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Machine learning models with their underlying numerical and statistical methods hold

significant promise in various biological applications, particularly in predicting protein-ligand

binding affinity, solvation energy, and patient clinical response to immunotherapy. These

quantities help researchers better understand proteins and their interactions for disease pre-

vention, immunization, and drug design. The work presented here focuses on designing

mathematical models to extract valuable information from protein structural data both effi-

ciently and accurately. We develop uniform feature extraction methods from both topological

data analysis and electrostatics of charged proteins and protein-ligand complexes. In solv-

ing these mathematical models, we develop numerical methods to overcome challenges in

accuracy and computational cost due to long-range and pairwise natures. In addition, a

protein-protein interaction network is generated and studied to understand gene pair rela-

tionships relevant to patient clinical outcome. The contribution of this thesis toward the

great computational biosciences community has the following three major components.

Parallel boundary integral PB solver

In our recent research in high-performance computing, we investigate the application of

the Poisson-Boltzmann (PB) model in understanding the electrostatics of solvated biomolecules

vi



relevant to the spread, treatment, and prevention of COVID-19. For each selected protein,

the simulation produces the electrostatic solvation energy as a global measurement. We fo-

cus on parallelization strategies for the PB solver on central processing units (CPUs) versus

graphical processing units (GPUs) and provide optimization guidance for selecting an appro-

priate computational method based on the size of the problem. Solving the PB model both

rapidly and accurately is a critical step for the machine learning framework as it bridges

biomolecular structures (the source of features) to its biological properties (the labels) ob-

tainable with theoretic and computing approaches. This work was recently published in

Computer Physics Communications [1].

Multiscale and uniform electrostatic and topological features extraction for ma-

chine learning

We describe our novel approach to design uniform scale-free electrostatic features as input

to machine learning models for the prediction of Coulomb energy, solvation energy computed

from the Poisson-Boltzmann model and solvation energy computed from the Generalized

Born model. We further compare how these features as input impact model performance

compared to topological features as input. Lastly, we investigate the approach of using

both topological and electrostatic features in one cohesive model. These novel and efficient

approaches to generate electrostatic and topological features can not only help to predict

quantities associated with implicit solvation, but also have the potential to be used in general

to represent the structural and associated force field information of the biomolecules to

broader biophysical studies.

Models for immunotherapy in ovarian cancer

We also describe our work in collaboration with Gradalis, Inc. Despite the limited efficacy

of immunotherapy in ovarian cancer, Vigil, a novel DNA-based immune therapeutic, has

demonstrated clinical benefit to prolong relapse-free survival (RFS) and overall survival
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(OS) in specific patient subgroups. Molecular analysis was conducted to identify biomarkers

associated with sensitivity to Vigil treatment. Tissue samples from patients enrolled in a

randomized double-blind trial of Vigil vs. placebo as maintenance in frontline management

of advanced resectable ovarian cancer underwent DNA polymorphism analysis using a 981-

gene panel. Pathogenic or likely pathogenic variants were analyzed and used to generate

a protein-protein interaction network. We then calculated various metrics of the network

to understand gene pair relationships. Kaplan-Meier analysis showed improved survival

in Vigil-treated patients with specific genetic profiles. This exploratory study encourages

further validation of Vigil efficacy in targeted patient populations and highlights the potential

of network-based biomarker characterization in cancer immunotherapy research. This work

was recently published in Cancer Gene Therapy [2].
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Chapter 1

Introduction

1.1. Research Motivation

Discovering the connections between protein structure and function is a very important

task that lies at the intersection of biology, mathematics, and computer science. To make

these connections, it is critical that we creatively extract and abstract information from

proteins relevant to drug discovery and design. Important computational biophysics ap-

plications for machine learning models include the prediction of electrostatic solvation free

energy, protein-ligand binding affinity, and clinical response of cancer patients who received

immunotherapy. These quantities help researchers better understand proteins and their in-

teractions for disease prevention, immunization, and drug design. With this, the complex

structure of biomolecules can limit the promise of powerful models. Our project aims to

design mathematical models that can be solved with efficient and accurate numerical al-

gorithms to ultimately discover the useful information that is hidden in complex protein

structural data.

Specifically, we incorporate physics-informed features in topology and electrostatics. In

this work, we aim to design a machine learning model that utilizes biologically relevant

information from the fields of topology and electrostatics with the hypothesis that combining

these ideas into one cohesive model will improve model performance and demonstrate the

need to leverage the combination of different mathematical techniques to predict important

biological quantities. The topological features abstract the underlying atomic relationships

and patterns to generate image-like representations that can utilize the advancements of

convolutional neural networks. This approach has shown success on the task of predicting
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protein-ligand binding affinity. We take this idea further and apply it to the task of predicting

solvation energy while incorporating physical considerations with our designed electrostatic

features to improve performance even further.

While doing so, we consider the balance between computational efficiency and accuracy.

As researchers, we should take advantage of the availability of large datasets from sources

such as the Protein Data Bank (PDB) [3] while also designing methods that are efficient

when dealing with large datasets of large biomolecules.

Additionally, we study the Poisson-Boltzmann (PB) model that incorporates quantities

such as media permittivity, protein charge distribution, electrolyte distribution in solvent,

temperature, etc. With the assistance of numerical algorithms and computational tools, the

PB model has broad applications in biomolecular simulations, including protein structure

[4], protein-protein interaction [5, 6], chromatin packing [7], protein pKa values, protein-

membrane interactions, [8, 9], binding energy [10, 11], solvation free energy [12, 13], and ion

channel profiling [14].

Solving the PB model accurately and efficiently is challenging due to a variety of factors,

such as the large problem dimension, the complex geometry of the protein, the jump of

dielectric constants across media interface, and the singular charge representation. We focus

on the parallelization development of boundary integral PB solvers.

More specifically, we investigate two approaches for the parallelization of boundary in-

tegral PB solvers. One is the parallelization of the treecode-accelerated boundary integral

(TABI) solver using MPI which builds an identical tree on each task/CPU. Its parallelization

occurs at four stages of the TABI solver: source term computation, treecode for matrix-vector

product, preconditioning, and energy computation. We apply the schemes developed for n-

body parallelization [15] to a more complicated boundary integral PB problem, and develop

MPI-based parallelization for the preconditioning scheme designed for boundary integral
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solvers [16]. Our second parallelization approach focuses on GPU-based parallelization of

the direct-sum boundary integral (DSBI) solver, which concurrently computes the source

term, matrix-vector product, and energy computation. We provide guidance for users when

the DSBI solver on GPU or the TABI solver with MPI on CPUs should be used depending

on the size of the problem.

Lastly, we describe our work which is independent of the above projects to computation-

ally identify biomarkers from clinical trial and patient genetic data acquired from Gradalis,

Inc. The trial data involved patients enrolled in a randomized double-blind trial of Vigil

vs. placebo as maintenance in frontline management of advanced resectable ovarian can-

cer. Ovarian cancer is the third most common gynecologic cancer, and it carries the worst

prognosis and highest mortality rate of gynecologic cancers [17–19]. Mortality from ovarian

cancer is three times that of breast cancer [19,20]. Genetically, the majority of ovarian can-

cer cases are BRCA wild type (BRCAwt) but more than one-fifth of cases are attributable

to mutations in tumor suppressor genes, with 65–85% of the mutations being in germline

BRCA genes (gBRCA) [21, 22].

Standard treatment of resectable newly diagnosed stage III/IV ovarian cancer involves

surgical resection and adjuvant or neoadjuvant chemotherapy [23,24]. Unfortunately, nearly

75% of this patient population who undergo standard treatment will experience recurrence

following frontline therapy [23,25]. The establishment of more effective therapies for ovarian

cancer is essential.

Vigil is an autologous tumor DNA immunotherapy which was designed to enhance the

immune system’s potency against cancer in three ways: first, Vigil introduces the individual

tumor neoantigen repertoire to the immune system. Second, Vigil enhances differentiation

and activation of immune cells via GM-CSF, a cytokine important to immune activation at

both the peripheral and marrow levels. Finally, Vigil inhibits cancer expressive TGF-beta,

thereby decreasing immunosuppressive activity of TGF-beta.
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We hypothesize that intact DNA repair mechanisms of BRCAwt, HRP ovarian cancer

may be important for Vigil efficacy, possibly related to higher degree of clonal versus sub-

clonal neoantigens available for anticancer immune stimulation [26, 27].

We describe further molecular analysis in coordination with clinical benefit parameters

of genomic variant data in all patients involved in the VITAL trial. We seek to identify

significant genomic variants, meaningful variant combinations, and relevant genes at the

intersection or “hub” of ovarian cancer pathways which provide proof of principle to a novel

clinically applicable method of biomarker assessment.

1.2. Outline

The remainder of this thesis is organized as follows, Chapter 2 describes both the biolog-

ical and mathematical background including the Poisson-Boltzmann (PB) and Generalized

Born (GB) models. Chapter 3 discusses the development of the parallelization techniques

used. Chapter 3 also describes the feature extraction methods used to generate the topolog-

ical and electrostatic features and the machine learning framework. Chapter 4 reports the

results of the parallelization methods on various COVID-19 proteins and machine learning

performance metrics using our novel approach to produce electrostatic features alone and

in combination with the topological features. Chapter 5 describes our previous work in col-

laboration with Gradalis Inc. to identify biomarkers for patients who received novel Vigil

immunotherapy. We summarize our work and include concluding remarks in Chapter 6. We

offer software dissemination details in Chapter 7.
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Chapter 2

Background

In this chapter, we give biological and mathematical background related to the proposed

research. In the first section, we provide a background of the relevant biological information

and define the specific quantities we aim to predict. Additionally, we describe the mathe-

matical foundation of the computational models we will investigate and develop in the next

chapter.

2.1. Biological Background

This project studies the biophysics of proteins. To this end, we provide some biological

background involving protein structures, solvation energy, and binding energy. Particularly,

we will introduce proteins relating to COVID-19 which are the focus of the electrostatic

analysis and parallelization development.

2.1.1. Protein Structure

To study proteins, it is important to first describe basic structural information. Deoxyri-

bonucleic acid (DNA) is transcribed to ribonucleic acid (RNA), where a gene provides the

code to synthesize messenger RNA (mRNA). Next, during translation, mRNA determines

the order of amino acids, which then build proteins. The most simple level of protein struc-

ture is primary structure, which consists of sequences of amino acid chains. The next level of

protein structure is secondary, which has two types; α-helices and β-sheets which are char-

acterized by hydrogen bonds between the main-chain peptide groups/backbone. The next

level, tertiary structure, is the 3D structure of the protein where the α-helices and β-sheets
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are folded into one compact structure. Tertiary structure refers to one single polypeptide

chain. The final, most complex, level is quaternary, which is the 3D structure consisting

of more than one polypeptide chain. To analyze proteins computationally, we export data

from the Protein Data Bank [3], which consists of over 200,000 biological macromolecular

structures of proteins. This vast dataset was cultivated experimentally, and users have the

option to select relevant data based on organism type, taxonomy, experimental method, en-

zyme classification type, etc. This abundant dataset enables breakthroughs in research and

it is critical to develop mathematical methods to accurately and efficiently produce biological

insights from this data. More specifically, the data we use falls into the following file types:

• .pdb files: The data is from the Protein Data Bank [3]. Each protein has a corre-

sponding .pdb file that provides the sequences of amino acids in the peptide chains,

coordinates of the atoms in three dimensions, atom types and radius of each atom.

• .pqr files: In order to run our simulations, the partial charge of each atom is needed.

We use a software called pdb2pqr [28] to convert the .pdb files to .pqr files which

contain the partial charges. This is done by incorporating a user-specified force field.

Force field refers to the functional form and parameter sets used to calculate the

potential energy of a system of atoms or coarse-grained particles in molecular mechanics

and molecular dynamics simulations. The parameters of the energy functions can be

derived from experimental work and quantum mechanical calculations. We choose to

use AMBER for the force field.

• .mol2 files: For the task of predicting protein-ligand binding affinity we need a com-

putational representation of the ligand files, which are represented by .mol2 files. To

convert these files to .pqr files we use a software called Open Babel [29].
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2.1.2. Solvation Energy

The first task we aim to predict is solvation energy. Proteins are solvated, that is,

they are surrounded by a solvent, typically taken to be water. The interaction between

the molecules of the protein and the solvent molecules is called solvation, which is critical

for protein structural dynamics. Solvation energy is governed by the interactions between

the solute and solvent molecules, including electrostatic interactions, hydrogen bonds, van

der Waals forces, and other intermolecular forces. Our focus in this thesis is the electro-

static component of the solvation energy, i.e. electrostatic solvation energy. For simplicity,

hereafter, when the term ”solvation energy” is used, we refer to the electrostatic solvation

energy. We can compute the solvation energy of a protein with both the Poisson-Boltzmann

and Generalized Born models. The Poisson-Boltzmann model provides higher accuracy at

the cost of increased computational complexity, while the Generalized Born model is more

computationally efficient but less accurate.

2.1.3. Binding Affinity

Binding affinity is defined as a measure of the strength of the binding interaction between

a biomolecule to its ligand/binding partner. Binding affinity is typically measured by the

equilibrium dissociation constant (KD) [30]. The smaller the KD value, the greater the bind-

ing affinity of the ligand for its target. The larger the KD value, the weaker the biomolecule

and ligand are attracted to and bind to one another. Binding affinity is influenced by

many factors including hydrogen bonding, electrostatic interactions, hydrophobic and Van

der Waals forces between the two molecules as well as the presence of other molecules. The

advancement of methods for the prediction of binding affinity between various proteins and

ligands is essential to understanding intermolecular interactions. These interactions are im-

portant factors driving biological processes and this task is critical for drug discovery and

design.
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2.1.4. COVID-19 Proteins

In Chapter 4, we present results on parallelization schemes to solve the Poisson Boltz-

mann model on various proteins relevant to COVID-19. Coronaviruses are a persistent threat

to global health. Viruses such as SARS in 2003, MERS in 2013, and the new SARS-CoV-2

in 2019 emerge from animal populations and can then infect humans. Coronaviruses contain

a large genome that directs the synthesis of several dozen viral proteins. Structures of these

proteins are used to better understand the diseases and to develop new drugs and vaccines

to fight coronaviruses. We focus on proteins involved in the spreading and prevention of the

COVID-19 virus. The virus genome in the form of an mRNA encodes proteins including

replication/transcription complexes that make more RNA, structural proteins that construct

new virions, and proteases (e.g. 61u7) that cut polyproteins into all of these functional pieces.

The virus docks to target cells by binding the spike protein (e.g. proteins 6crz, 6vxx, 6vsp,

6vsb) on the viral surface to its receptor, angiotensin-converting enzyme 2 (ACE2, e.g. pro-

tein 6m17) on the target cell membrane. In addition, to test the infection of COVID-19

virus, we often identify its nucleocapsid proteins (e.g. proteins 7act, 6yi3) by using antibod-

ies (e.g. proteins 7cr5, 7n3c, 7sts) that particularly bind to these nucleocapsids [3]. In this

work, we select a few COVID-19-related proteins and use our parallel PB solvers to calculate

their electrostatic properties such as global solvation energy or local surface potential. These

protein electrostatics can assist researchers in understanding a protein’s overall structure and

function, their binding affinity to certain ligands, as well as their folding and enzyme catal-

ysis characteristics. Consequently, efficient algorithms employing cutting-edge techniques

such as parallelization, are vital for researchers working on vaccine and drug development.

