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Collaborative Filtering, a popular method for recommendation engines, models its pre-

dictions using past interactions between the entities in question (aka users/movies or cus-

tomers/products etc). The method does not rely on the explicit properties of the entities,

the identification of which may be intractable. In this work, we leverage this advantage

rendered by Collaborative Filtering where the explicit features need not be defined apriori

by evaluating its application to the domain of Ligand based Virtual Screening. We further

attempt to address the drawback of Collaborative Filtering , ie the lack of interpret ability of

the factors discovered through collaborative filtering by creating a novel class of generative

deep learning models ,called Collaborative Filtering based Generative Networks (CFGen-

Nets). We show the utility of CFGenNets in 2 domains 1) Ligand based Virtual Screening

and 2) Image generation from keyword tags/meta descriptors.
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Chapter 1

Introduction to CFGenNet

1.1 Motivation

Collaborative filtering algorithms have been historically used in the context of designing

recommendation systems such as movie recommendation engines, as well as up-sell and cross-

sell recommendation engines for e-commerce sites [4–7]. In general, collaborative filtering is a

method for making automatic predictions (filtering) about the interests of a user by collecting

preferences or taste information from other users (collaborating) [8]. This approach relies

on modeling predictions using past interactions between the users and the items rated. The

method aims to infer the missing ratings and impute them into a sparse “rating” matrix. This

is in contrast to traditional machine learning that models individual users or items based

on their attributes. For example in the context of a movie recommendation application,

a movie could be described by its genre, reviews, starring actors, and awards, and a user

could be described by her/his demographic information, any past reviews, genre preferences,

friends reviews, and so on. It quickly becomes evident that identifying the entire gamut of

properties that accurately represent the users and movies is a daunting, if not an intractable,

task. Collaborative filtering, then, is an alternate technique which relies on past transactions

without relying on explicit attributes of the user or movie—which has both positive and

negative consequences. Positively, the features of items and users need not be defined apriori.

Negatively, the factors discovered through collaborative filtering are not readily interpretable.

In this work, we attempt to mitigate this lack of interpretability through creating generative

models. We show utility in two application domains: (1) ligand based virtual screening

and (2) image generation from key word tags . Because our ligand based virtual screening

research is more mature, we motivate and explain its motivation more fully.
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1.1.1 Ligand-based Virtual Screening Motivation

We extend the concept of collaborative filtering to the domain of ligand based virtual

screening. Ligand based Virtual screening is an automated computational method of filtering

candidate ligands (e.g., drugs) based upon their inferred relationship with a given target (e.g.,

a cancer protein). Typically the aim is to assess binding affinity for a ligand-target pair. That

is, the objective is to understand if the ligand and protein will interact with one another. In

order to test the applicability of collaborative filtering algorithms to this domain, we liken

the targets to users and ligands to movies. The “rating” between targets and ligands can be

represented by the known binding affinities (active or inactive). These binding affinities are

collected by scientists around the world that assay the given target and ligands and provide

the result of the assay to a network of databases.

The original movie recommendation algorithm proposed by Simon Funk [9] factorized

the user-movie rating matrix as the product of two lower dimensional matrices, the first

one has a row for each user, while the second has a column for each movie. The row

or column associated to a specific user or movie is referred to as a latent factor. In the

context of the movie recommendation engine, the latent factors of the users and the movies

intuitively encode key features of the users, movies, and the context (when the interaction

occurs), resulting in the recommendations. However, the collaborative filtering algorithms

do not provide a mechanism to establish the set of such features that are encoded in the

shared latent spaces of the items and users. That is, the factors are mathematical constructs

that might also have a semantically meaningful interpretations but those meanings are not

immediately obvious.

Therefore, we investigate the possibility of using the latent factors obtained from collabo-

rative filtering to map back to the corresponding known molecular structures. In particular,

we find that deep learning algorithms are highly suitable for this process. The ability to

navigate from desired binding affinity between ligands and targets to the explicit structure

of the ligand can be a potent utility in the field of de-novo drug design. To this extent,

we introduce a novel class of generative algorithms called CFGenNet, Collaborative Fil-

tering based Generative Networks. In the context of de-novo drug design, CFGenNet aims

to generate novel ligands from the latent factors obtained from collaborative filtering. To
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the best of our knowledge, this is the first use of generative algorithms to extend the utility

of discovered latent space from collaborative filtering. In order to extend the conclusions

of this concept to other application domains beyond virtual screening, we further wish to

investigate the cross domain applicability of CFGenNets by applying the said methods to a

completely different data set. For this purpose, we intend to evaluate the abilities of CF-

GenNets to generate images from their corresponding implicit image fingerprints obtained

from collaborative filtering.

In the remainder of this chapter, we provide an introduction to certain relevant topics of

cheminformatics to help orient the readers to the broader context before we begin describing

our research. Subsequently, we present an overview of our research objectives followed by

our contributions to the field. Subsequent chapters contain in-depth discussions into the

data, methods, and results supporting this thesis.

1.2 A primer on molecules

Molecules form the basic unit of any chemical compound or ligand that take part in

a chemical reaction. A molecule is a group of two or more atoms that form the smallest

identifiable unit into which a pure substance can be divided and still retain the composition

and chemical properties of that substance [10]. Figure 1.1 visually illustrates the caffeine

molecule.

As is evident from Figure 1.1, molecules have two or more atoms held together by chemical

bonds. These bonds that hold atoms together themselves can be of two kinds: covalent or

ionic. A covalent bond is a chemical bond that involves the sharing of electron pairs between

atoms. The ionic on the other hand is formed by the complete transfer of some electrons from

one atom to another resulting in an electrostatic attraction between the two ions of opposite

charge. The molecules are dynamic entities; The atoms that make up the molecules are in a

constant state of motion relative to one another thereby causing their relative positions and

lengths of the bonds to be changing frequently. This consequently yields multiple “molecule

conformations,” which refer to any one of the infinite number of possible spatial arrangements

of atoms in a molecule. To make things more complex, the molecules can also exhibit a

property of chirality, implying that a mirror image of a molecule is not the same as itself.
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Figure 1.1: A sample molecule : Illustration of Caffeine molecule with its constituent atoms
and bonds.

That is, the molecules can come in two different forms that are intuitively mirror images

of each other (like our hands, a right hand and a left hand). While the physical forms are

similar, they may exhibit different behaviour in practice. The biological and pharmaceutical

activity of many molecules is often directly related to their chirality.

1.3 Ligand based Virtual Screening

Ligand based Virtual Screening refers to computational techniques used in drug discovery

to search libraries of molecules to identify those structures which are most likely to bind to a

drug target [11]. The target in this context is usually a biological organism against which the

drugs are directed—thereby resulting in a change in the said target’s behavior or function.

The ligand is a molecule that produces a signal by binding to a site on a target protein.
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Figure 1.2: Ligand Based Virtual Screening Methods :Several classes of algorithms exist
for performing ligand based virtual screening. As illustrated, the classes algorithms can be
categorized by the usage of known active ligands v/s both known active and inactive ligands.
The categorization of our method, utilizing collaborative filtering is also illustrated in the
figure.

Ligand-based virtual screening techniques attempt to exploit prior knowledge of the abil-

ities of ligands to bind to the protein targets to predict the effect of the candidate ligand on

the said protein target. The prior knowledge of the abilities of the ligands to bind with the

targets are recorded via Assays. Assays in our context are investigative procedures that qual-

itatively analyze a ligand’s effects on identified protein targets and are typically conducted

in laboratory settings.

Several variations of the ligand based virtual screening techniques exists. The various

categories of ligand based virtual screening approaches, along with the classification our

method is illustrated in Figure 1.2. The technique called Pharmacophore models, begin with

a known set of structurally diverse ligands that binds to a receptor, to construct a model

of the receptor by deciphering the collective information contained in such set of ligands.

The candidate ligand is compared to the receptor model thus constructed to then predict

5



binding affinities. In the molecular similarity based technique, molecular similarity is assessed

between the candidate ligand and the set of ligands with known prior affinities. Alternately,

there exist a class of algorithms that utilize the ligands that exhibit both known active and

inactive ligands. Typically the knowledge of the prior affinities between a ligand and protein

target is recorded in Assays. Within the class of such methods, approaches can be further

distinguished based on how the models are trained. In the per target mode, one model per

target is trained, while in the across target mode one machine learning model is trained

using all targets and ligands. In summary, all virtual screening techniques can be viewed as

automated computational methods of filtering candidate ligands based upon their inferred

relationship with a given target. Screening virtually has a number of cost-saving advantages.

However, these advantages must be reconciled with the ability to accurately represent these

ligands in a form that computer programs can understand and, then, find binding ligands

from relatively few training examples. We discuss the nuances around accurately representing

the ligands in the next section.

1.3.1 Ligand Fingerprints

The numeric representation of a ligand is often referred to as a “fingerprint.” The ligand

fingerprints attempt to represent the molecular structural and physicochemical features in

a format comprehensible by a computer program, such as a binary vector of predetermined

length. Featurizing or “fingerprinting” molecules are a necessary precondition for ligand

based virtual screening. As is evident from our primer (section 1.2) above, several features

describe the molecules. To begin with, this includes the atoms that make up the molecule,

their counts, and the types of bonds that exist. The molecular conformation referring to any

one of the infinite number of possible spatial arrangements of atoms in a molecule also form

key aspects of describing the molecules. As described earlier, many molecules also exist in

‘left-’ and ‘right-handed’ forms (chirality). While the physical forms are similar, they may

exhibit different behaviour in practice when attempting to bind with protein targets.

Given these complexities, it comes as no surprise that the process of fingerprinting ligands

is an involved research area, with several seminal works [12–18]. Typically the aim of the

ligand fingerprint methods are to represent the following:
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• Molecular descriptors such as its constituents, counts, or structural fragments.

• Types of pharmacophores, which represent the features of the molecules that are neces-

sary for interactions with protein targets. Examples include hydrogen bond acceptors

or donors, positively or negatively charged groups, etc.

• Connectivity pathways, which represent a series of actions that can occur in molecules

to result in a change to the protein target with which they interact

The SMILES (Simplified Molecular Line Entry System) [12] is the most popular method

of representing ligands. In this representation the molecules are represented using ASCII

strings with specific rules governing the encoding of the constituent atoms, bonds, simple

chains, rings, and branches that may exist in a ligand. Alternately, dictionary-based fin-

gerprints, where the ligand is inspected for presence(1s) or absence(0s) of certain structural

fragments are also used for representing ligands. Other forms such as topological fingerprints,

encoding the types of atoms and the paths between them, and circular or radial fingerprints,

constructed by iterating through all atoms and picking an atom and including its atomic

surroundings within N bonds, are also in use.

However, all existing works employ the use of explicit structure featurization in order to

“fit” the problem into the workflow of traditional computer based modeling. Prior knowledge

of the ligand’s physical structure and its chemical formula is a necessary condition for featur-

ization. While knowing the ligand structure is not overly burdensome, especially given the

three-dimensional nature of ligands, there also exists a reliance on traditional machine learn-

ing algorithms to map from these explicit features to a desired outcome that requires many

training examples. More reliable mapping comes at the expense of needing more training

assays so that the machine learning model can learn the relevant portions of the features for

the desired task. Many state-of-the-art protein-ligand interaction (PLI) models use machine

learning that relies on abstract descriptors of compounds/proteins as input features [19–24].

1.3.2 Fingerprints and Virtual Screening

Virtual screening in drug discovery relies on the ligand fingerprints to perform any mean-

ingful similarity search among ligands. However the virtual screening techniques that use
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these models, while high performing, are not free of deficiencies: the limitations of rep-

resenting drug compounds and targets abstractly limits our ability to infer their binding

properties [25, 26]. We argue that a critical barrier is the lack of a universal fingerprinting

model that can amass knowledge about drug compounds, protein targets, and assay charac-

teristics in a shared latent space that can be used by a variety of machine learning models,

visualization tools, and compound design tools. We further argue that if the representation is

completely abstract, even if it performs well at PLI (Protein Ligand Interaction) prediction,

it is fundamentally limited because researchers cannot systematically create candidate com-

pounds based on the featurization of the target ( [27–29]). In this research, we propose and

evaluate an alternate fingerprinting technique based on collaborative filtering and methods

to generate new ligand based upon shared representations. This is further discussed in the

section Dissertation Objectives. Next, we present a short overview of computer aided drug

design, which forms the basis of Dissertation Objective 2.

1.3.3 Computer Aided Drug Design

While representing ligands and targets effectively for predicting PLI is an active research

area, an equally influential usage of this representation is to design new drugs. Computer-

aided drug design uses computational approaches to discover, develop, and analyze drugs

with similar biologically active molecules. This facilitates the process by which new candi-

date medications are discovered [30]. Modern drug discovery involves the identification of

screening hits, medicinal chemistry and optimization of those hits to increase the affinity,

selectivity (to reduce the potential of side effects), efficacy/potency, metabolic stability (to

increase the half-life), and oral bio availability. Once a compound that fulfills all of these re-

quirements has been identified, the process of drug development can continue. If successful,

clinical trials are developed [31]. The recent years have seen an uptick in research related

to applying generative deep learning algorithms to create new drug like ligands [2, 32–34].

Deep learning based drug design techniques attempt produce novel molecular structures with

desired pharmacological properties from scratch. This process has evolved to be an effec-

tive method for lead identification in the hit- and lead-finding stages of the drug discovery

process.
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In our research, we investigate the usefulness of our methods in facilitating the drug

discovery process. Our research objective and contributions to the specific area of drug

design are described in the subsequent sections.

1.4 Dissertation Objectives

In this section, we describe the three related but specific research objectives of this

dissertation. First, we aim to discover implicit ligand fingerprints via collaborative filtering,

with emphasis on their ability to predict binding. Second, we aim to develop generative

methods that allow the creation of new ligands based on their implicit representation. Third

and finally, we aim to employ our methods outside of the virtual screening application

domain.

1.4.1 Aim 1: Implicit fingerprint discovery by means of collaborative filtering, for applica-
tion to virtual screening

In this thesis, we investigated the use of “implicit fingerprints” that do not rely on any

prior knowledge of the ligand structure for the purposes of ligand based virtual screening.

Using collaborative filtering, we generated fingerprints for ligands and targets, deriving dense

numeric vectors that implicitly encode important characteristics of the ligand-target pair as

well as the assay experimental conditions.

Aim 1 attempts to answer the following questions with respect to ligand based virtual

screening

• Can we perform ligand based virtual screening without depending on fingerprints that

are explicitly featurized based on known molecular descriptors?

• Using these fingerprints, can we predict ligand protein interactions with relatively fewer

training examples per protein target?

While some previous works have investigated this approach [35], our evaluation shows that

our results are superior. Chapters 3 and 4 of this thesis describes in detail the experiments

conducted to answer the aforementioned questions. That is, to mitigate the need for large

data sets of dense assay examples by adopting an “implicit” structure model of the ligands.

That is, for a given ligand, we use the assay results of other implicitly similar ligands to
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help predict if a particular ligand binds to a target. The measure of similarity is only based

on the results of the recorded assays, not featurized descriptors of the ligand. By using this

implicit similarity, we can more readily predict if a ligand will bind to a target with far fewer

training examples per target.

1.4.2 Aim 2: Generative deep learning based drug design using Implicit Ligand fingerprints

As described, Deep learning based de novo drug design techniques refers to the process of

producing novel molecular structures with desired pharmacological properties from scratch

using generative deep learning networks. This process has evolved to be an effective method

for lead identification in the hit- and lead-finding stages of the drug discovery process.

Several recent works have investigated the use of neural embedding on compound struc-

ture representations such as SMILES codes, showing this embedding is effective for exploring

the chemical properties [36] and generating novel compounds. [37] refer to these embedded

fingerprints as implicit representations. However, their methods work upon the raw SMILES

textual representation and are therefore limited in their ability to discern more complicated

relationships encoded by graphical fingerprints. Recent years have seen a plethora of deep

learning based generative models for de-novo drug generation [37–42]. The common theme

in these techniques is to provide as input to the deep learning model the molecules only

to produce the same or similar molecules as output. The continuous vector representations

of the input molecules in the intermediate layers produce a larger chemical property space,

which is then sampled to produce novel molecules.

Given this context of de novo drug design and building on the successful results from our

previous aim, Aim 2 attempts to answer the following questions:

• Can we design and train deep learning methods that leverage the implicit compound

fingerprints to map back to the known physical structure of compounds (i.e, decoding)?

• If this decoding is possible, can we leverage the implicit fingerprints and decoder to

generate novel ligands?

The implicit encoding of compounds are a continuous vector-valued representation and

thus lend itself to the use of continuous optimization to generate novel compounds. We
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further assess the properties of the novel ligands generated in terms of the drug-like physical

properties of molecules, chemical complexity, and biological activity in Chapters 5, 6, 7, and

8.

1.4.3 Aim 3: Cross domain applicability of Implicit Fingerprints for Image Generation

Finally, as a part of this research, we also wish to investigate the cross domain applicabil-

ity of the said methods to an alternate domain, on a different dataset. We aim to investigate

the applicability of the implicit fingerprints in generating images from the corresponding

implicit image fingerprints from collaborative filtering. Our dataset for this exercise is com-

prised of images with meta data tags identifying the objects contained within the image.

The data is represented in a matrix form, with the meta data forming the columns of the

matrix and the images represented in the individual rows and the value of the data cell

indicating the applicability of corresponding tag to the image. The dataset in this form is

likened to the user-movie matrix or the ligand-target binding affinity matrix over which the

collaborative filtering algorithm can then be applied. It is to be noted that the collaborative

filtering algorithm is utilized to generate the latent vectors of the images and meta-data tags

as opposed to the traditional purpose of imputing a missing data cell values.

Given this context of evaluating CFGenNets across different domains, Aim 3 attempts

to answer the following questions

• Can we leverage the latent features generated for images using Collaborative Filtering

as an alternate encoded representation of images?

• Can we design and train deep learning methods that leverage the implicit image fin-

gerprints to map back to the original images?

1.5 Dissertation Contributions

In this section, we present the contributions stemming out of our work. The section is

organized by the corresponding research aim that resulted in the contribution.

1.5.1 Contributions from Research Aim 1

Our contributions resulting from our work on Research Aim 1 [43] are as follows:
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1. An investigation into how collaborative filtering methods can be used to predict bind-

ing affinity of ligand-target pairs. We compare collaborative filtering methods to tra-

ditional machine learning methods that use explicit fingerprinting from the RDKit

package, showing collaborative filtering performs on-par with other methods in terms

of all evaluation criteria, including enrichment factor even without the knowledge of a

ligand’s explicit physical structure.

2. An evaluation of collaborative filtering categorized by the amount of required training

assays needed for a target of interest, showing that collaborative filtering has a signif-

icant performance advantage when the number of training assays for a given target is

relatively low.

3. An introduction of “Implicit Target and Ligand Fingerprints”, a new type of ligand

fingerprinting and target fingerprinting derived from the latent factors employed by

the collaborative filtering method.

1.5.2 Contributions from Research Aim 2

In particular, our contributions resulting from our work on Research Aim 2 [1] are enu-

merated below. Additionally, we also note that domain specific semantic evaluation of the

novel compounds generated by our methods were done in collaboration with another re-

searcher(Niraj Verma, co-author on [1]. The details of the areas contributed by the collabo-

rator are described in Chapter 8.

