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Advances in next-generation sequencing technology have enabled the high-throughput

profiling of metagenomes and accelerated the study of the microbiome. Microbiome

count data are high-dimensional and usually suffer from uneven sampling depth, over-

dispersion, and zero-inflation. In this thesis, we develop specialized analytical models

for analyzing such count data. In Chapter 2, I develop a bi-level Bayesian hierarchical

framework for microbiome differential abundance analysis. The bottom level is a multi-

variate count-generating process that links the observed counts in each sample to their

latent normalized abundances. The top level is a mixture of Gaussian distributions with a

feature selection scheme for differential abundance analysis. The model further employs

Markov random field priors to incorporate taxonomic tree information to identify differen-

tially abundant bacterial taxa at different taxonomic ranks. A simulation study on both

simulated and synthetic data is conducted. A colorectal cancer case study demonstrates

that a resulting diagnostic model trained by the selected microbial taxa can significantly

improve the disease outcome prediction accuracy.

Along with identification of specific microbial taxa associated with diseases, recent

scientific advancements provide mounting evidence that metabolism, genetics and envi-

ronmental factors can all modulate microbial effects. In Chapter 3, I develop an integrative

framework that can distinguish differentially abundant taxa across phenotypes while quan-

tifying covariate-taxa effects. As an extension of the bi-level Bayesian hierarchical model

v



in Chapter 2, the new integrative model incorporates a regression framework to success-

fully integrate microbiome taxonomies and metabolomics in two real microbiome datasets

to provide biologically interpretable findings.

Microorganisms form complex communities and collectively affect host health. In

Chapter 4, I propose a general framework, HARMONIES, a Hybrid Approach foR Micro-

biOme Network Inferences via Exploiting Sparsity, to infer a sparse microbiome network

that describe the associations between microbial taxa. HARMONIES first utilizes a model-

based approach to normalize the microbiome data. Then, it infers a sparse and stable

network by imposing non-trivial regularizations based on the Gaussian graphical model.

In comprehensive simulation studies, HARMONIES outperformed four other commonly

used methods. When using published microbiome data from a colorectal cancer study, it

discovered a novel community with disease-enriched bacteria.
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CHAPTER 1

Introduction

1.1. Microbiome study
The human body hosts more than 100 trillion microorganisms. Collectively, the mi-

croorganism genomes contains at least 100 times as many genes as the human genome

[7]. The microbes in a healthy body aid in digestion and metabolism, and prevent the

colonization of pathogenic microorganisms [50]. Microbial communities have a profound

impact on human health [121]. Recently, microbiome studies have identified disease-

associated bacteria taxa in type 2 diabetes [54], liver cirrhosis [101], inflammatory bowel

disease [47], and melanoma patients responsive to cancer immunotherapy [38]. An in-

creasing number of research projects continue to systematically investigate the role of the

microbiome in human diseases [51].

Advances in next-generation sequencing (NGS) technology, such as high-throughput

16S rRNA gene and metagenomic sequencing, have accelerated microbiome research by

generating enormous amounts of low-cost sequencing data [91]. For instance, metage-

nomic shotgun sequencing (MSS) generates a massive amount of sequence reads that

can provide species or isolate level taxonomic resolution [111]. The availability of massive

data motivates the development of advanced analytical models to guide further scientific

approaches in the microbiome field. For example, specialized models for microbiome

differential abundance analysis ensure accurate identifications of microbiota-disease as-

sociations could facilitate the elucidation of disease etiology and lead to novel therapeutic

approaches. Moreover, microbial taxa can be modulated by metabolites, antibiotics and

host genetics. Ultimately, there may be a clinical need to quantify the associations be-
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tween microbiome and clinical confounders [55, 82, 140]. Last but not least, understand-

ing the structural organization of the human microbiome plays a vital role in revealing how

the microbial taxa are collaborating or competing with each other under different physio-

logic conditions.

In sequencing-based microbial association studies, the enormous amount of NGS

data can be summarized in a sample-by-taxon count table where each entry is a proxy to

the underlying true abundance. However, there is no simple relationship between the true

abundances and the observed counts. The microbiome count data are highly variable,

both with respect to the number of total reads per sample and per taxonomic features.

Hence, the distributions of observed counts are typically skewed and over-dispersed,

since a large number of taxa are recorded at low frequencies whereas a few are recorded

very frequently. Additionally, the sequencing count data are often summarized as counts

of bacterial taxa at various taxonomic levels, since there is a natural hierarchy of bio-

logical organism classification, i.e., species, genus, family, order, class, etc. In analysis

of microbiome data, it is also of biological interest to account for the dependent struc-

ture between bacterial taxa through the taxonomic tree. With these characteristics,the

microbiome analysis requires specialized modeling frameworks [129]. A number of zero-

inflated (ZI) models have been proposed to account for the inflated amount of zeros in

microbiome data. [130] argued that these models have an advantage in controlling type

1 error in differential abundance analysis. On the other hand, statistical models based

on either negative binomial or Dirichlet-multinomial distribution have been developed to

directly model the overdispersed microbiome count data [21, 49, 97, 137].

There is a growing number of Bayesian methods proposed for analyzing microbiome

data. For example, [122] developed a Bayesian framework for quantifying the association

between microbiome taxa and KEGG orthology pathways. [57] proposed a Bayesian joint

model for the identification of covariate associations in microbiome study and prediction of

phenotypic outcomes. [136] constructed a Bayesian compositional regression model for
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microbiome feature selection. These works have demonstrated that the Bayesian hierar-

chical model is an efficient technique to simultaneously handling the following aspects in

microbiome study: 1) zero-inflated sequencing counts from thousands of bacterial taxa;

2) confounding effects from clinical covariates and other experimental factors; and 3) un-

certainty in the parameter estimations. Besides, the Bayesian framework allows to flexibly

incorporate biologically meaningful prior information in statistical inference. Therefore, we

propose the following Bayesian hierarchical frameworks for three analyses in microbiome

research.

1.2. Microbiome differential abundance analysis
Accurate identification of microbiota-disease associations could facilitate the elucida-

tion of disease etiology and lead to novel therapeutic approaches. In microbiome dif-

ferential abundance analysis, our goal is to identify disease-associated microbiota, for

example, a set of taxa whose abundances significantly differ across clinical outcomes. To

overcome the aforementioned limitations in microbiome data modeling: 1) zero-inflation,

2) uneven sampling depth, and 3) over-dispersion, we present a general Bayesian hier-

archical framework to model microbiome count data for differential abundance analysis.

It consists of two levels in order to allow flexibility. The bottom level is a multivariate

count variable generating process, where a wide range of classic models can be plugged

in, such as Dirichlet-multinomial (DM) model and zero-inflated negative binomial (ZINB)

model. The mean parameters of the bottom-level model typically refer to the latent rela-

tive abundance. For the ZINB model, we further incorporate model-based normalization

through Bayesian nonparametric prior distributions with stochastic constraints to infer the

normalizing factors (i.e., sequencing depth). The top level is a mixture of Gaussian dis-

tributions to model the latent relative abundance with a feature selection scheme, which

enables to identify a set of discriminatory taxa among different clinical groups. In addition,

we introduce how to incorporate the taxonomic tree structure to jointly select biologically

similar taxa.
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1.3. Microbiome integrative analysis
We propose a Bayesian integrative model to analyze microbiome count data while ad-

justing for effects from confounding variables (e.g., metabolites, antibiotics, host genetics,

etc.). Our model jointly identifies differentially abundant taxa among multiple groups and

simultaneously quantifies the taxon-covariate associations. Our modeling construction

includes several advantages. First, it characterizes the over-dispersion and zero-inflation

frequently observed in microbiome count data by introducing an ZINB model. Second, it

models the heterogeneity from different sequencing depths, covariate effects, and group

effects via a log-linear regression framework on the ZINB mean components. Last, we

propose two feature selection processes to simultaneously detect differentially abundant

taxa and estimate the covariate-taxa associations using the spike-and-slab priors. We

compute Bayesian posterior probabilities for these correlated features and provide the

Bayesian false discovery rate (FDR).

1.4. Microbiome network analysis
Microbiota form complex community structures and collectively affect human health.

Studying their relationship as a network can provide key insights into their biological mech-

anisms. While the number of discovered microbial taxa continues to increase, our knowl-

edge of their interactive relationships is severely lacking. HARMONIES (a Hybrid Ap-

proach foR MicrobiOme Network Inferences via Exploiting Sparsity) is developed to infer

the microbiome networks. It consists of two major steps: (1) normalization of the mi-

crobiome count data by fitting an ZINB model with the Dirichlet process prior (DPP), (2)

application of Glasso to ensure sparsity and using a stability-based approach to select

the tuning parameter in Glasso. The estimated network contains the information of both

the degree and the direction of associations between taxa, which facilitates the biological

interpretation.

1.5. Overview of projects
Chapters 2, 3, and 4 describe the modeling approaches for microbiome differential

abundance analysis, integrative analysis, and network analysis, respectively.
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In Chapter 2, Section 2.1 reviews the statistical methods developed for microbiome

differential abundance analysis. Section 2.2 introduces the bi-level Bayesian modeling

framework and discusses the prior formulations. Section 2.3 briefly describes the Markov

chain Monte Carlo algorithm and the resulting posterior inference. In Section 2.4, we

present comprehensive simulation studies using both simulated and synthetic data to

illustrate the performance of the method. Section 2.5 consists of two case studies, using

the proposed ZINB model. Section 2.6 concludes the chapter with remarks on future

directions.

In Chapter 3, Section 3.1 briefly surveys the existing work in microbiome integrative

analysis. Section 3.2 introduces the integrative hierarchical mixture model and the prior

formulations. Section 3.3 supplies a brief discussion of the MCMC algorithm and the

resulting posterior inference. In Section 3.4, we evaluate model performance on simulated

data through a comparison study. Two real data analyses are shown in Section 3.5. Our

conclusions are presented in Section 3.6.

In Chapter 4, Section 4.1 discusses the commonly used approaches in microbiome

network analysis. Section 4.2 introduces the hybrid modeling framework of the network

inference along with the simulation study setting. The results for the simulation study and

the real microbiome data network analysis are presented in Section 4.3.6. Section 4.5

discusses the potential future directions.

Chapter 5 presents conclusions and outlines the future research directions.
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CHAPTER 2

A Bayesian Model of Microbiome Differential Abundance Analysis

2.1. Literature review
Advances in NGS technology, such as high-throughput 16S rRNA gene and metage-

nomic profiling, have accelerated microbiome research by generating enormous amounts

of low-cost sequencing data [91]. The availability of massive data motivates the develop-

ment of specialized analytical models to identify disease-associated microbiota, for exam-

ple, a set of taxa whose abundances significantly differ across clinical outcomes. Perhaps

the simplest approach is to first convert the count data to its compositional version via

dividing each read count by the total number of reads in each sample, and then apply

the Wilcoxon rank-sum test (or its generalized version, the Kruskal–Wallis test) to each

taxonomic feature individually [65]. Differential abundance analysis has also been exten-

sively studied in other types of NGS data. Hence, several methods that were designed

for RNA-Seq, including edgeR [105], DESeq2 [81], and their modifications [83], have been

used for analyzing microbiome count data. However, those methods result in strong bi-

ases since they neglect to account for the excess zeros observed in the microbiome data.

The sparsity is usually due to both biological and technical phenomena: some microor-

ganisms are found in only a small percentage of samples, whereas others are simply not

detected owing to insufficient segueing depth [97].

A number of zero-inflated (ZI) models have been proposed to analyze zero-inflated

microbiome count data for differential abundance analysis. For example, the ZI Gaussian

model [97], ZI negative binomial model [138], and ZI beta regression model [99]. [130]

argued that these models have an advantage in controlling type 1 error. However, all of
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them require an ad hoc normalizing factor for each sample to reduce biases due to un-

even sequencing depth. From a statistical perspective, the employment of pre-normalized

quantities leads to non-optimal performance and limits the power of downstream analysis

[88]. In addition, the microbiome count data are also highly variable, both with respect to

the number of total reads per sample and per taxonomic features. Hence, the distributions

of observed counts are typically skewed and over-dispersed, since a large number of taxa

are recorded at low frequencies whereas a few are recorded very frequently. In order to

take account of this characteristic, statistical models based on either negative binomial or

Dirichlet-multinomial distribution have been developed [21, 49, 97, 137].

2.2. Model
In this section, we present a bi-level Bayesian framework for microbial differential

abundance analysis. Section 2.2.1 introduces the bottom level, which estimates the nor-

malized abundance of each taxon in each sample via a representative count generative

model (i.e., ZINB model). Section 2.2.2 describes a Gaussian mixture model as the top

level, which is used to select the differentially abundant taxa. Fig A.1 shows the graphical

formulation of the proposed ZINB model.

Before introducing the main components, we summarize the observed data as follows.

Let Y denote an n-by-p taxonomic abundance table of n subjects and p taxa, with yij ∈

N, i = 1, . . . , n, j = 1, . . . , p indicating the count of taxon j observed from subject i. Note

that Y can be obtained from either 16S rRNA gene sequencing or MSS. For the sake

of simplicity, we assume that the taxonomic features in Y are all at the lowest available

taxonomic levels (i.e., OTU for 16S rRNA data, and species for MSS data). As the count

matrix at a higher taxonomic level can be easily summed up from its lower level, we

discuss how to integrate information from a taxonomic tree in Section 2.2.3. We use an

n-dimensional vector z = (z1, . . . , zn)T to allocate the n subjects into K different groups

(e.g., phenotypes), with zi = k, k = 1, . . . , K indicating that subject i belongs to group k.

In addition, we use the following notations throughout this chapter. For any n-by-p matrix
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X, we use xi· = (xi1, . . . , xip)
T and x·j = (x1j, . . . , xnj)

T to denote the vector from i-th row

and j-th column of X, and use Xi· =
∑p

j=1 xij and X·j =
∑n

i=1 xij to denote the sum of all

counts in the i-th row and j-th column of X.

2.2.1. Multivariate count variable generating processes

In the bottom level of the framework, we consider the multivariate counts in subject

i, i.e., yi·, as sampled from a probabilistic model M. The model learns the normalized

abundance of each taxon in each subject, and should characterize one or more attributes

of microbiome count data. More importantly, it automatically accounts for measurement

errors and uncertainties associated with the counts [68]. Without loss of generality, we

write

yi· ∼M(αi·,Θ), (2.1)

where the positive vector αi· = (αi1, . . . , αip)
T , αij > 0 denotes the normalized abundance

for each taxon in subject i, and Θ denotes all other model parameters. Table 2.1 pro-

vides a list of M and their features. In this chapter, we mainly focus on the choice of a

ZINB model due to its flexibility. An alternative choice of Dirichlet-multinomial (DM) model

and the related model fitting procedure are presented in Section A.1 and A.2.1.1 in the

Appendix.

The excess zeros are often attributed to rare or low abundance microbial species that

may be present in only a small percentage of samples, whereas others are not recorded

owing to the limitations of the sampling effort. Thus, we consider modeling each taxo-

nomic count using a ZINB model,

yij ∼ πiI(yij = 0) + (1− πi)NB(λij, φj), (2.2)

where we constrain one of the two mixture kernels to be degenerate at zero, thereby

allowing for zero-inflation. In model (2.2), πi ∈ (0, 1) can be viewed as the proportion
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Table 2.1: List of multivariate count generating processes and their characterizations

M(yi·;αi·,Θ) Θ U
ne

ve
n

de
pt

h

Ze
ro

-in
fla

tio
n

O
ve

r-
di

sp
er

si
on

Example

Multi Multi(yi·;Yi·, αi1, . . . , αip) •

DM DM(yi·;αi1, . . . , αip) • • [64]

Poisson
∏p
j=1 Poi(yij ; siαij) {s} • [12]

NB
∏p
j=1 NB(yij ; siαij , φj) {s,φ} • • [137]

ZIG
∏p
j=1 πi(Yi·)I(yij = 0)+ {σ,π} • • • [97]

(1− πi(Yi·))N
(
log(yij + 1);αj , σ

2
j

)
ZIP

∏p
j=1 πiI(yij = 0)+ {s,π} • • [24]

(1− πi)Poi(yij ; siαij)

ZINB
∏p
j=1 πiI(yij = 0)+ {s,φ,π} • • • [31]

(1− πi)NB(yij ; siαij , φj)

Abbreviations: Multinomial (Multi); Dirichlet-multinomial (DM); Negative binomial (NB); Zero-inflated Gaussian (ZIG); Zero-inflated Poisson (ZIP); Zero-inflated negative
binomial (ZINB).

of extra zero counts in sample i. Here we use NB(λ, φ), λ, φ > 0 to denote a negative

binomial (NB) distribution, with expectation λ and dispersion 1/φ. With this parameteri-

zation of the NB model, the p.m.f. is written as Γ(y+φ)
y!Γ(φ)

(
φ

λ+φ

)φ (
λ

λ+φ

)y
, with the variance

Var(Y ) = λ + λ2/φ. Note that φ controls the degree of over-dispersion. A small value

indicates a large variance to mean ratio, while a large value approaching infinity reduces

the NB model to a Poisson model with the same mean and variance. Now we rewrite

model (2.2) by introducing a latent indicator variable ηij, which follows a Bernoulli dis-

tribution with parameter πi, such that if ηij = 1 then yij = 0, whereas if ηij = 0 then

yij ∼ NB(λij, φj). The independent Bernoulli prior assumption can be further relaxed by

formulating a Be(aπ, bπ) hyperprior on πi, leading to a beta-Bernoulli prior of ηij with ex-

pectation aπ/(aπ + bπ). Setting aπ = bπ = 1 results in a noninformative prior on πi. Lastly,

we specify the same prior distribution for each dispersion parameter as φj ∼ Ga(aφ, bφ).

Small values, such as aφ = bφ = 0.001, result in a weakly informative gamma prior.

Multiplicative characterizations of the NB (or Poisson as a special case) mean are

typical in both the frequentist [e.g., 15, 69, 127] and the Bayesian literature [e.g., 2, 9] to

justify latent heterogeneity and over-dispersion in multivariate count data. Here, we pa-

rameterize the mean of the NB distribution as the multiplicative effect of two parameters,

λij = siαij. We denote si as the size factor of sample i, reflecting the fact that samples are
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sequenced in different depths. Once this global effect is accounted for, αij is interpreted

as the normalized abundance for counts yij. Conditional on the parameters, the likelihood

of observing the counts yi· can be written as

fZINB(yi·|αi·,ηi·,φ, si) =

p∏
j=1

I(yij = 0)ηij

(
Γ(yij + φj)

yij! Γ(φj)

(
φj

siαij + φj

)φj ( siαij
siαij + φj

)yij)1−ηij

.

(2.3)

To ensure identifiability between the normalized abundance αij and its relevant size

factor si, one typical choice is to calculate s = (s1, . . . , sn) based on the observed counts

Y , combined with some constraint such as
∑n

i=1 si = 1 or
∏n

i=1 si = 1 (i.e.,
∑n

i=1 log si =

0). Table A.1 in the Appendix summarizes the existing methods for estimating the size

factors. The simplest approach is to set the size factor si to be proportional to the total

sum of counts in the sample, i.e., ŝi ∝ Yi·, although it does not account for heteroscedas-

ticity and yields biased estimation on all other model parameters [27]. In practice, most

methods were developed for mitigating the influence of extremely low and high counts

in RNA-seq data, such as upper-quartiles (Q75) [14], relative log expression (RLE) [5],

and weighted trimmed mean by M-values (TMM) [105]. However, these assumptions are

likely not appropriate for highly diverse microbial environments [126]. [97] developed a so-

called cumulative sum scaling (CSS) method. It is an adaptive extension of Q75, which

is better suited for microbiome data. While convenient, the use of the plug-in estimates

ŝi has noticeable shortcomings. In a Bayesian framework, those plug-in estimates can

be viewed as point mass priors. On one hand, the “double dipping" occurs as those in-

formative priors are derived from the data before model fitting and thus the uncertainty

quantification for estimation of si will not be reflected in the inference; on the other hand,

a discontinuity on the point mass priors may bias the inference on other parameters.

To address the identifiability issue and allow flexibility in the estimation of the unknown

normalizing factors si, [72] imposed a regularizing prior with a stochastic constraint on the
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logarithmic scale of each size factor. They assumed that log si is drawn from a mixture of

a two-component Gaussian mixture,

log si ∼
M∑
m=1

ψm

[
tm N(νm, σ

2
s) + (1− tm) N

(
− tmνm

1− tm
, σ2

s

)]
, (2.4)

with the weight of outer mixtures denoted by ψm (0 < ψm < 1,
∑M

m=1 ψm = 1), where

M is an arbitrary large positive integer. The use of mixture distributions allows for flexi-

ble estimation of the posterior density of log si. In order to satisfy the desired stochastic

constraint (e.g., E[log si] = 0), each of M components is further modeled by a mixture

of two Gaussian distributions with a constant mean of zero. The weight of each inner

mixture is denoted by tm (0 < tm < 1). Note that if M → ∞, model (2.4) can be inter-

preted as Bayesian nonparametric infinite mixtures. With the assumption that the weights

ψm are defined by the stick-breaking construction, i.e., ψ1 = V1, ψm = Vm
∏m−1

u=1 (1 − Vu),

m = 1, 2, . . ., it becomes a case of Dirichlet process mixture models, which have been

extensively used in recent literature for flexible density estimation [see 63, 114, 118]. [67]

have demonstrated the superiority of employing the Dirichlet process prior (DPP) in a

Bayesian semiparametric regression model for joint analysis of ocean microbiome data.

The authors claimed that DPP can accommodate various features in a distribution, such

as skewness or multi-modality, while satisfying the mean constraint. We conclude the

ZINB model by specifying the following hyper-prior distributions for DPP: νm ∼ N(0, τν),

tm ∼ Be(at, bt), and Vm ∼ Be(am, bm). Note that ψm will be updated according to the

stick-breaking construction. We assume that σ2
s = 1, which completes an automatic nor-

malization of the size factors.

2.2.2. Gaussian mixture models with feature selection

In the top level of our framework, we aim to identify a subset of taxa that are relevant to

discriminating the n subjects into K distinct groups. We postulate the existence of a latent
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binary vector γ = (γ1, . . . , γp)
T , with γj = 1 if taxon j is differentially abundant among the

K groups, and γj = 0 otherwise. This assumption could be formulated as,

logαij|γj ∼


N(µkj, σ

2
kj) if γj = 1 and zi = k

N(µ0j, σ
2
0j) if γj = 0

. (2.5)

Note that the use of log transformation has two folds: 1) it ensures that the normalized

abundance αij ’s are not skewed; 2) it converts a positive value of αij to be either positive

or negative, which is more appropriate for Gaussian fittings. A common choice for the

prior of the binary latent vector γ is independent Bernoulli distributions on each individual

component with a common hyperparameter ω, i.e., γj ∼ Bernoulli(ω). It is equivalent

to a binomial prior on the number of discriminatory taxa, i.e., pγ =
∑p

j=1 γj ∼ Bin(p, ω).

The hyperparameter ω can be elicited as the proportion of taxa expected a priori to be

differentially abundant among the K groups. This prior assumption can be further relaxed

by formulating a Be(aω, bω) hyperprior on ω, which leads to a beta-binomial prior on pγ with

expectation paω/(aω + bω). [115] suggest a vague prior of ω, by imposing the constraint

aω + bω = 2.

Taking a conjugate Bayesian approach, we impose a normal prior on µ0 and each

µk, and an inverse-gamma (IG) prior on σ2
0j and each σ2

kj; that is, µ0j ∼ N(0, h0σ
2
0j),

µkj ∼ N(0, hkσ
2
kj), σ

2
0j ∼ IG(a0, b0), and σ2

kj ∼ IG(ak, bk). This parameterization setting is

standard in most Bayesian normal models. It allows for creating a computationally efficient

feature selection algorithm by integrating out means (i.e., µ0j and µkj) and variances (i.e.,

σ2
0j and σ2

kj). The integration leads to marginal non-standardized Student’s t-distributions

on logαij. Consequently, we can write the likelihood of observing the normalized abun-
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dances of taxon j as,

p(α·j|γj) = (2π)−
n
2×

∏K
k=1(nkhk + 1)−

1
2

Γ(ak+
nk
2 )

Γ(ak)

b
ak
kbk+ 1

2

∑
{i:zi=k}

logα2
ij−

(∑{i:zi=k} logαij)
2

nk+
1
hk


ak+

nk
2

if γj = 1

(nh0 + 1)−
1
2

Γ(a0+n
2 )

Γ(a0)

b
a0
0b0+ 1

2

∑n
i=1 logα2

ij−
(∑ni=1

logαij)
2

n+ 1
h0


a0+

n
2

if γj = 0

,
(2.6)

where nk is the number of subjects belonging to group k. To specify the IG hyperparam-

eters of σ2
0j and σ2

kj, we recommend a weakly informative choice by setting the shape

parameters a0 and ak’s to 2, and the scale parameters b0 and bk to 1, following [71]. To

specify the hyperprior on h0, we suggest setting it to a large value so as to obtain a

fairly flat distribution over the region where the data are defined. According to [113], a

large value of hk allows for mixtures with widely different component means and typically

encourages the selection of relatively large effects (e.g., those taxa of large effect size

among groups), whereas a small value encourages the selection of small effects. We

carried out a sensitivity analysis in Section A.3 and found that the ZINB model performed

reasonably well if the value of hk ranged from 10 to 100.

2.2.3. Markov random field prior model to incorporate taxonomic tree

One feature of microbiome data is that the count matrix can be summarized at different

taxonomic levels, since there is a natural hierarchy of biological organism classification,

i.e., species, genus, family, order, class, etc. Given a count table Y at the bottom-most

level, we can aggregate the counts into any upper level based on the taxonomic tree. A

tree is an undirected graph where any two vertices are connected by exactly one path.

13



Thus, we describe the taxonomic tree by using the adjacent matrix in graph theory. Sup-

pose the relationship between taxa in different levels are represented by a p′×p′ symmetric

matrix G, with gjj′ = 1 if taxon j and j′ have a direct link in the tree. Let l, 1 ≤ l ≤ L index

the taxonomic level in the order of {species,genus, family,order, class,phylum, kingdom}.

Given the count matrix at a lower level, each element of the count matrix at the upper level

can be calculated by y(l)
ij =

∑
{j′:gjj′=1} y

(l−1)
ij′ .

