sampling design but also the extra uncertainty from imputing the missing and
mismeasured data. Therefore, inference about population parameters can be improved by

properly adjusting the bias and incorporating the extra variability due to imperfect visibility.

In this study, we examine several multiple imputation techniques which can be used to
correct sparse count data that are subject to visibility bias. We consider several multiple
imputation models including off-the-shelf imputation methods such as normal, Poisson, zero
inflated Poisson imputation, and predictive mean matching. In addition, our specialized
imputation models Hierarchical Bayes Zero Inflated Poisson (HBZIP) and a modified hot
deck imputation are also presented and examined. We conduct a simulation study to evaluate
each method’s performance for estimating total abundance and habitat occupancy rate, and

its ability to preserve the logical constraints and structural zeros of the data. In addition,



we incorporate Bayesian model averaging into the HBZIP model to accommodate multiple
visibility models. This approach is then implemented on data from moose population surveys,

and its performance is further evaluated in a simulation study.

We provide additional background information about our study in the remainder of this
chapter. The rest of the paper is structured as follows: in Chapter 2, we provide and
discuss several imputation methods including off-the-shelf and our specialized imputation
methods, HBZIP and modified hot deck, which can be used to correct measurement error.
In Chapter 3, each method’s performance for various count data and visibility mechanism
scenarios are examined via a simulation study. In Chapter 4, we introduce Bayesian model
averaging and incorporate it into our HBZIP imputation model to overcome visibility model
uncertainty. We implement the method on real data, moose population surveys, and conduct
an additional simulation study based on the real data in Chapter 5. Finally, conclusion and

future direction of the research are presented in Chapter 6.

1.1. Motivating Example

Red snapper is one of the most valuable species in the Gulf of Mexico. Until recently, Red
Snapper had been classified as ‘overfished’ since the first stock assessment in 1988 (Goodyear,
1988). Regulations have been imposed to restrict fishing by implementing fishing quotas in
the commercial sector, and season length in the private recreational sector. Since 2007,
season length has decreased from 194 days to 2-3 days in 2016 (Stunz et al., 2017). However,
there was a widely held perception that the overall stock was more abundant than what the
stock assessment model suggested, and a more robust population estimate that covered the

diverse red snapper habitats was deemed necessary.

Consequently, researchers determined that multiple sampling strategies were necessary
to cover the diverse red snapper habitats. One of the sampling strategies is underwater

towed-camera surveys which produce video footage used to enumerate red snappers during



the transect. The camera was built on a frame, equipped with a laser device used to measure
the width of the visual field, and towed by a vessel along a straight path at a constant speed
above the seafloor. In addition, an acoustic sonar device is also available but only for some
of the transects. The sonar device can be used to detect fish and adjust the mismeasured
or missing counts from the footage when visibility is lost or degraded. During the transect,
the surveyors can also obtain the water turbidity level which is a measure of water’s clarity
or haziness. Therefore, information from these various instruments is valuable and can be

used to adjust the mismeasured or missing count data from the video footage.

For transects in which the additional information is unavailable, the analysts are faced
with two options: discard the mismeasured data to improve the accuracy of the estimate at
the expense of its precision or use the mismeasured data to improve the estimator’s precision
at the expense of its accuracy. Neither method is optimal since stakeholders of the data,
including biologists, conservationists, and policymakers, rely on both accuracy and preci-
sion of the estimates. Therefore, alternative methods are needed to preserve the accuracy
of these estimates without sacrificing too much of their precision. This can be achieved
by incorporating information from the various instruments within a multiple imputation

framework.

1.2. Visibility Mechanism and Observation Model

Let N be the true count of fish or local abundance in a transect. Depending on the water
clarity as measured by turbidity level (T'), the true count may or may not be observed. When
T is low, visibility is high, and the true count is observed. However, when 7' is moderate,
only some of the fish are visible, and only the mismeasured count is observed. Finally, when
T is high, no fish are visible, and the true count is missing. Hence, T is believed to be highly
correlated with the proportion of fish observed in the transect, called the visibility rate (P).
Therefore, it is intuitively reasonable to assume that 7" and P are monotonically related.

For the rest of the paper, we shall refer to the relationship between 7" and P, denoted by



P = g(T), as the visibility mechanism.

Based on the visibility mechanism above, there are multiple ways to model the relation-
ship between the observed and true count. First, the observed count (Y) can be assumed to
be the realization of a random process such that given N fish present, and visibility rate P,

Y for the i'h transect has the following expectation:

EYi|N;i, Pi]=N; x P;, P;€]0,1]. (1.1)

If N and P are also assumed to be random then the relationship between Y and (NN, P)
becomes hierarchical and the model can be written in two levels. An alternative model
defines the relationship between Y and N in terms of a multiplicative measurement error
model. Let P be a random variable between 0 and 1 which has a multiplicative effect on V.
The multiplicative measurement error model is:

Y;=N;x P, E[P] =, and Var[P] =o7;. (1.2)

Note that based on (1.1) and (1.2), the true count is observed when P; = 1, measured
with error when P; € [0,1], and missing when P; = 0. Finally, rather than multiplicative
measurement error, we may define U, the number of fish unobserved, as a random variable

with an additive effect as follows:
Y;=N;j+Ui, E[U]= pu; <0and Var[U;] =03, (1.3)

Here, both f,; and azﬂ- depend on the value of P;. That is, when P; =1, the true count is
observed such that fi,; = ag’i = 0. As P decreases, both p,; and afm- also increase in which
case the true count is mismeasured or missing. Therefore, the distribution of U; depends on

the value of P;.



Incomplete data consists of transects in which Y, T" and other covariates (X ) are observed
but N is missing or measured with error. The validation data are a subset of the transect
units in which Y, T, X and N are all observed, hence play the role of gold standard data.
Therefore, based on the availability of the variables, we can divide the transect data into
incomplete and validation data. Both datasets are used in the estimation; therefore, N must
be imputed in the incomplete data. Depending on the method, N can be imputed directly
from the conditional distribution of N|Y,P from (1.1). Alternatively, N|Y,P can also be
imputed using a standard imputation method such as normal or Poisson regression. It can
also be imputed using non-parametric imputation methods such as hot deck imputation and

predictive mean matching by first imputing P and U, and then inverting the expression in

(1.2) and (1.3) to obtain N =Y/P and N =Y + U respectively.

After imputation, both main and validated data are then used to estimate total abun-
dance 7 = "% | N;, and habitat occupancy rate p =% | T (N;>0]/ L, where L is the number
of transect units in the population. Let I be the number of sampled transects; the parameter

estimates are denoted by:

! Wiy,
P WN, and p— N0 (1.4)
i—1 =1 Wi

where W; =1/p, ; is the inverse probability of selection of the ith transect unit or the sampling

weight.

1.3. Missing Data as a Measurement Error Problem

Measurement error can be thought of as a missing data problem. In this framework,
the true count is believed to be missing rather than mismeasured when visibility is not
perfect. The observed count is then treated as an auxiliary variable which can be used in the
imputation model. Missing data can also be thought of as an extreme case of measurement

error. That is, depending on the visibility rate, true count can either be missing, measured



with error, or observed. For example, recall the measurement error model in (1.2) and (1.3).
Depending on P;, N; is considered missing when P; = 0, mismeasured when P; € (0,1), and
observed when P; = 1. Hence, it seems reasonable to treat P; as a scale measure which

indicates the quality of the observation.

Our initial approach to handle visibility bias was to use the visibility rate (F;) to decide
when the observed data should be retained, adjusted, or imputed. In particular, we thought
that it might be reasonable to find a lower cutpoint (7;) and upper cutpoint (7,) so that
the observed data are imputed when P; <, adjusted when v; < P; < 7,, and retained when
P; > v,. Note that P; is a latent variable since it is not directly observed, but rather modeled
as a function of turbidity. Hence, this idea led us to develop the HBZIP model presented
in Section 2.3, which adjusts the observed count within the model depending on P;. The
cutpoints can then be applied after the HBZIP model is implemented. However, our initial
simulations suggest that, for inference purposes, the HBZIP model alone performed better
than the HBZIP model with the cutpoints. Therefore, the HBZIP model is implemented in

this study without incorporating the cutpoints.

1.4. Literature Review

It is not difficult to see that when visibility bias is ignored, total abundance and occu-
pancy rate are underestimated since Y < N. Therefore, the observed count must be adjusted
appropriately to improve inference about 7 and p. In this section we discuss several meth-
ods which can be used to handle visibility biased problems including measurement error

correction methods, weighting adjustments, and hierarchical modeling.

1.4.1. Measurement Error Correction

Within the classical measurement error framework, the true data are measured with

errors which are typically assumed to have an additive or multiplicative effect on the true



data (Buonaccorsi, 2010). The errors are usually assumed to be homogeneous and follow
some distribution whose parameters can be estimated using validation data or replicated
measurements. The analyst can then use these quantities to adjust the estimator so that it
is approximately unbiased or consistent. In our application, however, measurement errors
are unlikely to be homogeneous because visibility and abundance vary among the transects.
Replicated measurements are also not likely to be available due to resource constraints and
because the true fish count will differ each time the transect is conducted. In addition, many
of the measurement error techniques were developed for continuous data or for estimating
regression parameters. Hence, not much is available for count data, especially when they are

sparse and non-homogeneous.