• CFGenNet: A novel class of generative deep learning algorithms based on the implicit

fingerprints obtained from collaborative filtering.

• An evaluation of how the implicit ligand fingerprints from collaborative filtering trans-

late into discrete representations of molecules (SMILES).

• The design of new compounds based upon the latent representation without explic-

itly optimizing for chemical properties, thereby encoding drug-like properties including

binding affinities to known proteins. We evaluate the uniqueness of generated com-

pounds from CFGenNet and if novel compounds have similar binding properties to
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closely related compounds. Binding properties are evaluated using multiple computa-

tional models.

1.5.3 Contributions from Research Aim 3

Our contributions resulting from our work on Research Aim 3 are as follows:

• CFGenNets for Images : A successful investigation into the viability of leveraging the

concepts of CFGenNets into the domain of Image processing

• Composite CFGenNets : Successful design and development of methods that com-

bine the powers of Variational Autoencoders and CFGenNets by creating an enhanced

version of CFGenNets called Composite CFGenNets.

• Image Manipulation using Composite CFGenNets : Introduction of a novel mechanism

to manipulate images by levering Composite CFGenNets

The details related to the above contributions are discussed from Chapter 9.
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1.6 Definitions

Table 1.1: Definitions

Molecules Basic unit of any chemical compound or ligand,with 2
or more atoms that take part in a chemical reaction.

Molecular Bonds Forces that hold atoms together within molecules.
Can be of type covalent or ionic.

Target / Biological Target
/ Protein Target

Biological organism against which the drugs are
directed thereby resulting in a change in the
target’s behavior or function

Ligand Molecule that produces a signal by binding to
a site on a target protein

Assays
Investigative procedures that qualitatively
analyze a ligand’s effects on identified protein targets
and are typically conducted in laboratory settings

Virtual Screening
Computational techniques used in drug discovery
to search libraries of molecules to identify those
structures which are most likely to bind to a drug target

Ligand Fingerprints

Representation of molecular structural and
physicochemical features in a format comprehensible
by a computer program, such as a binary vector
of predetermined length

SMILES Simplified Molecular Line Entry System :a method of
representing ligands using ASCII strings
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Chapter 2

Collaborative Filtering

In this chapter, we provide an overview of collaborative filtering. It is to be noted that

portions of the subsequent sections have been published as a part of our journal article [43],

where I am the first author of the publication.

2.1 Overview of Collaborative Filtering

As described in Chapter 1, collaborative filtering algorithms have been historically used

in the context of designing recommendation systems such as movie recommendation engines,

as well as up-sell and cross-sell recommendation engines for e-commerce sites. In general,

collaborative filtering is a method for making automatic predictions (filtering) about the

interests of a user by collecting preferences or taste information from other users (collabo-

rating) [8]. In general, collaborative filtering methods can be categorized into two groups of

methods: the neighborhood methods [44] and matrix factorization methods [45], also known

as latent factor models. Neighborhood methods compute the relationship between items

and/or users to identify similar items or like minded users to help predict ratings. Latent

factor methods try to explain the ratings by characterizing the items and users on 20 to 100

factors, derived entirely from past rating patterns.

2.1.1 Neighborhood-based Collaborative Filtering

Neighborhood methods (also called memory-based methods) evaluate the relationships

between items and users by approximating the relative distance between users. In this

scenario, there is a large user-item matrix, A, with users in the rows and items in the

columns. A particular rating between a user, u, and item, i, is denoted as au,i. This matrix

is typically sparse, with only a handful of ratings for each item per user. The general concept

is to find similar users by taking the similarity among each row of A. In this method the

system evaluates a user’s preference for an item based on ratings of similar users that have
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also rated that particular item [44]. More formally, we define this process for a particular

user, u0, and item, i, as:

au0,i =
1

|U |
∑
u∈U

au,i

where U is the set of all similar users that have also rated item i and |U | is the total number

of similar users. Variants of this measure also exist where the au,i measure is weighted,

for example, by the relative similarity of users. Similarity of users can be calculated using

various distances. Common measures of distance include Euclidean, Cosine, and Pearson

Dissimilarity. Variants also exist on the “rules” for judging similar users. Some methods

look for the top-N similar users, whereas other methods employ a distance threshold for

discerning which users are similar. In general, neighborhood methods tend to work well for

a number of different applications, but suffer from computational issues when the user item

matrix A is large or very dense.

2.1.2 Matrix Factorization Method

Matrix factorization methods [8] have been one of the most popular implementation

techniques of latent factor recommendation systems. These methods find lower dimensional

representations of the full user-item matrix. The dimensions of the lower dimensional rep-

resentations are often called factors. In the context of movie recommendation engines, the

discovered factors from matrix factorization methods have been studied extensively. While

there is no guarantee that the factors found represent an interpretable quantity, many times

the factors can be identified as representing a number of interesting item and user prop-

erties (even though the modeling does not explicitly use any features of the user or item).

For example, in movie recommendations these factors often “encode” obvious factors such

as comedy versus drama, amount of action, or orientation to children. They can also rep-

resent less well-defined dimensions such as depth of character development, quirkiness, or

they might be completely uninterpretable dimensions. For users, each factor represents how

much the user likes movies that score high on the corresponding movie factor [8]. For the

target-ligand application, then the factors might encode properties of the binding sites for

the target or chemical properties of the ligands. We illustrate the metaphor in Figure 2.1.
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Figure 2.1: Latent Factor Embedding : Sub Figure a illustrates the concept of latent factor
the latent factor recommendation for a movie recommendation engine. The latent factor
method relies on learning hidden factors from the user-movie ratings alone. In this simplified
example the system learns two dimensions from the ratings and places the movies and users
in this 2D space. The users predicted rating of the movie would be a dot product of the user’s
and movie’s location in the 2D space. Figure b illustrates the same concept for a target-ligand
embedding. Here the latent factors correspond to properties that the ligands and protein
targets can be jointly modeled with. The properties may correspond to a distinct chemical
property, but might also pertain to a factor not well described by traditional cheminformatics.

When applied to the domain of virtual screening, this method involves representing the

ligands and targets as vectors of factors with dimensionality f , to represent the latent factor

space, where A ≈ Â = P ·Q. Here the affinity predictions are modeled using the well estab-

lished singular value decomposition method [46] and optimization procedures to minimize

the reconstruction error between A and Â. That is, we model each known affinity at,l ∈ A

between ligand l and target t as the following dot product of vectors pt and ql

at,l = pt · ql

where each known ligand l is associated with vector ql and each target associated with vector

pt. Both ql and pt contain f elements. This operation is often represented in matrix form

when there are L unique ligands and T unique targets in the database:
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Â = P ·Q =



← p1 →

← p2 →
...

← pt →
...

← pT →


︸ ︷︷ ︸
target-factor matrix

·


↑ ↑ ↑ ↑

q1 q2 . . . ql . . . qL

↓ ↓ ↓ ↓


︸ ︷︷ ︸

factor-ligand matrix

The optimization step involves learning the factor vectors ql and pt by minimizing the regu-

larized square error on the set of known affinities, at,l, using standard optimization techniques

such as stochastic gradient descent algorithms [47].

min
p,q

∑
t,l∈Λ

(at,l − pt · ql)2︸ ︷︷ ︸
mean square error

+λ · (||pt||2 + ||ql||2)︸ ︷︷ ︸
regularization

where Λ is set of t, l for which the affinities at,l is known. The optimization function also

includes the regularization term with the regularization parameter λ to help minimize over-

fitting. Figure 2.2 illustrates the method with an example. The highlighted cells in the matrix

At,l represents the known affinities between a hypothetical set of 6 ligands and 12 targets. The

matrix factorization involves employing single value decomposition [46] method to construct

matrices Q and P with f = 3 factors in this example. The optimization method involves

reducing the square error between the known affinities and the predicted values of the known

affinities resulting from P ·Q. Variants of the factorization methods also exist where the dot

product is approximated in a larger dimensional space using kernels, κ(p, q) = φ(pt) · φ(ql),

where φ is a transformation of the vectors into a higher dimensional space. However, it

has been previously shown that this is typically poor performing for target-ligand binding

affinity prediction [35].

2.1.3 Conclusion

In this chapter, we discussed the concepts of collaborative filtering and its applicability

to ligand based virtual screening. In the subsequent chapter, we provide the details of the

experiments conducted.
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Figure 2.2: Illustration of the matrix factorization method :In this example the highlighted
cells represent the known affinities. The SVD method generates the matrices P and Q.
Optimization methods are employed to minimize the error between the known affinities and
their predicted values.
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Chapter 3

Ligand based Virtual Screening using Collaborative Filtering

In this chapter, we provide extensive details of our investigation into utilizing collabora-

tive filtering for performing ligand based virtual screening. It is to be noted that parts of

the subsequent sections have been published as a part of our journal article [43], where I am

the first author.

3.1 Data Preparation

Evaluating the applicability of collaborative filtering for performing virtual screening re-

quires exhaustive dataset to work with. For this purpose, We use ligand-target bioactivity

data from the ChEMBL database (Version 23). In an effort to keep the evaluations con-

sistent with previous studies [48],we focus exclusively on human targets and three types of

binding affinity measures: half maximal inhibitory concentration (IC50), half maximal effec-

tive concentration (EC50), and the inhibitory constant (Ki). When more than one binding

concentration measure was present in the database, we use the Ki measure. When Ki is

not present we look at IC50 and then EC50 to categorize the ligand-target pair as active or

inactive. To convert data into the binary active-inactive format the following concentration

thresholds were applied: < 100 nM for “actives” and > 1000 nM as “inactives.” We note

that many other works apply two thresholds to the dataset and the interactions between the

two ranges are discarded, as their classification is subjective [48, 49]. We also note that the

thresholds selected in our study are consistent with the standardized activity values of the

CHEMBL database.

The data selection methods described above resulted in a bioactivity matrix of size

241,260 (ligands) by 2,739 (targets), with about 0.15% of the matrix containing a real value.

The mean inactive:active ligand ratio across targets in the dataset was approximately 7:3.

Figure 3.1 illustrates the distribution of the targets by the number of recorded assays
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available for predictions. It was observed that more than half of the targets in the data set

had less than 200 recorded assays (including actives and inactives).

We note that there have been recent reports in the literature [49, 50] stressing that the

overall model performance is highly dependent on threshold selection for inactive/active

as well as the ratio of inactive to active examples. Also, many ligand-target databases

are biased in that the experimental data they are comprised of represents only a small,

nonuniform portion of the chemical space. This leads to the over representation of certain

types of ligand-target patterns. Furthermore, experimental binding affinity measures are

often difficult to reproduce [51], which means there is inherent noise in the datasets such

that perfect classification of any test set should not be possible (unless models are over-fitted

to the problem). Although this has been a common knowledge within the community [52],

it nevertheless remains largely un-addressed.

Following recommendations from [50], we computed the bias of our training and test

selection to provide an estimate on how trustworthy our evaluation metrics are.

3.1.1 Evaluation Criteria

In this study three evaluation criteria are employed: the area under the receiver operating

characteristic (AUC), the enrichment factor (EF), and the Boltzmann-enhanced discrimina-

tion of the receiver operating characteristic (BEDROC). We briefly describe our rationale

in selecting these criteria, as well as an overview of the strengths and weaknesses of each

criterion.

Our first evaluation criterion is the area under the receiver operating characteristic curve

(ROC [53,54], the curve that results when the true positive rate is plotted as a function of the

false positive rate). This measure ranks ligands based on their predicted probability of being

active. An AUC value greater than 0.5 suggests that the classifier is better than chance

at assigning an active/inactive target-ligand pair. While widely reported in a number of

papers that use machine learning for target-ligand classification, the AUC does not capture

important aspects of the virtual screening problem. Specifically, the challenge is to rank

active ligands for a given target from the entire dataset. A superior classification model

would have a high true positive rate for the highest ranked ligands, which are the ones that

21



Figure 3.1: Number of targets by known assay counts : Illustration of the distribution of
the number of targets by the known assay counts for each target. More than half of the
targets have less than about 200 recorded assays. Therefore, it is imperative that the virtual
screening methods perform well when the number of assays is relatively sparse.

would be assayed first (the so-called early recognition problem). The AUC does not take into

account this early recognition, so it can incorrectly judge a classification model superior if it

has an overall high true positive rate, even though the true positives may not occur “early” in

the ranking of ligands. Such a model would result in many needless assays before becoming

sufficiently accurate. Therefore, more suitable metrics are often sought after that do take

into account early recognition – the two popular choices being Enrichment Factor (EF) and

Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic (BEDROC).

Enrichment Factor [55, 56] is defined as the ratio of correctly classified active ligands

within a predefined early recognition threshold compared to the total ligands selected by the

model, further normalized by the expected random selection of the ligands.

EFX% =
Compoundsselected/NX%

Compoundstotal/Ntotal

where NX% is the number of ligands in the top X% of the ranked ligands. EF1%, then, is
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the ratio of true actives found in the top 1% of ranked ligands from a model normalized

by the total number of actives for a specific target. In other words, it gives an estimate on

how many more actives can be found within the early recognition threshold compared to a

random distribution. While this criterion closely matches the virtual screening problem, it is

not appropriate to compare the EF values obtained for different datasets when their number

of actives differ. Another disadvantage of the criterion is that it assigns equal weights to

the actives within the threshold, without any knowledge that some actives bind extremely

well and others have higher Ki concentrations. Robust Initial Enhancement (RIE) [57] helps

mitigate this by comparing two scenarios, (1) when the most active ligands are ranked at the

beginning of the threshold and (2) when the most active ligands are ranked closer to the end

of the threshold. This is achieved by applying continuously decreasing exponential weight

when ranking ligands. The RIE metric is similar in meaning to EF in that it quantifies

the superiority (to random) of the exponential average of the distribution generated by the

ranking method. Its minimum and maximum value dependance on (apart from the pre-

exponent factor α) the number of actives and the dataset size contributes to the metric

disadvantages. Nevertheless, RIE’s desirable property of differentiating actives within the

ordered list serves as a driving force for the development of the BEDROC metric, discussed

next.

Bound between 0 and 1, the BEDROC metric [58] is interpreted as the probability that

an active in the ordered list will be ranked before a ligand that is drawn from a random

probability distribution function. The shape of the distribution is governed by the pre-

exponent factor α, that must be selected by the user. In the words of the original authors:

“It is to be noted that α should not be chosen in such a way that it represents the best

performance expected by a ranking method, but rather it should be considered as a useful

standard to discriminate better or worse performance in a real problem to which the ranking

method will be applied.” [58]. Our study chose an α = 20 based on the previous study by

Riniker et al. [17] in their benchmarking of fingerprints for ligand-based virtual screening.
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Figure 3.2: AVE Bias : The image to the left visualizes the comparison of AVE Bias across 4
sets of training and validation data. The figure shows that the 4 training and validation sets
are randomly split with similar bias measures across the sets, thereby minimizing the impact
of variance across our study. The image to the right shows the spread of the AVE Bias for
each target in the dataset. The distribution of the AVE Bias from -0.5 to 1.5 (where closer
to 0 indicates no bias) across targets facilitates the study of the resilience of the collaborative
filtering algorithm to the impact of such a bias.

3.1.2 Variance and Bias in Validation Set Selection

The performance of machine learning models can be impacted by variance. A model

with high variance performs inconsistently on different validation sets. A model with high

bias is one that is well fitted to the training data but fails to generalize well. Building

machine learning models by using cross validation to separate training and validation can

aid in quantifying variance. In our experiments, the train and the test split was randomly

generated by stratifying on the targets, generating a random split with the ratio of 70%:30%

of associated ligands by target between the training and the validation sets.

In order to minimize the effects of variance influencing the claims in our study, we use

four iterations of our tests including generating four sets of training and validation data and

building the above mentioned models using implicit and explicit methods for each set of

training and validation data. Modeling bias is another design consideration while building

machine learning models to ensure the ability of the models to generalize beyond the training
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and validation datasets. In the field of computational chemistry the accuracy in practice is

not as good as the benchmark results from previous virtual screening results [8].

Wallach and Heifets [50] introduced a new measure of evaluating the redundancies in the

training - validation sets called the Asymmetric Validation Embedding Bias (AVE Bias).

The AVE Bias measures the quality of the training and validation sets by measuring the

similarities between the actives and inactives in the validation sets with the actives and

inactives in the training sets. The Bias is mathematically defined as [50]:

B =

H(Va,Ta) −H(Va,Ti)︸ ︷︷ ︸
AA−AI

+

H(Vi,Ti) −H(Vi,Ta)︸ ︷︷ ︸
II−IA


where, Va, Vi represent the validation sets with active and inactive ligands, Ta, Ti represent the

training sets with active and inactive ligands respectively, and H(·) represents a measure of

cluster similarity between the sets. The leftAA−AI term of the AVE Bias is a measure of how

clumped the validation actives are among the training actives. The right II − IA measures

the degree of clumping among the inactives. The study showed that the performance of

the ligand based screening methods strongly and positively correlated with the AVE Bias.

Intuitively, it means that an algorithm might perform well because there is an inherent

difference in the training and validation sets employed that makes the problem more easily

separable for the validation set. Positive values indicate a bias, whereas negative values

indicate that the problem is increasingly difficult because the training and validation sets

differ in a way that makes the classification problem even more difficult. The AVE Bias can

be measured for every target in the dataset. Therefore, it is appropriate to present the AVE

Bias results as a histogram or boxplot of the values.

As described, we use four stratified shuffle splits of the data. We computed the AVE

Bias for all targets in each of the four iterations of train-validation sets. In our calculations,

we employed Tanimoto similarity [13] to compute H(·) . Figure 3.2 illustrates the AVE Bias

scores using a boxplot to summarize the AVE Bias per target (a separate boxplot is used for

each iteration of the shuffle split). All four sets of train and validation sets have similar AVE

Bias measures. The imbalanced natured of our data set (inactives to actives, 7:3) in addition

to the method of classifying molecules as active or inactive based on the 100nM and 1000nM
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concentration thresholds and the randomized selection of training and validation set resulted

in a good distribution of targets with varying AVE Biases across targets. In addition, it was

also observed the data set also contained a subset of targets with a negative bias, thus makes

the classification of actives and inactives challenging for these sets [50]. Separate plots are

shown for each iteration of the validation split. Each box plot represents distribution of the

AVE Bias calculated per Target for each iteration of Training and validation sets. Figure

3.2 also illustrates the AVE Bias for each target in the dataset.

3.2 Collaborative Filtering Model Selection

In order to identify the best performing collaborative filtering model, we employ two

randomized grid searches. The first grid search investigates parameters for neighborhood

CF methods. The second grid search investigates parameters for using matrix factorization

CF methods. We separate the grid searches because the parameters in each algorithms

are quite different. We use collaborative filtering algorithms implemented in the GraphLab

API [59].

For the neighborhood CF methods we investigate three separate distance metrics: Jac-

card, Cosine, and Pearson. We also investigate a number of threshold values to determine

neighborhood size, logarithmically spaced from 10−7 up to 10−1. For each combination of hy-

per parameters, we calculate the mean for each of our evaluation criteria: AUC, BEDROC20,

and EF1% scores. The best performing neighborhood CF method utilized the Pearson simi-

larity metric with a threshold of 10−2. The mean AUC, BEDROC20, and EF1% scores were

0.79, 0.72, and 4.22%, respectively.

Table 3.1 summarizes additional results for the top 5 models, sorted by the EF1% score.

