
SMU Data Science Review SMU Data Science Review 

Volume 1 Number 2 Article 10 

2018 

Data Center Application Security: Lateral Movement Detection of Data Center Application Security: Lateral Movement Detection of 

Malware using Behavioral Models Malware using Behavioral Models 

Harinder Pal Singh Bhasin 
Southen Methodist University, Dallas, Texas, hbhasin@smu.edu 

Elizabeth Ramsdell 
eramsdell@mail.smu.edu 

Albert Alva 
aalva@mail.smu.edu 

Rajiv Sreedhar 
ShieldX Networks, Inc., rajiv@shieldx.com 

Medha Bhadkamkar 
Hewlett Packard Enterprise, Inc., medha.bhadkamkar@hpe.com 

Follow this and additional works at: https://scholar.smu.edu/datasciencereview 

 Part of the Categorical Data Analysis Commons, Information Security Commons, and the Theory and 

Algorithms Commons 

Recommended Citation Recommended Citation 
Bhasin, Harinder Pal Singh; Ramsdell, Elizabeth; Alva, Albert; Sreedhar, Rajiv; and Bhadkamkar, Medha 
(2018) "Data Center Application Security: Lateral Movement Detection of Malware using Behavioral 
Models," SMU Data Science Review: Vol. 1: No. 2, Article 10. 
Available at: https://scholar.smu.edu/datasciencereview/vol1/iss2/10 

This Article is brought to you for free and open access by SMU Scholar. It has been accepted for inclusion in SMU 
Data Science Review by an authorized administrator of SMU Scholar. For more information, please visit 
http://digitalrepository.smu.edu. 

https://scholar.smu.edu/datasciencereview
https://scholar.smu.edu/datasciencereview/vol1
https://scholar.smu.edu/datasciencereview/vol1/iss2
https://scholar.smu.edu/datasciencereview/vol1/iss2/10
https://scholar.smu.edu/datasciencereview?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/817?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/datasciencereview/vol1/iss2/10?utm_source=scholar.smu.edu%2Fdatasciencereview%2Fvol1%2Fiss2%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/


Data Center Application Security: Lateral
Movement Detection of Malware using

Behavioral Models

Harinder Pal Singh Bhasin1, Elizabeth Ramsdell1, Albert Alva1,
Rajiv Sreedhar2, and Medha Bhadkamkar3

1 Southern Methodist University, Dallas, Texas
2 ShieldX Networks, Inc., San Jose, California

3 Hewlett Packard Enterprise, Inc., Palo Alto, California

Abstract. Data center security traditionally is implemented at the ex-
ternal network access points, i.e., the perimeter of the data center net-
work, and focuses on preventing malicious software from entering the
data center. However, these defenses do not cover all possible entry
points for malicious software, and they are not 100% effective at pre-
venting infiltration through the connection points. Therefore, security
is required within the data center to detect malicious software activity
including its lateral movement within the data center. In this paper,
we present a machine learning-based network traffic analysis approach
to detect the lateral movement of malicious software within the data
center. Our approach employs an unsupervised learning approach that
uses the metadata of network transactions to learn the normal appli-
cation network traffic behavior and detect anomalous communications.
Utilizing over two million records for the training data and four hun-
dred thousand records for validation, our approach identified 0.61% of
the communications as anomalous. The fact that any anomalies were
successfully identified further confirms our theory that monitoring data
center traffic for anomalous communications is an effective and necessary
approach to detecting malicious software activity that remains internal
to the data center.

1 Introduction

Data centers are an integral part of our daily lives, yet most people are unaware
that they constantly use services housed in data centers. The widespread adop-
tion of cloud services allows our smart phones, laptops, self-driven automobiles,
and home automation devices, to name but a few connected devices, to provide
a broad range of functionality and services that the devices alone are unable
to provide. Applications routinely communicate from our personal devices to
data centers, often relaying sensitive financial information, such as credit card
numbers, and personal information, such as our current location.

Data center transactions can automatically involve multiple servers located
within a single data center. Communication between servers for each of these

1

Bhasin et al.: Data Center Application Security

Published by SMU Scholar, 2018



transactions may communicate the sensitive and personal information that is
transferred as part of the request. The communication of sensitive information
must be secured, even when the communications are contained solely within
a single data center. A data center must provide methods to securely process
this information in order to protect consumer privacy and prevent theft is a
complex problem. Protecting this information from malicious software, however,
is a complex problem since the traffic between the servers within the data center
is expected to be reliable and predictable.

