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Node elimination is a numerical approach for obtaining cubature rules for the approx-

imation of multivariate integrals over domains in Rn. Beginning with a known cubature,

nodes are selected for elimination, and a new, more e�cient rule is constructed by iteratively

solving the moment equations. In this work, a new node elimination criterion is introduced

that is based on linearization of the moment equations. In addition, a penalized iterative

solver is introduced that ensures positivity of weights and interiority of nodes. We aim to

construct a universal algorithm for convex polytopes that produces e�cient cubature rules

without any user intervention or parameter tuning, which is re�ected in the implementation

of our package gen-quad. Strategies for constructing the initial rules for various polytopes

in several space dimensions are described. Highly e�cient rules in four and higher dimen-

sions are presented. The new rules are compared to those that are obtained by combining

transformed tensor products of one dimensional quadrature rules, as well as with known

analytically and numerically constructed cubature rules.
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Chapter 1

INTRODUCTION

1.1. Preliminaries

Let Ω be a domain in Rd. The goal of the construction of cubature rules is to determine

the nodes xk and weights wk in the cubature rule

∫
Ω

φ(x)w(x) dx ≈
n∑
k=1

φ(xk)wk, (1.1)

such that the rule is exact for multivariate polynomials of degree up to p

Pdp = span {xα : α1 + · · ·+ αd ≤ p} . (1.2)

Here, α is a multi index and xα = xα1
1 · · ·x

αd
d . The dimension of the linear space Pdp is

M = dim Pdp =

(
p+ d

d

)
.

From the viewpoint of numerics the monomial basis is ill-conditioned, and so we consider a

more general basis φ1, . . . , φM of Pdp, for instance, orthogonal polynomials. We set

Φ(x) =


φ1(x)

...

φM(x)

 , b =


∫

Ω
φ1(x)w(x) dx

...∫
Ω
φM(x)w(x) dx

 . (1.3)

Further, we write for the vector of nodes and weights, x ∈ Rdn, w ∈ Rn, respectively, and

Φ(x) =
[
Φ(x1), . . . ,Φ(xn)

]
∈ RM×n. (1.4)
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Exactness in Pdp means that the nodes and weights must be solutions of the moment equations

f(x,w) = Φ(x)w − b = 0, (1.5)

which is a polynomial system in N = (d + 1)n unknowns and M equations. The resulting

system

Φ(x)w = b (1.6)

has been researched extensively in the context of numerical integration [8, 51], and is known

in literature as moment equations [47, 50]. We write (1.5) in a more convenient form by

combining nodes and weights into one vector. Thus we let

zk = [xk, wk] ∈ Rd+1 and z = [z1, . . . , zn]T ∈ RN . (1.7)

Since we are looking for nodes in the domain Ω that have positive weights, a feasible cubature

rule is in the set

Zn =
{
z ∈ RN : f(z) = 0, xk ∈ Ω, wk ≥ 0, 1 ≤ k ≤ n

}
. (1.8)

Collectively these conditions are called PI constraints, meaning positivity of weights and

interiority of nodes.

One-dimensional integration is well studied and optimal quadrature1 rules have been

known since 19th century [52]. They are known as Gauss quadrature rules or Gaussian

quadrature. Besides optimality and their analytical construction, Golub and Welsch [23]

have shown that Gauss rules can be computed by �nding eigenvalues of tridiagonal matrices.

This appears to be strictly limited to one-dimensional case.

We call the rule optimal if it has as few number of nodes as possible for a given degree

of accuracy. However, what is the minimal number of nodes required to achieve a given

1In one-dimensional case, numerical approximation of the integral is commonly referred as quadrature,
whereas in two and higher dimensions we refer to it as cubature.
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degree of accuracy in two and higher dimensions is an open research question [39, 40]. In

addition, deriving cubature rules analytically becomes more challenging with the increase of

dimension [19, 50, 12]. Instead, numerical approaches are sought.

One approach is to take the tensor product of one-dimensional rules(typically Gauss-

Legendre rules), and compute n-dimensional tensor product to obtain rule over an n-dimensional

cube. However, the resulting rules contain substantially more unknowns than equations and

are suboptimal in terms of e�ciency. Suboptimality increases with dimension.

Besides the exponential growth of the tensor product rules, their applicability is limited

only to a narrow family of domains, such as n-dimensional cubes and simplexes. Other

fundamental approaches include extensively researched Monte Carlo based methods and

Smolyak rules[45]. Monte Carlo methods are often used for computing integrals in very high

dimensions to overcome the curse of dimensionality of the numerical cubature [29, 12, 5]. On

the other hand, methods based on Smolyak Quadrature provide an e�ective alternative to

Monte Carlo methods[21]. However, such approach is limited to hypercubes. In this work,

moment equations approach is pursued.

Although optimal number of nodes n is generally unknown, a common assumption is that

optimal or near optimal cubature rules are achieved when the polynomial system in (1.5) is

satis�ed when the number of equations equals the number of unknowns, i.e. N = M . Based

on this assumption, an optimality index for a cubature rule with n nodes is de�ned as the

ratio

iopt =
n

nopt
(1.9)

where

nopt =

⌈
dim Pdp
(d+ 1)

⌉
. (1.10)

If iopt = 1 is achieved, the rule is considered optimal. In some cases, it is possible that

(1.5) has solution with iopt < 1. Since this appears to be an exceptional case, this is not

considered further in this thesis.
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In the one-dimensional case, it is proven that Gauss-Legendre are the optimal rules with

respect to the weight function w(x) = 1, and its e�ciency index is iopt = 1. Thus, (1.10)

can also be viewed as the generalized assumption about the optimality based on dimension

d = 1. There has been an extensive research on deriving optimal cubature rules for the case

that Ω is a domain in two dimensions, squares and triangles in particular[43, 27, 28, 22, 15].

In the recent years, various approaches have been investigated to achieve e�cient rules in

three dimensions[31, 35, 16]. However, research of high higher-dimensional rules is much

more sparse and poses signi�cant challenges[12]. In this work, we focus on integration over

three, four, �ve, and six-dimensional polytopes.

The main polytopes of interest are n-dimensional cubes, tetrahedra, tensor products of

these domains, and a 3-dimensional pyramid. To be precise, they are de�ned as follows

P3: 3-dimensional pyramid : P3 =
{
x ∈ R3 : 0 ≤ x1 ≤ 1, 0 ≤ x2, x3 ≤ x1

}
,

Cd: d-dimensional cube : Cd =
{
x ∈ Rd : 0 ≤ xk ≤ 1, k = 1...d

}
,

Td: d-dimensional simplex(tetrahedron) : Td =
{
x ∈ Rd : 0 ≤ xd ... ≤ x1 ≤ 1

}
,

Ci × Tj : tensor product of Ci and Tj : Ci × Tj =
{
x ∈ Ri+j : x = (x1, x2), x1 ∈ Ci, x2 ∈ Tj

}
,

Ti × Tj : tensor product of Ti and Tj : Ti × Tj =
{
x ∈ Ri+j : x = (x1, x2), x1 ∈ Ti, x2 ∈ Tj

}
.

1.2. Motivation

High-dimensional numerical integration is an important tool for solving numerous science

and engineering problems [39]. In practice, �nding integrals analytically is often challenging

or intractable. For example, Finite Element method(FEM) requires computing mass and

sti�ness matrices, where each element of a matrix is an integral. Similarly, Boundary Element
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Method(BEM) is based on computing a matrix of multi-dimensional integrals 2 [48].

In the case of the BEM, singular integrals arise, which can be treated by applying singu-

larity removing transformations. They result into integrals over four-dimensional polytopes,

such as tensor products of cubes and tetrahedra [41]. For Galerkin discretizations of frac-

tional PDEs, similar transformations can be applied, which result in four or six dimensional

polytopes [20].

Problems in FEM are often solved in two and three-dimensional space, and therefore

require computing double and triple integrals [31]. Although higher-dimensional FEM is

limited in use due to implementation challenges, it is a promising tool for solving space-time

problems in three dimensions, which require four-dimensional integration[17]. Over the last

two decades, of special interest are 4D simplex elements [33]. Moreover, these challenges are

gradually improved due to progress in technology[19].

Cubes and tetrahedra are of foundational importance in numerical integration. High-

dimensional tensor product domains arise in application of BEM, and therefore are directly

relevant to our work. We did not initially intend to study pyramid, but it is used to show the

generality of our algorithm and that it has potential to be generalized well to other domains.

1.3. Contributions

Node elimination algorithm is an iterative procedure, which was successfully applied to

squares, cubes, and triangles[50]. Subsequently, more work has appeared to use variants of

the node elimination algorithm to derive rules over two-dimensional polygons and tetrahedra.

However, our experiments have shown that its e�ciency deteriorates in higher dimensions.

In addition, the applicability of the original approach quickly becomes limited due to high

computational cost. Therefore, the goal of this work is to formulate a new node elimination

algorithm that would generalize well in four and higher dimensions without compromising

e�ciency in two and three dimensions.

2In many cases, quadratures in FEM calculations can be carried analytically, but the case of non-constant
coe�cients or curvilinear elements one must resort to cubature.
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Node Elimination starts with a known sub-optimal rule(e.g. tensor product rule) and

then eliminates nodes using a predictor and corrector procedure. The predictor step aims to

produce an accurate approximation to the cubature rules with one fewer node, whereas the

corrector step is a nonlinear solver that uses initial guess from predictor to �nd the exact

cubature using moment equations. For both of these steps, we will introduce constrained

optimization techniques.

Predictor There are multiple ways to choose the criterion for eliminating a node in the

predictor step. One way is to use the signi�cance index originally introduced in [50], which

will be described in Chapter 3. Instead of signi�cance index, we use a predictor based on

the linearization of the moment equations, which produces highly accurate initial guesses.

Corrector Due to increasing size of the nonlinear system in higher dimensions, �nding

solutions subject to constraints in (1.8) becomes increasingly di�cult. To address that,

a penalized Newton's method is introduced, which enforces the penalty if the Newton's

update tends towards the boundary of Ω and if weights tend to zero. Such strategy is not

only bene�cial for solving the given nonlinear system, but it also improves the distribution

of nodes and weights, allowing to successfully eliminate more nodes in the long term.

Computational cost High computational cost is addressed by recursively reusing lower

dimensional cubature rules obtained by means of node elimination. A tensor product of the

interval and d−1 dimensional domain is combined to obtain the initial guess for the domain

of dimension d. For tetrahedra, pyramids, and other polytopes, the Du�y transformation is

used to map the resulting tensor product to the desired domain.

Software We present and describe object oriented and parallel implementation of a nu-

merical integration package gen-quad. Based on newly introduced features, it is capable of

computing cubature rules of arbitrary degree of precision and dimension for various poly-

topes.
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In theory, the degree and dimension in our implementation are arbitrary. In practice,

however, our algorithm is limited to moderate dimensions(six or seven). To address rapidly

growing problem in higher dimensions, the package is parallelized using OpenMP and C++

programming language. After describing implementation, results for multiple domains in

di�erent dimensions are compared to related publications. To conclude, possibilities for

further generalization of the algorithm to even higher dimensions and broader family of

polytopes are discussed.
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Chapter 2

Overview

Node Elimination Algorithm is an iterative procedure for obtaining cubature rules via

the process of eliminating nodes. Given a suitable initial guess of a quadrature rule, more

e�cient rules are obtained by eliminating a node and solving the nonlinear system (1.5),

with the goal of eliminating as many nodes as possible. In brief, Node Elimination can be

summarized as follows:

� Compute the starting initial guess (preferably analytical) and run iterative Node Elim-

ination Algorithm.

� At each iteration of the node elimination, generate a set of initial guesses by eliminating

a node.

� Solve the resulting nonlinear system of equations with one of the initial guesses from

the set.

� Exit when optimum has been reached or no more nodes can be eliminated.

Figure(1) illustrates one iteration of the algorithm over a unit square. It is important to

note that successful cubature rule must satisfy PI constraints.

A combination of the node elimination and solution of the nonlinear system forms a

predictor-corrector type approach. Therefore, to maximize successful eliminations, we aim

to optimize predictor-corrector algorithm as a whole, rather than each one at a time. To

achieve that, similar constrained optimization techniques will be used for both the node

elimination strategy(predictor) and nonlinear solver(corrector).
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Figure 2.1. One step of the Node Elimination Algorithm over Ω = C2.

2.1. Advantages

The main advantage of the Node Elimination algorithm is its �exibility. One can start

with a starting initial guess that is suboptimal in terms of e�ciency, but can be easily found

either numerically or analytically. In fact, the initial guess does not even have to be exact,

since it can be corrected by a nonlinear solver. However, we ensure that initial guess is

always analytical in a sense that polynomial basis Sdp is integrated exactly.

Although numerous possibilities of eliminating a node complicate determination of the

optimal elimination strategy, they provide freedom for selecting alternative solutions if one

or multiple node eliminations did not succeed. For example, depending on the elimination

algorithm, O(n) or even O(n2) guesses due to eliminating any of the n nodes are generated.

It will be shown that under suitable metric and e�ective algorithm, only a small subset of

these guesses should be considered. For example, initial cubature guesses with nodes farthest

away from the boundary of the domain or closest to the exact cubature rule are conducive

to solving the moment equations.

