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Analysis of biological data for differentiation of organisms/cells within and across species

or even the same organism is important to a wide variety of applications. This work con-

siders three different biological data sets at the genome, proteome, and epigenome levels:

respectively, DNA sequences, glycosalation data, and DNA methylation. We explore some

statistical modeling approaches for handling these modern datasets, and provide a relevant

set of experiments for explanation and illustration.

First, genomic Fourier coefficients, which capture information about the harmonics of ge-

netic sequences in terms of nucleotide pattern recurrence are investigated as summary metrics

for medium sized virus genomes from the SARS-CoV-2 virus. Clustering and classification

techniques are applied to these for identification of the geographic location of submission

of the original sample. It is shown that the Fourier coefficients are potential features on

which geographic location of sequences can be classified with 79% accuracy. Furthermore,

the Fourier coefficients provide distance metrics for efficient clustering.

Second, at the protein expression level, we describe data that measure the composition

of protein glycosalation in tuberculous patients and perform studies to use the glycosalation

profiles as markers for patients with a particular disease status. Three models are discussed:

a classical approach known as partial least squares discriminant analysis (PLS-DA), and two

new approaches which are developed for general datasets with compositional data. These

models are examined using protein data from capillary electrophoresis (CE) quantification

v



of glycan species in tuberculosis patients. The models show a marginal improvement over

the PLS-DA approach, 45% accuracy over 41% (five-fold cross validation, with five outcome

categories).

Third, at the epigenetic level, we discuss a critique of the use of local likelihood regres-

sion smoothing to determine methylation via Bisulfite sequencing. We show a relationship

between the sensitivity of these windowed averaging techniques and variations in the cov-

erage of methylated areas via simulation. A procedure for combining read densities with

methylation information to resolve multi-mapped reads is described.
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Chapter 1

Introduction

The techniques discussed in this dissertation provide a set of potential approaches to handle

specific types of data, where the distinction between certain classes is of interest. Specifically,

classification using DNA sequences, glycosylation data, and methylation data are examined.

In Chapter 2, the use of the Fourier transform of a numerically encoded version of a DNA

sequence is discussed. The Fourier transform is used to locate periodic structure in the data,

which can be considered as a type of signature for a given data set. Analysis of the coefficients

produced by the Fourier transform, and the average coefficient magnitudes, power spectra

(PS), as a numerical summary for classification of the sequences is investigated. Three

post calculation filtering techniques for selecting important subsets and combinations of the

variables are described. A hypothesis test for testing the null hypothesis that the variance-

covariance matrices of complex Fourier coefficients among signals in different groups are

all the same is derived. The techniques are applied to a dataset of SARS-CoV-2 genomes

extracted from various geographic regions in order to classify the sequences by their region

of origin.

In Chapter 3, three different techniques are used to model and quantify the glycan struc-

ture of immunoglobulin in patients with tuberculosis with or without diabetes mellitus.

First, a partial least squares procedure is discussed and the results of its application in mod-

eling the tuberculosis data are interpreted. Following this, A semi-parametric classification

model for the data derived by treating compositional data in the model as observations of

a multinomially distributed random variable is given. The multinomial model is combined

with class estimates based on nonparametric functional data profiles. Finally, an approach

involving estimation of one-step glycan transition probabilities within each class based on

relative frequency of each class is discussed.
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In the final chapter, we give a short explanation and introduction to the recent method of

bisulfite-sequencing for mapping of DNA methylation regions to the genome. It is often the

case that multiple reads are mapped to the same place on the genome; therefore, a method

of determining the most likely position for methylation is introduced.

1.1. Modeling the Harmonics in SARS-CoV-2 Genomes

First, this dissertation is concerned with the repetitions and patterns of base nucleotides in a

sequence, and describes the use of Fourier analysis for quantifying periodic behavior within

an encoded genomic sequence. Fourier coefficients for a discrete time signal are given by

Equation 1.1 [Brillinger, 2001].

ddd
(T )
X (λ) =

T−1∑
t=0

X(t)e−iλt (1.1)

Here t corresponds to the discrete time point at which X(t), the signal, is observed. The

overall signal length is denoted by T , the frequency of interest is λ, and e and i are used to

represent the natural and imaginary numbers respectively.

Fourier analysis has been previously applied to DNA sequence data for determining phy-

logenetic relationships [Yin et al., 2014, Yin and Yau, 2015, Yin, 2020] and patterns with a

sequence itself for alignment [Katoh et al., 2002], and detection of coding regions

[Zhou et al., 2007]. It is clear that if two genomes are sequenced and found to be identical

then the sequences themselves contain no humanly discernable information about the virus

from which they were captured. That is to say, if two genomes were identical in sequence,

and one were picked at random, then there would be no possible way of knowing whether

the sequence selected originated from one organism or the other based on the sequence in-

formation itself. However, the periodic information of the sequence tends to change quickly,

which could allow fast distinction of mutations across sequences.
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The Fourier Transform is used to capture periodic information in numerical coefficients

of genomic sequences. Those sequences are then compared through the numerical distances

between those coefficients. One key result is a demonstration of this procedure using a viral

data set curated by GISAID containing SARS-CoV-2 viral genomes. The use of filters on the

coefficient values of the PS, and a hypothesis test for testing the null hypothesis of equivalent

variance-covariance of the Fourier coefficients is also discussed.

1.1.1. Fourier Transform Background

The history of the Fourier Transform dates to the eighteenth century

[Heideman et al., 1984]. Trigonometric transforms were used by Euler and later formalized

into the Fourier transform, which was finalized and popularized by Gauss. In its earliest in-

carnation, the transform was used to decompose continuous time functions into a constituent

series of weights on the Fourier basis functions with increasing frequency. More recently the

transform has been adapted and applied to analysis of discrete time signals, as well as other-

wise indexed signals that show periodic trends. Two such examples are analysis of seasonal

meteorological data [Salcedo and Baldasano Recio, 1984] and a study on measles outbreaks

in England and Wales across seven separate epidemic outbreaks [Grenfell et al., 2001]. In

the measles outbreak analysis, the DFT showed merit in the prediction of disease occur-

rence at specific locations, and at specific times. The transform has also found application

in pharmaceutical discovery and validation; mainly in the context of discovery of various

potentially therapeutic molecules [Song et al., 2020]. It has also been applied to the clas-

sification of epileptic vs. non-epileptic patients via signals from patient electroencephalo-

gram (EEG) readings [Polat and Güneş, 2007]. For a general review of other applications

of the Fourier and other transforms to medical sciences see the review chapter published in

[Armăşelu, 2017].

In terms of genetics and genomic analysis, as well as bioinformatics specifically, the

Fourier transform has had a wide variety of uses as well. One early application of the

3



DFT to genetic sequences used the periodic nature of codons (consisting of three consecu-

tive nucleotides encoding amino acids in a protein) in order to differentiate coding regions

of a genomic sequence from the non-coding regions [Fuentes et al., 2006]. Another popular

application of the Fourier transform is found in genetic sequence alignment using a slid-

ing window based matching algorithm, known as MAFFT (Multiple Alignment using Fast

Fourier Transform) [Katoh et al., 2002]. In previous work it was shown that Kolmogorov-

Smirnov statistics calculated on the distributions of Fourier and Laplace coefficients com-

puted on the k-mer distributions of genetic sequences produced similar clusterings of the

data [Thornton, 2019]. In addition, the Fourier transform has been used on DNA and pro-

tein sequences in order ascertain the existence and characteristics of periodic behavior in

a genome [Yin et al., 2014, Yin and Yau, 2015, Yin, 2020]. Generally, nucleotide or protein

sequences are encoded into binary or categorical value digit vectors prior to applying the

transform. Encoding categorical series into discrete numerical signals is a non-arbitrary way

to assign numerical values to characters used to describe DNA and protein sequences.