It is necessary to monitor and understand the behavior of this traffic in order
to detect anomalies leading to malicious software detection. Anomaly detection
on network is a demanding space where quite a bit of research has already been
done over the years and it continues because the demand for secure, high perfor-
mance systems with increased storage capacity continues to grow. The challenge
in anomaly detection is that the majority of the data consists of normally be-
haved patterns and a small portion is ever detected as anomalous.

Our solution uses Machine Learning techniques and algorithms to further
provide mechanisms to better measure for anomaly detection. Our data set dic-
tates Unsupervised Learning technique since the data is unlabeled. A trained
set against which to classify is unavailable. The data center traffic data set is
unlabeled, binary, multiclass, and yet very similar. The Jaccard similarity coef-
ficient is applied to find dissimilarities in the traffic. Records from traffic data
set are measured for their similarities and a distance is calculated. Clusters of
similar distances are formed to classify as similar behavior. The training data
set is used to form clusters of different traffic patterns. For validation the test
data set is run against the trained model to detect anomalies.

The outcome from the training data set produced different results as we
used full model, one-feature model, and a restricted model. The one-feature
model was comprised of one feature and produced many dissimilarities resulting
in numerous clusters. The quality of these clusters was rather weak in compari-
son to the restricted model. In the restricted model we used four features. The
restricted model produced fewer but densely populated clusters. The quality of
these clusters was tested using the distance between the clusters, measured from
the centroid to centroid of resulting clusters. A test data set used for validation
produced few dissimilarities attributed to anomalous data.

Our training data set with cluster quality testing and validations resulted in
0.61% of anomalous amongst the test data. Our theory to learn the application
traffic behavior for detecting malicious software has shown positive results.

The rest of the paper is organized as follows: Section 2 describes related work
done in application behavioral analysis field. In Section 3, we describe the data
center application server and traffic patterns. In Section 4, we analyze the feature
selection and the data set used for our experiments. In Section 5, we describe
how we used the similarities in traffic to detect anomalies. In Subsections 5.1
and 5.2, we describe the model construction, implementation, and validation. In
Section 6, we describe results from our experiments. In Section 7, we analyze

2

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 10

https://scholar.smu.edu/datasciencereview/vol1/iss2/10



our results. In Section 8, we discuss ethics surrounding the application security.
The Section 9, we conclude our findings and review the future work.

2 Related Work

Some research has been done by Cao [1] to analyze malware behavior at the appli-
cation level. As described in the research paper, APIs (Application Programming
Interface) collect the internal call structure to monitor the application behavior.
This approach requires an in depth knowledge of proprietary applications and
learning the implementation to appropriately classify a ”good” behavior. Our
approach does not require any knowledge of proprietary interfaces and imple-
mentation for classifying the behavioral pattern.

A neural network implemented in Network-based intrusion detection using
neural networks is presented by Palagiri [2]. This relatively basic method, how-
ever, does not produce preferential results as it does not flag simultaneous at-
tacks. It is better suited for individual attacks. We leave this as an opportunity
to expand on our future considerations. Our approach is to use Machine Learning
techniques and algorithms to further provide mechanisms to better measure for
anomaly detection. Machine Learning techniques can be divided into three cate-
gories: Supervised Learning, Reinforcement Learning, and Unsupervised Learn-
ing. In Supervised Learning the data is labeled or structured where the desired
threats have already been classified. Reinforcement Learning develops an agent
that improves its performance based on interactions with the environment. A
classic example is a chess game where an agent continues to learn with the goal
of either winning or a losing. Unsupervised Learning is used where the data is
unlabeled or unstructured and a trained set against which to classify is unavail-
able.