For the matrix factorization-based CF models, we investigated the number of latent factors,

ranging from 5 to 60 in increments of 5. We also investigated the value of the regularization

constant, C, used in the stochastic gradient descent method [47], with values logarithmically

spaced from 10−7 up to 10−1. Finally, we swept the values of the step size used for updates

in the stochastic gradient descent (SGD) optimization, spaced logarithmically from 10−3 up

to 10−1. We remind that the factorization CF method learns latent factors for each ligand

and for each target and uses them to rank ligands according to the likelihood of observing
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Table 3.1: Collaborative Filtering hyper-parameter tuning : Tabulated top 5 results from
training multiple collaborative filtering models using neighborhood methods and matrix
factorization methods.

Neighborhood-Based Collaborative Filtering
Distance N. Threshold AUC BEDROC20 EF1%

[0.3pt](r0.25em)1-2[0.3pt](r0.25em)3-5Pearson 10−2 0.791 0.723 4.225
Pearson 10−5 0.792 0.723 4.225
Pearson 10−4 0.791 0.723 4.225
Jaccard 10−2 0.648 0.647 3.670
Cosine 10−5 0.644 0.647 3.670
Matrix Factorization-Based Collaborative Filtering

Num. Factors SGD Step Size AUC BEDROC20 EF1%

[0.3pt](r0.25em)1-2[0.3pt](r0.25em)3-550 10−3 0.891 0.929 5.476
32 10−4 0.860 0.889 5.028
32 10−2 0.899 0.872 4.994
25 10−4 0.868 0.867 4.765
25 10−2 0.892 0.847 4.547

those (target, ligand) pairs. The stochastic gradient descent algorithm was used as the

optimization function to minimize the mean square error between the known affinities and

their predictions. Table 3.1 summarizes the results of the factorization CF method, sorted by

EF5% (SGD step size not shown for brevity). From the table, it is clear that the performance

of the factorization CF method exceeds that of the neighborhood recommender. The best

model was found with 50 latent factors, a value of C = 10−3 for regularization, and 10−3 for

the SGD step size. The best model had a mean AUC, BEDROC20, and EF1% as 0.89, 0.92,

and 5.47, respectively.

To more clearly understand how the hyper-parameters change the performance of the

factorization CF algorithm, we plot the BEDROC20 values as each hyper-parameter value

changes.Figure 3.3 illustrates the effect of the number of latent factors on the performance of

the model. It was observed that the performance plateaus near 50 factors. Similarly Figure

3.3 illustrates the performance of the regularization parameter of the SGD optimizer [47]

on the model performance. It is noticed that there is no consistent effect of the value of

regularization on the performance of the model.
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Figure 3.3: Hyperparameter tuning for matrix factorization collaborative filtering : Illustra-
tion of the effects of the number of factors, f , and regularization parameter, λ, on model
performance. While model performance improves with more factors, it may lead to over
fitting. The regularization parameter does not have a consistent performance, revealing that
performance is not sensitive to λ.The error bars represent the standard error of the mean
across the BEDROC20 scores for each Target at the specified parameter value

3.2.1 Conclusion

In this chapter, we provided exhaustive details on the methods utilized to train col-

laborative filtering model on ligand assay data. In the subsequent chapters, we provide

an in-depth analysis of the relative advantages of collaborative filtering compared to the

traditional virtual screening methods employing explicit featurization.
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Chapter 4

Performance Analysis of Collaborative Filtering for ligand based virtual screening

In this chapter we provide an in depth analysis of the outcomes observed with collab-

orative filtering methods when utilized for performing ligand based virtual screening. Fur-

thermore, we compare the outcomes of collaborative filtering with the traditional virtual

screening methods that employ explicit featurization.

4.1 Overall Performance of Collaborative Filtering

In the following section, we analyze the comparative performance of the collaborative

filtering model (which uses implicit featurization) and the baseline models (which use explicit

featurization from structure modeling). We use the evaluation criteria explained previously:

AUC, BEDROC20, and EF1%. Figure 4.1 shows boxplots of performance per target across

all the algorithms and all evaluation criteria. That is, a performance criterion is calculated

for each target and then all values are displayed in each boxplot. Results from all cross

validation iterations are combined in each boxplot.

Figure 4.1: Comparison of AUC, BEDROC20, and EF1% scores across all algorithms : The
collaborative filtering based implicit structure method, based only on assay outcomes per-
forms on par with the other methods across the three evaluation criteria. The across target
Random Forest model is the next best performer. All other models perform about the same
and poorer than collaborative filtering.
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Figure 4.2: Comparison of AUC, BEDROC20, and EF1% scores by number of known ac-
tivities : Illustration of the comparative performance of the algorithms by the number of
known affinities per target in the training data. Error bars correspond to standard error.
The collaborative filtering based implicit structure methods significantly outperform other
algorithms when the training data has 100 or fewer activities. Beyond 100 activities the
performance of all algorithms converge.

Across all evaluation criteria collaborative filtering performs similar to the baseline meth-

ods, despite the absence of known structural information of the ligands. In general, collab-

orative filtering is a slightly superior performer, followed by the across target RF model,

followed by per target RF, and KNN for across target and per target rounding out the

bottom. When taking the AVE Bias into account, the average AUC scores of the models

generated by RF and KNN are consistent with the performance of the same algorithms on

the unbiased training and validation tests for the J and J Benchmark reported by Wallach

and Heifets [50].

Although we have shown performance for all cross validation iterations combined, similar

performance was observed individually for each validation set.
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Figure 4.3: Distribution of AUC, BEDROC20, and EF1% : Distribution of AUC, BEDROC20,
and EF1% scores across all algorithms when the number of known affinities per target is less
than or equal to 100 activities. Based on a two-tailed t-test of the scores (p < 0.01), the
difference in scores for collaborative filtering with other methods is statistically significant.

4.2 Performance Comparisons by Number of known Actives

While the overall performance of collaborative filtering is encouraging, it is still unclear

if the implicit features employed help to mitigate the need for large numbers of training

assays for each target. To help delineate this, we now focus our attention on grouping the

results by how many training assays were used to model a given target. We remind from

Figure 3.1 that the number of training assays per target is typically less than 200, which

comprises the majority of targets in the ChEMBL database. As such, it is desirable for an

algorithm to perform well even when the number of training assays is relatively low. Figure

4.2 shows the performance of the algorithms on the validation sets with results grouped by

the number of available training assays. That is, each performance criteria is calculated for

each target and, then, the results are grouped by the number of assays used in the training

of that target. For example, targets with less than 100 training assays are in the first bin,

100-200 in the second bin, and so on until targets contain more than 500 training assays.
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We then clumped together all targets with more than 500 assays into the last bin. This

approach enables us to compare the relative performance of the algorithms based on the

the amount of available training assays. A consistent pattern was observed across all the

three evaluation criteria. The predictions from collaborative filtering on the validation set

significantly outperform the baseline methods when there were 100 or fewer assays in the

training set based on a two tailed t-test (p < 0.01). Between 100 - 500 training assays, the

implicit feature modeling methods perform statistically no different than the baseline models

(p > 0.5). Beyond 500 training assays, the traditional baseline method using the Random

Forest algorithm outperforms collaborative filtering.

It is interesting to note that the average enrichment factor in the top 1% is the high-

est across all methods when there are not many training assays available per target. We

hypothesize that collaborative filtering becomes less effective (in terms of EF1%) when the

number of ligands already tested is relatively numerous because the most likely candidates

have already been assayed by chance.

To further evaluate the differences between algorithms when the training assays are rel-

atively sparse, we expand on the performances of the AUC, BEDROC20, and EF1% scores

for targets with less than or equal to 100 training assays. Figure 4.3 represents the kernel

density plots for the distribution of the three aforementioned evaluation criteria. Kernel

density estimation is a means of estimating a smooth distribution from a finite set of points,

similar in spirit to a histogram. Below each density estimate is a “rug plot” of the values for

each machine learning method, with one “tick” for each observed value (this makes outliers

easier to see as they can easily be hidden in kernel density estimates). The distribution of the

scores from the implicit structure methods using collaborative filtering has a clear and visual

separation from the other baseline methods using explicit structures. With the exception of

across target RF, no other model has overlap in the performance for any evaluation criteria.

Even so, based on a two-tailed t-test of the distributions, collaborative filtering is the sig-

nificantly best performing algorithm in terms of all evaluation criteria when the number of

training assays is less than 100.
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4.2.1 Conclusion

In this chapter we provided an indepth look into the performance of collaborative filtering

algorithm for the problem at hand . In addition we also analysed the relative differences

between our methods with the known traditional methods utilizing the explicit ligand fin-

gerprinting methods. Because of the clear performance separation of collaborative filtering,

we conclude that the implicit structure methods demonstrate a consistent and significantly

increased performance when the number of known assays is limited to about 100 assays.

We also conclude that when the number of training assays is greater than about 500, tradi-

tional methods provide an increased performance. Unlike these baseline methods that use

molecular fingerprinting, collaborative filtering methods can “learn” about the ligands based

on their affinities with other targets and vice-versa, even with fewer numbers of known as-

says per target. This aspect of the collaborative filtering method contributes to the better

performance even with relatively sparse assay counts.
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Chapter 5

Introducing Implicit Target and Ligand Fingerprints

5.1 Overview

In this chapter, we turn our attention to an initial analysis of how the latent factors

computed by collaborative filtering, by virtue of the information encoded within them, can

be used to complement the traditional molecular and target fingerprints.

We introduce a new type of fingerprinting technique called Implicit Fingerprints,which

are the latent factors determined by the collaborative filtering method on the known affinities.

From our grid search, we found that 50 latent factors for each ligand and target was the most

optimal performing number of factors for the matrix factorization. We further evaluate the

applicability of the 50 latent factors to identify and cluster known cancer and thyroid related

protein targets. Greater than 20% of industrial cancer drug development programs focus on a

small subset of proteins when approximately 20,000 possible proteins are known [60] . While

there have been studies investigating the pharmaceutical vulnerabilities of these proteins, the

challenges with costs and off-target effects have been a limiting factor in realizing the proteins’

clinical potential. We investigated the inherent properties of the implicit fingerprints to

identify targets with similar binding affinities based on prior assays results. For the purposes

of the tests, we re-trained a collaborative filtering model without discarding the assays with

concentration levels 100nM and 1000nM. The experiment was rerun as a multi-label affinity

classification problem with the following labels to indicate binding affinities : < 1nM was

associated with the affinity label of 1, between 1nM and 100nM was labeled as 2, 100nM

and 1000nM labeled as 3 and greater than 1000nM labeled as 4.

To visually elucidate the power of Implicit Target Fingerprints, we mapped the dimen-

sions of the 50 latent factors of the targets into a 2-dimensional space using t-distributed

stochastic neighbor embedding (t-SNE) [61], a powerful method for reducing dimensionality
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Figure 5.1: Implicit Target Fingerprints : t-SNE plot reducing the dimensions of the 50-
dimensional implicit fingerprints into two dimensions for a subset of targets in the ChEMBL
database, highlighting known cancer and thyroid related protein targets. The method suc-
cessfully clusters related targets close to each other,as indicated in the zoomed version of
the largest cluster of cancer targets. Interestingly the clusters also contain other targets
which are found to have expressions with known cancer/thyroid targets as in the example of
Vascular Endothelial Growth Factor Receptor-2 Expression in breast cancer 1 protein.

of high dimensional datasets by minimizing the Kullback-Liebler divergence of distributions

in the higher and lower dimensional space. Figure 5.1 illustrates the distribution of the pro-

tein targets when mapped into a 2-dimensional space, with the cancer related target proteins

highlighted in blue ,and thyroid related in red. Interestingly, the graph demonstrates the

presence of three potential clusters of known cancer related targets appearing close to each

other. Similarly three potential clusters of thyroid related targets also appear close together.

These cancer-related targets are visually separated from other biological targets in the la-

tent space. The clusters also contain other targets which are found to have expressions with

known cancer/thyroid targets. For example, consider the target clusters containing Vascular

Endothelial Growth Factor Receptor-2 Expression (CHEMBL1878) with breast cancer 1 pro-

tein(CHEMBL1615382) or Thyroid peroxidase (CHEMBL1839) with PHD13 ovarian cancer

1(CHEMBL1764945). In the 2D implicit target fingerprints space, the close distances among
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Figure 5.2: t-SNE Plots of Implicit Ligand Fingerprints : Plots for three cancer targets
are shown where each point represents a compound assayed from the ChEMBL database.
The concentration results of the assays are color-coded. t-SNE plots of the 50-dimensional
implicit representations, reduced to 2 dimensions preserving distance.

these targets corresponds to known observations of similarity from prior research [62, 63] .

This also engenders a potential for identifying other unexplored relations between the protein

targets that appear close to each other in the implicit fingerprint space.

Similar to the biological targets, the the ligands can also be mapped in this latent space,

as illustrated next.

To help intuit the compound-protein binding affinity prediction capabilities of the implicit

latent space, we randomly selected three cancer related targets from the ChEMBL database.

We selected target with IDs CHEMBL4899, CHEMBL3774295 and CHEMBL2150837 as

shown in Figure 5.2. Again, the 50-dimensional implicit fingerprints of the compounds are

reduced into a 2-dimensional space using the aforementioned t-SNE method. We visual-

ize all compounds with known assays for the three selected cancer related protein targets.

The compounds are color-coded on the basis of their standardized concentration levels in

the assays, where a decreasing concentration level indicates stronger binding affinity. For

the t-SNE plots, the ideal result would be perfect clustering for each concentration level.
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The implicit fingerprints from the figure demonstrate a very clear separation between the

compounds based on the concentration levels required to trigger binding affinities with the

respective targets. This visual separation is striking for assays with excellent binding affinity

(standard value below 100nM), indicating that the implicit representation is excellent in its

ability to capture properties of similar compounds using Euclidean distance.

From the above evaluations, we conclude that the baseline modeling methods tradition-

ally can be enhanced by the use of Implicit Target and Ligand Fingerprints. The models

generated by the Implicit Fingerprints have better predictive power than their explicit coun-

terparts when the number of known assays for training is less than 100. For the remaining

targets, Implicit Fingerprints performs about equally to explicit molecular fingerprinting up

to about 500 assays. When the number of assays is above 500, traditional methods have a

slight, but significant advantage over collaborative filtering.

5.2 Limitations

While we conclude our research objective 1 that implicit-descriptor modeling is a promis-

ing method for virtual screening, we also point out that our analysis was completed on a

large subset of the ChEMBL database, Version 23. That said ,we also highlight some of

the limitations of the current work and opportunities within the domain.We acknoweledge

Further studies need to be conducted on the cumulative predictive powers of the traditional

ligand fingerprinting techniques and the implicit fingerprints generated from collaborative

filtering in order to understand if the implicit fingerprints are consistent with other groups

of targets and ligands. We also note that a limitation of our approach is that we require

ligands to be assayed upon more than one target in order to evaluate them. That is, a

ligand must be paired with a target in the training set and paired with another target in

the testing set for our method to be able to evaluate binding affinities. We also point out

that our implementation of across target training mode is not widely used in the chem-

informatics community. We only investigated one method of fingerprinting targets using the

ProFeat feature generation tool. Other target methods could provide superior performance.

Moreover, we note that the Random Forest method trained using combined target and lig-

and fingerprinting through RDKit was typically a strong performer compared to traditional
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per target training (which is most often employed in the virtual screening literature). While

the performance of Random Forests was inferior to collaborative filtering, this result does

warrant further investigation into techniques for featurizing protein targets. Such an inves-

tigation may prove to uncover models that can perform superior to collaborative filtering

methods.

5.3 Conclusion of Research Objective 1

We have thus far discussed our research pertaining to our research objective 1 : Implicit

Fingerprint based virtual screening by means of collaborative filtering. In the current chapter

and preceding chapters, we discussed the approach, algorithms, results and concluded with

our novel contribution to this domain, namely Implicit Ligand Fingerprint. In the subsequent

chapters, we describe the research methods into our Research Objective 2: Deeplearning

based drug design using Implicit Ligand fingerprints.
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Chapter 6

Introduction to CFGenNet, Collaborative Filtering based Generative Networks

Overview

In the previous chapters, we have shown that implicit fingerprints capture ligands and

proteins in a shared latent space, typically for the purposes of virtual screening with col-

laborative filtering models applied on known bio activity data. We extend this further in

our research objective 2, where we extend these implicit fingerprints/descriptors using deep

learning techniques to translate latent descriptors into discrete representations of molecules

(SMILES), without explicitly optimizing for chemical properties . This allows the design of

new compounds based upon the latent representation of nearby proteins, thereby encoding

drug-like properties including binding affinities to known proteins. The implicit descriptor

method does not require any fingerprint similarity search, which makes the method free of

any bias arising from the empirical nature of the fingerprint models [43]. We evaluate the

properties of the novel drugs generated by CFGenNet using physical properties of drug-like

molecules and chemical complexity. Additionally, we analyze the reliability of the biological

activity of the new compounds generated using this method by employing models of protein

ligand interaction, which assists in assessing the potential binding affinity of the designed

compounds. We find that the generated compounds exhibit properties of chemically feasible

compounds and are likely to be excellent binders to known proteins. Furthermore, we also

analyze the diversity of compounds created using the Tanimoto distance and conclude that

there is a wide diversity in the generated compounds. The rest of this chapter and the subse-

quent chapters will cover the methods investigated and the results obtained. It is to be noted

that some portions of the subsequent sections have already appeared our publication [1] for

which I am the first author.
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6.1 Decoders to generate SMILES code

The implicit fingerprints from collaborative filtering is an implicit mathematical repre-

sentation that allows for a more accurate characterization of the drug compound and protein

target in the same numeric latent space, thus narrowing the model-associated bias down to

that of the assay, i.e., real clinical (albeit in vitro) environment. [64]. Additionally, to facili-

tate the ability to discover the physical structure of new compounds, in this work we propose

decoding methods that map from the implicit representation of the candidate compounds

to their physical structure. We believe this expanded capacity of the fingerprinting model

will have significant impact on virtual screening and, consequently, drug discovery, as it will

render drug discovery less dependent on costly clinical facilities and services. Moreover, the

representation will provide new methods for creating and testing candidate drug compounds.

6.1.1 Related Works

The application of deep learning into ChemInformatics has shown tremendous impact

in the both replacing traditional ML methods such as QSAR modeling and in the space of

de-novo drug design using generative networks. The generative methods of de-novo drug

design do not rely on predefined rules of structure generation but generalize the probability

of generation process using databases of known structures. These methods rely on sampling

within the learned probability distributions. Several recent works in generative drug dis-

covery have borrowed key principles and architectures from the field of image synthesis and

natural language processing and successfully applied it to the the domain of de novo drug

design. Recurrent Neural and their variants have in the recent past been the mainstays of

NLP based applications. The sequential nature of the SMILES code make RNNs a natural

choice for adoption in the field of de novo drug design [65]. Additionally, reinforcement learn-

ing has also been popular, with special mention of REINVENT [32] , which combines RNNs

with reinforcement learning. [66] demonstrated that RNNs trained with a set of molecules

represented as SMILES strings is able to generate a much bigger chemical space than the

training set.

Several recent works have investigated the use of neural embedding on compound struc-

ture representations such as SMILES codes, showing this embedding is effective for exploring
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the chemical properties [36] and generating novel compounds. The Variational Autoencoder

architecture [67] has also shown to generate novel chemicals using courtesy, the latent encod-

ing generated in VAEs. [2] refer to these embedded fingerprints as implicit representations.