Given some information about the domain of interest, a single approach is used to tackle
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cubature rules of di�erent degrees, dimensions, and various domains. For example, eliminat-

ing a single node without moving other nodes can be applied to arbitrary domain. Similarly,

linear inequality constraints of a polytope can be utilized to reuse the node elimination al-

gorithm for any convex polytope. The main goal of this work is to maximize genericity in

a sense that e�ciency of the �nal cubature rule is not compromised by applying the same

algorithm to multiple domains.

2.2. Challenges

One of the challenges at each iteration of the algorithm is to choose the criterion that

determines which of the n nodes is eliminated. Another challenge is to solve the resulting

nonlinear system in a way that would be bene�cial for the subsequent iterations of the

node elimination. In other words, we are interested not only in the solution of a particular

nonlinear system, but also how the nodes and weights evolve as a consequence of solving

one nonlinear system after another. Final success of the algorithm can vary considerably

depending on the choice of the initial cubature.

On the other hand, solving the nonlinear system of moment equations under constraints

is a challenging problem on its own. The corrector step is based on solving the system using

Gauss-Newton method. It has the advantage of a quadratic convergence yet is less expensive

than its popular alternative, Levenberg-Marquardt. However, it is only locally convergent,

hence we must always start close to the solution of the system.

Intuitively, one could consider brute-force approach, i.e. solve the nonlinear system corre-

sponding to each of the n initial guesses at the �rst iteration, then for all successful solutions

repeat that in the subsequent iteration, and so on. However, given that nonlinear sys-

tem itself becomes increasingly expensive with the increase of degree and dimension, such

approach would quickly become unfeasible. Besides, it would hardly yield any useful infor-

mation about the properties of the optimal cubature rules and how to obtain them in higher

dimensions. Instead, displacement and relationship between nodes across multiple iterations

should be investigated in more detail. In the following section, more systematic approaches
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to eliminating a node are considered.

2.3. Strategies

The original strategy in[50] is to eliminate a node and keep other nodes as they are. The

signi�cance index is de�ned as either

sj = wj

n∑
i=1

φ2
i (xj), j = 1, ..., k,

or

sj =
n∑
i=1

φ2
i (xj), j = 1, ..., k.

Signi�cance indices are sorted in increasing order. The idea is that the least signi�cant index

corresponds to the node that contributes to the cubature the least, and therefore is a good

candidate for elimination.

One could also eliminate a node by merging two nodes

x̂ij =
xi + xj

2

and adding corresponding weights

ŵij = wi + wj.

In the node merging case, the analogue of signi�cance index is the distance between xi and

xj. The smaller the distance, the more they resemble the behavior of a single node, which

improves accuracy of the initial guesses.

Both strategies have the desirable property that nodes and weights of the initial guesses

satisfy constraints. In addition, they have a relatively low computational cost. However, they

produce guesses that are usually farther from solution manifold than we would want, thus the

corrector step may need many iterations to converge or may not converge at all. Instead, we

formulate optimization procedure that is based on linearizing the solution manifold, which
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yields more accurate initial guesses. However, not all of the generated guesses are guaranteed

to satisfy the constraints. Therefore, we have to add a penalty term. We will show that in

higher dimensions adding constraints is advantageous not only for eliminating one node at

a time, but also for maximizing the e�ciency index of the �nal cubature.

2.4. Arbitrary Dimension

If a suitable guess of degree p is found, the algorithm is independent of the degree. To

extend the algorithm for a particular domain to an arbitrary dimension, a suitable starting

initial guess and polynomial basis must be constructed. To construct a polynomial basis, a

set of multi-indices

Sdp = {α : α1 + · · ·+ αd ≤ p}

must be generated and applied to desired polynomials. It will be shown that such set is

obtained by means of nested recursion. The number of basis functions corresponds to the

size of the set, which is

Dim(Pdp) =
(d+ p)!

d!p!
.

One way to compute a starting initial guess for cubature over a cube is to compute a

tensor product of Gauss-Legendre nodes, which results in ddeg+1
2
edim nodes and weights. Such

approach is prohibitively expensive in higher dimensions, and hence a recursive procedure

is used to reduce the initial number of nodes. For other domains, such as tetrahedron or a

pyramid, an appropriate variant of the Du�y transformation will be used.
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Chapter 3

Numerical Methods

In this chapter a predictor-corrector approach is described in detail. Based on linear

inequality constraints, a generic approach is formulated to address various domains e�ciently.

In section 3.1, we de�ne linear inequality constraints and how they are applied to the nodes

of a cubature. Sections 3.2 and 3.3 describe predictor and corrector, respectively. In the last

section, recursive procedure for improving e�ciency of the initial guess is presented.

3.1. Linear Inequality Constraints

Consider a node x ∈ Rd. We require that cubature rule q with n nodes is valid only if

all nodes are inside of the domain Ω. Since in our work Ω is a convex polytope, it can be

described by a system of linear inequalities

Ω = { x ∈ Rd : Ax ≤ b }.

Therefore, for each node x ∈ Rd of q, we can express these conditions in terms of inequality

constraints

xk ∈ Rd : Axk ≤ b, k = 0, ..., n,

where the matrix A and the vector b de�ne constraints for a speci�c polytope. In addition,

we require all weights of q to be nonnegative

wk ≥ 0, k = 0, ..., n.
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Collectively, they are referred to as PI constraints, meaning that weights are positive and

nodes are inside Ω. We combine these constraints and write

zk ∈ Rd+1 : Âzk ≤ b̂, k = 0, ..., n, (3.1)

where

zk =

 wk

xk

 , Â =

 −1
¯
0T

¯
0 A

 , b̂ =

 0

b

 .
Figure 3.1 illustrates the relationship between nodes and the matrix A for C2.
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Figure 3.1. Example for Ω = C2. Nodes that are inside C2(marked in red) satisfy inequality
constraints strictly: Ax < b, some nodes are on the boundary: Ax = b, and some nodes are
outside of the domain and do not satisfy constraints: Ax > b.

If

z =
[
z1, z2, . . . , zk] ∈ R(n+1)d,
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then a set of valid cubature rules is

Zn = {z ∈ R(n+1)d : φ(x)w = b and zk satisfy (3.1)}.

3.2. Penalized Least Squares Newton Method

As we already mentioned, the node elimination procedure is a predictor-corrector type

method. In this section we describe the corrector step, which for a point z̃ 6∈ Zn, attempts

to �nd a nearby point on the solution manifold, i.e., z̄ ∈ Zn.

3.2.1. Unconstrained Least Squares Newton

A common approach to solve an unconstrained nonlinear system is to use the Least

Squares Newton (or sometimes Gauss-Newton) algorithm. It bene�ts from a rapid conver-

gence and typically requires few iterations, but is not robust in a sense that it requires a

su�ciently accurate initial guess to converge. A more robust approach is the Levenberg-

Marquardt algorithm, which has a slower, but comparable rate of convergence[7]. It is

especially useful if the initial guess is far from the solution. However, for our application

Levenberg-Marquardt has a higher computational cost due to the underdetermined system

of equations. In addition, the corrector ensures that the initial guess is su�ciently accurate

and thus Least Squares Newton is a solver of choice.

The goal of the nonlinear solver is to solve f(z) = 0 or minimize the residual ‖f(z)‖.

In the case of an overdetermined system, there is typically no exact solution to f(x) = 0,

whereas there are in�nitely many solutions for an underdetermined system. Since our system

is typically underdetermined, the solutions of f(z) = 0 are on a lower dimensional manifold.

We will exploit the availability of multiple solutions and select the one that is more likely to

produce the most e�cient �nal cubature rule. Due to double precision arithmetic, we accept

the solution when the residual is less than 10−14.
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Each iteration of the Gauss-Newton method consists of updating the current iterate using

the least squares solution of the linear system

J∆z = f , (3.2)

where J is the Jacobian of f(w,x)

J(w,x) =
[
φ1(x) . . . φM(x) w1φ

′(x) . . . wmφ
′
M(x)

]
. (3.3)

The solution of 3.2 is given by applying the pseudo-inverse ∆z = JT
(
JJT

)−1
f , which is

illustrated in �gure 3.2. Therefore, the update is

znew = zcur + ∆z = zcur − JT
(
JJT

)−1
f , (3.4)

where f := f(z̃) ∈ RM , J := Df(z̃) ∈ RM×N is the Jacobian of f(z̃), z is a vector of nodes

and weights. If Newton's method converges and constraints are satis�ed, z is a new cubature

rule.

Although the unconstrained Gauss-Newton method proved to work well for eliminating

nodes over two and three-dimensional domains, complications arise in higher dimensions.

As the size of the system grows, satisfying inequality constraints for all nodes and weights

becomes increasingly di�cult. During one of the iterations of the Newton's method, one or

more nodes or weights tend to violate inequality constraints. To that end, additional penalty

term will be examined in section 3.2.3.

3.2.2. Damping

Since �nding solutions that satisfy constraints for all nodes and weights becomes more

challenging for larger problems, alternatives to unconstrained Gauss-Newton must be sought.

Consider a damped version of the update

α∆z = αJT
(
JJT

)−1
f , 0 < α ≤ 1. (3.5)
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Figure 3.2. Two-dimensional illustration of the corrector step. The straight line represents
the tangent space of f at z̃, whereas curved line is a manifold of feasible solutions. Least
squares Newton attempts to �nd the solution orthogonal to the tangent space. If successful,
convergence is expected to be quadratic. However, convergence and PI criteria are not
guaranteed.

The idea is to choose α so that nodes stay further from the boundary. We de�ne dist(z) to

be the distance of the constraint that is closest to the boundary

dist(z) = min
i

min(b− Azi), i = 1, ... n. (3.6)

Based on that, the distances of the current iterate and the update are

dist1 = dist(zcur), (3.7)

dist2 = dist(zcur + ∆z), (3.8)

and α is de�nes as


α = dist2

dist1
if(dist1 > dist2),

α = 1 otherwise.
(3.9)
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The interpretation is that if the subsequent iterate is further inside of the domain than the

previous iterate, it is a desirable search direction, and no damping is needed. On the other

hand, if it travels towards the boundary, damping is introduced. Figure 3.3 is a simpli�ed

representation of the procedure. It shows how damping is computed and applied to the node

that ends up closest to the boundary, whereas it is applied to all the remaining nodes as

well. Reciprocal ensures that stronger damping is applied the more update travels towards

the boundary.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(0.75,0.75)

(0.95,0.95)

Figure 3.3. Example for Ω = C2. In�nity norm of the distance is 5 times smaller for the
update, thus α is set 0.05/0.25 = 0.2 Damping with respect to 2-norm is a valid alternative.

3.2.3. Penalty Term

The damping strategy produced more reliable results in higher dimensions, especially for

more involved domains, such as C3 × T3 or T3 × T3 and reduced the number of nodes in

the �nal quadrature rule in many cases. However, e�ciency index continued to deteriorate

considerably in higher dimensions, hence the improved version of a penalty was introduced.
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With z de�ned as in (1.7), we set

φΩ(z) =
n∑
j=1

[
ϕΩ(xj) + log

1

wj

]
, (3.10)

where ϕΩ(·) is a function that is smooth in Ω and has a logarithmic singularity on the

boundary of Ω. For instance, if Ω is a convex polytope given by the linear inequalities, then

we set

Ω =
{
x ∈ Rd : Ax ≤ b

}
⇒ ϕΩ(x) =

`A∑
`=1

log

(
1

b` − aT` x

)
,

where aT` are the rows of A and `A is the number of rows. For domains di�erent from

polytopes, other penalty terms have to be constructed. For instance, if Ω is a sphere, the

penalty term is

Ω =
{
x ∈ Rd : ‖x‖2 ≤ 1

}
⇒ ϕΩ(x) = log

(
1

1− ‖x‖2

)
.

To derive an iterative solver that maps z̃ 6∈ Zn to z̄ ∈ Zn let ∆z = z̃ − z̄, and consider

the constrained optimization problem

min
∆z

{
1

2
‖∆z‖2 + t φΩ(z̃ + ∆z), z̃ + ∆z ∈ Zn

}
. (3.11)

Here, the parameter t ≥ 0 controls the strength of the penalty term. We will provide more

detail about how to determine t later on.

Now linearize (3.11) as follows

min
1

2
‖∆z‖2 + tgT∆z

∆z : f(z̃) + J∆z = 0,

(3.12)

where f := f(z̃) ∈ RM , J := Df(z̃) ∈ RM×N is the Jacobian of f(z̃) and g := ∇φΩ(z̃) ∈ RN

is the gradient of the penalty term. Using Lagrange multipliers it follows that (3.12) is
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equivalent to the linear system

∆z + JTλ = −tg

J∆z = −f ,

where λ ∈ RM is the Lagrange multiplier. Eliminating λ gives the solution of (3.12) in the

the normal equations form

∆z = −JT
(
JJT

)−1
f − t

(
I − JT

(
JJT

)−1
J
)

g,

= ∆zf + t∆zg.

(3.13)

Here, ∆zf = −JT
(
JJT

)−1
f is the least squares solution of the underdetermined sys-

tem f + J∆z = 0, i.e., the solution of (3.11) when t = 0. The second term ∆zg =

−
(
I − JT

(
JJT

)−1
J
)

g is the orthogonal projection of −g onto the nullspace of J . The

form in (3.13) makes clear that the solution of (3.12) for any parameter t can be obtained

by computing ∆zf and ∆zg independently of t and then forming the appropriate linear

combination.