We assume that the size factor estimation should be irrelevant to the choices of mi-

crobiome count data at different taxonomic levels. Therefore, we consider the following

scheme for a joint inference: 1) fit the bottom level model to the microbiome count ma-

trix Y (1) and infer the corresponding normalized abundance matrix A(1), as well as the

sample-specific size factor s; 2) fit the bottom level model to the microbiome count matri-

ces at each upper level with fixed s, and obtain the corresponding normalized abundance

matrices A(2), . . . ,A(L); and 3) fit the top level model to all the abundance matrices from

level 1 to L, independently.

The last implementation is to individually fit the top level model to the abundance matrix

at each taxonomic level, although some efforts could be made to sharpen the inference.

One proposal is to replace the independent Bernoulli prior with a Markov random field

(MRF) prior, which incorporates information from the taxonomic classification system, on

the selection of discriminatory microbial features. This could encourage two connected

taxa in the taxonomic tree to be both selected. In particular, we consider the MRF prior

on each γj at level l as

p(γ
(l)
j |γ(l−1),γ(l+1)) =

exp
(
γ

(l)
j

(
d+ f

∑
l′∈{l−1,l+1}

∑
j′:gjj′=1 γ

(l′)
j′

))
1 + exp

(
d+ f

∑
l′∈{l−1,l+1}

∑
j′:gjj′=1 γ

(l′)
j′

) , (2.7)

with hyperparameters d and f to be chosen. According to (2.7) those taxa that have a

direct evolutionary relationship are more likely to be jointly selected. The hyperparameter

d controls the sparsity of the prior model, while f affects the probability of selection of a
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feature according to the status of its connected taxa.

2.3. Model fitting and posterior inference
In this section, we briefly describe the Markov chain Monte Carlo (MCMC) algorithm

for posterior inference. Our inferential strategy allows us to simultaneously infer the latent

relative abundance of each taxon j (at different taxonomic levels indexed by l) in each

subject i, while identifying the discriminating taxa through γ(l)’s.

Our primary interest lies in the identification of discriminating taxa via the selection

vectors γ(l)’s, or γ if no taxonomic tree available. To serve this purpose, a MCMC algo-

rithm is designed based on Metropolis search variable selection algorithms [13, 44]. As

discussed in Section 2.2.2, we have integrated out the mean and variance components

in Equation (2.5). This step helps us speed up the MCMC convergence and improve the

estimation of γ(l)’s. The detailed MCMC implementation is available in Section A.2 in the

Appendix.

An efficient summarization of γ(l) is to select the taxa based on their marginal distri-

butions. In particular, we estimate marginal posterior probabilities of inclusion (PPI) of

a single taxon by PPI(l)j =
∑B

b=1

(
γ

(l)
j at iteration b

)
/B, where B is the total number of

iterations after burn-in. The marginal PPI represents the proportion of MCMC samples in

which a taxon is selected to be discriminatory. A set of differentially abundant taxa can be

picked based on their PPIs. For example, the selection can be done by including those

taxa with marginal PPIs greater than a pre-specified value such as 0.5. Alternatively, we

can choose the threshold that controls for multiplicity [94], which guarantees the expected

Bayesian false discovery rate (FDR) to be smaller than a number. The Bayesian FDR is

calculated as follows,

FDR(cγ) =

∑L
l=1

∑p
j=1(1− PPI(l)j )I(1− PPI(l)j < cγ)∑L
l=1

∑p
j=1 I(1− PPI(l)j < cγ)

. (2.8)

15



Here cγ is the desired significance level, with cγ = 0.05 being generally used in other

parametric/nonparametric test settings for microbiome studies.

2.4. Simulation
We use both simulated and synthetic data to assess the performance of the Bayesian

framework embedded with the bottom level model of DM and ZINB. We demonstrate the

advantage of our models against alternative approaches. We also investigate how the

prior choices affect the posterior inference.

Let Yn×p denote the simulated count table, where the number of features p = 1, 000,

and the sample size n = 24 or 108. We do not consider the taxonomic structure among the

p features in all simulation settings. We set the number of truly discriminatory taxonomic

features pγ = 50 among K = 2 or 3 groups, helping us test the ability of our method to

discover relevant features in the presence of a good amount of noise.

2.4.1. Generative model for simulated data

We generated simulated datasets that favor the proposed bi-level frameworks. For the

normalized abundance αij of a discriminating feature (γj = 1), we drew its logarithmic

value from a two-component Gaussian mixture distribution,

if K = 3. Each permutation of {d1j, . . . , dKj} followed an arithmetic progression with

unit mean and difference σ, i.e., {1− σ/2, 1 + σ/2} if K = 2, and {1− σ, 1, 1 + σ} if K = 3.

For the scenario of K = 2, σ can be interpreted as the between-group standard deviation

or the effect size in the logarithmic scale. We considered two scenarios of σ = 1 or 2, and

set the within-group standard deviation σwithin = σ/10. For a non-discriminating feature

(γj = 0), we generated its logarithmic value from a normal distribution with zero mean and

variance 4, i.e., logαij|γj = 0 ∼ N(0, 4). For the bottom level of the DM model, we first

sampled the underlying fractional abundances for sample i from a Dirichlet distribution

with parameters αi·, i.e., ψi· ∼ Dir(αi·). Then, their corresponding observed counts yi·

16



were drawn from a multinomial distribution, i.e., Multi(Ni,ψi·), where the total counts Ni

was randomly selected from a discrete uniform distribution U(50, 000, 100, 000). As for the

ZINB model, we sampled the size factors si from a uniform distribution U(0.5, 4), and the

dispersion parameters φj from an exponential distribution with mean 10, i.e., Exp(1/10).

Next, each observed count yij was generated from NB(siαij, φj). Lastly, we randomly

selected half of the counts and forced their values to zero in order to mimic the excess

zeros seen in the real data. Combined with the two bottom level kernels ({DM,ZINB}),

the two choices of the sample size (n ∈ {24, 108}), the number of groups (K ∈ {2, 3})

and the log effect size (σ ∈ {1, 2}), there were 24 = 16 scenarios in total. For each of the

scenarios, we independently repeated the above steps to generate 50 datasets.

2.4.2. Generative model for synthetic data

To evaluate the performance of the proposed methods on the count data that are dif-

ferent from the model assumptions, we also generated synthetic datasets based on multi-

nomial models that characterize a real taxa abundance distribution. A brief description of

the data-generating scheme is given below, while detailed information can be found in the

supplement of [126]. Let O = (O1, . . . , Opγ/2, Opγ/2+1, . . . , Opγ , Opγ+1 . . . , Op)
T be a count

vector, where (O1, . . . , Opγ/2) = (Opγ/2+1, . . . , Opγ ), and each Oj, pγ/2 < j ≤ p was the sum

of OTU counts for one randomly selected taxon (without replacement) from all the skin or

feces samples in a real microbiome study [16]. We defined two p-by-1 vectors, P and Q,

as

Pj =


exp(σ)Oj for 1 ≤ j ≤ pγ/2

Oj otherwise
, and Qj =


exp(σ)Oj for pγ/2 < j ≤ pγ

Oj otherwise
,

where σ represented the log effect size. Note that
∑p

j=1 Pj =
∑p

j=1 Qj. We further drew

the observed counts yi· from a multinomial model Multi(Ni,ψi·), where Ni = 10, 000 and

ψi· = I
(
1 ≤ i ≤ n

2

)
P∑p
j=1 Pj

+ I
(
n
2
< i ≤ n

)
Q∑p
j=1Qj

. This would yield the first pγ taxa to
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be truly discriminating between the two equally sized groups. Finally, we permuted the

columns of the data matrix, Y , to disperse the taxa. Combined with the two types of

samples ({Skin,Feces}), the two choices of the sample size (n ∈ {24, 108}), and the log

effect size (σ ∈ {1, 2}), there were 23 = 8 scenarios in total. For each of the scenarios, we

repeated the steps above to generate 50 independent datasets.

2.4.3. Prior and algorithm settings

For prior specification in the top level of the proposed Bayesian framework, we used

the following default settings. We set the hyperparameters that control the selection of

discriminatory features, ω ∼ Be(aω = 0.2, bω = 1.8), resulting in the proportion of taxa

expected a priori to discriminate among the K groups to be aω/(aω + bω) = 10%. As

for the inverse-gamma priors on the variance components σ2
0j and σ2

kj, we set the shape

parameters a0 = a1 = . . . = ak = 2 and the scale parameters b0 = b1 = . . . = bk = 1 to

achieve a fairly flat distribution with an infinite variance. We further set the default values

of h0 and hk to 100, as our sensitivity analysis in Appendix A.3 showed the posterior

inference on γ remained almost the same when those values were in the range of 10 to

100. As indicated by [113], larger values of these hyperparameters would encourage the

selection of only very large effects, whereas smaller values would encourage the selection

of smaller effects. For the bottom level of the ZINB model, we used the following weakly

informative settings. The hyperparameters that controlled the percentage of extra zeros

a priori were set to π ∼ Be(aπ = 1, bπ = 1). As for the gamma prior on the dispersion

parameters, i.e., φj ∼ Ga(aφ, bφ), we set both aφ and bφ to small values such as 0.001,

which led to a vague prior with expectation and variance equal to 1 and 1, 000. For the

Dirichlet priors on the size factors si, we followed [72] by specifying M = n/2, σs = 1, τη =

1, at = bt = 1, and am = bm = 1. For each dataset, we ran a MCMC chain with 10, 000

iterations (first half as burn-in). The chain was initialed from a model with 5% randomly

chosen γj set to 1. Note that the DM model does not have any parameters needing to be
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specified in the bottom level.

2.4.4. Evaluation metrics

To quantify the accuracy of identifying discriminatory features via the binary vector

γ, we consider two widely used measures of the quality of binary classifiers: 1) area

under the curve (AUC) of the receiver operating characteristic (ROC); and 2) Matthews

correlation coefficient (MCC) [86]. The former considers both true positive (TP) and false

positive (FP) rates across various threshold settings, while the latter balances TP, FP, true

negative (TN), and false negative (FN) counts even if the true zeros and ones in γ are of

very different sizes. MCC is defined as

(TP× TN− FP× FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

.

In differential analysis settings, the number of truly discriminatory features are usually

assumed to be a small fraction of the total. Therefore, MCC is more appropriate to handle

such an imbalanced scenario. Note that the AUC yields a value between 0 to 1 that is

averaged by all possible thresholds used to select discriminatory features based on PPI,

and the MCC value ranges from −1 to 1 to pinpoint a specified threshold. The larger the

index, the more accurate the inference.

2.4.5. Alternative methods

To demonstrate the superiority of the proposed Bayesian models, particularly the

ZINB-DPP model, we compare ours with other general approaches for microbial differ-

ential abundance analysis, all of which can be implemented in R. They are: 1) Analysis

of variance (ANOVA); 2) Kruskal-Wallis test; 3) WaVE-edgeR [105]; 4) WaVE-DESeq2 [81];

and 5) metagenomeSeq [97]. The first two are parametric/nonparametric methods for test-

ing whether samples originate from the same distribution, after converting each yi· into a
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compositional vector of proportions by dividing each count by the total number of reads

Yi·. Note that the aim is to determine whether there is a significant difference among

the abundance means/medians of multiple groups for each individual taxonomic feature.

The third and fourth are the modified versions of edgeR and DESeq2, using a ZINB-based

wanted variation extraction (WaVE) strategy to downweight the inflated amount of zeros in

microbiome data. edgeR implements an exact binomial test generalized for over-dispersed

counts, while DESeq2 employs a Wald test by adopting a generalized linear model based

on an NB kernel. The last one, metagenomeSeq, assumes a zero-inflated Gaussian model

on the log-transformed counts, and performs a multiple groups test on moderated F-

statistics. All these competitors produce p-values. In order to control for the FDR, i.e., the

rate of type-I errors in these null hypothesis testings, we further adjusted their p-values us-

ing the Benjamini-Hochberg (BH) method [10]. We independently generated 50 replicates

for each of the 16 simulated data scenarios, and each of the eight synthetic data scenar-

ios. For each dataset, we ran the DM and ZINB-DPP models, and the five competitors,

and computed their individual AUC and MCC.

2.4.6. Results

We first describe posterior inference on the parameters of interest, the latent binary

vector γ and the size factor s, on a single simulated dataset (bottom level kernel=ZINB,

n = 24, K = 2, σ = 2). The results are obtained by fitting the ZINB-DPP model. As for

the feature selection, Fig 2.1(a) shows the marginal PPI of each feature, p(γj|·). The red

dots indicate the truly discriminatory features and the horizontal dashed line corresponds

to a threshold that ensures an expected Bayesian FDR of 5%. This threshold results in a

model that includes 55 features, 45 of which are in the set of truly discriminatory features.

As for the size factors s, Fig 2.1(b) shows the true values against the estimated ones

by different normalization techniques. One advantage of the use of DPP is that it can

output the uncertainty in estimating the size factor s. It clearly shows that all of the true
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Figure 2.1: Simulated data: (a) Marginal posterior probabilities of inclusion (PPI), p(γj|·),
with the red dots indicating truly discriminatory features and the horizontal red dashed
line indicating a threshold for a 5% Bayesian FDR; (b) The scatter plots of the true and
estimated size factors (si’s) obtained by different normalization methods summarized in
Table A.1. Note that RLE is not shown here because a large number of zeros in the data
made the geometric means (the key component to calculating the size factors by RLE) of
a few features inadmissible.

values are within the 95% credible intervals derived by our method. Note that the true size

factors are generated from U(0.5, 4) instead of the mixture model that DPP assumes. In

comparison, the alternative normalization techniques with constraint
∏n

i=1 si = 1 yielded

biased estimations.

Fig 2.2(a) and 2.2(c) display the average AUCs by different methods over 50 simulated

datasets under the same group number (K = 3) and different sample sizes and effect

sizes, (n, σ). It shows that all methods perform reasonably well for the data generated

by the DM model when either the sample size or the effect size was fairly large. How-

ever, for a small sample size (n = 24) and a small effect size (σ = 1), the performance

of WaVE-edgeR, WaVE-DESeq2, and metagenomeSeq significantly drop. For the data gen-

erated by the ZINB model, the results show that the ZINB-DPP model always achieves

the highest AUC values. Decreasing either the sample size or the effect size would lead

to greater disparity between the ZINB-DPP and the others. Fig 2.2(b) and 2.2(d) show
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Figure 2.2: Simulation study: Averaged AUCs and MCCs achieved by the proposed
framework with DM and ZINB models, and the five competitors: ANOVA, Kruskal-Wallis,
WaVE-edgeR, WaVE-DESeq2, and metagenomeSeq. A and B are plotted from the simulated
data generated by the DM model. C and D are plotted from the simulated data generated
by the ZINB model.

the comparison in terms of MCC. To make a fair comparison between the methods that

output p-values and those that output probability measures such as PPI, we picked only

the top 50 significant features from each method on each dataset, and computed their

individual MCC in the corresponding scenarios. These two plots confirm the overall best

performance of the ZINB-DPP model. Notice that we also evaluated the ZINB model with

different size factor estimation methods mentioned in Table A.1. The full numerical results

are summarized in Tables A.2 and A.3, which show the model performance with respect to

AUC and MCC on the simulated data generated from the DM and ZINB models. Here, the

ZINB-RLE fail to produce any results on data generated by the ZINB model. This is be-
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cause a large number of zeros is likely to make the geometric means (the key component

to calculating the size factors by RLE) of a few features inadmissible.

The ZINB-DPP model also shows very competitive performance on the synthetic data.

The results of the average AUCs and MCCs are presented in Fig 2.3(a) and 2.3(b). Note

that we generate the synthetic datasets from the multinomial model whose parameters

are estimated by using the skin/feces samples collected by [16]. Therefore, they ought to

favor our DM model. However, the ZINB-DPP model, again, maintains the highest MCCs

across all scenarios, and the DM model perform the second-best in general. Addition-

ally, all methods show great improvement when either the sample size or the effect size

increases, which is expected. The full numerical results are summarized in Table A.4,

which compares the AUCs and MCCs for all methods implemented on the synthetic data.

2.4.7. Impact of the MRF prior

To evaluate how different tree information via the MRF prior model affects the discrim-

inatory taxa identifications, we used the real taxonomic tree structure of the CRC dataset

analyzed in Section 5 in the main text to generate new simulated data. We set the number

of species p(1) = 276 (according to the real taxonomic tree) and the number of samples

n = 24 (equally splitting into K = 2 groups). We further selected pγ = 20 differentially

abundance species, with half of them enriched in one group and the remaining enriched

in the other group. We considered three scenarios of true γ, as shown in Fig 2.4, to com-

prehensively examine the proposed MRF prior model. In the strong scenario, all the 20

discriminatory species were from a single genus branch, i.e. Bacteroides. Note that it is

the only genus in the tree with more than 20 species within. In the mild scenario, only half

of them were from the Bacteroides branch, while the rest were randomly selected from all

other branches. In the weak scenario, all discriminatory species were randomly selected.

Following Section 2.4.1, we drew logαij ’s of a discriminating feature γj = 1 from a two-

component Gaussian mixture distribution, where the logarithmic effect size σ ∼ U(1, 2).
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Figure 2.3: Simulation study: The average AUCs (a) and MCCs (b) achieved by the
proposed framework with DM model and ZINB model, and the five competitors: ANOVA,
Kruskal-Wallis, WaVE-edgeR, WaVE-DESeq2, and metagenomeSeq. Results are plotted from
the synthetic data generated by the multinational model of skin/feces samples.

For each of the scenarios, we repeated the steps above to generate 100 independent

datasets.

We set the hyperparameters that control the MRF prior model to d = −2.2, which

means that if neither the upper nor lower-level neighbor of a taxa is discriminating, then

its prior probability of being a discriminatory taxon is exp(−2.2)/(1 + exp(−2.2)) ≈ 0.1.

For the choice of f , we consider three settings f ∈ {0, 0.5, 1, 2}. Note that larger values

of f would induce stronger joint selection effects. For all the other prior and algorithm

specification, we use the default setting as described in Section 2.4.3.
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Discriminating taxa in case: mildDiscriminating taxa in case: strong Discriminating taxa in case: random

Scenario 1 Scenario 2 Scenario 3

Species enriched in group 1 Species enriched in group 2 

Strong Mild Weak

Figure 2.4: Simulation study: The three scenarios of true discriminatory species γ used to
generate the simulated data with taxonomic tree information. Blue and red dots indicate
the differential abundant species enriched in group 1 and 2, respectively.

We first examined the accuracy of identifying discriminatory species with and without

using the MRF prior to a single simulated dataset randomly selected from the strong sce-

nario. Fig 2.5 shows the marginal posterior probabilities of inclusion (PPI) of p(1) = 276

species when using the independent Bernoulli prior, which is equivalent to MRF(d =

−2.2, f = 0), and the MRF(d = −2.2, f = 2) prior. As we can see from this comparison,

a PPI threshold that controls the same FDR of 5% resulted in three and 11 identified dis-

criminatory species, all of which were truly discriminating between the two groups. We

also found that the PPIs of all 20 true discriminatory species obtained with the MRF prior

tended to be higher than those obtained with the independent Bernoulli prior. Conse-

quently, the MRF prior model boosted both AUC (from 0.970 to 0.998) and MCC (from

0.375 and 0.693). The benefit of using the MRF prior was also noticed on almost all other

simulated datasets.

Then, we conducted an overall comparison. Fig 2.6 shows the AUCs and MCCs from

100 replicated datasets generated under the strong, mild, and weak scenarios, respec-

tively. To demonstrate that the improvement was indeed significant, we further applied

the paired t-test to compare the results between the independent Bernoulli prior (when
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(b) With the MRF(d = −2.2, f = 2) prior

Figure 2.5: Simulation study: The marginal posterior probabilities of inclusion (PPI) of all
species, p

(
γ

(1)
j = 1|·

)
, with the red dots indicating those true discriminatory species and

the horizontal dashed lines indicating the threshold controlling a Bayesian FDR of 5%,
using (a) the independent Bernoulli prior with ω = exp(−2.2)

1+exp(−2.2)
and (b) the Markov random

field (MRF) prior with d = −2.2 and f = 2.

f = 0) and each of the MRF prior settings. In terms of both AUC and MCC, the model with

the MRF prior performed no worse than the model with the Bernoulli prior. It is worthwhile

to mention that the MRF prior model would not be advantageous in the weak scenario

because the joint selection could hardly be achieved under this setting.

2.5. Colorectal cancer case study
Colorectal Cancer (CRC) is the third most common cancer diagnosed in both men and

women in the United States [6]. It is among the most studied diseases implicated with the

gut microbiota [33, 110]. We applied our model to a CRC microbiome dataset released by

[135]1. The cohort consisted of 199 individuals from France and Germany. The disease

status were confirmed by intestinal biopsy. We used curatedMetagenomicData [96] to

obtain the taxonomic abundance table of all subjects with 3940 detected taxa. After the

quality control procedure (detailed in Appendix A.4.1), a total of n = 182 subjects (104

non-CRC controls and 78 CRC patients), with abundance measurements over p = 492

1The original metagenomic sequence data from the fecal samples are available in the European Nu-
cleotide Archive Database (accession number ERP005534).
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Figure 2.6: Simulation study: The box plots of (a) AUCs and (b) MCCs achieved by
ZINB-DPP under the three scenarios of true discriminatory species as shown in Fig 2.4.
Note that f = 0 corresponds to the independent Bernoulli prior, while the other three
settings corresponds to the Markov random field (MRF) prior with different choices of f .
The paired t-test was performed to compare each pair of settings, with ****, *, and ns
indicating a p-value ≤ 0.0001, ≤ 0.05, and > 0.05, respectively.

taxa (276 species, 113 genus, 51 family, 22 order, 16 class, 10 phylum, and 4 kingdom

levels), constituted the analytic dataset.

We applied the ZINB-DPP model to identify the differentially abundant taxa between

the non-CRC group (k = 1) and CRC group (k = 2). We set the hyperparameters that

control the selection of discriminatory features, ω ∼ Be(aω = 0.2, bω = 1.8), resulting in

the proportion of taxa expected a priori to discriminate between the two groups to be

aω/(aω + bω) = 0.1. We set the shape parameters a0 = a1 = a2 = 2 and the scale

parameters b0 = b1 = b2 = 1 for those variance components σ2
0j, σ

2
1j, σ

2
2j. Next, we set

h0 = h1 = h2 = 50. Our sensitivity analysis in Appendix A.3 shows that the posterior

inference on γ remained almost the same when the values of hk were in the range of 10

to 100. Note that larger values of h1, . . . , hK would encourage the selection of only very

large effects whereas smaller values would encourage the selection of smaller effects

[113]. We set d = −2.2 and f = 0.5 as the default choice of the MRF prior, indicating that

if a taxon does not have any neighbor as a discriminatory taxon in the taxonomic tree,
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its prior probability of being discriminating is equal to exp(−2.2)/(1 + exp(−2.2)) ≈ 0.1.

Finally, we specified M = n/2, σs = 1, τη = 1, at = bt = 1, am = bm = 1, aφ = bφ = 0.001

and aπ = bπ = 1 as the default DPP setting. Our inference used four independent MCMC

chains with 20, 000 iterations each (first 10, 000 as burn-in). We calculated the PPIs for

all chains and found their pairwise Pearson correlation coefficients ranged from 0.954 to

0.964, which suggested good MCMC convergence. We then averaged the outputs of all

chains as final results and selected the discriminating taxa by controlling a Bayesian FDR

of 1%.

The marginal posterior probabilities of inclusion (PPIs) of γ is presented in Fig 2.7(a),

where all taxa were arranged in descending order of taxonomic levels. Based on those

probabilities, a 1% Bayesian FDR threshold corresponded to a cut-off probability of 0.881

and selected 33 differentially abundant taxa, one third of which were at the species level.

We also labeled those 33 taxa in a cladogram, as shown in Fig 2.7(b), and reported their

estimated marginal posterior logarithmic effect sizes in Fig 2.7(c). Table 2.2 lists the 11

species with their significance and supporting evidence. Among them, Fusobacterium

nucleatum (Fn) had the largest PPI value as well as the largest effect size. Fn is a well-

known taxon associated with CRC reported by a series of studies. [19] observed that the

over-abundance of Fn was associated with CRC tumor specimens, and they suggested

that Fn can invade colonic mucosa and thus induce local inflammations. Later, [58] and

[107] confirmed the causative role of Fn in CRC, and they experimentally showed that Fn

invasion would replenish tumor-infiltrating immune cells and generate a tumorigenic mi-

croenvironment to promote colorectal neoplasia. Recently, [74] employed both targeted

qPCR and metagenomic approaches to assess the diagnostic ability of five candidate taxa

to predict CRC and found that Fn performed very well as a predictive biomarker. Interest-

ingly, when they performed a linear combination of Fn and several other candidate taxa,

including Clostridium hathewayi, which was also identified in our analysis, the diagnos-

tic performance at predicting CRC was enhanced. [128] reported a novel mechanism of

epigenetic regulation of tumor suppressor genes in host cells that is regulated by Fn and
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other taxa through activation of DNA methyltransferases. Our model also chose Gemella

morbillorum, which is a gram-positive species. Several reports have found that it and other

species belonging to the genus, Gemella, are associated with rare forms of infective en-

docarditis. Meanwhile, it has been also observed in the stool and tissues of CRC patients

at high abundance [23, 123, 133]. Another two species, Porphyromonas asaccharolytica

and Peptostreptococcus stomatis, have been recently reported to be associated with CRC

[36, 100]. Interestingly, all three CRC-enriched species were suggested to be the most

important CRC predictors by [135]. Besides, our model reported a few species enriched

in the non-CRC group, such as Eubacteriaceae and Pseudoflavonifractor. The former

was found to be underrepresented in CRC tissue [84], while the latter was found to be

over-represented in healthy control samples in a CRC study [124]. To summarize, six of

those 11 differentially abundant species were previously reported as potentially important

microbial features in CRC pathophysiology.