The Fourier transform may be thought of as a convolution of a signal with sine waves of

consecutively increasing frequency. Mathematically, [Oppenheim et al., 1997], the transform

of a continuous time signal can be written as:

an = 1
T

∫ t=T

0
x(t)e−jnω0tdt = 1

T

∫ t=T

0
x(t)e−jn( 2π

T
)tdt If n > 0

a0 = 1
T

∫ t=T

0
x(t)dt

Where the value T represents the total number of time points (or nucleotides in the

sequence). x(t) Represents the value at time t, in the case of genomic data x(t) is a set of

indicator functions indicating whether the sequence at loci t is a certain given nucleotide

or not. j represents the imaginary number, and n is the desired coefficient of the Fourier

spectra (which also modifies the frequency of the sinusoids with which the original function

is convolved).
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The use of spectral transforms in signal processing has seen broad general use in signals

of many different kinds. These transforms allow their users to examine the signal in the

frequency domain, rather than the initial domain. Examination of a signal in the frequency

domain allows for determination of the periodic structure in the sequence, which can be used

for unique identification of a sequence and clustering of similar sequences. Further, Fourier

coefficients can be used to compress the original sequence without great loss of information.

Both of these avenues are explored in Chapter 2.

1.2. Modeling the Variation in Glycosylation on Antibodies

Chapter 3 looks at analyzing protein compositions that may not be detected when rely-

ing on genomic or epigenomic data, particularly in relation to the differentation of dis-

ease subtypes by glycosylation of antibodies. A Partial Least Squares Regression (PLSR)

[Geladi and Kowalski, 1986] approach known Partial Least Squares Discriminant Analysis

(PLS-DA) [Pérez-Enciso and Tenenhaus, 2003],[Brereton and Lloyd, 2014],

[Gromski et al., 2015] is utilized to classify tuberculosis patients as active or latent according

to their glycosylation profiles. In previous work, researchers applied the PLS-DA procedure

coupled with cross validation to make determinations on subsets of glycosylation patterns

to classify tuberculosis patients as active or latent. [Lu et al., 2020].

A description of the methodological approach for applying PLSR to general experimental

data captured by labs is given in [Brereton and Lloyd, 2014]. PLSR can be extended to cases

where there are more than two classes. PLS-DA procedure has been called ‘an algorithm

full of dangers’ and the extension of the technique to multiple categories of has certain

pitfalls and implications for the analysis. In Chapter 3, the use of PLS-DA on percentage

of glycan species present in subjects is used to differentiate among five groups of patients.

The groups of patients are active tuberculous patients with and without diabetes, latent

tuberculous patients with and without diabetes, and patients negative for both tucerculous

and diabetes.
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Capillary Electrophoresis (CE) is the experimental procedure utilized to gain information

about the glycan species which are present in the data [Hirabayashi, 2008],

[Mittermayr et al., 2013]. In CE, sampled glycans are placed at the entrance to a capillary

tube upon which an electromagnetic field is induced [Gordon et al., 1988],

[Wallingford and Ewing, 1989], [Ewing et al., 1989], [Grossman and Colburn, 2012]. A de-

tection plate sits at the other end of the capillary and is connected to a sensitive timer. This

allows the recording of an intensity by time chart. From this chart, the intensities at specified

time points, referred to as “peaks”, allow the discernment of the relative concentrations of

glycan species in the sample [Lu et al., 2018]. For a listing of the glycans and their respective

structures, see Figure 3.3) The glycan sample contains a total fixed number of glycans of

different species are well modeled using traditional compositional data techniques, as has

been suggested and demonstrated in [Uh et al., 2020]. Studies using glycan profile analy-

sis through mass spectrometry to quantify glycan species concentrations for the detection

of arthritis [Nakagawa et al., 2007], lung adenocarcinoma [Lattová et al., 2020], and other

cancers [Ruhaak et al., 2013], [Gebrehiwot et al., 2018], [Mechref et al., 2012] have shown

success.

The term “compositional” refers to the nature of the data being split into multiple parts

of a whole. There has been a long history of theoretical approaches applied to compositional

data [Aitchison, 1982], [Pawlowsky-Glahn and Egozcue, 2006],

[Pawlowsky-Glahn and Buccianti, 2011], [Pawlowsky-Glahn et al., 2015], and

[Filzmoser et al., 2018b]. A wide variety of software has been produced for the analysis

of the same [Van den Boogaart and Tolosana-Delgado, 2013]. Approaches that have been

modified for accommodating the structure of these data include PCA [Aitchison, 1983],

[Aitchison and Greenacre, 2002], general modeling procedures [Egozcue et al., 2003], and

more [Aitchison, 1994]. In addition to PLSDA for classification of disease states using gly-

cans, a semi-parametric model and a glycan rank probability model for the analysis of the

same data are introduced.

6



1.3. Modeling the Methylation Profile of a Genetic Sequence

The sequential arrangement of the nucleotides in DNA is transcribed into RNA. The RNA

sequence is vitally important to the composition and function of the proteins that are trans-

lated from it. However, secondary cues for the cell are encoded in chemical structures

attached at vital points along the genomic sequence indicating the repression or enhance-

ment of particular transcribed regions [Alberts et al., 2002] [Bonasio et al., 2010]. These

referential reading guides on the genome are critically important for the cell, but may

also be used to differentiate particular regions of interest among organisms, including in

neurological disorders [Dall’Aglio et al., 2018], breast cancer [Liang et al., 2021], hypoxia

and chronic ischemia [Eddy et al., 2019], and other observable phenotypes even differen-

tial migration patterns in fish [Baerwald et al., 2016]. DNA methylation, a type of epi-

genetic signal [Tate and Bird, 1993] [Edwards et al., 2017], and it’s relationship with tran-

scription binding factors [Yin et al., 2017] has also been investigated in cancer detection

[Watanabe and Maekawa, 2010], adaptation to environment [Flores et al., 2013], and DNA

repair [Walsh and Xu, 2006]. The methylation pattern of the DNA for a particular cluster of

genes may exhibit statistically significant differences among two samples of the same genomic

region [Stockwell et al., 2014], [Xie et al., 2019], [Park and Wu, 2016], [Chen et al., 2017].

These regions of differential methylation on the same genome known as Differentially Methy-

lated Regions (DMRs) may be used to determine whether two organisms will express the

same protein in the same place at the same time, for example, in disease progression.

One way in which the epigenetic cue of methylation is discovered in a sample of reads

is via a procedure known as bisulfite sequencing [Darst et al., 2010], [Krueger et al., 2012].

It works by first treating the genetic material with bisulfite, a chemical which will con-

vert unmethylated cytosine to thymine, while leaving the methylated variant untouched

[Frommer et al., 1992]. Hence, when aligning to and comparing with a reference, the re-

searcher is able to infer which reads (small captured fragments of roughly the same size

captured in an experiment) indicate methylation or not for each particular location of inter-
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est along the reference.

This dissertation does not seek to provide an exhaustive list of all of the procedures avail-

able for differentiating biological data, because such an undertaking would fill many volumes.