Another variation was introduced with the Randomized SMILES. [68] leveraged the condi-

tional variational autoencoders by controlling multiple molecular properties simultaneously

and imposing them on a latent space. They demonstrated the abilities to generate novel

chemical constrained to 5 specific properties. [69] introduced Grammar Variational Autoen-

coders, where they married the concepts of parse trees from context free grammar with VAEs

to mitigate the number of invalid SMILES strings generated from the generative models. [42]

introduced a concept of Junction tree Autoencoders, which constructs molecular graphs in

two phases, by first generating a tree structured scaffold over chemical substructures, and

then combining them into a molecule with a graph message passing network. This approach

allows us to incrementally expand molecules while maintaining chemical validity at every

step. With their novel method, [42] reported improvements over the state of the art methods

at the time of their writing. Additionally ArusPose et al [70] demonstrated the advantages

of using different representations of SMILEs are every stage of training as opposed to using

a unique SMILE representation for each molecule. They successfully demonstrated that the

quality of the chemical space generated was much higher with this approach. Besides the

SMILES representations, the graph based representations of molecules have also been used

in the domain successfully. [71] utilized the graph neural networks to express probabilistic de-

pendencies among a graph’s nodes and edges to learn distributions over any arbitrary graph.

Compared to baselines that do not use graph-structured representations, they were able to

produce models that often performed far better. [41] proposed a framework based on a type

of sequential graph generators that do not use atom level recurrent units. They successfully

demonstrated abilities of their approach to generate compounds containing a given scaffold,

compounds with specific drug-likeness and synthetic accessibility requirements.

In addition to Variational Autoencoders, Generative adversarial neural (GAN) networks

[72] are also a very popular architecture for generating realistic data.A GAN has two compo-

nents, a generator and a discriminator, that compete against each other during training. e

generator generates artificial data and the discriminator attempts to distinguish it from real
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data. e model is trained until the discriminator is unable to distinguish the artificial data

from the real data [72]. ORGAN [39] and ORGANIC [73] where some of the first demon-

strations of the application of GANs for drug discovery. [74] and [75] further combined the

concepts of GANs and Reinforcement learning to the application of de novo drug design. [40]

introduced LatentGAN, which combined VAEs and GANs for de novo molecular design.

They successfully demonstrated the abilities of Latent GAN to generate novel compounds in

two scenarios: one to generate random drug[U+2010]like compounds and another to gener-

ate target[U+2010]biased compounds. Additionally, IBM also demonstrated the viability of

deep generative models for antimicrobial discovery [76]. They leveraged classifiers trained on

an informative latent space of molecules modelled using a deep generative autoencoder, and

screened the generated molecules using deep-learning classifiers along with physicochemical

features derived from high-throughput molecular dynamics simulations. With the power of

generative learning methods combined with molecular dynamics simulations, they were able

to synthesize and experimental test 28 candidate antimicrobial peptides in record short time

frame.

While the list of interesting research in the field of deep learning for de novo drug design

is constantly growing , we also note that [77] provides a comprehensive review of research in

the advances for the generation of novel molecules with desired properties with a focus on

the applications of GANs, RL, and related techniques.

However, to the best of our knowledge all the prior methods,including their variants

[38–42,78] work upon a known representation of the ligands , either the raw SMILES textual

representation or graph based representations and are therefore limited in their ability to

discern more complicated relationships encoded by fingerprints. The common theme in these

techniques is to provide as input to the deep learning model, the molecules only to produce

the same or similar molecules as output. The continuous vector representations of the input

molecules in the intermediate layers produce a larger chemical property space, which is then

sampled to produce novel molecules.

In this work, we design and train deep learning methods that leverage the implicit com-

pound fingerprints obtained from collaborative filtering based on the past bioactivity/assay

data to map back to the physical structure of compounds. The implicit encoding of com-

42



pounds are a continuous vector-valued representation and thus lend itself to the use of

continuous optimization to generate novel compounds. We further assess the properties of

the novel ligands generated in terms of the drug-like physical properties of molecules, chem-

ical complexity and biological activity. We observed that our compounds exhibit properties

similar to the known ligands even though CFGenNet does not explicitly train the neural

network for optimizing specific properties. Additionally, we compare our work to the prior

work of [37] on a set of chemical compounds with known binding affinities to cancer targets

from the ChEMBL23 database [79]. This comparative analysis investigates not only the

potential binding affinity of the generated compounds to selected protein targets, but also

the diversity of compounds generated. We provide evidence that our method is superior

in both binding affinity and compound diversity. In the rest of this chapter, we describe

the details of the neural network based decoder that attempts to translate a given ligand’s

implicit fingerprints into its corresponding SMILES representation.

6.2 Neural Network Architecture

Our method to generate novel ligands is comprised of two steps. (1) We generate implicit

ligand and protein fingerprints using collaborative filtering and (2) train a neural network to

generate the SMILES string from the implicit representation (i.e., a decoder that can map to

a conventional representation from the implicit space). The first step involves generating the

implicit fingerprints using known assays by applying the collaborative filtering algorithm [43].

This step yields the implicit fingerprint representations for both ligands and protein targets,

as described above. The implicit fingerprints are continuous vectors that represent a point

in 50 dimensional space.

The Implicit fingerprints of the ligands are then fed into a Gated Recurrent Unit (GRU)

[80] neural network to map the corresponding SMILES string encoding. The neural network

is trained to minimize the error in reproducing the relevant SMILES string for each input

implicit fingerprints of the ligands. The key aspect of the neural network is to learn the

function to map the fixed-length continuous vector representation to the SMILES string.

This architecture is illustrated in Figure 6.1. Additional details of the neural network design

are discussed in subsequent sections.
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As with other methodologies utilizing generative deep learning algorithms, [37] the neural

network should ensure that the points in the latent space decode to valid SMILES strings.

In order to avoid the latent space from being sparse and resolve to large “dead-areas” (areas

in the space that are never trained to decode from and therefore behave unpredictably), we

performed input data augmentation. The data augmentation involved adding randomness

to the input layer of the neural network (i.e., adding random perturbations to the implicit

vector). The data augmentation incentivizes the decoder to more fully represent the areas

in the implicit latent space of the ligands, such that they can successfully resolve to the

corresponding SMILES string. The intuition is that adding noise to the encoded molecules

forces the decoder to learn how to decode a wider variety of latent points and find more robust

representations. This approach follows the intuitions made popular by the variational auto-

encoders(VAEs) [81] by Bowman et al. The VAEs, instead of decoding from a single point

in the latent space, sample from a location centered around the mean value and with spread

corresponding to the standard deviation, before decoding. This ensures that a sample from

anywhere in the area is treated similar to the original input. Even so, there are differences

between the VAE approach and ours. In CFGenNet, the latent space if fixed from the

collaborative filtering; it is not trainable like in the VAE. Importantly, this means that the

sampling incentivizes the decoder to reconstruct similar SMILES scores from given set of

similar points. It does not incentivize the collaborative filtering algorithm to change its

implicit representation.

The sequential nature of the output SMILES string required us to consider neural network

architectures that are adept at handling such data. The application of neural network

architectures such as recurrent neural networks and their enhanced variations such as gated

recurrent neural networks (GRUs) for problems involving sequential data such as speech

recognition, language translation have been very successful. [80, 82–84] The GRU neural

networks, with their innate abilities of learning long-term dependencies in sequences, are

especially useful for handling SMILES strings.
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Figure 6.1: Deep learning based Ligand Design using Implicit Fingerprints from Collabora-
tive Filtering - Architecture

6.3 Dataset Description

Our method involves translating the implicit ligand fingerprints into its corresponding

SMILES string. The implicit fingerprints, however are derived from the ligand - target bioac-

tivity data from the ChEMBL database (Version 23). The bioactivity data, keeping in line

with previous studies [85, 86] was focused only on human targets. We restricted bioactivi-

ties to three types of binding affinities. The included half maximal inhibitory concentration

IC50, maximal effective concentration (EC50), and inhibitory constant(ki). Following the

precedence with previous works [43, 85, 86], we converted the data into the binary active-

inactive using the following conversation thresholds: lesser than 100 nM for “actives” and

greater than 1000 nM as “inactives.” Furthermore, in order to be consistent with research

objective 1, we retained only ligands which have at least two prior assays. This resulted

in a bioactivity matrix of size 241,260 (ligands) by 2,739 (targets). The bioactivity matrix

was subjected to the collaborative filtering method as described in research objective 1. The

resultant implicit fingerprints were then used as inputs to our deep learning model, with the

goal to produce the respective canonical SMILES string as the output. Figure 6.2 illustrates
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the data distribution of the number of ligands against the known number of prior assays and

known number of prior assays with known positive affinities. As evident from the plots, close

to 50% of the ligands have only 2 prior assays. Additionally close to 62% of the ligands have

only 1 prior assay with positive affinity. We also wish to note that the number of ligands

( 241k) used to model the deep learning model is comparable to previous works [78].

Considering that CFGenNet relies on the prior assay history to determine the implicit

ligand fingerprints, having more numerous examples of prior assays for each ligand may

also result in better quality implicit fingerprints. This statement is further evidenced by

results from the next section: (1) the ability of the decoder to accurately translate implicit

fingerprints into the corresponding SMILES and (2) the abilities of the ligands to yield more

novel ligands are both influenced by the number of available assays per ligand, as described

next.

Figure 6.2: Data Distribution : The first figure illustrates the number of molecules against
number of assays, binned at specified values or ranges. Close to 50% of the molecules have
only 2 prior assays. The second figure illustrates the number of ligands against the number
of known assays with positive affinities. It can be observed that 62% of the ligands with only
one assay with positive binding affinity.
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6.4 Construction of the Neural Network

In CFGenNet we use the implicit ligand fingerprints obtained from the prior assay in-

formation (collaborative filtering) as inputs to a deep learning model, with the objective of

producing the corresponding canonical SMILES representation as the output. This implicit

representation can have a number of advantages because it is based solely on the observed

behavior of the compound, rather than inherent measures of physical properties. Thus,

formulating a decoding procedure from this implicit representation may have distinct advan-

tages over previous methods. The implicit fingerprint, because it is a continuous vector of

fixed length (50), also lends itself well to statistical sampling with simple procedures. We

employ data augmentation of the input vector by employing a vector of means µ and another

vector of standard deviations, σ. The input vector (implicit fingerprint vector) serves as the

vector of means, which is then added to another vector,which is a random normal distribution

centered at 0 with standard deviation σ, to yield a statistically sampled point around the

implicit fingerprint. The stochastic sampling process ensures that the actual vector will vary

on every single iteration due to sampling, while keeping the mean and standard deviations

the same. Intuitively, the mean vector controls where the implicit fingerprint of a ligand is

centered around, while the standard deviation controls the “area,” how much from the mean

the encoding can vary. The decoder, hence learns that not only is a single point in latent

space referring to ligand, but all nearby points refer to the same ligand. The decoder is

exposed to a range of variations of the encoding of the same input during training. This pro-

cess is illustrated in the decoder architecture, as shown in figure 6.3. The approach adopted

here is similar to the data augmentation employed with Variational auto-encoders [67].

6.4.1 Gated Recurrent Neural Networks

In order to generate the SMILES string from the implicit fingerprint, we are motivated

to use recurrent neural networks (RNNs) because of their success in modeling sequential

data such as natural language. The SMILES strings lend themselves well to this model

considering the sequential nature of the notation. Each unit in the RNN attempts to capture

state information of the sequence by transforming all the elements that appeared before it.

It does so by encapsulating this information in a hidden state vector, that is passed from
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Figure 6.3: Implicit Fingerprints to SMILES Decoder : The deeplearning network learns
ligand representations by employing data augmentation technique at the input layer.The
continuous representation obtained is then fed into a series of dense layers followed by a
Gated Recurrent Unit Neural Network to obtain the corresponding SMILES string.

one unit back into itself, recurrently. The hidden state ht of the RNNs can be represented

as

ht = tanh
(
xtwxh + whhht−1

)
where xt represents the input at timestep t, wxh represents the weight from input node

to the hidden node, whh represents the weight on the feedback loop from the hidden node

to itself, and ht−1 represents the previous hidden state. As evident from the equation,the

hidden states from the earlier time steps get diluted over long sequences. This problem

gets compounded with SMILES considering the long term dependencies (such as matching

brackets etc.) that need to be maintained in order to resolve to a valid chemical compound.

The Gated Recurrent Neural Network attempts to address this problem by introducing two

gates called the “update” gate and a “reset” gate along with a memory which governs how

much of the previous state is retained. Each of these units (update gates, reset gate, and

memory) have their own trainable weights. The Update Gate at each unit decides the amount
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of new information to be added to the hidden states. The reset gate determines the past

information to be forgotten or retained at each unit.

r = σ
(
xtwxr + ht−1whr

)
where σ represents a logistic or sigmoid function. These sigmoid values of the reset gate

range from 0 to 1 and determine how much of the previous hidden node value is retained. A

value of r = 0 implies the none of the previous node value is retained and a r = 1 ensures the

entirety of the previous node is retained. This memory m, can be signified by the following

equation:

m = tanh
(
xtwxm + (r � ht−1)whm

)
where � represents the Hadamard (or element-wise) multiplication of two vectors. Addi-

tionally the update gate is governed by the following equation:

u = σ
(
xtwxu + ht−1whu

)
The update gate, with values ranging from 0 to 1, determines if the new hidden state should

use the previous value or the new value. Tying all these together, hidden state is governed

by the equation:

ht = u�m+ (1− u)� ht−1

Intuitively, the GRUs are better suited than the RNNS to our problem considering the

long term dependencies between symbols that must be maintained in the SMILES string.

The Ring structures, for example, are represented by matching numeric symbols typically

separated by two or more atoms within the SMILES string. The neural network should be

able to remember these long term dependencies for effectively decoding to a valid SMILES

string. Figure 6.3 illustrates multiple GRU layers that make up the decoder in order to

effectively map to the SMILES code. These “layers” shown in the figure are visualized

compactly—that is, they are actually two stacked sequences of GRU nodes .
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We performed extensive training and validation of the vanilla RNN and GRU models

with the continuous implicit fingerprint vector as the input and the one hot encoded SMILES

string as the output. We measured the outcome of the models by evaluating the categorical

cross entropy loss and the accuracy. As a part of training, we explored a variety of architec-

ture options with respect to the depth and the width of the deep learning models. We also

trained with different composition of the training sets based on ligands with varying counts

of past assay data. Across all training iterations, we noticed that the GRU based model

performed better with,lower cross entropy and higher accuracy. We also noticed that the

training loss converged faster compared to the validation loss. Our architecture comprised

of a series of dense layers followed which consume the 50 vector wide implicit fingerprint

representation of the ligands, followed by the GRU layers returning sequential information

to map to the SMILEs representations. The exact makeup of the deeplearning architecture

with the trainable parameters are provided in the supporting information.

Figure 6.4 illustrates the performance of the 3 different models trained with different

datasets. The first dataset comprised of all the 241K ligands from the dataset. We addition-

ally trained with training set comprised only of ligands with atleast 1 positive binding affinity

(121k ligands) and another iteration comprising of ligands with atleast 5 positive binding

affinities (8.5k ligands). As evident from the figure, the training and the corresponding

validation loss was lower when trained with the filtered data sets as opposed to the entire

population of 241k ligands. This can be attributed to the fact that the implicit fingerprints

of the ligands that exhibited positive binding affinities in prior assays tend to encode more

information on the ligands, and hence decodable into the explicit SMILES representations.

While this implies that approximately half the ligands in our dataset do not resolve back to

its corresponding SMILES representation, it does not however dent the utility of CFGenNet.

This is due to the fact CFGenNet is able to resolve the implicit fingerprints of the ligands

which have demonstrated bioactivities in the past, and hence such ligands are more desirable

to be used as anchor ligands from which to generate novel ligands.

The detailed architecture of the neural network is illustrated in figure 6.5. The number

of parameters at each layer is illustrated in the figure 6.6.
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Figure 6.4: Train and Validation Losses of the Neural Network : Training and validation
losses across multiple runs of the neural network.
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Figure 6.5: Neural network architecture of the deep learning model.
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Figure 6.6: Layers and parameters trained in the deep learning model.
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Chapter 7

Syntactic & Novelty Analysis of Generated Ligands

7.1 Introduction

In this chapter and the subsequent chapter, we present the results of our methods in

the context of its abilities to generate valid and novel molecules from the implicit latent

space. The ligands are validated in multiple folds. It is to be noted that some portions of

the subsequent sections have already appeared our publication [1] for which I am the first

author.

• Syntactic Analysis of generated molecules: We validate if the generated molecules are

syntactically correct and can indeed resolve to a valid molecule. The molecules (their

corresponding SMILES strings) are validated using the RDKIT library [16]. The details

are further described in the subsequent sections of this chapter.

• Novelty of the generated molecules : We validate of the generated molecules are novel.

We employ multiple criteria to assess novelty , as further described in this chapter.

• Semantic Analysis of generated molecules : We validate if the generated molecules are

meaningful and useful. We evaluate the properties of the molecules and further validate

its usefulness to be synthesized into a valid drug. The details are further described in

the subsequent sections of this chapter.

We wish to note that large parts of the subsequent sections have already been appeared

in a journal paper [1].

7.2 Syntactic Analysis of Generated Ligands

In this section, we discuss the outcomes of our method in the context of 5,000 randomly

selected ligands from the validation set. Additionally we also present the outcomes of a scaf-
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fold analysis from the potentially novel ligands generated from ligands with known affinities

to cancer targets from the ChEMBL23 database. To further analyze the practical applicabil-

ity of CFGenNet, the resulting ligands, specifically from approved cancer related drugs were

further evaluated for their viability to be valid compounds with enhanced biological activi-

ties. The complete list of ligands is made available as a part of the supporting information

of our journal paper [1](section 0.4).

Our method samples around the implicit latent space of the known ligands, or “anchor

ligands” to generate (potentially novel) compounds. In our testing, we randomly sampled

100 points across the 50 dimensions in the implicit space around our anchor ligands. Each

point was then processed through our neural network to obtain the corresponding SMILES

string. The SMILES string was then validated using the RDKIT library. This process is

discussed in more detail in the next chapter on the syntactic analysis of generated ligands.

We ran the aforementioned sampling and validation exercise on the 5,000 ligands (hence-

forth referred to as anchor ligands). A total of 4,632 out of the 5,000 (92.64%) anchor ligands

resolved to at least one valid ligand, although not all resolved ligands were (potentially) novel.

As mentioned earlier, 100 points are randomly sampled for each anchor ligand. Depending

on the information encoded in the continuous implicit vector space, multiple points around

a given anchor ligand may resolve to the same ligand. Only those ligands that are gener-

ated at least twice, and can be resolved to a valid compound using the RDKIT library, are

considered to be “valid” generated ligands. The frequency constraint of “at least twice ” is

enforced to help ensure that the generated ligand is not generated spuriously.