As a result of utilizing the MRF prior on γ, those selected taxa exhibited clustering

in the taxonomic tree, as shown in Fig 2.7(b). For instance, our model chose all taxa in

the branch from the phylum Fusobacteria to the species Fn, suggesting those biologically

similar sequences under Fusobacteria were all positively associated with CRC. Our model

also detected a branch of gram-negative bacteria from the class Epsilonproteobacteria to

the genus Campylobacter. Interestingly, [124] reported significant co-occurrence of a

number of species under both the genus Fusobacterium and Campylobacter in individual

CRC tumors.

2.5.1. Comparative analysis

We compared the above ZINB-DPP result with the one from each alternative approach

evaluated in the simulation study. Since the KW test is the most common differential anal-

ysis tool for metagenomics data, we focused on the comparison between ZINB-DPP and

KW here, while the comparisons with all other methods, including ANOVA, WaVE-DESeq2,
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Figure 2.7: CRC study: (a) Marginal posterior probabilities of inclusion (PPI) of all taxa,
p(γj = 1|·), with the horizontal dashed line indicating the threshold controlling a Bayesian
FDR of 1%; (b) Cladogram of all taxa at different taxonomic levels, with marked dots
indicating the 33 discriminating taxa identified by our ZINB-DPP; (c) 95% credible intervals
of marginal posterior logarithmic effect sizes log(αj2/αj1|·) of the 33 discriminating taxa
identified by our ZINB-DPP.

WaVE-edgeR, and MetagenomeSeq are presented in Fig A.3 in the Appendix. The KW test

reported 30 taxa below the 1% significance level threshold on the Benjamini-Hochberg

(BH)-adjusted p-values, 19 of which were claimed by the ZINB-DPP model controlled by

the same FDR. There were 14 taxa identified by ZINB-DPP but not KW. We chose four of

them and plotted their relative abundance distributions and logarithmic normalized abun-

dance (i.e., logαij) distributions, respectively, for both non-CRC and CRC groups. As

we can see in Fig 2.8, the median differences of logarithmic normalized abundances be-

tween these two groups are notably visible. This is because our ZINB-DPP model could

properly adjust for sample heterogeneity and zero-inflation based on information shared
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Table 2.2: CRC study: List of 11 discriminating species identified by our ZINB-DPP

Species name PPI Distribution plot Supporting biological evidence

s Fusobacterium nucleatum 1.000 [19, 58, 107]

s Clostridium hathewayi 1.000

s Gemella morbillorum 1.000 [62]

s Peptostreptococcus stomatis 1.000 [29, 100]

s Peptostreptococcus anaerobius 1.000 Fig 2.8(b) [119]

s Porphyromonas asaccharolytica 1.000 [36]

s Streptococcus australis 1.000

s Anaerococcus vaginalis 0.999 Fig 2.8(d)

s Enterobacteriaceae bacterium 9 2 54FAA 0.999

s Pseudoflavonifractor capillosus 0.999

s Parvimonas micra 0.983 [29, 100]

by all samples and taxa, while KW only examines the relative abundance of a taxon at a

time. It is worth noting that Synergistaceae and Peptostreptococcus anaerobius (shown

in Fig 2.8(a) and (b)) have been recently validated to be associated with CRC [25, 119],

while Enterobacteriaceae and Anaerococcus vaginalis (shown in Fig 2.8(c) and (d)) are

novel findings with evidence exhibited at their higher taxonomic levels [4, 35]. Among the

11 taxa that were identified by KW but not ours, we chose four of them and plotted their

distributions for both non-CRC and CRC groups in Fig 2.9. Take Clostridium symbiosum

(shown in Fig 2.9(a)) for instance: the resulting BH-adjusted p-value by KW is 2 × 10−4,

indicating its relative abundance was significantly different between the two groups. We

found that such a small p-value was driven by a large proportion of zeros in the non-CRC

group, which was 65%. However, many of them might be false zeros owing to the limita-

tions of the sampling effort. Our flexible modeling framework could minimize the false zero

impact on the identification of discriminating taxa. For the remaining three species (shown

in Fig 2.9(b)–(d)), the violin plots of either relative abundances or logarithmic normalized

abundances fail to show noticeable median differences between the two groups.

2.5.2. Principal components analysis and unsupervised clustering analysis
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Figure 2.8: CRC study downstream analysis I: Violin plots of relative abundance and loga-
rithmic normalized abundance, logαij, under different groups for the four taxa identified by
our ZINB-DPP but not the Kruskal-Wallis (KW) test: (a) Synergistaceae; (b) Peptostrepto-
coccus anaerobius; (c) Enterobacteriaceae; (d) Anaerococcus vaginalis, with the colored
dots indicating the group medians.

The proposed ZINB-DPP model identified a subgroup of taxa that were differentially

abundant between the two groups, in which 11 were at the species level (listed in Table

2.2). We first conducted a principle component analysis (PCA) to demonstrate that using

only the 11 species can result in a better separation of CRC patients from controls than

using all 276 available species that passed the quality control procedure. Specifically, we

first normalized the species abundances in each sample (i.e., each row of Y (1)) into a

compositional vector. Next, we applied the centered log-ratio (CLR) transformation [3] to

each sample. Then, we rescaled each feature (i.e., each column of Y (1)) to ensure it had

zero-mean and unit-variance. The PCA projections, with the 95% confidence ellipse of

each group, are shown in Fig 2.10(a) and (b). When we performed the PCA based on all
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Figure 2.9: CRC study downstream analysis I: Violin plots of relative abundance and log-
arithmic normalized abundance, logαij, under different groups for the four taxa identified
by the Kruskal-Wallis (KW) test but not our ZINB-DPP: (a) Clostridium symbiosum; (b)
Lachnospiraceae bacterium; (c) Streptococcus salivarius; (d) Eubacterium ventriosum,
with the colored dots indicating the group medians.

276 species, the first two principal components (PCs) accounted for 5.5% and 4.3% of total

variance, respectively, while only the first one was associated with CRC status (Wilcoxon

rank-sum test, PC1: p-value = 0.011; PC2: p-value = 0.070). When we performed the

PCA based on the 11 selected species by ZINB-DPP, the first two PCs accounted for

30.2% and 14.2% of total variance, respectively, while both of them were associated with

CRC status (Wilcoxon rank-sum test, PC1: p-value = 4× 10−15; PC2: p-value = 1× 10−4).

The comparison between the two sub-plots clearly reveals a more significant separation

between non-CRC and CRC subjects along with the first two PCs if using only the 11

ZINB-DPP-identified species only. In addition, as shown in Fig 2.10(b), the CRC group

seemed to be less concentrated, which may be due to 1) CRC patients in this study were
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from different cancer stages (1 stage 0, 24 stage I, 13 stage II, 13 stage III, and 27 stage IV

patients); 2) CRC is a heterogeneous disease that can be stratified into different subtypes

based on microbial community profiling.

Furthermore, we performed a model-based clustering analysis on the PC1 constructed

by the 11 ZINB-DPP-identified species. Specifically, we implemented a Gaussian mixture

model [37] to cluster subjects using PC1 as displayed in Fig 2.10(b). To estimate the

number of clusters that best represents the data, we plotted the Bayesian information cri-

terion (BIC) values against the number of clusters from 1 to 9, as shown in Fig 2.10(c). It

shows that clustering all subjects into two groups achieves the best fit of the data mea-

sured by BIC, where the group sample sizes were 53 and 129, respectively. Next, we used

a contingency table to visualize the clustering result, following the BIC plot. The χ2 test

of independence reported a p-value of < 0.001 and the Rand index, a measure of the

similarity between two data clusters (a value between 0 and 1, with the former indicating

that the two data clusters do not agree at all and the latter indicating that the data clusters

are exactly the same), reported a value of 0.649, both demonstrating a strong associa-

tion between the clustering result and the true labels. In conclusion, these two clustering

analyses confirmed that the discriminating species identified by the proposed ZINB-DPP

model can be used as potential biomarkers for CRC detection.

2.5.3. Predictive performance in an independent cohort

Utilizing the microbial features that were extracted by different approaches, we de-

veloped multiple diagnostic models to predict CRC status and compared their predictive

performances. All models were independently validated in another CRC dataset provided

by [33]2. This cohort consisted of 154 individuals from Austria (108 non-CRC controls and

46 CRC patients). First, we applied the same data preprocessing as described in [135] on
2The original metagenomic shotgun sequencing data from the fecal samples are available in the Euro-

pean Bioinformatics Institute Database (accession number ERP008729).
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Figure 2.10: CRC study downstream analysis II: The scatter plots of the second against
first principal component (PC2 vs. PC1) for the 104 non-CRC (red circles) and 78 CRC
(blue triangles) samples using (a) all 276 available species that passed the quality control
procedure, and (b) 11 ZINB-DPP-identified species; (c) The BIC plot of the model-based
clustering on PC1 for all samples using the 11 ZINB-DPP-identified species and the con-
tingency table of the model-based clustering results against the truth.

both training and test datasets. It included the following: 1) removing subjects with large

adenoma; 2) taking logarithms of relative abundances at the species level for each sam-

ple; 3) scaling each feature (i.e., species) to ensure zero-mean and unit-variance. Next,

we trained seven classifiers using an L2-penalized logistic regression model in the CRC

dataset provided by [135]. Each regression model had a unique set of species as predic-

tors. They are as follows: 1) the 22 species suggest by [135] as potential CRC microbial

signatures; 2) and 3) the 11 and 10 differentially abundant species identified (whose PPIs

were above a threshold controlling a Bayesian FDR of 1%) by our ZINB-DPP and DM,

respectively; 4) – 7) the 12, 145, 34, and 8 differentially abundant species (whose BH-

adjusted p-values were below 0.01) identified by the KW test, WaVE-DESeq2, WaVE-edgeR,

and metagenomeSeq, respectively. Then, we determined the penalty coefficient through

10-fold cross-validation in the training dataset, and repeated the process 10 times (imple-

mented in R with caret package). Last, we predicted CRC status (i.e., non-CRC vs. CRC)

for each subject in the test dataset using each of the seven classifiers. Their performances

were compared in terms of area under the receiver operating characteristic (ROC) curve
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(AUC) in that this metric considers both true and false positive rates at various threshold

settings. Fig 2.11(a) and (b) shows the performance of all seven classifiers. It clearly

shows that the diagnostic model based on the 11 ZINB-DPP-identified species achieved

the highest AUCs, where the median is 0.853, while the model based on the 22 species

originally reported by [135] performed the worst, with a AUC median of 0.781. We also

implemented the logistic regression models and L1-penalized logistic regression models.

ZINB-DPP still outperformed all others under these two scenarios. Fig 2.11(c) shows the

variable importance values of the diagnostic model based on the 11 biomarkers identified

by our ZINB-DPP. The top three have been experimentally verified to be associated with

CRC (see Table 2.2). In conclusion, this downstream analysis demonstrated the gener-

alizability of the diagnostic model based on ZINB-DPP-identified taxonomic features to

other CRC cohorts.
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Figure 2.11: CRC study downstream analysis III: (a) The ROC curves and (b) The AUC
box plots achieved by L2-penalized logistic regression models built on different sets of
species in an independent dataset; (c) The bar plot of variable importance values by the
diagnostic model built on the 11 ZINB-DPP-identified species.

36



2.6. Discussion
In this chapter, we have proposed a Bayesian hierarchical framework for microbiome

differential abundance analysis. Our bi-level framework offers flexibility to choose differ-

ent normalization models and differential abundance analysis models, in distinct levels.

Under this framework, we showed that our Bayesian nonparametric prior with stochas-

tic constraints can reduce estimation bias and improve the posterior inferences of the

other parameters of interests. Notably, our application of the Dirichlet process prior is

not restricted to microbiome data analysis, and it is generally applicable to other types of

heterogeneous sequence data [72]. Moreover, our model can jointly analyze multiple mi-

crobes at different taxonomic levels while offering well-controlled Bayesian false discovery

rates.

As a summary of model performance, the ZINB-DPP model consistently outperforms

commonly used methods in model-based simulations, synthetic data simulations and two

real data analyses. The advantages become more obvious as either the sample size or

the effect size decreases. In two case studies, our results were consistent with the current

biological literature. We noticed that the sparsity observed in microbiome data could

impair the statistical power of ANOVA. Meanwhile, WaVE-edgeR and WaVE-DESeq2 tend to

have higher false positive rates, whereas metagenomeSeq produces relatively conservative

results compared to our model. These findings are consistent with [126] and are helpful

to future microbiome data analysis.
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CHAPTER 3

A Bayesian Model for the Microbiome Integrative Analysis

3.1. Literature review
Microbial abundance can be affected by covariates, such as metabolites, antibiotics

and host genetics. These confounding variables need to be adjusted for more accurate

differential abundance analysis. Ultimately, there may be a clinical need to quantify the

associations between microbiome and clinical confounders [55, 82, 140]. One common

approach is to calculate pairwise correlations between all taxa and covariates [70], but this

method may be significantly underpowered. Other model-based methods [21, 122] have

been proposed to detect covariate-taxa associations, but the taxon-outcome associations

have been ignored. Recently, [73] developed a multivariate zero-inflated logistic-normal

model to quantify the associations between microbiome abundances and multiple factors

(e.g. disease risk factors or health outcomes) based on microbiome compositional data

instead of the count data.

3.2. Model
Our model starts with a high-dimensional count matrix where each entry represents

the count of sequence reads belonging to a taxonomy such as bacterial species. Specif-

ically, we denote Yn×p (usually n � p) be a microbial abundance matrix, with yij ∈ N, i =

1, . . . , n, j = 1, . . . , p representing the observed count of the i-th sample and j-th taxon out

of the total n samples and p taxa (features). Note that the proposed model can also be ap-

plied to an operational taxonomic unit (OTU) count table obtained via 16S metagenomic

approaches. For an OTU table, each feature would be a taxonomic unit of a bacteria

species or genus depending on the sequence similarity threshold (e.g. 97%).We also de-

note a covariate matrix Xn×R where each entry xir represents the measurement of the

38



r-th covariate on the i-th sample. The graphical formulation of the proposed model is

summarized in Figure B.3 and B.4.

3.2.1. Count generating process

In practice, the microbial abundance matrix Y is characterized by an inflated amount

of zeros, resulting from insufficient sampling depth. Meanwhile, the abundance matrix

usually consists of extremely large counts. Based on these two facts, we assume that

each count is sampled from a zero-inflated negative binomial (ZINB) distribution so as to

simultaneously account for both zero-inflation and over-dispersion presented in Y :

yij|π, λij, φj ∼ πI(yij = 0) + (1− π)NB(yij;λij, φj), (3.1)

where π ∈ [0, 1] represents the weight of generating extra zeros, I(·) is an indicator func-

tion, and NB(y;λ, φ) denotes a negative binomial distribution for random variable y with

the expectation λ and dispersion 1/φ. Under this parameterization, the variance of y is

λ + λ2/φ. A small value of φ allows modeling of extra variation. Note that increasing φ

towards infinity yields a Poisson distribution with both expectation and variance equal to

λ. We assume a Gamma prior Ga(aφ, bφ) for the dispersion parameter φ.

An equivalent way to model this count generating process is to introduce a latent binary

variable rij, such that

yij|rij, λij, φj


∼ NB(λij, φj) if rij = 0

= 0 if rij = 1

, (3.2)

where rij is from a Bernoulli distribution with parameter π, i.e. ∼ Bernoulli(π). We further

impose π ∼ Beta(aπ, bπ), which leads to a Beta-Bernoulli prior for rij with expectation

aπ/(aπ + bπ).

39



3.2.2. Integrative modeling with feature selection

Microbiome count data is characterized by high variability in the number of reads

among samples from different groups (due to distinct biological conditions), or even the

same group (due to uneven sequencing depths). To accommodate this setting, we param-

eterize the mean parameter λij of the negative binomial distribution as the multiplicative

effects of two positive random effects: 1) the size factor si reflects how the sequencing

depth affects counts across all taxa observed in the i-th sample; 2) the normalized abun-

dance αij for the j-th taxon in the i-th sample once the sample-specific variability has

been accounted for. Our goal is to find a subset of p taxa that enables us to discriminate

the n samples fromK distinct groups. We introduce a binary latent vector γ = (γ1, . . . , γp),

with γj = 1 indicating that the j-th taxon has significantly differential abundances among

the K groups, and γj = 0 otherwise. Therefore, conditional on rij = 0, we reparameterize

the negative binomial kernel of Equation (3.2) as follows:

yij | rij = 0, γj, si, αijk, αij0, zi ∼


NB(yij; siαij0, φj) if γj = 0

NB(yij; siαijk, φj) if γj = 1 and zi = k

. (3.3)

Here, zi is the sample allocation indicator. Collectively, zn×1 = (z1, z2, . . . , zn)T indicates

the membership for each sample, where zi = k, k ∈ {1, . . . , K} reveals that the i-th sam-

ple belongs to the k-th group. si is the size factor of the i-th sample, which can be es-

timated from the data (see Section 3.2.3). We assume an independent Bernoulli prior

γj ∼ Bernoulli(ω) for each taxon j, and further impose a beta hyperprior on ω to formulate

a Beta-Bernoulli prior, i.e. ω ∼ Beta(aω, bω). The choice of aω and bω incorporates the

prior belief that a certain percentage of taxa are discriminatory.
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We further specify a log-link function to integrate the covariates into the modeling

construction for each normalized abundance:
logαij0 = µ0j + xiβ

T
j if γj = 0

logαijk = µ0j + µkj + xiβ
T
j if γj = 1 and zi = k

, (3.4)

where µ0j is a feature-specific baseline parameter for taxon j. Note that exp(µ0j)’s can be

considered as scaling factors adjusting for feature-specific levels across all samples. The

group-specific parameter µkj captures the baseline shift between the k-th group and the

reference group. We set µkj = 0 if the k-th group is the reference group to avoid identifia-

bility problems arising from the sum of the components. xi, the i-th row of covariate matrix

X, contains all the covariate measurements for sample i. Here, βj is a 1-by-R vector, with

each element βrj modeling the global effect of the r-th covariate on the observed counts

for the j-th taxon. In practice, not all of the covariates are related to the abundance of

a taxon. Therefore, we allow different sets of covariates to affect different taxa by spec-

ifying a spike-and-slab prior [13, 53] as βrj ∼ (1 − δrj)I(βrj = 0) + δrjN(0, σ2
βj), where

δrj = 1 indicates the r-th covariate is associated with the normalized abundance for the

j-th feature, and δrj = 0 otherwise. This modeling approach allows us to identify signif-

icant covariate-taxa associations, via the selection of the nonzero βrj coefficients, for all

discriminatory and non-discriminatory taxonomic features. We complete the model by set-

ting µ0j ∼ N(0, σ2
0j), µkj ∼ N(0, σ2

µj), and δrj ∼ Beta-Bernoulli(ap, bp). Letting σ2
0j = 102 for

all j yields a vague prior for the feature-specific baseline parameter. An inverse-gamma

(IG) hyperprior IG(a, b) is shared by σ2
µj and σ2

βj.

3.2.3. Size factor estimation

The parameterization of the negative binomial mean, as shown in Equation (3.3), is

a product of the size factor and the normalized abundance. It is typical to normalize the

size factor first to ensure model identifiability. Hence, the plug-in estimator (equivalent to
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a point-mass prior) of si is adopted to facilitate the inference based on the normalized

abundance αij as shown in Equation (3.4). The plug-in estimators can be calculated from

the observed count matrix Y . There have been a number of proposals to estimate the

size factors in the context of RNA-seq data analyses. Both [127] and [72] conducted a

comprehensive literature review. However, the assumptions of many existing methods

for RNA-seq are likely not appropriate for highly diverse microbial environments [126]. A

so-called cumulative sum scaling (CSS) method has been developed by [97] as ŝCSS
i ∝∑p

j=1 yijI(yij ≤ q
lCSS
i ), where the default value of lCSS is 50. CSS can be viewed as

an adaptive extension of [14], and it is better suited for microbiome data. Moreover, a

new normalization method named geometric mean of pairwise ratios (GMPR) has been

proposed by [22], aiming to handle the zero-inflated sequencing data. GMPR calculates

the size factor si based on the median count ratio of nonzero counts between the i-th

sample and the remaining samples. It has been shown to be robust to differential and

outlier OTUs. Combining this with some constraints such as
∑n

i=1 log ŝi = 0 (i.e.
∏n

i=1 ŝi =

1), we are able to obtain a set of identifiable values. In this chapter, both CSS and GMPR

are considered.

3.3. Model fitting and posterior inference
Our model space consists of (R,φ,µ0,M ,B,γ,∆, ω, π) with the extra zero indicators

R = (rij, i = 1, . . . , n, j = 1, . . . , p), the dispersion parameters φ = (φj, j = 1, . . . , p), the

feature-specific baselines µ0 = (µ0j, j = 1, . . . , p), the group-specific baselines M =

(µkj, k = 1, . . . , K, j = 1, . . . , p), the covariate effects B = (βrj, r = 1, . . . , R, j = 1, . . . , p),

the discriminatory taxa indicators γ = (γj, j = 1, . . . , p), and the association indicators

∆ = (δrj, r = 1, . . . , R, j = 1, . . . , p). We explore the posterior distribution via a Markov

chain Monte Carlo (MCMC) algorithm based on stochastic search variable selection with

within-model updates [108]. Full details can be found in Appendix B.1.

We are interested in distinguishing taxa that are differentially abundant among different

groups, via γ, as well as their associations with covariates, via ∆. One way to summa-
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rize the posterior distributions of these binary parameters is via the marginal posterior

probability of inclusion (PPI). Suppose t = 1, . . . , T index the MCMC iterations after burn-

in. Then PPI of each γj and δrj can be written as PPI(γj) = 1
T

∑T
t=1 γ

(t)
j and PPI(δrj) =

1
T

∑T
t=1 δ

(t)
rj , respectively. Subsequently, important features and covariates can be selected

based on a given PPI threshold. Following [94], we choose a threshold that controls the

Bayesian FDR. Specifically, we solve the following equations to determine the thresholds:

FDRγ(cγ) =
∑p
j=1(1−PPI(γj))I(1−PPI(γj)<cγ)∑p

j=1 I(1−PPI(γj)<cγ)
, FDR∆(cδ) =

∑R
r=1

∑p
j=1(1−PPI(δrj))I(1−PPI(δrj))<cδ)∑R
r=1

∑p
j=1 I(1−PPI(δrj)<cδ)

,

where I(·) is an indicator function. A well-accepted setting is to set both FDRγ and FDR∆

equal to 0.05, which corresponds to an expected FDR of 5%.

3.4. Simulation

3.4.1. Generative model for simulated data

In this section, we evaluated the proposed model using simulated data. In particu-

lar, we considered two methods (CSS and GMPR) introduced in Section 3.2.3 for es-

timating the size factor si’s. We also compared our model with other existing methods

described in the prior microbiome studies. In order to mimic metagenome sequencing

data from real data applications (Section 3.5), we chose the parameters as follows: we

set n samples for K = 2 groups with balanced group size n1 = n2 = n/2. We chose

a large number of candidate features by setting the number of taxa p = 300, and ran-

domly selected 20 true discriminant features to evaluate our model performance. Each

row of Y , denoted as yi, was generated from a Dirichlet-Multinomial distribution as de-

scribed in [122]. For i = 1, . . . , n, we let yi ∼ Multinomial(Ni, πi) with the row sum

Ni ∼ Discrete Uniform(2 × 107, 6 × 107) and πi = (πi1, . . . , πip) ∼ Dirichlet(ai). We fur-

ther incorporated the feature and covariate effects through ai = (ai1, . . . , aip) by setting

aij = exp(a∗ij) with a∗ij ∼ Normal(µ0j + µkj + xiβ
T
j , σ

2
e). Here, a larger value of σ2

e corre-

sponded to a higher noise level. Compared with Equation (3.3), this data generating pro-
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cess is different from the assumption of the proposed model. We set µ0j ∼ Uniform(8, 10),

µ1j = 0 for all j and µ2j = ±2 for all selected discriminating features and 0 otherwise. Then

for the covariate effects, we first obtained the covariate matrixXn×R by sampling each row

xi from the covariate matrix of the liver cirrhosis study in Section 3.5.1 (with n = 237 and

R = 7). In particular, we sampled n/2 covariate records from healthy and disease groups

respectively. For each taxon j, we then randomly selected m ∈ {0, 2, 4, 6} out of R co-

variates and let the corresponding βrj ∼ ±Uniform(0.5, 1) while setting the rest βrj = 0.

Lastly, we randomly set π0np counts in Y to be zeros to mimic the zero-inflation in the real

data. To summarize, we varied the following settings in order to comprehensively examine

the model performance: 1) sample size per group n/2 = 10 or 30; 2) noise level σe = 0.5,

1.0, or 1.5; 3) zero proportion π0 = 30%, 40%, or 70%. In the main text, we present the

results obtained from the simulated datasets that n/2 = 30, σ2
e = 1, and π0 = 40%, and the

remaining results can be found in Appendix B.2.

3.4.2. Prior and algorithm settings

The hyperparameters were specified using the following default settings. For the bi-

nary variables with Beta-Bernoulli priors γj ∼ Beta-Bernoulli(aω, bω), δrj ∼ Beta-Bernoulli(ap, bp)

and rij ∼ Beta-Bernoulli(aπ, bπ), we set aω = 0.2, bω = 1.8, ap = 0.4, and bp = 0.6, which

means that 10% of the taxa are expected to be discriminant features, and 20% of the co-

variate coefficients to be nonzero. We chose aπ = bπ = 1 assuming that about half of

the zeros are truly missing. For the dispersion parameter with Ga(aφ, bφ) prior, we set

aφ = 1, bφ = 0.01 to obtain a vague gamma prior with mean of 100 and variance of

10,000. Next, we specified a flat prior IG(a = 2, b = 10) for the variance term σ2
µj and σ2

βj.

The sensitivity analysis reported in Appendix B.3 contains more details on the choice of a

and b. When implementing our model on a dataset, we ran four independent chains with

different starting points where each feature or covariate was randomly initialized to have

γj = 1 or 0, δrj = 1 or 0. We set 20, 000 iterations as the default and discarded the first half
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as burn-in. To assess the concordance between four chains, we looked at all the pairwise

correlation coefficients between the marginal PPI of γ and ∆. As mentioned by [113],

high values of correlation suggest that MCMC chains are run for a satisfactory number of

iterations. After ensuring convergence, we assessed our model performance based on

the averaged result over four chains.