Instead the primary focus of this dissertation work is on three specific areas of biological

data: patterns in sequencing, compositions in glycosylation, and mapping of methylated

reads in bisulfite sequencing. The procedures discussed in this dissertation represent impor-

tant statistical considerations for some extant modeling procedures, and provide descriptions

and examples of new ones. Specifically, novel investigations into subsequent modeling tech-

niques using harmonic patterns in genetic sequences are provided, and a general code base

in R [Thornton, 2021] for performing such an analysis is developed. Semi-parametric, and

rank-based non-parametric methods for investigation compositional patterns in glycans are

supplied. The modeling of methylation profiles with smoothing techniques such as BSmooth

[Hansen et al., 2012], a local-likelihood procedure, are discussed, and their performance is

compared against simulation displaying characteristics of simpler moving-averages. The mov-

ing averages have been shown to be almost equally effective as the more complex BSmooth

[Wu et al., 2015]). Finally, an algorithm for refining an initial bisulfite sequencing alignment

is provided.

The majority of the programming in this work was implemented in R [R Core Team, 2021],

C [Kernighan and Ritchie, 2006], and MatLab [MATLAB, 2020]. In R the bioconductor

[Morgan, 2021] suite was utilized for investigating the BSmooth procedure

[Hansen et al., 2012].
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Chapter 2

Analysis of the Fourier Coefficients of Genomic Sequences

This chapter explores Fourier coefficients of genomic sequences, building in a few new direc-

tions on a procedure which has been adapted and implemented to various uses in sequence

analysis since the 1990’s [Anastassiou, 2001]. First, a sample of genetic transcripts sequenced

from the SARS-CoV-2 virus are used to refine an R pipeline that calculates a Fourier trans-

form for genetic sequences. A sample of 1,400 viruses are then used for the two primary

experiments of this chapter [Elbe and Buckland-Merrett, 2017]. First, we show that the

power spectra (PS) of the Fourier series for a genomic sequence can be used to classify the

sequences by geographic region with approximately 80% accuracy. It is then shown that the

PS can be used to provide distance metrics that augment extant metrics while not requiring

sequence alignment.

The use of strategically selected (filtered) power spectral coefficients for the clustering

and classification of sequences is also investigated. An analysis using filtered data shows

that a very small subset of the overall coefficients will capture the information contained in

the full set. This chapter also introduces and derives a statistical test of hypothesis for the

Fourier coefficients, under the assumption that the sequences are second-order stationary.

Finally concluding remarks and some future directions are suggested.

The motivating work for this research comes from a demonstration that the Fourier

Transform of a genetic sequence provides useful phylogenies of organisms [Yin et al., 2014].

Yin, et.al. utilized Fourier transforms of NADH Dehydrogenase subunit-4 gene from the

mitochondrial DNA of several primate species to produce a phylogenetic tree of the species.

They compared their phylogeny to those formed from the standard Jukes-Cantor and K-

mer distance approaches. They further investigated the ability of the procedure to correctly

identify the phylogeny of sequences which were synthetically mutated. They showed that
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the Fourier coefficients were able to produce phylogenies which were at least as accurate

as those which were produced using the standard Jukes-Cantor procedure. Later, a more

computationally efficient approach using Fourier transforms produced similar phylogenies

[Yin and Yau, 2015], and is available in a suite of Matlab procedures [Yin, 2020].

The motivating question of this study concerns whether the Fourier coefficients alone

are appropriate for unique identification of a sequence. From a theoretical perspective,

neither the Fourier coefficients of a sequence, nor any other metric, can be used as a means

to uniquely identify a sequences. For example, within the sample of 1,397 viral sequences

which are included in this study, there are exactly 339 groups of sequences of which members

are identical to one another, and hence cannot be differentiated by the computed Fourier

coefficients. From the definition of the Fourier transform coefficients 1.1, it can be noted

that even a single change will produce a different set of coefficients. One manner in which

identical sequences might be differentiated in practice is by the addition of very small random

errors to sequence coefficients, such that the relational structure of the sequences induced

by the Fourier coefficients is maintained, while each sequence is supplied with a unique set

of coefficients. This is also shown in previous work, when a viral sequence is artificially

perturbed in demonstration of phylogeny building capabilities [Yin and Yau, 2015].

After the Fourier coefficients were determined for each of the sequences, a preliminary

analysis seeking to determine how well the values cluster the data is performed. First T-

Stochastic Neighbor Embedding (TSNE) [van der Maaten and Hinton, 2008] was applied to

the Fourier coefficients, followed by Multivariate Analysis of Variance (MANOVA) [Wilks, 1932],

and canonical variables analysis [Hotelling, 1935] [Kettenring, 1971]. The principal compo-

nents of the coefficients were also considered, and finally several different classification proce-

dures which are enumerated in the supplemental table were undertaken, and their accuracy

assessed.
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2.1. Fourier compared to Walsh Transform

Another of the theoretical questions to discuss when considering the Fourier Coefficients of a

genomic sequence is whether applying the continuous domain transform to a discrete domain

signal will produce results summarizing the frequency content that are too biased for any

suitable use. That is, a genomic or genetic sequence, when encoded numerically, does not

exhibit smooth transitions from one level to another, but rather instantaneous jumps. This

indicates that it is more appropriate to model the frequency decomposition using square

waves. The most natural transform for allowing this decomposition is the Walsh transform

[Shanks, 1969].

Figure 2.1: Simulation Error Walsh V. Fourier Coefficients for size from 16 to 262,144

Justification for the decision to use a Fourier transform instead of a Walsh transform is

validated in a small simulation study. Both the Fourier and Walsh coefficients were computed

for 100,000 random sequences each of sizes from 16 to 262,144 in powers of two, and an

exponential function regressed through them. The results of the simulation in 2.1 show a

swift decay to zero as the sequence size increases. The exponential that was fitted to the
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average error between the Fourier and Walsh coefficients at each of the sequence lengths is

f(l) = 0.3695·e−0.3271·l. The coefficient and exponent estimated have 95% confidence intervals

of (0.3575, 0.3815) and (-0.3332, -0.3210) respectively. This estimate can be interpreted to

be saying that for every log base 2 increase of 1 (each doubling of the length) the average

error between the Walsh and Fourier coefficients for the same signal decreases by a factor of

0.7210, or by approximately 30%. Due to this exponential reduction in error, it is decided

that the Fourier coefficients will induce a very similar if not isomorphic distance structure

among examined sequences. Therefore, instead of applying a Walsh transform, the Fourier

transform is used.

2.1.1. Encoding & Transforming Genomic Sequences

Genomic/proteomic signals when digitized can be stored in ASCII encoded files in FASTA/Q

format. FASTA stands for Fast-All [Lipman and Pearson, 1985], in reference to the storage

capabilities of the format for any alphabet based sequence. For biomolecular sequences

these are presented in enormously dense and ultra resilient storage systems such as DNAs

and RNAs. The harvested organic material, having been analyzed by sequencing technology,

[Metzker, 2010] [Slatko et al., 2018] yields a NT sequence, stored either directly in FASTA/Q

or other formats, such as intensity images for micro-array data.