Alternatively, calibration techniques (Buonaccorsi, 2010) can also be used for adjusting
for measurement error. This method assumes a linear regression model Y|N = ,+ 51N
which can be inverted to predict the true count N = (Y — (,)/51. Estimates are then made
using the predicted values such that 7= Zi‘:l WZNZ and p= Zézl Wi][NpO]/ Zi‘:l W;. How-
ever, this method ignores the extra variability which comes from the parameter estimates.
Therefore, estimates of 7 and p may be unbiased, but their standard errors are too narrow

resulting in an undercoverage of the confidence interval.

1.4.2. Weighting/Sightability Adjustment

Weighting adjustment can also be used to correct visibility bias. Within this framework,
visibility bias can be viewed as a non-response problem which can be corrected with weighting
adjustment, also known as sightability adjustment (Steinhorst and Samuel, 1989). In their
application, Steinhorst and Samuel treat sighting probability as response probability, and
use standard results from survey sampling to estimate the population size of moose. In the
case of single-stage cluster sampling, they define [= number of land units (psu’s) sampled,
ni= number of groups in the k™ land unit, my(k) = number of animals in the i*" group

in the k' land unit, Py = sighting probability for the it" group in the k*" land unit,



and ps ) = probability selection of the k" land unit. Total abundance is estimated by
7= 22:1 1/ps i ity miky/ Pik)- The sighting probabilities can either be assumed known
from a prior experiment or modeled using logistic regression from validation or experimental

data.

Applying this method in our application requires that P; be defined as the probability
of observing a fish rather than the " group of fish, as in Steinhorst and Samuel (1989).
Define I = the number of transects in the population, n; = the true count of fish in the
ith transect, and y; = number of fish observed for the " transect. Therefore, the estimate
of total abundance in our application is 7 = Ele W;Y;/P;. However, this method requires
P; > 0; therefore, transects with completely lost visibility must be handled in advance. In
addition, the estimates can be very unstable when P; = 0, since 1/P; becomes highly sensitive

to a slight change in F;.

1.4.3. Hierarchical Model

The true count and observed data can be formulated as a two-level hierarchical model
which specifies the distribution of local abundance in the first level and the observed out-
come in the second level. Royle and Dorazio (2006) proposed a flexible hierarchical modeling
approach for estimating animal abundance and occurrence when the data are subject to im-
perfect detection. In their application, the count data are assumed to follow a Poisson
distribution with a parameter that can be modeled using Poisson regression. Given the
true count, the observed count follows a binomial distribution with a success or detection
probability that is modeled using logistic regression. Their study, however, focuses on im-
plementing the hierarchical model, not for imputation but for direct inference about the
population parameters. Therefore, estimates are obtained directly using samples from the

posterior distribution of the population parameter.

In Royle and Dorazio’s (2006) application, the count data are assumed to follow a Poisson

distribution; hence, it does not accommodate highly sparse data. Furthermore, they also as-



sume a logistic regression model for the visibility parameter. Therefore, the estimates would
be biased if the assumed visibility model is different than the actual visibility mechanism.
Regardless, their proposed method is natural because it reflects the hierarchical relationship
between the true and observed count. In addition, the method can be used not only to
make direct inference about the parameters but also to impute the missing and mismeasured

counts.

In this chapter, we presented the motivation behind our research, introduced visibility
bias as a measurement error problem and discussed existing methods which can be used to
correct visibility bias. Next, we introduce multiple imputation as a method to correct for
measurement error and present several imputation models including off-the-shelf and our

developed imputation models for correcting measurement error in sparse count data.

10



Chapter 2

Imputation Methods for Measurement Error Correction

Multiple imputation has been proposed as a method to correct for measurement er-
ror (Cole et al., 2006), and to simultaneously handle missing data and measurement error
(Ghosh-Dastidar and Schafer, 2003; Blackwell et al., 2017). However, much of the work fo-
cuses on continuous data and inference about regression parameters rather than population
parameters such as total or occupancy rate defined in (1.4). These parameters are often the
main interest in wildlife population surveys such as those used for stock assessment of red

snapper.

Within the multiple imputation for measurement error (MIME) framework, the mismea-
sured count data are assumed to be missing. Therefore, they are imputed multiple (m)
times with values randomly generated from N|Y; X where X denotes the covariates in the
data set. The resulting file consists of multiple imputed data sets from which estimates and
their standard errors can be computed and then combined. Define () to be the parameter of
interest, and denote its estimate from the complete data, as well as its variance denoted by
by Q and U , respectively. Though by Q and U , cannot be estimated because the complete
data are not available, we can compute the estimators from the m imputed datasets, which
we denote by Qj and Uj for 7 =1,2,3,..,m. According to Rubin’s (1986) rules, the estimates

and their variances are pooled as follows:

m A
_ . _ 1
o m m

where U, = >t U;/m and B, = i) (Qj — Qm)?/(m—1). In this section, we discuss

several multiple imputation methods which can be used to handle visibility bias for estimating
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total abundance and occupancy rate. Those considered include imputation methods that
are available off-the-shelf and our specialized imputation models: modified hot deck and

Bayesian hierarchical model (HBZIP).

2.1. Available Imputation Methods

Imputation is a routine process when dealing with data which have missing values. Var-
ious imputation methods are available and generally can be classified into parametric, semi-
parametric, and non-parametric methods. Parametric imputation methods make explicit
assumptions about the distribution of the response variable. Therefore, the missing re-
sponse is imputed with random draws from the posterior samples of the assumed distribu-
tion. Semi-parametric methods such as predictive mean matching (PMM) utilize normal
regression models to find units with similar characteristics. However, it does not make any
assumption about the distribution of the response itself. Similarly, non-parametric imputa-
tion borrows values from other units with the same characteristics. Unlike semi-parametric

methods, these methods do not utilize any model or distribution to find similar units.

In this study, we consider several imputation types including: normal, Poisson (Raghu-
nathan et al., 2001), and zero-inflated Poisson (Kleinke and Reinecke, 2013) regression models
for parametric imputation; PMM (Rubin, 1986; Little, 1988) for semi-parametric imputa-
tion; and a modified hot deck for nonparametric imputation. In addition, we also consider a
modified version of the predictive mean matching method called multiple imputation using
distance aided selection (MIDAS) (Siddique and Belin, 2008; Gaffert et al., 2016). These
methods are relatively easy to implement and available in R within the mice package (van
Buuren et al., 2011) for normal and semi-parametric methods as well as countimp package

(Kleinke and Reinecke, 2013) for Poisson and zero-inflated Poisson.

Note that in multiple imputation framework, we treat the observed count as a covariate;

hence, it is possible that the imputed true count is less than the observed count (N <Y).
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Therefore, these methods do not preserve the logical constraints of the data. Furthermore,
the normal imputation method also does not preserve the discreteness of the imputed data,
though the remaining methods considered in this study do. Imputed counts from the normal
model may also be negative, which is logically impossible for count data. Intuitively, an easy
fix would be to round or truncate the imputed values. However, in their study, Rodwell,
Lee, Romaniuk, and Carlin (2014) suggest that post-imputation rounding increases bias in
the estimates and inappropriately reduces the variance, while imputation with no rounding

or transformation generally performs well.

Alternatively, count imputation models such as Poisson and ZIP may also be used. How-
ever, depending on the parameter of interest, it is unclear whether these models would yield
preferable results compared to the normal model. Von Hippel (2013) conducted a study
and concluded that normal imputation generally works well for estimating means, standard
deviation, and regression parameters but performs poorly for estimating parameters that
reflect distributional shape. This suggests that normal imputation may perform well for
estimating total abundance but poorly when estimating occupancy rate. Hence, choosing
the correct imputation model remains important especially if tail probabilities or shape of

the distribution are of interest in the analysis.

2.2. Modified Hot Deck

As discussed in the previous section, hot deck imputation is a nonparametric method for
handling missing data in survey. It is one of the three imputation methods used by the U.S.
Census Bureau to impute item non-response in the Current Population Survey (U.S. Census
Bureau, 2016). The hot deck procedure replaces missing values with a value from units with
similar characteristics as measured by some distance metric (Andridge and Little, 2010).
This allows the imputed data to maintain more realism, since missing data are imputed with
real observations. In our data, for example, this would prevent negative or non-integer fish

counts from being imputed.
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Modified versions of the hot deck method have also been developed. Kim and Fuller
2004 developed a method called “fractional hot deck imputation” in which missing values
are replaced with a set of weighted imputed values. Furthermore, McGee and Bergasa (2006)
introduced a method called "modified nearest neighbor hot deck"', where similar characteris-
tics are chosen from the data and a small bit of noise is added to each observation to reflect
sampling variability. In this section, we review the traditional hot deck imputation and then

introduce our modified version of the hot deck method.