7.3 Novelty analysis of Generated Ligands

The practical applicability of the generative deep learning methods are typically measured

by the ability of the methods to generate novel ligands with desirable properties. However,

despite the plethora of works in the space, the concept of novelty is loosely defined. Several

popular recent works [2, 32, 33] just validate if the generated ligand was already present in

the training data set. If not found, the generated ligands are deemed as novel. Alternately,

Popova et al [34] assessed novelty by checking for the presence of the generated ligands in

the training set of 1.5m ligands from ChEMBL21. Additionally they also searched for the
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presence of the generated ligand in the ZINC database for 320M synthetically accessible

drug-like molecules. It is to be noted that a difference of even a single atom was deemed as

a sufficient condition to term a generated ligand as being novel. With the precedence in the

aforementioned prior works serving as a baseline, we adopted a series of multi-fold conditions

to assess the potential of the generated ligands to be deemed novel:

• Is the generated ligand already present in the training data set?

A total of 2917 generated from the validation set of 5k anchor ligands were not present

in the training set.

• Is there any other known ligand in the 1+B ZINC database with a similarity threshold

of .85 with the generated ligands.

We further ran the 2917 ligands against ZINC database to look for the most similar

known ligand from 1.3 billion compounds from the ZINC database, with a similarity

threshold of .85. The similarity between compounds were measured by the Tanimoto

Coefficient (TC) which measures a distance between fingerprints resulting in a score

ranging from [0,1] (0 corresponds to least similar and 1 to exactly same). [87] We

obtained the TC based on Morgan Fingerprints [88] of radius 512 bits . This resulted

in a total of 2759 ligands from the previous step.

• Among the ligands from ZINC database with similarity <.85, are there differences in

the scaffolds and/or the number of functional groups between the anchor and generated

ligands.

In order to further verify that the generated ligands were meaningfully different from

their closest hits from ZINC database, we further compared the scaffolds and functional

groups between the generated ligands and their closest hit from ZINC database. Of

the 2759 ligands from previous step,only 322( 12%) of ligands had the same functional

groups and only 618 ligands (22%) had similar scaffolds as their closest hit from ZINC

database. These numbers are summarized in table 7.1 for easier readability. Addition-

ally, Figure 7.1 plots the distribution of the ligands over the differences in the number

of functional groups between each pair of potentially novel ligand and their closest hit
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from ZINC database. It is seen that 67% (1831 ligands) of the ligands generated had

a difference of at least 2 or more functional groups with their closest hit. The figure

also illustrates the TC similarity scores between the potentially novel ligands & their

closest ZINC database hits. It is observed that 20% of the potentially novel ligands

have similarity of .5 or less.

We wish to note that the references of "novel ligands" in the rest of the sections should be

read as being potentially novel and in conjunction with the aforementioned set of conditions.

Figure 7.1: Novelty of generated ligands : Distribution of the number potentially novel ligand
and their closest hit pairs v/s differences in the functional groups & TC similarity ranges.
The figure demonstrates that A degree of novelty could be associated with the generated
ligands when compared with the 1.3Billion known ligands from ZINC DB. The differences
in the number of functional groups between the anchor and generated ligands range from 0
to 9,with at least 67% ligands with 2 or more differing functional groups. The TC similarity
bins help gauge the distribution of the TC similarities between the pairs. It is seen that the
lower the similarity,more likely it is for the pair having varying functional groups.

It was also observed that sampling around certain anchor ligands resulted in numerous

potentially novel ligands being generated, while sampling around other anchors did not yield

any novel ligands. To further investigate this phenomenon, we analyzed the abilities of the
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Table 7.1: Summary of Generated Ligands

Number of anchor ligands from validation set : 5,000
Number of anchor ligands yielding at least 1 valid ligand : 4,632
Number of generated ligands not present in the training data : 2,917
Number of generated ligands with a difference of 2 or more functional groups: 1,831
Number of anchor ligands yielding at least 1 ligand outside training data : 1,332

associated anchor ligands to yield potentially novel compounds by grouping according to

known prior assays. Figure 7.2 (left) illustrates the relationship between the presence of

assays of the anchor ligands and their ability to generate potentially novel ligands. As can

be seen, anchors that generated novel ligands tended to have a greater number of known

assays. In Figure 7.2 (right), we can also observe that this relationship holds for the number

of anchor ligands with positive affinities. Anchors with a more numerous positive assays also

tended to generate potentially novel ligands.

This observation is perhaps not surprising considering that the implicit fingerprints are

derived from the known assays. This provides evidence that the implicit fingerprints for

anchor ligands encode more meaningful information when there are more numerous assays.

One potential explanation for this is that the implicit representation can encode many desired

properties that are difficult to measure as the number of assays increases, thereby giving a

better blueprint for the decoder to generate potentially novel ligands. However, because the

implicit representation does not explicitly model chemical or experimental parameters, this

hypothesis must be investigated through observation of known ligand properties, as discussed

next.

7.3.1 Conclusion

In this chapter , we reviewed the methods adopted to validate the syntax and novelty of

the molecules generated by CFGenNet. We further evaluated in detail the results from the

aforementioned methods. We further evaluated these ligands for their usefulness in being

synthesized as drugs. We refer to this as the semantic analysis of the generated results,
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Figure 7.2: Ligand generation v/s total assays : Correlation of the ability to generate poten-
tially novel ligands with prior assays: Box plots show the co-relation between the two sets
of anchor ligands - one set from 1 or more potentially novel ligands were generated and the
second set which yielded no ligands when sampled in the implicit fingerprint latent space.
The first figure visualizes the total number of known assays that exists for each set. The
second box-plot visualizes the total number of positive binding affinities already recorded for
each assay.

whose details are covered in the next chapter.
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Chapter 8

Semantic Analysis of Generated Ligands

In this chapter, we provide details of the evaluation conducted to validate the quality of

the generated ligands.We term this as the semantic analysis of the generated ligands. As

a part of this analysis, we evaluated the some of the commonly used physical properties

to validate the usefulness of generated ligands from prior works. Additionally , we also

evaluated the scaffolds exhibited by the generated ligands along with the abilities of the

generated ligands to bind with known protein targets. We wish to note that large parts

of the subsequent sections are already published in our journal article (under review) [1]

for which I am lead author. It is also to be noted that the analysis of binding affinities,

scaffolds, and relative performance comparisons with FDA approved drugs was led by a

co-author (Niraj Verma) of the aforementioned paper [1]. However I contributed in the

interpretation of these analyses.

8.1 Physical Properties of Generated and Anchor Ligands

In order to explore the similarity of potentially novel and anchor ligands, we evaluated the

properties of the compounds using a number of scoring measures. More specifically, we used

the quantitative estimation of drug-likeness (QED), n-octanol water partition coefficient

(LogP), synthetic accessibility score (SAS), and used the number of benzene rings as an

indicator of the chemical complexity. Our approach to ascertain the similarities in the

physical properties between the anchor ligands and its corresponding novel ligands considered

the following approaches

• Compare the distribution of the populations of property values of the anchor ligands

with the distribution of the generated ligands. This comparison is standard practice

when evaluating the quality of generated ligands [34,36].
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Table 8.1: Properties of anchor and potentially novel ligands.

Anchor Ligands Novel Ligands t-test

QED Mean 0.69 0.57 t-stat = .99
p-value = .35

Stddev 0.20 .22

LogP Mean 3.41 3.43 t-stat = 0.33
p-value = .74

Stddev 1.69 1.95

Benzene Rings Mean 3.45 3.12 MW stat = 2.1e7
p-value = 4.76e-18

Stddev 1.24 1.33

SAS Scores Mean 2.67 3.18 t - stat = 21.62
p-value. = 6.7e-99

Stddev 0.55 0.85

• Additionally, to investigate similarity of generated ligands with their respective anchor

ligand, we evaluated the magnitude of the difference in the values between the ligands

for each of the 4 aforementioned properties. A residual value, which is the difference

between the property values is calculated for each pair of anchor ligand and its corre-

sponding generated ligand. A mean residual is then obtained for each anchor ligand

as described in equation 8.1. The magnitude of the mean residual value was used as a

method to determine the deviation of the properties between anchors and its generated

ligands.

Rm =

∑N
n=1

√
(pa − pn)2

N
(8.1)

Rm:mean residual property value for each anchor ligand

N :number unique potentially novel ligands generated for each anchor ligand

pa : property value (QED,LogP,SAS and NumRings) for the anchor ligand

pn : property value (QED,LogP,SAS and NumRings) for nth novel ligand for the cor-

responding anchor ligand.

The QED ranges between 0 and 1. The ligands with higher value indicate that the

molecule is more drug-like. Additionally, the method also claims to capture the abstract
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Figure 8.1: Property Distribution between anchor ligands and generated ligands : (A) Quan-
titative Estimate of DrugLikeness(QED) (B) Partition Coefficient (LogP) (C) Synthetic
Accessability Score (SAS) (D) Number of Benzene rings. The figure demonstrates that
the property distributions of the anchor ligands is similar to the potentially novel ligands
generated from the corresponding anchors across all 4 properties.

notion of aesthetics in medicinal chemistry [89]. We leveraged the python based RDKit

library to determine the QED scores of the generated novel compounds. As illustrated in

Table 8.1, the average QED score of the novel ligands was found to be 0.57. Figure 8.1-

A(i) illustrates the comparison of the distributions of the QED scores from the potentially

novel ligands with their anchors. It can be observed that the two distributions are very

similar. The 2 sample student t-test statistic of 0.99 with a p-value of 0.35 also confirms

that there exists no statistical difference between the two distributions. Table 8.1 tabulates

the mean, standard deviations and t-test scores of all the properties calculated as a part of

our experiments. Additionally, figure 8.1-A(ii) illustrates the similarities of the QED scores

between the anchor ligands and their respective generated ligands by measuring the mean

residual value as described in equation 8.1 . It is evident from the plot that a large number

of mean residuals are less than .1 units. This indicates the QED scores of close to 80% of
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the anchor ligands are within .1 units of their generated novel ligands, and close to 96% of

the anchor ligands have QED scores within .2 units of their generated ligands.

The water–octanal partition coefficient (LogP) was an other property used to quantify

the physical properties of the potentially novel ligands. LogP describes the propensity of

ligand to dissolve in an immiscible biphasic system of lipid (fats, oils, organic solvents)

and water [90]. A negative value for logP means the ligand has a higher affinity for the

aqueous phase(hydrophilic);when logP = 0 the ligand is equally partitioned between the

lipid and aqueous phases; a positive value for logP denotes a higher concentration in the

lipid phase(lipophilic). The potentially novel ligands tended to be more lipophilic with a

mean LogP value of 3.43 with a standard deviation of 1.94. Figure 8.1-B(i) illustrates that

distributions of LogP scores between the novel and anchor ligands. The two distributions

appear to be visually similar and the 2 sample student t-test score of .33 with p-value = .74

also confirms the same. Additionally figure 8.1-B(ii) illustrates the similarities of the LogP

scores between the anchor ligands and their respective generated ligands by measuring the

mean residual score as described in equation 8.1. It is observed that close to 87% of the

anchor ligands have their LogP scores within 1 unit of their generated ligands.

The synthetic accessibility score (SAS), a method that is able to characterize molecule

synthetic accessibility as a score between 1 (easy to make) and 10 (very difficult to make) [91]

was another property that was evaluated for the potentially novel drugs generated by our

method. The mean score was found to be at 3.17 with a standard deviation of .85. While the

SAS scores between anchors and their novel ligands appear to be similar visually (8.1-C(i)),

the t-statistic score of 21.62 with p-value=6.7e-99 indicate that the two distributions are

statistically different. Nevertheless the mean score of 3.17 of the potentially novel ligands

indicate that the potentially novel ligands are synthesizable to generate valid drugs. Fig-

ure 8.1-C(ii) further compares the individual SAS Scores between the generated ligands and

their respective anchor ligands. It is observed that 87.3% anchor ligands have SAS Scores

within 1 unit of the generated ligands. This indicates that an overwhelming majority of

the anchor ligands share similar SAS Scores with their generated novel counterparts. Ad-

ditionally the number of Benzene rings was evaluated as a measure of chemical complexity

of the potentially novel ligands. Figure 8.1-D(i) demonstrates that the complexities of the
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potentially novel drugs are comparable to the complexities of their corresponding anchor

ligands. Figure 8.1-D(ii) compares the similarities in the number of benzene rings between

the anchor ligands with their respective generated novel ligands. From the figure, it is evi-

dent that the distribution of the number of rings do not follow a normal distribution. For

this reason, we conducted the Mann Whitneyu non parametric test [92] to compare the two

distributions. The test yielded a statistically significant difference in the 2 distributions .

however it was observed that approximately 83% of the anchor ligands had the exact same

number of benzene rings as their respective generated novel ligands.

Figure 8.2: Lipinski’s Rule of 5 : Lipinski’s Rule of 5 valuated on the potentially novel
ligands generated from implicit fingerprints. The figure demonstrates that 80% out of the
1,831 potentially novel ligands satisfy 3 or more rules, signifying that the generated ligands
have properties to be an effective drug.

We further evaluated the Lipinski’s rule of 5 (LR5) for all the generated ligands. [93]

The LR5 describes critical properties of a ligand in the human body such as absorption,

distribution, metabolism, and excretion. The rule states that a ligand to be effective for
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therapeutics should have less than 5 hydrogen bond donors, less than 10 hydrogen bond

acceptors, a molecular mass of less than 500 daltons and the LogP less than 5. The LR5 score

was computed for all generated ligands based on [94]. We observed that 68% of generated

ligands completely satisfies the LR5 rule and 22% of generated potentially novel ligands

satisfy at least 3 out of the 4 rules. This is further illustrated in figure 8.2. The percentage

of matches to Lipinski’s rule of 5 signifies that the generated ligands have properties to be

an effective drug.

Now that it is established that the potentially novel and anchor ligands are likely to have

similar and comparable physical properties, we turn our attention to answering whether the

novel ligands are also likely to similarly bind to known targets.

8.2 Binding Affinity predictions of the potentially novel ligands

The biological activities of the potentially novel ligands were evaluated by inferring their

predicted binding affinities with 102 DUD-E protein targets. [95] The DUD-E targets consist

of a variety of proteins exhibiting different mechanism of protein-ligand interactions. The

relationship of bioactivities within the anchor ligand and generated ligands over the DUD-E

targets will highlight the versatility of our model. Thus we used the anchor ligands to test

their binding affinities with the DUD-E targets.

In order to validate the similarities of the binding affinity properties of the novel ligands

with their respective anchors, the binding affinity scores were determined from SSnet and

Smina for the anchor ligands with the 102 DUD-E proteins. Each ligand (anchor and novel

ligands) yielded a distribution of binding affinity scores against each target from the set of

102 DUD-E protein targets. The similarities in the binding affinities of the novel and their

respective anchor ligands were evaluated by comparing the aforementioned binding affinity

distributions. Out of the total 1,332 unique combinations of novel and respective anchor

ligands, approximately 84% demonstrated similar binding affinity behaviors. The similarity

score or the measure of Intersection over Union (IOU) [96], in this exercise is calculated by

evaluating the proportion of DUD-E targets to which both the ligands demonstrate binding or

lack of binding. An SSnet score of 0.5 or less is considered lack of binding, and a score greater

than 0.5 as binding. Figure 8.3 illustrates this for 1,332 unique pairs of novel ligands and
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their anchor ligands. Each data point on the x - axis in figure 8.3 represents a unique anchor-

novel ligand combination. The y-axis represents the Intersection over Union score calculated

between the 2 distributions of binding affinity scores, the first distribution being binding

affinity indicator of anchor ligand with 102 DUD-E proteins and the second distribution, the

binding affinity indicator of the novel ligand with 102 DUD-E proteins. The figure further

illustrates that a large majority of the anchor-ligand pairs exhibit similar binding affinities. A

similar observation was made for Smina shown as Figure S1 by considering ligand similarity

based on -7.5 kcal/mol as a threshold for ploting IOU.

Figure 8.3: Pairwise binding affinity scores : The plot illustrates the similarities in the bio-
activity between each pair of anchor ligands and their corresponding generated ligands to the
102 DUDE protein targets. The large regions of dark blue hue in the heat map demonstrate
a strong co-relation between the binding affinities for most pairs with the DUDE targets.
The scatter plot illustrates two sample pairs, with the top right plot representing a pair with
very similar affinity scores, with the bottom right plot illustrating a pair where the affinities
differ between the anchor and generated ligand.

While there is a high coherence of the scores obtained from SSnet, we further evaluated
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Figure 8.4: IoU scores and the Tanimoto coefficient scores : A) Comparison of the IoU scores
and the Tanimoto coefficient scores between the anchor and generated ligands. : The figure
illustrates that there is no strong correlation between the anchor and generated ligands.
B)Histogram of TC scores across all the pairs : Illustrates the distribution of the similarity
scores between the pairs.

the similarities between the anchor and generated ligands. We calculated the Tanimoto

Coefficient based similarity scores between each pair of anchor and generated ligands. Figure

8.4 plots the IoU scores and the TC similarity scores for each pair. It is evident from the

plot that there is no correlation between the IoU scores and the TC similarities. Despite

the lack of correlation, the high coherence in the binding affinities could be explained by the

scaffold similarities between the anchor and generated ligands. This is further evidenced by

the scaffold analysis using the pseudo-hilbert curve as described in the subsequent section.

The analysis on QED, LogP, and SAS provided an intuitive relationship of generated

ligands and drug-likeliness. However, for a drug to be effective for specific target and show

selectivity among other targets, should preserve the scaffold (core structure of a molecule

[97–99]). To analyze if the generated ligands have similar scaffolds, we sorted all the anchor

ligands by Tanimoto Coefficient (TC). The sorting was performed by recursively finding

next most similar ligand from the anchor ligands starting from a random anchor ligand. The

sorted list was then mapped to a pseudo-Hilbert space filling curve. The pseudo-Hilbert
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Figure 8.5: Scaffold analysis : A pseudohilbert curve is plotted for anchor ligands and
generated ligands. The color denotes SSnet scores. Similarity between anchor and generated
pseudohilbert curves and the low difference among them, signifies that our method retains
scaffolds from the anchor ligands while also predicting similar bioactivities.

curve was used to observe molecular scaffolds directly from the map as pseudo-Hilbert curve

preserves the spatial proximity of the sorted list. The pseudo-Hilbert map for the generated

ligands were made similarly. Each anchor ligands were repeated to the same number of

generated ligands in order to match one-to-one when comparing pseudo-Hilbert curve for

generated ligands and anchor ligands. Figure 8.5a and 8.5b shows the pseudo-Hilbert map

for anchor ligands and generated ligands respectively. The pseudo-Hilbert map is colored

based on the SSnet scores obtained by docking the ligands with the DUD-E targets with

PDB ID 1B9V and 3KBA.

We observe that the clusters are majorly retained for the generated ligands when com-

pared to the anchor ligands. This is further highlighted in Figure 8.5c, that shows the

difference in SSnet scores for generated and anchor ligands. The map is mostly blue which

represents a mere difference of SSnet scores in generated and anchor ligand of less than

0.1. The results highlight that the novel molecules generated preserves the scaffold that is
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essential in protein ligand binding.

8.3 Comparison with FDA Approved Drugs

In order to further hone in on the practical applicability of our methods and the poten-

tially novel drugs generated, we conducted analysis on novel drugs generated on known cancer

related ligands. For this exercise we shortlisted 10 drugs approved for treating various forms

of cancer also available in the ChEMBL23 database. We present detailed analysis of the

potentially novel ligands generated around a known cancer drug, DASATINIB. Sampling

around the implicit fingerprint space of this anchor ligand yielded 10 novel ligands. Fig-

ure 8.6 illustrates the 10 novel ligands. The novelty of the compounds were tested from the

ChEMBL23 dataset (1.4 million compounds) and the ZINC dataset (1.3 billion compounds).