Sequenced genomic data is processed using bioinformatic procedures toward a particu-

lar aim. If assembly or alignment is the researcher’s goal, a sequence assembler or aligner

may be used. An assembler is a tool that builds a long sequence from fragmented shorter

sequences. An aligner uses a reference sequence (sometimes built previously using an as-

sembler) and places reads obtained from a sequencer along the reference. Popular aligners

for regular DNA sequencing include: HISAT, [Kim et al., 2015] HISAT2[Kim et al., 2019],

bowtie2 [Langmead and Salzberg, 2012], and BWA [Li and Durbin, 2009]. Some special pur-

pose aligners for handling sequencing data from NT-conversion, such as HISAT3N

[Zhang et al., 2020] have also been developed.
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Alignment is a computationally expensive task. If the research task does not require

alignment, such as phylogenetic analysis, then the power spectra (PS) can be generated

for the sequence without an alignment. First, an encoding strategy must be determined.

This corresponds with a decision to use four-vectors or two-vectors [Voss, 1992b] to assign

numerical outcomes to the presence or absence of a specific NT. This decision does not always

result in contesting relative distance calculations further down the line. It was suggested that

encoding using two-vectors with a strategy picked to attempt to “balance” the signals will

provide better PS representations [Yin and Yau, 2015]. The mapping into four-vectors is

shown in Equation 2.1, and one possible two-vector encoding is shown in Equation 2.2.

V4[·] ≡ {A,C,G, T/U} 7→

{[1, 0, 0, 0]T , [0, 1, 0, 0]T , [0, 0, 1, 0]T , [0, 0, 0, 1]T}
(2.1)

V2AT [·] ≡ {A,C,G, T/U} 7→

{[0,−1]T , [−1, 0]T , [1, 0]T , [0, 1]T}
(2.2)

The PS, as described by Singleton in 1969 [Singleton, 1969], is computed for each row

of the encoded genomic signals (four times for V4, and two for V2AT ). The resulting PS are

then averaged together by frequency position, providing a single PS of the same length as

the initial signal. If this PS is to be compared to others in an ensemble of signals, a direct

comparison method is the computation of the Euclidean distance between the PS.

During the differentiation of genomic sequences, when examining a set of raw data, a re-

searcher might find that the lengths of the genomic sequences of the sample are different.

This means that the typical Euclidean distance procedure is not directly applicable to the

PS. Instead, the PS may be stretched from smaller sequence lengths to the length of the

longest sequences in order to allow for a comparison. When working with the PS, this can

be done by applying several different kinds of procedures, such as an even scaling procedure

[Yin et al., 2014]. The procedure scans through the shorter sequence taking either a single
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PS coefficient or a pair of coefficients, and averages them to produce a signal of the same

length as the longer sequence.

Formally, let An denote the original power spectrum of length n, and Am denote the

extended power spectrum of length m, where m > n and k = 1, 2, . . . ,m indexes the scaled

signal. The even scaling operation from An to Am is given by

Am(k) =
An(Q) if Q ∈ Z+

An(R) + (Q−R)(An(R + 1)− An(R)) if Q /∈ Z+

(2.3)

where Q = kn
m

and R = bkn
m
c [Yin and Yau, 2015]. The even scaling procedure is extensible to

signal length differences of up to one half the size of the smaller signal without providing sub-

stantive loss in terms of information content. The procedure may be applied systematically

in cases where the length difference exceeds this boundary.

A signal flow diagram describing the information stream from the genetic material to

the produced evenly scaled PS is represented in Figure 2.2. The evenly scaled PS are the

numerical summaries of the sequences to which the novel filtering procedures are applied.

These three filtering approaches are introduced in the next section, and applied to SARS-

CoV-2 viral genomes in that which follows it.
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Figure 2.2: Flow Diagram of Genomic Fourier Analysis
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2.2. Data Overview

There are approximately 32,000 nucleotides and 29 key protein-encoding genes within the

complete SARS-CoV-2 viral genome [Corum and Zimmer, 2020]. Like most viruses, SARS-

CoV-2 mutates over time as it comes into contact with various hosts and other pathogens.

To date, several variants, such as the Indian variant (B.1.617.2) -δ, the UK variant (B.1.1.7)

- α, the South African variant (B.1.351) - β, and the Brazilian variant (P.1) - γ have been

identified [Centers for Disease Control and Prevention, 2021].

Data for SARS-CoV-2 sequences is available through the GISAID Initiative

[Elbe and Buckland-Merrett, 2017], an organization which maintains records of viral genomes

submitted by an international collective of sequencing laboratories. The sequences are main-

tained in standard multi-FASTA format [Lipman and Pearson, 1985], with information on

the submitting lab and capture date included in the sequence headers. All sequences that

were submitted to the database had the same general header structure from which the date

of submission and location of submission were retrieved by regular expression matching.

The initial GISAID multi-FASTA file contains information from 70 submitting laboratory

locations, which are coarsened into eight submitting regions according to Table 2.1.

Table 2.1: Regional breakdown by Submitting Locations
Africa East Asia Europe Middle East North America Oceania South America West Asia
Algeria Beijing Austria Turkey USA Australia Brazil Bangladesh
Egypt Chongqing Belgium Saudi Arabia Puerto Rico New Zealand Chile Cambodia

South Africa Fujian Czech Republic Kazakhstan Guam Indonesia Colombia India
DRC Guangdong Denmark Iran Mexico Malaysia Costa Rica Nepal

Gambia Hangzhou Finland Israel Uruguay Sri Lanka
Senegal Hong Kong France Kuwait Vietnam

Jiangsu Georgia Thailand
Jiangxi Germany
Jingzhou Greece
Shandong Spain
Shenzhen Sweden
Sichuan Hungary
Taiwan Portugal
Tianmen Poland
Wuhan Russia
Yunnan Romania
Zhejiang Slovakia
Lishui Italy
Japan

Guangzhou
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The Fourier coefficients are shown to provide identifiable information for each of 1,397

SCV2 genomes that were considered complete and high-coverage. Complete means that the

sequence length is ≥ 29,000 nucleotides and high coverage indicates having a total proportion

of non-identifiable nucleotides (displayed as “N”, or another single character other than

the four “A”,“C”,“G”,and “T”) for less than 1% of the total number of nucleotides in the

sequence. Furthermore, only sequences with available patient status and containing 0.05%

or fewer unique mutations occurring in the produced amino-acid chains were used. All

sequences were submitted on or before the data-capture date of July 18, 2020.

The classification of sequences into the regions in Table 2.1 is assessed by the application

of statistical modeling and supervised learning methods on the produced Fourier coefficient

power spectrum. Of high interest is the ability of the Fourier coefficients to classify correctly

the sequences by geographic origin. The distances provided by a comparison of sequence PS

are also compared to distances determined by more traditional methods such as Jukes-Cantor

analysis [Jukes et al., 1969] and p-distance [Saitou and Nei, 1987], comparing the correlation

of all pairs of distances computed by the various methods.

The Fourier Coefficients for each of the 1,397 sequences were calculated and scaled

to the same length for the full set [Yin et al., 2014]. Visualization and clustering tech-

niques were applied to the resulting coefficients. Visualization procedures included TSNE

[van der Maaten and Hinton, 2008], and PCA [Hotelling, 1933]. In addition, several different

supervised learning techniques were used to classify PS from the sequences into geographic

region, the results of which are listed in Table 2.2. The timing footprint in seconds for CPU

time for each of the methods is also reported.