2.2.1. Hot Deck Imputation Review

Hot deck imputation involves two steps: forming a group of similar units for donor
candidates (donor pool) and selecting a donor from the donor pool. The donor pool can be
formed using several methods. One of the simplest methods is the adjustment cell method
(Brick and Kalton, 1996) in which missing values are replaced with values from units with
matching cells or covariates. For example, in population surveys, observations are matched
using covariates such as sex, geographical location, and employment status. However, this
method can be inefficient if units are sparse and the number of cells is large, requiring the
same donor to be used multiple times. Another approach is to form the donor pool based
on a distance measure such as Mahalonobis distance to determine similar units. Typically,
the size of the donor pool (d) has been pre-determined such that only the d closest units are
included in the donor pool. Alternatively, a threshold (§) value may be used so that only
observations with distance below ¢§ are included in the pool. Once the donor pool is formed, a
donor is then selected randomly from the pool with equal probability or probability inversely

proportional to the distance.

As discussed in Section 2.1, PMM is an example of semi-parametric imputation method.
However, PMM can also be thought of as a special case of hot deck imputation (Andridge
and Little, 2010). In PMM, the distance is measured using the difference between predictive

means of the missing unit and the donor candidates. In other words, they are matched
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based on the values of their predictive means. Typically, the means are predicted using a
regression model. In addition, a modified version of PMM, the MIDAS approach, uses the
same distance measure as PMM; however, rather than limiting the size of the donor pool,
all units in the data are eligible as donors. For each missing unit, a donor is then selected

randomly from the pool with probability inversely proportional to the distance.

Typically, hot deck imputation is implemented to directly impute the missing variable,
which is N in our case. However, improvement may result from imputing a function of N
rather than N directly (Andridge and Little, 2010). Suppose P is a function of N and an
auxiliary variable (Y) highly correlated with N, defined by P =Y /N. The analyst may
not have much information about N but have more information about P. Thus, hot deck
imputation may be performed more effectively on P rather than N. In this case, the imputed
values of P and auxiliary variable Y can then be used to obtain N = Y/ P. Therefore, better
results may yield from indirectly imputing N using P rather than directly imputing N. In
our case, the variable P here can be thought as the proportion of fish visible to the observer

or visibility rate, whereas Y is the number of fish observed.

2.2.2. Adaptation

In our adaptation, hot deck imputation is implemented twice: once to replace P and
indirectly impute N where N= Y/ ]5; and a second time to directly impute N when P=0for
which N = Y/ P is undefined. The underlying idea behind this method is that, depending on
the value of p, N is either imputed indirectly or directly. When Pe (0,1), N is mismeasured;
therefore, it is corrected using indirect imputation N = Y/ P. However, when N is missing
(]S =0), N must be directly imputed. For each imputation, procedures including forming
the donor pool and selecting a donor follow the regular hot deck imputation procedure.
Therefore, in its implementation, the analyst can easily implement this adaptation using

available imputation packages such as mice within R.
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Recall that N is undefined when P =0. In practice, N is also very unstable when Pis
near (. This is because a slight change in P can greatly impact N when P is small. For
example, consider a scenario where Y =5, and two possible visibility rates P =0.05 or 0.025.
The adjusted value is either N = 5/0.05 = 100 or 5/0.025 = 200. Therefore, a decrease in
visibility rate by 0.025 significantly inflates the adjusted count. The same is not true when
P is high. Suppose P =0.95 or 0.925; the adjusted value is either N = 5/0.95 = 5.26 or
N=1 /0.925 = 5.41. Hence, the same decrease in P only increases N by a small amount
when P is high. For this reason, direct imputation of N is applied not just when P =0,
but when P < dp. Here, 0, denotes the threshold level, near zero, below which N is directly

imputed, and above which N is indirectly imputed.

2.3. The HBZIP Model

Visibility bias can be formulated as a classical measurement error problem in which the
observed variable is an additive or multiplicative function of the true count. Given the
nature of their relationship, the observed and true count data can also be modeled with
hierarchical models (Royle and Dorazio, 2006). Often, a Poisson distribution is assumed for
count data. However, in our application, the zero-inflated Poisson distribution is a more
sensible choice considering the count data sparsity and the biology of Red Snapper. Some
transects are chosen on habitats that cannot support Red Snapper and are therefore not “at
risk” for containing any fish, while on others that are feasible habitat they may or may not
appear. Based on the true count, the observed count can then be thought of as a realization
of a binomial process in which only a fraction of the true count is expected to be observed.
Therefore, it is reasonable to model the true count and observed count data with zero-inflated

Poisson and binomial distribution respectively.

In the frequentist framework, parameters for the distributions are treated as fixed non-
random quantities and must be estimated. In our application, the distributional parameters

have a complex relationship that depends on the individual transects’ characteristics. In
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addition, extra variability due to estimating the distributional parameters must also be
accounted for in the estimation. Hence, the HBZIP model was developed to incorporate
transect specific characteristics and extra variation from the unknown model parameters.
The HBZIP is a four-level hierarchical model which includes the observed data model, count
data model, priors for the count and observed model parameters, and hyperpriors for the

parameters in the priors.

We implement the hierarchical models, not for fully Bayesian analysis of the parameter
estimates, but for the purpose of imputation. Therefore, our goal here is not to obtain
estimates directly via Bayesian estimation but to generate multiple completed data sets and
allow the data users to perform the same type of analysis as they would for complete data.
We utilize MCMC sampling techniques to generate random draws from the joint posterior
of the hierarchical models. Within the imputation framework, estimates of total abundance,
occupancy rate, and their associated standard errors are aggregated using Rubin’s (1987)
combining rules defined in (2.1). Theoretical development of the model and its Bayesian

implementation are discussed in the next two sections.

2.3.1. Theoretical Development

Recall from the previous section that the HBZIP is a four-level hierarchical model which
includes the observed data model, true count data model, priors for the distributional pa-
rameters, and hyperpriors for the parameters in the priors. The true count is assumed to
follow zero-inflated Poisson (Lambert, 1992) with zero-inflation parameter m; and expected
local abundance \; for the " transect, denoted by N; ~ ZIP (7, Ai). The probability mass

function of Nj; is defined by:

P(N;=n) = (2.2)
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Given N; and the visibility rate during the transect (F;), the observed count (Y;) is assumed
to follow a binomial distribution. Therefore, the true and observed count data distributions
are defined by:

N; ~ ZIP(mi, \;) (2.3)

Yi|N; ~ Binomial(Nj, P;) (2.4)

We expect the model parameters to differ depending on the transect conditions and location.
In addition, we assume normalized log(\;), logit(m;), and logit(F;) priors in the HBZIP model.
However, assuming that the model parameters are known, we can obtain the conditional
distribution of N;|Y;. Hence, our focus in this section is to derive the distribution of N;|Y;

and understand its characteristics for the different values of m;, \;, and F;.

Let Nj ~ ZIP(m;,\;) and Y;|N; ~ Binomial(N;, P;); then the conditional distribution of

N|Y can be obtained following Bayes’s theorem:

_ P(N.Y;)  P(N;,Y;)P(Ny)
P(NiY;) = P(Y:) T, P(N.,Y;)P(N;) (25)

The marginal distribution of Y;, derived in Appendix A, also follows a zero-inflated distri-

bution Y; ~ Z1P(m;, \ip;) given by:

mi+(1—m)e P, y=0
P(Y;=y)= (2.6)

—XiDi(\.p.\Y
(1—7@)%, y=1,2,3,..

Separating the two cases for N =0 and N > 0, the joint distribution of N,Y is defined by:

T+ (1 —m;)e ™, n=0;y=0
oA (1—pi) =, n > 05y = 0,12,
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Using Bayes theorem in (2.5), and the results from (2.6) and (2.7), the conditional distribu-

tion of N|Y', as shown in Appendix B, is:

Np;
ZIP (;ﬁ?“,x@_p.)), Y =0
P(N;=nlY;=y)= mieNiPit (1—m;) " i .

y—+ Poisson(\;[1 — p;l), n=y,y+1,.;y>0

This suggests that when no fish are observed, the conditional distribution N|Y also follows
m;eiPi
mieNiPi(1—m;)

one fish is observed, then the distribution of N|Y follows a shifted Poisson distribution with

ZIP but with updated parameters 7} = , and X = \[1 —p|. However, if at least

mean A and shifting parameter y.