Portnoy [3] discusses that in the case of Supervised Learning, the labeled
data needed is either impossible to obtain or very expensive. Using stagnant,
labeled data assumes that the labeler was cognizant of every possible type of
attack, which is never the case. This reinforces the need to have a well-working
Unsupervised model. The model in the intrusion detection with unlabeled data
using clustering [3] resource takes a similar approach to what is presented here.
The authors work with unlabeled data center in order to form clusters. They
mark all small clusters as being anomalies. As discussed, this approach assumes
that the number of normal transactions greatly outweigh the number of attacks
within the training data. This assumption proves to be a fairly accurate starting
point for an intrusion detection model.

Another limitation of many current anomaly detection models is the time
component to this type of data. The models are based on a normal behavior
that is derived from a training set. While this set may be what is normal at the
time of training, transactional behavior is constantly changing, thereby creating
a need for repetitive model retraining. This creates a possibility for increased
error as the model will be trained on the newest available data. This data may
include attacks that were not identified which will then be classified as normal

3

Bhasin et al.: Data Center Application Security

Published by SMU Scholar, 2018



behavior for all incoming interactions. Most machine learning techniques such as
neural networks and SVMs are sensitive to the noise this creates in the training
data. In the model presented by Hu, Liao and Vemuri [4], robust support vector
machine technique is used and compared to the SVMs and K-nearest neighbor
results. Robust support vector machines account for the overfitting of the initial
model due to the noisy nature of the real-time training data. Another benefit
of this method is a shorter testing time due to having fewer support vectors
than a traditional Support Vector Machine. The authors used the three separate
detection methods on the same clean data set and a deliberately noisy data
set, into which simulated anomalous behavior has been injected. The results
for the Robust Support Vector machine based on these data were promising in
comparison to the other methods. It showed lower false positive rates and higher
outlier detection rates. It also showed the lowest performance decline when used
in the presence of noise.

In addition to behaviors changing over time, the timeliness of the model
needs to be considered. In the event of an attack, the speediness of detection
is vital in disaster management. Algorithms need to be able to detect anoma-
lies in real-time. This can be difficult with the previously discussed dynamic
environment and the large amounts of transactions happening at a given time.
The need to learn continuously is addressed in Unsupervised real-time anomaly
detection for streaming data [5]. Here, the authors used streaming data from
Numenta Anomaly Benchmark to test their model. This is a useful resource for
the testing phase as it contains real-world streams with labeled anomalies, al-
lowing for testing to be done in real-time. To detect the anomalies, this article
offers the more advanced Hierarchical Temporal Memory tool. This continuous
learning model considers the spatiotemporal characteristics of its input. It does
not, however, model of detect anomalies. The output from this method is then
used as input for anomaly detection analysis. While this is outside the scope of
this paper, we want to present this as a possible iteration technique.

3 Application Servers

As shown in Figure 1, a typical data center is considered in the south (S) side of
the perimeter. Connections originating from the Internet to the data center are
termed as N-S traffic. In addition to the N-S traffic there may be connections
between the various application workloads in the data center. These connections
are termed as east(E)-west(W) traffic. Communication to process a transaction
within a data center could potentially span across any number of (application)
servers shown as east (E) to/from west (W) (a.k.a. lateral).

4

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 10

https://scholar.smu.edu/datasciencereview/vol1/iss2/10



Fig. 1: A typical data center infrastructure

A malware entering into data center from Internet is usually detected at the
perimeter level for intrusions. Any malware entered undetected could land up
on any of the servers from east to west within the data center. Once a mal-
ware enters an application server within a data center the anomaly detection
becomes complex since application servers ”should” behave as expected by their
respected purpose and functionality, and there is no additional security built
at an application level to protect from intrusions. These applications execute
are well behaved and respond to requests as normally as they would be from
a well behaved requesting application. In out experiment we learn the behavior
of these applications by classifying their network traffic using machine learn-
ing techniques. The network traffic carries ample information to learn about
the normal behavioral pattern. As an example a communication is possible and
considered as ”good” if request/response falls between ”HR” and ”Email” ap-
plication servers (between east and west). An abnormal transaction would be
”HR” application server trying to communicate with the ”Credit Card” appli-
cation server. Or in a typical malware scenario the requesting application might
not be labeled one of the ”well defined” application and could potentially be

5

Bhasin et al.: Data Center Application Security

Published by SMU Scholar, 2018



trying to establish communication to other ”well defined” application. A typical
flow of the information could potentially require to touch multiple entities as
described in Figure 1 in terms north (N), south (S), east (E), and west (W).