In Figure 2.1, we provide the cartoon structure of six COVID-19-related proteins. Protein

6wji [31] in (a) is a dimerization domain, which is used to bring two nucleocapsids together.

The connections of nucleocapsid dimers into bigger groups makes the viral structure that

encases the RNA in the limited area within virus particles. The SARS-CoV-2 nucleocapsid
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contains separate proteins which all perform different functions. A portion of the structure

folds into an RNA-binding domain (protein 7act) [32] as shown in (b), featuring a groove

that securely holds a brief segment of the viral genomic RNA. In contrast, the protein

alone without the RNA-bound structure (protein 6yi3) is shown in (c) [32]. In COVID-19

prevention, home test kits for detecting SARS-CoV-2 infection rely on antibody proteins that

specifically recognize nucleocapsids within a complex set of biomolecules in nasal samples.

The antibodies they recognize differ based on the test-kit brand, which recognizes different

portions of the nucleocapsid, and we list a few here with protein 7cr5 [33] in (d), protein

7n3c in (e), and protein 7sts in (f). For these listed proteins, the PB model is solved using

our parallel boundary integral PB solvers, and numerical results are presented in Chapter 4.
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(a) (b) (c)

(e) (f) (g)

Figure 2.1: COVID-19 related proteins used in our numerical simulations. (a) 6wji: The
C-terminal Dimerization Domain of Nucleocapsid Phosphoprotein from SARS-CoV-2; (b)
7act: SARS-CoV-2 Nucleocapsid Phosphoprotein N-Terminal Domain in Complex with
10mer ssRNA; (c) 6yi3: The N-terminal RNA-Binding Domain of the SARS-CoV-2
Nucleocapsid Phosphoprotein; (d) 7cr5: Human Monoclonal Antibody with SARS-CoV-2
Nucleocapsid Protein NTD; (e)7n3c: Human Fab S24-202 in the Complex with the
N-Terminal Domain of Nucleocapsid Protein from SARS-CoV-2; (f) 7sts: Human Fab
S24-1379 in the Complex with the N-terminal Domain of Nucleocapsid Protein from
SARS-CoV-2.
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2.2. Mathematical Background

In order to approach the tasks of predicting solvation energy and binding affinity, we need

a basic mathematical understanding of the underlying biophysical properties of the proteins

in question. We start with a basic theory of electrostatics, followed by the two popular

implicit solvent models, the Poisson-Boltzmann model and the Generalized Born model.

2.2.1. Introduction to Electrostatics

We introduce electrostatics by starting with its role in molecular dynamics simulations,

which obeys Newton’s Second Law:

~F = ma (2.1)

where ~F , m and a denote force, mass, and acceleration, respectively. For each configuration,

the potential energy, E, is given by,

E = Ebond + Eang + Etors + Evdw + Eelec (2.2)

where Ebond is the energy due to bond stretching, Eang is the energy due to angle bending,

Etors is the energy due to bond rotation (torsion), Evdw is the Van der Waals interaction

which is modeled by the Lennard-Jones potential and Eelec is the electrostatic energy, given

by Coulomb’s law. Note that electrostatic interactions are long-range and pairwise, thus

computationally expensive to compute. This is the reason why computing electrostatic

interactions attracts the attention of mathematicians.

Potentials and fields due to electrical charges are given by,

~F =
ee′

r2
~r

r
(2.3)
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which is Coulomb’s Law in vector form, and r is the distance between the source charge e

and the evaluation point e′. The electric field is given by the limit of the electric force ~F per

unit charge e′,

~E = lim
e′→0

~F

e′
=

e

r2
~r

r
(2.4)

Now for a closed surface S, and da an element of surface area, we have

˛
S

~E · ~n da = 4π
∑
i

ei (2.5)

where ~n is the outward unit normal to the surface, by the principle of superposition. For a

continuous charge density, ρ(x), we have

˛
S

~E · ~n da = 4π

ˆ
Ω

ρ(x) d3x (2.6)

Now apply the divergence theorem to the left-hand side of Equation 2.6 to arrive at,

ˆ
Ω

∇ · ~E d3x = 4π

ˆ
Ω

ρ(x) d3x (2.7)

where Ω is the volume surrounded by the closed surface S, which leads to Gauss’s Law:

∇ · ~E = ρ (2.8)

. Recall that a vector field can be specified up to a constant if its curl and divergence are

given everywhere in space. The curl of ~E is equal to zero under the electrostatic assumption

of Faraday’s Law, that is ∂t ~H = 0, where ~H is the magnetic field. Since ∇× ~E = 0, ~E can

be written as the negative gradient of a scalar potential, φ. Plugging this into Gauss’s Law

(2.8), we have,

−∇ · ∇φ = ρ (2.9)

which is the Poisson Equation [34].
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The Poisson model is the governing equation for the electrostatic potential subject to

the given charge distribution. When considering the complexities of charge distribution

within the solute and solvent domains, the Poisson-Boltzmann model offers a more accurate

framework. In practice, the solvent can be simulative with water molecules with atomic

details explicitly. To reduce the computational cost, we adopt the implicit solvent model.

2.2.2. Implicit Solvent Model

To study solvation energy, we operate under the implicit solvent framework. As opposed

to the explicit solvent model which describes the system at the atomic level and is computa-

tionally demanding, the implicit solvent framework assumes that the solvent is approximated

as a continuum and ions are described by some statistical distribution. These assumptions

greatly reduce the computational complexity of the problem of calculating the electrostatic

potential. Here, we introduce two popular implicit solvent models, the Poisson Boltzmann

and Generalized Born models. Both govern the electrostatics of the target protein, with

varying levels of accuracy and efficiency.

Figure 2.2: Implicit solvent framework computational domain: Ω1 (dielectric constant ε1
with partial charges as a weighted summation of delta functions) and Ω2 (dielectric
constant ε2 with mobile ions modeled by Boltzmann distribution) are separated by the
molecular surface Γ.
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2.2.2.1. The Poisson-Boltzmann Model

The Poisson-Boltzman Equation arises in cases where the charge density ρ depends on

the potential φ. The Boltzmann distribution law states that the ratio of the concentration

of one type of ion near the molecule to its concentration far from the molecule is given by

e−Wi(x)/kT (2.10)

where Wi(x) is the work required to move the ion of type i from |x|= ∞ to the point x,

T is the temperature and k is the Boltzmann constant. As seen in Figure 2.2, the types of

mobile ions are positive and negative, so we have

W1(x) = +ecφ(x) (2.11)

and

W2(x) = −ecφ(x) (2.12)

where ec is the charge of an electron. Let M denote the bulk concentration of ions per cubic

centimeter for each of two ions with charge +ec and −ec. Now by the Boltzmann distribution

law, we have,

M+ = Me−ecφ(x)/kT (2.13)

and

M− = Me+ecφ(x)/kT (2.14)
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So the charge density is given by,

ρ(x) = M+ec −M−ec (2.15)

= Me−ecφ(x)/kT ec −Me+ecφ(x)/kT ec (2.16)

= −2Mecsinh
(
ecφ(x)

kT

)
(2.17)

Plugging ρ from Equation 2.17 into the Poisson equation (Equation 2.9) results in the non-

linear Poisson-Boltzmann equation,

∆φ = 2Mecsinh
(
ecφ(x)

kT

)
(2.18)

The linearized Poisson-Boltzmann equation is derived by taking the first term in the series

expansion of

sinhx = x+
x3

3!
+

x5

5!
+ . . . (2.19)

So then the linear Poisson Boltzmann equation is given by,

∇2φ1(x) = −4π
N∑
i=1

qiδ(x− xk), x ∈ Ω1 (2.20)

∇2φ2(x) = κ2φ2(x), x ∈ Ω2 (2.21)

where Ω1 is the region of the domain inside of the molecular surface and Ω2 is the exterior

of the molecular surface. The Poisson-Boltzmann model is shown in Figure 2.2, where the

molecular surface Γ divides the entire computational domain Ω into the protein domain Ω1

with dielectric constant ε1 and atomic charges qk located at xk, k = 1 :Nc, and the solvent

domain Ω2 with dielectric constant ε2 and dissolved salt ions. And κ denotes the Debye-

Huckel parameter defined to be

κ =

(
2Me2c
kT

)1/2

(2.22)
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Additionally, the interface conditions on the molecular surface, Γ, are given by,

φ1(x) = φ2(x), (2.23)

ε1
∂φ1(x)

∂n
= ε2

∂φ2(x)

∂n
, (2.24)

lim|x|→∞φ2(x) = 0 (2.25)

[35, 36]. The PB model governs the electrostatic potential φ in the entire space. Theoreti-

cally, after φ is obtained, its gradient will produce the electrostatic field while its integral will

generate potential energy. However, there are many challenging issues on properly obtaining

the field and energy (e.g. definition of field on molecular surface Γ [37]). Our attention for

this project is on the energy as described below. The electrostatic potential energy is given

as

E =
1

2

ˆ
Ω

ρ(x)φ(x)dx =
1

2

Nc∑
k=1

qkφ(xk) =
1

2

Nc∑
k=1

qk(φreac(xk) + φcoul(xk)) = Esolv + Ecoul

(2.26)

where ρ(x) =
Nc∑
k=1

qk(x − xk) is the charge density as a sum of partial charges weighted

delta function and the Esolv = 1
2

Nc∑
k=1

qkφreac(xk) term is the solvation energy, the energy it

takes for the protein to solvate from the vacuum to the solvent. The φreac is the reaction

potential as the remaining component when Coulomb potential φcoul is taken away from the

total electrostatic potential φ.
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2.2.2.2. The Generalized Born Model

Now the Generalized Born model approximates the electrostatic part of the solvation

free energy. To derive the Generalized Born model, we first adopt some classic results for

electrostatics from Jackson’s textbook [34]. Using the analog from discrete point charge

distribution to continuous charge density distribution, the potential energy of a charged

system with density distribution ρ(r) takes the form

W =
1

2

ˆ
ρ(r)φ(r)dr =

1

2

ˆ
~E(r) · ~D(r)dr

where the electric field ~E = −∇φ, and electric displacement ~D = ε ~E.

Now consider assembling a charge to the center at the origin of a sphere with radius ri.

The sphere separates the domain with εin for r < ai and εout for r < ai. The assembly takes

the energy

Gi =
1

8π

ˆ ~D · ~D
ε

d~r ≈ 1

8π

ˆ
r<ai

q2i
r4εin

dx+
1

8π

ˆ
r>ai

q2i
r4εout

dx (2.27)

where the Coulomb field approximation ~D = qr
r3

is used.

The solvation energy is the energy difference when ε for r > ai changes from εin (unsolvated)

to εout (solvated) given as

∆Gsolv,i =
1

8π
(
1

εout
− 1

εin
)

ˆ
r>ai

q2i
r4
dx = (

1

εout
− 1

εin
)
q2i
2ai

. (2.28)

This result is consist with the Poisson-Boltzmann model of a solvated spherical cavity with

centered charges as summarized in [36], which is a special case from Kirkwood’s derivation

of a series of spherical harmonics for a spherical cavity containing arbitrary multiple charges

[38]. If we treat the molecule as a collection of spherical atoms, using Equation (2.28) the
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total solvation energy is

∆Gsolv =
1

2

(
1

εout
− 1

εin

)( N∑
i=1

q2i
ai

+
N∑
j 6=i

qiqj
rij

)
≈ 1

2
(
1

εout
− 1

εin
)

N∑
i=1

N∑
j=1

qiqj
fGB
ij

(2.29)

where the first equation has two terms: a sum of individual Born terms and pairwise Coulom-

bic terms. Note the actual molecule is better represented by a dielectric interface (e.g. solvent

excluded surface (SES)) which separates inside domain Ωin and outside domain Ωout. The

charge qi is located at the center ri of a sphere with radius ai. We assume Ωin contains

all these spheres. Thus the model using dielectric interface requires a step further as been

approximated in the second equation in Equation (2.29).

Here fGB
ij is the effective Born radii (i = j) or effective interaction distance (i 6= j).

Assuming the Born Radii Ri’s are obtained, a popular estimation of fGB
ij is:

fGB
ij (rij) = (r2ij +RiRje

−r2ij
4RiRj )1/2

where rij is the distance between the atomic centers of atoms i and j. Note Ri depends not

only on ai, but also on radii and relative positions of all other atoms. The estimation of

effective Born radii is an active research area. From Poisson-Boltzmann theory, the perfect

Born radii is given as

Ri =
1

2
(
1

εout
− 1

εin
)

qi
∆GPB,i

with ∆GPB,i as the solvation energy from the PB model with all except ith charge muted.

There are many approaches to approximate Ri and a typical one is the volume integration

via quadrature as

R−1
i =

1

4π

ˆ
Ωout

q2i
r4
dr =

q2i
ai

− 1

4π

ˆ
Ωin/B(ri,ai)

q2i
r4
dr.
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Computing Ri using FFT leads to the computational cost of sovaltion energy to O(n3 log n+

N+N2) [39] against the cost of solving the PB model of O(n6+Nn2+N) with finite difference

method (iterative solver, matrix structure not considered), where n is the number of grid

point in x,y,and z direction, assuming cube-alike computational domain.

Now that we have established the background on the Poisson-Boltzmann model and

Generalized Born, we will now further discuss how to computationally solve the Poisson-

Boltzmann model, including parallelization techniques. Then, how we curate topological

and electrostatic features to be combined to ultimately predict biomolecular properties.
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Chapter 3

Numerical Algorithms

In this chapter, we detail the steps that are used to solve the Poisson-Boltzmann equation

described in Chapter 2 as well as our methodology to parallelize the solver using both CPUs

and GPU. Additionally, we describe how we generate multi-scale and uniform electrostatic

features. Then, we outline the machine learning methods which utilize the aforementioned

topological and electrostatic features, including details of model architecture and design.

3.1. Numerical Methods to Solve the Poisson Boltzmann Equation

Solving the Poisson Boltzmann model numerically is challenging due to various reasons

including

1. the protein is represented by singular point charges

2. the molecular surface is geometrically complex

3. the dielectric constant is discontinuous across the surface and

4. the domain is unbounded

To overcome these numerical difficulties, we utilize boundary element methods (BEM) for

the PB model [40–45] which have several inherent advantages,

1. only the molecular surface is discretized rather than the entire solute/solvent volume

2. the atomic charges are treated analytically
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3. the interface conditions are accurately enforced

4. the far-field boundary condition is imposed analytically

In the original BEMs, these advantages were offset by the high cost of evaluating the inter-

actions among the elements, but fast summation schemes have been developed to reduce the

cost [43,45–49]. For example, we can employ the treecode algorithm to reduce the computa-

tional cost associated with each iteration of solving the resulting linear system. In developing

these boundary integral PB solvers, many interesting numerical challenges arise, e.g. pre-

conditioning of matrix whose conditioner number increases when triangulation quality is

reduced, the parallelization of the treecode algorithm using MPI [15] and the parallelization

of the boundary integral PB solver using GPU [50, 51]. The developed solvers help us to

produce electrostatic potentials, which can be further used to compute protein properties

such as binding energy to ligands [11].