Classification using the Euclidean distance between Fourier spectra was compared to

distances produced by the Jukes-Cantor and other procedures[Jukes et al., 1969]. The Jukes-

Cantor method requires MSA prior to operation, followed by an estimation of the substitution

procedures among all sequences to calculate pairwise distances; therefore, it takes much

longer to complete than do any of the methods listed in Table 2.2.
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Table 2.2: Classification Validation Metrics with Fourier Coefficients (Using 10-fold cross
validations)

Classification Scheme Overall-Accuracy Average Sensitivity Average Specificity CPU Time (s)
ECOC-SVM 0.4624 0.8072 0.2065 2547

Random Forest (25 Trees) 0.7802 0.6019 0.9503 238
Random Forest (50 Trees) 0.7881 0.6195 0.9523 473
Random Forest (100 Trees) 0.7953 0.6210 0.9534 938
Random Forest (500 Trees) 0.7967 0.6238 0.9335 4676
Random Forest (1000 Trees) 0.7996 0.6243 0.9544 9431

Multinomial Logistic Regression (50 Coefficients) 0.3958 0.1277 0.8099 10792
Multinomial Logistic Regression (100 Coefficients) 0.3257 0.1328 0.7583 44942
Neural Network (1 Hidden Layer, 100 Neurons) 0.6707 0.4640 0.9209 2245
Neural Network (1 Hidden Layer, 250 Neurons) 0.6779 0.4982 0.9249 5267
Neural Network (1 Hidden Layer, 500 Neurons) 0.6707 0.4827 0.9217 12255
Neural Network (1 Hidden Layer, 1000 Neurons) 0.6521 0.4722 0.9164 23012

Neural Network (2 Hidden Layers, 250, 150 Neurons) 0.6679 0.4642 0.9201 3905
Pseudo-Quadratic Discriminant Analysis (1000 coefficients) 0.1102 0.2801 0.7495 49
Pseudo-Quadratic Discriminant Analysis (3000 coefficients) 0.073 0.1637 0.7637 231
Pseudo-Quadratic Discriminant Analysis (5000 coefficients) 0.0709 0.1536 0.7640 966

Among the methods listed in Table 2.2 the most accurate procedure overall is random

forest [Breiman, 2001]. Furthermore, the table shows that there is only marginal improve-

ment in the method’s accuracy as the number of trees in the forest is increased beyond 500 to

1000. The random forest models also showed the highest average sensitivity and specificity

from among the models tested. These metrics in addition to the modest training time for

the random forest indicated that this classifier is likely to produce the most accurate results,

and may be trained in a reasonable amount of time.

2.3. Methods and Procedures

In this section information about the procedures applied to the power spectra (PS) is

provided. An introduction to the visualization methods used in this work is followed by

a discussion of the transform and encoding strategies. The section concludes by offering

suggested filter designs for the PS that allow for further size reduction with retention of

vital information. When dealing with a high-dimensional data set, particularly in clustering

applications, the information contained in multiple dimensional space is not readily visible to

a human observer. We can use graphics programs to assist in drawing three dimensional plots

on a two dimensional surface, and there are even some plotting procedures for virtual reality

tools which allow for the production of a complete 3D plot [Nagel et al., 2001], but anything
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beyond this is not within the human sphere of perception. Therefore it becomes necessary

frequently to summarize high dimensional data in which the resultant plots are representable

on a 2 Dimensional Surface The visualization of high-dimensional data is a very active

area of research, with many different novel and exciting approaches in production. In this

section we focus on one such technique known as TSNE, a probabilistic approach to placing

multivariate data (or objects) into a visible space where relative distance is displayable,

[Hinton and Roweis, 2002].

TSNE may be thought of as a form of dimension reduction insofar as it projects an

image of data in high dimensional space onto a low dimensional space while maintaining

key information. Other classical approaches to dimension reduction include: PCA whereby

selecting the first few components a view of the entire collection of variables associated with

a point may be represented and Multidimension Scaling (MDS) which seeks to minimize

a function called the “strain” representing the relationship of a pairwise distance matrix

[Mardia, 1978]. Stochastic Neighbor embedding is a slightly different approach which seeks

to use the probability that data points would select one another as neighbors in a lower

dimensional space. In SNE, the probability that a data point i would select j as its nearest-

neighbor, pij is calculated by taking into account a distance measure between the two points.

pij = e−d
2
ij∑

k 6=i e
−d2

ik

A second set of induced probabilities, based on the Gaussian distribution originally are

described by the following formula:

qij = e−||yiyiyi−yjyjyj ||
2∑

k 6=i e||yi
yiyi−ykykyk||2

In this formula the reduced dimension representation is symbolized as the vectors yiyiyi for

each of the i objects. These values are determined by minimizing the gradient of a cost

function between the two different probabilities using the Kullback-Liebler divergence.

19



ŷîyîyi = min
yiyiyi

n∑
i=1

n∑
j=1

pij log pij
qij

The more recent iteration of SNE is known as TSNE [van der Maaten and Hinton, 2008].

The only difference between this and the classical method of SNE is that the embedded

distribution is modelled using the t distribution with one degree of freedom (Cauchy) rather

a Gaussian distribution with variance 0.5. Hence, the only modification of the above formulae

has to do with a change in the induced probabilities, which is:

qij = (1 + ||yiyiyi − yjyjyj||)−1∑
k 6=i(1 + ||yiyiyi − ykykyk||)−1

This method is coded in R [Donaldson, 2016], as are many packages to display the nat-

ural clustering behaviour of the high dimensional data (≈ 32,000 dimensions in this case)

in a lower dimensional space (2/3 dimensions) [Konopka, 2020] [De Leeuw and Mair, 2009]

[Kassambara and Mundt, 2020].

The Fourier coefficients may be considered as a series of averages of different resolution

samples of the same genetic signals with progressively lower sampling rates, decreasing from

a0,which represents full resolution of the signal, to frequencies that sample every other base,

every third base, fourth base, etc. Reconsider the encoding of a genomic sequence, and

suppose that a sequence of size N where i = 1, . . . , N is being encoded. li corresponds to

the nucleotide at location i. Then consider the sequence Ai, which is defined by an indicator

function that compares the nucleotide at base i to the nucleotide Adenine. This may be

expressed as Ai = 1(li = ‘A’). Where,

Ai =


1, If li is an Adenine.

0, If li is not Adenine.

Thus, the resulting sequence of Ai is a simple discrete-index signal that is representative of

the presence of Adenine along the genetic signal of interest down to the limit of resolution.

The nature of this classification of the data into either present or absent results in a discrete
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index signal, which is truly discrete with jumps occurring between zero and one.

Consider further the multivariate time series Bi, again for i = 1, . . . , N where Bi is the

result of a mapping of each singular point li onto a binary vector of length four Bi = b(li)

where:

b : {A, C, G, T} 7→





1

0

0

0


,



0

1

0

0


,



0

0

1

0


,



0

0

0

1




≡ {A, C, G, T} 7→ {0, 1, 2, 3}

That this representation is not compressed, and it will be shown later that bmay be expressed

as a different mapping to achieve a sparser encoding that still retains distinct nucleotide

information. For now, however, return to the above encoding function b and the resulting

series of Bi 4-vectors which it produces over li. Then BBB = [B1B1B1,B2B2B2, . . . ,BNBNBN ] where the (k, i)th

element is denoted bk,i, for k ∈ {1, 2, 3, 4}. A series of summary statistics for each row of the

matrix may be taken to show the composition of each particular nucleotide over the entire

sequence, and subsets of the sequence representing lower frequencies. The Fourier transform

expressed in section 2 is the continuous domain form. The discrete version of the Fourier

transform, called the Discrete Fourier Transform (DFT) replaces this integral with a sum so

that the transform becomes:

an = 1
N

N−1∑
i=0

x(i)e−jnω0i = 1
N

N−1∑
i=0

x(i)e−jn( 2π
N

)i If n > 0

a0 = 1
N

N∑
i=0

x(i)

In the above, the sequence of values {an} for n = 0, . . . , N − 1 represents the coefficients of

the DFT. The function x(·) is a discretely indexed function that may either have a known

analytical form, or simply be a sampled signal, which is sampled at regular and discrete

time points. Here, the symbol j is used to denote the imaginary number (j2 = −1). n, the
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subscript of the desired coefficient as well as a multiplier of the frequency, is the value which

generates sines of higher and higher frequency.