4 Feature Selection

The feature selection played an important role in our experiment as the data
center application network traffic has similarities in addition to being enormous
in size. For our experiment creating a workflow as described in Figure 2 improved
performance and our ability to narrow the focus for anomaly detection. The
workflow shown in Figure 2, separates out different components to modularize
the implementation providing future research feasibilities.

Data set for our research comprised of fewer attributes without any user data
(a.k.a. payload). As show in the Figure 2 traffic is captured at the Network Packet
level, however, we chose to use metadata once the packet processing has been
performed. Packet processing is not relevant for our research since the metadata
which consists of information relevant to application and communicating entities.

Fig. 2: Framework and the Workflow for Anomaly Detection

In our research we used the data set comprising of normal and anomalous
records. We used the metadata in three different sets for our experiments: a full
model as described in Table 1, a restricted model as shown in Table 2, and a
one-feature model as shown in Table 3. The full model used the entire data set
presented in metadata consisting of twelve features. In a restricted model we

6

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 10

https://scholar.smu.edu/datasciencereview/vol1/iss2/10



limited our experiment to four features. In each of these experiments we used
1K, 750K, and 2M size for training data sets. These records were retrieved from
live traffic within a data center.

Our focus from full model was to learn the overall traffic behavior in a process
to structure the data set with respect to application traffic features. The full set of
features produced enormous similarities with the presence of almost redundant
information such as srcIpAddress and srcMacAddress. These attributes were
removed and experiment was rerun to further help narrow down the list to as
described in Table 2 for the restricted model.

Features Description
chassisId Machine Identification
srcIpAddress IP Address of the originator.
dstIpAddress IP Address of destination.
clientIp IP Address of a client.
serverIp IP Address of the server.
srcMacAddress MAC Address of source.
dstMacAddress MAC Address of destination.
srcPort Port Address of source.
dstPort Port Address of destination.
microServiceType Type of software service in numeric.
microServiceTypeString Type of software service in string.
minroServiceInstanceId Identification number of this software service.
tcpEvent TCP event type associated with this event.
protocol Protocol associated with this event
timeStamp Time when this metadata was captured

Table 1: Full Model

We continued our experiment with removing additional attributes to under-
stand the impact it might have in our results. The feature set was brought down
to dstPort as shown in Table 3, with one feature only. However, after few it-
erations we learned the traffic behavior and the relevance of IP addresses and
protocol to application servers. This led us to re-adjust the features to find the
right combination.

Features Description
srcIpAddress IP Address of the originator.
dstIpAddress IP Address of destination.
dstPort Port Address of destination.
protocol Protocol associated with this event

Table 2: Restricted Model

Features Description
dstPort Port Address of destination.

7

Bhasin et al.: Data Center Application Security

Published by SMU Scholar, 2018



Table 3: One-feature Model

In the initial exploration of the data, the possible indicators for anomalies
behavior are considered. The regular interactions between the IP Addresses can
be used to identify when a transaction is outside the norm. Figure 3 shows each
IP Address as a node, then connected to all Addresses that it converses with. If
one of the right-most Addresses tried to send to one of the left-most, this should
be flagged as anomalies in our model. The frequency of these communications is
then considered. An outlier may follow the same normal path as shown in Figure
3, but transact on a higher frequency.

Fig. 3: A Network Diagram of Servers

Another data point that is explored as a possible indicator is the timestamp.
These transactions happen all throughout the day, but certain communications
should only happen during specific times of the day. If there is an increase in
the amount of communications within a given time, this should be flagged as
anomaly behavior. Figure 4 shows an example of the highest frequency times-
tamps in the data center. Using this information in real-time will give us the
ability to recognize increased traffic quickly.

8

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 10

https://scholar.smu.edu/datasciencereview/vol1/iss2/10



Fig. 4: Frequency of Traffic

Figure 5 shows a correlation of nodes with a dense color reflecting frequently
used network paths among the application servers.