3.4.3. Alternative methods

Our goal was to identify the discriminating features (e.g. taxa) and the significant

feature-covariate associations (i.e. all nonzero γj and δrj in our model). We thus ob-

tained the PPI for all γj and δrj, and visualized the accuracy in feature selection using

the receiving operating characteristic (ROC) curve. We also computed the false posi-

tive rate when all feature-covariate associations were zero. We further considered two

types of competitors for model comparison. The first type, similar to the proposed model,

can simultaneously identify discriminating features and detect the feature-covariate asso-

ciations. Here, we compared with the multivariate zero-inflated logistic-normal (MZILN)

regression model proposed by [73]. The MZILN model treats the sample allocation vector

as an observed covariate for each sample. Therefore we combined the group label with

other observed covariates to create a new covariate matrix, and the MZILN model gave a

regularized estimation of the regression coefficient between each feature and covariate.

The selected discriminating features and feature-covariate associations corresponded to

the nonzero coefficient estimations. The second type of method achieves the same goal in

two separate stages. The first stage consists of four methods to select discriminating fea-

tures based on p-values, including the Wilcoxon rank-sum test (Wilcoxon test) and three

differential expression analysis methods implemented by the R packages metagenomeSeq

[97], edgeR [105] and limma [104]. Specifically, metagenomeSeq assumes a zero-inflated

Gaussian model, edgeR models count data using a negative binomial distribution, and

limma adopts a linear model for the log-transformed count data. Then, the discriminating
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features were selected to be those with BH [10] adjusted p-values smaller than 0.05. To

make a head to head comparison in the first stage, we also included a simplified ver-

sion of the ZINB model by excluding the covariate term xiβ
T
j in Equation (3.4). In the

second stage, we considered the following feature selection strategies for each p-value

based method. They are: 1) correlation test, 2) lasso regression, 3) random forest, and

4) multivariate linear regression. We centered the selected discriminating features by

group, and the rest across all samples. For the correlation test, the Pearson correlation

coefficients were calculated between the log scaled compositional data and the covariate

measurements for each outcome group. Next, a Fisher z-transformation [34] was applied

to obtain the p-values for testing the significance of correlation. For lasso regression, we

calculated the true positive rates and the false positive rates with respect to a range of

lasso penalty. For the last two, we fitted a random forest model or a multivariate linear re-

gression model between each feature and the covariate matrix X, which yielded variable

importance measures or p-values. In all, we have four choices in the first stage {Wilcoxon

test, metagenomeSeq, edgeR, limma} and four choices in the second stage {correlation test,

lasso regression, random forest, multivariate linear regression}, with 4× 4 = 16 choices in

total. For clear visualization of the result, we excluded limma in the second stage due to its

relatively inferior performance in the first stage. We also dropped random forest and linear

regression since they showed similar performance as the lasso regression. Besides, all

the p-values generated using different methods were adjusted using the BH method to

control the FDR.

We also demonstrate that our model can estimate the association between a taxo-

nomic feature and a covariate by adjusting for the remaining confounders. As a compar-

ison, current approaches rely on correlation analysis between the pairwise microbiome

and covariates. Specifically, those analyses converted each observed taxonomic count

to a fraction (or termed percentages, intensities) by sample. Next the Pearson correlation

coefficients were calculated between the log scaled fractions and the covariate measure-

ments for each outcome group. Lastly, a Fisher z-transformation [34] was applied to obtain
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the p-values for testing the significance of correlation.

3.4.4. Evaluation metrics

We quantify the accuracy of identifying discriminatory features via the binary vector

γ by calculating the area under the curve (AUC) of the receiver operating characteristic

(ROC). AUC considers both true positive (TP) and false positive (FP) rates across various

threshold settings.

As for detecting feature-covariate associations, our model constructs a regression

framework to quantify the relationship between the normalized abundance αijk and co-

variates through the Equation (3.4). Based on Equation (3.4), given a feature j and

a covariate r of interest, we first normalized the observed abundance using CSS and

performed logarithmic transformation. Next, to calculate xirβ̂rj and the group shift µ̂kj,

we subtracted the estimated feature-specific influence µ̂0j and other covariates’ impact∑
r′ 6=r xir′ β̂r′j from the transformed abundance. Lastly, we could evaluate whether our

model provided a reasonable estimation (β̂rj) of the feature-covariate association between

covariate r and the normalized and adjusted observations of feature j.

3.4.5. Results

For each of the four scenarios, Figure 3.1 compares the model performance through

the averaged ROC curve over 100 simulated datasets. For detecting discriminating fea-

tures, the proposed method consistently shows high AUC (> 0.98) across all scenar-

ios, and similar results for capturing the feature-covariate associations (AUC > 0.90).

Moreover, the proposed method maintains a low FDR even when all βrj are 0. The

correlation-based method shows low false positive rates in the case where the true num-

ber of contributing covariate is 0, but has low power when {2, 4, 6} out of 7 covariates

have nonzero contribution. In addition, the proposed model achieves the highest true
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positive fraction under a fixed small value of FDR in all scenarios, with the MZILN model

and metagenomeSeq performing the second and third best in estimating the discriminating

feature indicator γ (shown in the left column of Figure 3.1, Figures B.3-B.5). We also

noticed that the MZILN model could not outperform the two-stage methods in estimating

the feature-covariate association indicator ∆. The above conclusions hold for using ei-

ther CSS or GMPR to estimate the plug-in size factors. To test if our model is robust to

the choice of size factor estimation methods, we further conducted a sensitivity analysis

in Appendix B.3. The result, as shown in Figure B.6, suggests that our model is con-

siderably robust to the choice of different normalization methods, while CSS and GMPR

have a marginal performance improvement. Furthermore, we reach the same conclusion

with varying group sizes, log-scale noise levels, and zero proportions. In particular, the

proposed ZINB model is robust to a larger amount of extra zeros. Either decreasing the

group size or increasing the noise level hampers the performance of all the methods.

Nevertheless, the ZINB model still consistently outperforms the alternative approaches in

estimating γ and ∆. Results are summarized in Figures SB.3-B.5.

Next, we demonstrated the advantages of the proposed model in estimating the feature-

covariate association over the correlation-based method through simulation. For each

feature, we randomly selected four out of seven covariates to have nonzero linear effects

on the latent abundances, and generated a simulated dataset following the description in

Section 3.4. We kept the same prior and algorithm settings to obtain the estimations for

all parameters of interest. We chose a 5% Bayesian FDR for estimating ∆. Among all

feature-covariate combinations, the proposed model achieved sensitivity and specificity

rates of 82.9% and 86.7% respectively. We randomly chose several pairs of feature and

covariate and compared the proposed method and the correlation-based method. Fig-

ure 3.2 displays the results of 2 examples, where the true values of δrj were 1. The two

dashed lines in Figure 3.2a or 3.2b have the same slope of β̂rj as our estimated covariate

effect. Both plots suggest that the proposed model is able to capture the feature-covariate

relationship. Notice that we did not adjust for the group-specific effect. Hence the differ-
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Figure 3.2: Feature-Covariate Association Analysis: comparison of the results given by
the proposed method ((a) and (b)) and correlation-based method((c) and (d)) from the
simulated dataset, where the two features shown (randomly selected for illustration) were
truly discriminating with the covariate effect β1,68 > 0 and β1,127 < 0 by simulation. The
proposed method provided a reasonable estimation (β̂rj) of the feature-covariate associ-
ation.

50



ences between two dashed lines represents the group-specific parameter µ̂kj. These

results illustrated the advantages in simultaneously detecting the discriminating features

and quantifying the feature-covariate associations. Furthermore, we also validated that

the proposed model had correctly captured the direction of covariate effects in both cases.

Figure 3.2b and 3.2d show the results from the correlation-based model. The slope of

each dashed line represents the Pearson correlation coefficient. However, there was no

significant result as all p-values were greater than 0.05, suggesting that the correlation test

can be underpowered. The correlation-based method failed to isolate the covariate of in-

terest from the confounders, and it might suggest a wrong direction of covariate effect, as

shown in Figure 3.2d.

3.5. Real data analysis
We applied the proposed model on two real data sets: one with hundreds of samples

and the other with only 24 samples. Compared with the analysis methods used in the orig-

inal publications, our model demonstrates better performance in detecting differentially

abundant bacteria. In addition, our model supports adjusting for biologically meaningful

covariates. When adjusting for the metabolic pathway quantities (or metabolites through

metabolomics technology) as covariates, our model estimates the association between

taxa and metabolism-related functions (or metabolites).

3.5.1. Liver cirrhosis case study

Cirrhosis is a late-stage condition of scarring or fibrosis of the liver caused by liver

disease such as hepatitis B, hepatitis C, and non-alcoholic fatty liver disease [1]. The

liver is connected to the gastrointestinal tract via the hepatic portal and bile secretion

systems. Interestingly, distinct gut microbiota signatures have been associated with both

early-stage liver diseases and end-stage liver cirrhosis [11, 41, 131]. We applied our

model on a gut microbiome dataset from a liver cirrhosis study carried out by [101]. All

metagenome sequenced samples were available from the NCBI Short Read Archive and
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the curated microbial abundance matrix was accessible from ExperimentHub [96].

The full dataset includes 237 samples with their observed microbial abundance matrix

Y profiled from the gut microbiome at the species taxonomic level. The study has two

patient groups, including 114 healthy controls and 123 liver cirrhosis patients. We filtered

out the taxa with extremely low abundance before the analysis as suggested in [122]. We

obtained 528 taxa that had at least 2 observed counts in both groups for further analysis.

As for the covariate information, we used MetaCyc, a collection of microbial pathways and

enzymes involved in metabolism for an extensive amount of organisms [18]. We incor-

porated the 529 MetaCyc pathway measurements for 237 individuals in the study, and

reduced the high correlation among the pathways by average linkage clustering on their

correlation matrix [122]. Specifically, we kept the pathway with the largest fold-change

between two groups in each cluster, and decided the number of clusters such that the

correlations between the resulting pathways were less than 0.5. Logarithmic transfor-

mation and normalization (zero mean and unit variance) were applied to the selected

covariates to ensure the zero mean and unit standard deviation. After the pre-processing

step, we had seven covariates representing metabolic functions.

In [101], differential analyses were based on the Wilcoxon test and the p-values were

corrected by the BH method. Although a stringent threshold of significance level (0.0001)

was used, the authors discovered 79 differentially abundant species and had to restric-

tively report the 30 top candidates in each group. Figure 3.5a is the cladogram of the

discriminating taxa selected by different methods, with blue dots representing the results

by [101] and red dots reported by the ZINB model. As suggested in our simulation study,

these results may reflect a high FDR as covariate effects were not factored in the anal-

ysis. In addition, the Wilcoxon test cannot account for the pathway effects and thus the

associations between bacteria and metabolic pathways were not identified.

We applied the proposed Bayesian ZINB model to simultaneously analyze the micro-

bial abundance matrix of bacteria and their metabolic pathway abundance. We set a
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(c) Metastatic melanoma study: heatmap of covariate
effect for all taxa
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Figure 3.3: Real Data Analysis: Heatmap showing the effect from covariates, the MetaCyc
pathway abundances, in two studies. (a)(b), we use a liver cirrhosis dataset and show the
effect between covariate effects and all microbiome, or differential abundant microbiome,
respectively; (c)(d), we use metastatic melanoma dataset and show the effect between
covariate effects and all microbiome, or differential abundant microbiome, respectively;)
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similar hyperparameter setting as discussed in Section 3.4 by first specifying aµ = aβ = 2

and bµ = bβ = 10. Next, we set aω, bω, ap, bp, aφ, bφ to be the same as their default

values discussed in Section 3.4. We ran four independent Markov chains with different

starting points. Each chain had 40,000 iterations with the first half discarded as burn-in.

We checked the convergence visually and calculated the pairwise Pearson correlation for

PPIs, which ranged from 0.988 to 0.994 for γ’s and from 0.982 to 0.989 for δ’s. These

concluded highly consistent results. Figure 3.4a shows the PPIs for all 528 taxa, where

the dashed line represents the threshold corresponding to an expected FDR of 0.05. We

identified 19 differentially expressed taxa, the majority of which are more abundant in the

liver cirrhosis group.

Figure 3.4c shows the posterior mean of µ2j for all identified discriminating taxa, and

Table B.1 contains all the detailed parameter estimations for those taxa. Interestingly,

two clear taxonomic branches are distinguished by our model (as indicated by red dots,

Figure 3.5a): the genera Veillonella and Streptococcus, both of which can originate from

the oral cavity. Of note, oral commensal bacteria are able to colonize the distal intestinal

tract in liver cirrhosis patients [101], probably due to bile acid changes. Veillonella spp.

and Streptococcus spp. have been identified as more abundant in patients with primary

biliary cholangitis [116], another hepatic disorder which shares pathophysiologic features

with liver cirrhosis [103]. Figure 3.3a and 3.3b show the identified associations between

microbiota and metabolic pathways. For example, L-alanine biosynthesis (PWY0-1061)

is positively correlated with Veillonella. Alanine is a gluconeogenesis precursors in liver

metabolism, and increased alanine is thought to induce pyruvate kinase in Veillonella.

Thus, this connection between alanine synthesis and Veillonella is intriguing and poten-

tially novel, and biologic validation experiments might offer further clarification.
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Figure 3.4: Real Data Analysis: Plots for γ PPI and credible interval. The horizontal
dashed line in the PPI plot represents the threshold controlling the Bayesian false discov-
ery rate < 0.05. All taxa whose PPI pass the threshold are included in (c) and (d), where
each horizontal bar is the 95% credible interval for µ2j (group-specific parameter) with
posterior mean shown in circle. Each arrow in (a), (b) points out the taxon with largest
absolute value of µ2j in one patient group as shown in Figure 3.4c and 3.4d.
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3.5.2. Metastatic melanoma case study

The proposed Bayesian ZINB model can perform integrative analysis of microbiome

taxonomic data and other omics datasets. In this section, we applied this model to simul-

taneously analyze microbiome and metabolomics data from a study of advanced stage

melanoma patients receiving immune checkpoint inhibitor therapy (ICT) [38]. The data

were collected using MSS and unbiased shotgun metabolomics. Here, we aim at iden-

tifying unique microbiome taxonomic and metabolomic signatures in those patients who

responded favorably to ICT.

A subset of patients in this study (n = 24) were treated with ipilimumab and nivolumab(IN),

a combination therapy that has been shown to be more efficacious than therapy with anti-

PD1 or anti-CTLA4 therapy alone. 16 patients responded to treatment and 8 patients

had progression. We performed quality control steps on MSS reads and profiled them

using MetaPhlAn [111] as described in [38]. We filtered out taxa with at most one ob-

servation in either patient group, which left p = 248 taxa from species to kingdom level.

For the same fecal samples, we performed metabolomics profiling and quantified 1,901

patients’ metabolite compounds as the covariate matrix X. We are interested in statisti-

cally assessing how the biochemical volumes between patient groups are associated with

bacteria burden or quantities. We adopted the same strategy mentioned in section 3.5.1

to reduce the correlation between covariates, which resulted in a 24 × 9 matrix as the

covariate matrix of X.

In the model fitting stage, for prior specification, we used ap = 0.2, bp = 1.8 to obtain a

sparser covariate effect due to the small sample size, and it suggested about 10% of taxa-

covariate associations were significant. We kept the same default setting for the rest of the

hyperparameters. Next, we ran four independent chains with different starting points, and

discarded the first half of 40,000 iterations for each chain. Although the small sample size

(n = 24) posed challenges for parameter estimation, the results showed high pairwise
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Pearson correlations of PPIs for γ (ranging from 0.989 to 0.992) and δ (ranging from

0.927 to 0.953). Figure 3.4b shows the PPIs for all taxa, and Figure 3.4b(d) illustrates the

posterior means of the selected taxa. Table B.2 includes detailed parameter estimations

of the taxa in Figure 3.4b(d).

Our model jointly identified differentially abundant taxa and revealed the microbiome-

metabolite associations. First, among all seven taxa identified, it is of specific interest

to investigate the responder-enriched taxon Bifidobacterium (genus level), Bifidobacte-

riaceae (family level). Bifidobacterium, nesting within Bifidobacteriaceae, is a genus of

gram-positive, nonmotile, often branched anaerobic bacteria [109]. Bifidobacteria are one

of the major genera of bacteria that make up the gastrointestinal tract microbiota in mam-

mals. This result about Bifidobacterium is supported by recent melanoma studies. [112]

compared melanoma growth in mice harboring specific microbiota, and used sequencing

of the 16S ribosomal RNA to identify Bifidobacterium as associated with the antitumor

effects. They also found that oral administration of Bifidobacterium augmented ICT effi-

cacy. Moreover, [85] detected significant association between several species from Bifi-

dobacterium with patients’ outcomes in an immunotherapy treatment study for metastatic

melanoma. Both studies showed consistent direction of effect, as did our model. The

responder-enriched taxon Bifidobacterium were estimated to negatively correlate with 2-

oxoarginine and 2-hydroxypalmitate in Figure 3.4(d). The suppression of these fatty-acid

metabolites may induce better cancer treatment as they were shown to have the onco-

genic signaling role in cancer cells [79].

3.6. Discussion
In this chapter, we presented a Bayesian ZINB model for the integrative analysis of

high-throughput sequencing microbiome data. Our method is novel in simultaneously

incorporating the effect from measurable genetic covariates and identifying differentially

abundant taxa for multiple patient groups in one statistical framework. This allows for

integrative analysis of microbiome data and other omics data. Our method is flexible, as
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Figure 3.5: Real Data Analysis: Cladograms of the identified discriminating taxa (shown
in dots). Red dots: taxa found by the proposed model; Blue dots: taxa found by methods
reported in the original studies. Each arrow in (a), (b) points out the taxon with the largest
absolute value of µ2j (group-specific parameter) in one patient group, as shown in Figure
3.4c and 3.4d.
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it allows for identification and estimation of the association between covariates and each

taxon’s abundance. These results could potentially guide clinical decisions for precision

shaping of the microbiome, although results would need to be validated in preclinical

models first. In addition, our method is computationally efficient in posterior inferences.

We implemented the MCMC algorithm to analyze the data from two MSS studies with

results readily available in minutes.

In real data analysis, the identified differentially abundant taxa by our model are often

cluttered in the same phylogenetic branch. These results are achieved without imposing

the phylogenetic structures in the model. This highlights that the results from our model

are biologically interpretable and thus capable of guiding further biological mechanism

studies. Our results on the metastatic melanoma study uncover novel relationships be-

tween taxa and metabolites which merit further experimental investigation.
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CHAPTER 4

A Hybrid Model for Microbiome Networks Analysis

4.1. Literature review
There are two major categories of statistical methods that are often used to infer

microbial abundance networks. The first type is based on a taxa abundance covariance

structure. For example, [32] and [125] used pairwise Pearson correlations to represent

edge weights. This simple inference could be problematic since two variables (i.e., taxa)

may be connected in the network due to their confounding variables [45]. The other type

aims to estimate taxa abundance partial correlations, removing confounding effects. [61]

proposed a statistical model for inferring microbial ecological network, which is based on

estimating the precision matrix (via exploiting sparsity) of a Gaussian multivariate model

and relies on graphical lasso (Glasso) [39]. However, their data normalization step needs

to be improved to account for unique characteristics observed in microbiome count data.

Microbiome sequencing data usually have an inflated amount of zeros, uneven se-

quencing depths across samples, and over-dispersion. As initial attempts of constructing

microbial association networks with this type of data, [8, 77] first transformed the mi-

crobiome sequencing counts into their compositional formula. Specifically, a count was

normalized to its proportion in the respective sample. Then, each sample were trans-

formed by a choice of log-ratio transformations to remove the unit-sum constraint of the

compositional data. While this type of normalization is simple to implement and preserves

the original ordering of the counts in a sample, it fails to capture the sample to sample

variation and it overlooks the excess zeros in the microbiome data. Note that these zeros

can be attributed to biological or technical reasons: either certain taxa are not present
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among samples, or they are not sequenced due to insufficient sequencing depths. As

the existing logarithmic transformation neglects the difference between these two types

of zeros, it can lead to a biased estimation of the network structure.

4.2. Model

4.2.1. Microbiome count data normalization

Let Y denote the n-by-p taxonomic count matrix obtained from either the 16S rRNA or

the metagenomic shotgun sequencing (MSS) technology. Each entry yij, i = 1, . . . , n, j =

1, . . . , p is a non-negative integer, indicating the total reads related to taxon j observed

in sample i. It is recommended that all chosen taxa should be at the same taxonomic

level (e.g., OTU for 16S rRNA or species for MSS) in that mixing different taxonomic

levels in the proposed model could lead to improper biological interpretation . As the real

microbiome data are characterized by zero-inflation and over-dispersion, we model yij

through a zero-inflated negative binomial (ZINB) model as

yij ∼ πiI(yij = 0) + (1− πi)NB(λij, φj). (4.1)

The first component in the Equation (4.1) models whether zeros come from a degenerate

distribution with a point mass at zero. It can be interpreted as the “extra" zeros due to

insufficient sequencing effort. We can assume there exists a true underlying abundance

for the taxon in its sample, but we fail to observe it with the mixture probability πi repre-

senting the proportion of “extra" zeros in sample i. The second component, NB(λij, φj),

models the “true" zeros and all the nonzero observed counts. i.e., counts generated from

a negative binomial (NB) distribution with the expectation of λij and dispersion 1/φj. Here,

“true" zero refers to a taxon that is truly absent in the corresponding sample. The variance

of the random variable from NB distribution, under the current parameterization equals to
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λij + λ2
ij/φj. Smaller values of φj can lead to over-dispersion.

To avoid explicitly fixing the value of πi’s and φj ’s, we use a Bayesian hierarchical

model for parameter inference. First, we rewrite the model (2.2) by introducing a binary

indicator variable ηij ∼ Bernoulli(πi), such that yij = 0 if ηij = 1, and yij ∼ NB(λij, φj) if

ηij = 0. Then, we formulate a beta-Bernoulli prior of ηij by assuming πi ∼ Beta(aπ, bπ),

and we let aπ = bπ = 1 to obtain a non-informative prior on ηij. We specify independent

Gamma prior Ga(aφ, bφ) for each dispersion parameter φj. Letting aφ = bφ = 0.001 results

in a weakly informative gamma prior.

The mean parameter of the NB distribution, λij, contains the key information of the

true underlying abundance of the corresponding count. As λij is affected by the vary-

ing sequencing effort across samples, we use a multiplicative characterization of the NB

mean to justify the latent heterogeneity in microbiome sequencing data. Specifically, we

assume λij = siαij. Here, si is the sample-specific size factor that captures the variation

in sequencing depth across samples, and αij is the normalized abundance of taxon j in

sample i.

In parameter estimation, one need to ensure identifiability between si and αij. For

example, si can be the reciprocal of the total number of reads in sample i. The resulted

αij is often called relative abundance, which represents the proportion of taxon j in sample

i. In this setting, the relative abundances of all the taxa in one sample always sum up to

1. Similarly, other methods have been proposed with different constraints for normalizing

the sequencing data [5, 14, 97, 106]. Some normalization methods can perform better

than the others in the downstream analysis (e.g.„ the differential abundance analysis)

under certain settings. From a Bayesian perspective, fixing the values of si’s imposes

a strongly informative prior in model inference. Hence, all these methods could bias

the estimations of other model parameters and degrade the performance of downstream

analyses. We thus propose a regularizing prior with a stochastic constraint for estimating

si’s. Our method can simultaneously infer the size factor and other model parameters. In
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particular, we adopt the following mixture model for si,

log si ∼
M∑
m=1

ψm

[
tmN(νm, σ

2
s) + (1− tm)N

(
− tmνm

1− tm
, σ2

s

)]
, (4.2)

where ψm is the weight for outer mixtures of the mth component. The inner mixture of

the mth component consists of two Gaussian distributions with tm and 1− tm as weights,

respectively. It is straightforward to see that the inner mixture has a mean of zero and

thus ensuring the stochastic constraint of E(log si) = 0. For the outer mixtures, M is an

arbitrary large positive integer. Letting M → ∞ and defining the weight ψm by the stick-

breaking procedure (i.e., ψ1 = V1, ψm = Vm
∏m−1

u=1 (1−Vu),m = 1, 2, . . .) makes model (4.2)

a special case of Dirichlet process mixture models. This class of Bayesian nonparametric

infinite mixtures is widely used in quantifying the model uncertainty and allowing for flexi-

bility in parameter estimation [63, 114]. In particular, this Dirichlet process prior (DPP) has

been used to account for sample heterogeneity since it is able to capture multi-modality

and skewness in a distribution [67, 72]. In practice, we set M to be a large positive inte-

ger, and adopt the following hyper-prior distributions for the parameters in (4.2) such that

νm ∼ N(0, τν), tm ∼ Beta(at, bt), and Vm ∼ Beta(am, bm). We further set σ2
s = 1 to complete

the parameter specification in the DPP prior.

In our model, the normalized abundance matrix A = {αij} represents the true un-

derlying abundance of the original count matrix. We further assume logαij ∼ N(µj, σ
2
j ).

This variance-stabilizing transformation on each αij not only reduces the skewness of

the normalized abundance, but converts the nonnegative αij to a real number. We ap-

ply the following conjugate setting to specify the priors for µj and σ2
j , j = 1, . . . , p. We

let µj ∼ N(0, h0σ
2
0) and σ2

j ∼ inverse-gamma(a0, b0). After integrating out µj and σ2
j ,

the prior of the normalized abundances of taxon j follows a non-standardized Student’s
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t-distribution, i.e.,

p(α·j) = (nh0 + 1)−
1
2

Γ
(
a0 + n

2

)
Γ(a0)

ba00{
b0 + 1

2

[∑n
i=1 logα2

ij −
(
∑n
i=1 logαij)

2

n+ 1
h0

]}a0+n
2

. (4.3)

The logarithmic scale of A, denoted as Z = logA, represents the normalized mi-

crobiome abundances on the log scale. We use Markov chain Monte Carlo (MCMC)

algorithm for model parameter estimation (see details in the Appendix C.1), and calculate

the posterior mean of Z to fit the Gaussian graphical model in the next step. Since the

observed zero counts may not always represent the absence of taxa in the samples, we

treat these zeros differently in the matrix Z. We categorize the two types of zeros (“extra"

and “true" zeros) based on the estimated ηij for each observed yij = 0 in the data. In

particular, suppose that we observe L zeros in total. We calculate the marginal posterior

probability of being 1 for each ηl, l = 1, . . . , L as pl =
∑B

b=1 I (ηl = 1) /B, where I(·) is the

indicator function, and B is the number of MCMC iteration after burn-in. This marginal

posterior probability pl represents the proportion of MCMC iterations in which the lth 0

is essentially a missing value rather than the lowest count in the corresponding sam-

ple. Then, the observed zeros can be dichotomized by thresholding the L probabilities.