For numerical purposes it is better to compute these two vectors with the LQ factoriza-

tion. If J = LQ is the economy size factorization, i.e., L ∈ RM×M is lower triangular and

Q ∈ RM×N has orthonormal rows, then

∆zf = −QTL−1f ,

∆zg = −(I −QTQ)g.
(3.14)

Once ∆zf and ∆zg have been computed, the Newton update is

z̃← z̃ + ∆zf + t∆zg. (3.15)

We now describe how the parameter t is determined. It is determined such that the nodes

of the next iterate have maximal distance from the boundary and weights are as large as

possible. We focus on the case that Ω is a convex polytope given by the linear inequalities

20



Ax ≤ b.

Substitution of the j-th node and weight of the Newton update (5.3) into the linear

constraints results into two types of inequalities

aT` (x̃j + ∆xfj )− b` + taT` ∆xgj ≤ 0

−w̃j −∆wfj − t∆w
g
j ≤ 0

for 1 ≤ j ≤ n, 1 ≤ ` ≤ `A. Here x̃j, ∆xfj and ∆xgj are the nodal components and w̃j,

∆wfj and ∆wgj are the weights of the vectors z̃, ∆zf and ∆zg, respectively. We write these

conditions collectively as

mk(t) = βk + tαk ≤ 0, 1 ≤ k ≤ (`A + 1)n, (3.16)

where the αk's list all inner products aT` ∆xgj and all ∆wfj 's and the βk's are de�ned analo-

gously.

Algorithm 3.1 �nds the value of t that minimizes the maximum over k for this family of

straight lines. The algorithm starts with the maximum at t = 0 and follows the largest line

until it intersects with another line with positive slope.

Algorithm 3.1 t = 0

k = argmax
j

βj

while αk < 0 do

Find k∗ = argmin
k
{tjk, tjk > t}

t = tk∗k

k = k∗

end while

If successful, the algorithm returns the t-value for which the min max of the family of

straight lines is achieved. This guarantees that the next iterate has maximal distance from

the boundary. Note that even though z̃ satis�es the constraints, the least squares solution

z̃ + ∆zf may not. Therefore, it is possible that the returned value of mk(t) is positive in
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which case at least one node does not satisfy the constraints. In the latter case one can resort

to a damped Newton method, where ∆zf is multiplied by a small factor. The theoretical cost

of this algorithm is O(`2
An

2). However, in practice, the while loop terminates after a small

number of steps, thus its computational cost is closer to O(`An) and negligible compared to

the cost of computing the LQ factorization of the matrix J .

We have described algorithm 3.1 for a convex polytope. However, it can be modi�ed for

other integration domains as well. For instance, if Ω is a solid sphere then the constraints

result in a family of parabolas and completely analogous algorithm can be applied to optimize

the parameter t.

The constrained LS Newton method is summarized in algorithm 3.2.

Algorithm 3.2

while ‖f(z̃)‖ > TOL do

Setup f , g and J , and compute the LQ-factorization of J .

Calculate ∆zf and ∆zg in (5.4).

Determine t from algorithm 3.1.

Set z̃← z̃ + ∆zf + t∆zg

end while

3.3. Node Elimination

In this section we describe a method to reduce the number of points in a cubature rule

while maintaining its degree. It consists of determining points on Zn that intersect with the

coordinate planes wk = 0. Obviously, if a weight vanishes in (1.1), then the corresponding

node does not have to be included in the cubature rule (1.1). Thus we have found another

solution of (1.5) with n − 1 nodes that has the same degree of precision. The elimination

procedure is then repeated until no further can be found.

We start with a point z̄ on Z with all positive weights and use a predictor-corrector type

approach to �nd another point on Zn where one of the wk's vanishes. The predictor step

consists of linearizing f at z̄ and then computing the nearest points on the tangent space that
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intersect with the one of the hyperplanes wk = 0. Figure 4 illustrates the linearization for the

quadrature with two weights. The k-th node is then eliminated and the point z̃ is mapped to

Zn−1 using algorithm 3.2. The predictor-corrector method is restarted to eliminate further

nodes. This approach guarantees that all nodes remain in the domain and all weights are

non-negative.

Figure 3.4. Two-dimensional illustration of the predictor step. Solution manifold is linearized
by zeroing out one weight at a time.

We now describe the predictor step more detail. To obtain the tangent space of Zn at z̄

consider the linearization of the function f at z̄

f(z̄ + ∆z) = f(z̄) + J∆z +O(|∆z|2), slightly

where J = Df(z̄). Since the �rst term on the right hand side vanishes, the tangent space

is de�ned by z = z̄ + ∆z, where ∆z ∈ (J). Since the matrix J is underdetermined, this

nullspace is nontrivial. An orthonormal basis can be found with the full LQ-factorization of

J

J =
[
L, 0

] Q̃

Q̂

 , (3.17)
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where L ∈ RM×M is lower triangular, Q̃ ∈ RM×N and Q̂ ∈ RN−M×N . The rows of Q̂ form

an orthogonal basis of (J).

To eliminate the k-th node, consider the nearest point z̃ in the intersection of the tangent

space with the hyperplane wk = 0. If z̃ = z̄ + ∆z, then ∆z solves the optimization problem

min
1

2
‖∆z‖2 + tgT∆z

∆z : J∆z = 0

wk + ∆wk = 0.

Here g = ∇φΩ,k(z̄), where φΩ,k(·) is the penalty function that is obtained by excluding the

node k in the summation in equation (3.10).

The unknown ∆z can be expressed as a combination of the orthogonal basis of (J)

obtained from the LQ factorization in (3.17). Thus there is a vector ∆y ∈ RN−M such that

∆z = Q̂T∆y. Substitution of this vector leads to the optimization problem

min
1

2
‖∆y‖2 + t ĝT∆y

∆y : mT
k∆y = −w̄k.

Here mk is the column of Q̂ corresponding to the k-th weight, and ĝk = Q̂g. It can be seen

that the solution ∆yk of the above optimization problem is given by

∆yk = ∆yfk + t∆ygk, (3.18)

where

∆yfk = mk
w̄k

‖mk‖2

∆ygk =

(
I − mkm

T
k

‖mk‖2

)
ĝ,

and thus the predictor is

z̃k = z̄ + ∆zfk + t∆zgk,
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where ∆zf = Q̂T∆yfk and ∆zg = Q̂T∆ygk. The parameter t is selected to ensure maximal

distance from the domain boundary. If the domain Ω is a polytope, then this can be achieved

with algorithm 3.1.

We compute in a list predictors z̃k for all weights k ∈ {1, . . . , n}. The predictors that

satisfy the constraints and are be close to z̄ will be mapped on Zn−1. The next quadrature is

the solution that has the greatest distance to the boundary. The node elimination procedure

is summarized in algorithm 3.3.

Algorithm 3.3

Find a suitable initial cubature rule z̄.

while N > M do

Setup J , and compute the LQ-factorization.

for k=1:n do

Compute ∆zfk and ∆zgk in (3.3).

Compute t using using algorithm 3.1.

Set ∆zk = ∆zfk + t∆zgk and z̃k = z̄k + ∆zk.

end for

Sort the ∆zk's that satisfy the constraints such that

‖∆z1‖ ≤ ‖∆z2‖ ≤ . . . .

for k=1:K do

Eliminate the k-th node from z̃k.

Use algorithm 3.2 to map z̃k to z̄k ∈ Zn−1

end for

Stop if no z̄k ∈ Zn−1 could be found.

z̄← z̄k, where z̄k's nodes have the greatest distance to the boundary.

n← n− 1

end while

The main cost in this algorithm is to set up Jacobians and compute their QR factoriza-

tions.
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3.4. Computational Cost

We conclude this section with some implementation details and a comparison of the

computational cost with the algorithm in [50], referred here to as standard node elimination.

Most of the CPU time in our algorithm is spent in the corrector, in particular, the LQ

factorization of the Jacobian J which is needed in each iteration to obtain the vectors ∆zg

and ∆zf in equation (3.13). The cost of the factorization is O(MN2), while the additional

matrix-vector products in (5.4) to calculate ∆zf and ∆zg are of lower order. Note that the

values of n, N , M in our examples follow from the data displayed in the tables.

Standard node elimination only involves the vector ∆zf , but the additional cost for ∆zg

is negligible. Likewise, the determination of the parameter t in algorithm 3.1 involves only

lower order operations, and is also negligible.

The leading memory cost is storing the Jacobian J which is O(NM). Since standard

linear algebra packages overwrite this space, no additional storage is needed for the L and

Q matrices.

The predictor step involves another LQ factorization, as well as matrix-vector products

described in section 3.3. To bene�t from memory locality, they are expressed as a single

matrix-matrix product, which is O(N(N − M)n). Our predictor step is more expensive

than standard node elimination, where nodes are selected for elimination by computing the

Euclidean norms of the columns of the Jacobian matrix. However, the predictor is executed

less frequently than the iterations of the corrector step. Moreover, the approach based on

linearization provides a better initial guess, leading to fewer iterations in the corrector.

An additional factor that in�uences the overall CPU time is the number of predictors K

that are mapped on Zn in algorithm 3.3. In standard node elimination K = 1, but in our

experience the e�ciency of the �nal cubature rule is improved if K has a larger value in the

�nal stages of node elimination. We set with K = 3 in our experiments. Alternatively, one

could set K = 3 at the initial stages and end with K = 10. Since the predictor is dominant,

the cost of one elimination step is roughly K times the standard node elimination step.
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3.5. Strategies for the Initial Cubatures

So far, the discussion assumed that an initial cubature rule is known that may be sub-

optimal (i.e., it has more nodes than necessary), but has the desired degree. This section

describes how such an initial cubature can be obtained. Here the goal is to keep the number

of nodes low such that fewer elimination steps have to be taken and the cost of the linear

algebra in the initial stages of the algorithm is reduced.

The scheme is based on the fact that cubature rules for Cartesian product domains

Ω = Ω1 × Ω2 can be obtained by forming tensor products of cubature rules of Ω1 and Ω2.

Speci�cally, if {xn, wn} and {ym, vm} are cubature rules for Ω1 and Ω2 that are exact for Pd1p

and Pd2p , respectively, then {(xn,ym), wnvm} is a cubature rule that is exact for Pd1p × Pd2p .

Since this polynomial space is larger than Pd1+d2
p , the node elimination can be performed

with the tensor product rule as an initial guess.

3.5.1. Cd

We start the discussion with the case that Ω is the d-dimensional unit cube

Cd =
{

(x1, . . . , xd) : 0 ≤ xi ≤ 1, i = 0, . . . , d
}
.

If one were to use tensor products of degree-p Gauss Legendre rules as the initial quadrature,

one would obtain (bp/2 + 1c)d nodes. The rapid growth of this number makes this strategy

unfeasible even for moderate values of p and d.

Instead, our implementation uses an iterative scheme to obtain the initial guess for the

domains of interest, thereby signi�cantly decreasing the initial number of nodes. We build

the rule incrementally, by starting with C1×C1, and running node elimination. The resulting

rule is then tensored with the C1-rule to obtain an initial guess for C3. The scheme is repeated

until the desired dimension is reached. With this approach the number of nodes of the initial

guess in the last step is greatly reduced over a d-fold tensor product of rules for C1.
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r
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Figure 3.5. Tensor product of 2-D unit square and interval.

3.5.2. Sd

We now turn to the d-dimensional simplex

Sd =
{

(x1, . . . , xd) : 0 ≤ xd ≤ · · · ≤ x1 ≤ 1
}

and to Cartesian products of cubes and simplexes.

The well known Du�y transformation can be used to transform a cube into a simplex.

For the d+ 1-dimensional simplex it can be de�ned recursively as follows

x1 = ξ,

x2 = ξη1,

x3 = ξη2,

...

xd+1 = ξηd

(3.19)

Here ξ ∈ [0, 1] = C1 and η = (η1, . . . , ηd) ∈ Td. Thus (3.19) transforms C1×Td into Td+1 with

Jacobian J = ξd. Now Td can be transformed with another Du�y transform and repeating

this leads to a transformation from Cd+1 to Td+1. However, for the construction of initial

quadrature rules it is more convenient to work with one transformation at a time.

For instance, for the triangle (i.e. d = 1), we use Gauss-Jacobi rules for the integral over
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the (ξ, η) variables. Speci�cally, if

∫ 1

0

f(η)dη ≈
q∑
`=1

f(y`)v` and
∫ 1

0

f(ξ)ξdξ ≈
q∑

k=1

f(xk)w`

are the quadrature rules of degree p = 2q − 1 for weight function w(η) = 1 and w(ξ) = ξ,

respectively, then an integral over T2 can be approximated as follows

∫
T2

ϕ(x)dx =

∫ 1

0

∫ 1

0

ϕ(ξ, ξη)ξdηdξ ≈
p∑

k=1
`=1

ϕ(xk, xky`)wkv`. (3.20)

Note that the Jacobian ξ determines the choice of rule and a�ects the nodes xk and weights

wk. If ϕ ∈ P2
p, then (ξ, η) 7→ ϕ(ξ, ξη) is a polynomial in P1

p × P1
p and thus the quadrature

rule (3.20) is exact. This tensor product rule can now be used as the initial rule in the node

elimination procedure.