In summary, the major steps to solve the PB model are as follows,

1. Triangulate the molecular surface using an established surface generator software.

2. Use the boundary element method to get a set of coupled integral equations.

3. Discretize integral equations with centroid collocation to arrive at a linear system.

4. Solve the linear system with GMRES using the treecode algorithm to speed up matrix-

vector product calculation.

Then we can compute the electrostatic solvation energy from the resulting potential.

We present the boundary integral form of the PB implicit solvent model, the discretization

of the boundary integral equations, the treecode algorithm for accelerating the matrix-vector

product, and the preconditioning scheme to alleviate the rising condition number when the

triangulation quality deteriorates due to complex geometry [16, 52, 53].
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3.1.1. Boundary Integral Form of Poisson-Boltzmann Model

Following the tradition of the boundary integral method, we use x and y to represent

the spatial position. We also denote Ω1 = Ω−, Ω2 = Ω+, ε1 = ε−, and ε2 = ε+. This section

summarizes the well-conditioned boundary integral form of the PB implicit solvent model we

employ [41, 53]. Applying Green’s second identity and properties of fundamental solutions

to Eq. (2.20) yields the electrostatic potential in each domain,

φ(x) =

ˆ
Γ

[
G0(x,y)

∂φ(y)

∂ν
− ∂G0(x,y)

∂νy
φ(y)

]
dSy +

Nc∑
k=1

qkG0(x,yk), x ∈ Ω1, (3.1a)

φ(x) =

ˆ
Γ

[
−Gκ(x,y)

∂φ(y)

∂ν
+

∂Gκ(x,y)

∂νy
φ(y)

]
dSy, x ∈ Ω2, (3.1b)

where G0(x,y) and Gκ(x,y) are the Coulomb and screened Coulomb potentials, respectively

G0(x,y) =
1

4π|x− y|
and Gκ(x,y) =

e−κ|x−y|

4π|x− y|
. (3.2)

Then applying the interface conditions in Eq. (2.23) with the differentiation of electrostatic

potential in each domain yields a set of boundary integral equations relating the surface

potential φ1 and its normal derivative ∂φ1/∂ν on Γ,

1

2
(1 + ε)φ1(x) =

ˆ
Γ

[
K1(x,y)

∂φ1(y)

∂ν
+K2(x,y)φ1(y)

]
dSy + S1(x), x ∈ Γ, (3.3a)

1

2

(
1 +

1

ε

)
∂φ1(x)

∂ν
=

ˆ
Γ

[
K3(x,y)

∂φ1(y)

∂ν
+K4(x,y)φ1(y)

]
dSy + S2(x), x ∈ Γ, (3.3b)

where ε = ε2/ε1. As given in Eqs. (3.4a-3.4b) and (3.8), the kernels K1,2,3,4 and source terms

S1,2 are linear combinations of G0, Gk, and their first and second order normal derivatives [41,
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53],

K1(x,y) =G0(x,y)−Gκ(x,y), K2(x,y) = ε
∂Gκ(x,y)

∂νy
− ∂G0(x,y)

∂νy
, (3.4a)

K3(x,y) =
∂G0(x,y)

∂νx
− 1

ε

∂Gκ(x,y)

∂νx
, K4(x,y) =

∂2Gκ(x,y)

∂νx∂νy
− ∂2G0(x,y)

∂νx∂νy
, (3.4b)

where the normal derivative with respect to x is given by

∂G(x,y)

∂νx
= −ν(x) · ∇xG(x,y) = −

3∑
m=1

νm(x)∂xmG(x,y), (3.5)

the normal derivative with respect to y is given by

∂G(x,y)

∂νy
= ν(y) · ∇yG(x,y) =

3∑
n=1

νn(y)∂ynG(x,y), (3.6)

the second normal derivative with respect to x and y is given by

∂G(x,y)

∂νy∂νx
= −

3∑
m=1

3∑
n=1

νm(x)νn(y)∂xm∂ynG(x,y), (3.7)

and the source terms S1,2 are

S1(x) =
1

ε1

Nc∑
k=1

qkG0(x,yk) and S2(x) =
1

ε1

Nc∑
k=1

qk
∂G0(x,yk)

∂νx
. (3.8)

Once the potential and its normal derivative are solved from Eqs. (3.3a)-(3.3b), the

potential at any point inside the molecule can be computed via Eq. (3.1a), or a numerically

more accurate formulation may be used from [41]:

φ1(x) =

ˆ
Γ

[
K1(x,y)

∂φ1(y)

∂ν
+K2(x,y)φ1(y)

]
dSy + S1(x), x ∈ Ω1. (3.9)
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With the potential and its normal derivative on Γ, the electrostatic free energy can be

obtained by

Efree =
1

2

Nc∑
k=1

qkφ1(yk) =
1

2

Nc∑
k=1

qk

(ˆ
Γ

[
K1(yk,y)

∂φ1(y)

∂ν
+K2(yk,y)φ1(y)

]
dSy + S1(yk)

)
.

(3.10)

The electrostatic solvation energy can also be obtained by

Esol =
1

2

Nc∑
k=1

qkφ
reac(yk) =

1

2

Nc∑
k=1

qk

ˆ
Γ

[
K1(yk,y)

∂φ1(y)

∂ν
+K2(yk,y)φ1(y)

]
dSy, (3.11)

where φreac(x) = φ(x)− S1(x) is the reaction field potential [41, 53].

3.1.2. Discretization of Boundary Integral Equations

The integrals in Eqs. (3.3a)-(3.3b) can be discretized by centroid collocation, which is

popular due to its simplicity [53]. Alternatively, it can be discretized using more complicated

approaches such as node collocation [54,55], curved triangles [56], or Galerkin’s method [57],

with each resulting in a trade-off between accuracy and efficiency. Here we employ the

centroid collocation approach.

Letting xi, i = 1, . . . , N denote the triangle centroids of the N triangular elements, the

discretized Eqs. (3.3a)-(3.3b) have the following form for i = 1, . . . , N ,

1

2
(1 + ε)φ1(xi) =

N∑
j=1
j 6=i

[
K1(xi,xj)

∂φ1(xj)

∂ν
+K2(xi,xj)φ1(xj)

]
∆sj + S1(xi), (3.12a)

1

2

(
1 +

1

ε

)
∂φ1(xi)

∂ν
=

N∑
j=1
j 6=i

[
K3(xi,xj)

∂φ1(xj)

∂ν
+K4(xi,xj)φ1(xj)

]
∆sj + S2(xi), (3.12b)

where ∆sj is the area of the jth boundary element, and the term j = i is omitted from

the summation to avoid the kernel singularity. Eqs. (3.12a)-(3.12b) represent a linear sys-
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tem Ax = b, where x contains the surface potentials φ1(xi) and normal derivatives ∂φ1(xi)
∂ν

,

weighted by the element area ∆si, and b contains the source terms S1(xi) and S2(xi). We

solve this system using the generalized minimal residual (GMRES) iterative method, which

requires a matrix-vector product in each step [58]. Since the matrix is dense, computing

the product by direct summation requires O(n2) operations, which is prohibitively expensive

when n is large. These difficulties can be overcome by fast algorithms for n-body compu-

tations, such as treecode [51, 53] and Fast Multipole Methods [45, 57]. In the next section,

we describe how the treecode algorithm is used to accelerate the matrix-vector product

calculation.

3.1.3. Treecode

We summarize the treecode algorithm and refer to previous work for more details [46,

52, 59, 60]. The matrix-vector product Ax for Eqs. (3.12a)-(3.12b) has the form of n-body

potentials,

Vi =
N∑
j=1
j 6=i

qjG(xi,xj), i = 1, . . . , N, (3.13)

where G is a kernel, xi,xj are centroids (also called particle locations in this context),

and qj is a charge associated with xj. To this end, the qj in Eq. (3.13) is equivalent to

the ∆sjφ1(xj) or ∆sj
∂φ1(xj)

∂ν
in Eqs. (3.12a)-(3.12b) and G is one of the kernels K1−4. To

evaluate the potentials Vi rapidly, the particles xi are divided into a hierarchy of clusters

having a tree structure in a 2-D illustration as in Fig. 3.1(a). The root cluster is a cube

containing all the particles and subsequent levels are obtained by dividing a parent cluster

into children [46]. The process continues until a cluster has fewer than N0 particles (N0 is a

user-specified parameter representing the maximum number of particles per leaf, e.g. N0 = 3

in Fig. 3.1(a)). Then Vi is evaluated as a sum of particle-particle interactions and particle-
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cluster interactions (depicted in Fig. 3.1(b)),

Vi ≈
∑
c∈Ni

∑
xj∈c

qjG(xi,xj) +
∑
c∈Fi

p∑
‖k‖=0

ak(xi,xc)m
k
c , (3.14)

where c denotes a cluster, and Ni, Fi denote the near-field and far-field clusters of particle

xi. The first term on the right is a direct sum for particles xj near xi, and the second term

is a pth order Cartesian Taylor approximation about the cluster center xc for clusters that

are well-separated from xi [52]. The Taylor coefficients are given by

ak(xi,xc) =
1

k!
∂k
yG(xi,xc), (3.15)

and the cluster moments are given by

mk
c =

∑
xj∈c

qj(xj − xc)
k. (3.16)

Cartesian multi-index notation is used with k = (k1, k2, k3), ki ∈N and ‖k‖= k1 + k2 + k3.

A particle xi and a cluster c are defined to be well-separated if the multipole acceptance

criterion (MAC) is satisfied, rc/R ≤ θ, where rc is the cluster radius, R = |xi − xc| is the

particle-cluster distance and θ is a user-specified parameter [46].

(a) (b)
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Figure 3.1: Details of treecode. (a) tree structure of particle clusters. (b) particle-cluster
interaction between particle xi and cluster c = {xj}. xc: cluster center; R: particle-cluster
distance; and rc: cluster radius.
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The accuracy and efficiency of the treecode is controlled by the combination of parameters

including the order p, MAC parameter θ, and maximum particles per leaf N0. Using the

treecode, the operation count for the matrix-vector product is O(N logN), where N is the

number of particles xi, and the factor logN is the number of levels in the tree.

3.1.4. Preconditioning

In order to precondition Krylov subspace methods in solving Ax = b, we design a scheme

using left-preconditioning. Given a preconditioning matrix M , we consider the modified

linear system M−1Ax = M−1b. The solve then proceeds in two steps: (a) set c = M−1b, and

(b) solve (M−1A)x = c using GMRES. We therefore seek a preconditioner, M , such that

two conditions are satisfied:

(1) M is similar to A such that M−1A has improved condition compared to A and requires

fewer GMRES iterations;

(2) M−1z = y can be efficiently computed, which is equivalent to solving y from My = z.

Conditions (1) and (2) cannot be improved concurrently, thus a trade-off must be made.

We designf our preconditioner based on the observation that in the electrostatic interac-

tions, which is also the interactions between boundary elements in solving integral equations,

the short range interactions are smaller in number of interactions, but more significant in

strength than the long range interactions, which are large in number of interactions and com-

putationally more expensive. Due to their large number of interactions, the long interactions

are calculated by multipole expansions. This offers the idea that for a preconditioner of A,

we may construct M to contain only short range interactions and to ignore long range inter-

actions. To this end, we select short range interactions between elements on the same leaf

only. This choice of M has great advantages in efficiency and accuracy for solving My = z.

As seen with details in [16], by using a permutation operation, the M matrix is a block

diagonal matrix with n blocks such that M = diag{M1,M2, · · · ,Mn} thus My = z can be
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solved using direct method e.g., LU factorization by solving each individual Miyi = zi for

i = 1, · · · , n. Here each Mi is a square nonsingular matrix, which represents the interaction

between particles/elements on the ith leaf of the tree. It is worthy to note that the efficiency

is not affected even when Mi has a large condition number since a direct solver is used for

solving My = z. Meanwhile, the computational cost for solving My = z is O(Nn2
0) with n0

the treecode parameter, maximum number of particles per leaf, as detailed in [16].

3.2. Parallelization

Figure 3.2: pipeline for parallelized TABI solver

3.2.1. MPI-based Parallelization of the TABI Solver

As illustrated by the red circled items in Fig. 3.2, our parallelization of the TABI solver

focuses on the four stages of the pipeline: the O(NNc) source term, O(niN logN) matrix-

vector product using treecode, the O(niNN2
0 ) preconditioner, and the O(NcN) solvation

energy. Here, N is the number of surface triangles, N0 is the maximum number of particles

per leaf, Nc is number of partial charges, and ni is the number of GMRES iterations. Among

these stages, the most time consuming and challenging component is the matrix-vector prod-
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uct using treecode. To this end, we investigate two possible strategies for computing n-body

problems as in [61], which are also briefly described below. In this work, we migrate these

strategies to solving the boundary integral PB model. The numerical results in Chapter 4

show high parallel efficiency from the optimized approach.

task1 task2 taskn

task1 task2 taskn

particles

particles

tasks

tasks

Sequential

Cyclic

Figure 3.3: methods for assigning target particles to tasks: sequential order (top) vs cyclic
order (bottom)

The initial and intuitive method to assign target particles to tasks is to use sequential

ordering, in which the 1st task handles the first N/np particles in a consecutive segment,

the 2nd task handles the next N/np particles, etc. The illustration of this job assignment

is shown in the top of Fig. 3.3. However, when examining the resulting CPU time on each

task, we noticed starkly different times on each task, indicating a severe load imbalance.

This may be understood by the fact that for particles at different locations, the types of

interactions with the other particles through the tree can vary. For example, a particle

with only a few close neighbors uses more particle-cluster interactions than particle-particle

interactions, thus requiring less CPU time than a particle with many close neighbors. We also

notice that for particles that are nearby one another, their interactions with other particles,

either by particle-particle interaction or particle-cluster interaction, are quite similar, so

some consecutive segments ended up computing many more particle-particle interactions
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than others that were instead dominated by particle-cluster interactions. Based on these

observations, we designed a cyclic ordering scheme to improve load balancing, as illustrated

on the bottom of Fig. 3.3. In this scheme, particles nearby one another are uniformly

distributed to different tasks. For example, for a group of particles close to each other, the

first particle is handled by the first task, the second particle is handled by the second task,

etc. The cycle repeats starting from the (np + 1)-th particle. The numerical results that

follow demonstrate the significantly improved load balance from this simple scheme.

The pseudocode for our MPI-based parallel TABI solver using replicated data algorithm

is given in Table 3.1. The identical trees are built on each task as in line 6. The four-

stage MPI-based parallelization of the source term, matrix-vector product with treecode,

preconditioning, and solvation energy occur in lines 4, 10, 12, and 17, respectively, followed

by MPI communications.

3.2.2. The GPU-accelerated DSBI Solver

The pseudocode for the DSBI-PB solver using GPUs is given in Table 3.2. In this

psuedocode, we divide all the operations into those on host performed by the CPUs and those

on device performed by the GPUs. The three compute-intensive stages are computation of

the source term, matrix-vector product, and solvation energy; each are computed on GPUs

as shown in lines 5, 10, and 19, followed by a copy of the data from device to host. The

host CPU takes care of all complicated and non-concurrent work. We note that lines 13

and 14 are still under investigation due to the considerations of parallel efficiency, and we

disable these two lines in our current numerical implementation. The challenge is that the

variance in sizes of the block matrices Mi for i = 1, . . . , n that compose the preconditioner

M lead to significant load imbalance on the GPU. However, disabling the preconditioner

within the GPU based parallelization could significantly increase computing time when A is

ill-conditioned.
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Table 3.1: Pseudocode for MPI-based parallel TABI solver using replicated data algorithm.