Alternatively, we can define U; = N; —y;, the unobserved count, with the following dis-
tribution:
eNiPi
o )\i(l—pz')), y=0

ZIP (,,,
P(Ui=ulYj=y)={ Ao (29)

Poisson(\i[1—pi)), n=y,y+1,.;y>0

That is, U; follows ZI P(r}, ;) when y =0, and Poisson(\;) when y > 0. Figure 2.1 illustrates

the distribution of U for various values of P and A\. Based on the probability mass function

in 2.9 and illustration in Figure 2.1, we obtain the following results:

o When visibility is clear, the observed count is the true count. As indicated by the
distribution in green in Figure 2.1, P(U =0) = 1 when p = 1 regardless of the value of
y. Therefore, N =y with probability 1 when p=1.

o When visibility is obscured, the true count is adjusted additively since N =y+U.
Furthermore, E[U] also increases as visibility rate decreases which suggests that as
visibility decreases, the expected unobserved count increases. This is shown by the
shift in the distribution of U in each plot, from left to right as P decreases from 1 to
0.01.

o Finally, when visibility is lost (P =0) and no fish are observed (Y = 0), as shown by
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Figure 2.1: Distribution of the unobserved count (U) given the observed y value (column),
A (row), and visibility rate (color key). Each plot illustrates all possible values of U (x-axis)
and their associated probability (y-axis).

the plots in the right column, N|Y and N follow the same distribution. This is because
7’ — and M — X\ as p — 0. This implies that when visibility is lost, missing data are
replaced with random draws from the marginal distribution of N, as illustrated by the

distribution in red in the right column.

We showed here that the hierarchical models have desirable properties since they preserve
the sparsity and discreteness of the data. In addition, the resulting conditional distribution
is also consistent with our logical intuition since it allows the observed data to be retained
when visibility is high, adjusted when visibility is degraded, and imputed when visibility is

lost.

This leaves us with one remaining task: parameters estimation. Distributional parame-
ters can be estimated using a maximum likelihood approach or using regression models with
covariates. The maximum likelihood approach requires repeated measures to be available

or the transects to be homogenous. This is unlikely in our application due to resources
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constraint, and since \;,m;, and P; are likely to vary among transects. Hence, we turn to a
Bayesian approach to model the distributional parameters and obtain simulated samples of

the true count from the joint posterior for imputation.

2.3.2. Bayesian Implementation

Within the Bayesian framework, normal regression priors are assumed for log(\;), logit(m;),
and logit(F;) to allow their means to differ based on unit specific characteristics. The normal

regression model for log(;) is:

i =log(N;) ~ Normal(Xi(qb)ﬁ, 035) (2.10)

where XZ~(¢) defines the vector of covariates impacting the mean of local abundance, 5 =

(ﬁo,ﬂl,..,ﬂp)T represents the vector of regression coefficients, and 033 reflects the extra-
Poisson variation in local abundance. The normal regression prior for the logit(¢;) and
logit(P;) are:

v; = logit(m;) ~ Normal(X(V)’y,og), (2.11)

2
n; = logit(P;) ~ Normal(Xi(n)G,a%), (2.12)

Similarly, X 2

;7 and Xi(n) are vectors of covariates impacting the local occupancy rate and

visibility rate respectively, while v = (Y5,71,..,%)! and 8 = (0,,01,..,0,)T are vectors rep-
resenting their regression coefficients. Both o2 and 0,27 reflect the extra variability which
captures the heterogeneity of the local occupancy rate and visibility rate among the tran-

sects.

Mutually independent priors are assumed for the hyperparameters which include each

regression coefficient in 3,7, and #, and variance components U%,ag,ag. The priors are also
set to be vague so that the posterior distribution is dominated by the data likelihood. Priors
for each of the regression coefficients in 3,, and 6 are assumed to be mutually independent

and follow Normal(0,02) with a large 0% value. In addition, uniform priors U(0, A) with a
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large upper bound A are defined for o4,0,, and 0,. A summary of the hierarchical model
and its prior specifications are shown in Appendix C. The joint posterior distribution of
the model parameters is proportional to the data likelihood and prior distributions specified

above. Therefore, the joint posterior distribution of the hierarchical model’s parameters is:

[N7,r]7¢7 V? 07/87770-72]70-3570-12/|Y’T7 X] X

l
[T Y Ne, i) [Nl il s | X0, 02103l XL 8, 021w X, 02 | 10118170202 [02]

=1

Binomial ZIP normal regression hyperpriors

In its implementation, Bayesian simulation treats missing data similar to an unknown
parameter; hence, simulated samples of missing and mismeasured values can be obtained
from the joint posterior using Bayesian Markov Chain Monte Carlo (MCMC). This process
generates multiple complete data set allowing analysis to proceed as if no data had been

missing or mismeasured.

We introduced multiple imputation as a method to correct for measurement error in this
chapter. In addition, we presented several imputation techniques including off-the-shelf im-
putation models such as normal, Poisson, zero-inflated Poisson, PMM, and PMM (MIDAS)
and our developed imputation models, modified hot deck and HBZIP. These methods can be
used to correct measurement error in zero-inflated count data; however, their performance
remain to be evaluated. In the next chapter, we examine the methods’ performance for

estimating total abundance and habitat occupancy rate through a simulation study.
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Chapter 3
Simulation Study

In this chapter, we present the results of a simulation study to evaluate the performance
of multiple imputation for measurement error (MIME) methods under various count data
model and visibility mechanisms. Note that we distinguish the term visibility mechanism
from visibility model here since we use the former to refer to the actual relationship between
T and P, while the latter is used to describe the assumed relationship between T" and P
within the HBZIP model. Therefore, visibility model within the HBZIP model may be

inconsistent with the actual visibility mechanism during the transect.

To reflect the characteristics of wildlife abundance, we generated the data from a two-
level hierarchical model which specifies the count data in the first level and observed data in
the second level. Distributional parameters are modeled according to the regression model
in (2.10)-(2.12). The simulation experiment was a three-factor design, with two factors
controlling the count data model parameters and one controlling the visibility mechanism.
Each of the factors was set at three levels, resulting in 27 parameter combinations. We then
implemented imputation procedures including off-the-shelf methods (normal, Poisson, ZIP,
PMM, and PMM MIDAS), and our adapted methods (modified hot deck imputation and
HBZIP). We evaluated the methods’ performance in handling visibility bias for the purpose
of estimating total abundance (7) and occupancy rate (p). Performance here was evaluated
based on several measures including relative bias, relative standard error, relative mean

squared error, and confidence interval coverage defined later in Section 3.2.
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3.1. Simulation Parameters

Recall that the data were generated from a two-level hierarchical model. In the first
level, we generated the count data from zero-inflated Poisson N ~ ZIP(w, ). Conditioned
on N and P, the observed count (Y) was assumed to follow a distribution, Y|N,P ~
Binomial(N, P). We assumed Poisson regression for A, similar to (2.10), and allowed it

to differ based on two regions, such that for the i*" transect:

¢i = log(\i = B, +0.5(area,) (3.1)

for + =1,2,3,..1. In addition, we specified a logistic regression for P to model the linear

relationship between T' and logit(P) as follows:

v; = logit(P;) =5—10(T) (3.2)

Based on the logistic model above, we then modified the linear visibility model to obtain

discrete and bounded visibility model as follows:

1, t; <0.2
1, <02
0.7, 02<t;<05
Piscrete = and  Phounded = 0.5, 0.2<1;<0.8
0.3, 05<¢ <08
0, t>08

0, t; > 0.8

Figure 3.1 illustrates the three visibility mechanisms simulated in this study. Various mech-
anisms were considered here since the true relationship between turbidity and visibility in

our application is unknown and may vary depending on the data collection strategy.

In the simulation, we varied the Poisson-regression intercept (5, = 2.5,3,3.5) which indi-
rectly controls the value of A, the zero-inflation parameter (7 = 0.35,0.5,0.7) which affects

the occupancy rate (p), and the visibility model (linear, discrete, and bounded). Under each
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Figure 3.1: Three visibility mechanisms based on turbidity level: linear, discrete, and
bounded.

of the 27 parameter combinations, M = 1000 sample replicates were simulated. For each
replicate, a sample of size 100 samples were generated following a simple random sample.
The true counts were observable in 40 of the 100 cases, leaving 60 mismeasured counts to be
imputed. Mismeasured counts are then imputed 10 times (m) and used to produce estimates

of 7 and p.

Figure 3.2 illustrates the empirical cumulative distribution function (ECDF) of a ran-
domly generated and multiply imputed sample. The different lines indicate imputed data
(colored lines), complete data (black line), and observed data as shown by the naive method
(grey line). As shown in the figure, the HBZIP model, PMM, PMM MIDAS approach appear
to reproduce the ECDF best. These distributions closely estimate P(N = 0); hence, we ex-
pect them to perform well for estimating habitat occupancy rate. The normal model, on the
other hand, underestimates P(N = 0); therefore, we expect the model to overestimate the
habitat occupancy rate P(N > 0). We will see that imputed data may not reflect the actual
data distribution but still yield valid abundance and occupancy rate estimates. Conversely,
imputed data may reflect the actual data distribution well but produce biased or unstable
estimates. Therefore, in the simulation, the methods are evaluated based on several criteria

for inference purposes discussed in the next section.
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Figure 3.2: Empirical cumulative distribution function (ECDF) of the complete, observed,
and multiply imputed data by visibility mechanism (column), and imputation method (row)
when 5, =3 and © = 0.35.
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3.2. Criteria to Compare Results

We evaluated the performance of various imputation methods for estimating total abun-
dance and occupancy rate defined in (1.4). Let § = parameter of interest in the simulation
such that 6 = {7, p}, and M = simulation replicates. To evaluate the methods’ performance,
we monitored the estimator’s relative bias (RB), relative standard error (RSE), relative

root mean squared errors (RMSE), and 95% confidence interval calculated as follows:

M
Rel. Bms M Z
M
M ~1/2
Rel. RMSE(0 MZ[ (0;—0)*+Var(d;] "~ /0
M
95% CI Coverage(9 Z [0— 2, 2 SEI6)<0<0+ 74, 1, SE[0]
J

Parameter estimates (f) and their associated standard errors (SE[f]) were calculated from

the imputed data following Rubin’s (1987) rules defined in (2.1).