Similar to the cube, the d+ 1-dimensional simplex rule is build by recursion using previ-

ously generated rules. Thus, if {xk, wk} is a degree-p Gauss-Jacobi rule for
∫ 1

0
f(ξ)ξddξ and

{yl, vl} is a degree-p rule for Td, then

∫
Td+1

ϕ(x)dx =

∫ 1

0

∫
Td

ϕ
(
ξ, ξη

)
ξddηdξ ≈

∑
k,l

ϕ
(
xk, xkyl

)
wkvl

is a degree-p rule for Td+1.
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Figure 3.6. Du�y transformation from C2 to T2.
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3.5.3. Tensor Domains

For tensor products of cubes and simplexes the analogous procedures can be applied,

where some care must be a taken to use the appropriate Gauss-Jacobi rule to compensate

for the Jacobian of the Du�y transformation.

I C2 C2 C3 C3 C4 C4

T2 T2 T2C1 T2C1 T2C2 T2C2

T3 T3 T3C1 T3C1

T2T2 T2T2

NE NE NE
⊗I ⊗I ⊗I

NE NE NE

⊗T2

⊗I ⊗I

NE NE

NE

⊗I

D
u�y

D
u�y

Figure 3.7. Construction scheme for quadrature rules for the four dimensional polytopes C4,
T2 × C2, T3 × C1 T2 × T2

Figure 3.7 illustrates the procedure for various polytopes in four dimensions. It begins

with Gaussian cubature on the interval (shown in blue). Then the tensor product of Gaussian

quadrature on I ⊗ I is applied, which is an initial guess for C2. Subsequently, depending

on the domain of interest, we either proceed by running the Node Elimination algorithm,

or applying the Du�y transformation to obtain T2. The diagram below describes how to

derive initial guesses for C4, T2 × C2, T3 × C1 and T2 × T2, before performing the �nal

node elimination step, which is shown in red. The four �gures are presented for four and

six-dimensional cubes and simplexes to illustrate the improvements.

The number of nodes using the tensor product rule corresponds to ddeg+1
2
e nodes. It is

apparent that recursive initial guess leads to signi�cant improvement for all degrees and
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degree 5 7 9 11 13 15
tinit 81 256 625 1296 2401 4096
rinit 45 136 300 600 1064 1720

Table 3.1. Number of initial nodes using tensor product vs recursive procedure for C4.

degree 5 7 9 11 13 15
tinit 81 256 625 1296 2401 4096
rinit 42 128 285 558 1001 1656

Table 3.2. Number of initial nodes using tensor product vs recursive procedure for T4.

degree 5 6 7 8 9 10
tinit 729 4096 4096 15625 15625 46656
rinit 159 324 644 1095 1900 3072

Table 3.3. Number of initial nodes using tensor product vs recursive procedure for C6.

degree 5 6 7 8 9 10
tinit 729 4096 4096 15625 15625 46656
rinit 138 340 568 1200 1745 3222

Table 3.4. Number of initial nodes using tensor product vs recursive procedure for T6.
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domains. For brevity, only odd degrees are shown for dim = 4. We see that improvements

are greater for higher degrees. In six dimensions, results are even more exaggerated. Tensor

products grow rapidly and exhibit the curse of dimensionality. Recursive strategy alleviates

the rapidly growing problem. E�cient initial guesses is a direct consequence of e�cient rules

produced by the Node Elimination in lower dimensions.

3.5.4. Pyramid

For a pyramid, a cubature for C3 is computed �rst. Then the Du�y transformation and

appropriate Gauss-Jacobi rule are used to map C3 to P3. In particular, a transformation

from C3 to P3 is

x1p = x1c

x2p = x1cx2c

x3p = x1cx3c .

(3.21)
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Chapter 4

Preconditioning

A quadrature rule q is of degree p if it integrates Pdp exactly. This results in solving the

linear system (3.2) at each iteration of the Least Squares Newton. In this chapter, we will

show that choosing Pdp to be orthogonal is crucial for the conditioning of (3.2). Compared to

the standard monomial basis, the conditioning number is reduced considerably, which allows

to solve the problem with higher degrees and dimensions. Therefore, we derive and apply

the orthogonal bases for all polytopes of interest and refer to it as preconditioning.

4.1. Functions, Derivatives, Integrals

Recall that in the corrector step, a polynomial basis is used to solve the nonlinear system

Φ(x) =


φ1(x)

...

φM(x)

 , b =


∫

Ω
φ1(x)w(x) dx

...∫
Ω
φM(x)w(x) dx

 , (4.1)

f(x,w) = Φ(x)w − b = 0, (4.2)

where Φ(x) and b are polynomial basis functions and their integrals, respectively.

At each iteration of the Penalized Newton, we solve

∆z = −JT
(
JJT

)−1
f − t

(
I − JT

(
JJT

)−1
J
)

g,

= ∆zf + t∆zg,

(4.3)

where the Jacobian is de�ned according to (3.3). The derivatives of the basis functions in the

Jacobian can be computed either analytically or numerically using �nite di�erences, which
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is what we implemented in our codes. Another alternative is to use automatic di�erentiation

package. The integrals of b are computed either analytically or numerically by subdividing

the domain into simplexes(tetrahedra), in case if computing integrals analytically is prob-

lematic. If orthogonal basis is chosen, computing integrals is trivial.

4.2. Multi-Indexes

In d-dimensional space, the non-symmetric basis satis�es

Pdp = span {xα : α1 + · · ·+ αd ≤ p} .

We de�ne to a set of all multi-indexes for Pdp

Sdp = {α1, . . . , αd} , α1 + · · ·+ αd ≤ p.

In order to compute monomial or orthogonal basis, a corresponding multi-index must be

applied to each polynomial in the set. Multi-indexes can be computed on the �y for each

dimension, or more generally, by applying nested recursion. The algorithm is a variation of

recurrence algorithm in [49].

S1
p = (0,1, ...,p), p = (0,1, ...,deg)

for d=2:dim do

for p=0:deg do

Sdp = ∅

for α̂ ∈ Sd−1
deg−p do

Sdp .append([p, α̂])

end for

end for

end for

The algorithm starts with de�ning one-dimensional sequences of degree p, which corre-

sponds to a sequence (0,1, ...,p). Elements of the sequence are scalars. Multi-indexes in two
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and higher dimensions are constructed by reusing sequences of lower degree and dimension.

Each element is a d-dimensional multi-index. Essentially, Sdp is a matrix in RM×d, such that

M = Dim(Pdp) =
(d+ p)!

d!p!
.

For example, if d = 2, and p = 3, we get

M = Dim(P3
2) =

(2 + 3)!

2!3!
= 10,

and the corresponding matrix of multi-indexes is

0 0

0 1

0 2

0 3

1 0

1 1

1 2

2 0

2 1

3 0



.

Consequently, the monomial basis of Sdp is easily computed
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B(x, y) =



x0y0

x0y1

x0y2

x0y3

x1y0

x1y1

x1y2

x2y0

x2y1

x3y0



.

4.3. Monomial Basis

Monomial basis is convenient in a sense that the basis itself and its derivatives are in-

dependent of the domain. Integrals of monomials, on the other hand, do depend on the

domain but can be easily integrated by means of triangulation. For our domains of interest,

integrals of monomials are computed analytically and do not require triangulation.

However, the monomial basis is known to su�er from poor conditioning[24], which would

lead to instability in (4.3). The higher the degree and dimension of the problem, the worse

the conditioning becomes. Therefore, orthogonal polynomials are used to precondition the

linear system. They are heavily dependent on the domain and are known only for a small

subset of polytopes. Finding a universal preconditioner is the most challenging aspect of

applying the algorithm to an arbitrary domain. In the next section, analytical derivation of

orthogonal polynomials is described.

4.4. Orthogonal Basis

In two and higher dimensions, the analytical construction of orthogonal polynomials over

domains such as triangles, tetrahedra, hexagons, spheres, and other polyopes is a widely

studied research area [36]. Orthogonal polynomials are frequently used for preconditioning
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a linear system of equations[26]. Polynomials Pn and Pm(of degree n and m) are said to be

orthogonal with respect some weight function w(x) over a domain Ω if

∫
Ω

Pn(x)Pm(x)w(x)dx = 0 if n 6= m.

If Ω = [−1, 1], Legendre polynomials Lp(x) are orthogonal with respect to weight function

w(x) = 1, whereas Jacobi polynomials Jα,β(x) are orthogonal for w(x) = (1 − x)α(1 + x)β.

In fact, Legendre polynomials are a special case of Jacobi polynomials: Lp(x) = J0,0
p (x).

Appendix A describes these polynomials in more detail.

To solve (4.3), the orthogonal basis, its derivatives, and integrals over Ω must be com-

puted. The derivatives are obtained either by analytical or numerical di�erentiation. As

these polynomials become more complicated in higher dimensions, numerical di�erentiation

is used. Due to orthogonality, integration is trivial. Scaling the only nonzero integrand

results in

b =



1

0

0

...

0


.

We now present construction of orthogonal bases over high-dimensional polytopes w.r.t.

w(x) = 1.

4.4.1. Cube

Since Legendre polynomials are orthogonal over I, their tensor product

Lα(x) = Lα1(x1)Lα2(x2) ... Lαd
(xd), αi ≤ d

is orthogonal over Cd. However, the set of resulting multi-indexes includes redundant func-
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tions. Instead, it is su�cient to apply Sdp

ΦCd
α (x) = Lα1(x1) ... Lαd

(xd), α ∈ Sdp . (4.4)

4.4.2. Simplex

Orthogonal polynomials over arbitrary-dimensional simplex are more involved and require

a mix of Jacobi and Legendre polynomials. We will use induction to construct orthogonal

polynomials over an arbitrary simplex. For the two and three-dimensional cases, one can

refer to [34], and [42], respectively. We will show derivation in two dimensions �rst, since

proof in arbitrary dimension follows a similar pattern.

Suppose Pm = Jα,βm . Then the orthogonal basis over the unit triangle is given by

Φm,n(x1, x2) = P 0,0
m (

2x2 − x1

x1

)xm1 P
2m+1,0
n (1− 2x1). (4.5)

Proof: By de�nition of orthogonal polynomials, it is su�cient to show that

∫
T2

Φm,n(x1, x2)Φm′,n′(x1, x2)dx2dx1 =∫ 1

0

∫ x1

0

Φm,n(x1, x2)Φm′,n′(x1, x2)dx2dx1 =

c δm,m′δn,n′ , c 6= 0.

In other words, orthogonality implies
∫
T2

Φm,n(x)Φm′,n′(x)dx = 0 if m 6= m′ or n 6= n′.

From (4.5),

∫
T2

Φm,nΦm′,n′ =∫ 1

0

∫ x1

0

P 0,0
m (

2x2 − x1

x1

) xm1 P 2m+1,0
n (1− 2x1)P 0,0

m′ (
2x2 − x1

x1

) xm
′

1 P 2m′+1,0
n′ (1− 2x1)dx2dx1 =∫ 1

0

∫ x1

0

P 0,0
m (

2x2 − x1

x1

)P 0,0
m′ (

2x2 − x1

x1

) xm+m′

1 P 2m+1,0
n (1− 2x1) P 2m′+1,0

n′ (1− 2x1)dx2dx1 =
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Set u(x2) = 2x2−x1
x1
→ du = 2

x1
dx2, u(x1) = 1, u(0) = −1

2

∫ 1

0

(∫ 1

−1

P 0,0
m (u)P 0,0

m′ (u) du
)
P 2m+1,0
n (1− 2x1) P 2m′+1,0

n′ (1− 2x1) xm+m′+1
1 dx1 =

2

∫ 1

0

δm,m′ P
2m+1,0
n (1− 2x1) P 2m′+1,0

n′ (1− 2x1) xm+m′+1
1 dx1 =

Set v(x1) = 1− 2x1 → dv = −2dx1, v(0) = 1, v(1) = −1, and x1 = 1−v
2

δm,m′

∫ 1

−1

P 2m+1,0
n (v) P 2m′+1,0

n′ (v) xm+m′+1
1

(1− v
2

)m+m′+1

dv =

1

2m+m′+1
δm,m′

∫ 1

−1

P 2m+1,0
n (v) P 2m′+1,0

n′ (v) (1− v)m+m′+1dv =

1

2m+m′+1
δm,m′δn,n′ ,

since
∫ 1

−1

P 2m+1,0
m P 2m+1,0

n (1− v)2m+1 = 0 by de�nition of Jacobi polynomials.

Scaling Φm,n(x) by 22m+1 yields orthonormal basis. We now present our proof in arbitrary

dimension.

If Φd
α(x) constitutes a d-dimensional orthogonal polynomial basis, then the d+1-dimensional

orthogonal basis is obtained by recurrence

Φd+1
αd+1

(xd+1) = Φd+1
α,n (ξ,x) = cΦd

α(
x

ξ
)P 2|α|+d,0

n (1− 2ξ)ξ|α|, (4.6)

where |α| =
∑

i αi, and d = 2 is the base case.

Proof: First, consider integral of an arbitrary function over Td+1

∫
Td+1

f(ξ,x)d(ξ,x)dTd+1 =

∫ 1

0

∫ ξ

0

∫ x1

0

...

∫ xd−1

0

f(ξ, x1, ... , xd) dxd ... dx1dξ =
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Now substitute xj = ξx′j → det(J) = ξd

∫ 1

0

∫ 1

0

∫ x′1

0

...

∫ x′d−1

0

f(ξ, ξx′1, ... , ξx
′
d) dx

′
n ... dx

′
1ξ
ddξ =∫ 1

0

∫
Td

f(ξ, ξx)dxξddξ.