In examining the form of the Fourier transform, it can be seen that the first coefficient is

an overall average of the information present in each signal. The relationship of the average

of the nucleotides corresponds to the probability of randomly observing a nucleotide in the

sequence. Below is a theorem stating this, following the theorem is a short proof.

Theorem 2.3.1 The first Fourier coefficient of a binary sequence generated by an indicator

function for a particular nucleotide on a genomic sequence is equivalent to the probability

of selecting a location completely at random on the genome where that same nucleotide is

present.

Proof Consider selecting a position Z completely at random. This means that the position

is sampled according to a discrete uniform distribution. It becomes clear that the probability

distribution may be expressed:

P (Z = i) =


1
N

for i ∈ {x ∈ Z+|0 ≤ x ≤ N − 1}

0 for i /∈ {x ∈ Z+|0 ≤ x ≤ N − 1}

Where here Z+ refers to the non-negative whole integers. Now suppose we are interested in

the random variable AZ . This is a random variable as it is indexed by a random variable,

the valuation of this random variable is Ai, which is either 0, or 1 depending on whether

there is an adenine present at location i. Therefore S(AZ) = {1, 0}) and we are interested in

P (AZ = 1) = πA. As we are equally likely to select any index, i, along the entire sequence,

we may say that P (AZ = Ai) = πAiA · (1− πA)1−Ai . For a given genetic sequence we observe

all Ai for i ∈ {1, . . . , N} Therefore at each location i, P (Ai = 1) = Ai. Then
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P (AZ = 1) =P (Z = i ∩ Ai = 1) = P{(Z = 1 ∩ A1 = 1) ∪ (Z = 2 ∩ A2 = 1)

∪ · · · ∪ (Z = N ∩ AN = 1)}

It is the case for

{(i, j) ∈ {1, . . . , N} × {1, . . . , N}|i 6= j} that (Z = i ∩ Z = j) = ∅

=⇒ {(Z = i ∩ Ai = 1) ∩ (Z = j ∩ Aj = 1)} = ∅

πA = P (AZ = 1)

= P (Z = 1) · P (A1 = 1) + P (Z = 2) · P (A2 = 1) + · · ·+ P (Z = N) · P (AN = 1)

=
N∑
i=1

P (Z = i) · P (Ai = 1) =
N∑
i=1

1
N
· Ai = 1

N

N∑
i=1

Ai.

Indexing instead by i, and letting x(i) = 1(li = ‘A’) we have:

πA = 1
N

N∑
z=1

Az = 1
N

N∑
i=1

1(li = ‘A’) = 1
N

N∑
i=1

x(i) = a0.

The encoding strategy for genetic sequences that is utilized in this research is related to

the previously discussed radix-4 encoding, and was initially described in [Yin and Yau, 2015].

The strategy represents the four-category genomic sequence using three valued two-vectors.

That is, instead of using two-valued four-vectors which oscillate between the values one and

zero, two three-valued vectors which contain only the values -1, 0 and 1 are used. This ap-

proach, known as 2D Voss encoding [Voss, 1992a, Yin and Yau, 2015], improves performance

of the DNA similarity analysis method is to create a 2D representation of the sequence in-

stead of a 4D representation. It is the 2D representation, described ib Equation 2.4 that we
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employ in this research.

Suppose the mapping β defined as

β(A) = [0,−1]′, β(T ) = [−1, 0]′, β(C) = [1, 0]′, β(G) = [0, 1]′ (2.4)

Thus, the DNA sequence is defined as a 2D matrix ν as ν(n) = [η1(n), η2(n)]′ = β(αn),

where α ∈ {A,C,G, T}, n = 0, 1, 2, . . . , N − 1, for each sequence of length N . The 2D

approach allows for eight possible encodings, which produce three unique power spectra. Of

the eight, only two produce signals balanced in the quantity of zero vs. non-zero content.

Equation 2.4 displays the AG encoding. The encoding which produces the most balanced

(and hence stationary) signal is driven by data-specific ratios [Yin and Yau, 2015]. Both

2D and 4D procedures are provided as a MatLab implementation in [Yin, 2020], and an R

Implementation [Thornton, 2021].

To compute pairwise distances (Euclidean or otherwise) among the power spectra, they

must first be scaled to be of the same length. Some have suggested the use of partial spectra

from a few beginning frequencies [Wu et al., 2000], [Wang et al., 2013],

[Rafiei and Mendelzon, 1998]; but this leads to a loss of information in the comparison. A

different way of managing the lengths of the DFT power spectra is to alternate selection of

one or the average of two consecutive elements in the shorter signal, which has the effect of

“stretching” the shorter signal to the same length as the longer signal. Once Equation 2.3

is applied to the power spectra of the genomic signals, the Euclidean distance between each

pair of sequences is calculated.

2.3.1. Comparison to Other Distance Metrics

In this work several methods for determining the distances between genetic sequences

accounting for gaps in the sequences built into Matlab are used. The first method, known

as p-distance, is a measure from zero to one which represents the proportion of locations

at which the two sequences being compared differ from each other. The p-distance is a
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procedure that requires two sequences being compared to be aligned with each other so that

the nucleotides at each position (loci along the first sequence) may be compared with those

at the corresponding loci in the second sequence [Paradis and Schliep, 2019]. The second,

the Jukes-Cantor method, is a simple logarithmic function of p-distance. The Jukes-Cantor

distance is given by −3
4 · log((1− p) · 4

3), where p is the p-distance.

No obvious relationship between the Fourier coefficient distance and the Jukes-Cantor/p-

distance methods exists. Any relationship discovered between these two methods would

indicate that both contain similar information. To examine this relationship, Pearson’s

correlation coefficient is calculated between the three sets of distances: Fourier coefficients

vs. Jukes-Cantor, p-distance vs. Jukes-Cantor, and Fourier coefficients vs. p-distance. A

null hypothesis significance test for H0 : ρ = 0 versus HA : ρ 6= 0 indicates evidence for

an association among the three correlation measures. The p-value for the correlation test

between the p-distance and the Fourier Coefficient Distance is 0.0197, and that between the

Jukes-Cantor distance and the Fourier coefficient distance was very small and displayed as

0. This result indicates that there is some shared information among the three distances.

The distances discussed in this section so far have been ones which require multiple

sequence alignment (MSA). There are many MSA algorithms. In this work, Clustal W

software was used to perform MSA on the complete set of 1,397 sequences in this study to

allow for subsequent analysis using the classical substitution models

[Larkin et al., 2007].

In contrast to these post-MSA procedures, one frequently used alignment-free method

for characterizing data is known as the k-mer distance calculation. There are several varia-

tions of this procedure but these all typically begin with counting the k-mers in a file of a

given size [Röhling et al., 2020] [Allman et al., 2017] [Benoit et al., 2016] [Wen et al., 2014].