The zeros with pl greater than the threshold are considered as “true" zeros in the data,

whereas the rest are imputed by the corresponding posterior mean of logα·j . We used

the method proposed by [94] to determine the threshold that controls the Bayesian false

discovery rate (FDR) to be smaller than cη. Specifically, we first specify a small number cη,

which is analogue to the significance level in the frequentist setting. Then we compute the

threshold following Equation (4.4), which guarantees the imputed zeros have a Bayesian

FDR to be smaller than cη,

Bayesian FDR =

∑L
l=1 (1− pl) I (1− pl < cη)∑L

l=1 (1− pl < cη)
. (4.4)
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In practice, a choice of cη = 0.01 guarantees that the Bayesian FDR to be at most 0.01.

We set cη = 0.05 for the simulation study and cη = 0.01 for the real data analysis.

4.2.2. Graphical model for inferring taxa-taxa association

Based on the normalized microbial abundances, we estimate their partial correlation

matrix in order to construct the microbiome network under the Gaussian graphical model

(GGM) framework. An undirected graph G = (V,E) is used to illustrate the associations

among vertices V = {1, . . . , p}, representing the p microbial taxa. E = {emk} is the

collection of (undirected) edges, which is equivalently represented via a p-by-p adjacency

matrix with emk = 1 or 0 according to whether vertices m and k are directly connected in

G or not. GGM assumes that the joint distribution of p vertices is multivariate Gaussian

N(µ,Σ), yielding the following relationship between the dependency structure and the

network: a zero entry in the precision matrix Ω = Σ−1 indicates the corresponding vertices

are conditional independent, and there is no edge between them in graph G. Hence, a

GGM can be defined in terms of the pairwise conditional independence. If X ∼ N(µ,Ω),

then

ωmk = 0⇔ Xm ⊥ Xk|XV \{m,k} ⇔ ρmk = 0,

where ρmk = −ωmk/
√
ωmmωkk is the partial correlation between vertices m and k, repre-

senting the degree and direction of association between two vertices, conditional on the

rest variables. Consequently, learning the network is equivalent to estimating the preci-

sion matrix Ω. For real microbiome data, we set the taxa (on the same taxonomic level)

as vertices. Hence, a zero partial correlation in the precision matrix can be interpreted as

no association between the corresponding pair of taxa, while a nonzero partial correlation

can be interpreted as cooperative or competing associations between that taxa pair.
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In biological applications, we often require a sparse and stable estimation of the pre-

cision matrix Ω. The sparsity can be achieved by imposing l1-penalized log-likelihood,

Ω̂ = argmin
Ω�0

log detΩ− trace(SΩ)− λ ‖Ω‖1 , (4.5)

where S is the sample covariance matrix. The coordinate descent algorithm can itera-

tively solve p. The estimated precision matrix is sparsistent (i.e., all the parameters that

are zeros would be estimated as zero with probability one) [66], as Glasso theoretically

guarantees a consistent recovery of the sparse graph for the p vertices. When p >> n, the

computational efficiency is often satisfactory, and thus Glasso is widely used in studying

large-scale biological networks [90, 95, 139]. We employ a stability-based approach to

select the tuning parameter in the Glasso, which is named Stability Approach to Regular-

ization Selection (StARS) [75]. This method is an improved algorithm for estimating the

tuning parameter λ in (4.5). The StARS selects the optimal sparsity parameter according

to the graph reproduciblity under the subsampling of the original data. In general, for each

λ along the sparsity parameter path, we first obtain random subsamples from the original

data. Then we estimate the graph for each subsample using the Glasso. Next, for each

sparsity parameter, we calculate the overall edge selection instability from all the graphs

constructed by the subsamples. Finally, the optimal sparsity parameter λ∗ is chosen such

that it corresponds to the smallest amount of regularization and still results in a graph in-

stability to be lower than the pre-specified tolerance level. [75] showed that StARS could

provide the “sparsistent" network estimation that includes all the true associations with

probability one. Further, the StARS has been widely used in biological network studies

[61, 117, 139]. Due to its excellent performance, here we adopt the StARS to select the

tuning parameter for Glasso. In summary, we use the normalized abundances (on the log

scale) as inputs, calculate the sparse estimation of the precision matrix using the Glasso,

and use the StARS method to select λ in problem (4.5) to obtain the estimated graph that

represents the microbiome network.
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4.3. Simulation
We compare the performance of the HARMONIES and several widely used methods

for inferring microbiome networks. These methods include SPIEC-EASI [61], CClasso

[30] and correlation-based network estimation used in [32, 125] . While the proposed

model and SPIEC-EASI infer the network structure from sparse precision matrices, CClasso,

and the correlation-based method utilize sparse correlation matrices to represent the net-

work. We generated both simulated and synthetic datasets that mimic the real micro-

biome sequencing count data. We use Yn×p to denote the generated count matrix. For

a comprehensive comparison, we varied the sample size and the number of taxa as

n ∈ {60, 100, 200, 500}, and the number of taxa p ∈ {40, 60}.

4.3.1. Generative model for simulated data

We generated the simulated datasets from a Dirichlet-multinomial (DM) model us-

ing the following steps: (1) to generate the binary adjacency matrix; (2) to simulate the

precision matrix and the corresponding covariance matrix; (3) to generate n multivariate

Gaussian variables based on the covariance matrix to represent the true n× p underlying

taxonomic abundances, denoted as D; (4) to simulate the count table Yn×p from a DM

model, with its parameters being exp(D); (5) to mimic the zero-inflation in real microbiome

data by randomly setting part of entries in the count table to zeros. Note that the data gen-

erative scheme is different from the model assumption, which is given in Equation (2.2).

The detailed generative models are described below.

We began with simulating a p-by-p adjacency matrix for the p taxa in the network.

Here, the adjacency matrix was generated according to an Erdős–Rényi (ER) model. An

ER model ER(p, ρ) generates each edge in a graphGwith probability ρ independently from

every other edge. Therefore, all graphs with p nodes and M edges have equal probability

of ρM(1− ρ)(
p
2)−M . All the edges in graph G correspond to the 1’s in the resulted binary

adjacency matrix. Next, we simulated the precision matrix Ω following [98]. We started by

67



setting all the diagonal elements of Ω to be 1. Then, for the rest elements that correspond

to the 1s in the adjacency matrix, we sampled their values independently from a uniform

distribution Unif([−0.1, 0] ∪ [0, 0.1]). To ensure positive definiteness of the precision matrix,

we followed [98] by dividing each off-diagonal element by 1.5 times the sum of the absolute

value of all the elements in its row. Finally, we averaged the rescaled precision matrix with

its transpose and set the diagonal elements to 1. This process ensured the preceding

matrix was positive definite and symmetric. The corresponding covariance matrix was set

as Σ = Ω−1.

Next, we simulated n multivariate Gaussian variables from MN(µ,Σ) to represent the

true underlying abundances D. To obtain a count matrix that fully mimics the micro-

biome sequencing data, we generated counts from a DM model with parameter exp(D).

Specifically, we first sampled the underlying fractional abundances for the ith sample

from a Dirichlet distribution. The ith underlying fractional abundances was then denoted

as ψi ∼ Dirichlet(exp(Di·)). Next, the counts in the ith sample were generated from

Multinomial(Ni,ψi). Finally, we randomly selected π0% out of n × p counts and set them

to zeros to mimic the zero-inflation observed in the real microbiome data. In general,

the generative process had different assumptions from the proposed method. Under the

appropriate choice of parameters, the simulated count data was zero-inflated, overdis-

persed, and the total reads varied largely between samples. In practice, we let ρ = 0.1

in the ER model. The mean parameter µ of the underlying multivariate Gaussian vari-

able was randomly sampled from a uniform distribution Unif[0, 10]. The number of total

counts across samples Ni, i = 1, . . . , n was sampled from a discrete uniform distribution

with range [50, 000, 100, 000]. Under each combination of n, p, and π0, we generated 50

replicated datasets by repeating the process above.
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4.3.2. Generative model for synthetic data

We generated synthetic data following the Normal-to-Anything (NorTA) approach pro-

posed in [61]. NorTA was designed to generate multivariate random variables with an

arbitrary marginal distribution from a pre-specified correlation structure [17]. Given the

observations of p taxa from a real microbiome dataset, the NorTA generates the synthetic

data with n samples as follows: (1) to calculate the p-by-p covariance matrix Σ0 from the

input real dataset; (2) to generate an n-by-p matrix, denoted by Z0, from a multivariate

Gaussian distribution with mean of 01×p and the covariance matrix of Σ0; (3) to use stan-

dard normal cumulative distribution function to scale values in each column of Z0 within

[0, 1]; (4) to apply the quantile function of a ZINB distribution to generate count data from

those scaled values in each column of Z0. In practice, we used R package SPIEC-EASI

to implement the above data generative scheme, where the real data were from those

healthy control subjects in our case study presented in Section 4.4. Under each combi-

nation of n and p, we generated 50 replicated datasets.

4.3.3. Prior and algorithm settings

The hyperparameters were specified using the following default settings. As for the

fixed parameters a0, b0, h0 and σ2
0, we follow [71] and set a0 = 2, b0 = 1 to obtain a weakly

informative prior for σ2
j . We fix σ2

0 = 1 and let h0 = 10 such that the normal prior on µj is

fairly flat. We adopt the following prior specification for the rest model parameters. First,

we assume an noninformative prior for each πi by letting aπ = bπ = 1. Next, we specify

aφ = bφ = 0.001 in the Gamma prior distribution for all φj ’s. Then, we apply the following

prior setting for the DPP: M = n/2, σs = 1, τν = 1, at = bt = 1, and am = bm = 1. We set

20, 000 iterations as the default and discarded the first half as burn-in.
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4.3.4. Alternative methods

We considered the four commonly used network learning methods. The first two meth-

ods, SPIEC-EASI-Glasso and SPIEC-EASI-mb, use the transformed microbiome abun-

dances which are different from the normalized abundances estimated by HARMONIES.

Both infer the microbial network by estimating a sparse precision matrix. The former

method (SPIEC-EASI-Glasso) measures the dependency among microbiota by their par-

tial correlation coefficients, and the latter method (SPIEC-EASI-mb) uses the “neighbor-

hood selection" introduced by [89] to construct the network. The third method, denoted

as Pearson-corr, calculates Pearson’s correlation coefficients between all pairs of taxa.

In its estimated network, the edges correspond to large correlation coefficients. To avoid

arbitrarily thresholding the correlation coefficients, the fourth method, CClasso [30], di-

rectly infers a sparse correlation matrix with l1 regularization. However, as discussed in

Section 4.1, representing the dependency structure by the correlation matrix may lead to

the detection of spurious associations.

4.3.5. Evaluation metrics

We quantified the model performances on the simulated data by computing their re-

ceiver operating characteristic (ROC) curves and area under the ROC curve (AUC). For

the HARMONIES or SPIEC-EASI, the network inference was based on the precision ma-

trix. Hence, under each tuning parameter of Glasso, we calculated the number of edges

being true positive (TP) by directly comparing the estimated precision matrix against the

true one. More specifically, we considered an edge between taxon m and taxon k to be

true positive if ωmk 6= 0, ω̂mk 6= 0, and ω̂mk shared the same sign with ωmk. We calculated

the number of true negative (TN), false positive (FP), and false negative (FN) in a similar

manner. Therefore, each tuning parameter defined a point on an ROC curve. As for the

correlation-based methods, we started with ranking the absolute values in the estimated
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correlation matrices, denoted as Ĉ. Next, we used each value as a threshold and set

all the entries in Ĉ having their absolute values smaller than the current threshold to be

zeros. Then, the number of TP, TN, FP, or FN was obtained by comparing the sparse Ĉ

against the true partial correlation matrix. Therefore, each unique absolute value in the

original estimated correlation matrix defined a point on the ROC curve.

We further used the Matthew’s correlation coefficient (MCC) to evaluate results from

the simulated data. The MCC is defined as

(TP× TN− FP× FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

.

Here, the MCC was particularly suitable for evaluating network models. As the number of

conditionally independent taxa pairs was assumed to be much greater than the number of

dependent pairs in a sparse network, MCC was preferable to quantify the performances

under such an imbalanced situation. Note that MCC ranges from [−1, 1], with a value close

to 1 suggesting a better performance. Since each value of MCC was calculated using a

given set of TP, TN, FP, and FN, we adopted the optimal choice of tuning parameter for

the HARMONIES or SPIEC-EASI (with either Glasso or MB for network inference), given

by StARS. As for the correlation-based methods, CClasso outputted a sparse correlation

matrix. We used the result to calculate TP, TN, FP, and FN directly. For Pearson-corr,

we set the threshold such that the resulted number of nonzero entries in the sparse cor-

relation matrix was the same as the number of nonzero entries in the true sparse partial

correlation matrix. In fact, this choice could favor the performance of Pearson-corr for

larger sample size, as shown in Section 4.3.6.

To assess model performances on the synthetic datasets, we followed [61] to use a

metric called area under the precision-recall curves (AUPR), in addition to AUC. Briefly

speaking, the AUPR and AUC were calculated as follows: (1) to rank all possible edges

according to their confidence values; (2) to generate the precision-recall curve and the
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ROC curve by comparing edge inclusions against the true sparse precision matrix; (3)

to calculate the area under the precision-recall curve or the ROC curve. Note that the

confidence values were chosen as the edge stabilities under the optimal choice of the

tuning parameter selected by StARS for HARMONIES, SPIEC-EASI-Glasso, and SPIEC-

EASI-mb, while for CClasso and Pearson-corr, p-values were used.

4.3.6. Results

Figure 4.1 and 4.2 compare the AUCs and MCCs on the simulated data under various

scenarios, including varying sample sizes (n = 60, 100, 200, or 500), total numbers of taxa

(p = 40 or 60), extra percentages of zeros added (π0 = 10%, or 20%). In each subfigure,

the HARMONIES outperformed the alternative methods in terms of both AUC and MCC,

and it maintained this advantage even with the number of sample size greatly increases.

Further, a smaller sample size, a larger proportion of extra zeros added (π0 = 20%), as

well as a larger number of taxa in the network (p = 60), would hamper the performance of

all the methods, as we expected. Two modes of SPIEC-EASI, SPIEC-EASI-Glasso, and

SPIEC-EASI-mb, showed very similar performances under all the scenarios, with SPIEC-

EASI-Glasso having only a marginal advantage over the other. Further, we observed

that the Pearson-corr method yielded higher AUCs even than the precision matrix based

methods, especially when there was a lager proportion of extra zeros or larger number of

taxa in the network. This result suggested that the Pearson-corr could capture the overall

rank of the signal strength in the actual network. However, under a fixed cut-off value that

gave a sparse correlation network, the MCCs from the Pearson-corr were always smaller

than the precision matrix based methods. Note that the cut-off value we specified for

Pearson’s correlation method indeed favored its performance. In general, the alternative

methods considered here were able to reflect the overall rank of the signal strength by

showing reasonable AUCs. However, they failed to give an accurate estimation of the

network under a fixed cut-off value.
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Figure 4.1: Simulated data: (a) and (b) area under the ROC curves (AUCs) and (c) and
(d) area under the precision-recall curves (AUPRs) achieved by different methods under
the number of taxa p = 40 and different sample sizes and zero proportions, averaged over
50 replicates.

Figure 4.3 demonstrates that our model outperformed all others on the synthetic datasets.

The performances in terms of AUC under different scenarios are summarized in Figure

4.3(a) and (b), while those in terms of AUPR are displayed in (c) and (d). As we can see,

either increasing the sample size n or decreasing the number of features p would improve

the performance of all methods and lead to greater disparity between partial and pair-

wise correlation-based methods. In general, our HARMONIES maintained the best in all

simulation and evaluation settings except for one case, where the SPIEC-EASI-mb only

showed a marginal advantage (see n = 60 in Figure 4.3(c)). Interestingly, our observa-

tion confirmed a finding mentioned by [61], that is, the SPIEC-EASI-mb was slightly better

than SPIEC-EASI-Glasso in terms of AUPR under the optimal choice of the tuning param-

eter. As for the two correlation-based methods, we found that Pearson-corr outperformed

CClasso in most of the scenarios.
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Figure 4.2: Simulated data: (a) and (b) area under the ROC curves (AUCs) and (c) and
(d) area under the precision-recall curves (AUPRs) achieved by different methods under
the number of taxa p = 60 and different sample sizes and zero proportions, averaged over
50 replicates.

4.4. Colorectal cancer case study

Colorectal cancer (CRC) is the third most common cancer diagnosed in both men and

women in the United States [6]. Increasing evidence from the recent studies highlights a

vital role for the intestinal microbiota in malignant gastrointestinal diseases including CRC

[28, 80, 110]. In particular, studies have reported that dysbiosis of specific microbiota

is directly associated with CRC [36, 58, 84]. The current microbiome research interests

have gone beyond the discovery of disease-related microbiota, with a growing number of

studies investigating the interactive associations among the microbial taxa. Using the pro-

posed model, we interrogated the microbiome profiling data of a CRC study to determine

the microbiome network structures.
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Figure 4.3: Synthetic data: (a) and (b) area under the ROC curves (AUCs) and (c) and
(d) area under the precision-recall curves (AUPRs) achieved by different methods under
different sample sizes and taxa numbers, averaged over 50 replicates.

We analyzed the gut microbiome dataset of a CRC study published by [33]. We ex-

tracted from the original cohort1 the 43 CRC patients and the 58 healthy controls. The

original sequencing data at the genus level were quantified using curatedMetagenomic-

Data [96]. We had p = 187 genera for both the 43 CRC patients and the 58 healthy

controls. We implemented the HARMONIES as follows. For the CRC group, we first

applied the ZINB model to obtain the normalized abundance matrix A, utilizing the spec-

ifications detailed in Section 4.2.1. We then took the logarithmic transformation of the

normalized abundance and imputed the missing values. Before implementing the pro-

posed method, we filtered out the low abundant genera with zeros occurring more than

half samples. Removing low abundant taxa is a common step in microbiome research
1The original metagenomic shotgun sequencing data from the fecal samples are available in the Euro-

pean Bioinformatics Institute Database (accession number ERP008729)
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[see e.g., 59, 61, 101, 122, 132, 135]. The rationale being that these “zero-abundant"

taxa may be less important in a network, which was also confirmed by our simulation

study. This filtering process left 51 and 36 genera in the CRC and control group, respec-

tively.

Figure 4.4 (a) and (b) display the estimated networks for the CRC and the control

group, respectively. Each node, corresponding to a genus, was named after its phylum

level. All the genera shown in Figure 4.4 belong to six phyla in total. By using their phy-

lum name to further categorize these distinct genera, we aimed at exploring interesting

patterns among them at a higher taxonomic level. Figure C.1 displays the same network

using the actual genus name on each node . The node sizes are proportional to its nor-

malized abundances in the logarithmic scale. The green or red edge indicates a positive

or a negative partial correlation, respectively. And the width of an edge is proportional to

the absolute value of the partial correlation coefficient. To make a clear comparison, we

intentionally kept the nodes and their positions to be consistent between the two subfig-

ures. In either of the two groups, we included a node in the current plot if there exists an

edge between it with any nodes in at least one group. In general, the two groups share

several edges with the same direction of partial correlations, but the majority of edges are

unique within each group.

Network estimation of the CRC group demonstrated several microbial communities.

For example, three genera: Fusobacterium, Peptostreptococcus, and Parvimonas con-

sisted of a unique subnetwork as highlighted in Figure 4.4 (a). These three genera were

isolated in the control group’s network, as shown in Figure 4.4 (b). Interestingly, specific

species under these three genera have been reported as enriched taxa in CRC and re-

lated to worse clinical outcome [78, 92, 134]. A previous CRC study by [58] supported

the causal role of species Fusobacterium nucleatum (F. nucleatum) by showing that F.

nucleatum promotes tumor progression by increasing both tumor multiplicity and tumor-

infiltrating myeloid cells in a preclinical CRC model. Further, a recent study [78] demon-
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Figure 4.4: CRC case study: The estimated networks by HARMONIES for (a) CRC pa-
tients and (b) healthy controls. Increased abundances of species under the three genera
(Fusobacterium, Peptostreptococcus, Parvimonas) in the dashed rectangular box in (a)
were reported to be associated with the disease. CRC patients and healthy controls
shared a similar subnetwork (composed of eight genera) circled in (b). Each node here
represents a genus labeled by its phylum name. The version with distinct genus names is
available in Figure C.1 in the Appendix.

strated that Peptostreptococcus anaerobius (P. anaerobius) accelerated colorectal tumori-

genesis in a murine CRC model. This study suggested that P. anaerobius directly inter-

acted with colonic epithelial cells and also promoted CRC by modifying the tumor immune

microenvironment. While the causal role of the species Parvimonas micra (P. micra) has

not been biologically validated, multiple clinical studies reported an elevated level of P. mi-

cra in CRC patients [26, 100, 134]. Of interest, Parvimonas were closely associated with

animal-based diets, which have previously been shown to be significantly associated with

increased risk for CRC [20]. The previous studies only investigated those CRC-related

taxa individually, whereas a novel finding by HARMONIES analysis suggested that all the

three genera were co-aggregating in CRC patients as their pairwise associations are all

positive. Interestingly, in a prior study direct positive associations between Fusobacterium

and Peptostreptococcus, as well as Peptostreptococcus and Parvimonas, were identified

[48]. However, there was no direct association between Fusobacterium and Parvimonas.
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Similarly, another study [29] found a direct co-occurrence pattern between two species:

F. nucleatum and P. micra. Using HARMONIES, we could jointly identify the relationship

among each pair of the three genera, conditional on all other genera. This novel subcom-

munity of three CRC-enriched genera formulated a recurring module, and may function

as a cooperative group in CRC patients. A closer investigation of their co-occurrence

pattern could potentially elucidate both their contributions to CRC and the basic biology

under their relationships. Two additional novel taxa interactions were identified by HAR-

MONIES analysis: Streptococcus and Veillonella, and Streptococcus and Haemophilus.

In fact, previous CRC studies showed enrichment of these three genera or their species

in CRC patients [see e.g., 43, 56, 60, 120], but had not detected these novel interactions.

In conclusion, HARMONIES may reveal how multiple CRC-related taxa could potentially

promote disease progression together.

Having shared edges between the two networks suggests that the HARMONIES is

robust to the edge selection. We observed that the shared edges tended to appear for

those more abundant genera. For example, we circled eight genera in Figure 4.4 (b),

and the HARMONIES suggested multiple positive partial correlations among them. For

these eight genera, we observed six shared edges between the CRC and healthy control

networks. Notice that all the shared edges were consistent in the association directions,

and they also corresponded to the relatively stronger association in both networks (wider

in the edge width). We found these shared edges tend to connect those more abundant

genera (node with larger size). Indeed, the eight genera considered here belong to phyla

Bacteroidetes and Firmicutes, both were in the top three most abundant phyla for CRC

patients and healthy controls reported by [40, 93]. Therefore, it was more likely that the

highly abundant genera shared similar association patterns between the two groups, and

the HARMONIES demonstrated its robustness by preserving these relatively stronger par-

tial correlations among these genera. On the other hand, the network of the control group

contained more negative partial correlations as shown in Figure 4.4 (b). Furthermore,

the two edges linked to Streptococcus were different from the CRC group. Here, Strep-
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tococcus had a negative association with Subdoligranulum and a positive association

with Rothia. There has been no evidence suggesting these two genera are CRC-related.

Hence a further investigation is merited. Additionally, the CRC group has another distinct

small subnetwork formed by the four genera, two from Firmicutes, one from Proteobac-

teria, and one from Verrucomicrobia. These group-specific associations were never re-

ported. Lastly, we observed several interesting patterns between the two groups when

summarizing the genera to their phylum levels. Genera in Firmicutes (labeled as “Fm"

in Figure 4.4) showed more positive associations in the case group than in the control

group, whereas negative associations between Firmicutes and Bacteroidetes (labeled as

“Ba" in Figure 4.4) were more common in the control group. Again, these novel patterns

still need further biological validations to elucidate their functions.

4.5. Discussion
With the advent of next-generation sequencing technology, microbiome research now

has the opportunity to explore microbial community structure and to characterize the mi-

crobial ecological association for different populations or physiology conditions [61]. In this

chapter, we introduce HARMONIES as a statistical framework to infer sparse networks us-

ing microbiome sequencing data. It models the original count data by a zero-inflated neg-

ative binomial distribution to capture the large amount for zeros and over-dispersion, and

it further implements Dirichlet process priors to account for sample heterogeneity. In con-

trast, current methods for microbiome network analyses rely on the compositional data,

which could cause information loss due to ignoring the unique characteristics of the micro-

biome sequencing count data. Following the data normalization step, the HARMONIES

explores the direct connections in the network by estimating the partial correlations. The

results from the simulation study have demonstrated the advantage of the HARMONIES

over alternative approaches under various conditions. When applied to an actual micro-

biome dataset, the HARMONIES suggests all the nodes be taxa at the same taxonomic

level, such as species, genus, and family. This ensures proper biologically interpretations

of those detected associations. When applied to a real CRC study, the HARMONIES
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revealed an intriguing community among three CRC-enriched genera. Further, shared

patterns between the CRC and the control networks suggest a common community pat-

tern of disease neutral genera. Additional studies validating the biological relevance of

these microbial associations, however, will need to be conducted.

Both the simulated and synthetic data showed that a larger sample size improved the

performance of all the network learning methods. In practice, many disease-related micro-

biome studies, especially those studying rare diseases, always have small sample sizes.