We will use this relation and strategy that resembles two-dimensional case to show orthog-

onality.

Second, set Φd+1
α,m(ξ,x) = ϕm(ξ)Φd

α(x
ξ
)ξα. It remains to �nd ϕm that leads to orthogonal-

ity.

∫
Td+1

Φd+1
α,m(ξ,x)Φd+1

α′,m′(ξ,x)dTd+1 = (4.7)∫
Td+1

ϕm(ξ)Φd
α(

x

ξ
)ξαϕm′(ξ)Φ

d
α′(

x

ξ
)ξα

′
dTd+1 = (4.8)∫ 1

0

(∫
Td

Φd
α(x)Φd

α′(x)dx

)
ϕm(ξ)ϕm′(ξ)ξ

|α+α′|+ddξ = (4.9)

By assumption,
∫
Td

Φd
α(x)Φd

α′(x)dx = δα,α′ . If α = α′, the integral becomes

∫ 1

0

ϕm(ξ)ϕm′(ξ)ξ
2|α|+ddξ = (4.10)

1

22|α|+d+1

∫ 1

−1

ϕm(
1− v

2
)ϕm′(

1− v
2

)(1− v)2|α|+ddv, (4.11)

where v(ξ) = 1− 2ξ, v(0) = 1, v(1) = −1, dv = −2dξ.

A suitable choice for ϕm(1−v
2

) is a Jacobi polynomial P 2|α|+d
m (v), which in terms of z = 1−v

2

and v = 1− 2z leads to

ϕm(v) = ϕm(1− 2z) = P 2|α|+d
m (1− 2z).

Then 4.10 reduces to cδm ∗ δm′ and 4.7 reduces to cδmδm′δαδα′ , which was to be shown.
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Setting c to 1

2α+n+1
2

in (4.6) makes orthogonal basis orthonormal.

4.4.3. Ci × Tj

Once orthogonal basis functions for n-dimensional cube and n-dimensional simplex are

obtained, construction of orthogonal basis over Cd1 × Td2 of dimension d1 + d2 is straightfor-

ward. The resulting basis is a product of the two bases

Φ
Cd1
×Sd2

α (x) = Φ
Cd1
α1 (x1)Φ

Sd2
α2 (x2), (4.12)

where α = (α1, α2), x = (x1,x2).

4.4.4. Si × Sj

Similarly to Ci × Sj, functions for Sd1 × Sd2 of dimension d1 + d2 are based on basis

functions of a simplex raised to d1 + d2 dimensional multi-indexes

Φ
Sd1
×Sd2

α (x) = Φ
Sd1
α1 (x1)Φ

Sd2
α2 (x2). (4.13)

4.4.5. Pyramid

An orthogonal basis for a bi-unit pyramid is presented in [9], and related work [11]. Nev-

ertheless, we derive orthogonal basis over unit, right-angled pyramid so that it can potentially

be extended to arbitrary-dimensional pyramid in the future. Currently, 3-dimensional case

is su�cient. For a pyramid, our orthogonal basis is

Φm,n,k(x, y, z) = P 0,0
m (

x

z
)P 0,0

n (
y

z
)P 2,0

k (z). (4.14)
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Proof: In a similar fashion to simplex, consider a transformation

∫
P3

f(x̂)dx̂ ≡
∫ 1

0

∫ z

0

∫ z

0

f(x̂, ŷ, ẑ)dx̂dŷdẑ =∫ 1

0

∫ 1

0

∫ 1

0

f(xz, yz, z)z2dxdydz.

Here, x̂ = xz, ŷ = yz, and ẑ = z is a Du�y transformation that maps unit cube to the unit

pyramid. The term z2 is determinant of the Jacobian. From 4.14, we get

∫
P3

Φm,n,k(x̂)Φm′,n′,k′(x̂)dx̂ =∫ 1

0

∫ z

0

∫ z

0

Φm,n,k(x̂, ŷ, ẑ)Φm′,n′,k′(x̂)dx̂dŷdẑ =∫ 1

0

∫ 1

0

∫ 1

0

Φm,n,k(xz, yz, z)Φm′,n′,k′(xz, yz, z)z2dxdydz =∫ 1

0

∫ 1

0

∫ 1

0

P 0,0
m (x)P 0,0

n (y)P 2,0
k (z)P 0,0

m′ (x)P 0,0
n′ (y)P 2,0

k′ (z)z2dxdydz =∫ 1

0

P 2,0
k (z)P 2,0

k′ (z)z2dz

∫ 1

0

P 0,0
n (y)P 0,0

n′ (y)dy

∫ 1

0

P 0,0
m (x)P 0,0

m′ (x)dx =

δk,k′δn,n′δm,m′ .
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Chapter 5

Implementation

gen-quad is a package implemented in C++11 that computes cubature rules over polytopes[44].

At the time of this writing, it supports all the domains discussed so far(cubes, simplexes,

tensor product domains, pyramid). In the future, we intend to extend its functionality to a

wider family of polytopes. The design targets

� Extensibility. Implementation relies on interface inheritance so that one routine is ap-

plied to cubature rules of di�erent shapes. It also simultaneously emphasizes the design

of a universal algorithm with minimal parameter tuning for each separate case. For

some cases, however, special treatment might be needed. If we were to implement the

algorithm for a sphere rather than a polytope, optimization related to linear inequality

constraints would require an alternative.

� Reliability. Quadrature rules of any degree and dimension are expected to have a

su�ciently high e�ciency index. For instance, we prefer to produce quadrature rules

of e�ciency index of 90% for all domains, rather than 80% for some and 100% for

others.

� Performance. The computational cost is dominated by operations on large dense ma-

trices in the predictor and corrector step. Therefore, e�cient linear algebra routines

are essential. Another computationally demanding task is computation of orthogonal

basis functions, since they are evaluated frequently to obtain nonlinear functions and

their Jacobians. All expensive components are parallelized using OpenMP.

From the user viewpoint, one has to specify the degree of precision, dimension, type of

the domain, and optional search width parameter, which corresponds to K in the algorithm

3.3. The optional parameter speci�es how many successful cubatures are considered before
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selecting the one that is furthest from the boundary. gen-quad also o�ers con�guration at

compile-time, such as verbose and debug modes. Detailed description and source code is

publicly available on GitHub: https://github.com/arkslobodkins/gen-quad.

5.1. Structure

5.1.1. Polymorphism

One of the primary goals is the design of a node elimination algorithm that would gener-

alize well to a multitude of domains. It has already been demonstrated that cubes, simplexes,

and tensor product domains are implemented for an arbitrary degree and dimension. Special

treatment of each domain type individually is minimized, but is necessary for implementing

orthogonal bases. Additional considerations might arise for irregular polytopes or domains

other than polytopes, such as spheres, cylinders, etc. To that end, polymorphism based on

abstract classes is used. The structure of domain types is shown in �gure 5.1.

Domain

Polytope

Interval

Pyramid Cube Simplex CubeSimplex SimplexSimplex

Figure 5.1. Class hierarchy for domains. Domain and Polytope are abstract classes.

Roughly, Domain is an abstract class that contains two pure abstract functions(�gure

5.2.).

Polytope is a special abstract class in a sense that it contains linear inequality constraints,

by means of which it implements in_domain method. All polytopes that are derived from
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Domain
int dim() const=0;

bool in_domain(const Point & p) const=0;

Figure 5.2. All domains are required to have a dimension and implementation of
in_domain.

it are expected to initialize it with constraints speci�c to that class. Constructor accepts

Matrix and Array parameters by value to bene�t from move semantics[32].

Polytope
Polytope(Matrix A, Array b);

bool in_domain(const Point & p) const override;Matrix A, Array b

Figure 5.3. Polytope uses constraints to implement in_domain for all polytopes. Data
members are presented in blue.

Domains that are derived from Polytope might contain additional data. For example,

Cube only has one dimension parameter, whereas tensor product domains have two dimen-

sion parameters dim1 and dim2. In addition, most polytopes optionally implement the reinit

function, which changes the dimension and hence associated constraints. Since interval is

always one-dimensional, it does not contain reinit. For both quadrature and domain ob-

jects, the purpose of reinit is to provide functionality that is "out of scope" of the assignment

operator. In our codes, assignment is strictly designated for objects of the same dimension.

In addition, assignment operator for quadrature objects requires that they are of the same

degree and have the same number of nodes. Therefore, to improve code safety, the case when

dimension of the object is changed is treated separately using reinit function.

To implement bases, a similar hierarchy is used. However, the implementation is more
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involved. Each class precomputes an index table and power tables for e�ciency, which are

reused throughout the duration of the object. All derived classes are required to compute ba-

sis functions, derivatives, and integrals for both monomial and orthogonal bases. There is no

IntervalBasis, since performing Node Elimination over the interval is redundant. Although

PolytopeBasis adds no additional data compared to Basis, it is important to treat domains

that are not polytopes di�erently if they are added in the future. Section 5.3 discusses

implementation of basis classes in more detail.

Basis

PolytopeBasis

PyramidBasis CubeBasis SimplexBasis CubeSimplexBasis SimplexSimplexBasis

Figure 5.4. Class hierarchy for bases. Basis and PolytopeBasis are abstract classes.

All cubature objects must store nodes and weights in a suitable container. The most

frequently encountered operations on cubatures are arithmetic operations on all nodes and

weights, as well as individual access to each node and weight. Due to the process of elim-

inating nodes, occasional resizing is performed. Therefore, a dynamic array that supports

element access, provides slicing, and e�cient arithmetic operations �ts well. That is accom-

plished by QuadArray class, which contains Array class, implements slicing of nodes, and

stores information about the degree and dimension of the cubature.

Although inheriting from a concrete, non-abstract class such as QuadArray in many cases

is not encouraged due to the problem of object slicing[25], it is bene�cial here since it has

a wide functionality that is reused by all derived classes. To avoid the problem of slicing,

protected, rather than public inheritance is used.

46



Besides inheriting from QuadArray, QuadDomain has a few important responsibilities. It

provides interface for returning Domain and Basis objects, so that they can be accessed and

used in higher level routines. Similarly, QuadPolytope returns Polytope and PolytopeBasis

on demand. Non-member functions in_domain and in_constraint determine whether

constraints are satis�ed. Assign and clone_quad_domain functions are provided to

support polymorphic operations.

The following question arises: Does QuadDomain inherit from Domain and does Quad-

Polytope inherit from Polytope? If so, does QuadCube inherit from Cube? If that were

the case, the class hierarchy would become complicated. From �gure 5.6 it is clear that

derived classes can reach their base classes through two paths, rather than one. This leads

to a problem of two copies of the base class, which can be overcome by virtual inheritance.

However, that would incur a cost of increased complexity and is best avoided[46]. Instead, all

derived cubature classes store their domains by composition, and return them by reference

when necessary.

QuadArray

QuadDomain

QuadPolytope

QuadInterval

QuadPyramid QuadCube QuadSimplex QuadCubeSimplex QuadSimplexSimplex

Figure 5.5. Class hierarchy for cubature objects. Derived classes contain information about
their shapes and QuadArray for storing nodes and weights.

Based on these hierarchies, higher level routines are applied to abstract interfaces. For
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QuadArray

DomainQuadDomain

PolytopeQuadPolytope

QuadCube Cube

Figure 5.6. Class hierarchy for cubature objects if they were inherited from Domain. Special
care is needed for incurred complexity.

example, a node elimination routine that operates on cubature rules over polytopes might

have a prototype

QuadPolytope* NodeElimination(QuadPolytope* initial_guess);

Thus far, we have only implemented non-symmetric rules. If that changes in the future,

separating symmetric and non-symmetric cases for polytopes would be straightforward

QuadSymPolytope* NodeElimination(QuadSymPolytope* initial_guess);

QuadNonSymPolytope* NodeElimination(QuadNonSymPolytope* initial_guess);

The only di�erence between QuadSymPolytope and QuadNonSymPolytope would be that

they rely on symmetric and non-symmetric bases, respectively. In addition, QuadSymPoly-

tope would provide bool is_symmetric()=0;.

5.1.2. Run Time vs Compile Time

Compile time programming has been gaining momentum lately. It allows to move error

handling, algorithm decision making, and evaluation of routines to compile time, as opposed
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QuadArray

QuadDomain

QuadPolytope virtual Domain & get_domain() const =0;

virtual Polytope & get_polytope() const =0;

QuadCube
Cube & get_domain() const override { return cube; }

Cube & get_polytope() const override { return cube; }
Cube cube

Figure 5.7. A better way to handle polymorphic behavior. get_domain is required for do-
mains and get_polytope for polytopes. QuadCube stores Cube data member and returns
it on demand.

to runtime[13]. In this way, one can �nd errors early without delaying it to runtime and in

certain cases improve performance[1]. However, the compilation times tend to increase as

well. As usual, whether bene�ts outweigh the drawbacks depends on the application. In the

case of gen-quad, most computations are performed at runtime.

Given the iterative nature of the Node Elimination algorithm, parameters such as sizes

of cubature arrays and sizes of matrices encountered in predictor and corrector are not

known at compile time. Every time a node is eliminated, arrays and matrices shrink in size.

Moreover, dimension parameters are not known at compile time, since recursive procedures

reuse lower-dimensional rules at runtime. The only parameter that is �xed at compile time

is the degree of precision, but even that is a subject to change since some techniques rely on

reusing cubature rules of lower degrees[14] and might be employed in the future. For higher

degrees and dimensions, most of arrays, tables, and matrices are too large to be stored on

the stack. Instead, all containers allocated dynamically at runtime.