3.3. Simulation Results

Overall simulation results by visibility mechanism are illustrated in Figure 3.3 for total
abundance and Figure 3.4 for habitat occupancy rate. Within the simulation, we also pro-
duced estimates from the complete data to illustrate the estimators’ performance if no data
had been missing or mismeasured. Naive estimates were also produced to demonstrate the
estimator’s properties if visibility bias is ignored. As shown in both figures, estimates from
the complete data analysis suggest that in the absence of visibility bias, the estimates are ap-
proximately unbiased (RB = 0), with confidence interval coverages near their nominal value
(Cov =~ 0.95). This suggests that sampling distribution of the estimators are approximately

normal.
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Figure 3.3: Simulation results for total abundance estimates by visibility mechanism for all
Bo and 7 combined. Results from the Poisson model are not presented here due to their
highly biased estimates and extreme standard errors.
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Figure 3.4: Simulation results for occupancy rate estimates by visibility mechanism for all
Bo and m combined. Results from the Poisson model are not presented here due to their
highly biased estimates and extreme standard errors.
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Furthermore, as shown by the naive estimates, when visibility bias is ignored, total
abundance and occupancy rate are underestimated (RB[7| ~ —0.41 to —0.44 and RB[p] =
—0.07 to —0.09) with confidence interval coverages that are far below their nominal value.
Therefore, we implemented various imputation methods here to improve inference about the
parameters and obtain results that are closer to those of complete data. In this section, we

present and discuss our simulation results by visibility mechanism.

3.3.1. Linear Visibility

Simulation results for the linear visibility mechanism are summarized in Table 3.1 for
abundance estimation and Table 3.2 for occupancy rate estimation. The results show that
the methods’ performance varies by zero inflation parameter (7) and count data model
intercept (5,). However, when visibility is linear, the HBZIP model outperforms the other
methods. Compared to the other methods, estimates from the HBZIP model have a relatively
low bias (RB[7] = RB[p] < 0.034 in magnitude), low standard error, and confidence interval
coverage that is near its nominal level (Cov[7] = Cov[p] = 0.925 to 0.956). The method also
yields RMSFEs that are the closest to those of complete data. This suggests that when
the count data and visibility model in HBZIP are correctly specified, the overall accuracy
and precision of the resulting estimates are not significantly lost due to the missing and

mismeasured data.

Hot deck imputation also produces estimates with low bias overall (RB[7] = RB][p] < 0.04
in magnitude). However, it also produces high RSE|[7] which inappropriately increases
the confidence interval coverage (Cov[7] > 0.965). Alternatively, PMM MIDAS also shows
favorable results for both parameters when the data are not highly sparse (7 < 0.5). Under
this condition, estimates from PMM MIDAS have low bias (RB[7] = RB[p] < 0.022), slightly

higher RS E compared to HBZIP by about 0.01 to 0.04, and near nominal confidence interval.
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m  Method Rel. Bias Rel. SE Rel. RMSE 95% ClI Cov

Bo Bo B, Bo
2.5 3 3.5 2.5 3 3.5 2.5 3 3.5 2.5 3 3.5
0.35 Complete 0.001  0.001  0.002 0.08 0.08 0.08 0.11 0.11 0.11 948 949 944
Naive -0.409 -0.41  -0.411 0.07 0.07 0.07 0.41 0.42 0.42 0 0 0
Normal 0.008  0.002 -0.001 0.1 0.1 0.1 0.14 0.14 0.14 93 933 929
Poisson 0.062 0.036 0.027 0.12 0.1 0.09 0.18 0.15 0.14 875 86.7 85
ZIP -0.046 -0.042 -0.031 0.12 0.12 0.12 0.17 0.17 0.17 90 922 915
HBZIP -0.027  -0.031 -0.03 0.09 0.08 0.08 0.12 0.12 0.11 946 927 931
PMM -0.016 -0.008 -0.008 0.1 0.1 0.1 0.14 0.13 0.13 93 916 926
MIDAS 0 0.007 0.014 0.1 0.1 0.1 0.13 0.13 0.13 95.3 948 92
Hot deck 0 -0.001 -0.004 0.13 0.12 0.12 0.16 0.16 0.15 97.2 9.5 97.1
0.5 Complete 0.005 -0.001 -0.002 0.11 0.11 0.11 0.15 0.14 0.14 95.8 941 946
Naive -0.406 -0.411 -0.414 0.08 0.08 0.08 0.42 0.42 0.42 0.7 0.3 0.4
Normal -0.003 -0.005 -0.007 0.14 0.13 0.13 0.18 0.18 0.18 947 945 935
Poisson 0.138 0.074 0.077 0.21 0.16 0.15 0.32 0.24 0.24 911 86.8 86.6
2IP -0.066 -0.056 -0.044 0.16 0.16 0.16 0.23 0.23 0.23 885 89.8 882
HBZIP -0.014 -0.03 -0.033 0.11 0.11 0.11 0.15 0.15 0.15 95 939 934
PMM -0.022  -0.022  -0.022 0.13 0.13 0.13 0.18 0.18 0.17 922 927 925
MIDAS 0.009  0.002 -0.008 0.14 0.14 0.14 0.19 0.19 0.19 945 949 931
Hot deck 0.01  0.004 0 0.16 0.16 0.16 0.21 0.2 0.2 97.5 96.7 96.6
0.7 Complete -0.008  0.001 -0.005 0.16 0.16 0.16 0.22 0.22 0.22 95.5 94 941
Naive -0.414 -0.406 -0.412 0.12 0.12 0.12 0.43 0.43 0.43 10.1 11.5 9.3
Normal -0.012  -0.001 -0.016 0.2 0.2 0.2 0.27 0.27 0.27 932 936 932
Poisson 692.1 12.57 7.587 1,958 19.93 10.78 2,085 23.78 1331 91.6 90 88.8
ZIP -0.101  -0.078 -0.081 0.23 0.23 0.23 0.34 0.34 0.34 854 86.7 864
HBZIP 0.016 -0.016 -0.027 0.21 0.17 0.16 0.27 0.23 0.22 95 942 938
PMM -0.067 -0.055 -0.064 0.18 0.18 0.18 0.26 0.26 0.26 894 895 877
MIDAS 0.064 0.022 -0.039 0.32 0.3 0.28 0.41 0.39 0.39 943 902 86.8
Hot deck 0.037 0.039  0.031 0.26 0.25 0.25 0.32 031 0.31 98 979 973

Table 3.1: Simulation results for total abundance estimates for all 5, and ¢, when visibility
is linear.

The Poisson model performs poorly for both estimands. Its performance progressively
worsens as 7 increases which suggests that the Poisson model is inappropriate for imputing
sparse data. The ZIP model should also be avoided since its estimates can be highly biased
(RB[7] > 0.08 in magnitude) and have interval coverages that are below 0.90. As seen in
Table 3.1, the normal imputation model shows favorable results for 7 estimation. It produces
low bias with RB[7] < 0.017 in magnitude, slightly higher RSE[#] compared to the HBZIP,
and near nominal confidence interval coverage. However, the normal model is highly biased
for estimating p . Its bias increases as the data becomes more sparse, RB[p| ~ 0.2 when
m=0.35 to RB[p] ~ 0.8 when 7w = 0.70. Hence, the normal model should be avoided for
occupancy rate estimation. This suggests that for estimating totals, which is equivalent to
estimating means, the normal model is insensitive to misspecification of the data distribution.
Multiple studies have shown that the normal imputation model yields consistent estimates
for population means and variances even when the data are non-normal (von Hippel and

T., 2013; He and Raghunathan, 2006). Therefore, even though distribution of the imputed
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T Method Rel. Bias Rel. SE Rel. RMSE 95% Cl Cov