This limitation directly affects the estimation of the normalized matrix A from the ZINB

model. Notice that for a taxon j, a small sample size could result in a large variance in the

posterior distribution of logα·j . However, many disease studies include reference groups

where the measurements on the same taxonomic features are available. The additional

information from the subjects in the reference group can potentially help improve the pos-

terior inference of the normalized abundances. We generalized the proposed ZINB model

to handle two groups, with the goal of borrowing information between groups in estimating

the normalized abundances. These detailed model formula and implementation were in-

cluded in the Appendix (see Appendix C.2: Infer the normalized abundances for multiple

groups). Our current method can infer the normalized abundances for two groups, and

we provided the details steps in the Appendix C.2. However, an integrated differential net-

work can be expected to better study the differential microbial community structure and

link the communities to human health status.
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CHAPTER 5

Conclusions and Future Directions

This thesis presents three statistical frameworks developed for analyzing metagenomics

sequencing data in the context of human microbiome research. These models have taken

into account the important characteristics of the microbiome sequencing count data, in-

cluding the high-dimensionality, zero-inflation, and overdispersion of the taxa counts.

In the microbiome differential abundance analysis, our proposed method has shown

great promise in detecting the differentially abundant signatures across phenotype groups,

as illustrated in both simulation and synthetic data analyses. The consistency between

taxa identified by the ZINB-DPP model and the current biological literature have further

supported the reliability of our model. When it comes to predicting the subject’s pheno-

type using the differentiating taxa detected by different methods, the model built by the

ZINB-DPP detected taxa shows significantly lower prediction error compared with others.

Our model framework can be naturally extended to other analysis scenarios. For exam-

ple, the inferred latent abundance can be treated within a sample normalized distribution.

It is thus applicable to longitudinal analysis, which can capture the dynamic structure in

microbiome studies; or to differential network analysis, which can investigate the com-

plex interactions among microbial taxa. In all, the proposed Bayesian framework provides

more powerful microbiome differential abundance analyses and is suitable for multiple

types of microbiome data analysis.

The microbiome integrative analysis associates the microbiome abundances with ge-

netic covariates. Our method is novel in simultaneously identifying differentially abundant

taxa for multiple patient groups and incorporating the effects from measurable covariates

in one statistical framework. Our model allows for several extensions. For example, the
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current method supports two phenotype groups. If there are multiple groups (e.g., the

intermediate phenotypes), the current model can incorporate group-specific parameters

while holding the other parameters unchanged (e.g., the normalized microbiome abun-

dance can be inferred in the same way). Then the same posterior inferences can be ap-

plied. The proposed model based on a regression framework considers the microbiome

normalized abundance as the response and integrates the omics data, e.g., metabolite

compounds, as predictors. Similarly, [76] used the microbial abundance as the response

and a type of genomics data (i.e., single nucleotide polymorphism, SNP) as predictors to

identify several inflammatory bowel disease (IBD)-associated host-microbial interactions.

Both methods focus on the omics effect on microbial abundance. However, the interac-

tion between the microbiome and the host is bidirectional. Therefore, it is worthwhile to

consider using the microbial features as predictors to investigate their modulations on any

biological process with quantitative omics measurements. For instance, [102] explored

how microbial abundances induced changes in chromatin accessibility and transcription

factor binding of host genetics. Another interesting extension would be to analyze corre-

lated covariates such as longitudinal clinical measurements [137].

In the microbiome network analysis, we propose HARMONIES, a hybrid approach

that explores the direct connections between taxa in the network by estimating the partial

correlations. Our hybrid approach for microbiome network inference can be extended.

One future direction is to incorporate the differential network analysis into the existing

framework. It jointly considers the association strengths between each pair of taxa from

different groups, and it compares the estimated individual networks to capture the signifi-

cantly different connectivities.
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APPENDIX A

APPENDIX of CHAPTER 2

A.1. Dirichlet-multinomial model
One commonly used candidate of the multivariate count variable generating process

M is the Dirichlet-multinomial (DM) model [see e.g. 21, 49, 64, 122]. To illustrate the

model, we start by modeling the counts observed in subject i with a multinomial distribu-

tion yi·|ψi· ∼ Multi(Yi·,ψi·). The p-dimensional vector ψi· = (ψi1, . . . , ψip)
T is defined on a

p-dimensional simplex (i.e. ψij > 0,∀j and
∑p

j=1 ψij = 1), and represents the underlying

taxonomic abundances. The p.m.f. is Yi·
∏p

j=1 ψ
yij
ij /yij!, with the mean and variance of

each component, E(Yij) = ψijYi· and Var(Yij) = ψij(1− ψij)Yi·, respectively.

We further impose a Dirichlet prior on the multinomial parameter vector to allow for

over-dispersed distributions, ψi·|αi· ∼ Dir(αi·), where each element of the p-dimensional

vector αi· = (αi1, . . . , αip)
T is strictly positive. Due to the conjugacy between the Dirich-

let distribution and the multinomial distribution, we can integrate ψi· out, p(yi·|αi·) =∫
p(yi·|ψi·)p(ψi·|αi·)dψi·. The resulting DM model: yi·|αi· ∼ DM(αi·), has the following

p.m.f.

fDM(yi·|αi·) =
Γ(Yi· + 1)Γ(Ai·)

Γ(Yi· + Ai·)

p∏
j=1

Γ(yij + αij)

Γ(yij + 1)Γ(αij)
,

where Yi· =
∑p

j=1 yij and Ai· =
∑p

j=1 aij. The variance of each count variable is Var(Yij) =

(Yi· + Ai·)/(1 + Ai·)E(ψij)(1 − E(ψij))Yi·. Comparing this with the multinomial model, we

see that the variance of the DM is inflated by a factor of (Yi· + Ai·)/(1 + Ai·), Thus, the

DM distribution can explicitly model extra variation. Note that Ai· =
∑p

j=1 αij controls the
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degree of over-dispersion. A small value of Ai· results in large over-dispersion, while a

large value approaching infinity reduces the DM model to a multinomial model. Although

the DM model offers more flexibility than the multinomial model in terms of modeling over-

dispersion, neither models accounts for zero-inflation.

A.2. Details of the MCMC algorithms
We show the details of the MCMC algorithms of the proposed Bayesian framework,

where taxonomic structure is taken into account. For a simple cases where the data are

only available at genus or OTU level for 16S rRNA sequencing data, or at species level

for metagenomic shotgun sequencing data, please ignore the superscript (2), . . . , (l).

A.2.1. Bottom level

A.2.1.1. Dirichlet-multinomial (DM) model

We start by writing the likelihood for each sample i, i = 1, . . . , n, where the microbiome

abundance is summarized at the bottom-most taxonomic levels, i.e. l = 1,

fDM(y
(1)
i· |α

(1)
i· ) =

Γ(Yi· + 1)Γ(Ai·)

Γ(Yi· + Ai·)

p(1)∏
j=1

Γ(y
(1)
ij + α

(1)
ij )

Γ(y
(1)
ij + 1)Γ(α

(1)
ij )

.

Note that Yi· =
∑p(1)

j=1 y
(1)
ij · · · = · · ·

∑p(L)

j=1 y
(L)
ij and Ai· =

∑p(1)

j=1 a
(1)
ij · · · = · · ·

∑p(L)

j=1 a
(L)
ij ; that is,

the total read counts and the total normalized abundance should be unchanged, regard-

less of the choice of taxonomic levels.
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A.2.1.2. Zero-inflated negative binomial (ZINB) model

We start by writing the likelihood for each sample i, i = 1, . . . , n, where the microbiome

abundance is summarized at level l,

fZINB(y
(l)
i· |α

(l)
i· ,ηi·,φ

(l), si) =

p(l)∏
j=1

fZINB(y
(l)
ij |α

(l)
ij , ηij, φ

(l)
j , si),

where

fZINB(y
(l)
ij |α

(l)
ij , ηij, φ

(l)
j , si)

=I(y(1)
ij = 0)ηij

Γ(y
(l)
ij + φ

(l)
j )

y
(l)
ij ! Γ(φ

(l)
j )

(
φ

(l)
j

siα
(1)
ij + φ

(l)
j

)φ
(l)
j
(

siα
(l)
ij

siα
(l)
ij + φ

(l)
j

)y
(l)
ij


1−ηij

.

Update of zero-inflation indicator ηij: We update each ηij, i = 1, . . . , n, j = 1, . . . , p(1)

that corresponds to y
(1)
ij = 0 by sampling from the normalized version of the following

conditional:

p(ηij|·) ∝ fZINB(y
(1)
ij |α

(1)
ij , ηij, φj, si) · Bern(ηij; πi).

After the Metropolis-Hasting steps for all ηij, we use a Gibbs sampler to update each

πi, i = 1, . . . , n:

πi|· ∼ Be(aπ +

p(1)∑
j=1

ηij, bπ + p(1) −
p(1)∑
j=1

ηij).

Update of dispersion parameter φ(l)
j : We update each φ(l)

j , j = 1, . . . , p(l), l = 1, . . . , L

by using a random walk Metropolis-Hastings algorithm. We first propose a new φ
(l)
j

∗
from

Ga(φ
(l)
j

2
/τφ, φ

(l)
j /τφ) and then accept the proposed value φ(l)

j

∗
with probability min(1,mMH),
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where

mMH =

∏n
i=1 fZINB(y

(l)
ij |α

(l)
ij , ηij, φ

(l)
j , si)∏n

i=1 fZINB(y
(l)
ij |α

(l)
ij , ηij, φ

(l)
j , si)

Ga(φ
(l)
j

∗
; aφ, bφ)

Ga(φ
(l)
j ; aφ, bφ)

J(φ
(l)
j ;φ

(l)
j

∗
)

J(φ
(l)
j

∗
;φ

(l)
j )

.

Here we use J(·|·) to denote the proposal probability distribution for the selected move.

Note that the last term, which is the proposal density ratio, can be canceled out for this

random walk Metropolis update.

Update of size factor si: We can rewrite Equation (4) in the main text, i.e.

log si ∼
M∑
m=1

ψm

[
tm N(νm, σ

2
s) + (1− tm) N

(
− tmνm

1− tm
, σ2

s

)]

by introducing latent auxiliary variables to specify how each sample (in terms of log si) is

assigned to any of the inner and outer mixture components. More specifically, we can

introduce an n × 1 vector of assignment indicators g, with gi = m indicating that log si

is a sample from the m-th component of the outer mixture. The weight ψm determines

the probability of each value gi = m, with m = 1, . . . ,M . Similarly, we can consider an

n × 1 vector ε of binary elements εi, where εi = 1 indicates that, given gi = m, log si is

drawn from the first component of the inner mixture, i.e. N(νm, σ
2
s) with probability tm, and

εi = 0 indicates that log si is drawn from the second component of the inner mixture, i.e.

N
(
− tmνm

1−tm , σ
2
s

)
, with probability 1− tm. Thus, the Dirichlet process prior (DPP) model can

be rewritten as

log si|gi, εi, t,ν ∼ N
(
εiνgi + (1− εi)

−tgiνgi
1− tgi

, σ2
s

)
,

where t and ν denote the collections of tm and νm, respectively. Therefore, the up-

date of the size factor si, i = 1, . . . , n can proceed by using a random walk Metropolis-

Hastings algorithm. We propose a new log s∗i from N(log si, τ
2
s ) and accept it with proba-
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bility min(1,mMH), where

mMH =

∏p(1)

j=1 fZINB(y
(1)
ij |α

(1)
ij , ηij, φ

(1)
j , s∗i )∏p(1)

j=1 fZINB(y
(1)
ij |α

(1)
ij , ηij, φ

(1)
j , si)

N(log s∗i ; εiνgi + (1− εi)
−tgiνgi
1−tgi

, σ2
s)

N(log si; εiνgi + (1− εi)
−tgiνgi
1−tgi

, σ2
s)

× J(log si; log s∗i )

J(log s∗i ; log si)
.

Note that the last term, which is the proposal density ratio, equals 1 for this random

walk Metropolis update. Since g, ε, t, and ν have conjugate full conditionals, we use

Gibbs samplers to update them one after another:

• Gibbs sampler for updating gi, i = 1, . . . , n, by sampling from the normalized version

of the following conditional:

p(gi = m|·) ∝ ψmN
(

log si; εiνm + (1− εi)
−tmνm
1− tm

, σ2
s

)
.

• Gibbs sampler for updating εi, i = 1, . . . , n, by sampling from the normalized version

of the following conditional:

p(εi|·) ∝


(1− tm)N

(
log si;− tmνm

1−tm , σ
2
s

)
if εi = 0

tmN (log si; νm, σ
2
s) if εi = 1

.

• Gibbs sampler for updating tm,m = 1, . . . ,M :

tm|· ∼ Be(at +
n∑
i=1

I(gi = m)I(εi = 1), bt +
n∑
i=1

I(gi = m)I(εi = 0)).

• Gibbs sampler for updating νm,m = 1, . . . ,M :

νm|· ∼ N
(

cm/σ
2
s

em/σ2
s + 1/τ 2

ν

,
1

em/σ2
s + 1/τ 2

ν

)
,

where cm =
∑
{i:gi=m,εi=1} log si − tm

1−tm

∑
{i:gi=m,εi=0} log si and em =

∑n
i=1 I(gi =
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m)I(εi = 1) +
∑
{i:gi=m,εi=0}

(
tm

1−tm

)2

.

• Gibbs sampler for updating ψm,m = 1, . . . ,M by stick-breaking process [52]:

ψ1 = v1,

ψ2 = (1− v1)v2,

...

ψM = (1− v1) · · · (1− vM−1)vM ,

where vm|ν ∼ Be (am +
∑n

i=1 I(gi = m), bm +
∑n

i=1 I(gi > m)).

A.2.2. Top level

Both of the DM model and the ZINB model share the same process to update the

normalized abundance matrix at the bottom-most taxonomic level, i.e. A(1), and to select

the discriminatory taxa at different levels, i.e. γ(1), . . . ,γ(L). For the sake of convenience,

we have copied Equation (2.6) in the main text here,

p(α
(l)
·j |γ

(l)
j ) = (2π)−

n
2×

∏K
k=1(nkhk + 1)−

1
2

Γ(ak+
nk
2 )

Γ(ak)

b
ak
kbk+ 1

2

∑
{i:zi=k}

logα
(l)
ij

2
−

(∑{i:zi=k} logα
(l)
ij )

2

nk+
1
hk


ak+

nk
2

if γ(l)
j = 1

(nh0 + 1)−
1
2

Γ(a0+n
2 )

Γ(a0)

b
a0
0b0+ 1

2

∑n
i=1 logα

(l)
ij

2
−

(∑ni=1
logα

(l)
ij )

2

n+ 1
h0


a0+

n
2

if γ(l)
j = 0

.

Update of normalized abundance at the bottom-most level a(1)
ij : We update each

α
(1)
ij , i = 1, . . . , n, j = 1, . . . , p(1) by using a Metropolis-Hastings random walk algorithm.
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We first propose a new α
(1)
ij

∗
from N(α

(1)
ij , τ

2
α), and then accept the proposed value with

probability min(1,mMH), where

mMH =
fM(y

(1)
i· |α

(1)
i·
∗
, ·)

fM(y
(1)
i· |α

(1)
i· , ·)

p
(
α

(1)
·j
∗
|γ(1)
j

)
p
(
α

(1)
·j |γ

(1)
j

) J
(
α

(1)
ij ;α

(1)
ij

∗)
J
(
α

(1)
ij

∗
;α

(1)
ij

) .
Here we useM to denote the bottom level model, which should be chosen from {DM,ZINB}.

Note that the last term, which is the proposal density ratio, equals 1 for this random walk

Metropolis update.

Update of differentially abundant taxon indicator γ(l)
j : We update each γ

(l)
j , j =

1, . . . , p(l), l = 1, . . . , L via an add-delete algorithm. In this approach, a new candidate

vector, say γ(l)∗, is generated by randomly choosing an element within γ(l), say j, and

changing its value to 1 − γ
(l)
j . Then, this proposed move is accepted with probability

min(1,mMH), where the Hastings ratio is

mMH =
p
(
α

(l)
·j |γ

(l)
j

∗)
p
(
α

(l)
·j |γ

(l)
j

) p
(
γ

(l)
j

∗
|·
)

p
(
γ

(l)
j |·
) J

(
γ(l)|γ(l)∗)

J
(
γ(l)∗|γ(l)

) .
Note that the proposal density ratio equals 1. Here, we have two choices of p

(
γ

(l)
j |·
)

,

either independent Bernoulli prior or Markov random field prior (see Equation (7) in the

main text). We should also notice that the feature selection and the abundance estimation

are determined simultaneously in the MCMC algorithm. Therefore, to improve mixing, it

is necessary to allow the selection to stabilize for any visited configurations ofA(1) and its

inducedA(l)’s. We suggest repeating the above Metropolis step multiple times within each

iteration. In the simulations conducted for this Chapter, no improvement in the MCMC

performance was noticed after repeating the step above 20 times.

Update of normalized abundance at upper levels a(l)
ij , l ≥ 2: For the DM model, the

aggregation property can be used to derive the normalized abundance at upper levels

89



sequentially just from the one at the bottom level via α(l)
ij =

∑
{j′:gjj′=1} α

(l−1)
ij′ . For the ZINB

model, the aggregation property does not hold. We assume that the size factor estima-

tion should be irrelevant to the choices of microbiome count data at different taxonomic

levels. Therefore, we update each α
(l)
ij , i = 1, . . . , n, j = 1, . . . , p(l), l = 2, . . . , L by using a

Metropolis-Hastings random walk algorithm conditional on the size factors estimated by

Y (1). We first propose a new α
(l)
ij

∗
from N(α

(l)
ij , τ

2
α), and then accept the proposed value

with probability min(1,mMH), where

mMH =
fZINB(y

(l)
ij |α

(l)
ij

∗
, ηij, φ

(l)
j , si)

fZINB(y
(l)
ij |α

(l)
ij , ηij, φ

(l)
j , si)

p
(
α

(l)
·j
∗
|γ(l)
j

)
p
(
α

(l)
·j |γ

(l)
j

) J
(
α

(l)
ij ;α

(l)
ij

∗)
J
(
α

(l)
ij

∗
;α

(l)
ij

) .
Note that the last term, which is the proposal density ratio, equals 1 for this random walk

Metropolis update.

A.3. Sensitivity analysis
We examined the ZINB model sensitivity with respect to the choice of hyperparame-

ters b0, . . . , bK and h0, . . . , hK in the top level as discussed in Section 2.2.2. The results

in Table A.5 show that our approach is considerably insensitive to the hyperparameter

settings.

The choice of bk and hk for k = 0, . . . , K are related to the variance terms in the Gaus-

sian mixture model in the top level. Large values of hk would achieve a noninformative

prior on µkj ’s. On the other hand, as we specify IG(ak, bk) prior for σ2
kj with ak = 2 for

all k = 0, . . . , K, the resulting variance of inverse gamma distribution does not exist. We

considered a range of (bk, hk) settings as bk ∈ {0.1, 1, 2, 10} and hk ∈ {1, 10, 100}. Then

we applied the ZINB-DPP model with different combinations of (bk, hk) to datasets sim-

ulated from the ZINB model discussed in Section 2.4.1. To fully assess the impact of

hyperparameters under different scenarios, we considered K = 2, 3 and n = 24, 108 with

a weak log effect size of σ = 1. We generated 50 independent datasets for each scenario

and reported the averaged AUCs (in Table A.5). Clearly, the AUCs remain stable under
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different choices of (bk, hk). We suggest to set bk = 1 and hk to be any value ranging from

10 to 100 for k = 1, . . . K.

A.4. Additional results for the colorectal cancer study

A.4.1. Quality control

Before analyzing a given microbiome count dataset, we first implement a simple quality

control step. It ensures that the dataset is of the best quality to perform the subsequent

modeling. This step includes: 1) examining the total number of reads sequenced, and

2) verifying the richness of taxa discovered. In all, quality control is considered for both

sample (patient) and feature (taxon) levels.

A.4.1.1. Sample-wise quality control

In sequencing data analysis, if the total number of reads for a sample falls above or

below specific values (discussed below), then this may indicate poor sequence quality

owing to duplicate reads or limited sampling bias. Specifically, let yi =
∑p

j=1 yij denote

the total number of reads observed in sample i. A sample i will be removed if yi <

Q1−3(Q3−Q1) or> Q3+3(Q3−Q1), where Q1 and Q3 are the lower and upper quartiles

(i.e. the 25th and 75th percentiles) of the total reads of all the samples (i.e. {y1, . . . , yn}).

Note that in the context of box-and-whisker plotting, a data point is defined as an extreme

outlier if it stands outside these two limits. Second, in ecology, investigators find that

the number of species increases as sampling effort increases. This species-abundance

distribution can be depicted by the collector’s curve, which is monotonically increasing and

negatively accelerated. Hence, we assume that the logarithmic count of taxa discovered

in one sample had a linear relationship with the total reads observed in the same sample.

As suggested by [46], we fit the regression model to compute the Cook’s distance for

each patient, and remove the ones with distances above 4/(n − 2) since they would be

91



considered the influential data points for a least-squares regression analysis.

A.4.1.2. Feature-wise quality control

Another common procedure in microbiome studies is to filter out the extremely low-

abundant taxa. For example, [122] requires each genus in their model to be present in

at least 5% of the samples. Similarly, [101] keeps the taxa with median compositional

abundance greater than 0.01% of total abundance in either the healthy control group or

the disease group. In our ZINB model, the estimation of the dispersion parameter of each

feature (taxon) involves the calculation of the second moment, similar to computing the

variance component in the Gaussian mixture model. Therefore, it requires at least two

observed reads in each patient group to perform the analysis. In practice, we suggest

removing a taxon if it has fewer than three nonzero reads in any patient group.

A.4.2. Result comparison with alternative methods

Along with the simulation study conducted in the Section 2.4, we compared the results

given by our proposed models (DM, ZINB-DPP) on the case study data with those from

alternative approaches, including ANOVA, Kruskal–Wallis test, WaVE-DESeq2, WaVE-edgeR

and metagenomeSeq.

We adopted a 1% significance level threshold on the BH-adjusted p-values provided

by the alternative methods. The choice of 1% was set to be consistent with the Bayesian

false discovery rate (FDR) of the ZINB-DPP model. For the DM model, we kept the same

hyperprior settings as for the ZINB-DPP model, i.e., we set a0 = a1 = . . . = ak = 2,

b0 = b1 = . . . = bk = 1 for variance components σ2
0j and σ2

kj, and we let h0 = h1 = . . . =

hK = 50. We further adopted the same Markov random field settings as d = −2.2 and

f = 0.5. The differentially abundant taxa selected by the DM model were obtained by

controlling the Bayesian FDR to be less than 1% on the corresponding PPIs. The clado-
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grams in Fig A.3 compare the taxa selected by all different methods. First, ANOVA lacked

statistical power when the data contained too many zeros, and it failed to identify any dis-

criminating taxa in this case. Therefore, we excluded the result by ANOVA in Fig A.3. The

Kruskal–Wallis test identified 30 discriminating taxa, 19 of which were also reported by

the ZINB-DPP model. Although Kruskal–Wallis selected the branch of species Fusobac-

terium nucleatum as all the other methods did, it failed to detect the taxonomic branch

from Synergistaceae to Synergistetes, which was reported by the ZINB-DPP model and

Synergistaceae was found to be CRC-enriched in a previous study [25]. Next, under a

stringent significance level of 1%, WaVE-DESeq2 and WaVE-edgeR still led the selection of

238 and 77 discriminating taxa , respectively. The large number of detections might sug-

gest a high FDR. Furthermore, WaVE-edgeR failed to detect the taxonomic branch from

Synergistaceae to its phylum level. Lastly, we found that metagenomeSeq and the DM

model performed conservatively, as they only reported 20 and 27 discriminating taxa, re-

spectively. 14 out of 20 taxa detected by metagenomeSeq were consistent with the result

by ZINB-DPP, while 15 out of 27 findings from the DM model overlapped with results

by the ZINB-DPP model. Although both of these methods reported Fusobacterium nu-

cleatum to be differentially abundant between two groups, neither of them detected the

co-occurrence between Fusobacterium nucleatum and Campylobacter.
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A.5. Additional tables and figures

Table A.1: List of commonly used normalization techniques for sequencing count data

Definition Constraint Reference

TSS ŝi ∝ Yi·
∑n
i=1 log si = 0

1Q75 ŝi ∝ q0.75pi ,
∑n
i=1 log si = 0 [14]

RLE ŝi ∝ medianj

yij/ n

√√√√ n∏
i′=1

yi′j

 ∑n
i=1 log si = 0 [5]

2TMM ŝi ∝
∑p
j=1 yij · exp

(∑
j∈G∗ ψj(i,r)Mj(i,r)∑

j∈G∗ ψj(i,r)

) ∑n
i=1 log si = 0 [105]

1CSS ŝi ∝
∑p
j=1 yij · I(yij ≤ q

0.5p
i )

∑n
i=1 log si = 0 [97]

DPP p(log si|·) =
∑M
m=1 ψm

[
tmN(νm, σ

2
s)+ E(log si) = 0 [72]

(1− tm)N
(
cs−tmνm

1−tm , σ2
s

) ]
Abbreviations: TSS is total sum scaling, Q75 is upper-quantile (i.e. 75%), RLE is relative log expression,
TMM is trimmed mean by M-values, CSS is cumulative sum scaling, and DPP is Dirichlet process prior.
1Note for Q75 and CSS: qli is defined as the l-th quantile of all the counts in sample i, i.e. there are l
features in sample i whose values yij ’s are less than qli.
2Note for TMM: the M-value Mj(i, r) = log(yij/Yi·)/log(yrj/Yr·) is the log-ratio of scaled counts between
sample i and the reference sample r, if not within the upper and lower 30% of all theM -values (as well as the
upper and lower 5% of all the A-values, defined as Aj(i, r) = log

√
yij/Yi· · yrj/Yr·, and the corresponding

weight ψj′(i, r) is the inverse of the approximate asymptotic variances, calculated as Yi·−yij′
yij′Yi·

+ Yr·
yrj′Yr·

by
the delta method.
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Table A.2: DM and ZINB simulation: area under the curve (AUC)

Generative
Model Methods

Simulation Setting

K = 2 K = 3

n = 24 n = 108 n = 24 n = 108

σ = 1 σ = 2 σ = 1 σ = 2 σ = 1 σ = 2 σ = 1 σ = 2

DM

ZINB-DPP
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(0.0102) (0.0000) (0.0000) (0.0000) (0.0003) (0.0000) (0.0000) (0.0000)