Originally, VLAs(variable length arrays) were used for small two and three-dimensional

arrays. To insure portability and best practices, they have been replaced with dynamic
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arrays. Only in a few cases, such as storage for dimensions of a matrix or multi-dimensional

array, �xed-size arrays are used.

5.1.3. Error Handling

Rigorous error handling is applied throughout the project. As is common, debug and

release modes o�er a trade-o� between additional error checking and performance. Debug

mode turns on many assertions, such as ensuring that containers are of non-negative length,

operation on two arrays is applied only if they are of equal length, nonlinear solver returns

success only if cubature rules are inside of the domain, and others. Another important

feature of debug mode is range checking. Element access of arrays, tables, matrices, and

other containers is checked for out of range errors. This is a considerable slowdown for

computing the nonlinear function and Jacobian. In non-debug mode, these assertions are

turned o�, and only essential error handling is performed.

5.2. Linear Algebra

5.2.1. Libraries

A wide range of linear algebra libraries is available in C++. Some of the frequently used

ones are Armadillo, Eigen, Blaze. All three of them are fully or partially based on implemen-

tations of BLAS and LAPACK libraries. When installing Armadillo, it searches for available

BLAS and LAPACK on the system and provides convenient interfaces to them[10]. Eigen

and Blaze, on the other hand, o�er optional support that links to their routines to Intel's

oneMKL, which is a highly optimized implementation targeted towards Intel architectures[3].

Otherwise, a default implementation of these routines is used, which is usually slower for

large matrices[4]. Another feature of these libraries is that they rely on templates heavily,

which select optimal algorithms at compile time but also increase compilation times[37].

Due to no external dependencies, header-only approach and convenient interfaces, Eigen

is our library of choice. Therefore, gen-quad does not require installation of any packages

50



or libraries. However, for larger degrees and dimensions, the presence of oneMKL library

on the system is preferred due to increased performance. Make�le automatically searches if

oneMKL is available on the system. If so, we provide �ags necessary for Eigen to make the

use of oneMKL routines.

5.2.2. E�cient Routines

Some routines cannot be directly expressed by existing library routines and require sub-

dividing it into smaller tasks and choosing the most appropriate library routines. The most

computationally demanding of those are the predictor and corrector updates. Recall that

each of the initial guesses in the predictor step is computed as

z̃k = z̄ + ∆zfk + t∆zgk,

where

∆zfk = Q̂T∆yfk ,

∆zgk = Q̂T∆ygk.
(5.1)

Provided that mk is a kth column of Q̂T , yfk and ygk are

∆yfk = mk
w̄k

‖mk‖2

∆ygk =

(
I − mkm

T
k

‖mk‖2

)
ĝ.

It is tempting to loop over all k's and store z̃k in a larger matrix Z̃ one column at a time.

However, that implies K matrix-vector products in (5.1) for both yfk and ygk, where K is the

number of nodes. That would result in ine�cient utilization of hardware resources, since

O(MN) �oating point operations are performed on O(MN) data for each matrix-vector

product. Instead, it is advantageous to reorder the algorithm and express is it in terms

of matrix-matrix multiplication, which performs O(MNK) operations and uses caching to
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minimize cache misses[38]. The optimized version is

∆zfk = Q̂T∆Yf
k,

∆zgk = Q̂T∆Yg
k,

(5.2)

where Yf
k and Yg

k are matrices. To achieve that, yfk and ygk are evaluated and stored ahead

of time for each K. The cost of that is storing additional two matrices in memory, which

is not a limitation due to large availability of memory on modern CPU architectures. On

Maneframe II [2], a typical CPU node has 256 GB of RAM, which is more than su�cient

for the sizes of our matrices. The strategy in (5.2) has improved the performance between

a factor of 10 and 50, depending on the size of a problem. Although not as substantial,

additional performance improvements are gained by grouping Yf
k and Yg

k in one matrix and

calling a single matrix-matrix multiplication routine

 ∆zfk

∆zgk

 = Q̂T

 ∆Yf
k

∆Yg
k

 .
If J = LQ is the economy size factorization, corrector update is

z̃← z̃ + ∆zf + t∆zg, (5.3)

where

∆zf = −QTL−1f ,

∆zg = −(I −QTQ)g.
(5.4)

The term QTL−1f is simply a solution of the nonlinear system JT∆zf = f , but we do

not call a direct solver routine because it is based on QR factorization, which does not store

information about matrix Q and additional work would be required for computing QR(or

LQ) factorization for ∆zg. To avoid redundant work, the system JT∆zf = f is solved

using a specialized routine where QT is reused. Further, the explicit computation of QT is
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not performed, but rather its re�ectors are applied to L−1f to obtain QTL−1f . Similarly,

re�ectors of Q are applied to g, which yields Qg. Finally, by applying re�ectors of QT to

Qg, the �nal expression QTQg is computed.

5.3. Implementation of Bases

5.3.1. Performance

Classes that compute basis functions, their derivatives, and integrals were presented in

�gure 5.3. Since they are implemented for arbitrary degree and dimension, some compro-

mise between performance and complexity of the code is expected. It was mentioned that

each class uses a table of multi-indexes to raise monomial and orthogonal polynomials to

the integer powers that form Sdp . However, it comes at the cost of good, but suboptimal

performance when compared to evaluating multi-indexes on the �y. Consider a matrix for

S3
2

Sdp =


0 1 2 0 1 0 0 1 0 0

0 0 0 1 1 2 0 0 1 0

0 0 0 0 0 0 1 1 1 2

.
Unlike in chapter 4, each multi-index corresponds to a column rather than a row of the

matrix. Such layout is chosen since our data structures are stored in row-major order. When

computing basis functions, tasks are more naturally subdivided when looping over rows.

With minimal modi�cations of the source code syntax, orthog_basis routine computes

orthogonal basis over a cube:

const Array & CubeBasis : : orthog_bas is ( const Array & x)

{

ArrayTable2D legendre (dim , deg+1);

f o r ( i n t d = 0 ; d < dim ; ++d)

Legendre (x [ d ] , deg+1, l egendre (d ) ) ;
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f o r ( i n t k = 0 ; k < num_funcs ; ++k)

func t i on s [ k ] = l egendre (0 , index_table (0 , k ) ) ;

f o r ( i n t d = 1 ; d < dim ; ++d)

f o r ( i n t k = 0 ; k < num_funcs ; ++k)

func t i on s [ k ] *= legendre (d , index_table (d , k ) ) ;

r e turn func t i on s ;

}

First, all Legendre polynomials are computed and stored in array of arrays legendre. After

that, multi-indexes stored in index_table are applied to legendre, which access appropri-

ate indexes of Legendre polynomials. In particular,

legendre(d, index_table(d, k)) ≡ L(xd)index_table(d,k).

From the code it is evident that accesses to functions[k] and index_table(d, k) inside

the loops are contiguous, justifying the choice of storing multi-indexes in columns.

However, indexes of Sdp themselves do not follow a contiguous pattern, and thus

legendre(d, index_table(d, k)) is not contiguous with respect to data stored in legendre.

This inhibits vectorization, but cache hits are high since values of index_table are close to

each other.

A faster approach would be to generate multi-indexes on the �y and avoiding the access

to them altogether. Consider the following excerpt of code(with minor syntactic changes for

convenience):

i f ( dim == 2)

{

i n t count {} ;

f o r ( i n t i {} ; i < deg+1; ++i )

f o r ( i n t j {} ; j < deg+1− i ; ++j )

f unc t i on s [ count++] = legendre (1 , i ) * l e g endre (0 , j ) ;

}

e l s e i f ( dim == 3)

{

i n t count {} ;
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f o r ( i n t i {} ; i < deg+1; ++i )

f o r ( i n t j {} ; j < deg+1− i ; ++j )

f o r ( i n t k {} ; k < deg+1−i−j ; ++k)

func t i on s [ count++] = legendre (2 , i ) * l e g endre (1 , j ) * l e g endre (0 , k ) ;

}

e l s e i f ( dim == 4)

{

i n t count {} ;

f o r ( i n t i {} ; i < deg+1; ++i )

f o r ( i n t j {} ; j < deg+1− i ; ++j )

f o r ( i n t k {} ; k < deg+1−i−j ; ++k)

f o r ( i n t l {} ; l < deg+1−i−j−k ; ++l )

f unc t i on s [ count++] = legendre (3 , i ) * l e g endre (2 , j ) *

l e g endre (1 , k ) * l e g endre (0 , l ) ;

...

...

}

Here the indexes are generated on the �y inside the nested loop. However, additional loop

is nested with increment of dimension. Therefore, for every dimension of interest, di�erent

nesting must be used. The resulting code is more e�cient as it enables vectorization and

reduces data accesses, but it comes at the cost of sacri�cing dimensional independence. That

was the reason for storing indexes in a matrix in the �rst place. Evaluation on the �y would

require nesting similar loops for all orthogonal basis functions, as well as monomials, which

would considerably increase the number of lines to be written. For domains other than cube,

computing bases is less trivial, which would result in a highly error prone repetition of the

code.

Since linear algebra routines are the major source of computational cost, the slowdown

associated with a more general strategy does not have a signi�cant impact on the runtime

cost as a whole. In fact, for su�ciently large problems, speedup of at most 200 percent

for basis functions was observed with the faster version, whereas they consume less than 10
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percent of the runtime for most problems.

5.3.2. Derivatives

Implementation of analytical derivatives(of basis functions) for a cube is reasonably

straightforward, but it is much more challenging for a simplex and tensor domains, since

functions themselves are more complex. Therefore, �nite di�erences are used to approxi-

mate their derivatives. Consequently, the nonlinear function and Jacobian are approximate

as well. To ensure su�cient accuracy, fourth order �nite di�erence is used

d

dx
f(x+ h) =

(f(x− 2h)− 8f(x− h) + 8f(x+ h)− f(x+ 2h))

12h
. (5.5)

The optimal parameter h is a compromise between truncation error and �oating-point

error due to division. In our case, h = 5×10−5 produced the most accurate approximations.

The optimal parameter can be derived analytically, which is demonstrated in[18]. For the

second order central �nite di�erence, they show that optimal h≈ 6.055× 10−5.

5.4. Parallelization

The most expensive components of gen-quad are linear algebra routines, followed by

evaluation of Jacobian and nonlinear function. The Amdahl's law states that the speedup

of the program obtained from parallelizing code region p is given by

S(p) =
1

1− p+ p
s

, (5.6)

where s is the speedup obtained from parallelizing p and 1 − p is the serial fraction of the

program. Maximum theoretical speedup is limited to the inverse of the serial fraction of a

program

lim
s→∞

Smax(p) =
1

1− p
. (5.7)

Therefore, it is important that serial portion of the code does not contain any serious in-
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e�ciencies. Some possibilities include sorting routine in the predictor, common operations

on arrays, testing whether cubature rules are inside of the domain, etc. Our containers use

expression templates to avoid redundant temporaries, whereas optimized std::sort is used

for sorting. Fortunately, as the problem size grows, serial portion of the code decreases

compared to the parallel one, which opens more opportunities for speedup. Now we discuss

potential strategies for exploiting parallelism.

5.4.1. Linear Algebra

If oneMKL library is installed on the system, Eigen calls oneMKL library for computa-

tionally intensive routines, which support multithreading. When compiled with OpenMP(-

fopenmp on GCC or -qopenmp on Intel compilers), parallelism is enabled automatically.

Without the oneMKL, QR factorization remains serial.

OpenMP is a convenient and widely used tool for parallization, but is limited to a single

CPU node. Another possibility is to add optional calls to the GPU library, such as MAGMA.

When using a GPU, one must take into account costs associated with memory transfer

from a CPU. Together with the fact that oneMKL is highly e�cient on 32 or 64 CPU

cores, GPU would be only bene�cial for very large problems. There are also linear algebra

libraries available for taking advantage of multiple CPU nodes with MPI(Scalapack, SLATE).

However, MPI would require a signi�cant redesign. For the remainder of the discussion, only

OpenMP parallelism on a single node is considered.

5.4.2. Function and Jacobian

The Jacobian resembles a well-parallelizable problem. Each thread is responsible for com-

puting only a submatrix of rows and columns. Besides task subdivision, no other interaction

between threads is needed. Since the code primarily uses transpose of the Jacobian rather

than the Jacobian itself, the transposed version is computed directly to avoid transposition.

The illustration above is a simpli�cation due to the nature of the nonlinear function
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Thread1

Thread2
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Thread4

Figure 5.8. Computation of JT is evenly partitioned among threads, simpli�ed illustration.

f(x,w) = Φ(x)w − b, (5.8)

Φ(x) =
[
Φ(x1), . . . ,Φ(xn)

]
∈ RM×n, Φ(x) =


φ1(x)

...

φM(x)

 ,

b =


∫

Ω
φ1(x)w(x) dx

...∫
Ω
φM(x)w(x) dx

 ,
where Pdp is orthogonal basis. The analytical Jacobian then becomes

J(x) =
[

Φ(x1) Φ(x2) . . . Φ(xn) w1Φ′(x1) w2Φ′(x2) . . . wnΦ′(xn)
]
. (5.9)

Since xi ∈ Rd,Φ′(xi) is a Jacobian itself. Then

J(x) ∈ RM×n(dim+1),
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and

JT (x) ∈ Rn(dim+1)×M .