1 on main processor
2 read protein data
3 call MSMS to generate triangulation
4 copy protein data and triangulation to all other processors
5 on each processor
6 build local copy of tree
7 compute assigned segment of source terms by direct sum
8 copy result to all other processors
9 set initial guess for GMRES iteration
10 compute assigned segment of matrix-vector product Ax by treecode
11 copy result to all other processors
12 compute assigned segment of solving Mx = y for x by LU factorization .
13 copy result to all other processors
14 test for GMRES convergence
15 if no, go to step 10 for next iteration
16 if yes, go to step 15
17 compute assigned segment of electrostatic solvation energy by direct sum
18 copy result to main processor
19 on main processor
20 add segments of electrostatic solvation energy and output result
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Table 3.2: Pseudocode for DSBI-PB solver using GPU

1 On host (CPU)
2 read biomolecule data (charge and structure)
3 call MSMS to generate triangulation
4 copy biomolecule data and triangulation to device
5 On device (GPU)
6 each thread concurrently computes and stores source terms
7 copy source terms on device to host
8 On host
9 set initial guess x0 for GMRES iteration and copy it to device

10 On device
11 each thread concurrently computes assigned segment of y = Ax

12 copy the computed matrix-vector y to host memory
13* each thread concurrently solves its assigned portion of Mx = y

14* copy the solution x to host memory
15 On host
16 test for GMRES convergence
17 if no, generate new x and copy it to device, go to step 10
18 if yes, generate and copy the final solution to device, go to step 19
19 On device
20 compute assigned segment of electrostatic solvation energy
21 copy computed electrostatic solvation energy contributions to host
22 On host
23 add segments of electrostatic solvation energy and output result

* currently disabled
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3.3. Uniform Scale-free Electrostatic Features

In majority of the molecular simulations, including Monte Carlo simulation, Brownian

Dynamics, Molecular Dynamics, etc, the electrostatic interactions are characterized by the

interactions between the partial charges assigned at the atomic centers by the force field,

which are determined by experiment or quantum chemistry. To reduce the computational

cost, implicit solvent model such as Poisson-Boltzmann model and Generalized Born model

are used in which the water is treated as a continuum while partial charges are still assigned at

the atomic center of the solute (the protein). Our consideration of electrostatic interactions

is under the framework of PB model.

We take the boundary integral PB model as the example, other finite difference or finite

element PB solvers will have the similar configuration.

Consider the discretized forms of Eqs. (3.3a) and (3.3b) for governing potential and its

normal derivatives as

Sx = Bq (3.17)

where x ∈ R2N is the vector of potential and its normal derivative at the N collocation

location, q ∈ RNc is the vector of Nc charges at atomic centers, S ∈ R2N×2N and B ∈ R2N×Nc

are the corresponding matrices to make the discretized forms Eqs. (3.3a) and (3.3b) valid.

Similarly, the discretized form of part of Eq. (3.11) to find potential inside the protein [53]

is

φ = φreac + φcoul = Rx+Dq (3.18)

for R ∈ RNc×2N , D ∈ RNc×Nc and the discretized forms of Eqs (2.26) and (3.11) are

Efree =
1

2
qTφ =

1

2
qT (RS−1B +D)q =

1

2
qTWq (3.19)

33



and

Esolv =
1

2
qTφreac =

1

2
qTRS−1Bq =

1

2
qTAq (3.20)

where

W := RS−1B +D (3.21)

and

A := RS−1B (3.22)

.

These simple and neat linear algebra equations give us an important clue to see q as

the collection of all charges (location and charge quantity) and φreac at the charge location

are the two most critical quantities in characterizing the protein structure, the force field,

and the protein properties in the Poisson–Boltzmann model. Based on this assumption,

the electrostatic features should be extracted from these two quantities. All our efforts in

developing accurate and efficient PB model can be carried by φreac at the charge location.

The algorithm for obtaining the mulit-scale, physics-informed, uniform electrostatic fea-

tures is explained in Figure 3.4. In short, the electrostatic of the protein from q and φreac

at the charge locations will be represented by the point-multipoles, whose moments will be

calculated using the treecode algorithm. To understand the point-multipoles, we provide

some explanations below.

Consider a protein with Nc atoms and its multi-scale Nd point multipole representation

(number of clusters for L levels in the tree structure) as shown in Fig. 3.4 for our machine

learning model. Our goal is to compute the permanent multipole

M = [M1,M2, . . . ,MNd ]T (3.23)
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as the uniform and scale-free feature for input to the machine learning model. Each term in

M is the pth order expansion about the cluster center. For i = 1, . . . , Nd

Mi = [qi] for p = 0

Mi = [qi, dix, d
i
y, d

i
z] for p = 1

Mi = [qi, dix, d
i
y, d

i
z, Q

i
xx, Q

i
xy, . . . , Q

i
zz] for p = 2

where q, di, Qij for i, j = 1, 2, 3 are the moments of the monopole, dipole, quadruple in

suffix notation. In more detail, consider n = 1, · · · , Nc, atoms at the nth cluster, centered

at rn = (xn, yn, zn), the nth permanent order 2 (for example) multipole Mn consists of 10

components (excluding symmetric terms): Mn = [qn, dnx, d
n
y , d

n
z , Q

n
xx, Q

n
xy, . . . , Q

n
zz]

T . Using

this notation, the permanent charge at rn can be written as [62, 63]

ρn(r) = qnδ(r− rn) + dni ∂iδ(r− rn) +Qn
ij∂ijδ(r− rn), (3.24)

A key idea is that the Coulomb potential Gn governed by the Gauss’s law −∆Gn = 4πρn in

the free space is expressed in terms of the Green’s function

Gn(r) =
1

|r− rn|
qn +

ri − rn,i
|r− rn|3

dni +
(ri − rn,i)(rj − rn,j)

2|r− rn|5
Qn

ij. (3.25)

For all permanent multipoles M = [M1,M2, . . . ,MNd ]T , the total Coulomb potential is

additive such as GM(r) =
∑Nd

n=1 G
n(r) by the superposition principle.

For the point-multipole approach in the left picture of Fig 3.4, our goal is thus the

computation of M accurately and efficiently. In fact, the computational cost is O(Nc) using

the strategies in [64], i.e. the moments at the finest cluster are computed first and a M2M

(moments to moments) transformation can be used to efficiently compute moments at any

desired level. These moments are intrinsic properties of the cluster thus can serve as features
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(0,0)

(1,1)

(-1,-1)

Figure 3.4: A 2-d illustration for 3-d uniform and multi-scale electrostatic features for a
protein (purple dashed line) with charges (shown as black dots); charges q and reaction
potential φreac are redistributed as point-multipoles (shown as explosion symbols) using
Cartesian treecode [52] or FMM [64] at the centers of the cluster at different levels (level 0:
black; level 1: red; level 2: green)
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for the protein, which carries simplified and important information. The number of features

up to level L cluster and pth order is

Nf (p, L) = NpNd (3.26)

where Np = 1, 4, 10, 20, 35, 56, ... and Nd = (1 + 8 + 82 + · · ·+ 8L) = 8L+1−1
7

.

3.3.1. Implementation Details

We outline the steps to compute the permanent multipole M.

1. Read in the protein or protein-ligand complex which is represented by its atomic loca-

tions and partial charges: qi(ri) for i = 1, · · · , Nc, e.g. the pqr file.

2. Calculate Nf (p, L) based on user inputted parameters. These Nf (p, L) numbers are

ordered by level from 0 to L and the coordinates of cluster centers in each level. This

determines the dimension of our final feature vector F ∈ RNf .

3. Build the tree with L levels.

4. Compute the terms in the pth order Taylor expansion at each center and fill F .

Table 3.3 shows how Nf varies with the change of p and L.

3.4. Topological Data Analysis

Here we describe the theory of how we compute topological features which will be used

later as inputs to our machine learning models for the prediction of binding affinity, Coulomb

energy and solvation energy (computed using both Poisson-Boltzmann and Generalized Born

methods). This strategy is based on a known method, called TopologyNet [65], which in-

troduces the element-specific persistent homology (ESPH) method. This method abstracts
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Table 3.3: Total number of features based on p and L

p\L 0 1 2 3 4
0 1 9 73 585 4681
1 4 36 292 2340 18724
2 10 90 730 5850 46810
3 20 180 1460 11700 93620
4 35 315 2555 20475 163835

the information in the geometrically complex 3D biomolecular data, which represents the

proteins, to create an image-like representation to take advantage of a very powerful tool in

machine learning: convolutional neural networks. Utilizing these abstract images rather than

the raw data directly overcomes computational challenges due to the size of large datasets

of large proteins. The motivation behind the persistent homology idea is to provide a high

level of abstraction of biological information. This is a classic example of a dimensionality

reduction problem: the goal is to represent high-dimensional data with a low-dimensional

representation. The main idea is to extract topological invariants, which are ”the intrinsic

features of the underlying space, of a given data set without additional structure informa-

tion” [65].

First, define a simplicial complex as a topological space that is constructed from geometric

components of a data set (or a point cloud), including discrete vertices and edges. Here, the

vertices represent atoms in a biomolecule and the edges represent bonds in the biomolecule.

• A 0-simplex is a vertex

• A 1-simplex is an edge

• A 2-simplex is a triangle

• A 3-simplex is a tetrahedron
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A linear combination of k−simplexes is called a k−chain. There are various ways to identify

connectivity by varying a filtration parameter such as the radii of balls centered at the nodes.

We can then generate complexes from the data, the two main types, following different rules,

are a Cech or Rips complex:

• The k-simplicies of the Cech complex are determined by unordered (k+1)-tuples of

points whose εt/2 ball neighborhoods have a point of common intersection.

• The k-simplices of the Rips complex are determined by unordered (k + 1)-tuples of

points that are pairwise within distance εt, as seen in Figure ??, where ε denotes the

proximity parameter [66].

Identifying the optimal value of εt is a difficult task because certain values of εt may capture

certain topological features of the data while others may not. For example, for sufficiently

small values of εt, the complex is a discrete set, while for large values of εt, the complex

is one high dimensional simplex. From this, we can define a persistent homology, which

is constructed via a filtration process (a nested sequence of subcomplexes), in which the

connectivity of the given dataset is systematically reset according to a scale parameter.

Then, persistent homologies are visually represented via barcodes. A barcode is a graphical

representation of a homology with ”horizontal line segments in a plane whose horizontal

axis corresponds to the parameter and whose vertical axis represents an (arbitrary) ordering

of homology generators” [66]. Barcodes represent the persistence of a dataset’s topological

features over different spatial scales. We display examples of barcodes from our protein

dataset later in Chapter 4. Betti-0 is the number of connected components, Betti-1 is the

number of tunnels or circles and Betti-2 is the number of cavities or voids.

This persistent homology method holds promise, but it can oversimplify biological infor-

mation, which is what motivated authors in [65] to extend the idea further to element specific

persistent homology. This approach is able to characterize the biomolecular structures in
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Point Circle Sphere Torus
Betti-0 1 1 1 1
Betti-1 0 1 0 2
Betti-2 0 0 1 1

Table 3.4: Betti numbers for different topological shapes

terms of multichannel topological invariants and considers specific atom types which may be

associated with various interaction networks. Commonly occuring atoms for proteins include

C, N, O and S and for ligands includes C, N, O, S, P, F, Cl, Br and I. They construct to

element specific topological finger prints by including one type of atom from the protein and

ligand, results in 36 cases.

Now to utilize the barcodes in a convolutional neural network framework a few pre-

processing steps must occur. The barcodes are transformed into 1D image-like inputs by

generating feature vectors which are defined as

V b
i =

∥∥∥∥{(bj, dj) ∈ B(α, C,D) | (i− 1)L

n
≤ bj ≤

iL

n

}∥∥∥∥ , 1 ≤ i ≤ n (3.27)

V d
i =

∥∥∥∥{(bj, dj) ∈ B(α, C,D) | (i− 1)L

n
≤ dj ≤

iL

n

}∥∥∥∥ , 1 ≤ i ≤ n (3.28)

V p
i =

∥∥∥∥{(bj, dj) ∈ B(α, C,D) | (i− 1)L

n
≥ bj,

iL

n
≤ dj

}∥∥∥∥ , 1 ≤ i ≤ n, (3.29)

where bj and dj refer to the birth and death of certain topological features as εt increases,

respectively. B(α, C,D) represents the collection of barcodes with α labeling the section of

atoms depending on atom types and whether or not the atom is from the protein or ligand,

C is the type of simplicial complex, and D indicated the dimension such as Betti-0, Betti-1

or Betti-2. The filtration interval is [0, L] and is divided into n equal length subintervals,

which can each be thought of as a pixel and L
n

can be viewed as the resolution. Now

each channel depends on the specific atoms chosen. For instance, we adopt the methods

established in [65] to end up with images of size 200 by 72. The filtration interval is taken to
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be [0, 50] with bins of length 0.25. We have 72 channels from 36 due to the cases previously

mentioned for V d, then V b, V d and V p for Betti-1 and Betti-2 barcodes for carbon atoms

and all heavy atoms from the protein and protein-ligand complex counts 24 more. Then,

the difference between the characterization of the protein and complex contributes 12 more

cases. We see examples of these images in Chapter 4. These feature vectors can be thought

of as one-dimensional images and thus we use Conv1D layers in our convolutional network

architecture, as described below.

3.5. Machine Learning Models

protein structures
with known properties

force field 

protein properties
dataset (label)

features 
(training)

protein structures
with unknown properties

protein properties
(prediction)

features
(prediction) 

learned 
model

Learning …

features (detail)

algebraic

topological

geometric

electrostatic

Figure 3.5: The DNN based Machine Learning model which uses protein structural data,
force field, and known protein properties to mathematically generate algebraic, geometric,
topological, and electrostatic features to train a learned model and then use the learned
model to predict unknown properties for protein with available structures.

The main goal of this project is to discover the hidden and useful information embedded

in the protein structural data from the protein data bank in a simple and abstract way. The

protein structure data and force field include bonded and non-bonded interactions with which

the molecular simulation can be performed. We categorize these information into algebraic,

geometric, topological and electrostatic features. These four aspects are all important to the

machine learning model.
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The DNN-based machine learning model is shown in Fig. 3.5, which uses the available

protein structural data [3], force field such as AMBER [67], CHARMM [68], AMOEBA [69],

etc. and known protein properties repositories such as PDBbind Database [70], Protein

pKa Database [71], etc to mathematically generate algebraic, geometric, topological, and

electrostatic features to train a learned model and then use the learned model to predict

unknown properties for protein with available structures. Here, we focus on the topological

and electrostatic features. Details on algebraic and geometric feature development/extrac-

tion techniques can be found in [61].
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3.5.1. Network Architectures

The first model we explore is for the prediction of solvation energy (calculated with the

PB model and GB model) prediction using the scale-free uniform electrostatic features de-

scribed above. We first preprocess the data by removing outliers using the interquartile

range (IQR) method. The features, represented by X are standardized with mean 0 and

standard deviation of 1 using StandardScaler() from sklearn.preprocessing. Having the fea-

tures on the same scale helps the neural network converge for this regression task. We also

choose to standardize the output labels, represented by y because of the wide range of the

solvation energy values. We make sure to invert the transform from the predicted output for

our reported scatter plots in Chapter 4.