Across the 10 novel compounds, the maximum similarity score were 0.88 for ligands in the

ChEMBL23 dataset and 0.92 for ligands in the ZINC dataset. Table 3(in supporting in-

formation [1]) shows the largest TC obtained for each novel compounds. Interestingly, in

this particular case, we observe that the scaffold for the anchor ligand is retained in most of

the generated ligands. The results are in line with the scaffold analysis performed for the

DUD-E protein targets provided in the previous section (Figure 8.5). Retention of scaffold

is crucial for ligand binding as the protein pocket in general has confined space for docking.

The scaffold provides both size and imperative interactions such as hydrogen bonding, π

interactions etc. that contributes to the stability of the protein-ligand complex.

To test the bioactivities for the novel ligands generated, we sorted 9 known targets for

the anchor ligand, the details of which is provided in Table 2(in supporting information [1]).

We conducted a docking method Smina [100] and a deep neural network based model SS-

net [24] for bioactivity score prediction. Figure 8.7 shows the results obtained by the two

methods. The first five targets are labeled active and the remaining four as inactive for the

anchor ligand used in the ChEMBL dataset. We observe that the generated ligands have

similar Smina scores as the anchor ligands. A similar behaviour is observed when compar-

ing the SSnet scores for anchor and generated ligands. It is important to note that both

Smina and SSnet are sensitive to ligand and their complex interaction with a protein target.

Many factors such as functional group, size of the molecule, molecular weight etc. govern
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Figure 8.6: Novel ligands generated around known cancer drug, DATASINIB : It is observed
that the generated ligands have ring structures similar to the anchor drug compound. In or-
der to further validate if the rings are indeed realistic and ligands pragmatic,we investigated
synthesizability, and like-liness of the ring to bind a protein. Section 0.2.1 from Supporting
Information [1] enumerates information about the novelty and the binding affinities exhib-
hited by these generated ligands.

the bioactivity. The fact that all the 10 novel generated ligands have similar bioactivities

provides evidence that our ligand generation method produces ligands with similar binding

characteristics to the anchor ligand.

We further compared the bioactivities of 6 FDA approved drugs and their corresponding

generated ligands from the implicit fingerprint and latent space generated from the varia-

tional autoencoder (VAE) work from [36] respectively. Each of the 6 ligands were docked

towards their original intended target, the details of which is provided in Table 1(supporting

information [1]). We observe high similarity in predicted bioactivities for implicit finger-

prints compared to the latent space generated from VAE for both the Smina and SSnet

scores shown in Figure 8.8 (Table 5-10) (in supporting information [1], sections 0.2.2 - 0.2.7).

A visual inspection of the compounds generated from our method and the latent space from

VAE [2] shows that both the scaffold of the original anchor ligand (Figure 2-7, supporting
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Figure 8.7: SMINA scores for generated ligands around DATASINIB : Sample test on various
active/inactive targets for anchor ligands. The first 5 targets 2FO0, 1PKG, 1AVZ, 1GQ5
and 1MQB are active and the rest inactive. The red color denotes the anchor ligands and
the black denotes generated ligands respectively.

information [1] section 0.2) and generated ligands are similar. However, bioactivity is sensi-

tive to small changes in the chemical structure such as a functional group. Our method is

perceptive towards functional groups due to the way collaborative fingerprints was modeled,

i.e. by considering the bioactivities.
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Figure 8.8: Comparison with Variational Autoencoder based fingerprints : Comparison of
Implicit and latent fingerprints on FDA approved drugs and their corresponding targets. The
red color denotes the anchor ligand and the black color denotes generated ligands respectively.
The latent label and implicit label shows the binding affinities for generated ligands from
the method developed by [2] (in blue) and our method (in green).
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Chapter 9

CFGenNets for Image Generation

Introduction

Research Aim 1, outlined in the previous chapters demonstrated that implicit fingerprints

capture ligands and proteins in a shared latent space, typically for the purposes of virtual

screening with collaborative filtering models applied on known bioactivity data. Research

Aim 2 further extended this concept and introduced the concept of CFGenNets, a novel

generative deep learning algorithm that could not only reconstruct the original ligands but

also generate novel ligands from the implicit ligand fingerprint space. Our third and final

research objective as a part of this thesis involves evaluating the abilities of CFGenNets

to generate images with implicit image fingerprints derived from the corresponding image

meta data. That is, we seek to evaluate our generative methodology in a new application

area—images. The recent years have seen rapid advances in the domain of caption to image

generation [72,101–104]. These methods attempt to generate realistic images that match the

captions semantically. In this aim, we propose to generate images, however from a structured

set of attributes describing the images, as opposed to the unstructured natural language text.

Such a function could have meaningful applications in areas such as image manipulation and

gaming. For example, Open AI unveiled DALL-E [105], which was trained to generated im-

ages from unstructured text. DALL-E demonstrated the creation of novel objects in images

by combining unrelated concepts, e.g., an armchair shaped like an avocado. Going beyond

these, the creators of DALL-E also demonstrated more practical applications such as im-

age manipulation by generating shadows of objects within images, fashion design, and more

generally product design and conceptualization (e.g., conceptualization of spaces by merely

controlling the caption to generate relevant images). While we are focused on structured

sets of attributes as opposed to unstructured caption text, with this aim we investigate the
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applicability of CFGenNets to provide a framework where the user can manipulate synthetic

images by altering structured attributes (e.g., keywords). Hence, in theory some of the same

applications described above in the context of caption to image generated are applicable to

CFGenNets based image generation capabilities. In general, image understanding and rep-

resentation are thriving research communities and our methodology may have informative

and interesting contributions that complement existing theory.

9.1 Motivation for Image Synthesis

While the previous chapters described in detail the applications of CFGenNets in the

field of ChemInformatics to generated novel drug compounds, there is still a need to eval-

uate the cross domain applicability of CFGenNets. In this context, the domain of image

synthesis, which aims to generate images given a set of descriptors is naturally aligned to

the application of CFGenNets. The images with their shared descriptors can be described

in a tabular form, with the rows representing images and the columns representing the at-

tributes. Once in this form, the tabular data is conducive to the application of collaborative

filtering to generate latent representations of the images. While technically, the domain of

image synthesis is conducive to the application of CFGenNets, there also exists practical

applicability as evidenced by the recent research trends in the field of image synthesis.

9.1.1 A Primer on Related Work in Image Synthesis

The recent years have seen tremendous progress in the field of deep learning based im-

age synthesis and manipulation using generative neural networks. The Variational Autoen-

coders [67] (VAEs) are a class of generative models that attempt to learn the underlying

distribution of the data to decipher how the data is generated. It aims to identify the un-

derlying distribution of the data which allows for sampling to generate new data, or images

in our case. The traditional VAE uses and encoder and decoder pair of neural networks

(typically convolutional). The encoder reduces dimensionality and is designed such that the

reduced dimensionality space can be sampled from to produce images. In general, VAEs are

designed with a loss function that simultaneously reduces error between the image input and

the reconstructed image, while also keeping the latent space samples normally distributed.

This is typically achieved by placing a KL-divergence constraint for Gaussian samples in
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the latent space through the loss function. Several works have attempted to deploy VAEs

and their variants to obtain neural embeddings on celebA datasets and manipulate the la-

tent spaces to generate novel synthetic images. [106] demonstrated the use of VAEs not

only to reconstruct the original images, but also to extract features correlated to binary

labels in the data. Their model, the Conditional Subspace VAE (CSVAE) [106], used mu-

tual information minimization to learn a low-dimensional latent subspace associated with

each image attribute, that could be easily interpreted and also used for image manipula-

tion. Li et al. [107], introduced Latent Space Adversarial Auto Encoders, where the latent

space from the autoencoders are mapped into a style space and an attribute space. The

former represents attribute-irrelevant factors, such as identity, position, illumination and

background, etc. The latter represents the attributes, such as hair color, gender, with or

without glasses, etc, of which each dimension represents one single attribute [107]. Yan et

al. [108] investigated the problem of image generation by modeling images as a composite

of foreground and background. They developed a model with disentangled latent variables

using VAEs called disentangled Attribute-Conditional generative models. Their model re-

lied on interpreting an image as a composite of a foreground image and background image

combined via a gating function with the model training process aimed at learning the latent

representations of the background and foreground images. Cai et al. [109] extended the

concepts of VAEs by producing Multi-Stage VAEs where the decoder is divided into 2 com-

ponents where the second component generates refined images based on the course images

generated by the first component. They decoupled the second component from the VAEs

which allows other loss functions beyond the MSE based loss function typically employed in

VAEs. Razavi et al. [110] introduced VQ-VAEs , or Vector Quantized VAEs which builds

on the ideas of lossy compression in techniques such as JPEGs [111]. Their argument stems

from the idea that it is possible to remove more than 80% of the data without noticeably

changing the perceived image quality. They compress images into a discrete latent space by

vector-quantizing intermediate representations of an autoencoder. In their version of VAEs,

the encoders output discrete encondings instead of continuous vectors using the concepts

of vector quantization [112]. Besides VAEs, the Generative Adverserial Networks (GANS)

have also been prominently used for image synthesis and generation in the recent past. As
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a framework of generative model, Generative Adversarial Net (GAN) [113] aimed to gen-

erate better synthetic images than previous generative models, and has become a popular

research area. A Generative Adversarial Net consists of two neural networks, a generator

and a discriminator, where the generator tries to produce realistic samples that fool the dis-

criminator, while the discriminator tries to distinguish real samples from generated ones [72].

This methodology has progressed dramatically in the past decade such that many generated

images are quite realistic. As mentioned earlier, the GANs leverage discriminator network is

trained to tell apart the synthetic data from the real examples. The difference between the

synthetic and the real examples determined during each step of the training process produces

a gradient that guides the learning of the two networks. The recent years have seen a number

of enhancements to the core idea proposed by Goodfellow et al. [72]. For example, Hjelm

et al. [114] proposed Boundary Seeking Generative Adversarial Networks, to handle discrete

settings by means of a policy gradient for training the generator which is informed from by

the estimated difference measure from the discriminator to compute importance weights for

generated samples. Mao et al. [115] proposed the adoption of L2 loss function as an effective

measure to overcome the saturation problem in GANs after exhaustive experiments on large

image datasets. Zhao et al. [116] proposed Dual-Agent GANs, where they employed an off

the shelf 3D face model as a simulator to generate profile face images with varying poses.

They specifically attempted to address the problems associated with the unbalanced distribu-

tion of poses in available face recognition datasets. They employed teo discriminators that

the generator played against — the real-fake discriminator and an identity discriminator.

Additionally, Mirza et al. [117] proposed the conditional version of GAN, with condition on

both the generator and discriminator for effective image tagging. Berthelot et al. [118] pro-

posed Boundary Equilibrium GAN (BE-GAN) framework where they leveraged Wasserstein

distance loss for controlling the trade-off between image diversity and visual quality.

Some of the more seminal works in the space of image synthesis is in the domain of

Neural Style Transfer. Gatys et al. [119] successfully demonstrated that the neural networks

can encode both the content and the style information of images and that it was possible to

separate them. Huang et al. [120] enhanced the optimization process to enable a real time

style transfers by introducing Adaptive Instance Normalization technique. They modified
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the concepts of Instance Normalization where they align the channel-wise mean and variance

of the content input to that of the style input. The Adaptive Instance Normalization involves

removing the style information from the content image by normalizing and performs style

transfer to the content image by transferring feature statistics, specifically the channel-wise

mean and variance from the style images to the content images. In this technique the affine

parameters are not learnt but adapts the affine parameters from the style input. Karras et al.

[121], motivated from style transfer literature redesigned the generator architecture to control

the image synthesis process. They introduced a nonlinear mapping network to generate an

intermediate latent space, which provides the style information to enable Adaptive Instance

Normalization. With GANs as their foundation, another notable advancement is Stack GAN

[122], which consisted of two stages of GANs, with Stage One producing the basic shapes for

images at relatively low resolution. This is further enhanced by Stage Two GANs, which add

realism and resolution to the base images. For this task, the latent space cannot simply be

random, but must be discovered from the image caption used to generate the image. To this

end, recent years have also seen the advent of Recurrent Adversarial networks to map natural

language input to visual images [123]. In this work, recurrent networks are used to transform

captions into a latent encoding and this encoding is used to reconstruct an image. This is

a similar process to adversarial auto encoding [124], except that the input is a sentence,

not an image. Further, alignDRAW [125] was another mechanism that leveraged Recurrent

neural networks in lieu of Convolutional Networks to generate images using soft attention

mechanisms. Similarly, Zhi et al. introduced PixelBrush [126], a tool to generate art from

text description from human written descriptions using Skip-thoughts text embedding (a

popular form of sentence embedding). PixelBrush used Generative adversarial networks to

produce artistic images conditioned on human-written descriptions. Skip-thoughts were used

for text embedding of 4800 dimension and conditional generator and discriminator network

for generating images [126].

The recent popularity in the field of image synthesis, as evidenced by the continuous

stream of novel research, and the natural alignment of the problem statement to Collabora-

tive filtering for generating the latent image vectors, serve as motivation for us to choose this

as an application to evaluate the cross domain applicability of CFGenNets. By illustrating
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the versatility of the CFGenNet algorithm to a popular research field, we hope to maximally

impact the research community of our peers. Our contribution, therefore, can be thought of

as the first work to investigate the use of collaborative filtering with generative deep learning

analysis. We hypothesize that the latent space learned by collaborative filtering offers unique

qualities that previous works have had difficulty achieving. We therefore explore the space

of image synthesis with our CFGenNet algorithm, and manipulate the algorithm to better

represent images.

9.2 Methodology

We adopted the following steps in order to investigate the applicability of CFGenNets

for Image synthesis:

• Constructing a matrix to represent the images from the data and their respective

attributes. Here the rows represent each image, while the columns represent the entire

set of distinct attributes that capture key aspects and/or objects contained within the

images.

• Performing collaborative filtering on the said matrix to derive the implicit image fin-

gerprints for each image. We hypothesize that this implicit latent space will have more

utility in synthesizing images, similar to our findings in virtual screening.

• Training a decoder with convolutional layers to generate the images from their corre-

sponding implicit image fingerprints.

This methodology is similar to that employed in CfGenNets for drug discovery, but using

images and image attributes to train the collaborative filtering algorithm. Later on, we will

show that using this base methodology produces good, but not great, image reconstructions.

Therefore, we combine our methodology with VAEs to produce more photo-realistic images

(discussed later).

9.2.1 Dataset details

We leveraged the CelebFaces Attribute Dataset (CelebA) [3] for our evaluation of CF-

GenNets for Image processing. CelebA is a large dataset with around 200k celebrity images
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with 40 attributes describing the facial features found in the images. The images in this

dataset cover large pose variations and background clutter. Figure 9.1, reproduced from

the original article [3] in this paper for easy reference, illustrates the a sample set of images

and the attributes associated with them. In order for us to be able to apply collaborative

filtering algorithm on the dataset, we recast the CelebA faces dataset in terms of a large

matrix consisting of 200k rows, each row representing one image and 40 columns, with each

column representing the facial attribute descriptors. Figure 9.2 illustrates the matrix with

two sample images.

Figure 9.1: Sample Images from CelebA dataset. Reproduced from the original article [3]
here for easy reference.

9.2.2 Collaborative Filtering on CelebA dataset

The next step in our process (once the matrix described in Figure 9.2 is constructed) is to

run the collaborative filtering algorithm. In our dataset, there are 200,000 rows (one for each

image) and 40 columns (one for each image attribute). We leveraged the same set of steps
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Figure 9.2: CelebA dataset recast as a matrix with each row representing one image from
the dataset and the columns representing the attributes described for the image.

as described in Chapter 3 to generate two sets of fingerprints. One set of fingerprints for the

images called Implicit Image Fingerprints and another set of 40 fingerprints representing the

40 attribute descriptors. We chose the latent representation to be 500 dimensional for the

collaborative filtering. Thus, the fingerprints are continuous vectors of size 500 dimensions.

9.3 Analysis of Implicit Fingerprint

As described in the previous section, our method generates implicit fingerprints for images

and the 40 features that describe the images. By definition of collaborative filtering, as

outlined in Chapter 2, the implicit image and the feature fingerprints share the same latent

space. For visualization, we reduced the dimensions of the implicit fingerprints from 500

dimensions to 2 dimensions using the t-SNE [61] algorithm. The t-SNE algorithm attempts

to retain the same mutual distances of the data points even in a lower dimensional space.

Figure 9.3 illustrates the images and the 40 features in a reduced 2 dimensional space. It

can be seen that the features and the images share the latent implicit fingerprint space with

the features interspersed amidst the images. In this way, one could reduce an image into this

latent space or construct a set of 40 attributes for an image and map into the same latent

space. This property is key to understanding why the collaborative filtering latent space

might be advantageous compared to other methods—the shared latent space might allow

for increased understanding because we can “probe” values from the image attributes or the
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image itself.

Figure 9.3: Representation of the implicit image and feature fingerprints in a 2 dimensional
space using t-SNE algorithm. The images and the features both share the same latent space,
with the features interspersed amidst the images.

We further evaluated the predictive powers of the implicit image fingerprints for the

task of Facial Attribute Recognition, ie facial attribute prediction. We trained a multi-class

classifier using a neural network with fully connected layers. The input to the network

was the continuous implicit image fingerprints and the network was trained to predict the

presence or absence of 40 facial attributes contained in the respective images. We used 160k

images for training the network with 40k images as the validation set. The results of the

training is illustrated in Figure 9.4. One can think of this classifier as a “reverse encoder” for

the latent space. That is, it maps from the latent space back to the 40 dimensional image

attributes. By performing this classification, we can further understand if the latent space

is converged and reliable at separating images with similar attributes.

The classifier was trained to minimize the binary cross entropy loss and we measured
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Figure 9.4: Performance Metrics of facial attribute prediction classifier trained on the implicit
image fingerprints.

the accuracy and the precision of the predictions. We see the classifier performing with very

high accuracy and precision, both hovering around 99%. This indicates that the implicit

image fingerprints indeed encode the information on the distinct facial attributes contained

in the images. We hypothesis that these patterns encoded in the implicit fingerprint space

would enable the CFGenNet decoders for images learn the patterns in order to reconstruct

the original images.

9.3.1 Implicit Feature Fingerprints

As we described earlier, the collaborative filtering exercise produces latent encoding for

both the images and the 40 facial features/attributes that describe the images. The latent

space encoding of the facial features or the Implicit Feature Fingerprints also share the same

latent space as the images. This is property is also captured in the figure 9.3, where we see

the features interspersed with the images in the reduced 2-dimensional implicit fingerprint

space.

We further analyzed the abilities of the Implicit Feature Fingerprints to be able to suc-

cessfully predict the corresponding facial attribute. We used the classifier trained on the
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Figure 9.5: The hash map illustrates the abilities of the Implicit Feature Fingerprints to
predict the presence of respective facial descriptor attributes in the images.The Implicit
feature fingerprints generate accurate predictions even though they are fed into the classifier
trained solely on the Implicit Image Fingerprints. This is possible because the features and
images share the same latent fingerprint space when generated via Collaborative Filtering.