Fig. 5: Correlation of Traffic

9

Bhasin et al.: Data Center Application Security

Published by SMU Scholar, 2018



5 Jaccard Similarity Coefficient for Anomaly Detection

We used Unsupervised Learning in our research for anomaly detection as major-
ity of the data is well behaved with similarities (non-anomalous). The complexity
is discovered as we analyze the data to recognize patterns and learn from the traf-
fic behavior. Jaccard Similarity Coefficient to identify dissimilarities produced
favorable results in our experiment. Jaccard method application is well suited
for binary and multi-class feature since it operates on sets. This method takes
intersection of two sets and divides by the their union resulting in a similarity
score. Dissimilarity is calculated by subtracting the result from 1 (1 - Similarity
Score), as shown in Equations 1 and 2 below.

SimilarityScore(A,B) =
A ∩B

A ∪B
(1)

DissimilarityScore = 1− SimilarityScore (2)

The result is produced in a numeric score between 0 and 1. A higher score
translates to a greater dissimilarity among the two records. In our experiment
each record is treated as a set and measured against the remaining records. The
experiment used both full and restricted feature sets. Our experiment further
constructed clusters of the collected similar scores from Jaccard method in order
to identify anomalous record.

5.1 Model construction

The model construction can be divided in two as parallel constructions is required
when measuring the similarity score. The parallel construction is to form clusters
upon score computation from two records. A similarity criteria score is defined
as tunable to perform several iterations in order to refine the model. This score
is used to identify each records as similar amongst other records in order to
form clusters. The algorithm iterates over records to find Jaccard similarity
index until it meets the criterion of similarity measure. Clusters are formed with
similar scores as a second part of the model construction. The algorithm defines
first record of a cluster as a centroid and uses it to measure against to form
clusters of scores meeting the similar score criteria. The score meeting the low
water mark is considered to be part of a cluster. Any score falling out of this
criteria is resulted in a separate cluster or part of an existing cluster.

As shown in Algorithm 1 the iterative process ensures the existing clusters
are checked before forming a new one if the criterion is not met.

10

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 10

https://scholar.smu.edu/datasciencereview/vol1/iss2/10



Algorithm 1 Dissimilarity algorithm

1: function computeScore
2: distance← score of -1
3: top:
4: if i > maxRecords then return done
5: distance← JaccardMethod(existingRecordFromCluster, thisRecord).
6: if distance <= lowWaterMark then
7: addToExistingCluster← thisRecord

8: i← i + 1.
9: goto top.

return distance
10: procedure insertVector(thisRecord)
11: distance← computScore(thisRecord)
12: if distance == -1Or > lowWaterMark then
13: top:
14: if i > maxRecords then return
15: if noExistingRecord then
16: addToNewCluster← thisRecord
17: i← i + 1.
18: goto top.

5.2 Model validation

Similar to model construction the validation is divided in two. The model is val-
idated for the algorithm and the cluster formation. The algorithm validation is
further divided in two parts. The first part is validation by constructing synthetic
test data to run against the trained model. The synthetic data is constructed
with good data as well as anomalous data with instrumentation. Upon refining
and training the model a new data set is constructed from the existing data
set from the working model by randomly selecting 20% of the records. These
records are then run against the model to ensure they measure with same sim-
ilarity scores as expected. The second part of the algorithm validation required
us to construct another data set comprising of randomly selected records with
randomly swapped features within the records and across records. This newly
constructed data is then run against the trained model. Very few records were
observed as anomalous. This is primarily due to the fact application traffic has
quite a bit of similarity. Both of these test cases with synthetic data confirmed
the algorithm is working as designed.

The second part of the model validation is performed to ensure the quality
of clusters. Each cluster is constructed based on a centroid of cluster and a
measured score of each record in the cluster which must fall within a set score
criterion. Each record with the cluster is validated against the centroid of every
other cluster to ensure the clusters are disjoint. Further the records within each
cluster are counted with their corresponding score to ensure majority of the
clusters are densely populated.

11

Bhasin et al.: Data Center Application Security

Published by SMU Scholar, 2018



6 Results

Our experiments consisted of several iterations using different training and test
sets with full, one-feature, and restricted feature sets. These iterations consisted
of 1K, 750K, and 2M records in combination with three different feature sets.
We used 20% of the training data set for validation.

The results are summarized in Tables 4, 5, and 6. The ”Model” column
reflects the feature sets used for each iteration. The ”RecCnt” column lists the
number of records used to train the model for each iteration. The ”TestRecCnt”
column shows the number of test records used for the validation in each iteration.
The ”TotClusters” column is the resulting cluster count for each iteration.