Equation (5.9) shows that two separate loops(at least conceptually) are needed. The

�rst loop computes derivatives with respect to weights, which are orthogonal basis functions.

The second loop computes derivatives with respect to nodes, which are derivatives of basis

functions multiplied by weights. If a single loop was used, cache locality would be lost due

to signi�cant jumps across di�erent columns(or rows in the case of a transpose). In the code

below, two loops are computed in parallel using omp schedule(static), partitioning the

work in submatrices of equal size.

void EvalJacobian : : eval_jacobian_omp ( const QuadDomain & q , Matrix & JT)

{

us ing namespace func t i on_in t e rna l ;

i n t nthreads = in t ( ba . components . s i z e ( ) ) ;

#pragma omp p a r a l l e l d e f au l t ( none ) shared (q , JT) num_threads ( nthreads )

{

auto & bLoc = ba . components . at (omp_get_thread_num ( ) ) ;

#pragma omp f o r schedu le ( s t a t i c )

f o r ( i n t j = 0 ; j < q . num_nodes ( ) ; ++j )

JT . row ( j ) = ((* bLoc ) . * f unc t i on s_fpt r ) ( Array (q . node ( j ) ) ) ;

#pragma omp f o r schedu le ( s t a t i c )

f o r ( i n t j = 0 ; j < q . num_nodes ( ) ; ++j )

{

auto & bder = ((* bLoc ) . * de r i v a t i v e s_ fp t r ) ( Array (q . node ( j ) ) ) * q .w( j ) ;

i n t rowId = j *q . dim()+q . num_nodes ( ) ;

f o r ( i n t d = 0 ; d < q . dim ( ) ; ++d)

f o r ( i n t k = 0 ; k < JT . nco l s ( ) ; ++k)

JT( rowId+d , k ) = bder [ JT . nco l s ( )*d+k ] ;

}

}
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}

Serial and parallel versions of the Jacobian were benchmarked and compared on a 36-core

Xeon Phi processor, gcc 7-3 compiler with -O3 optimizations enabled. The table lists wall

clock times for a Jacobian of a cubature rule over a 5-dimensional simplex of varying degrees.

The number of nodes was selected as if the tensor product rule were used.

degree 7 9 11 13
size 6144× 792 18750× 2002 46656× 4368 100842× 8568

serial 0.248 1.97 14.8 60.2
parallel 0.0219 0.0763 0.449 1.88
speedup 11.3 25.8 32.9 32.0

Table 5.1. Serial and parallel setup times of the Jacobian on a 36-core processor for T5 measured

in seconds. For a su�ciently large problem, a nearly perfect speedup is observed.

For computing f , note that (5.8) is a summation

f(x,w) = Φ(x)w − b =
∑
i

Φ(xi)wi − b. (5.10)

Computation of integrals, i.e. b is negligible compared to the summation term and is

evaluated serially. On the other hand, evaluation of the sum is subdivided into partial sums.

Once each thread computes its partial sum and stores it in a vector, �nal sum is obtained

by adding partial sums. The �nal result is computed using omp critical clause to avoid

race conditions. Although there is an overhead associated with a critical region, addition of

vectors takes a small time compared to computing local sums.

No dynamic memory allocation takes place when computing either of the �nal result or

partial sums. Since the nonlinear solver uses f and J repeatedly, bu�ers are allocated only

once and reused, avoiding overhead of allocating memory. The benchmark for comparing

serial and parallel versions of computing f was performed using identical problem, hardware,

compiler, and compiler options as for J.
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Figure 5.9. Computation of f is evenly partitioned among threads. Each thread computes
the local sum and stores it in a vector. Then serial addition is performed to add contribution
from each thread.

degree 7 9 11 13
serial 0.0128 0.0941 0.55 2.30
parallel 0.00833 0.00907 0.0241 0.0889
speedup 1.5 10.4 22.8 25.9

Table 5.2. Serial and parallel times of the function on a 36-core processor for T5 measured in

seconds. Evaluation of f is substantially cheaper than J. Combined with the fact that computing

f involves a small serial component, larger problem size is needed to observe good speedup.
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Chapter 6

Numerical Results

This chapter presents a wide range of results and summarizes them. The e�ciency index

is examined in detail. The accuracy of obtained cubature rules is tested against analytically

known problems.

6.1. Metric

In chapter 3 we described the Node Elimination algorithm for selecting one of the multiple

solutions. The cubature rule whose "worst node" is furthest from the boundary(inside the

domain) was selected. We call the parameter that determines the maximum number of

successful solutions a search width. If search width is set to 1, the �rst solution that

is successful is selected, without taking distance from the boundary into account. Larger

parameters of w increase computational cost but usually lead to slightly more e�cient rules.

To compromise quality of the rules and computational time, we choose search width = 3

for all experiments.

Due to undeterministic nature of the Node Elimination algorithm, it is nearly impossible

to choose the strategy that would yield optimal results for all instances of degree and dimen-

sion. For example, lower search width sometimes may lead to better rules. For that reason,

the average e�ciency index is introduced. Given a dimension and type of the domain, we

de�ne it as the average over all degrees of consideration

eave =

∑n
i edegi
n

. (6.1)
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6.2. Two Dimensions

Although computation of cubature rules in two dimensions is well studied, we present

rules over a square and triangle for completeness. To be concise, results for even degrees are

excluded. We start with degree �ve and go up to thirty-one.

6.2.1. Square

The table 6.1 summarizes results for C2. In most cases, we reach the e�ciency of at least

95%. Another observation is that lower-degree rules are further from the optimum due to

relatively few nodes.

degree 5 7 9 11 13 15 17
nopt 7 12 19 26 35 46 57
nelim 8 14 20 28 37 49 60
iopt 0.88 0.86 0.95 0.93 0.95 0.94 0.95

degree 19 21 23 25 27 29 31
nopt 70 85 100 117 136 155 176
nelim 73 87 103 121 140 158 178
iopt 0.96 0.98 0.97 0.97 0.97 0.98 0.99

Table 6.1. Data for the cubature rules on the C2. eave = 0.95.

6.2.2. Triangle

In general, results for a triangle are slightly better than for a square and some optimal

rules with iopt = 1 are obtained(table 6.2). Without numerical experiments in higher dimen-

sions(which will verify this assumption), it is too early to conclude that our algorithm favors

simplex over a cube in arbitrary dimension.
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degree 5 7 9 11 13 15 17
nopt 7 12 19 26 35 46 57
nelim 7 12 19 27 36 47 58
iopt 1.00 1.00 1.00 0.96 0.97 0.98 0.98

degree 19 21 23 25 27 29 31
nopt 70 85 100 117 136 155 176
nelim 73 88 101 118 139 158 178
iopt 0.96 0.97 0.99 0.99 0.98 0.98 0.99

Table 6.2. Data for the cubature rules on the T2. eave = 0.98.

6.3. Three Dimensions

Although there appears to be less research for computing e�cient cubature rules in three

dimensions, successful results have been obtained for a cube [50], simplex [30], and pyramid

[16]. We present the results for all three domains for odd degrees in the range [5, 23]. In

addition, we present less frequently studied three-dimensional prism(C1 × S2).

6.3.1. Cube vs Simplex

Relationship between three-dimensional cube and simplex(tetrahedron) are similar to

the square and triangle. In particular, tetrahedron always produced more e�cient cubature

rules than cube. The e�ciency only slightly dropped for the cube compared to the square,

whereas it did not drop for the tetrahedron compared to the triangle at all. This is a desir-

able outcome, since obtaining similar e�ciency in higher dimensions is one of the primary

challenges of high-dimensional integration. Results are summarized in tables 6.3 and 6.4.

6.3.2. Pyramid

Originally gen-quad was designed for n-dimensional cubes, simplexes, and their tensor

product domains. However, constrained optimization techniques presented in chapter 3

can be applied to arbitrary convex polytope. To verify that these techniques in practice
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produce e�cient rules for other domains, we have incorporated 3-dimensional pyramid to

the package. For all degrees, the rules are at most three nodes away(table 6.5). Although

the average e�ciency index(with rounding up to two signi�cant digits) is the same as for the

tetrahedron, the rules are on average slightly more e�cient.

6.3.3. Prism

Three-dimensional prism is the tensor product domain of the interval and the triangle.

Similar to pyramid, the rules are at most three nodes away from the optimum(table 6.6).

6.4. Four Dimensions

We present results for T4, C2T2, C1T3 and T2T2(tables 6.7, 6.8, 6.9, and 6.10). The

e�ciency index for a cube is satisfactory but lower compared to other four-dimensional

polytopes. One possible reason is that the penalty term introduced in the Newton's method

is more bene�cial for integrals containing triangles or tetrahedra. For the remaining four-

dimensional domains, all cubature rules have e�ciency index of at least 0.95, and in many

cases close to 1. Odd degrees in the range �ve to �fteen are presented.

6.5. Five Dimensions

As expected, the e�ciency index for �ve-dimensional domains is lower, but is above 0.85

for the most cubature rules. Moreover, the e�ciency improves for higher degrees and is close

to 1 for degrees 11 and 12. This appears to be due to constrained optimization, which ensures

that the node elimination produces rules that are su�ciently far inside the domain. Conse-

quently, more nodes are eliminated in the long run. Since more node eliminations are carried

for the problems with higher degrees, the e�ect is more pronounced. Another observation

is that C5 produced more e�cient rules for even degrees, whereas other domains generally

performed better for odd degrees. In addition, tensor product domains have generally higher

e�ciency indexes. We present degrees from four to twelve for C5, T5, C3T2, and T3T2(tables

6.11, 6.12, 6.13, and 6.14).
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6.6. Six Dimensions

Finally, results for six-dimensional domains are presented(tables 6.15, 6.16, 6.17, and

6.18). Although the e�ciency index has dropped, it is above 0.8 for most rules. In some

cases, the e�ciency is as high as 0.98.

Except for T3 × T3, degrees four to ten are presented. For T3 × T3, degree ten rule is

excluded, as the estimated time to compute the rule is about three weeks. The reason is

that the recursive initial guess for Ti × Tj contains more nodes. For the remaining domains,

six-dimensional rules of degree ten took about two days on Maneframe's mic node with 64

cores, which re�ects that the algorithm is suitable for moderate degrees up to dimension six.

To obtain rules up to degree �fteen of dimension six in a reasonable amount of time, one

would require changing the implementation that would use more computational resources,

such as GPUs.

6.7. Runtime Comparison

In this section, runtimes for C2. C4, and C6 are presented. For the other problems of the

same dimension(except Ti×Tj), the runtimes follow a similar pattern. The cost is somewhat

higher when Ω = Ti×Tj, since the initial guess involves a tensor product of Ti and Tj, which

contains more nodes than recursive initial guesses for other polytopes. Tables 6.19, 6.20, and

6.21 show the runtimes for di�erent degrees.

All experiments were conducted on a 64-core Knights Landing processor. The results

re�ect rapid increase of computational cost in higher dimensions. In two dimensions, degree

40 rule took just over a minute, whereas degree 10 rule in six dimensions took almost 48

hours. However, as the degree of precision increases, the runtimes increase at a slower rate

due to increased parallelism.

6.8. Quadrature Errors

In this section we compare the quality of our rules against tensor product Gauss rules in

a similar fashion as we have done in [6], but for a di�erent test function and more domains.
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In particular, the results are shown for T2, T4, T2× T2, C6, and T6 over a test function in Rd

f(x) = exp(cx) ≡
d∏
i=1

exp(cxi). (6.2)

The parameter c = d
24
is chosen to ensure that the exponent is greater for lower dimensions

so that residual does not approach machine precision too rapidly.

6.8.1. Two Dimensions

If Ω = Cd, we get ∫
Cd

exp(cx)dx =
1

cd
(exp(c)− 1)d. (6.3)

If Ω = Td, it can be shown by induction that

∫
Td

exp(cx)dx =
1

d! cd

d∑
i=0

(−1)i exp(c(d− i))
(
d− i
dim

)
. (6.4)

The integral over Ti × Tj is a product of integrals over Ti and Tj

∫
Ti×Tj

exp(cx)dx =

∫
Ti

exp(cx)dx

∫
Tj

exp(cx)dx. (6.5)

Figures 6.1 and 6.2 show results for the square and triangle. The left plot shows the

relative error versus the degree, and the right plot shows the error versus the number of

nodes. For a square, the error of Gauss tensor rules has a smaller error, which is explained

by the fact that tensor product rules integrate a larger polynomial space. As a consequence,

tensor product of error vs number of points are slightly better for tensor product rules. On

the other hand, additional polynomials did not reduce the error for a triangle and our rules

have less nodes for the same accuracy.
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Figure 6.1. Comparison of the tensor product rules and the rules of table 6.1. Ω = C2. Left:
error vs. degree. Right: error vs. number points.
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Figure 6.2. Comparison of the tensor product rules and the rules of table 6.2. Ω = T2. Left:
error vs. degree. Right: error vs. number points.

6.8.2. Four Dimensions

The gain of using rules obtained by the Node Elimination increases with the dimension.

Similar to T2, the tensor rules for T4 are only slightly more accurate, and the number of

nodes required to achieve the same accuracy is substantially smaller for our rules. Since

integration of T2T2 involves a product of two domains, the Gauss rules gain some additional

accuracy, but the e�ect is not as pronounced as for C2. Figures 6.3 and 6.4 illustrate savings

for both domains.
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Figure 6.3. Comparison of the tensor product rules and the rules of table 6.8. Ω = T4. Left:
error vs. degree. Right: error vs. number points.
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Figure 6.4. Comparison of the tensor product rules and the rules of table 6.10. Ω = T2×T2.
Left: error vs. degree. Right: error vs. number points.