Implicit Image Fingerprints, described in the previous section, to generate the predictions

using the Implicit Feature fingerprints. The implicit features were able to predict with close

to a 100% accuracy. Figure 9.5 further illustrates the predictions from the implicit feature

fingerprints. The rows in the figure represent the fingerprint vectors for each of feature and

the columns represent each facial attribute. The cell at the intersection of the rows and

columns is representative of the prediction generated from the Facial Attribute classifier.

As is evident from the hash map, the implicit feature fingerprints encode information about

the attributes they represent. In addition, they also encode information on other correlated
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attributes. For example, we notice that the fingerprint for ’Wearing Makeup’ predicts with

high confidence the presence of other facial attributes such as attractive, wearing lipstick,

arched eyebrows, and female. While wearing makeup does not necessarily indicate these

other attributes, the CelebA dataset clearly has correlations that reflect these similarities.

As illustrated in Figure 9.5, the Implicit Feature Fingerprints predict the presence of respec-

tive facial descriptor attributes in the images with very high accuracy. The Implicit feature

fingerprints generate accurate predictions even though they are fed into the classifier trained

trained solely on the Implicit Image Fingerprints. This is possible because the features and

images share the same latent fingerprint space when generated via Collaborative Filtering.

9.3.2 Conclusion

In this chapter, we introduced the concept of CFGenNets for image processing and de-

scribed in detail the data set used and the methods applied to generate the implicit finger-

prints. We also presented the analysis conducted on the predictive powers of the Implicit

Image and Feature fingerprints. Given the predictive capability of the implicit fingerprints,

we are comfortable moving forward with additional analyses to produce images from the

implicit fingerprints. We describe our experiments to around building CFGenNets for image

generation in the subsequent chapter.
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Chapter 10

CFGenNets for Image Generation : Architecture

In this chapter, we extend the utility of CFGenNets to the domain of image generation.

We explore the abilities of CFGenNets to reconstruct images from their implicit fingerprint

space. The previous chapter described the methods adopted to generate the implicit image

fingerprints. In this chapter, we describe in detail the experiments conducted on CFGenNets

for image generation and synthesis.

10.1 Decoders to generate images

While it is observed that the implicit fingerprints for Images encode attributes and fea-

tures of the images in the latent space, we propose the usage of the fingerprints to reconstruct

the corresponding images. We believe this can form the foundation for enhanced applications

such as generation of synthetic images and image manipulation by manipulating the corre-

sponding implicit fingerprint space. Unlike the previous related works described in Chapter

9, in our research, we start from the latent space obtained from collaborative filtering instead

of generating the latent space from a network that has processed images in some form. The

subsequent sections describe our network architecture and the results. Additionally, we also

demonstrate in subsequent chapters that the Implicit Feature Fingerprints obtained from

Collaborative Filtering itself encodes the style information along with the Implicit Image

Vector encoding the content information, thereby providing a framework for image manipu-

lation.

10.2 Decoder Architecture

From our experiments outlined in the previous chapter, it is evident that the implicit

fingerprints from collaborative filtering encapsulate certain aspects of the underlying images

and the features that describe the images. Here, we design deep neural networks to decode

the implicit image fingerprints and map back to the original image. Recall that the implicit
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Figure 10.1: CFGenNets architecture for generating images from implicit image fingerprints
generated from collaborative filtering.

fingerprints of the images are continuous vectors that represent the images in a space with

500 dimensions. This is fed as an input to our custom decoder which consists of a series of

fully connected layers followed by a variant of two dimensional convolution layers. These

layers up-sample the image and provide details based upon the latent space representation.

Ideally, the images would look perceptually similar to their original forms.

As outlined in the CFGenNets for drug discovery in the preceding chapters describing

Aim 2, we adopt a mechanism of input data augmentation. Similar to our previous work

in ChemInformatics, this is done to avoid the latent space from being sparse. We perform

data augmentation by adding randomness to the input layer of the neural network. This

stochastic noise added to the decoder input ensures that the decoders learn to decode from

a wider variety of latent points to find more robust representations. This is similar to

the process by which Variational Autoencoders (VAEs) sample in the latent space before

reconstruction. Our network consists a series of fully connected layers processing the input

implicit image vector followed by convolution layers to upscale the dense representations

and map to valid images. The up-sampling operation performed was evaluated with two
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competing convolutional techniques that are each common in generative deep learning with

images (discussed more in the next section). The general flow of the process is shown in

Figure 10.1.

Figure 10.2: CFGenNets for Images : Network design using transpose convolution operations
and bi-linear upsampling.
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10.2.1 Convolution Layer Design

Convolution layers are standard components of neural networks that deal with images.

The convolutional layers facilitate representational learning, a method that aims to learn

relevant features for a given task without manual feature engineering. In the context of image

related tasks, convolutional networks exploit the facts that nearby pixels in any given image

are likely to be strongly related compared to farther pixels, and that objects represented in an

image are made up of smaller parts. The convolutional network uses filters, which are moved

from the top left of the image to bottom right using a standard two-dimensional convolution

operation. Each point on the image is represented in the filter by a value calculated by the

convolutional operation. The convolutional operation typically results in down-sampling,

i.e., the spatial dimensions of the output layer is lesser from the input layer. However,

for our purposes of producing an output image of dimensions 128x128 from a dense input

vector of 500 dimensions, we apply the filters as a means of up-sampling operations in the

neural networks. That is, the learned filters in the network function as image interpolating

filters. The up-sampling operations can either be conducted via interpolation such as bi-

linear interpolation or transposed convolution [127] methods. In bi-linear interpolation, the

input to the convolutional layer is doubled in size using bi-linear interpolation and then filters

are learned that smooth out this interpolation process and add detail. Bi-linear interpolation

also is one of the re-sampling techniques used in computer vision and image processing

applications [128]. The bi-linear interpolation extends the concepts of linear interpolation

in the 2 dimensions. It is basically a method of curve fitting using linear polynomials to

construct new data points within the range of a discrete set of known data points. Several

recent works in the realm of deep-learning based image processing applications [129–132]

have successfully demonstrated the viability of simple interpolation techniques as opposed

to parameter learning methods for up-scaling images.

In the transposed convolution methods [127], the network attempts to learn the most op-

timal method of up sampling by parameters that are learnt during the training process. This

is similar to adding “zeros” on the rows and columns of the input and then the convolutional

filter learns to interpolate these “zeros” to add detail to the image. The deep convolutional

generative adversarial networks (DCGAN) [102] successfully employed the transpose convo-
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lutional operations to generate images from random sampled values, following which several

variants of generative adversarial networks employed similar approach. The application of

transpose convolution can also be found in the image based variational auto encoders [109],

where convolutional layers are deployed to extract features in the encoder and then decoders

restore the original image size by applying transpose convolution operation.

We experimented using both variants (bi-linear and transpose convolution) in our de-

coder. We present the details of the experiments conducted and the results obtained. Figure

10.2 shows the architecture employed for each convolutional layer type investigated.

10.3 Results

We performed extensive training and validation of the CFGenNets with the continuous

implicit image fingerprint vector as the input and corresponding image as the output. We

measured the outcome of the models by evaluating the mean square error loss and the

reconstruction accuracy. For images, reconstruction accuracy is the percentage of pixels that

match exactly with the original image, which is a commonly reported evaluation metric. As

a part of training, we explored a variety of architecture options with respect to the depth and

the width of the deep learning model, include the two variants of up-sampling - transpose

convolutional operations and bi-linear interpolation up-sampling. In order to compare the

performance of CFGenNets across the 2 up sampling methods, we trained the two variants of

the neural networks as illustrated in Figure 10.2 on a sample set of randomly selected 10,000

images and their corresponding implicit fingerprints. Figure 10.3 illustrates the performance

metrics from the two models after training for 300 epochs. As is evident, the MSE loss of the

2 networks are quite comparable, hovering around .01. The reconstruction accuracy of the

networks the end of 300 epochs is a 76% and 75.5% for network with transpose convolutions

and bi-linear interpolation, respectively.

While the quantitative metrics of the two variants were very comparable, we also qualita-

tively evaluated the output of the models with visual inspection. A sample of output images

is presented in Figure 10.4 for illustrating the nature of outcomes from the two networks in

comparison with the original images. We observe that both pairs of images, from transpose

convolutions and up-sampling methods can generate clean images that are clearly human
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Figure 10.3: Performance metrics across the 2 networks trained on celebA dataset. After
100 epochs, the network encompassing transpose convolution layers has a lower mean square
error and higher reconstruction accuracy.

faces. The images have preserved the overall face and object structures, however we also

notice that the images are blurry and not sharp. As discussed above, our network aims to

minimize the per pixel reconstruction loss between the input and output images. We hy-

pothesize this effect to be similar to prior works with generative image models [133], where

the images tend to get sharper when trained to minimize the feature reconstruction loss as

opposed to the pixel reconstruction loss. However, we observe that CFGenNets for Images

are indeed able to generate output images consistent with their respective inputs with reason-

able and perceivable facial features and backgrounds. For some images, the reconstructions

appear “more generic” than the input image. That is, the output appears to have lost some

of the distinct facial structures and the head pose appears straighter toward the camera.

Mouth shape sometimes appears distorted, but eyes tend to take the same position as in the

original images. Both the networks were able to map the implicit image fingerprints obtained

from collaborative filtering back to the original image with approximately 75% accuracy and

little difference between each method can be observed. In summary, blurring appears to be
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the most noticeable artifact, as well some replacement of specific facial features with more

“general” facial features—however, the essential aspects of the images like face shape, mouth

and eye position, are captured observably well.

An additional set of images are presented in Appendix A12.3.

Figure 10.4: A small sample of generated images in comparison with the original images.
Appendix A12.3 contains a larger sample of images generated from CFGenNets.

In order to evaluate if the models are indeed generalizable, we trained the CFGenNet

variant with transpose convolution layers on the entire dataset of 200k images, with 80%-20%

train and test split for 100 epochs. Figure 10.5 illustrates the performance of the network in

terms of the mean square error loss and the reconstruction accuracy. The mean square error

for this network was found to be hovering around .03 with image reconstruction accuracy

around 75%. We note that there is some flattening of the performance on this large dataset,

but the y-axes are considerably Zoomed, so performance remains relatively constant. As

for the computational time, the models were built using the Keras library with Tensorflow
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backend. It took approximately 24 hours to train models for 100 epochs. During testing, it

took approximately .01 seconds to process a single image of dimensions 128X128 thru the

network. These training and test times are benchmarked on the standard compute nodes

on the SMU Maneware systems,consisting of 36 cores, 256 GB of memory, and 100 Gb/s

networking.These nodes contain dual Intel Xeon E5-2695v4 2.1 GHz 18-core “Broadwell”

processors with 45 MB of cache.

Figure 10.5: CFGenNets for Image generation : Performance metrics at the end of 100
epochs on the final model trained on 160k images and evaluated on 40k images.

10.3.1 Limitations and Next Steps

In this chapter, we demonstrated the abilities of CFGenNets to be able to generate images

from the implicit fingerprints obtained from collaborative filtering. We observed that the

network was indeed to able to reconstruct the images with 75% accuracy and low mean

squared error. The manual inspection also demonstrated the ability to visually perceive

the output when compared with the original image. While the outcomes affirm the original
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research objective, i.e., to evaluate the applicability of CFGenNets in image generation, we

also note that the output quality of the images could be better, potentially with additional

hyper parameter tuning and tweaks to model architecture. In the next chapter, we explore

this further, conducting additional experiments to evaluate how the CFGenNets trained

on implicit fingerprints compares with traditional variational autoencoders using a similar

architecture and trained on the same dataset splits. The details of the experiments conducted

and results obtained are outlined in the subsequent chapter.
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Chapter 11

CFGenNets and Variational Autoencoders

We demonstrated the abilities of CFGenNets to reconstruct original images from Implicit

image fingerprints obtained from collaborative filtering in the previous chapter. We observed

that the reconstruction accuracy was approximately 75%. The outcomes validate the hy-

pothesis that the implicit fingerprints indeed capture large aspects of the underlying images

which allow for image reconstruction,—however there is still considerable room for improving

the quality of reconstructed images. In particular, the implicit fingerprints exhibited strong

blurring and other image artifacts. In comparison with other popular generative frame-

works, we note that CFGenNets are different from Variational Autoencoders(VAEs) [67] or

Generative Adversarial Networks (GANs) [72] where the original images are leveraged in

the generative process. In this chapter, we compared the outcomes from CFGenNets with

another generative network, Variational AutoEncoders [67]. We describe the details of the

experiments conducted and the reasoning behind our choice of networks for comparision with

CFGenNets in the next section.

11.1 CFGenNets and Variational Autoencoders

Typically generative models such as Variational Autoencoders [67,134] are trained with a

given dataset, and are used to generate data having similar properties as the samples in the

dataset. VAEs learn the internal essence of the dataset and “store” all the information in the

limited parameters(latent features) that are significantly smaller than the training dataset.

Notwithstanding the inputs, we deem VAEs to be comparable to CFGenNets due to some

commonalities. For instance the CFGenNet is essentially the same as the decoders in VAEs.

The only difference being, in VAEs, the latent space is learnt from training and is constrained

to resemble a standard normal distribution with mean of 0 and standard deviation of 1.

While there are several variants of variational autoencoders introduced by researchers in the
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field in the recent past, we limit our study to comparing the latent space encoded by “plain

variational autoencoders” or often referred to as “vanilla variational autoencoders.” In the

context of image reconstruction via plain VAEs, the network aims to minimize pixel-by-pixel

mean square loss between the original image and the reconstructed image. We deem this

as appropriate for comparative studies considering the same loss is leveraged for training

CFGenNets, as described in the previous chapter. We note that all references to VAEs

in the context of the experiments we describe in this thesis refer to the VAEs trained to

minimize the per pixel reconstruction loss. In our experiments, we investigate a composite

neural network that uses the VAE representation and implicit representation to construct

an image. We theorize that the composite network can better use the implicit fingerprints

for image attributes, while using the image representation to fine tune the generated images

with information that is not captured by the implicit fingerprint.

Additionally we also trained a composite CFGenNet decoder that intakes the implicit

image fingerprint from Collaborative filtering and the latent image vector obtained from

variational autoencoders. Figure 11.1 illustrates the network architecture for composite

CFGenNet decoders. As illustrated in the figure 11.1, the composite CFGenNet decoder

takes two vector inputs, the latent vector obtained from Variational autoencoder (trained

on the image data) and the Implicit image fingerprints obtained from collaborative filtering.

These inputs feed in parallel to a series of fully connected layers and are averaged to obtain

an “aggregated latent space” encoding information. The network is trained to minimize the

mean square with the original images. The intuition behind the network is to augment

the latent space obtained from variational autoencoders with the implicit image fingerprints

from collaborative filtering to improve the reconstruction accuracy of the images. We also

hypothesize that the network can separate its usage of the latent spaces in a way that general

attributes are more influenced by the implicit fingerprints and other variables that are not

encoded in the image attributes are “offloaded” to the VAE encoding. This dichotomy of

latent representation encourages the model to learn disentangled latent variables. However,

there is some redundancy between the implicit fingerprints and the VAE, so its unclear

exactly how the latent space will be represented.

Figure 11.2 illustrates the technical metrics obtained by training the Variational autoen-
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Figure 11.1: Composite CFGenNet decoders Architecture: These decoders consume the la-
tent fingerprints from Variational Autoencoders and Collaborative Filtering as inputs. These
are eventually averaged in the network to obtain the corresponding image.

coder and the composite CFGenNet decoders. The figure also plots metrics obtained by

training the CFGenNets for purposes of comparison. As evidenced in the plot, the com-

posite model trained with the encoding obtained from VAEs and collaborative filtering has

the best performance out of the three models. We observe that the reconstruction accuracy

for the CFGenNet model is at 75% and the plain VAE model at 81% while the composite

CFGenNet decoder model demonstrated a reconstruction accuracy of 84%.

While the technical metrics indicate better outcomes in the composite CFGenNet de-

coder, we also visually inspected the outcomes to validate the results. Figure 11.3 illustrates

a set of random images generated from each of the 3 networks presented side by side. We
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Figure 11.2: VAEs v/s vanilla CFGenNets v/s Composite CFGenNets: a random sample of
images processed via 3 different types of networks. The reconstruction accuracy is highest
for the Composite CFGenNet Decoders. They take advantage of the information encoded
within the latent spaces generated by Variational Autoencoders and Collaborative Filtering

notice that the images generated by the composite decoder are a better quality compared

with the other two models. While both VAEs and Vanilla CFGenNets generate clean images,

the image details are blurred and in some cases slightly distorted, as similarly described in

the previous chapter for CFGenNets. While the details and structures of images are pre-

served, the images are not as sharp as their input counterparts. However, we notice that in

the case of the composite CFGenNet decoders, the images are comparatively sharper and

more consistent. The faces also have much clearer noses, eyes, and other features, besides

maintaining the background and foregrounds. As observed in figure 11.3, the images, we

note that the VAEs maintain the image structures and the backgrounds reasonably well.

This can be especially well perceived in the 2nd and the 5th images in the set of images on

the left side. For example, the red background in 2nd image is well maintained in the VAE

ouput, while the details of the red color are not fully captured by CFGenNets. However we

notice that the details of the facial features considerable sharper in CFGenNets as opposed to

VAEs. This phenomenon can again be observed in the 2nd image on the left most section in
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Figure 11.3: VAEs v/s vanilla CFGenNets v/s Composite CFGenNet Decoders : a random
sample of images processed via 3 different types of networks. Visually, it is evident that the
outcomes from the Composite CFGenNet Decoders are more aligned to the original image
then the other 2.

Figure 11.3. We notice that the output from the Composite CFGenNets takes advantage of

both these qualities from the VAEs and Vanilla CFGenNets to produce better quality images

than their individual counterparts. In summary, visual inspection reveals that combining

the two latent representations is helpful and reduces many of the “generic” artifacts caused

by the CFGenNet model. Moreover, compared with the Vanilla VAEs, the combined model

reduces many ringing artifacts around edges that would typically be observed in wavelet

compression.

11.1.1 Visualization of latent vectors

The results presented in figure 11.3 indicate better reconstruction in the images gener-

ated by the Composite CFGenNet decoder. We further analyzed the latent representations

from VAEs and Implicit fingerprints to validate if the better outcomes of the Composite

Decoders is truly because of the complementary nature of the information contained in the

two encodings. In this analysis, we visualized the images based on the similarity of their
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latent representations. Here we define similarity by their L2-Distance in the latent space. We

randomly chose 400 images from the data set and reduced both their latent encoding from

VAEs and Implicit fingerprints into two dimensional space using the t-SNE [61] algorithm.

The t-SNE method preserves higher dimensional space distances such that images having

similar encoding in the higher dimensions are similar to one other in the two dimensional

t-SNE space as well.

Figure 11.4 and Figure 11.5 illustrate the two sets of images. In each Figure, “more

similar” images are positioned closely on a 2-D plane. We observe that in Figure 11.4,

images having similar backgrounds (dark or light) tend to appear together. This is evident

in the contrast in the images appearing the top left of Figure 11.4 versus the images appearing

in the bottom right. Similarly images with similar poses appear together in smaller clusters.

For example, the series of images in Figure 11.4 in the red box all contain images that are

looking to the right, while the set of images in the purple box are all looking to the left.