Bo B, B, Bo
25 3 3.5 25 3 3.5 2.5 3 3.5 25 3 3.5
0.35 Complete 0.001  0.001  0.002 0.07 0.07 0.07 0.1 0.1 0.1 0.001  0.001  0.002
Naive -0.091 -0.067 -0.053 0.08 0.07 0.07 013 012 0.11 -0.091 -0.067 -0.053
Normal 021 0.209 0.211 0.08 0.08 0.08 023 022 0.23 021 0.209 0.211
Poisson 0.299 0.308 0.319 0.06 0.06 0.05 031 031 0.32 0.299 0.308 0.319
2IP -0.008 -0.015 -0.01 011 0.12 011 0.16 0.16 0.16 -0.008 -0.015 -0.01
HBZIP -0.024  -0.031 -0.03 0.08 0.07 0.07 0.1 0.1 0.1 -0.024  -0.031 -0.03
PMM 0 0.003 0.002 0.09 0.09 0.09 013 0.12 0.3 0 0.003 0.002
MIDAS 0.008 0.013 0.021 0.09 0.09 0.09 012 012 0.12 0.008 0.013  0.021
Hot deck -0.027  -0.021  -0.017 0.08 0.08 0.08 011 0.11 0.11 -0.027  -0.021  -0.017
0.5 Complete 0.005 -0.001 -0.001 0.1 0.1 0.1 013 0.14 0.4 0.005 -0.001 -0.001
Naive -0.089 -0.069 -0.056 0.1 0.1 0.1 0.16 0.15 0.14 -0.089 -0.069 -0.056
Normal 0.365  0.366 0.37 012 012 0.12 038 039 0.39 0.365  0.366 0.37
Poisson 0.486 0.532  0.563 01 0.09 0.09 0.5 054 0.57 0.486 0.532  0.563
ZIP -0.013 -0.017 -0.013 0.16 015 0.16 021 022 022 -0.013 -0.017 -0.013
HBZIP -0.01 -0.03 -0.033 0.1 0.10 0.1 014 0.14 0.14 -0.01 -0.03 -0.033
PMM -0.003  -0.009 -0.01 012 0.12 0.2 017 0.17 0.17 -0.003  -0.009 -0.01
MIDAS 0.02 0.012 0.003 013 0.13 0.3 017 0.17 0.17 0.02 0.012 0.003
Hot deck -0.029 -0.027  -0.025 0.10 0.10 0.10 014 0.14 0.14 -0.029  -0.027  -0.025
0.7  Complete -0.006 0 -0.006 015 0.15 0.15 02 021 021 -0.006 0 -0.006
Naive -0.098 -0.07  -0.058 015 0.15 0.5 022 021 0.21 -0.098 -0.07 -0.058
Normal 0.801 0.809 0.805 022 022 0.22 083 0.84 0.84 0.801 0.809 0.805
Poisson 0.821 0.978 1.086 02 019 0.8 085 100 111 0.821 0.978 1.086
ZIP -0.024 -0.018 -0.033 024 024 0.24 033 033 033 -0.024 -0.018 -0.033
HBZIP -0.005 -0.018 -0.027 0.16 0.15 0.15 021 021 0.21 -0.005 -0.018 -0.027
PMM -0.043 -0.04  -0.049 0.18 0.18 0.18 025 0.25 0.25 -0.043 -0.04  -0.049
MIDAS 0.081 0.034 -0.026 03 029 0.28 039 038 0.38 0.081 0.034 -0.026
Hot deck -0.037 -0.024 -0.026 0.16 0.16 0.15 021 021 0.21 -0.037 -0.024 -0.026

Table 3.2: Simulation results for habitat occupancy rate estimates for all 3, and ¢, when
visibility is linear.

values is inconsistent with the underlying data distribution, the normal imputation model
remains effective for inference about the mean. As suggested by Rubin (1996) the goal of

imputation is not to recreate individual missing values but to ensure the validity of inference.

3.3.2. Discrete Visibility

Unlike the linear visibility mechanism, no single method appears to outperform the other
methods when visibility mechanism follows the discrete model. The performance of the
methods varies significantly depending on the data sparsity as indicated by 7. As shown
in Table 3.3 and Table 3.4, when the data are not highly sparse (7 < 0.5), PMM MIDAS
outperforms the other methods for both total abundance and occupancy rate. Though its
standard error is slightly higher, PMM MIDAS produces relatively low bias (RB[7] < 0.029)
and confidence interval coverage near its nominal value (Cov[7] = Cov[p] = 0.926 to 0.952).
The regular PMM also produces low bias when 7 < 0.5. Its RSE, however, is slightly

lower which results in a worse confidence interval coverage overall compared to the MIDAS
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approach. When the data are highly sparse (7 = 0.7), both PMM and PMM MIDAS can

have significant bias (RB[7] = RB[p| > 0.06) and yield confidence interval coverage that are

below 0.90.
m  Method Rel. Bias Rel. SE Rel. RMSE 95% ClI Cov
B, Bo Bo Bo
2.5 3 3.5 2.5 3 3.5 2.5 3 3.5 25 3 3.5
0.35 Complete 0.004 -0.003 -0.002 0.08 0.08 0.08 0.11 0.11 0.11 93.5 94.5 95
Naive -0.42 -0.424 -0.421 0.06 0.06 0.06 0.43 043 0.43 0 0 0
Normal 0.008 -0.003  0.002 01 01 01 0.14 0.3 0.13 93 944 957
Poisson 0.062 0.039 0.034 0.12 011 0.09 0.18 0.16 0.14 875 874 873
ZIP -0.046 -0.055 -0.049 0.12 0.12 0.12 0.17 0.17 0.17 90 90.2 92.7
HBZIP -0.026 -0.055 -0.062 0.09 0.08 0.08 0.12 0.13 0.12 92.8 88.3 89.6
PMM -0.005 -0.015 -0.007 0.1 0.09 0.09 0.13 0.13 0.13 92.1 93.3 92.9
MIDAS 0.014  0.003 0.01 01 01 01 0.14 0.4 0.3 93.7 946 944
Hot deck 0.03 0012 0.011 012 012 011 0.16 0.15 0.15 96.1 96.8 98
0.5 Complete 0.003 -0.005 -0.002 0.11 0.11 o0.11 0.15 0.14 0.14 93.9 93.7 94.6
Naive -0.421 -0.424 -0.422 0.08 0.08 0.08 0.43 043 0.43 0 0.1 0
Normal 0.008 -0.006 0.002 0.13 0.13 0.13 0.18 0.17 0.17 93.8 94.2 94.6
Poisson 0.359 0.119 0.523 0.65 0.19 0.61 0.81 0.29 0.87 89.5 88.6 87.7
zIP -0.062 -0.069 -0.059 0.16 0.16 0.16 024 023 0.22 8 90.1 907
HBZIP -0.023 -0.055 -0.062 012 011 0.11 0.16 0.16 0.15 931 912 89.9
PMM -0.016 -0.027 -0.018 0.12 0.12 0.12 0.17 0.17 0.17 91.2 92.8 92.1
MIDAS 0.028 0.006 0.003 0.15 0.15 0.15 0.2 0.19 0.2 94.2 95.2 93.1
Hot deck 0.041 0.021 0.023 0.16 0.16 0.15 0.21 0.2 0.2 97.2 96.6 97.4
0.7 Complete -0.009 0.001 0.003 0.16 0.16 0.16 022 022 0.22 943 942 948
Naive 0.426 -0.421 -0.42 011 011 0.11 0.44 0.44 044 6.3 7.1 6.8
Normal -0.016 0 -0.002 0.19 0.19 0.19 0.26 0.26 0.26 92.1 93.8 93.7
Poisson 333.5 3.212 6.437 967.7 4.66 9.6 1,029 5.8 11.69 90.7 91.1 91.3
ZIP -0.125 -0.086 -0.07 0.23 0.23 0.23 0.35 0.34 0.33 82.5 85.7 88.6
HBZIP -0.016 -0.031 -0.053 0.19 0.18 0.16 0.25 0.24 0.22 94.8 91.9 93
PMM -0.064 -0.045 -0.045 0.18 0.17 0.17 0.26 0.25 0.25 87.8 894  90.6
MIDAS 0.084 0.056 0.042 0.34 0.33 0.33 0.44 043 044 92 89 887
Hot deck 0.065 0.075 0.065 0.25 0.24 0.24 031 0.31 0.3 98.5 97.8 98.9

Table 3.3: Simulation results for total abundance estimates for all 5, and ¢, when visibility
follows the discrete model.