6.8.3. Six Dimensions

Despite that our rules are considerably less accurate for the same degree when Ω = C6,

they prevail in number of nodes vs relative error plot due to high e�ciency index(�gure 6.5).

For T6 the degree vs relative error plot in �gure 6.6 shows marginal di�erences. The number

of nodes vs relative error plot shows that our rules are considerably more e�cient.

Note that with the increase of dimension, the degree of precision required to integrate

with the same accuracy increases, exhibiting curse of dimensionality. If higher accuracy

is required than we have shown here, higher degree rules can be obtained via the Node
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Elimination algorithm.
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Figure 6.5. Comparison of the tensor product rules and the rules of table 6.15. Ω = C6.
Left: error vs. degree. Right: error vs. number points.
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Figure 6.6. Comparison of the tensor product rules and the rules of table 6.16. Ω = T6.
Left: error vs. degree. Right: error vs. number points.
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degree 5 7 9 11 13
nopt 14 30 55 91 140
nelim 16 34 60 98 151
iopt 0.88 0.88 0.92 0.93 0.93

degree 15 17 19 21 23
nopt 204 285 385 506 650
nelim 220 301 405 529 653
iopt 0.93 0.95 0.95 0.96 1.00

Table 6.3. Data for the cubature rules on the C3. eave = 0.93.

degree 5 7 9 11 13
nopt 14 30 55 91 140
nelim 14 32 57 94 142
iopt 1.00 0.94 0.96 0.97 0.99

degree 15 17 19 21 23
nopt 204 285 385 506 650
nelim 207 288 388 508 653
iopt 0.99 0.99 0.99 1.00 1.00

Table 6.4. Data for the cubature rules on the T3. eave = 0.98.
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degree 5 7 9 11 13
nopt 14 30 55 91 140
nelim 15 31 56 92 142
iopt 0.93 0.97 0.98 0.99 0.99

degree 15 17 19 21 23
nopt 204 285 385 506 650
nelim 206 287 388 508 652
iopt 0.99 0.99 0.99 1.00 1.00

Table 6.5. Data for the cubature rules on P3. eave = 0.98.

degree 5 7 9 11 13
nopt 14 30 55 91 140
nelim 15 31 56 93 142
iopt 0.93 0.97 0.98 0.98 0.99

degree 15 17 19 21 23
nopt 204 285 385 506 650
nelim 207 288 387 509 652
iopt 0.99 0.99 0.99 0.99 1.00

Table 6.6. Data for the cubature rules on C1T2. eave = 0.98.

degree 5 7 9 11 13 15
nelim 31 81 165 312 534 861
nopt 26 66 143 273 476 776
iopt 0.84 0.82 0.87 0.88 0.89 0.90

Table 6.7. Data for the cubature rules for C4. eave = 0.87
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degree 5 7 9 11 13 15
nelim 26 68 148 281 483 800
nopt 26 66 143 273 476 776
iopt 1.00 0.97 0.97 0.97 0.99 0.97

Table 6.8. Data for the cubature rules for T4. eave = 0.98

degree 5 7 9 11 13 15
nelim 26 67 145 276 482 778
nopt 26 66 143 273 476 776
iopt 1.00 0.99 0.99 0.99 0.99 1.00

Table 6.9. Data for the cubature rules for C1T3. eave = 0.99

degree 5 7 9 11 13 15
nelim 27 68 145 276 479 782
nopt 26 66 143 273 476 776
iopt 0.96 0.97 0.99 0.99 0.99 0.99

Table 6.10. Data for the cubature rules for T2 × T2. eave = 0.98

degree 4 5 6 7 8
nelim 23 53 81 164 220
nopt 21 42 77 132 215
iopt 0.91 0.79 0.95 0.80 0.98

degree 9 10 11 12
nelim 378 508 843 1041
nopt 334 501 728 1032
iopt 0.88 0.99 0.86 0.99

Table 6.11. Data for the cubature rules for C5. eave = 0.90
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degree 4 5 6 7 8
nelim 26 46 85 140 250
nopt 21 42 77 132 215
iopt 0.80 0.91 0.91 0.94 0.86

degree 9 10 11 12
nelim 350 526 741 1062
nopt 334 501 728 1032
iopt 0.95 0.95 0.98 0.97

Table 6.12. Data for the cubature rules for T5. eave = 0.92

degree 4 5 6 7 8
nelim 23 44 81 134 222
nopt 21 42 77 132 215
iopt 0.91 0.95 0.95 0.99 0.97

degree 9 10 11 12
nelim 337 511 744 1044
nopt 334 501 728 1032
iopt 0.99 0.98 0.98 0.99

Table 6.13. Data for the cubature rules for C3 × T2. eave = 0.97
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degree 4 5 6 7 8
nelim 24 44 84 136 223
nopt 21 42 77 132 215
iopt 0.88 0.95 0.92 0.97 0.96

degree 9 10 11 12
nelim 340 510 737 1048
nopt 334 501 728 1032
iopt 0.98 0.98 0.99 0.98

Table 6.14. Data for the cubature rules for T3T2. eave = 0.96

degree 4 5 6 7 8 9 10
nelim 32 86 140 306 443 849 1161
nopt 30 66 132 246 429 715 1144
iopt 0.94 0.77 0.94 0.80 0.97 0.84 0.98

Table 6.15. Data for the cubature rules for C6. eave = 0.89

degree 4 5 6 7 8 9 10
nelim 44 78 148 262 473 741 1239
nopt 30 66 132 246 429 715 1144
iopt 0.68 0.85 0.89 0.94 0.90 0.96 0.92

Table 6.16. Data for the cubature rules for T6. eave = 0.88

degree 4 5 6 7 8 9 10
nelim 34 69 147 259 452 732 1202
nopt 30 66 132 246 429 715 1144
iopt 0.88 0.96 0.90 0.95 0.95 0.98 0.95

Table 6.17. Data for the cubature rules for C3T3. eave = 0.94
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degree 4 5 6 7 8 9
nelim 35 70 143 252 450 727
nopt 30 66 132 246 429 715
iopt 0.86 0.94 0.92 0.98 0.95 0.98

Table 6.18. Data for the cubature rules for T3T3. eave = 0.94

degree 5 10 15 20 25 30 35 40
time(seconds) 0.01 0.13 0.55 1.67 3.88 14.1 34.6 83.5

Table 6.19. Runtimes for C2.

degree 5 7 9 11 13 15
time(minutes) 0.12 0.35 2.5 18.4 79.3 260

Table 6.20. Runtimes for C4.

degree 5 6 7 8 9 10
time(minutes) 1.8 4.5 51.8 138.2 932 2837.6

Table 6.21. Runtimes for C6.
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Chapter 7

Conclusion

We presented a new node elimination algorithm and demonstrated its success for cubature

rules over various polytopes. By introducing the penalty term, the dependency of the initial

guess is minimized, allowing to produce e�cient results for higher degrees and dimensions

without substantial loss of e�ciency. In some cases, nearly optimal rules were attained in

�ve and six dimensions, which is a strong indicator that optimal or nearly optimal cubature

rules exist in higher dimensions.

The recursive initial guess and accurate predictor reduced the number of unknowns and

the number of iterations in the Penalized Least Squares Newton, respectively. The reduction

of the computational cost made the computation of �ve and six-dimensional problems more

feasible in a reasonable amount of time. In addition, predictor was successful at selecting

which node should be eliminated �rst. In most cases, the �rst node that was selected for

elimination produced a new cubature rule.

The computational times were reduced further by the use of e�cient linear algebra rou-

tines from OneMKL library and OpenMP parallelism. In four dimensions, all experiments

took less than �ve hours on a 64-core Intel Xean Phi processors. For higher degrees in

�ve and six dimensions, the longest experiments took about two days. To obtain further

speedup, more parallelism should be exploited. Since computational cost is dominated by

linear algebra routines, an e�cient GPU implementation is the appropriate choice.

The results were obtained without any user intervention or parameter tuning. Further,

the constrained optimization techniques apply to an arbitrary convex polytope. However,

the remaining challenge is the need of an orthogonal basis or another domain-dependent

preconditioner that would reduce the ill-conditioning of the monomial basis. Possible al-

ternatives are nearly orthogonal bases or general preconditioners of a linear system. They
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provide a potential for further research on the topic. Another possible future direction is the

exploration of symmetric rules over cubes and simplexes.
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Appendix A

Orthogonal Polynomials

A.1. Legendre polynomials

Legendre polynomials are orthogonal with respect to w(x) = 1 over the interval [-1, 1],

i.e.
∫ 1

−1
Pn(x)Pm(x) = 0 if n 6= m.

The recursion formula for Legendre polynomials is

P0(x) = 1

P1(x) = x

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x).

Since our implementation is based on unit(rather than bi-unit) cubes and tetrahedra, poly-

nomials are mapped from [−1, 1] to [0, 1]. Therefore,

x̂ =
x+ 1

2
, x ∈ [−1, 1].

Hence,
∫ 1

0
Pn(x̂)Pm(x̂) = 0 if n 6= m.

A.2. Jacobi polynomials

Jacobi polynomials are orthogonal with respect to w(x) = (1 − x)α(1 + x)β over the

interval [-1, 1], i.e.
∫ 1

−1
(1− x)α(1 + x)βPα,β

n (x)Pα,β
m (x) = 0 if n 6= m.
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The recursion formula for Jacobi polynomials is

Pα,β
0 (x) = 1

Pα,β
1 (x) = (α + 1) + (α + β + 2)

x− 1

2

2n(n+ α + β)(2n+ α + β − 2)Pα,β
n (x) =

(2n+ α + β − 1)[(2n+ α + β)(2n+ α + β − 2)x+ α2 − β2)]Pα,β
n−1(x)−

2(n+ α− 1)(n+ β − 1)(2n+ α + β)Pα,β
n−2(x).

In our implementation, simpli�cations occur because α = 0 for all Jacobi polynomials of in-

terest. It is worth noting that Legendre polynomials are a special case of Jacobi polynomials,

namely

Ln(x) = P 0,0
n .

Since our implementation is based on unit(rather than bi-unit) cubes and tetrahedra,

polynomials are mapped [−1, 1]→ [0, 1]. Therefore,

x̂ =
x+ 1

2
, x ∈ [−1, 1].

Hence,∫ 1

0
(1− x̂)α(1 + x̂)βPα,β

n (x̂)Pα,β
m (x̂) = 0 if n 6= m.
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Appendix B

Linear Inequality Constraints

Any convex polytope can be expressed as

Ω =
{
x ∈ Rd : Ax ≤ b

}
.

Constraints corresponding to two, three, and four-dimensional polytopes are listed. Deriva-

tion of constraints for their analogues in higher dimensions is identical.

B.1. Cube

A cube of dimension dim requires 2 ∗ dim constraints. A point inside a two-dimensional

unit cube(square) satis�es


−1 0

1 0

0 −1

0 1


x1

x2

 ≤


0

1

0

1


.

Alternative representation is

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1.

For a three-dimensional case,
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

−1 0 0

1 0 0

0 −1 0

0 1 0

0 0 −1

0 0 1




x1

x2

x3

 ≤



0

1

0

1

0

1


,

or

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

0 ≤ x3 ≤ 1.

B.2. Simplex

A simplex of dimension dim requires dim+1 constraints. A point inside a two-dimensional

unit tetrahedron(triangle) satis�es


1 0

−1 1

0 1


x1

x2

 ≤


0

0

1

 .

Alternative representation is

0 ≤ x1 ≤ x2 ≤ 1.

For a three-dimensional case,


−1 0 0

1 −1 0

0 1 −1

0 0 1




x1

x2

x3

 ≤


0

0

0

1


,

82



or

0 ≤ x1 ≤ x2 ≤ x3 ≤ 1.

B.3. CubeSimplex

A tensor product domain of i-dimensional cube and j-dimensional simplex (Ci × Tj) re-

quires 2 ∗ i + j + 1 constraints, which is a combination of constraints for Ci and Tj. For

C2 × T2, we have



−1 0 0 0

1 0 0 0

0 −1 0 0

0 1 0 0

0 0 −1 0

0 0 1 −1

0 0 0 1




x1

x2

x3

x4


≤



0

1

0

1

0

0

1


.

B.4. SimplexSimplex

A tensor product domain of i-dimensional simplex and j-dimensional simplex (Ti × Tj)

requires i+j+2 constraints, which is a combination of constraints for Ti and Tj. For T2×T2,

we have



−1 0 0 0

1 −1 0 0

0 1 0 0

0 0 −1 0

0 0 1 −1

0 0 0 1




x1

x2

x3

x4


≤



0

0

1

0

0

1


.
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B.5. Pyramid

A three-dimensional pyramid requires six constraints, and in dim dimensions requires

2 ∗ dim constraints. For the unit right-angle pyramid, equations are



−1 0 0

1 0 0

0 −1 0

−1 1 0

0 0 −1

−1 0 1




x1

x2

x3

 ≤



0

1

0

0

0

0


.

Alternatively, it is expressed as

0 ≤ x1 ≤ 1

0 ≤ x2 ≤ x1

0 ≤ x3 ≤ x1.
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