We can also see a presence of many images with raised hands among the images contained

inside the purple box. From this perspective, the VAE encodings tend to be overpowered by

background color and head pose.

We can contrast this representation with the images in Figure 11.5, where the images

with similar descriptor properties appear together (due to the implicit fingerprints). These

features tend to be more semantic to the face, rather than to the background and head

pose. For example, the series of images under the red box in the first row contain images

of older males with glasses, while the cluster of images enclosed in the green box contain

an overwhelming majority of images with older looking males wearing ties. Similarly the

images under the purple box contain images of females with blonde and straight hair. The

contrast between the two fingerprints in terms of the images that appear together indicate

that the VAE based encodings focus for a large part on the global features of the images

such as backgrounds, poses, etc., while the implicit fingerprints encode attributes describing

the features of the face contained in the image. This further supports our hypothesis that

the two encoding methods are complementary with each other and, therefore, when com-

bined help enhance the output image quality. Thus, we observe that Composite CFGenNet

decoders might be a popular method of image understanding that bridges the advantages of
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collaborative filtering with the less structured attributes in VAEs.

11.1.2 Conclusion

In this chapter, we introduced the concept of Composite CFGenNets Decoder which

leveraged the latent encoding from Variational Autoencoders and Implicit Fingerprints from

Collaborative Filtering. We observed the benefits in terms of better image reconstruction on

Composite CFGenNet decoders. We also analyzed the two latent encodings to help explain

the improved results from Composite CFGenNets. In the next chapter, we extend the Com-

posite CFGenNets to perform image manipulation based on Implicit Feature Fingerprints.
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Figure 11.4: Visualization of 20 x 20 face images based on VAE latent vectors by t-SNE
algorithm
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Figure 11.5: Visualization of 20 x 20 face images based on Implicit Image Fingerprints by
t-SNE algorithm
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Chapter 12

Image Attribute Manipulations using CFGenNets

One of the more interesting applications demonstrated with latent encoding both in

the domain of image and language is the semantic manipulations performed in the latent

space. For example [135] shows that vector(“King”) - vector(“Man”) + vector(“Woman”)

generates a vector whose nearest neighbor is the vector(“Queen”) when evaluating learned

representation of words. On similar lines (in the domain of image processing), Radford et al.

[102] demonstrated that visual concepts such as face pose and gender could be manipulated

by vector arithmetic. Hou et al. [136] also demonstrated the abilities to perform linear

interpolation between two latent vectors. They also demonstrated how the interpolation

could yield effects of image manipulation. For example transitioning from an image with

short hair to an image with long hair, “without glasses” to “with glasses”. While the results

can be compelling, these dimensions must be found through manual exploration of the latent

space. That is, the dimensions of the VAE representation are uncontrolled and therefore

two different optimizations of the same VAE architecture can result in completely different

structured latent spaces. There have been several recent style based generative models that

have demonstrated abilities to generate realistic yet synthetic images. For instance, recent

result allow for the use of freeform text to manipulate the images. We discuss in detail some

of the recent works in Neural style transfers under the Related Work section in Chapter 9.

In our work, we attempt to perform image feature manipulation using the Implicit Feature

Fingerprints. The subsequent sections describe in detail the steps undertaken.

12.1 Attribute Manipulation using Composite CFGenNet Decoders

We further conducted analyses on the latent implicit fingerprints to evaluate the pres-

ence image manipulation properties. In Chapter 9, we evaluated the shared latent implicit

fingerprint space, where we saw that our method produces two sets of implicit encodings
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- the implicit Image fingerprints that encode the images and the Implicit Feature finger-

prints that encode the 40 individual properties that describe each image. Chapter 9 Figure

9.5 further demonstrated the abilities of the implicit feature fingerprints could accurately

predict the presence of the respective facial descriptor attributes when fed into the "facial

attribute recognition classifier" trained on implicit image fingerprints. Given this context, we

hypothesize that the Implicit Feature Fingerprints encode attribute information that could

be visually perceived when fed into CFGenNets decoders. This sort of an operation could

provide a mechanism to control the specific attribute of the facial images. We describe in

the details of the experiments conducted as an algorithm for easy readability (Algorithm 1

below), in addition to discussing in detail the steps and the results.
Algorithm 1: Attribute Manipulation using Composite CFGenNets Decoder

Step 1 : Function TrainCompositeCFGenNetsDecoder;

CompositeDecoder = model.train(inputs=[LatentVAEFingerprints,

ImplicitImageFingerprints], output = OriginalImages);

Step 2 : Manipulate an image to show ‘Wearing Lipstick’ ;

r = random_image_index;

LV AE = LatentVAEFingerprints[r];

Limp = ImplicitImageFingerprints[r];

feature_index = get_index_of(’Wearing Lipstick’);

Lwearing_lipstick = ImplicitFeatureFingerprints[feature_index];

reconstructedImage = CompositeDecoder.predict(inputs=[LV AE, Limp ]);

manipulatedImage = CompositeDecoder.predict(inputs=[LV AE, Lwearing_lipstick

]);

We hypothesize that the Composite CFGenNet Decoder, described in Chapter 11 pro-

vides a framework to affect such manipulations. In our experiment, we fed as inputs to

the Composite CFGenNet, the latent encoding obtained from VAEs and the desired feature

specific fingerprint to obtain manipulated images as the output. For example, we attempted

to manipulate images to have the facial images “wearing lipstick”— i.e., we utilized the latent

VAE fingerprints of the sample image and the Implicit Feature Fingerprint for the attribute
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Figure 12.1: Image manipulation via Composite CFGenNet decoders : Images are generated
by feeding the latent encoding obtained by VAEs and Implicit Feature fingerprint obtained
from Collaborative Filtering. The first set of images are fused with the feature vector rep-
resenting the attribute ’Wearing Lipstick’ and the second set of images with the vector
representing the attribute ’Smiling’.

“Wearing Lipstick” as the inputs to the Composite CFGenNet Decoder (Figure 11.1). This

results in the input images undergoing the said manipulations. This is demonstrated in

the samples presented in Figure 12.1. The first row in figure 12.1 represents the original

image, while the second row represents the reconstructed image, without applying attribute

manipulations. The third row represents the out images after having undergone the said

manipulations. In Figure 12.1, we observe qualitatively that the output images from Com-

posite CFGenNets are indeed manipulated when the Implicit Feature fingerprints are input

along with the latent encodings from VAEs. We also observe that the degree of manipulation

varies by the feature and the underlying image. Figure 12.1 illustrates a sample of images

that have undergone feature manipulation based on our approach of using the Composite

CFGenNet decoders. The two sets of images are contained in 12.1, the first set of images

are fused with the implicit feature fingerprints representing the attribute “Wearing Lipstick”.

We observe that the presence of lipstick is perceivable in the output images. In fact, we also
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notice that the faces in the first 2 images begin to show feminine features along with the lip-

stick being perceivable. Additionally, we also observe that the faces seem to exhibit presence

of makeup as well. These manipulations of the images to indicate presence of Makeup and

Feminine features are consistent with the facial attribute recognition predictions obtained

from Implicit Feature Fingerprints for the attribute “Wearing Lipstick” in Figure 9.5. Figure

9.5 shows that the attribute recognition classifier for the implicit feature fingerprints for

“Wearing Lipstick”, also recognized the presence of the attribute “Heavy Makeup” and the

absence of attribute “Male.” This is attributed to the fact that these features are highly

correlated in the CelebA dataset. This follows some of the common conceptual relationships

that exist between different facial attributes. As an example, we would assume bald and gray

hair are associated to old people. Additionally, The technical correlated metrics measuring

the correlated in CelebA the dataset have been evaluated and reported by Hou et al. [136].

It is not surprising that we do see effects of such correlated features in the first set of output

images in figure 12.1. The second set of images in figure 12.1 have been fused with the

fingerprints representing the attribute “Smiling.” We notice that the manipulated images in

the second set have pronounced expressions indicating smiles. We also see that these images

retained many attributes from their original counterparts. It could be explained by the fact

that smiling seems to have no correlation with most of other attributes and is a very common

human facial expression, especially in photographs. While we present limited examples in

this section, Appendix 12.3 lists many more examples of image manipulations attempted

via Composite CFGenNet decoders. In general, we observe that the manipulations result in

changed images related to the attribute, but that some combinations of images and attribute

manipulations results in visually anomalous artifacts that are difficult to describe. We there-

fore propose a competing architecture for attribute manipulation in the next section that

also employs VAEs and implicit fingerprints.

12.2 Selective Attributes Manipulation using CFGenNets

The results obtained from the previous section validate that the Implicit Feature Fin-

gerprints indeed contain visually perceivable encoding which, when processed via Composite

CFGenNets, can be used to manipulate the images attributes. We akin each Implicit Feature
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Fingerprint to a ‘style vector,’ encoding specific attribute properties. The composite CF-

GenNets, however, only allow for attribute manipulations of one dimension at a time—i.e.,

the Composite CFGenNets decoder, as described in Figure 11.1, consumes a given image’s

latent VAE fingerprint and an Implicit Image/Feature fingerprint obtained from Collabora-

tive Filtering as its input. In the previous section, we demonstrated the outcomes of fusing

the latent VAE fingerprints and the Implicit feature fingerprints to affect image attribute

manipulations. However, the architecture supported manipulations at only one dimension

at time, as in the case of fusing the image’s VAE fingerprint with either Implicit feature

fingerprint the attribute “Wearing Lipstick” or “Smiling”, but not both concurrently. We

note that it is possible to average the factors for “Wearing Lipstick” and “Smiling” but this

results in images with highly visual and unnatural distortions.

We also observed that the manipulation using the previously proposed method may in-

troduce competing representations. That is, when we manipulate the implicit fingerprint, the

VAE fingerprint remains unchanged. Therefore, encodings that are redundantly described

in the VAE and implicit fingerprint may cause unexpected artifacts. We attempt to ad-

dress this constraint by introducing the Feature Gated Composite CFGenNets architecture,

shown in Figure 12.2. The gating mechanism in the Gated Composite CFGenNets refers to

the mechanism of controlling the exact features that can be fed into the CFGenNets at any

given point in time. In this way, we can combine the VAE and original implicit fingerprints

into an aggregated vector. Then, we use the gating mechanism of the network to manip-

ulate the features. We hypothesize that this will mitigate competing representations when

redundancy is present.

Figure 12.2 describes the architecture of the Feature Gated Composite CFGenNets. This

is an enhancement over the Composite CFGenNets, where, in addition to the Latent VAE

encodings and Implicit Image Fingerprints, the decoder also received a gated input from the

Image Feature Maps and the Implicit Feature Fingerprints. The Image Feature Maps here

refers to a binary vector of size 40, with one flag for each facial attribute that is contained

in the image. The flag, when set, indicates that the attribute feature is present in the image

and when unset indicates it is absent. The matrix multiplication operation between the

implicit feature map and Implicit Feature Fingerprints serves as the gating mechanism. At
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Figure 12.2: Feature Gated Composite CFGenNets : Architecture.

the time of training, the gating mechanism ensures that the Implicit Feature fingerprints of

only the features present on the images are being leveraged to reconstruct the original image.

Once trained, the gating mechanism provides a framework for controlling any set of features

that can be concurrently manipulated on a given image. The pseudo code describing the

manipulations using Gated Composite CFGenNets is described in Algorithm 2 below.

Figure 12.3 illustrates a sample set of images that have undergone image manipulation

via Gated Composite CFGenNets. The single dimensional manipulation is achieved by

setting only the desired feature to TRUE in the Image Feature Map input to the decoder.

In Figure 12.3, three different input images have undergone various manipulations. In the

first image, we apply the Implicit Fingerprint for “Wearing Hat.” We see that the output

image produces what resembles a blue headgear. The same image when manipulated with

the Implicit feature fingerprint for “Male” results in an image that has facial features with

a more blocked jaw and wider lips. We observe appropriate modifications occurring in all
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Figure 12.3: Feature Gated Composite CFGenNets: sample images with 1 dimensional
feature manipulations

the images represented in Figure 12.3.While the quality of the image could be improved,

we observe that the desired changes take effect on the output image in a visually consistent

manner. Appendix 12.3 illustrates a other example images which have undergone single

dimensional feature manipulations across all the 40 feature dimensions.

As mentioned previously, another advantage rendered by the Feature Gated Composite

CFGenNets is the ability to affect more than one desired feature manipulation at a given time.

This is illustrated in Figure 12.4, where multiple manipulations are performed concurrently.

The first row in figure 12.4 represents the original image, while the second row represents the

reconstructed image, without applying attribute manipulations. The third row represents

the out images after having undergone the said manipulations.

The first two images of female celebrities are manipulated by gating in the Implicit Fea-

ture Fingerprints of the features “Male” and “Bushy Eyebrows.” We can clearly perceive these

changes applied on the resultant images where the resultant faces in fact appear to have more

traditionally masculine features with straighter jawlines and reduced eye makeup. Similarly,

in the second set of images, the Implicit Feature Fingerprints corresponding to “Wearing Lip-

stick” and “Eye Glasses” are gated in. These features are evidently perceived in the resultant

images where facial hair is reduced and the rims of eye glasses are also perceivable—although

some ringing artifacts in the face and background are also introduced. While we are able
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Figure 12.4: Feature Gated Composite CFGenNets : sample images with 2 dimensional
feature manipulations

to perceive the desired manipulations on the resultant image, we acknowledge that there is

more work to be done to improve the image resolutions from Composite CFGenNet decoders.

We discuss these limitations in the subsequent section. Even so, these experiments support

our hypothesis that combined collaborative filtering and other encodings (such as the VAE)

are advantageous for research in image latent representations.
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Algorithm 2: Attribute Manipulation using Gated CFGenNets Decoder

Step 1 : Function PrepareImageFeatureFingerprint;

ImageFeatureFingerprints = ImageFeatureMap X

ImplicitFeatureFingerprints;

where

ImageFeatureMap ∈ RNumImagesX40 & ImplicitFeatureF ingerprint ∈ R40X500

Step 2 : Function TrainGatedCFGenNetsDecoder;

GatedDecoder = model.train(inputs=[LatentVAEFingerprints,

ImplicitImageFingerprints,ImageFeatureFingerprints], output =

OriginalImages);

Step 3 : Manipulate an image to show ‘Wearing Lipstick’ & ’With

Eyeglasses’;

r = random_image_index;

LV AE = LatentVAEFingerprints[r];

LImpImageFP = ImplicitImageFingerprints[r];

LImpImageFeatureFP =ImageFeatureFingerprints[r];

CustomImageFeatureMap= init_vector_zeros(shape=(1,40));

CustomImageFeatureMap[index_WearingLipstick]=True;

CustomImageFeatureMap[index_WithEyeglasses]=True;

LManipFeatures =CustomImageFeatureMap X ImplicitFeatureFingerprints;

reconstructedImage = GatedDecoder.predict(inputs=[LV AE,

LImpImageFP,LImpImageFeatureFP ]);

manipulatedImage = GatedDecoder.predict(inputs=[LV AE,

LImpImageFP,LManipFeatures ]);

12.3 Conclusion & Future work

Aim 3 of our research demonstrated the abilities of CFGenNets to be applied to the

domain of Image Synthesis. The results discussed in Chapter 10 ascertain the fact that the
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implicit fingerprints indeed capture patterns that help in reconstructing the original images.

Chapter 11 further demonstrated the combined efficacy of latent encodings obtained from

Variational autoencoders and Implicit Image Fingerprints. From the results presented above,

it is evident that the combining the latent fingerprints obtained from VAEs and Collabora-

tive filtering has positively influenced the outcome. In the case of Variational Autoencoders,

the latent embeddings are obtained by learning to reconstruct the input image using an

encoder/decoder combination. In the case of CFGenNets, we leverage the metadata of the

images to obtain an encoding. This is different from VAEs in that the images are not used

in the training. The collaborative filtering method leverages only the descriptors of the im-

ages. The approach learns the encoding from all the images and mutually similar/dissimilar

properties represented in a matrix form. From the results presented above, we see that each

of the methods VAEs and CFGenNets encode certain nuances of the underlying images.

The enhanced performance of the Composite decoder indicates the advantages of combining

these two encodings of the underlying images.We further demonstrated the flexibility offered

by the Composite CFGenNet decoders to manipulate images by merely swapping the Im-

plicit Image fingerprints with the Implicit Feature Fingerprints obtained from Collaborative

Filtering.

While our work engenders the interpretability of the latent encodings obtained from col-

laborative filtering, we also acknowledge that there could be additional enhancements to

CFGenNets architecture to improve the reconstruction accuracy of the images. As an ex-

ample, in the current design, the process of generating implicit fingerprints via collaborative

filtering and the generative networks to affect reconstruction are conducted as 2 separate but

related steps. There is further scope to combine these 2 steps into a single multi-objective

based neural network. This could further refine the latent encodings produced to facilitate

improved reconstructions. We also note that the objective function of the CFGenNet de-

coders could be further enhanced on the lines of the advancements made in the objective

functions of other works , such as mutual information minimization from Conditional Sub-

space VAE [106] or feature perceptual loss leveraged by Deep Feature Consistent Variational

Autoencoder [136].

While we demonstrate a method of leveraging the Implicit Feature Fingerprints for in-
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fluencing image manipulation, we also acknowledge that the current results demonstrated in

this work could be further improved upon with better resolution decoders. We have largely

stayed independent of the advancements made around Neural Style Transfers. We believe

borrowing some of the underlying concepts driving style transfer literature such as Adaptive

Instance normalization, specifically evaluating applicability of leveraging Implicit Feature

Fingerprints as inputs for AdaIn, could provide further breakthroughs in image manipula-

tion.

Finally, we believe with this work we have only scratched the surface of the exciting

possibilities of leveraging the encoding generated by Collaborative Filtering by successfully

demonstrating the cross domain applicability of our methods. We believe we have contributed

a novel area of research to the community and believe the possibilities can be improved by

the research community, where countless additions can be investigated.
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APPENDIX A : Sample Images generated from CFGenNets

This appendix sample images generated from the 2 variants for CFGenNets , one with

Transpose Convolution layers and the one with Bi-linear Upsampling layers

Figure 12.5: Sample images generated from CFGenNets with Transpose Convolution layers
and Bi-linear Upsampling layers
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APPENDIX B : Image Manipulation via Composite CFGenNet Decoders

This appendix contains 2 randomly selected images whose latent encoding from Varia-

tional Autoencoders were processed with the Implicit feature fingerprints for each of the 40

features from the CelebA dataset. The original image and the outcomes when fused with

each of the 40 features is illustrated in figure 12.6 and figure 12.7

Figure 12.6: Random Image 1 manipulated using Implicit Feature fingerprints via Composite
CFGenNet decoder
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Figure 12.7: Random Image 2 manipulated using Implicit Feature fingerprints via Composite
CFGenNet decoder
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APPENDIX C : Image Manipulation via Feature Gated Composite CFGenNet Decoders

This appendix contains 2 randomly selected images whose latent encoding from Varia-

tional Autoencoders were processed with the Implicit feature fingerprints for each of the 40

features from the CelebA dataset. The original image and the outcomes when fused with

each of the 40 features is illustrated in figure 12.8 and figure 12.9

Figure 12.8: Random Image 1 manipulated using Implicit Feature fingerprints via Feature
Gated Composite CFGenNet decoder
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Figure 12.9: Random Image 2 manipulated using Implicit Feature fingerprints via Feature
Gated Composite CFGenNet decoder
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