ZINB-TSS
0.977 1.000 1.000 1.000 0.999 1.000 1.000 1.000

(0.0111) (0.0002) (0.0002) (0.0001) (0.0006) (0.0002) (0.0001) (0.0002)

ZINB-Q75
0.977 1.000 1.000 1.000 0.999 1.000 1.000 1.000

(0.0112) (0.0001) (0.0001) (0.0001) (0.0005) (0.0000) (0.0000) (0.0001)

ZINB-RLE
0.978 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(0.0100) (0.0001) (0.0001) (0.0000) (0.0004) (0.0000) (0.0001) (0.0001)

ZINB-TMM
0.978 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(0.0105) (0.0001) (0.0001) (0.0000) (0.0005) (0.0000) (0.0001) (0.0001)

ZINB-CSS
0.976 1.000 1.000 1.000 0.999 1.000 1.000 1.000

(0.0115) (0.0000) (0.0000) (0.0001) (0.0008) (0.0000) (0.0001) (0.0001)

DM
0.972 1.000 1.000 1.000 0.999 1.000 1.000 1.000

(0.0111) (0.0002) (0.0002) (0.0001) (0.0006) (0.0002) (0.0001) (0.0002)

ANOVA
0.977 1.000 1.000 1.000 0.999 1.000 1.000 1.000

(0.0101) (0.0003) (0.0003) (0.0004) (0.0010) (0.0004) (0.0003) (0.0004)

Kruskal–Wallis
0.978 1.000 1.000 1.000 0.999 1.000 1.000 1.000

(0.0102) (0.0002) (0.0003) (0.0004) (0.0008) (0.0001) (0.0003) (0.0003)

WaVE-DESeq2
0.921 0.946 0.997 0.999 0.933 0.944 0.997 0.999

(0.0154) (0.0004) (0.0000) (0.0000) (0.0218) (0.0249) (0.0031) (0.0013)

WaVE-edgeR
0.951 0.958 0.998 0.998 0.942 0.956 0.997 0.999

(0.0141) (0.0003) (0.0000) (0.0000) (0.0203) (0.0225) (0.0030) (0.0014)

metagenomeSeq
0.957 0.998 0.895 0.918 0.972 0.999 0.992 0.994

(0.0146) (0.0017) (0.0239) (0.0199) (0.0122) (0.0015) (0.0043) (0.0040)

ZINB

ZINB-DPP
0.907 0.990 0.994 0.998 0.982 0.998 0.998 1.000

(0.0203) (0.0095) (0.0051) (0.0039) (0.0085) (0.0072) (0.0026) (0.0003)

ZINB-TSS
0.888 0.988 0.993 0.997 0.975 0.998 0.997 1.000

(0.0240) (0.0097) (0.0059) (0.0047) (0.0125) (0.0065) (0.0044) (0.0005)

ZINB-Q75
0.888 0.988 0.991 0.997 0.975 0.998 0.997 1.000

(0.0225) (0.0101) (0.0070) (0.0051) (0.0106) (0.0043) (0.0043) (0.0005)

ZINB-RLE
NA NA NA NA NA NA NA NA

(-) (-) (-) (-) (-) (-) (-) (-)

ZINB-TMM
0.887 0.988 0.992 0.997 0.974 0.998 0.997 1.000

(0.0247) (0.0103) (0.0064) (0.0045) (0.0116) (0.0062) (0.0040) (0.0003)

ZINB-CSS
0.881 0.988 0.991 0.997 0.973 0.998 0.997 1.000

(0.0245) (0.0094) (0.0073) (0.0049) (0.0128) (0.0046) (0.0047) (0.0003)

DM
0.659 0.856 0.929 0.990 0.759 0.947 0.968 0.993

(0.0378) (0.0261) (0.0173) (0.0109) (0.0499) (0.0245) (0.0175) (0.0098)

ANOVA
0.714 0.908 0.972 0.995 0.659 0.788 0.989 0.997

(0.0601) (0.0333) (0.0126) (0.0052) (0.0689) (0.0608) (0.0066) (0.0031)

Kruskal–Wallis
0.547 0.634 0.824 0.942 0.509 0.512 0.892 0.982

(0.0528) (0.0834) (0.0331) (0.0197) (0.0211) (0.0216) (0.0299) (0.0098)

WaVE-DESeq2
0.611 0.532 0.911 0.962 0.611 0.540 0.924 0.970

(0.0383) (0.0300) (0.0110) (0.0061) (0.0465) (0.0405) (0.0142) (0.0080)

WaVE-edgeR
0.801 0.920 0.933 0.989 0.855 0.913 0.982 0.996

(0.0282) (0.0171) (0.0090) (0.0061) (0.0403) (0.0327) (0.0123) (0.0060)

metagenomeSeq
0.609 0.766 0.750 0.933 0.599 0.682 0.608 0.686

(0.0410) (0.0443) (0.0401) (0.0252) (0.0555) (0.0697) (0.0493) (0.0535)

Area under the curve (AUC) given by all methods on the simulated data. In each cell, the top number is the averaged AUC over 50
independent datasets, and the bottom number in parentheses is the standard error. The result from the model that achieved best
performance under the associated scenario (each column) is marked in bold.
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Table A.3: DM and ZINB simulation: Matthews correlation coefficient (MCC)

Generative
Model Methods

Simulation Setting

K = 2 K = 3

n = 24 n = 108 n = 24 n = 108

σ = 1 σ = 2 σ = 1 σ = 2 σ = 1 σ = 2 σ = 1 σ = 2

DM

ZINB-DPP
0.800 0.997 0.999 1.000 0.966 1.000 1.000 1.000

(0.0379) (0.0074) (0.0042) (0.0000) (0.0180) (0.0000) (0.0000) (0.0000)

ZINB-TSS
0.779 0.996 0.999 1.000 0.954 1.000 1.000 1.000

(0.0474) (0.0082) (0.0042) (0.0030) (0.0260) (0.0000) (0.0030) (0.0000)

ZINB-Q75
0.777 0.996 0.999 0.998 0.957 1.000 1.000 1.000

(0.0479) (0.0085) (0.0051) (0.0058) (0.0267) (0.0000) (0.0030) (0.0030)

ZINB-RLE
0.782 0.995 1.000 1.000 0.960 1.000 0.999 1.000

(0.0495) (0.0091) (0.0030) (0.0000) (0.0220) (0.0000) (0.0042) (0.0030)

ZINB-TMM
0.776 0.995 0.999 0.999 0.957 1.000 1.000 1.000

(0.0451) (0.0091) (0.0042) (0.0042) (0.0224) (0.0000) (0.0030) (0.0000)

ZINB-CSS
0.774 0.995 1.000 0.999 0.955 1.000 0.999 1.000

(0.0494) (0.0093) (0.0030) (0.0042) (0.0266) (0.0035) (0.0042) (0.0030)

DM
0.751 0.997 0.999 0.999 0.951 0.999 0.999 0.999

(0.0515) (0.0074) (0.0042) (0.0051) (0.0231) (0.0037) (0.0051) (0.0042)

ANOVA
0.739 0.982 1.000 1.000 0.935 0.999 1.000 1.000

(0.0529) (0.0153) (0.0000) (0.0000) (0.0280) (0.0052) (0.0000) (0.0000)

Kruskal–Wallis
0.741 0.984 1.000 1.000 0.938 0.999 1.000 1.000

(0.0579) (0.0133) (0.0000) (0.0000) (0.0240) (0.0037) (0.0000) (0.0000)

WaVE-DESeq2
0.783 0.999 1.000 1.000 0.731 0.916 0.980 1.000

(0.0525) (0.0175) (0.0074) (0.0000) (0.0539) (0.0548) (0.0313) (0.0269)

WaVE-edgeR
0.717 0.987 0.999 1.000 0.699 0.930 0.977 1.000

(0.0577) (0.0187) (0.0074) (0.0000) (0.0552) (0.0476) (0.0313) (0.0248)

metagenomeSeq
0.659 0.996 0.982 1.000 0.746 0.970 0.995 1.000

(0.0666) (0.0082) (0.0128) (0.0000) (0.0528) (0.0238) (0.0093) (0.0000)

ZINB

ZINB-DPP
0.459 0.845 0.912 0.971 0.716 0.705 0.956 0.986

(0.0582) (0.0467) (0.0267) (0.0186) (0.0514) (0.0532) (0.0223) (0.0142)

ZINB-TSS
0.403 0.835 0.906 0.969 0.681 0.704 0.954 0.986

(0.0651) (0.0402) (0.0289) (0.0167) (0.0487) (0.0520) (0.0216) (0.0144)

ZINB-Q75
0.407 0.837 0.906 0.972 0.676 0.704 0.952 0.985

(0.0598) (0.0428) (0.0314) (0.0187) (0.0559) (0.0520) (0.0210) (0.0157)

ZINB-RLE
NA NA NA NA NA NA NA NA

(-) (-) (-) (-) (-) (-) (-) (-)

ZINB-TMM
0.399 0.832 0.905 0.967 0.674 0.703 0.955 0.987

(0.0548) (0.0448) (0.0315) (0.0185) (0.0551) (0.0520) (0.0223) (0.0138)

ZINB-CSS
0.399 0.832 0.904 0.969 0.663 0.703 0.954 0.986

(0.0580) (0.0433) (0.0292) (0.0190) (0.0540) (0.0522) (0.0212) (0.0125)

DM
0.077 0.327 0.472 0.923 0.217 0.518 0.767 0.957

(0.0471) (0.0553) (0.0594) (0.0277) (0.0689) (0.0593) (0.0466) (0.0243)

ANOVA
0.099 0.412 0.741 0.930 0.217 0.374 0.870 0.954

(0.0720) (0.0847) (0.0511) (0.0234) (0.1070) (0.0917) (0.0341) (0.0271)

Kruskal–Wallis
0.031 0.122 0.372 0.634 0.007 0.010 0.488 0.795

(0.0583) (0.0862) (0.0689) (0.0557) (0.0347) (0.0392) (0.0726) (0.0435)

WaVE-DESeq2
0.233 0.247 0.717 0.825 0.254 0.245 0.753 0.854

(0.0944) (0.1276) (0.0688) (0.0324) (0.0858) (0.0945) (0.0929) (0.0620)

WaVE-edgeR
0.432 0.602 0.847 0.950 0.448 0.631 0.850 0.942

(0.0597) (0.0459) (0.0320) (0.0226) (0.0720) (0.0764) (0.0345) (0.0280)

metagenomeSeq
0.072 0.232 0.223 0.672 0.094 0.154 0.186 0.360

(0.0518) (0.0598) (0.0603) (0.0675) (0.0506) (0.0743) (0.0560) (0.0625)

Matthews correlation coefficient (MCC) given by all methods on the simulated data. In each cell, the top number is the averaged MCC
over 50 independent datasets, and the bottom number in parentheses is the standard error. The result from the model that achieved
best performance under the associated scenario (each column) is marked in bold.
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Table A.4: Synthetic data: area under the curve (AUC) and Matthews correlation coeffi-
cient (MCC)

Real Data
Sample Type Methods

Synthetic Setting

AUC MCC

log(σ) = 1 log(σ) = 2 log(σ) = 1 log(σ) = 2

n = 24 n = 108 n = 24 n = 108 n = 24 n = 108 n = 24 n = 108

Skin

ZINB-DPP
0.938 0.978 0.994 0.999 0.666 0.845 0.928 0.988

(0.0216) (0.0154) (0.0061) (0.0016) (0.0639) (0.0541) (0.0442) (0.0178)

ZINB-TSS
0.923 0.957 0.991 0.999 0.670 0.825 0.920 0.983

(0.0293) (0.0259) (0.0110) (0.0041) (0.0727) (0.0591) (0.0469) (0.0214)

ZINB-Q75
0.920 0.959 0.991 0.998 0.658 0.813 0.920 0.986

(0.0335) (0.0247) (0.0109) (0.0036) (0.0704) (0.0756) (0.0450) (0.0190)

ZINB-RLE
0.923 0.952 0.990 0.998 0.658 0.825 0.921 0.982

(0.0249) (0.0277) (0.0117) (0.0042) (0.0723) (0.0609) (0.0436) (0.0215)

ZINB-TMM
0.925 0.952 0.990 0.998 0.658 0.825 0.921 0.986

(0.0271) (0.0274) (0.0099) (0.0053) (0.0786) (0.0608) (0.0467) (0.0203)

ZINB-CSS
0.909 0.956 0.988 0.998 0.640 0.822 0.914 0.986

(0.0348) (0.0233) (0.0116) (0.0047) (0.0857) (0.0752) (0.0491) (0.0220)

DM
0.929 0.978 0.994 1.000 0.639 0.819 0.928 0.985

( 0.0246) (0.0124) (0.0060) (0.0011) (0.0684) (0.0480) (0.0418) (0.0172)

ANOVA
0.851 0.946 0.976 0.998 0.579 0.744 0.831 0.960

(0.0528) (0.0263) (0.0179) (0.0046) (0.0884) (0.0753) (0.0635) (0.0277)

Kruskal–Wallis
0.846 0.966 0.979 1.000 0.572 0.787 0.844 0.983

(0.0557) (0.0215) (0.0154) (0.0005) (0.0968) (0.0692) (0.0635) (0.0182)

WaVE-DESeq2
0.539 0.966 0.914 0.999 0.575 0.827 0.822 0.983

(0.0509) (0.0193) (0.0325) (0.0053) (0.0593) (0.0644) (0.0626) (0.0187)

WaVE-edgeR
0.834 0.969 0.978 0.999 0.589 0.833 0.874 0.990

(0.0943) (0.0364) (0.0225) (0.0027) (0.0804) (0.0431) (0.0431) (0.0146)

metagenomeSeq
0.637 0.953 0.971 1.000 0.558 0.704 0.813 0.936

(0.0783) (0.0242) (0.0195) (0.0006) (0.0863) (0.0592) (0.0703) (0.0346)

Feces

ZINB-DPP
0.917 0.891 0.987 0.979 0.619 0.658 0.884 0.900

(0.0320) (0.0390) (0.0117) (0.0121) (0.0995) (0.0784) (0.0832) (0.0504)

ZINB-TSS
0.900 0.857 0.975 0.968 0.620 0.627 0.872 0.883

(0.0370) (0.0499) (0.0222) (0.0237) (0.1003) (0.0977) (0.0810) (0.0552)

ZINB-Q75
0.874 0.858 0.970 0.966 0.553 0.625 0.861 0.879

(0.0691) (0.0482) (0.0254) (0.0247) (0.1310) (0.1009) (0.0818) (0.0634)

ZINB-RLE
0.909 0.863 0.975 0.962 0.630 0.630 0.868 0.876

(0.0346) (0.0462) (0.0235) (0.0238) (0.1028) (0.0848) (0.0826) (0.0650)

ZINB-TMM
0.912 0.869 0.976 0.966 0.623 0.638 0.873 0.878

(0.0333) (0.0435) (0.0218) (0.0235) (0.0981) (0.0921) (0.0895) (0.0574)

ZINB-CSS
0.887 0.858 0.978 0.968 0.593 0.639 0.870 0.887

(0.0493) (0.0564) (0.0202) (0.0262) (0.1096) (0.0904) (0.0657) (0.0594)

DM
0.917 0.929 0.987 0.993 0.594 0.655 0.884 0.928

(0.0295) (0.0293) (0.0137) (0.0080) (0.0982) (0.0811) (0.0764) (0.0390)

ANOVA
0.822 0.867 0.955 0.981 0.560 0.610 0.801 0.881

(0.0636) (0.0491) (0.0339) (0.0177) (0.1116) (0.0723) (0.0865) (0.0542)

Kruskal–Wallis
0.819 0.886 0.957 0.990 0.553 0.642 0.810 0.911

(0.0611) (0.0436) (0.0354) (0.0112) (0.1077) (0.0860) (0.0980) (0.0508)

WaVE-DESeq2
0.733 0.752 0.917 0.916 0.424 0.584 0.859 0.857

(0.0675) (0.0621) (0.0562) (0.0428) (0.0711) (0.0958) (0.0633) (0.0760)

WaVE-edgeR
0.738 0.832 0.925 0.966 0.407 0.537 0.754 0.851

(0.1034) (0.1054) (0.0988) (0.0163) (0.0816) (0.0929) (0.0976) (0.0527)

metagenomeSeq
0.621 0.816 0.943 0.985 0.559 0.584 0.783 0.881

(0.0892) (0.0623) (0.0426) (0.0168) (0.1013) (0.0937) (0.0860) (0.0557)

Area under the curve (AUC) and Matthews correlation coefficient (MCC) given by all methods on the synthetic data. In each cell, the
top number is the averaged AUC (or MCC) over 50 independent datasets, and the bottom number in parentheses is the standard error.
The result from the model that achieved best performance under the associated scenario (each column) is marked in bold.
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Top level

Bottom level

Figure A.1: A graphical representation of the proposed bi-level Bayesian framework for
microbial differential abundance analysis, with the bottom level (within the solid border)
of zero-inflated negative binomial (ZINB) model. Each node in a circle/hexagon/square
refers to a model parameter/a fixed hyperparameter/observable data. The link between
two nodes represents a direct probabilistic dependence. Note that both Fig A.1 and A.2
share the same top level (within the dashed border).
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j=1,…,p

σkj σ0j
j=1,…,p

γj
j=1,…,p j=1,…,p

aω bωhk ak bk h0 a0 b0
k=1,…,K k=1,…,K k=1,…,K
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Bottom level

Figure A.2: A graphical representation of the proposed bi-level Bayesian framework for
microbial differential abundance analysis, with the bottom level (within the solid border)
of Dirichlet-multinomial (DM) model. Each node in a circle/hexagon/square refers to a
model parameter/a fixed hyperparameter/observable data. The link between two nodes
represents a direct probabilistic dependence. Note that both Fig A.1 and A.2 share the
same top level (within the dashed border).
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APPENDIX B

APPENDIX of CHAPTER 3

B.1. Details of the MCMC algorithms
First, we write the likelihood function as follows:

K∏
k=1

∏
i:zi=k

∏
j:γj=1,rij=0

Γ(yij + φj)

yij!Γ(φj)

(
φj

sie
µ0j+µkj+xiβ

T
j + φj

)φj (
sie

µ0j+µkj+xiβ
T
j

sie
µ0j+µkj+xiβ

T
j + φj

)yij

×

∏
i

∏
j:γj=0,rij=0

Γ(yij + φj)

yij!Γ(φj)

(
φj

sie
µ0j+xiβTj + φj

)φj (
sie

µ0j+xiβ
T
j

sie
µ0j+xiβTj + φj

)yij

.

Then, we update the parameters in each iteration following the steps below:

1. Update of zero-inflation latent indicator rij: Notice that we only need to update

the rij ’s that correspond to yij = 0. We write the posterior as:

p(rij|yij = 0, φj, zi = k, si, µ0j, µkj, γj)

∝
∫
L(rij|yij = 0, φj, zi = k, µ0j, µkj, γj)× p(rij|π)× p(π)dπ

Then it follows that

p(rij|·) ∝


(

φj

sie
µ0j+µkj+xiβ

T
j +φj

)φj(1−rij)
× Be(aπ+rij ,bπ−rij+1)

Be(aπ ,bπ)
if γj = 1(

φj

sie
µ0j+xiβ

T
j +φj

)φj(1−rij)
× Be(aπ+rij ,bπ−rij+1)

Be(aπ ,bπ)
if γj = 0

2. Update of µ0: We update each µ0j, j = 1, 2, ...p sequentially using an independent

Metropolis-Hasting algorithm. We first propose a new µ∗0j from N(µ0j, τ
2
0 ) and then
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accept the proposed value with probability min(1, mMH), where

mMH =

∏n
i=1 f(yij|µ∗0j, µkj, φj, si, γj,R,X,B)× p(µ∗0j)× J(µ0j;µ

∗
0j)∏n

i=1 f(yij|µ0j, µkj, φj, si, γj,R,X,B)× p(µ0j)× J(µ∗0j;µ0j)

3. Joint Update of µk· and γ: A between-model step is implemented first to jointly

update µk· and γ. We use an add-delete algorithm, where we select a j ∈ {1, . . . , p}

at random and change the value of γj. For the add case, i.e. γj = 0 → γj = 1,

we propose µ∗kj for each k = 2, . . . , n from N(0, τ 2
µj). For the delete case, i.e. γj =

1 → γj = 0, we set µ∗kj = 0 for all k. We finally accept the proposed values with

probability min(1, mMH), where

mMH =

∏n
i=1 f(yij|µ∗kj, µ0j, φj, si, γ

∗
j ,R,X,B)× p(µ∗kj|γ∗j )× p(γ∗)∏n

i=1 f(yij|µkj, µ0j, φj, si, γj,R,X,B)× p(µkj|γj)× p(γ)

×
J(µkj;µ

∗
kj|γj; γ∗j )× J(γ;γ∗)

J(µ∗kj;µkj|γ∗j ; γj)× J(γ∗;γ)

Further update of µkj when γ∗j = 1: A within-model step is followed to further

update each µkj, k = 2, . . . , K that corresponds to γ∗j = 1 in the current iteration.

We first propose a new µ∗kj from N(µkj, (τµj/2)2) and then accept the proposed value

with probability min(1,mMH), where

mMH =

∏n
i=1 f(yij|µ∗kj, µ0j, φj, si, γj,R,X,B)× p(µ∗kj)× J(µkj;µ

∗
kj)∏n

i=1 f(yij|µkj, µ0j, φj, si, γj,R,X,B)× p(µkj)× J(µ∗kj;µkj)

4. Joint update of β·j and δ·j: Very similar to the above, we perform a between-

model step first using an add-delete algorithm. For each j = 1, . . . , p, we first select

an r ∈ {1, . . . , R} at random and change the value of δrj. For the add case, i.e.

δrj = 0→ δrj = 1, we propose β∗rj from N(0, τ 2
βj). For the delete case, i.e. δrj = 1→

δrj = 0, we set β∗rj = 0. Then finally we accept the proposed values with probability
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min(1,mMH), where

mMH =

∏n
i=1 f(yij|β∗rj, δ∗rj, µ0j, µ·j, si, γj,R,X)× p(β∗·j|δ∗·j)× p(δ∗·j)∏n
i=1 f(yij|βrj, δrj, µ0j, µ·j, si, γj,R,X)× p(β·j|δ·j)× p(δ·j)

×
J(β·j; β

∗
·j|δ·j; δ∗·j)× J(δ·j; δ

∗
·j)

J(β∗·j; β·j|δ∗·j; δ·j)× J(δ∗·j; δ·j)

Further update of βrj when δ∗rj = 1: A within-model step is followed to further

update each βrj, r = 1, . . . , R that corresponds to δ∗rj = 1. We first propose a

new β∗rj from N(βrj, (σβj/2)2) and then accept the proposed value with probability

min(1,mMH), where

mMH =

∏n
i=1 f(yij|β∗rj, δrj, µ0j, µ·j, si, φj, γj,R,X)× p(β∗rj)× J(βrj; β

∗
rj)∏n

i=1 f(yij|βrj, δrj, µ0j, µ·j, si, φj, γj,R,X)× p(βrj)× J(β∗rj; βrj)

5. Update of φ·: We update each φj j = 1, . . . , p sequentially by using an independent

Metropolis-Hasting algorithm. We first propose a new φ∗j from the normal distribu-

tion N(φj, τ
2
φ) that truncated at 0, and accept the proposed value with probability

min(1,mMH), where

mMH =

∏n
i=1 f(yij|φ∗j , βrj, δrj, µ0j, µ·j, si, γj,R,X,B)× p(φ∗j)× J(φj;φ

∗
j)∏n

i=1 f(yij|φj, βrj, δrj, µ0j, µ·j, si, γj,R,X,B)× p(φj)× J(φ∗j ;φj)

B.2. Additional results of simulation study
We performed a comprehensive simulation study for model comparison. First, we

introduce the following reference setting in the simulation study, that is, 1) n = 60 samples

split into K = 2 equally sized groups; 2) p = 300 features, 20 of which were truly discrimi-

nating ones; 3) π0 = 40% false zeros (i.e. structural zeros) randomly assigned among all

counts; 4) R = 7 covariates, four of which true coefficients were nonzero; 5) noise level

ε2e = 1. Furthermore, we varied the following settings to comprehensively examine the

model performance, including the choices for sample size per group (n/2 = 10 or 30), the

three log-scale noise levels (σe = 0.5, 1.0, or 1.5) and the extra zero proportions (π0 = 30%,

40%, or 70%). In all cases, we randomly set four out of seven nonzero βrj for each taxon
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j.

B.2.1. Evaluation for sample size

Figure B.3 compares the model performance under two choices of group sizes (n/2 =

10 or 30) with fixed log-scale noise level at 1.0 and 40% of extra zeros as in the refer-

ence setting. Different methods are compared using the receiving operating characteris-

tic (ROC) curve and area under the curve (AUC). The left part in Figure B.3 shows the

results of identifying the differentially abundant taxa (γ) and the right part is the results of

detecting significant covariate-taxa associations (∆). Clearly, decreasing the sample size

hampers the performance of all the methods, but the proposed ZINB model maintains the

highest AUC in both cases, and achieves the highest true positive rate under a fixed small

false positive rate.

B.2.2. Evaluation for log-scale noise level

Figure B.4 compares the model performance under three choices of log-scale noise

level (σe = 0.5, 1.0, or 1.5) with fixed group size of n/2 = 30 and 40% extra zeros as in the

reference setting. The ZINB model maintains the highest AUC across all settings of identi-

fying the differentially abundant taxa (AUC > 0.9), and detecting significant covariate-taxa

associations (AUC > 0.8). Notice that the true log-scale signal level is set to be 2, and the

ZINB model still shows an obvious advantage over the alternative methods under a large

log-scale noise level of 1.5.

B.2.3. Evaluation for extra zero proportion

Figure B.5 compares the model performance under three scenarios of extra zero pro-

portions (π0 = 30%, 40%, and 70%) with a group size of n/2 = 30 and a noise level of ε2e = 1

as in the reference setting. Although a higher proportion of zeros like 70% dose down-
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grade the performance of all methods, the proposed ZINB model is the best under any

circumstance. Particularly, our methods always exhibits a considerably advantage over

the others in terms of the identification of feature-covariate association (∆) as shown in

the right column of Figure B.5.