When the data are highly sparse (7 =0.7), the HBZIP model shows favorable results com-
pared to the other methods. HBZIP estimates have relatively low bias (RB[7] = RB[p] <
0.054 in magnitude) and the closest RM SFE to those of complete data. Under this condition,
the highest bias is observed when 3, = 3.5 for which RB[7] = —0.053. As shown in Table
3.3 and Table 3.4 when 7 = 0.7, bias from HBZIP estimates increases progressively as [,
increases— with RB[7] = —0.016,—0.031,—0.053 and RB[p] = —0.011,—0.024, —0.041 when

, = 2.5,3,3.5 respectively. However, the HBZIP method maintains near 95% confidence
interval coverage while the other methods perform worse than the HBZIP under this condi-

tion. Finally, both Poisson and ZIP imputation either yield highly biased estimates or poor
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m  Method Rel. Bias Rel. SE Rel. RMSE 95% ClI Cov

Bo Bo Bo Bo
2.5 3 3.5 2.5 3 3.5 2.5 3 3.5 25 3 3.5
0.35 Complete 0.003 -0.005 -0.002 0.07 0.07 0.07 0.1 0.1 0.1 92.6 93.8 93.8
Naive -0.088 -0.094 -0.092 0.08 0.08 0.08 0.13 0.3 0.13 76.5 74 74.8
Normal 021  0.204 0.209 0.08 0.08 0.08 0.23 0.22 0.22 21.8 25 20.5
Poisson 0.299 0.308 0.315 0.06 0.06 0.05 031 031 0.32 1.8 0.4 0.2
ZIP -0.008 -0.026 -0.027 0.11 0.12 0.12 0.16 0.16 0.16 92.5 92.9 93.9
HBZIP -0.02 -0.05 -0.054 0.08 0.08 0.07 0.11 0.11 0.11 92 89.6 90.5
PMM 0.005 -0.007 -0.001 0.09 0.09 0.09 0.12 0.2 0.12 91.7 94.1 94.2
MIDAS 0.014 0.007 0.015 0.09 0.09 0.09 0.12 0.2 0.13 93.7 95.1 95.2
Hot deck -0.026  -0.037  -0.032 0.08 0.08 0.08 0.11 0.1 0.11 91.7 90.8 93.7
0.5 Complete 0.002  -0.007 -0.002 0.1 0.1 0.1 0.14 0.14 0.14 94.4 94 94.1
Naive -0.089 -0.096 -0.092 0.1 0.1 0.1 0.16 0.16 0.16 82.8 824 82.2
Normal 0.367 0.359  0.366 012 0.12 0.12 0.39 0.38 0.39 9.3 10.2 9.3
Poisson 0.493 0.537  0.565 0.1 0.09 0.09 0.5 0.55 0.57 2.8 0.5 0.3
2IP -0.009 -0.029 -0.027 0.16 0.16 0.16 0.22 0.22 0.22 90.9 91.9 92.4
HBZIP -0.015 -0.047 -0.052 0.1 0.1 0.1 0.14 0.14 0.14 94.1 92.2 90.9
PMM -0.004 -0.019 -0.012 012 0.12 0.12 0.16 0.16 0.16 92.1 93.7 93
MIDAS 0.028  0.009  0.008 0.13 0.13 0.14 0.18 0.17 0.18 93.5 94.8 92.6
Hot deck -0.032  -0.044 -0.037 0.1 0.1 0.1 0.14 0.14 0.14 93 91.6 91.6
0.7 Complete -0.009 0.003 0.004 015 0.15 0.15 021 0.21 0.21 94.8 94.3 95.6
Naive -0.099 -0.087 -0.086 0.15 0.15 0.15 0.22 0.22 0.22 89 89.9 90.5
Normal 0.786  0.805  0.805 022 0.22 022 0.82 0.84 0.84 1 11 13
Poisson 0.801 0.988 1.127 02 019 0.8 084 1.01 1.15 12.9 4.5 1.8
ZIP -0.036 -0.015 -0.015 024 0.24 024 033 0.33 0.33 90.4 91.5 92.3
HBZIP -0.011  -0.024 -0.041 0.16 0.15 0.15 021 0.21 0.21 95.2 93.6 94.8
PMM -0.042 -0.026 -0.029 0.17 0.17 0.17 024 0.24 0.23 91 92.2 92.7
MIDAS 0.094 0.071  0.048 032 031 0.32 042 0.41 0.42 92.2 90.5 89.4
Hot deck -0.036 -0.023 -0.027 0.15 0.15 0.15 021 0.21 0.21 94 95.8 95.4

Table 3.4: Simulation results for habitat occupancy rate estimates for all 3, and ¢, when
visibility follows the discrete model.

confidence interval coverage for both parameters overall. The normal model, on the other

hand, performs well for 7 estimation, but again, poorly for p estimation.

3.3.3. Bounded Visibility

When visibility mechanism follows the bounded model, PMM MIDAS outperforms the
other methods when the data are not highly sparse (7 < 0.5). As shown in Table 3.5 and
Table 3.6, estimates from PMM MIDAS have a low bias (RB[7] = RB[p] < 0.035) and near
nominal confidence interval coverage (Cov[7] = Cov[p] = 0.931 to 0.956). Except for hot deck
and the normal imputation model, estimates from the other methods have a larger bias and
lower confidence interval coverage for both estimands. Hot deck imputation, on the other
hand, performs well when estimating 7 but its confidence interval coverage falls below 0.93

when estimating p.
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When the data are highly sparse (7 =0.7), the hot deck method yields the most favorable
results for both parameters compared to the other methods. Under this condition, hot
deck imputation produces the lowest bias (RB[7] < 0.047, RB[p] < 0.035 in magnitude), low
relative mean squared error (RMSE|[7] < 0.28, RMSE[p] = 0.22), and confidence interval

coverage around its nominal value (Cov[7] = 0.96, Cov[p] ~ 0.94).

In addition, the normal model consistently performs well for 7 estimation, with RB[7] ~ 0
and Cov[7] = 0.932 to 0.948 for all m values. As seen in the previous cases, the normal
imputation model should not be used for estimating p. Furthermore, the HBZIP model can
be highly biased (RB[7] > 0.065 in magnitude) when visibility is bounded and g, = 3.5. The
HBZIP also does not outperform the other methods when S, < 2.5. Hence, the HBZIP model

is not favorable when visibility is bounded.

m  Method Rel. Bias Rel. SE Rel. RMSE 95% Cl Cov
Bo Bo Bo Bo
25 3 3.5 25 3 3.5 25 3 3.5 25 3 3.5
0.35 Complete 0.001 0.002 0.001 0.08 0.08 0.08 011 0.11 0.11 93.7 936 94.1
Naive -0.438 -0.435 -0.439 0.06 006 0.06 0.44 0.44 0.44 0 0 0
Normal 0.011 0.007  0.008 0.1 0.1 0.1 0.14 0.14 0.13 942 936 939
Poisson 0.318 0.093 0.067 0.52 0.14 0.11 0.65 0.22 0.18 912 854 845
ZIP -0.061 -0.047 -0.043 0.12 0.12 0.12 0.18 0.17 0.17 87.5 89.7 90.3
HBZIP -0.035 -0.059 -0.062 0.09 0.08 0.08 0.13 0.13 0.12 909 884 873
PMM -0.008 -0.006 -0.005 01 009 0.09 0.14 0.13 0.13 926 918 935
MIDAS 0.017 0.015 0.016 0.11 0.11 0.11 0.15 0.14 0.14 944 946 93.6
Hot deck 0.016 0.014 0.015 0.11 0.1 0.1 0.14 0.14 0.13 95.5 958 96.2
0.5 Complete -0.002 0 -0.001 0.11 0.11 0.11 0.15 0.15 0.14 946 943 934
Naive -0.44 -0.436 -0.44 0.07 0.07 0.07 0.45 0.44 0.45 0.1 0 0
Normal 0.008  0.007 0.01 013 013 0.3 0.18 0.18 0.18 948 939 932
Poisson 0.707 15.78 1.232 0.98 26.94 1.24 1.27 31.3 1.82 91.8 879 86.2
ZIP -0.082 -0.066 -0.056 0.16 0.16 0.16 0.24 0.23 0.23 87 872 884
HBZIP -0.038 -0.06 -0.065 0.12 0.11 0.11 0.16 0.16 0.16 915 90.1 878
PMM -0.017 -0.014 -0.013 0.12 0.12 0.12 0.17 0.17 0.17 925 926 92
MIDAS 0.034 0.023 0.012 0.16 0.16 0.16 0.21 0.21 0.21 95.6 935 93.1
Hot deck 0.018 0.019 0.021 0.14 0.13 0.13 0.18 0.18 0.18 959 96.2 95.6
0.7 Complete -0.002 -0.007 -0.006 0.16 0.16 0.16 0.22 0.22 0.22 93.6 934 93.7
Naive -0.44 -0.442 -0.44 0.11 0.1 0.1 0.45 0.46 0.45 3.7 4.4 4.3
Normal 0.01 0.011 0.012 0.2 0.19 0.19 0.26 0.26 0.26 93.8 93.8 93.6
Poisson 1,545 786.6 411.2 3,547 1,357 584.0 3,875 1,582 718.01 94 90.6 90.9
zIP -0.131  -0.124  -0.093 022 022 0.23 035 0.35 0.34 819 795 849
HBZIP -0.005 -0.045 -0.067 0.22 0.19 0.17 0.29 0.26 0.24 92.3 90.7 90.6
PMM -0.042 -0.042 -0.036 0.18 0.17 0.17 0.26 0.25 0.25 89.8 89 91.1
MIDAS 0.108 0.068 0.04 0.35 0.35 0.35 0.47 0.47 0.46 90.7 878 86.7
Hot deck 0.046 0.043 0.043 0.2 0.2 0.2 0.27 0.26 0.26 96.4 96 96.1