In our results we recorded multiple factors, first the quality of the clustering
algorithm and then the validation of the model. The cluster quality was validated
by ensuring the clusters are disjoint and densely populated. As shown in Tables
4, 5, and 6, the ”SmallCluCnt” and ”CluQuality” columns show our results. The
”SmallCluCnt” reflects number of clusters with fewer than 100 records for 2M
data set, 40 records for 750K data set, and 10 records for 1K data set.

The ”CluQuality” reflects the radius of the cluster within which its members
must reside. After several iterations, tuning it to 0.5 produced the best score with
disjoint and densely populated clusters. This is further represented in Figure 6.

The ”Anom” and ”Success” columns reflect the results from the test data
set. The ”Anom” is a total number of anomalies discovered in the corresponding
run and ”Success” is the percentage of success over the total number of test
records used in each iteration.

Model RecCnt TestRecCnt TotClu SmallCluCnt CluQuality Anom Success
Full 1000 200 22 6 0.5 5 2.50%
1 Item 1000 200 29 13 0.5 4 100.00%
Restr 1000 200 25 5 0.5 4 2.00%

Table 4: Record 1K

Model RecCnt TestRecCnt TotClu SmallCluCnt CluQuality Anom Success
1 Item 793000 156693 1386 1192 0.5 156693 100%
Restr 793000 156693 113 48 0.5 1129 0.72%

Table 5: Record 750K

Model RecCnt TestRecCnt TotClu SmallCluCnt CluQuality Anom Success
1 Item 2051296 410260 4102 3527 0.5 410260 100%
Restr 2051296 410260 127 52 0.5 2523 0.61%

Table 6: Record 2M

As shown in Figure 6 our algorithm constructed disjoint and dense clusters.
In the visualization, circles represent clusters with their size directly correspond-
ing to density. The colors were picked randomly. However, the small cluster in
”black” color represents the anomalous data.

12

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 10

https://scholar.smu.edu/datasciencereview/vol1/iss2/10



Fig. 6: Clusters of Similar Traffic

7 Analysis

The test data set for each iteration had been instrumented to run against the
trained model. For the full and the restricted model the test data set had been
mingled to swap certain columns in the expectation that our model will detect
these dissimilarities and flag them as anomalous. As a result, varied results were
observed from each model with different record sizes. Further analyses showed
that one-feature model where the entire test data set consisted of only one at-
tribute, ”dstPort”, once instrumented, 100% of success rate was observed. This
is primarily due to the fact the instrumentation resulted in an invalid ”dstPort”,
which one would expect to be flagged. And rightfully so the results were as ex-
pected. In our results one-feature model reflects higher number of total clusters
and higher number of smaller clusters in comparison to other models. The Jac-
card similarity coefficient method detected lot more dissimilarities amongst the
records in the one-feature model.

For restricted models we observed the anomalous results to be consistent
when larger data set was used to train the model. The smaller data set of 1K
produced over 2% success rate. The Jaccard Similarity Coefficient did find sim-
ilarities and dissimilarities as a result of our experiments. The results for full
and restricted models were, however, under 1%. The variation in both of these
results is explained by the size of the data set. The larger the data set, Jaccard
Similarity Coefficient found more similarities and fewer dissimilarities amongst
the records. In larger data sets with full and restricted model the quality of
clusters improved in comparison to smaller data sets.

13

Bhasin et al.: Data Center Application Security

Published by SMU Scholar, 2018



8 Ethics

The broader topic of Data center security may necessisate ethical considerations.
Most of these involve following the structure of the Code of Ethics as it has
been applied to Information Technology. This extends ethical parameters such
as appropriate access to data and transparency of architecture to those using
the service provided in this example. The Code is also used to ensure the privacy
of the users and the protection of their data. Companies need to feel the same
responsibility in protecting smaller clients as they do larger clients in the event
of a data breach.