There have been a few software packages developed for rapidly computing these frequency

or count vectors. One popular program known as Jellyfish

[Marcais and Kingsford, 2012] implements a k-mer counting routine that allows for parallel

processing, making it a very rapid and accurate counter. In this research however the case
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study genomes were small enough that a basic k-mer counting sub-routine is implemented in

the R-package developed for this study [Thornton, 2021]. In these distance calculations, the

K-mers, where k ∈ {1, 2, 3, 4, 5} were counted for each sequence, and the resultant frequency

vector is compared to other sequences via the Euclidean distances between the frequency

vectors. A complete listing of the phylogenetic distance procedures used in this work is

provided in A.1.

2.3.2. Filtering Procedures

Since the initial PS may be large, subsets of PS coefficients produced by a few techniques,

with special focus on preserving relative distances captured by the entire unfiltered genomic

PS might be desired by a researcher. To this end, non-parametric data-driven filters are

applied to a subset of SARS-CoV-2 virus genomes.

These approaches to filtering the PS were designed to determine appropriate subsets which

might be used to numerically summarize genomic signals such as DNA and RNA while

retaining the distance information provided by the fully unfiltered PS. In this way, they

reduce the extent of the PS analyzed while attempting to maintain relative orderings of

pair-wise distances among the sequences analyzed.

Three approaches,Minimal Variance Filtering (MVF),Automated Filter Learning (AFL),

andMaximal Variance Principal Components Filters (MVPCF), are suggested and their util-

ities examined. Retention of pair-wise distance orderings is assessed with Spearman’s Rank

Correlation coefficient (%) to measure the linear relationship between Euclidean distances of

ranks among full unfiltered PS and reduced filtered PS.

As the techniques described here are non-parametric and data-driven, either a represen-

tative sample for construction of the filters must be selected among those available, or the

entire set may be used to derive an ensemble-specific set of filters. This indicates that when

new genomic signals are collected, the same filters may be applied as are or reconstructed

with the new signals. Filters built with new signals may not be identical to those produced
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by the originals. Thus, the filters may be updated whenever a new signal is added to the

ensemble.

With the specification of the percentage of PS coefficients to filter, the MVF technique

can exclude those PS coefficients which vary the least amongst the sample. The variance of

each of the j = 1, 2, . . . ,m elements of the evenly-scaled PS ensemble for either the entire

sample, or some representative subsample is computed. The supplied q, the fraction of the

coefficients by which to reduce the original PS, is used to determine which variance should

be the cutoff in the data, in accordance with Equation 2.5.

vj =

∑N
i=1

(
Sij −

∑N

i=1(Sij)
N

)2

N − 1

η∗ =
vj

∣∣∣∣∣∣
m∑
k=1

1 (vj ≤ vk) = bm · qc


S∗il =
Sij

∣∣∣∣∣∣vj ≥ η∗



(2.5)

The variance filtering approach is applied to genomic PS coefficients Sij, for coefficient

j = 1, 2, . . .m of sample i = 1, 2, . . . , N , to produce filtered PS Sil for l = 1, 2, . . . , bm · qc.

The filtered PS Sil are produced by selecting only those PS coefficients from the unfiltered

PS that have the largest across-sample variances.

This filter design may be considered as semi-analogous to that of a matched filter from

traditional signals processing. As a matched filter seeks to exploit a template, so too does

the MVF technique. Once a threshold determination (η∗) is made from the composite

variances of the coefficients each PS is matched to it by selection only if that coefficient

has a higher variance. The MVF design does not inspect the composite variances at lagged

PS alignments, and hence is only similar to the lag-zero matched filter [Woodward, 2014]

[Turin, 1960] [North, 1963] [Jaynes, 2003]. AFL is a less hands on approach than MVF,

and provides a set of unique linear combinations of the entire genomic PS instead of a

binary filter. These filters are learned automatically by a 1-D Convolutional Neural Network
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(CNN) applied to the full PS [Zhang et al., 1988]. The CNN is designed to classify important

attributes of the original genomic sequences. The characteristics classified by the CNN may

vary depending on application. For example, in the SARS-CoV-2 case study, the labels

were regional submission data that was extracted from the headers provided by GISAID. A

schematic of the Machine Learning (ML) approach is shown in Figure 2.3 and depicts the

CNN layer learning filter coefficients for inputted PS.

Figure 2.3: Schematic of Machine Learning approach for automatic filter learning

As with the previous approach, the size of the filtered PS can be selected by the researcher.

In contrast to MVF, the resultant set of filtered PS coefficients actually consist of linear

combinations of the unfiltered PS coefficients. In addition, AFL is dependent on having

supervised labels for the sequences used to construct the filters. These labels will determine

the kinds of filters constructed and the information that they emphasize; hence, aspects of

the original PS that help differentiate the elements of the sample on the chosen labels will

be extracted by the filters. The convolutional network layer is applied to the entire length

of the PS, p, which is the number of filters to be learned by the CNN.

The constructed filters also depend on the architecture of the hidden layers between

the output and the convolutional layer. In the results section we will look at a specific

architecture that learns filters by attempting to classify the sequences by region of submission.

A notable drawback of this approach is its dependence on a known label that can either be

extracted from the data or supplied by a user.
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MVPCF provides filters in the same style as those automatically learned in AFL with

the advantage of stronger correlation to distances calculated from the unfiltered PS. For the

largest subset of PS coefficients given N samples, the principal components of the N highest

variance PS coefficients in the sample are taken as the filtered PS. When the number of

samples, N , from which the filter is constructed is less than the length of the PS, m, this

technique selects the N highest variance PS coefficients, otherwise the entire PS is utilized.

In this case, the selection of the length of the filtered PS is made by choosing only the first

k principal components.

Let XXX be the matrix containing PS of all samples from which we want to construct

a filter. Each row i = 1, 2, . . . , N represents a signal, and each column j = 1, 2 . . . ,m

represents the jth PS coefficient. A pre-filtering matrix HHH may be determined from η∗ in

Equation 2.5, such that HHH is of size m × k∗, where k∗ is at most N . Each column of

HHH selects the single PS coefficient from XXX of variance greater than η∗ and less than the

previously selected PS coefficient, such that XXXHHH = X∗X∗X∗ is of size N × k∗; thus, HHH contains

only the maximal variance coefficients ofXXX. The singular value decomposition (SVD) of the

matrix X∗X∗X∗ may be written X∗X∗X∗ = UUUΣΣΣWWW T with score matrix TTT = X∗X∗X∗WWW = UUUΣΣΣ. Then a post

filtering matrix KKK may be applied to the score matrix, such that KKK is of size k∗ × k and

therefore TTTKKK = X∗X∗X∗WWWKKK = UUUΣΣΣKKK = FFF is the N × k maximal variance principal components

filtered representation of the initial PS matrix XXX.
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2.3.3. Complex Gaussian Model for Fourier Coefficients

Now a parametric hypothesis test that uses the complex normal distribution is intro-

duced. The test also relies on the assumption of second-order stationarity to directly compare

samples of signal autocorrelations. The correlation structures are compared by inspecting

summary statistics computed from their groupings.

The asymptotic distribution of the Fourier coefficients of a signal, as the signal length

tends to infinity, is known as the multivariate complex normal distribution [Brillinger, 2001].