Table 3.5: Simulation results for total abundance estimates for all 3, and ¢, when visibility
follows the bounded model.
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nm  Method Rel. Bias Rel. SE Rel. RMSE 95% Cl Cov

pﬂ pﬂ pﬂ pﬂ
2.5 3 3.5 2.5 3 3.5 2.5 3 3.5 2.5 3 3.5
0.35 Complete 0 0.002 -0.001 0.07 0.07 0.07 0.1 0.1 0.1 0 0002 -0.001
Naive -0.089 -0.088 -0.091 0.08 0.08 0.08 0.13 0.13 0.13 -0.089 -0.088 -0.091
Normal 0.209 0.213 0.214 0.08 0.08 0.08 0.23 0.23 0.23 0.209 0.213  0.214
Poisson 0304 0319 0321 0.06 0.05 0.05 031 032 0.33 0304 0319 0321
2P -0.015 -0.012 -0.018 011 0.12 0.12 0.16 0.16 0.16 -0.015 -0.012 -0.018
HBZIP -0.019 -0.041 -0.052 0.08 0.07 0.07 011 011 0.11 -0.019 -0.041 -0.052
PMM 0.001 0.001 0.001 0.09 0.09 0.09 012 0.12 0.12 0.001 0.001  0.001
MIDAS 0.016 0.017 0.019 0.1 0.1 0.1 013 013 0.13 0.016 0.017 0.019
Hot deck -0.029  -0.029 -0.03 0.08 0.08 0.08 011 011 0.11 -0.029  -0.029 -0.03
0.5 Complete -0.003 -0.001 -0.003 0.1 0.1 0.1 0.14 0.14 0.14 -0.003 -0.001 -0.003
Naive -0.093 -0.09 -0.093 0.1 0.1 0.1 0.16 0.16 0.16 -0.093 -0.09 -0.093
Normal 0361 0.365 0.369 012 0.12 0.12 038 0.39 0.39 0.361 0.365 0.369
Poisson 0.506  0.554 0.58 0.1 0.09 0.08 0.52  0.56 0.59 0.506  0.554 0.58
ZIP -0.017 -0.019 -0.02 0.16 0.16 0.16 022 0.22 0.22 -0.017  -0.019 -0.02
HBZIP -0.017 -0.04 -0.052 0.1 0.1 0.1 0.14 0.14 0.14 -0.017 -0.04 -0.052
PMM -0.006  -0.008 -0.007 012 0.12 012 0.16 0.16 0.16 -0.006 -0.008 -0.007
MIDAS 0.035 0.024 0.016 0.14 0.14 0.15 0.19 0.19 0.19 0.035 0.024 0.016
Hot deck -0.037 -0.036 -0.036 0.1 0.1 0.1 0.14 0.15 0.14 -0.037 -0.036 -0.036
0.7 Complete -0.002 -0.008 -0.005 015 0.15 0.15 021 021 0.21 -0.002 -0.008 -0.005
Naive -0.093 -0.096 -0.095 0.15 0.15 0.15 022 022 0.22 -0.093 -0.096 -0.095
Normal 0.786 0.786  0.794 022 022 0.22 082 0.82 0.83 0.786  0.786  0.794
Poisson 0.813 0.977 1.136 021 0.19 0.18 0.85 1 1.15 0.813 0977 1.136
2P -0.032 -0.041 -0.032 024 024 0.24 034 034 0.33 -0.032  -0.041 -0.032
HBZIP -0.003 -0.033 -0.049 0.16 0.15 0.15 022 021 0.21 -0.003 -0.033 -0.049
PMM -0.03 -0.029 -0.026 0.17 0.17 0.17 024 0.24 0.23 -0.03 -0.029 -0.026
MIDAS 0.103  0.073  0.046 032 033 034 043 044 0.44 0.103  0.073  0.046
Hot deck -0.029 -0.034 -0.033 0.15 0.15 0.15 021 021 0.21 -0.029 -0.034 -0.033

Table 3.6: Simulation results for habitat occupancy rate estimates for all 3, and ¢, when
visibility follows the bounded model.

3.4. Conclusion

We examined the performance of various multiple imputation for measurement error cor-
rection methods via a simulation study. The results suggest that the methods’ performance
for estimating total abundance and occupancy rate varies mostly by visibility mechanism
and sparsity of the data. The HBZIP model performs well when the actual visibility mech-
anism is consistent with the assumed visibility model; therefore, it is the best imputation
model when the actual visibility mechanism is linear. However, when visibility is not linear
and the data are not highly sparse, PMM MIDAS outperforms the other methods with low
bias and near nominal confidence interval coverage. Furthermore, when visibility is not lin-
ear and the data are highly sparse, the best imputation model is HBZIP when visibility is
discrete, and hot deck when visibility is bounded. Finally, the normal imputation model has
been shown to be quite effective overall for estimating total abundance, but along with the

Poisson model, should be avoided for occupancy rate estimation.
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Finally, as discussed in the previous paragraph, estimates from the HBZIP method are
shown to be sensitive to visibility model misspecification. Hence, a more flexible method is
necessary to improve the robustness of the method against visibility model misspecification.
In the next chapter, we present a Bayesian averaging method which can be used to accommo-
date visibility model uncertainty and mitigate the impact of visibility model misspecification

for estimating total abundance and habitat occupancy rate.
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Chapter 4
Bayesian Model Averaging Adaptation

The performance of the HBZIP model, based on simulation results in Chapter 3, is
sensitive to visibility model specification. Within the HBZIP model, the relationship between
turbidity and visibility rate is assumed to be linear, though they may be monotonically
related. The analyst may examine the actual visibility mechanism manually using a graphical
approach and determine the appropriate visibility model. However, the true visibility model
is not always apparent, and the chosen visibility model if determined manually will be

subjective and may differ between analysts.

The analyst may also perform a goodness-of-fit test such as Pearson Chi-square and
Hosmer—Lemeshow (Hosmer et al., 1997) to assess the appropriateness of the visibility model.
However, such preliminary tests can be too stringent; violation of the model assumption does
not necessarily invalidate the main objective of the analysis, which in our case is for inference
about population parameters. Furthermore, the actual visibility mechanism also varies by
survey operation and species. For example, the relationship between visibility rate and
turbidity level in video transect surveys of red snapper may be different from the relationship
between visibility rate and visual obstruction coverage, a measure of visual clarity in aerial
survey of moose. Hence, a more flexible approach which can accommodate the uncertainty

around the visibility model is necessary.

To account for the uncertainty in the visibility model and reduce the impact of model
misspecification we incorporate Bayesian model averaging (BMA) into the HBZIP model.
BMA allows several visibility models to be included in the imputation model and assigns

weights to the different models based an assessment of model fit. Within the BMA frame-
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work, this is done by averaging the posterior distribution of the parameter of interest under
each of the considered models and weighting them by the posterior probability of the model
being the correct one. For example, suppose we are interested in the parameter A and
consider My, Mo, .., M. as possible models for A. Following Hoeting, Madigan, Raftery, &

Volinsky‘s (1999) notation, the posterior distribution of A is

K
P(AID) = 3" P(AMy, D)P(My|D). (4.1)
k=1

Therefore, the posterior probability of M} being the right model is

P(D|M;,) P(M)

P(My|D) = >, P(DIM;)P(M;)

(4.2)

The analyst may then assign the appropriate priors for P(My) based on their knowledge
about the true model or assign a vague prior so that P(Mj|D) is dominated by the likelihood

of the data.

4.1. BMA Application on the HBZIP Model

Recall from (2.11), we defined n; = logit(F;) to be the logit model for visibility rate
within the HBZIP model. So far, we have only considered one visibility model and made
the assumption that logit(F;) and turbidity level (7;) level are linearly related such that
logit(P;) = 6,4+ 01T;. In other words, this is equivalent to claiming that the pre-selected
linear model is the correct model with probability one. In this section we incorporate BMA
and consider two visibility models: linear and non-linear. Let ny; = logit(Py;) be the kth

visibility model; we define the linear model (M;):

T
My : N = 910 + 91110g (1 —ZT‘) (4.3)
i
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where 01, and 011 denote the intercept and slope in the linear model. Under M; we assume
that visibility rate and turbidity level are linearly related in the logit scale. Similarly, this
means that visibility rate in its raw scale is a monotonic function of the turbidity level. The

non-linear model (Ms) is defined by:

Mo i1 = 020 + To<tj<e1 021 + Loy <t;<en 002 + Loy <ti<cy 023 4 Loy <ty <1024 (4.4)

Under My, visibility rate is a piecewise function of turbidity level. Depending on their value,
turbidity levels are divided into four intervals separated by three cutoff points (¢, k=1,2,3).
The effect of turbidity level within each interval is constant and denoted by 021,622,023, 6024
respectively. In the model, priors for the cutoff points are assumed to follow a uniform
distribution subject to the constraint 0 < ¢; < co < ¢3 < 1. Therefore, the cutoff points are

not pre-determined by the analyst, rather maximized based on the likelihood of the data.

Figure 4.1 illustrates the various relationships between visibility rate (P) and turbidity

level (T'), based on different values of 61, and #11. As seen in the figure, location of the
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Figure 4.1: Relationship between turbidity and visibility rate under the linear model as-
sumption.
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inflection point, the point at which the curve changes direction (i.e. from concave upward
to concave downward), indicated by the black dot, 