We use a keras Sequential model with each layer outlined in Figure 3.6. The convolutional

neural network starts with 1D convolution layers, followed by fully connected (Dense) layers.

This is advantageous because the convolutional network learns higher-level features from the

earlier layers in the model then once the output is flattened more dense layers follow to

ultimately perform regression. The input data to the model has N(p, L) features. Notations

are Dense(neuron number, activation function, weight initialization, regularization constant),

Dropout(dropout rate) and Activation(activation function). We use batch normalization

to normalize the activations of a previous layer at each batch and dropout to randomly

deactivate neurons. Both of these approaches help to reduce overfitting.

We use 500 epochs to predict solvation energy (calculated from both the PB model and

GB model as well as Coulomb energy. We use the adaptive momentum (adam) optimizer

with a learning rate of 0.0001 and batch size of 32. We use mean squared error as our

loss function. Figure 3.7 outlines the model architecture used for the convolutional neural

network. Notations are Conv1D(filter number, filter size, activation function, regularization

constant) and AveragePooling(pooling size). The output layer for the regression task uses

a linear activation function. The combined model in Figure 3.8 uses both electrostatic and
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topological features. The topological features are inputted into the convolutional layers on

the left side of the figures while the electrostatic features are inputted into the model with

Dense layers, as seen on the right side of Figure 3.8. The outputs of these models are then

merged and used as the input to the final layers consisting of more dense layers with the final

output being the solvation energy calculation from the PB model. Hyperparameters were

chosen based on trial and error and also motivated by the hyperparameters chosen in [65]

which utilized a parameter search using Hyperopt [72].
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Dense(128, relu, he_uniform, 0.01)

Input Shape: (N(p,L), )

Dropout(0.15)

Dense(64)

BatchNormalization()

Dropout(0.15)

Dense(32)

BatchNormalization()

Activation(relu)

Dropout(0.15)

Dense(16)

BatchNormalization()

Activation(relu)

Activation(relu)

Dropout(0.15)

Dense(8)

BatchNormalization()

Activation(relu)

Dropout(0.15)

Dense(4)

BatchNormalization()

Activation(relu)

Dropout(0.15)

Dense(1)

Figure 3.6: Network architecture using solely electrostatic features to predict 1) solvation
energy calculated by PB model, 2) solvation energy calculated by GB model and 3)
Coulomb energy
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Image Size: 200 x 72 

Conv1D(128, 3, tanh, 0.02) 

AveragePooling1D(2) 

Dropout(0.3) 

BatchNormalization() 

AveragePooling1D(2) 

Dropout(0.3) 

BatchNormalization() 

Conv1D(64, 3, relu, 0.02) 

AveragePooling1D(2) 

Dropout(0.3) 

Flatten() 

Conv1D(64, 3, tanh, 0.02) 

Dense(64, relu) 

Dropout(0.15) 

Dense(1) 

Figure 3.7: Network architecture using solely topological features to predict solvation
energy calculated by the PB model
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Conv1D(128, 3, tanh, 0.02)

Image Size: 200 x 72

AveragePooling1D(2)

Dropout(0.3)

BatchNormalization()

AveragePooling1D(2)

Dropout(0.3)

BatchNormalization()

Conv1D(64, 3, relu, 0.02)

AveragePooling1D(2)

Dropout(0.3)

Flatten()

Conv1D(64, 3, tanh, 0.02)

Dense(64, relu)

Merged Layer

Dense(32, relu, he_uniform, 0.01)

Dropout(0.15)

BatchNormalization()

Dense(16, relu, 0.02)

Dropout(0.15)

BatchNormalization()

Dense(8, relu, 0.02)

Dense(1)

Electrostatic Input: (N(p,L), )

Dense(128, relu, he_uniform, 0.01)

Dropout(0.15)

BatchNormalization()

Dense(64, relu, 0.02)

Figure 3.8: Network architecture using both electrostatic and topological features to
predict solvation energy calculated by the PB model
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Chapter 4

Results

This chapter contains all the numerical simulation results, ranging from the electrostat-

ics on COVID-19 protein results using the parallel boundary integral PB solvers, to the

performance of our DNN model using topological and electrostatic features.

4.1. Performance of Parallelized Poisson-Boltzmann Solvers

This section focus on the parallelization performance of the boundary integral PB solvers.

We first demonstrate the load balance optimization using the designed cyclic schemes, fol-

lowed by a comparison study between the MPI-based TABI solver and the GPU-accelerated

DSBI solver for the determination of a size-threshold to use the more suitable solver. An

accurate, efficient, and reliable PB solver makes it possible for us to generate labels i.e. the

electrostatic solvation energies of the collection of proteins for the machine learning model,

whose performance is reported at the end of this chapter.

4.1.1. Sequential vs Cyclic

Our numerical results are generated on supercomputers sponsored by Southern Methodist

University’s Center for Research Computing (CRC). The MPI-based results are generated

on M3 (https://www.smu.edu/oit/services/m3) and GPU-based results are generated on

SuperPOD (https://www.smu.edu/oit/services/superpod).

We first check the parallel efficiency of our MPI-based algorithm with both sequential

and cyclic schemes by computing the solvation energy on protein 7n3c at MSMS density of
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12, which generates 529,911 boundary elements. We use up to 256 MPI tasks and Table 4.1

shows the results. Column 1 shows the increasing numbers of MPI tasks. Column 2 reports

the Total CPU time when the direct sum (DS)BI scheme is used to compute the electrostatic

solvation free energy. Due to itsO(N2) computational cost, the CPU time for the DSBI solver

is overly long, even when 256 tasks are used. Columns 4 and 5 display the total CPU time

and parallel efficiency for the TABI solver using the sequential and cyclic schemes, both of

which are much faster compared to DSBI. Columns 8 and 9 focus more closely on the time

required for a single matrix-vector product Ax, tAx, which we take as the average of the

iteration’s maximum CPU time among all tasks,

tAx =
1

ni

ni∑
k=1

max
j

tj,kAx (4.1)

where tj,kAx is the CPU time to compute Ax from the jth task in the kth GMRES iteration.

Parallel efficiencies are displayed in Columns 3, 6, 7, 10 and 11. The parallelization of

the DSBI solver shows high efficiency as seen in column 3. This is due to the simplicity

of the algorithm. Other than the four stages identified in Figure 3.2, there is very little

serial computation or communication required. However, the parallel efficiency of the TABI

solver is not as good as the DSBI solver, as shown in Columns 6 and 7. This is primarily

due to the use of treecode, which has some serial time for building the tree and computing

the moments. The serial time is relatively short when np is small but becomes increasingly

significant as np grows and the time spent within parallelized stages decreases. If we focus

specifically on the parallelization of the treecode in computing Ax, Columns 10 and 11 show

a high degree of parallel efficiency. We can also observe that the cyclic scheme significantly

improves the parallel efficiency in comparison with the sequential scheme. However, due to

the very small fraction of runtime spent in computing matrix-vector products as np increases,

the overall parallel efficiencies from Columns 6 and 7 do not show a significant difference

between the sequential and cyclic schemes. To more carefully examine the performance
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Table 4.1: CPU time and parallel efficiency (P.E.) for parallelized direct sum, sequentially
parallelized treecode (seq.) and cyclically parallelized treecode (cyc.) for computing
electrostatic solvation energy (-6020.52 kcal/mol) for protein 7n3c with 529,911 boundary
elements. The treecode parameters are θ = 0.8, N0 = 100, and p = 3; The number of tasks
np ranges over 1, . . . , 256. The time for one Ax (tAx) is the average iteration’s maximum
CPU time over all tasks.

np DSBI Solver TABI solver
Total Time Total Time Time for one Ax (tAx,)

CPU (s) P.E. CPU (s) P.E. CPU (s) P.E.
seq. cyc. seq. cyc. seq. cyc. seq. cyc.

1 106063.17 100.00 1874.88 1873.60 100.00 100.00 89.75 89.60 100.00 100.00
2 53132.86 99.81 971.25 967.12 96.52 96.87 45.49 45.22 98.63 99.07
4 26549.87 99.87 561.25 502.60 83.51 93.20 25.69 22.57 87.34 99.26
8 13291.47 99.75 321.42 285.25 72.91 82.10 13.94 12.02 80.46 93.22

16 6710.06 98.79 171.41 158.04 68.36 74.09 6.43 5.77 87.30 97.08
32 3928.71 84.37 128.13 114.73 45.73 51.03 3.99 3.26 70.22 85.84
64 2022.84 81.93 99.75 90.81 29.37 32.24 2.14 1.66 65.55 84.24

128 1042.49 79.48 79.82 76.83 18.35 19.05 1.08 0.85 64.65 82.77
256 554.50 74.72 71.70 71.16 10.21 10.28 0.56 0.45 62.27 78.61
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differences between the sequential and cyclic decomposition schemes, in Fig. 4.1 we plot tAx

from Eqn. (4.1) when 8,16,· · · , 256 MPI tasks are used. It is evident that the cyclic scheme

has reduced variance compared with the sequential scheme owing to its advantage in load

balance.

4.1.2. MPI-based TABI Solver vs GPU-accelerated DSBI Solver

Next, we compute the solvation energy for the six COVID-19 proteins introduced pre-

viously using MSMS with density equal to 12 to provide sufficient detail of the molecular

surface. We use both the MPI-based TABI solver and the GPU-accelerated DSBI solver.

For a reasonable computing power comparison, we use 64 CPU cores for the MPI-related

computing and 1 GPU card for the GPU-related computing. Table 4.2 shows the simulation

results. Column 1 is the PDB ID for proteins in ascending sequence of their size followed by

the number of atoms in column 2, number of boundary elements in column 3, and the areas

of the solvent excluded surface in column 4. Columns 5 and 6 are the number of GMRES

iterations, from which we can see that the TABI solver has much improved condition number

in comparison with the DSBI solver thanks to the TABI preconditioner from Section 3.1.4.

The solvation energies are reported in columns 7 and 8, which are sufficiently close. The dif-

ferences are caused by the treecode approximation, the preconditioning scheme, and the error

tolerance achieved when the iteration is stopped. Note for calculating protein electrostatic

solvation energy, we don’t have an exact value to compare. If the DSBI solver converges be-

fore reaching the maximum number of allowed GMRES iterations, its result should be more

accurate than that from TABI solver since Treecode and Preconditioner could add extra

approximations. For example, the EGPU
sol results from proteins 6yi3, 7act, 7n3c, 6wji should

be more accurate than the EMPI
sol results for these proteins. However, if the GMRES allowed

maximum number of iteration has been reached for examples for proteins 7cr5 and 7sts, on

which the DSBI solver stopped when 100 iterations are reached while the accuracy did not
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Figure 4.1: MPI-based parallelization with sequential and cyclic schemes for 8, 16, · · ·, 256
tasks. The CPU time reported is tAx, the average GMRES iteration’s maximum CPU
times among all tasks.
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meet the 10−4 threshold, we can not say for sure whether EGPU
sol result or EMPI

sol result is

more accurate. The computation times are shown in columns 9 and 10, which demonstrates

that the computing power between 64 CPUs and 1 GPU are comparable. However, the

algorithms (with preconditioning vs without preconditioning, direct sum vs treecode) can

make a substantial difference for ill-conditioned or larger systems. For example, for protein

7sts, with nearly one million boundary elements, the MPI-based TABI solver is significantly

faster than the GPU-based DSBI because of the ill-conditioned system and the large size of

the problem.

Table 4.2: Computing electrostatic solvation energies in (kcal/mol) for the involved
proteins: ionic strength = 0.15M; ε1 = 1, ε2 = 80; MSMS [73] density=12; Nc is the
number of atoms/charges, N is the number of boundary elements, ni is the number of
GMRES iterations, Sses is the solvent excluded surface area, and Esol is the electrostatic
solvation energy.

PDB Nc N SSES nMPI
i nGPU

i EMPI
sol EGPU

sol tMPI (s) tGPU (s)
6yi3 2083 169,968 7516.44 10 10 -1941.81 -1945.18 14.76 8.96
7act 2352 188,054 8286.70 14 14 -1893.88 -1934.49 21.35 17.39
7cr5 8133 513,226 22524.23 16 100+ -5713.52 -5786.69 89.52 695.17
7n3c 8459 530,084 23244.85 19 17 -6020.52 -6013.68 99.13 132.20
6wji 10182 641,266 28116.88 13 14 -14009.55 -14016.02 112.82 152.71
7sts 15797 993,572 43457.63 26 100+ -11622.63 -11583.26 422.67 2544.70

We then further investigate under what conditions we should choose between using the

GPU-accelerated DSBI solver or MPI-based TABI solver. The following example, whose

result is shown in Table 4.3, gives some important guidance. In this example, we compute

the solvation energy for protein 6yi3 for increasing values of the MSMS density (d), giving

rise to increased problem sizes, as shown in columns 1 and 2. Columns 3 and 4 show the

similar solvation energy computed with these two approaches. Columns 5 and 6 report the

number of GMRES iterations. From these close results, we see that the discretized system

for this protein is well conditioned thus the preconditioning scheme has limited effect. We

solve the problem using 1 CPU core and report the time in column 7 for reference. Then
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we report the time for solving the problem using 64 MPI tasks and one A100 GPU card

in columns 8 and 9. The result indicates that for a protein whose discretized system is

well-conditioned, when the number of boundary elements is less than 250,000, we should

use the GPU-accelerated DSBI solver, since the smaller the system the better the GPU-

accelerated DSBI solver compares against the MPI-based TABI solver. If the conditioning

of A shows a pressing need for preconditioning, the threshold number will be smaller for the

GPU-accelerated DSBI solver. The rapid GPU performance at least gives us the hope to

perform molecular dynamics or Monte Carlo simulation for small and middle-sized proteins

using GPUs. For example, if 50,000 boundary elements can reasonably describe the given

protein, a single PB equation solution only takes about one second using one GPU card, in

comparison with 4 seconds on a 64-core cluster.

Table 4.3: Computing electrostatic solvation energies in (kcal/mol) for the protein 6yi3 at
different MSMS densities: ionic strength = 0.15M; ε1 = 1, ε2 = 80; d is the MSMS density,
N is the number of boundary elements, ni is the number of GMRES iterations, Esol is the
electrostatic solvation energy. Results are generated using KOKKOS and MPI on
ManeFrame III; MPI results are from using 64 tasks; GPU results are from using one A100
GPU.

d N EMPI
sol EGPU

sol nCPU
i nGPU

i tCPU (s) tMPI (s) tGPU (s)
2 28,767 -2057.61 -2056.26 10 10 29.34 2.76 0.83
4 56,127 -1999.01 -1997.03 10 10 66.40 4.46 1.52
6 84,903 -1968.00 -1966.87 10 16 108.52 7.05 4.98
8 110,307 -1954.62 -1952.23 10 10 145.13 9.35 4.32
12 169,955 -1945.18 -1941.81 10 10 240.54 14.76 8.91
16 229,901 -1940.96 -1936.87 10 11 340.82 19.86 17.66
18 257,236 -1938.27 -1933.67 10 11 385.96 21.69 23.73
20 287,202 -1937.18 -1931.77 10 12 438.86 24.54 28.73
24 343,806 -1933.63 -1928.65 10 11 534.31 35.13 38.62
28 407,196 -1933.04 -1927.56 10 12 653.06 41.84 55.18

32.5 471,307 -1931.76 -1926.04 10 12 760.12 51.23 77.83
64 946,335 -1928.51 -1921.81 10 13 1701.06 145.65 311.07
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We note that the solution to the boundary integral PB equation gives both the elec-

trostatic potential and its normal derivative on the molecular surface. We can plot the

potential on the surface elements. The color-coded potential can provide guidance on the

docking site for the ligand, or offer other insights pertaining to protein-protein interactions.