The provider has certain responsibilities to the users in a case that an attack
is successful and the customer data is compromised. In a service-based system
this responsibility is split between the provider and the company using the ser-
vices. Both are responsible for some piece of the security protocol, depending on
the extent of services being utilized. Once a server has been breached, they must
allocate resources to minimize impact and return the customer to a sense of nor-
malcy and privacy. This ethical responsibility depends on the type of consumer
data that is being stored and used. In a case where an attack could be detri-
mental to either the company or the consumer, is where the presented model is
most effective and important.

Data centers have ethical implications that naturally come with the aggre-
gation of large amounts of data. Some are likely to detailed transactional data
which can be used to derive personal information of vast amounts. The secure
storage and privacy promise to the consumer needs to be done by the data center
itself. Employing this model will aid in the protection of information by ensuring
once a problem has started, it will be caught and controlled quickly.

This data center security model will be used in the identification phase of
the attack. Although this is created to be a line of defense for the customer,
the model itself has some ethics to consider. Due to the model monitoring the
movement of transactions within the system, the highest-level access will need
to be given to certain members. The current model is built using data from
a security service company. The company has ethical guidelines pertaining to
the use and access to the client data. Most clients likely carry data that is
considered personal information for their customers. Because the company that
will be running the model has access to some of this data, this adds another layer
of Information Technology personnel to be trusted in appropriate data usage.
Necessary levels of confidentiality of the data at hand needs to be considered
when giving access to employees. Although implementation of this model does
not require usage or storage of the client data, it is necessary to consider the
same ethical responsibilities that they do.

Another ethical consideration in the use of our model is, in the event of a
breach, how much responsibility falls on the owner of the model versus the owners
of the data. This needs to be fairly and clearly documented between the parties
before the first implementation. Ensuring the guidelines for this scenario are
clear and precise will lead to the most effective protection to the final consumer.
Since the model can be used for any type of data, the ethical considerations used

14

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 10

https://scholar.smu.edu/datasciencereview/vol1/iss2/10



within the field need to be address in a situation by situation basis. All security
services come with high responsibility in the ethics of handling information.

9 Conclusions and Future Areas of Research

In this paper, we introduce our approach to detect anomalies in the data center
application traffic using Jaccard Similarity Coefficient and Clustering technique.
The traffic behavior is estimated to be very similar. In a data center, the ap-
plication traffic is expected to be well behaved with large similarities. Our ex-
periments show results, given a finite number of servers and applications, the
traffic is expected to have more similarities than dissimilarities. The experiment
results show that we can effectively detect anomalies in the data center applica-
tion traffic. Our experiments resulted in the understanding that larger the data
set more effective the training model, and better the anomaly detection for data
center application traffic.

Many interesting aspects of our approach still remain to be explored, and
comparisons with other available machine learning methods. Further refinement
to our approach could be conducted using comparisons to unstructured and
unlabeled data used in natural language processing algorithms.

Acknowledgements

We wish to thank Dr. Ratinder Paul Singh Ahuja, CEO of ShieldX Networks
Inc. for research suggestions and making the data center application server data
sets available to us. Invaluable review feedback from Dr. Daniel Engels helped
us improve the work.

15

Bhasin et al.: Data Center Application Security

Published by SMU Scholar, 2018



References

1. Ying Cao. Osiris: a malware behavior capturing system implemented at virtual
machine monitor layer. 2013.

2. Chandrika Palagiri. Network-based intrusion detection using neural networks. De-
partment of Computer Science Rensselaer Polytechnic Institute Troy, New York,
pages 12180–3590, 2002.

3. Leonid Portnoy, Eleazar Eskin, and Sal Stolfo. Intrusion detection with unlabeled
data using clustering. In In Proceedings of ACM CSS Workshop on Data Mining
Applied to Security (DMSA-2001. Citeseer, 2001.

4. Wenjie Hu, Yihua Liao, and V Rao Vemuri. Robust support vector machines for
anomaly detection in computer security. In ICMLA, pages 168–174, 2003.

5. Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised real-
time anomaly detection for streaming data. Neurocomputing, 262:134–147, 2017.

16

SMU Data Science Review, Vol. 1 [2018], No. 2, Art. 10

https://scholar.smu.edu/datasciencereview/vol1/iss2/10


	Data Center Application Security: Lateral Movement Detection of Malware using Behavioral Models
	Recommended Citation

	tmp.1524965810.pdf._LT_W