B.3. Sensitivity analysis

To assess model robustness with respect to the choice of size factor estimation meth-

ods, we compared the model performance under five typical normalization methods for

the analysis of high-dimensional count data. They are: 1) geometric mean of pairwise ra-

tios (GMPR) proposed by [22]; 2) cumulative sum scaling (CSS) proposed by [97]; 3) The

0.75-th quantile (Q75) proposed by [14]; 4) trimmed mean of M values (TMM) proposed

by [106]; 5) relative log expression (RLE) proposed by [5]. The first two, designed for

normalizing the microbiome count data, have been described in Section 3.2.3, while Q75,

TMM and RLE are commonly used in RNA-seq data studies. In particular, Q75 calculates

the size factor based on the upper-quantile (75%) of the count distribution of a sample.

TMM first sets a reference sample, and calculates the trimmed mean of the log ratios be-

tween all other samples with the selected reference to estimate size factors. RLE, on the

other hand, computes a reference value of each feature (taxon) as the geometric mean

across all samples, and then obtains ratios by dividing all features by the reference. The

size factor for a sample by RLE is set to be the median of the ratios. Due to the high

sparsity observed in the microbiome data, it is needed to add a pseudo-count such as 1

to the count matrix when using RLE to estimate size factors.

To test if the performance of our model is robust to the choice of different normalization

techniques, we used the simulate datasets generated by the reference setting described

in Section B.2. The resulting AUCs for the discriminating feature indicator γ and the

feature-covariate association indicator ∆ over 100 data replicates are summarized in Fig-

ure S6. First, the result suggests that the proposed ZINB model is robust with respect
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to plug-in size factor estimations. Next, the ZINB-CSS and ZINB-GMPR show better per-

formances due to the smaller variation and slightly higher average AUCs, since both are

based on the normalization methods that better account for the characteristics of the mi-

crobiome data. Notice that RLE is less stable compared to the other methods for such

sparse count data, which is also mentioned in [22].

Next, we assess impacts of setting priors via sensitivity analysis. In our model, the

choice of a and b in the IG(a, b) prior for σ2
µj has an impact on the posterior probabilities

of inclusion of γ. To investigate model performance with respect to the choice of these

hyperparameters, we simulated 30 datasets under the reference setting described in Sec-

tion B.2, and benchmarked our model with varying values of a from 0.5 to 6 and b from 0.5

to 25. The choices of a and b are illustrated in Figure B.7.

The results given by different values of (a, b) were compared based on the Matthews

correlation coefficient (MCC) [87] across 30 replicated datasets. In each replicate, we

controlled a 5% Bayesian false discovery rate and selected discriminating features. We

then calculated the number of true positive (TP), true negative (TN), false positive (FP)

and false negative (FN) and MCC. Here MCC is defined as

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

MCC ranges from −1 to 1, and larger values represents favorable prediction results. It

is also demonstrated in the above formula that the MCC-based evaluation is suitable for

classes with very different sizes, since it strikes a balance between TP and FP counts. In

our scenario, the size of truly discriminating features are relatively small compared to the

total number. Therefore, we adopt MCC as an appropriate performance metric to handle

the imbalanced setting. As can be seen in Figure B.7, given a small value of b (b ≤ 2), the

MCC is undesirable with any value of a displayed here. As shown by [42], the IG(a, b) prior

with small a and b would distort the posterior inferences. On the other hand, if we increase

107



a to have a > 2 while fixing b to be small, the corresponding prior distribution is strongly

informative since IG(a, b) has the mean of b/(a− 2) and the variance of b2/(a− 2)2(a− 1).

Therefore, we choose a = 2 and b = 10 to be the default setting, since this ensures a flat

prior and yields a beneficial variable selection result as shown in Figure B.7.

B.4. Additional tables and figures

Observed taxa counts
i=1,…,n
j=1,…,p

yij

Latent relative abundance
i=1,…,n
j=1,…,p

αij

i=1,…,n

zixi µkj

σ𝜇j

r=1,…,R
j=1,…,p

𝛽rj
j=1,…,p

j=1,…,p

aω bω

𝛾j

ap

prj

𝛿rj

a𝜇 b𝜇

Discriminating taxa 
indicator
j=1,…,p

i=1,…,n

ω

𝜇𝜇

Size factor
i=1,…,nsi

Zero-inflation 
indicator
i=1,…,n
j=1,…,p

𝑟&'

π

aπ bπ

µ0j
k=1,…,K
j=1,…,p

σ0𝑗
j=1,…,p

σ𝛽j
j=1,…,p

a𝛽 b𝛽

Significant covariate 
indicator
r=1,…,R
j=1,…,p

r=1,…,R
j=1,…,p

bp

𝜙'
Dispersion parameter
j=1,…,p

a+ b+

Figure B.1: The graphical formulation of the proposed Bayesian zero-inflated negative
binomial regression model. Node in a circle refers to a parameter of the model. Node in a
rectangle is observable data. Circle nodes in the dashed block are fixed hyperparameters.
The link between two nodes represents a direct probabilistic dependence.
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Parameters:

R = [r·1, . . . , r·j , . . . , r·p]

φ = [φ1, . . . , φj , . . . , φp]

µ0 = [µ01, , . . . , µ0j , . . . , µ0p]

M = [µ·1, . . . ,µ·j , . . . ,µ·p]

B = [β·1, . . . ,β·j , . . . ,β·p]

γ = [γ1, . . . , γj , . . . , γp]

∆ = [δ·1, . . . , δ·j , . . . , δ·p]

Mixture model likelihood:

yij |rij = 0, zi = k, γj = 1
ind∼ NB(yij ; siαijk, φj) with log(αijk) = µ0j + µkj + x

T
i·β·j

yij |rij = 0, γj = 0
ind∼ NB(yij ; siαij0, φj) with log(αij0) = µ0j + x

T
i·β·j

yij |rij = 1 ≡ 0

Zero-inflation prior:

rij |π ∼ Bernoulli(π), π ∼ Beta(aπ, bπ) ⇒ rij |aπ, bπ ∼ Beta-Bernoulli(rij ; aπ, bπ)

Feature selection prior:

γj |ω ∼ Bernoulli(ω), ω ∼ Beta(aω, bω) ⇒ γj |aω, bω ∼ Beta-Bernoulli(γj ; aω, bω)

Dispersion prior:

φj ∼ Ga(aφ, bφ)

Feature / Covariate characterization priors:

µ0j |σ0j ∼ N(0, σ2
0j)

µkj |γj , σkj ∼ (1− γj)I(µkj = 0) + γjN(0, σ2
µj) , σ2

µj ∼ IG(aµ, bµ)⇒
µkj |γj ∼ (1− γj)I(µkj = 0) + γjt2aµ(0, bµ/aµ)

βrj |δrj , σβj ∼ (1− δrj)I(βrj = 0) + δrjN(0, σ2
βj) , σ2

βj ∼ IG(aβ , bβ)⇒
βrj |δrj ∼ (1− δrj)I(βrj = 0) + δrjt2aβ (0, bβ/aβ)

Covariate selection prior:

δrj |prj ∼ Bernoulli(prj), prj ∼ Beta(ap, bp) ⇒ δrj |ap, bp ∼ Beta-Bernoulli(δrj ; ap, bp)

Fixed hyperparameters:
σ0j , aπ, bπ, aω, bω, aφ, bφ, aµ, bµ, aβ , bβ

Posterior:

p(R,φ,µ0,M ,B,γ,∆|Y ,X) ∝
K∏
k=1

∏
i:zi=k

∏
j:γj=1
rij=0

NB(yij ; siαijk, φj)×
∏
i

∏
j:γj=0
rij=0

NB(yij ; siαij0, φj)

×
∏
i,j

Beta-Bernoulli(rij ; aπ, bπ)×
∏
j

Ga(φj ; aφ, bφ)×
∏
j

N(µ0j ; 0, σ
2
0j)

×
∏
j,k

[(1− γj)I(µkj = 0) + γjt2aµ(µkj ; 0, bµ/aµ)]×
∏
j

Beta-Bernoulli(γj ; aω, bω)

×
∏
r,j

[(1− δrj)I(βrj = 0) + δrjt2aβ (βrj ; 0, bβ/aβ)]×
∏
r,j

Beta-Bernoulli(δrj ; ap, bp)

Figure B.2: Hierarchical formulation of the proposed hierarchical mixture model
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(a) ROC curves for γ (left) and ∆ (right) with a sample size per group of
n/2 = 30
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(b) ROC curves for γ (left) and ∆ (right) with a sample size per group of
n/2 = 10
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Figure B.3: Averaged ROC curves for the discriminating feature indicator γ (left) and the
feature-covariate association indicator ∆ (right) with respect to different sample sizes per
group (a) n/2 = 30 and (b) 10, over 100 replicates in each scenario.
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(a) ROC curves for γ (left) and ∆ (right) with a log-scale noise level of
σe = 0.5
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(b) ROC curves for γ (left) and ∆ (right) with a log-scale noise level of
σe = 1.0
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(c) ROC curves for γ (left) and ∆ (right) with a log-scale noise level of
σe = 1.5
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Figure B.4: Averaged ROC curves for the discriminating feature indicator γ (left) and the
feature-covariate association indicator ∆ (right) with respect to different noise levels (a)
σe = 0.5, (b) σe = 1.0, and (c) σe = 1.5, over 100 replicates in each scenario.
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(a) ROC curves for γ (left) and ∆ (right) with a false zero proportion of
π0 = 30%
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(b) ROC curves for γ (left) and ∆ (right) with a false zero proportion of
π0 = 40%
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(c) ROC curves for γ (left) and ∆ (right) with a false zero proportion of
π0 = 70%
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Figure B.5: Averaged ROC curves for the discriminating feature indicator γ (left) and
the feature-covariate association indicator ∆ (right) with respect to different false zero
proportions (a) π0 = 30%, (b) π0 = 40%, and (c) π0 = 70%, over 100 replicates in each
scenario.
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Liver Cirrhosis Major Parameter Covariate Effect Estimation for Estimation for
Study Estimation by Group Health Liver Cirrhosis

Discriminatory Taxa µ0j µ2j Ave(xβT ) Ave(xβT ) Normalized Estimated Normalized Estimated
(ordered by posterior mean of µ2j) (CI for µ0j) (CI for µ2j) Health Liver Cirrhosis log(y·j) α·j log(y·j) α·j

Bacteroides eggerthii 12.93 -0.23 0.47 -0.37 10.79 13.40 8.82 12.32
(12.77, 13.11) (-0.38, -0.08)

Gammaproteobacteria 14.49 0.22 -0.54 0.50 12.52 13.95 14.24 15.22
(14.31, 14.70) (0.07, 0.37)

Veillonella dispar 11.18 0.22 -0.84 0.75 8.14 10.34 10.79 12.16
(10.96, 11.42) (0.06, 0.38)

Bacteroides caccae 13.37 0.23 -0.11 0.12 11.48 13.26 11.88 13.72
(13.19, 13.56) (0.08, 0.38)

Streptococcus salivarius 12.28 0.26 -0.67 0.63 10.22 11.61 12.25 13.17
(12.10, 12.47) (0.11, 0.41)

Haemophilus parainfluenzae 12.98 0.26 -0.57 0.52 10.12 12.40 12.51 13.76
(12.80, 13.18) (0.12, 0.40)

Haemophilus 13.00 0.27 -0.57 0.52 10.13 12.43 12.53 13.79
(12.83, 13.19) (0.12, 0.41)

Streptococcus parasanguinis 11.48 0.28 -0.82 0.76 8.70 10.66 11.38 12.53
(11.29, 11.70) (0.12, 0.42)

Pasteurellales 13.04 0.29 -0.57 0.52 10.14 12.47 12.56 13.84
(12.86, 13.22) (0.13, 0.42)

Pasteurellaceae 13.03 0.29 -0.57 0.52 10.14 12.47 12.56 13.84
(12.86, 13.2) (0.13, 0.43)

Veillonella parvula 12.01 0.29 -0.63 0.63 9.39 11.38 11.96 12.93
(11.83, 12.21) (0.13, 0.43)

Streptococcus 12.88 0.32 -0.66 0.61 10.61 12.22 13.17 13.81
(12.71, 13.05) (0.17, 0.45)

Streptococcaceae 12.89 0.32 -0.66 0.61 10.61 12.22 13.19 13.82
(12.72, 13.07) (0.17, 0.46)

Klebsiella pneumoniae 13.09 0.32 -0.39 0.42 10.38 12.71 11.78 13.84
(12.91, 13.28) (0.17, 0.46)

Bacilli 13.36 0.34 -0.71 0.66 11.03 12.64 13.59 14.36
(13.19, 13.53) (0.19, 0.47)

Klebsiella 13.19 0.34 -0.45 0.48 10.32 12.74 11.69 14.01
(13.00, 13.37) (0.20, 0.48)

Lactobacillales 13.33 0.35 -0.71 0.66 10.88 12.62 13.58 14.34
(13.16, 13.51) (0.20, 0.49)

Veillonella 13.47 0.39 -0.81 0.75 10.27 12.66 13.88 14.61
(13.30, 13.65) (0.25, 0.52)

Veillonella unclassified 12.93 0.40 -0.88 0.83 9.28 12.05 13.27 14.17
(12.75, 13.13) (0.26, 0.55)

Table B.1: Liver cirrhosis dataset: parameter estimation for the identified discriminating
taxa from the liver cirrhosis study. Posterior mean and 95% Credible Interval (CI) are re-
ported for the estimated µ0j (feature-specific baseline parameter) and µ2j(group-specific
parameter); Covariate effect represents the mean of xβ̂T of all samples in the corre-
sponding patient group; Normalized log(y·j) is the mean of log scaled observations after
accounting for the sample heterogeneity factor (i.e. size factor) si. Estimated α·j is the
mean of αij for all sample i from the same patient group.
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Liver Cirrhosis Major Parameter Covariate Effect Estimation for Estimation for
Study Estimation by Group Health Liver Cirrhosis

Discriminatory Taxa µ0j µ2j Ave(xβT ) Ave(xβT ) Normalized Estimated Normalized Estimated
(ordered by posterior mean of µ2j) (CI for µ0j) (CI for µ2j) Health Liver Cirrhosis log(y·j) α·j log(y·j) α·j

Bifidobacterium 12.50 -1.34 -0.19 0.62 10.78 12.31 10.97 11.79
(12.16, 12.86) (-2.08, -0.62)

Bifidobacteriaceae 12.50 -1.34 -0.19 0.62 10.78 12.31 10.97 11.78
(12.16, 12.86) (-2.07, -0.62)

Bifidobacteriales 12.50 -1.33 -0.19 0.61 10.78 12.31 10.97 11.78
(12.16, 12.86) (-2.06, -0.60)

Clostridium methylpentosum 8.13 0.94 0.18 -0.39 8.21 8.31 8.69 8.68
(5.95, 6.90) (0.54, 1.34)

Carnobacteriaceae 6.40 1.03 0.31 -0.24 6.56 6.71 7.12 7.18
(10.13, 11.22) (0.56, 1.45)

Clostridium bartlettii 10.60 1.40 -0.28 0.46 9.35 10.32 11.19 12.46
(7.88, 8.54) (0.65, 2.15)

Eubacterium siraeum 11.84 1.42 0.30 -0.35 10.70 12.14 12.41 12.92
(11.35, 12.42) (0.64, 2.18)

Table B.2: Metastatic melanoma dataset: parameter estimation for the identified discrim-
inating taxa from the metastatic melanoma study. Posterior mean and 95% Credible In-
terval (CI) are reported for the estimated µ0j (feature-specific baseline parameter) and
µ2j(group-specific parameter); Covariate effect represents the mean of xβ̂T of all sam-
ples in the corresponding patient group; Normalized log(y·j) is the mean of log scaled
observations after accounting for the sample heterogeneity factor (i.e. size factor) si. Es-
timated α·j is the mean of αij for all sample i from the same patient group.
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Figure B.6: Side-by-side box plots of AUCs for the discriminating feature indicator γ (left)
and the feature-covariate association indicator ∆ (right) with respect to different normal-
ization techniques, over 100 reference simulated datasets. CSS for cumulative sum scal-
ing. GMPR for geometric mean of pairwise ratios. Q75 for 0.75-th quantile. TMM for
trimmed mean of M values. RLE for relative log expression.
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Figure B.7: Heatmap of Matthews correlation coefficients (MCC) for the discriminating
feature indicator γ with the choice of (a, b) from the inverse-gamma prior on the variance
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APPENDIX C

APPENDIX of CHAPTER 4

C.1. Details of the MCMC algorithms
We start by writing the likelihood for each sample i, i = 1, . . . , n as

fZINB(yi·|αi·,ηi·,φ, si) =

p∏
j=1

fZINB(yij|αij, ηij, φj, si),

where

fZINB(yij|αij, ηij, φj, si)

=I(yij = 0)ηij

(
Γ(yij + φj)

yij! Γ(φj)

(
φj

siαij + φj

)φj ( siαij
siαij + φj

)yij)1−ηij

.

Update of zero-inflation indicator ηij: We update each ηij, i = 1, . . . , n, j = 1, . . . , p

that corresponds to yij = 0 by sampling from the normalized version of the following

conditional:

p(ηij|·) ∝ fZINB(yij|αij, ηij, φj, si) · Bern(ηij; πi).

After the Metropolis-Hasting steps for all ηij, we use a Gibbs sampler to update each

πi, i = 1, . . . , n:

πi|· ∼ Be(aπ +

p∑
j=1

ηij, bπ + p−
p∑
j=1

ηij).

Update of dispersion parameter φj: We update each φj, j = 1, . . . , p by using a ran-

dom walk Metropolis-Hastings algorithm. We first propose a new φj
∗ from Ga(φj

2/τφ, φj/τφ)
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and then accept the proposed value φj∗ with probability min(1,mMH), where

mMH =

∏n
i=1 fZINB(yij|αij, ηij, φj, si)∏n
i=1 fZINB(yij|αij, ηij, φj, si)

Ga(φj
∗; aφ, bφ)

Ga(φj; aφ, bφ)

J(φj;φj
∗)

J(φj
∗;φj)

.

Here we use J(·|·) to denote the proposal probability distribution for the selected move.

Note that the last term, which is the proposal density ratio, can be canceled out for this

random walk Metropolis update.

Update of size factor si: We can rewrite Equation (2) in the main text, i.e.

log si ∼
M∑
m=1

ψm

[
tm N(νm, σ

2
s) + (1− tm) N

(
− tmνm

1− tm
, σ2

s

)]

by introducing latent auxiliary variables to specify how each sample (in terms of log si) is

assigned to any of the inner and outer mixture components. More specifically, we can

introduce an n × 1 vector of assignment indicators g, with gi = m indicating that log si

is a sample from the m-th component of the outer mixture. The weight ψm determines

the probability of each value gi = m, with m = 1, . . . ,M . Similarly, we can consider an

n × 1 vector ε of binary elements εi, where εi = 1 indicates that, given gi = m, log si is

drawn from the first component of the inner mixture, i.e. N(νm, σ
2
s) with probability tm, and

εi = 0 indicates that log si is drawn from the second component of the inner mixture, i.e.

N
(
− tmνm

1−tm , σ
2
s

)
, with probability 1− tm. Thus, the Dirichlet process prior (DPP) model can

be rewritten as

log si|gi, εi, t,ν ∼ N
(
εiνgi + (1− εi)

−tgiνgi
1− tgi

, σ2
s

)
,

where t and ν denote the collections of tm and νm, respectively. Therefore, the up-

date of the size factor si, i = 1, . . . , n can proceed by using a random walk Metropolis-

Hastings algorithm. We propose a new log s∗i from N(log si, τ
2
s ) and accept it with proba-
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bility min(1,mMH), where

mMH =

∏p
j=1 fZINB(yij|αij, ηij, φj, s∗i )∏p
j=1 fZINB(yij|αij, ηij, φj, si)

N(log s∗i ; εiνgi + (1− εi)
−tgiνgi
1−tgi

, σ2
s)

N(log si; εiνgi + (1− εi)
−tgiνgi
1−tgi

, σ2
s)

× J(log si; log s∗i )

J(log s∗i ; log si)
.

Note that the last term, which is the proposal density ratio, equals 1 for this random walk

Metropolis update. Since g, ε, t, and ν have conjugate full conditionals, we use Gibbs

samplers to update them one after another:

• Gibbs sampler for updating gi, i = 1, . . . , n, by sampling from the normalized version

of the following conditional:

p(gi = m|·) ∝ ψmN
(

log si; εiνm + (1− εi)
−tmνm
1− tm

, σ2
s

)
.

• Gibbs sampler for updating εi, i = 1, . . . , n, by sampling from the normalized version

of the following conditional:

p(εi|·) ∝


(1− tm)N

(
log si;− tmνm

1−tm , σ
2
s

)
if εi = 0

tmN (log si; νm, σ
2
s) if εi = 1

.

• Gibbs sampler for updating tm,m = 1, . . . ,M :

tm|· ∼ Be(at +
n∑
i=1

I(gi = m)I(εi = 1), bt +
n∑
i=1

I(gi = m)I(εi = 0)).

• Gibbs sampler for updating νm,m = 1, . . . ,M :

νm|· ∼ N
(

cm/σ
2
s

em/σ2
s + 1/τ 2

ν

,
1

em/σ2
s + 1/τ 2

ν

)
,

where cm =
∑
{i:gi=m,εi=1} log si − tm

1−tm

∑
{i:gi=m,εi=0} log si and em =

∑n
i=1 I(gi =
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m)I(εi = 1) +
∑
{i:gi=m,εi=0}

(
tm

1−tm

)2

.

• Gibbs sampler for updating ψm,m = 1, . . . ,M by stick-breaking process:

ψ1 = v1,

ψ2 = (1− v1)v2,

...

ψM = (1− v1) · · · (1− vM−1)vM ,

where vm|ν ∼ Be (am +
∑n

i=1 I(gi = m), bm +
∑n

i=1 I(gi > m)).

For the sake of convenience, we have copied Equation (3) in the main text here,

p(α·j) = (nh0 + 1)−
1
2

Γ
(
a0 + n

2

)
Γ(a0)

ba00{
b0 + 1

2

[∑n
i=1 logα2

ij −
(
∑n
i=1 logαij)

2

n+ 1
h0

]}a0+n
2

.

Update of normalized abundance: We update each αij, i = 1, . . . , n, j = 1, . . . , p by

using a Metropolis-Hastings random walk algorithm. We first propose a new αij
∗ from

N(αij, τ
2
α), and then accept the proposed value with probability min(1,mMH), where

mMH =
fZINB(yi·|αi·∗, ·)
fZINB(yi·|αi·, ·)

p (α·j
∗|γj)

p (α·j|γj)
J (αij;αij

∗)

J (αij∗;αij)
.

Note that the last term, which is the proposal density ratio, equals 1 for this random walk

Metropolis update.

C.2. Infer the normalized abundances for multiple groups
In practice, when there are two groups of subjects in a microbiome study (e.g., sub-

jects with two distinct phenotypes), the sequencing data usually include measurements

on the same taxonomic features for all the subjects. Then, if the abundance of a taxon

j does not differ between two groups, we can improve the posterior influence of logα·j
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by merging two groups to increase the sample size. On the other hand, if the taxon is

associated with subject’s condition, i.e., a taxon that changes its abundance between two

groups in the study, the inference of logα·j should rely on each subject group.

With the goal of borrowing information to improve the posterior inference for certain

taxa, we combine the original count matrix from two different groups, to generate the

count matrix Yn×p. Here, the sample size is n = n1 + n2, with n1, n2 representing the

number of subjects in the first and the second groups, respectively. Meanwhile, we let

z = (z1, . . . , zn)T to allocate the n subjects into two groups, with zi = 1 or 2 indicating the

group label of subject i. In practice, if taxon j is irrelevant to the subject’s phenotype,

its abundances should not be differentiating between two groups. However, if taxon j is

associated with the disease, its abundance could either increase or decrease from healthy

subjects to patients. Therefore, we model the normalized abundance αij as following:

logαij|γj ∼


N(µ0j, σ

2
0j) if γj = 0

N(µ1j, σ
2
1j) if γj = 1 and zi = 1

N(µ2j, σ
2
2j) if γj = 1 and zi = 2

. (C.1)

Here, γj is a latent binary variable, with γj = 1 if taxon j is differentially abundant between

two groups, and γj = 0 otherwise. For the taxa with γj = 0, we can borrow information

between groups to increase the sample size in estimating the corresponding posterior

of logα·j . As an extension to Section 2.1 where we assume logαij ∼ N(µj, σ
2
j ), the

current model includes µ0j, µ1j, and µ2j as the mean parameters for the normal mixture

model. Again, we take the conjugate Bayesian approach and impose the following priors

for the parameters in the normal mixture model: µ0j ∼ N(0, h0σ
2
0), σ2

0j ∼ IG(a0, b0), µkj ∼

N(0, hkσ
2
k) and σ2

kj ∼ IG(ak, bk) for k = 1, 2.

The estimation of γj ’s determines the resulted normalized abundance matrix. Specifi-

cally, for taxon j with γj = 0, we can impute the zeros due to missing by the posterior mean
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of logα·j calculated using information from both groups. As an extension to Equation (3)

in the main text , the posterior of α·j|γj is as following:

p(α·j|γj) = (2π)−
n
2×

∏K
k=1(nkhk + 1)−

1
2

Γ(ak+
nk
2 )

Γ(ak)

b
ak
kbk+ 1

2

∑
{i:zi=k}

logα2
ij−

(∑{i:zi=k} logαij)
2

nk+
1
hk


ak+

nk
2

if γj = 1

(nh0 + 1)−
1
2

Γ(a0+n
2 )

Γ(a0)

b
a0
0b0+ 1

2

∑n
i=1 logα2

ij−
(∑ni=1

logαij)
2

n+ 1
h0


a0+

n
2

if γj = 0

,
(C.2)

Therefore, we can obtain the posterior mean of logα·j by averaging over the log-

transformed MCMC samples of α·j after burn-in.
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C.3. Additional tables and figures

(a) (b)Microbiome network 
for CRC patients

Interaction
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Weak Strong

Microbiome network 
for healthy controls
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Figure C.1: CRC case study: The estimated networks by HARMONIES for (a) CRC pa-
tients and (b) healthy controls. All nodes are labeled in their genus names.
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