Some examples of this kind of visualization are shown in Fig. 4.2.

Figure 4.2: Color coded electrostatic surface potential in kcal/mol/ec on the molecular
surface of proteins 6yi3 (left), 7act (middle), and 7n3c (right); plot is drawn with VMD [74].
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4.2. Performance of Machine Learning Models

Starting from this section, we report the performance of our machine learning models to

predict the protein properties such as binding affinity, Coulomb energies, electrostatic solva-

tion energies, etc. To differentiate the significance of topological and electrostatic features,

we report the model performance using these features alone and together.

4.2.1. Binding Affinity Prediction Using Topological Features

Topological features play a significant role in our machine learning models as they ab-

stract one-dimensional topological invariants from the complex 3-d protein structures. To

this end, we adopt the schemes from TopologyNet [65]. We have generated topological fea-

tures for the PDBBind 2007 core set. 195 protein-ligand complexes were used as the test

set and the PDBBind 2007 refined set, excluding the PDBBind 2007 core set, was used as

the training set which contained 1,105 protein-ligand complexes. The Gudhi package was

used to generate topological features which are visualized in Figure 4.3 with their binding

affinity. These topological features were then inputted into the convolutional neural network

described in [65]. Model performance was measured in terms of the Pearson correlation

coefficient between the true affinity values ytrue and the model predicted affinity values ypred.

We achieved a Pearson correlation coefficient of approximately 0.78 using the model archi-

tecture in [65], which achieved a Pearson correlation coefficient of 0.82. Results for the

TopologyNet binding predictor are displayed in the top portion of Figure 4.4. The loss on

the left shows evidence of overfitting as the validation loss converges at a much higher value

than the training loss. This suggests the model’s inability to generalize to unseen data, such

as the test set here. This motivated the design of a simpler model to reduce the effects of

overfitting. The results for the modified model designed to reduce overfitting are displayed

in the bottom part of Figure 4.4. The architecture for this model is outlined in Figure 3.7.

The Pearson correlation coefficient for this model is 0.75. In [65], authors report the Pearson
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correlation coefficients of various scoring methods for the prediction of protein-ligand bind-

ing affinity. Our reported result ranks number 3 out of the 25 methods reported. Despite

this, the uniform scale-free electrostatic features did not prove effective for the prediction of

protein-ligand binding affinity. Therefore, the electrostatic features showed limited benefit

when combined with the topological features for predicting binding affinity.

Figure 4.3: Topological features with corresponding binding affinity values

4.2.2. Solvation and Coulomb Energy Prediction Using Electrostatic Features

The weak contribution from electrostatic features in predicting binding affinity implies

the weak connection between the binding affinity, which is from experiments, and protein

electrostatics. In fact, a consultation from authors of [65] verified our doubts since they once

tested the correlation between electrostatic binding energy and the experimental binding

affinity, which is rather weak. Our attention then moved to the prediction of Coulomb

energy and solvation energy of proteins using our machine learning models.
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Figure 4.4: Modified model designed to reduce overfitting loss (left) and scatter plot of true
vs. predicted affinity values of binding affinity

We used the v2018 dataset consisting of 4658 proteins. Removing outliers using the

interquartile range method reduced this number to 4295 proteins and 80% of the data was

used as the training set while 20% was reserved for the testing set. Further, we used 5-fold

cross-validation to train the model. The evaluation metrics used are

1. MSE (Mean squared error) between the scaled ytrue and scaled ypred

2. R2 (explained variance) between ytrue and ypred

3. Pearson correlation coefficient between ytrue and ypred

4. MAPE (Mean absolute percentage error) between ytrue and ypred

and are reported on the test set in the following tables. The following loss plots displayed

in this chapter are the mean loss over k = 5 folds. It is important to note that the cost
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to compute these electrostatic features is low, making our approach more efficient computa-

tionally compared to solving the PB model in its entirety to compute the solvation energy.

This relates to our initial goal to develop fast and efficient algorithms. The time to compute

the features of 4658 proteins, with sizes shown in Figure 4.2.2, for various combinations of p

and L for the v2018 dataset is reported in Table 4.4, which is very efficient!

Table 4.4: Time in seconds to compute electrostatic features for v2018 dataset consisting of
4658 proteins

p L N(p, L) Time (s)

1 0 4 107.09
2 0 10 107.70
3 0 20 111.66
4 0 35 116.35
0 1 9 111.72
1 1 36 107.79
2 1 90 111.44
3 1 180 117.89
4 1 315 129.07
0 2 73 107.53
1 2 292 110.81
2 2 730 121.52
3 2 1460 138.47
4 2 2555 161.98
0 3 585 113.66
1 3 2340 130.95

To determine if these features are not only efficient to compute but also accurate in their

ability to predict biologically relevant quantities such as Coulomb and solvation energy we

examine the loss and scatter plots for the p and L cases in the next sections. We also examine

if these electrostatic features, in combination with topological features, can improve model

performance.
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Figure 4.5: Histogram showing the number of atoms in each protein in the v2018 dataset

4.2.2.1. Coulomb Energy

The first prediction we make using our electrostatic features is Coulomb energy. Results

of evaluation metrics are reported in Table 4.5. The first column is the order p, the second

column is the level L, the third column N(p, L) is the number of features generated from p

and L, and the fourth through seventh columns are the evaluation metrics outlined above.

In Table 4.5, we see the optimal performance, in terms of the correlation coefficient, is

p = 4/L = 2 with 0.92 as displayed in the fourth row of .Figure 4.6 We display the loss plots

(left) and scatter plots (right) of ytrue versus ypred in Figure 4.6 for p = 3/L = 1, p = 4/L = 1,

p = 3/L = 2 and lastly p = 4/L = 2. The loss plots demonstrate reasonable convergence and

do not show obvious signs of overfitting, indicating that the scale-free uniform electrostatic

features are relevant to the prediction of Coulomb energy. Notice that as we fix the number

of levels in the tree L and increase the order p (as the table is organized) the MSE and MAPE

generally decrease while the Pearson correlation coefficient and R2 increase. This indicates

that the model performance increases as the order p increases. This makes sense because as

the order increases in the multipole expansion we get a more accurate approximation. This

is advantageous as including more terms for higher accuracy does not come at a significantly

higher cost in terms of computational time as seen in Table 4.4.
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Table 4.5: Results for Coulomb energy prediction

p L N(p, L) MSE PCC R2 MAPE

1 0 4 0.76 0.61 0.34 0.33
2 0 10 0.44 0.81 0.62 0.25
3 0 20 0.40 0.85 0.66 0.23
4 0 35 0.31 0.88 0.73 0.21
0 1 9 0.86 0.54 0.25 0.34
1 1 36 0.40 0.83 0.65 0.23
2 1 90 0.25 0.89 0.79 0.18
3 1 180 0.23 0.90 0.80 0.16
4 1 315 0.24 0.90 0.79 0.17
0 2 73 0.52 0.75 0.55 0.26
1 2 292 0.34 0.89 0.70 0.20
2 2 730 0.33 0.90 0.71 0.17
3 2 1460 0.35 0.91 0.70 0.18
4 2 2555 0.27 0.92 0.77 0.17
0 3 585 0.57 0.75 0.50 0.24
1 3 2340 0.62 0.76 0.46 0.24
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Figure 4.6: Loss plots (left) and scatter plots (right) for Coulomb energy prediction using
electrostatic features for p = 3/L = 1, p = 4/L = 1, p = 3/L = 2 and p = 4/L = 2.
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4.2.2.2. Solvation Energy From the Poisson-Boltzmann Model

Next, we investigate the prediction task of solvation energy computed from the Poisson-

Boltzmann model using the aforementioned electrostatic features. In the previous sections,

we see the time to compute the solvation energy for a single protein with the Poisson Boltz-

mann model motivated our design of parallelization using CPUs and GPU. Here, we know

that we can quickly compute the electrostatic features, as seen in Table 4.4. We see improved

performance on this task compared to predicting Coulomb energy, in terms of all evaluation

metrics measured. More specifically, the best correlation coefficient is 0.95 for p = 4/L = 0

and then 0.94 for the cases of p = 2/L = 1, p = 3/L = 1 and p = 4/L = 1 which are plotted

in Figure 4.7. We see a similar trend that as p increases, MSE and MAPE decrease while

the correlation coefficient and R2 increase as seen in Table 4.6. The loss plots on the left

of Figure 4.7 show similar convergence for both the training and validation sets which sug-

gests the model has learned the underlying patterns from the electrostatic features, without

memorizing the training data. The scatter plots on the right column of 4.7 demonstrate

a reasonable fit as many of the points follow the trend of the red line representing y = x.

Overall, it seems as though the model is capturing the relationship between the electrostatic

features and target variable, solvation energy computed by the Poisson-Boltzmann model.

63



Table 4.6: Results for solvation energy computed by Poisson-Boltzmann prediction

p L N(p, L) MSE PCC R2 MAPE

1 0 4 0.40 0.78 0.59 0.23
2 0 10 0.18 0.92 0.81 0.16
3 0 20 0.16 0.93 0.83 0.15
4 0 35 0.13 0.95 0.86 0.14
0 1 9 0.46 0.73 0.52 0.27
1 1 36 0.20 0.91 0.79 0.17
2 1 90 0.12 0.94 0.87 0.14
3 1 180 0.14 0.94 0.86 0.17
4 1 315 0.13 0.94 0.86 0.14
0 2 73 0.28 0.85 0.71 0.21
1 2 292 0.20 0.92 0.80 0.16
2 2 730 0.19 0.92 0.80 0.16
3 2 1460 0.19 0.92 0.80 0.16
4 2 2555 0.20 0.91 0.79 0.15
0 3 585 0.35 0.83 0.64 0.21
1 3 2340 0.45 0.84 0.54 0.21
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Figure 4.7: Loss plots (left) and scatter plots (right) for solvation energy computed with PB model
prediction using electrostatic features for p = 4/L = 0, p = 2/L = 1, p = 3/L = 1 and p = 4/L = 1
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4.2.2.3. Solvation Energy From the Generalized Born Model

In this section, we investigate the prediction task again of solvation energy but now com-

puted by the Generalized-Born model. The results are similar to the previous section which

is no surprise because, as described in Chapter 3, the Generalized-Born model approximates

the Poisson Boltzmann model. The motivation is that the efficiency advantages of the GB

model make it a faster alternative to the PB model to provide advanced electrostatic features

such as the global solvation energy or local reaction potential at the charge sites. Figure

4.8, displays the solvation energy values calculated from both models. The Generalized

Born solvation energy values are computed using a modified version of the software called

GBNSR6, [?]. It uses MSMS to generate the molecular surface which is the same surface

generator used to compute the Poisson-Boltzmann model derived solvation energy. Thus the

GB and PB solvation energies are highly correlated as seen in Figure 4.8.

It is evident that the Generalized-Born model accurately approximates the Poisson Boltz-

mann model. Figure 4.7, displays the results in terms of the specified evaluation metrics.

The best performance, in terms of the correlation coefficient, is 0.95 for p = 4/L = 0,

p = 2/L = 1, p = 3/L = 1 and p = 4/L = 1 (shown in Figure 4.9). Note these are the same

optimal cases for the solvation energy computed by the PB model prediction. Again, we see

the loss plots in the left column of Figure 4.9 demonstrate a model with good fit without

obvious signs of overfitting. The scatter plots in the right column of Figure 4.9 show similar

trends as in the scatter plots in the right column of Figure 4.7. So, again we see that the

curated electrostatic features play a crucial role in predicting the target label, as indicated

by the loss and scatter plots in Figure 4.9.
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Figure 4.8: Scatter plot of Poisson Boltzmann versus Generalized Born predicted values

Table 4.7: Results for solvation energy computed by Generalized-Born prediction

p L N(p, L) MSE PCC R2 MAPE

1 0 4 0.45 0.77 0.58 0.27
2 0 10 0.22 0.91 0.80 0.20
3 0 20 0.14 0.94 0.87 0.15
4 0 35 0.13 0.95 0.88 0.15
0 1 9 0.53 0.73 0.51 0.32
1 1 36 0.20 0.91 0.82 0.18
2 1 90 0.15 0.95 0.86 0.19
3 1 180 0.16 0.95 0.86 0.15
4 1 315 0.14 0.95 0.87 0.15
0 2 73 0.30 0.85 0.72 0.23
1 2 292 0.21 0.92 0.81 0.18
2 2 730 0.24 0.92 0.78 0.18
3 2 1460 0.23 0.93 0.79 0.18
4 2 2555 0.25 0.92 0.77 0.22
0 3 585 0.40 0.82 0.63 0.23
1 3 2340 0.44 0.83 0.59 0.21
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Figure 4.9: Loss plots (left) and scatter plots (right) for solvation energy computed with
Generalized-Born prediction using electrostatic features for p = 4/L = 0, p = 2/L = 1, p = 3/L = 1 and
p = 4/L = 1
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4.2.2.4. Discussion

Here we present summary evaluation metrics and show how the model performs as L =

1 (left) and L = 2 (right) is fixed and p varies for all three prediction tasks; solvation

energy predicted by the Poisson Boltzmann model labeled as ”SE w/ PB”), solvation energy

predicted by Generalized Born (labeled as “SE w/ GB”) and Coulomb energy (labeled as

“CE”) in Figure 4.10. Each row represents a different evaluation metric; Pearson correlation

coefficient, R2, mean squared error and mean absolute percentage error. We see that in most

cases, the model performs better for the solvation energy (computed by both TABI and GB)

prediction over the Coulomb energy prediction and all cases are highly dependent on the

order p as L is fixed. We see a sharp increase in the correlation coefficient and R2 as well

as decrease in MSE and MAPE as p increases from 0 to 1 then slower improvements as p

continues to increase to 2 for both L = 1 and L = 2.

From Figure 4.6, Figure 4.7 and Figure 4.9 the scatter plots (right column) show that the

model seems to predict higher values for lower true values and predict lower values for higher

true values. This may suggest a need to further tune hyperparameters such as the number

of neurons, dropout rate, activation functions, and/or batch size. Each case demonstrates

the notion that more accuracy in the multipole expansion (increase in p) results in improved

model performance (in terms of all evaluation metrics investigated). It would be beneficial

to investigate these trends further by including more p/L cases to include a higher number

of features. This would require more data to limit the effects of the curse of dimensionality

but would be a worthwhile experiment.
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Figure 4.10: Performance of predicting Coulomb energy (CE), solvating energy using PB model (SE
w/PB), solvation energy using GB model (SE w/GB) in terms of Pearson Correlation Coefficient, R2,
Mean Squared Error, and Mean Absolute Percentage Error for fixed L = 1 (left) and L = 2 (right) to
highlights the effects of increasing p
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4.2.3. Significance of Topological Features and Electrostatic Features

Here we revisit the use of topological features using a subset of the v2018 dataset consist-

ing of 1178 proteins. After applying the interquartile range method to remove outliers the

remaining dataset consists of 1093 proteins. Again we use 80% of the data for the training

set and reserve 20% for the testing set. We use k = 5 fold cross-validation and the loss plots

reported here are an average of the k = 5 folds. To avoid repetition, we focus on solvation

energy computed with the PB model only.

4.2.3.1. Electrostatic Features Only

We include 9 test cases (p and L combinations) because we consider the curse of dimen-

sionality: A large number of features relative to the number of observations (proteins) can

lead to overfitting. We only include the 9 cases reported because they produce a reasonable

number of features compared to the number of proteins used. In Table 4.8, we see model

performance increases as L is fixed and p increases except in the case when p = 4 and L = 0

where we see an increase in MSE and decrease in PCC and R2. This comes as a surprise

because p = 4/L = 0 was an optimal case when predicting solvation energy in Table 4.6.

We plot loss plots (left) and scatter plots (right) for the cases p = 3/L = 0, p = 4/L = 0,

p = 2/L = 1 and p = 3/L = 1 in Figure 4.11. The loss plots with 500 epochs demonstrated

a need to continue training, so we increased the number of epochs to 750. These plots still

demonstrate a model with good fit that is able to capture the underlying patterns of the

dataset.
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Table 4.8: Results for Solvation Energy Computed by PB Using Solely Electrostatic
Features

p L N(p, L) MSE PCC R2 MAPE

1 0 4 0.35 0.78 0.59 0.23
2 0 10 0.24 0.87 0.72 0.19
3 0 20 0.18 0.91 0.79 0.15
4 0 35 0.23 0.86 0.74 0.15
0 1 9 0.41 0.73 0.53 0.25
1 1 36 0.24 0.86 0.73 0.16
2 1 90 0.14 0.92 0.84 0.13
3 1 180 0.15 0.91 0.80 0.15
0 2 73 0.37 0.77 0.57 0.22
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Figure 4.11: Loss plots (left) and scatter plots (right) for solvation energy computed with PB
prediction using electrostatic features for p = 3/L = 0, p = 4/L = 0, p = 2/L = 1 and p = 3/L = 1
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4.2.3.2. Topological Features Only

Our goal is to determine if the electrostatic features and topological features can be used

together to predict solvation energy with higher accuracy than on their own. Here we test

the topological features on their own. We visualize the topological features (image-like repre-

sentations) in Figure 4.2.3.2 with corresponding solvation energy calculations. These images

do not appear to demonstrate differences to the human eye but demonstrate distinguishable

differences to the convolutional neural network (depicted in Figure 3.7 ). To better demon-

strate the variations, we visualize the raw barcodes using the Gudhi package in Figure 4.13.

We chose 2 sample proteins, 184l and 185l. According to [3], both proteins specify “ligand

binding in a buried non-polar cavity of T4 lysozyme”. Protein 184l has a solvation energy

of -2401.28 kcal/mol and consists of 2603 atoms while Protein 185l has a solvation energy

of -2434.42 kcal/mol and also consists 2603 atoms. We see that even though these proteins

have similar biological functions the persistent homology approach can capture variations in

their structure relevant to the prediction at hand.
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Figure 4.12: Grid of convolutional inputs with corresponding solvation energy values

Figure 4.13: Barcodes generated in Gudhi for protein with PDB ID 184l (left) and protein
with PDB ID 185l (right)
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We used the model architecture described in Figure 3.7, motivated by the network used

in [65] to predict binding affinity. We see in Table 4.9 and Figure 4.14, that the topolog-

ical features are indeed effective at predicting solvation energy (computed by the Poisson-

Boltzmann). In particular, the topological features are used to predict solvation energy with

higher performance (in terms of the correlation coefficient of 0.90) compared to binding affin-

ity for this specific dataset. We see the loss plot shows convergence for both the training

and validation sets and the scatter plots indicate a high degree of correlation between the

model’s predicted values and the true values, but we do see variability around the line y = x,

suggesting the need for improvement.

Table 4.9: Evaluation metrics for the model using solely topological features to predict
solvation energy computed by the PB model

MSE PCC R2 MAPE

0.16 0.90 0.82 0.12

Figure 4.14: Loss plot (left) and scatter plot (right) for solvation energy computed with the
PB model prediction using topological features
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4.2.3.3. Both Electrostatic and Topological Features

Now that we have established results to predict solvation energy separately using elec-

trostatic features and topological features we test the merged model presented in Figure 3.8.

The merged model using both datatypes demonstrates improved performance compared to

the topological model (Figure 3.7) and electrostatic model (Figure 3.6) alone. In Figure 4.10,

each case of p and L shows higher Pearson correlation coefficients compared to each case

in Table 4.8. Each case in Figure 4.10 also outperforms the model using solely topological

features. This suggests that the topological features are benefited from the incorporation of

electrostatic features and conversely, the electrostatic features benefit from the addition of

the topological features. We plot the best cases in Figure 4.15. The loss plots demonstrate

convergence and the scatter plots reduce the variability from the line y = x compared to the

plots in Figure 4.11.

Table 4.10: Results for solvation energy computed by PB using both electrostatic and
topological features

p L N(p, L) MSE PCC R2 MAPE

1 0 4 0.09 0.96 0.89 0.10
2 0 10 0.06 0.96 0.92 0.09
3 0 20 0.13 0.93 0.84 0.11
4 0 35 0.14 0.93 0.84 0.09
0 1 9 0.11 0.94 0.87 0.11
1 1 36 0.09 0.95 0.90 0.10
2 1 90 0.11 0.94 0.87 0.10
3 1 180 0.15 0.92 0.83 0.11
0 2 73 0.13 0.92 0.84 0.11
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Figure 4.15: Performance using both electrostatic and topological features for selected
electrostatic parameters p and L.
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4.2.3.4. Discussion

Figure 4.16, shows the evaluation metrics for fixed L = 0 (left) and L = 1 (right). In

each graph, the red line represents the results using both electrostatic and topological fea-

tures (architecture in Figure 3.8), the blue line shows the result using electrostatic features

(architecture in Figure 3.6), the yellow line shows the result using topological features (ar-

chitecture in Figure 3.7). Note that the model which uses solely topological features does

not depend on p or L, but is included in these plots as a reference to demonstrate that the

combined model outperforms both models using topological and electrostatic features alone

for all evaluation metrics considered. Given that both methods extract information from

the complex 3-dimensional structure of proteins in very different ways, but merged together

show improved model performance suggests a benefit of our approach. This motivates the

use of various types of features, from different areas of mathematics, in combination for

better performance of biological quantities relevant to drug discovery/design.

From Figure 4.15 the scatter plots (right column) show that the model still has some

variability and has room for improvement which suggests a need to further tune hyperparam-

eters such as the number of neurons, dropout rate, activation functions, and/or batch size.

It would be a worthwhile experiment to use grid search to identify the optimal parameters

to achieve even better performance.
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Figure 4.16: Comparison plots in terms of Pearson Correlation Coefficient, R2, Mean Squared Error, and
Mean Absolute Percentage Error for fixed L = 1 (left) and L = 2 (right) to highlight the effects of
increasing p
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Chapter 5

Cancer Research

5.1. Trial Design and Methodology

Tumor annotated DNA polymorphism data was generated by Ocean Ridge Biosciences

(ORB) (Deerfield Beach, Florida), across 981 validated genes for all patients who entered

into the Phase IIb double-blind randomized placebo-controlled trial (NCT02346747) com-

paring Vigil and placebo in Stage III/IV resectable ovarian cancer. Patient demographics,

trial design, and vaccine manufacturing were previously described in [26]. Patients were

enrolled following IRB-approved written consent. DNA samples of malignant tissue were

analyzed from all 91 patients entered into trial and results were compared to clinical end-

points prospectively identified in the study statistical plan. Gene variants were classified

by either Ingenuity Variant Analysis software (Qiagen, Valencia, CA) or the NIH ClinVar

database (current versions as of 10 February 2020) [75]. Only gene variants that were deter-

mined to be pathogenic or likely pathogenic were included and were referred to as pathogenic

mutations. Individual gene sets of pathogenically mutated genes for each patient in the trial

were generated. An overall gene set was then constructed by taking the union of the individ-

ual gene sets. A binary mutation matrix was constructed from this overall gene set such that

element (i, j) of the mutation matrix was equal to 1 if patient i had a pathogenic mutation

in gene j and equal to 0 if patient i was wild type in gene j.

81



5.1.1. STRING and Topological Distance

The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database has

been maintained since 2000 by the Swiss Institute of Bioinformatics, CPR - Novo Nordisk

Foundation Center Protein Research, and EMBL - European Molecular Biology Labora-

tory [76] Pathogenically mutated genes were inputted into the STRING application (Version

1.5.1) in Cytoscape (Version 3.8.0) to gauge functional interaction. The STRING applica-

tion generates a network for the input genes which consists of genes and their interactions,

represented by nodes and the lines which connect them, referred to as vertices and edges,

respectively. Genes are only connected via edges in the network if there is evidence they

interact from published literature and high throughput experimental data. STRING uses

this information to assign confidence scores, which are denoted as s(i, j), to each interac-

tion or edge. Individual STRING scores are produced for each of the interaction types and

these scores are integrated to give a combined confidence score, s(i, j), between each pair

of proteins. Each protein-protein interaction (PPI) score is bound between 0 and 1 which

indicates how likely STRING judges the particular interaction to be true, given available

evidence. Next, edge weights (w) between each pair of genes are calculated according to the

following formula: w(i, j) = 10(1 − s(i, j)). The score, s(i, j) was subtracted from one so

that intuitively a small weight corresponds to strong evidence of a biological interaction be-

tween a gene pair and multiplied by 10 to shift the values to the desired scale [77]. Dijkstra’s

Algorithm was then used to calculate the length of the shortest weighted path between genes

denoted, d(i, j) by summing over the weighted edges that connect them and systematically

finding the shortest weighted path. Genes with distance ≤ 3.8 was defined as the bottom

quarter. Intuitively, when a gene pair has a low topological distance, d(i, j), the genes may

interact biologically.
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5.1.2. C-scores

The independent concepts of patient mutation profiles and the STRING Network are

integrated by C-score. The probability of co-mutation for every pair of genes in the overall

gene set was calculated. The probability (P ) of a co-mutation was defined as the total

number of the 91 patients who have a mutation in both of the genes in the given gene pair

divided by a measure of the total number of times both genes are mutated individually, given

by:

P (i, j) =
|G(i) ∩G(j)|√
m(i) ∗m(j)

[78] . Where |G(i) ∩ G(j)| represents the number of individual tumors where both genes

i and j are mutated, and m(i) and m(j) are the cumulative mutations of genes i and j,

respectively. The range of P (i, j) is between 0 and 1 where P (i, j) = 0 indicates that genes i

and j never co-mutate and P (i, j) = 1 means the genes always co-mutate. The probability of

co-mutation and the topological distance between genes in the STRING network were then

combined to calculate a C-score, denoted C(i, j), to quantify the likelihood that the genes

interact functionally, termed “putative genetic interactions” [78]. The C-score is calculated

by dividing the probability of co-mutation by the topological distance from the STRING

network squared.

C(i, j) =
P (i, j)

d(i, j)2
=

|G(i) ∩G(j)|√
m(i) ∗m(j)d(i, j)2

Further, the cumulative C-score for a gene i is denoted, cumC(i) =
∑

i 6=j C(i, j) [78]. A

gene with a high cumulative C-score is more likely to co-mutate with genes close to it in

the STRING Network. To determine the significance of these C-scores, a permutation test

is performed. We began by reshuffling the mutation profile of each patient by preserving

the number of mutations of each patient and randomly assigning new mutations. Then we

followed the above methodology to calculate “simulated C-scores”, Cs(i, j). The p-value was
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then calculated by taking the total number of times the simulated C-score was greater than or

equal to the actual C-score and dividing by the number of trials performed (n = 10, 000) [78].

p =
|Cs(i, j) ≥ C(i, j)|

10, 000

.

5.1.3. Pathway Analysis

A list of pathways associated with each gene was extracted and binned into seven color-

coded categories that included DNA repair, chromosomal organization and transcription,

regulation of translational and post-translational modification, immunity, other pathways,

other cancer genes, and undefined.

5.1.4. Survival Analysis

RFS and OS relationships of patients with varying mutational statuses in

1. hub genes

2. gene pairs with small topological distances

3. gene pairs with high cumulative C-scores

were explored. Finally, patients were stratified by mutation statuses mutant versus wild

type to examine and compare RFS and OS differences using the ‘survival’ and ‘survminer’

packages in R (Version 3.6.2).
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5.2. Results

5.2.1. Network Construction and Pathway Enrichment Analysis

To identify potential gene interactions that were associated with extended RFS in patients

receiving Vigil, first a protein-protein interaction (PPI) network was constructed using 83

genes that were identified as having pathogenic mutations in the study population [79]. The

83 genes were loaded into STRING software; 77 of these genes were identified as having

functional data in the database and were used to construct a network. The six genes that

STRING did not recognize include AC092143.1, AL132855.1, MHRT, MYCN, NBR2 and

ZFPM2-AS1. These were not included in the network or the degree chart. The STRING-

constructed PPI network is displayed in 5.1. In the STRING network, an association or

interaction may refer to direct (e.g., physical binding) or indirect interactions, such as shared

participation in a common metabolic pathway [80]. Nodes in the network represent genes

(n = 77) and edges (n = 371) represent biological interaction or association between any

two of the identified pathogenic genes. Pathway analysis was conducted by inputting each

gene in the STRING network into the WikiPathways Application in Cytoscape [79].

Figure 5.1 is the STRING Network produced in Cytoscape. Larger nodes indicate hub

genes. A node colored red indicates a majority of pathways involved with DNA repair.

Blue indicates chromosomal organization and transcription. Purple indicates regulation of

translation and post-translational modification. Yellow indicates immunity. Green indicates

other cancer genes. Gray genes are those that had no known pathways in WikiPathways

orange genes do not fall into the other six categories.
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Figure 5.1: String Nework - Larger nodes indicate hub genes. A node colored red indicates
a majority of pathways involved with DNA repair. Blue indicates chromosomal
organization and transcription. Purple indicates regulation of translation and
post-translational modification. Yellow indicates immunity. Green indicates other cancer
genes. Gray genes are those which had no known pathways in WikiPathways orange genes
do not fall into the other six categories.
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5.2.2. Single Gene Analysis

Figure 5.2: Degree of nodes from STRING PPI Network. Each gene in the STRING PPI
Network is represented from largest to smallest degree below.

A hub gene is defined to be a gene with a high degree (or number of connections) of

associations with other genes in the network. Here, a hub gene is considered to be a gene

with degree ≥ 12, which is the top quartile of genes based on the range of degree of genes in

the network. Ten of the 23 genes in the distance matrix (Figure 5.3) were identified to have a

degree ≥ 12, in the network defining them as hub genes: TP53, CTNNB1, PIK3CA, BRCA1,

NF1, BRCA2, ARID1A, ATRX, MYCNOS, and MUTYH. TP53 had the largest degree of

all genes in the network as seen in Figure 5.2. For the single gene analysis, patients were

grouped by their mutational status and the Kaplan-Meier and log-rank tests were performed

to determine whether the mutational status at that loci was associated with RFS in Vigil-

treated patients relative to placebo. RFS from randomization was the primary endpoint
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Figure 5.3: Heat map key is located to the right of the matrix. Blue shading represents a
high degree of interaction while red represents less interaction. The diagonal dark blue
shade is a genes interaction with itself and is equal to 0.

88



of the VITAL trial and therefore it was used as the test variable (or categorical variable)

for this analysis. TP53, BRCA1, and BRCA2 were the only hub genes that reached our

planned statistical cutoff of p ≤ 0.1 from randomization (Table 5.1). In patients with TP53-

mutated tumors (TP53m; n = 65), median RFS was 18.69 months with Vigil (n = 33) and

8.35 months with placebo (n = 32) (one-sided p = 0.096, HR = 0.66). In the BRCA1wt

population (n = 79), RFS was 12.75 months for Vigil (n = 42) and 8.38 months for placebo

(n = 37) (one-sided p = 0.10, HR = 0.70). RFS for the BRCA2wt population (n = 82)

was 11.47 months and 8.35 months for Vigil (n = 46) and placebo (n = 36), respectively

(one-sided p = 0.05, HR = 0.64).

5.2.3. Gene Pair Analysis

5.2.3.1. Gene Pairs with a Small Topological Distance

The distance matrix in Figure 5.3 only included 23 genes, representing a subset of the

network that was complete. Once the complete network was found, the distance matrix

was constructed to visualize the topological distance of each corresponding gene pair. The

maximum and minimum distance in the matrix were between genes USH2A and EPPK1,

with a distance of 15.19 and between genes BRCA1 and BRCA2 with a distance of 0.02,

respectively. We further analyzed gene pairs with a small topological distance. Using a

cutoff of 3.8 which was calculated by taking the range, 15.19 minus 0.02, and dividing by

four, denoted the bottom quartile, we arrived at 139 gene pairs comprised of 23 genes (Figure

5.3). We found that TP53 and BRCA1 had a distance of 0.04 and TP53 and BRCA2 had a

distance of 0.06. This indicated that there was strong evidence that TP53 had a functional

association with BRCA1 and BRCA2 and thus considered both BRCA1 and BRCA2 as a

joint relationship designated as BRCA which is consistent with prior analysis by others [81].

89



5.2.3.2. Gene Pairs with High Cumulative C-Scores

After computing the C-Score for all gene pairs in the Distance Matrix and ordering genes

from highest to lowest cumulative C-Score (cumC-score), the genes with highest cumC-score

in order were BRCA1, BRCA2 and TP53. This indicated high connectivity within the

network both from a co-mutation standpoint and a topological distance perspective. C-score

significance analysis was performed, however due to the limitations of small sample size and

small gene sets the results were not significant. Future analysis with larger sample size and

gene panels is warranted. The function or dysfunction of BRCA1, BRCA2, and TP53 has

broad-reaching consequences for the other proteins within the ovarian cancer cell, more so

than other genomic variants. This warranted closer attention to the effects of wild-type versus

mutant expression. Given the proximity of TP53 with BRCA1 and BRCA2 in the STRING

network and their high cumulative C-scores, we performed survival analysis across the four

mutation statuses (co-mutant, mutant-wild-type, wild-type mutant and co-wild type). The

impact of these combinations on relapse-free survival in the Vigil treatment group compared

to placebo is displayed in Table 5.2. The TP53m-BRCAwt group experienced a median

RFS of 19.35 months, compared to 11.71 months in co-mutant and 10.48 months in co-wild

type. When compared between treatment arms, the TP53m-BRCAwt group had a median

RFS of 19.35 months in the Vigil arm compared to 7.85 months in placebo (p = 0.01, HR

= 0.44; Figure 5.4). Additional tests demonstrated statistical significance (p < 0.05) for the

combination of BRCA and our identified hub genes, displayed in Table 5.3.

5.2.3.3. Homologous Recombination Status

KM analysis was conducted to determine the effect of homologous recombination status

on the TP53m-BRCAwt population. A score of < 42, as defined by Myriad Genetics was

used to identify patients who were HRP and a score of ≥ 42 indicated patients were HRD.

RFS in the TP53m-BRCAwt and HRP group was improved to 21.1 vs. 5.6 months (HR =
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0.26, p = 0.001) in Vigil vs. placebo patients (Figure 5.5a) OS was also improved in HRP

and TP53m-BRCAwt patients from randomization. In the Vigil treated group, OS was not

reached while placebo was 27.0 months (HR = 0.33, p = 0.02; Figure 5.5b).

Gene Vigil Placebo Difference N Vigil N Placebo p-value HR
RFS (m) RFS (m) (m)

TP53m 18.69 8.35 10.35 33 32 0.096 0.66
BRCA1wt 12.75 8.38 4.37 42 37 0.10 0.70
BRCA2wt 11.47 8.35 3.12 46 36 0.05 0.64

Table 5.1: RFS from randomization for TP53m, BRCA1wt, and BRCA2wt. RFS (m)
denotes median RFS in months.

Gene 1 Gene 2 Vigil Placebo Difference N Vigil N Placebo p-value HR
RFS (m) RFS (m) (m)

BRCAm TP53m 11.71 14.75 -3.04 4 14 0.27 1.50
BRCAwt TP53m 19.35 7.85 11.50 29 18 0.013 0.44
BRCAm TP53wt 10.48 31.90 -21.42 3 3 0.39 1.40
BRCAwt TP53wt 10.48 8.38 2.10 11 9 0.47 1.05

Table 5.2: RFS from randomization for TP53 and BRCA. RFS (m) denotes median RFS in
months.

5.3. Discussion

Our network-based analysis of pathogenic gene mutations points us toward a potential

optimally responsive population to Vigil, specifically, patients with a HRP malignant cell

profile including BRCAwt and TP53 mutant gene signals. These results are only hypothesis

generating, but suggest a novel methodological/computational approach to biomarker assess-

ment and for optimizing a target population for Vigil therapy and possibly proof of principle

for biomarker assessment of other target-based therapies. Further evaluation of other hub

genes (PIK3CAwt, NF1wt, ARID1wt, MYCNOSwt, and MUTYHwt) in BRCA1/2wt, HRP

cancer patients as potential biomarkers for Vigil treatment, and possibly indicators of novel

added therapeutic management, may be fruitful. In our approach, the STRING database
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Figure 5.4: Kaplan–Meier curves of TP53m-BRCAwt population RFS from time of
randomization. Vigil demonstrates RFS advantage (HR = 0.44, p = 0.01) in the
TP53m-BRCAwt population.

Gene 1 Gene 2 Vigil Placebo Difference N Vigil N Placebo p-value HR
RFS (m) RFS (m) (m)

BRCAwt PIK3CAwt 11.71 7.95 3.52 39 26 0.02 0.53
BRCAwt NF1wt 12.75 8.35 4.40 40 26 0.04 0.59
BRCAwt ARID1Awt 12.75 7.95 4.80 37 24 0.05 0.59
BRCAwt MYCNOSwt 13.67 5.72 7.95 27 17 0.03 0.47
BRCAwt MUTYHwt 12.75 7.95 4.80 38 27 0.03 0.56

Table 5.3: RFS from randomization for BRCAwt and other hub genes of significance. RFS
(m) denotes median RFS in months.
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(a) Vigil demonstrated RFS (HR =
0.26, p = 0.001)

(b) Vigil demonstrated OS (HR=0.33,
p=0.02)

Figure 5.5: KM curves of TP53m-BRCAwt, HRP population from randomization

was utilized to construct an unbiased network to describe the functional similarity between

genes, thereby providing a mechanistic understanding of the potential effect of wild type

or mutant variants. This approach circumvents a potential limitation of DNA variant data

and may provide more effective target population identification, given our current limited

understanding of comprehensive molecular signal expression pathways and relationship to

clinical benefit impact. In this manner, one can describe the genes of high importance by

computationally analyzing properties of the malignant network, such as the topological dis-

tance between genes, C-scores, and hub genes. Through these analyses in the HRP ovarian

population treated with Vigil, three gene variants stood out across all analytic methods:

BRCA1, BRCA2, and TP53. The combination of STRING-generated topological distance

and sample-derived probability of co-mutation is manifested as the C-score for two genes,

and the cumC-score is the aggregate of one gene’s interaction with every other gene in the

network. Gene pairs identified by C-scores often involve central cancer genes which correlate

with increased tumorigenesis and sensitivity/ resistance to anticancer therapeutics [78]. Due

to the limited size of our gene set and patient sample size, we chose to characterize indi-

vidual genes by their cumC-score. Here, we identified TP53, BRCA1, and BRCA2 as genes

with the highest cumC-scores of the genes present in patient samples. The high cumC-score
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suggests that particular variants of these genes correspond to drug response, as cumC-scores

correlate with sensitivity and resistance [78]. Indeed, we found that TP53m and BRCAwt

correlated with increased RFS benefit to Vigil, although further prospective analysis, now

underway, will be required for verification.

Analysis of hub genes similarly identified BRCA and TP53 as central ovarian cancer

genes. Previous work demonstrated that hub gene data provided clinical insight to differences

in OS. In one previous study, 4 of 16 identified hub genes in the studied sample (CCNB1,

CENPF, KIF11, and ZWINT) were associated with decreased OS of patients with ovarian

cancer [82]. Authors of this study posit that mutations in these hub genes, which occupy the

intersection of many cellular pathways, results in rippling dysregulation of numerous cellular

functions. Thus, by altering a single hub gene, cellular homeostasis may be impacted on a

larger scale. This disruption may be associated with tumor progression, immune inhibition,

and any number of cancer hallmarks, which may explain the association of hub genes with

a poor prognosis [83, 84]. The hub gene analysis presented in our paper identified TP53m,

BRCA1wt, BRCA2wt as core hub genes with RFS advantage in Vigil treated patients,

potentially indicating a broader genetic network for target population of Vigil. Moreover, this

approach supports a strategic shift in targeted therapeutic development towards targeting

related network genomic variants.

Our results also support that the pathways impacted by BRCA must be intact for Vigil to

function optimally, while the pathways impacted by TP53 may be dysregulated. Similarly,

the integrity of the homologous repair pathway and its associated genes (HRP genotype)

may also be important for optimal Vigil results. This suggests a cancer homeostasis formed

by the combination of gene variants that creates an optimal environment for drug sensitivity

or resistance. We hypothesize that the interaction of pathways generated by functional HR

or BRCA proteins and disrupted TP53 protein creates the ideal molecular setting for Vigil

therapy responsiveness. Mutation in TP53 is likely an early oncogenic event and likely results
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in clonal cell TP53 neoantigen expression. Coupled with proficient homologous recombina-

tion of BRCA1/2 wild-type gene patients may achieve low TMB, but also low intratumor

heterogeneity (ITH). While low TMB potentially results in decreased CD4+/CD8+ T cells

infiltration, this signaling pattern and its associated low ITH may provide for more effective

and consolidated T cell response towards clonal neoantigens.

In conclusion, despite sample size limitation, we demonstrate proof of support for the use

of DNA analytical methods to separate resistant and sensitive populations to Vigil. These

techniques create a robust approach to analyze how the nodal network relationship between

genes affects clinical response to Vigil when used as maintenance therapy in advanced stage

III/IV resectable disease patients. These results are hypothesis generating and warrant

further investigation. Moreover, these results further support novel use of network-based

analysis to identify other more sensitive gene targets and potentially additional novel targeted

therapeutic combinations with Vigil and possibly other immunotherapeutics.
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Chapter 6

Conclusion

In this project, we investigate the practical application of the PB model on selected

proteins that play significant roles in the spread, treatment, and prevention of COVID-

19 virus diseases. We utilized our recent research to develop fast algorithms and high-

performance computing techniques. To this end, we solved the boundary integral form of

the PB equation on the molecular surfaces of these proteins. These calculations produce

both the electrostatic solvation energy as a global measurement and the electrostatic surface

potential for local details of the selected proteins. We investigated the parallel performance

of two competing solvers for the boundary integral PB equations on these selected proteins.

By considering the advantages of current algorithms and computer hardware, we focused

on the parallelization of the TABI solver using MPI on CPUs and the DSBI solver using

KOKKOS on GPUs. Our numerical simulations show that the DSBI solver on one A-100

GPU is faster than the TABI solver with MPI on 64 CPUs when the number of elements is

smaller than 250,000.

When both GPU and MPI are available and the triangulation quality is good enough so

that the TABI preconditioner is not needed for GMRES convergence, we recommend that

the GPU-accelerated DSBI solver be used when the number of boundary elements is below

250,000. Otherwise, the MPI-based TABI should be used. If the number of elements becomes

so large such that the memory on a CPU task cannot hold an entire tree, we recommend

consideration of a domain-decomposition MPI scheme [15, 51, 85, 86]. We note that the

memory usage for TABI scales linearly with problem size. When one million boundary

elements are used, the memory usage is a little bit over 1GB. Thus for popular tasks on
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clusters with at least 64G memory per MPI rank, we can handle problems as large as

approximately 64 million boundary elements, which is sufficient for simulating middle-large

proteins with up to tens of thousands atoms. For even larger biomolecules, e.g. the viral

capsids of Zika or H1N1 virus with up to tens of millions atoms [55], domain decomposition

approach can be considered [51].

Additionally, we developed scale-free and uniform electrostatic features both accurately

and efficiently. They were able to accurately predict solvation energy on their own and

in combination with topological features described in [65]. We incorporate these physics-

informed features in topology and electrostatics and demonstrate that both methods merged

together improve model performance, which suggests a benefit of our approach. We described

the dependence on the order p in the multipole expansion to the evaluation metrics. This

motivates the use of different types of features for better performance of biological quantities

relevant to drug discovery/design.

In this project, we provide a deep-learning neural network (DNN) based biophysics model

to predict protein properties. The model uses multi-scale and uniform topological and elec-

trostatic features generated with protein structural information and force field, which governs

the molecular mechanics. The topological features are generated using the element-specified

persistent homology (ESPH) method while the electrostatic features are fast computed using

a Cartesian treecode. These features are uniform in number for proteins with various sizes

thus the broadly available protein structure database can be used in training the network.

These features are also multi-scale thus the resolution and computational cost can be bal-

anced by the users. The machine learning results on over 4000 protein structures show the

efficiency and fidelity of these features in representing the protein structure and force field for

the prediction of their biophysical properties such as electrostatic solvation energy. Tests on

topological or electrostatic features alone and the combination of both showed the optimal

performance when both features are used. This model shows its potential as a general tool
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in assisting biophysical properties and function prediction for broad biomolecules using data

from both theoretical computing and experiments.

We have developed methods to link the connections between protein structure and func-

tion that help overcome limitations associated with complex and large proteins. We designed

mathematical models that can be solved with efficient and accurate numerical algorithms to

ultimately discover the useful information that is hidden in complex protein structural data.
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Chapter 7

Software Dissemination

The code for all parallel solvers are available on GitHub. The MPI code can be found on

https://github.com/elyssasliheet/tabi_mpi_code. The GPU code can be found on https:

//github.com/yangxinsharon/bimpb-parallelization.

The code to generate electrostatic and topological features and labels as well as all

machine learning models can be found on Elyssa Sliheet’s personal github page: https:

//github.com/elyssasliheet.

For cancer research in collaboration with Gradalis Inc, data can be shared following an

approved request for a specific research question. Requests may be declined by Gradalis, Inc

if deemed to pose a conflict of interest or competitive risk.
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