That is, the distribution of each of the coefficients is marginally a complex normal distribution

as shown in 2.6.

ddd
(T )
X (λ) =

T−1∑
t=0

X(t)e−iλt =⇒ ddd
(T )
X (λj(T )) ∼ NC

r (000, 2πTfXXfXXfXX(λj(T ))) (2.6)

In Equation 2.6 the complex multivariate normal distribution on the complex r-vector

Fourier Coefficients of frequency (λj(T )), denoted as ddd(T )
X (λj(T )),is symbolically represented

NC
r . In the case of genetic sequences, the base nucleotide (NT) sequence is first converted

into a numerical signal using one of two encoding strategies, which produce either a four, or

two vector valued numeric signal (r ∈ {2, 4}). In Equation 2.6, λj(T ) is defined in terms of

the integers sj(T ), where {sj(T ) ∈ Z|0 ≤ sj(T ) ≤ T} such that:

λj(T ) = 2πsj(T )
T

lim
T→∞

λj(T ) = λj λj = 2πsj
T

(2.7)

fXXfXXfXX , the r × r spectral density matrix of X(t) for a given frequency, λ is computed by

examination of the r × r autocovariance function cXX(u)cXX(u)cXX(u) :

fXXfXXfXX(λ) = 1
2π

∞∑
u=−∞

cXXcXXcXX(u)e−iλu −∞ < λ <∞

cXXcXXcXX(u) = cov(X(t+ u), X(t))
(2.8)

where cXXcXXcXX(u) is the autocovariance function, a r × r matrix valued function. Under the
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condition of second-order stationarity, which is a key underlying assumption, the autoco-

variance function is not a function of time. The multivariate complex normal distribution

on r-vectors has a distribution that can be expressed in terms of the multivariate normal

distribution on 2r-vectors. Given an r-vector random variable ZZZ = Z<Z<Z< + j ·Z=Z=Z= with sample

space SZZZ ≡ Cr, the following two distributions, with vector (mean) and matrix-parameters

(variance-covariance matrix) µXµXµX = µX<µX<µX< + j · µX=µX=µX= and ΣXXΣXXΣXX = ΣXX<ΣXX<ΣXX< + j · ΣXX=ΣXX=ΣXX= on ZZZ are

equivalent, in the case of a r-vector signal X with transform coefficient Z.

ZZZ ∼ NC
r (µXµXµX ,ΣXXΣXXΣXX) ⇐⇒

Z<Z<Z<
Z=Z=Z=

 ∼ N2r


µX<µX<µX<

µX=µX=µX=

 ,
ΣXX<ΣXX<ΣXX< −ΣXX=ΣXX=ΣXX=

ΣXX=ΣXX=ΣXX= ΣXX<ΣXX<ΣXX<


 (2.9)

Recall that the probability density function for a multivariate normal distribution N2r(µµµ,ΣΣΣ)

is expressed as:

QQQ ∼ N2r(µµµ,ΣΣΣ) ⇐⇒ dP (QQQ ≤ qqq) =
(
(2π)2r|ΣΣΣ|

)− 1
2 e−

1
2 (qqq−µµµ)TΣΣΣ−1(qqq−µµµ)dqqq (2.10)

This formulation of the distribution for second-order stationary signals is used in the

subsequent derivation of the statistical hypothesis test based on the Likelihood Ratio Test

for observed variance-covariance matrices of the multivariate Fourier coefficients.

Using Brillinger’s notation for the Fourier Transform distribution it becomes clear that

Vr(ω)Vr(ω)Vr(ω) from Equation 1.1 is equivalent to ddd(T )
X (λ) in Equation 2.6. If the assumption of

second-order stationarity holds, it can be shown that the asymptotic distribution of ddd(T )
X (λ)

converges to the complex normal displayed in Equation 2.6. This is almost certainly not the

case for genomic sequences, as the auto-covariance function is likely not time-independent

(meaning that the relationship between each point t in the signal and the point u elements

ahead or behind does not depend on the point t). That said, this simplifying assumption is

critical to feasibly make use of the estimated variance-covariance matrix in the test hereafter

described. In future works, we will investigate transforms of the initial sequences that may

allow this assumption to be more readily met, in addition to performing an analysis of the

robustness of the statistical procedure to this assumption.
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Suppose that a sample of N values from a r-variate complex normal random variable is

taken such that Z1Z1Z1,Z2Z2Z2, . . . ,ZNZNZN represent the sample random variables, and z1z1z1, z2z2z2, . . . , zNzNzN the

observed valuations. Suppose further that it is the case that ZnZnZn iid∼ NC
r (µµµ,ΣΣΣ), as is indicated

in Equation 2.9. This distribution may also be expressed in terms of the multivariate nor-

mal distribution, with mean-vector and variance-covariance matrix expanded as displayed.

Let Σ<Σ<Σ<,µ<µ<µ<,Zn<Zn<Zn< and zn<zn<zn< be the real parts of ΣΣΣ,µµµ,ZnZnZn and znznzn and Σ=Σ=Σ=,µ=µ=µ=,Zn=Zn=Zn= and zn=zn=zn= their

corresponding imaginary portions respectively. Furthermore, let the scalars zn<l and zn=l

represent the lth components of the real and imaginary vectors zn<zn<zn< and zn=zn=zn=, then the fre-

quency function of the joint distribution of the sample may be expressed as the argument of

the partial differential equation:

∂P (Z1Z1Z1 ≤ z1z1z1 ∩Z2Z2Z2 ≤ z2z2z2 ∩ · · · ∩ZNZNZN ≤ zNzNzN)

=
N∏
n=1

(2π)2r

∣∣∣∣∣∣
Σ<Σ<Σ< −Σ=Σ=Σ=

Σ=Σ=Σ= Σ<Σ<Σ<


∣∣∣∣∣∣

− 1

2

· exp

−1
2


zn<zn<zn<
zn=zn=zn=

−
µ<µ<µ<
µ=µ=µ=



T Σ<Σ<Σ< −Σ=Σ=Σ=

Σ=Σ=Σ= Σ<Σ<Σ<


−1

zn<zn<zn<
zn=zn=zn=

−
µ<µ<µ<
µ=µ=µ=



 ∂znznzn

(2.11)

The Maximum Likelihood Estimators of the parameters of the multivariate normal distribu-

tion are the vector average of observations and the sample variance-covariance matrix of the

sample, which may be computed according to Equations 2.12, and 2.13. Recall that each of

the vectors are of length r, and let the final subscripted index represented the lth element of

the vector.

µ̂̂µ̂µ =

µ̂<̂µ<̂µ<
µ̂=̂µ=̂µ=

 =


(
µ̂<1 µ̂<2 . . . µ̂<r

)T
(
µ̂=1 µ̂=2 . . . µ̂=r

)T
 =

 1
N

∑N
n=1 zn<zn<zn<

1
N

∑N
n=1 zn=zn=zn=

 (2.12)

Σ̂̂Σ̂Σ =

Σ̂<̂Σ<̂Σ< −Σ̂=̂Σ=̂Σ=

Σ̂=̂Σ=̂Σ= Σ̂<̂Σ<̂Σ<


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Σ̂<̂Σ<̂Σ< =


σ̂2
<1 ρ̂<1,2 . . . ρ̂<1,r

ρ̂<2,1 σ̂2
<2 . . . ρ̂<2,r

...
...

. . .
...

ρ̂<r,1 ρ̂<r,2 . . . σ̂2
<r


σ̂2
<l = 1

N−1
∑N

n=1

(
zn<l − µ̂<l

)2

ρ̂<l,m = 1
N−1

∑N

n=1

(
zn<l − µ̂<l

) (
zn<m − µ̂<m

)

Σ̂=̂Σ=̂Σ= =


σ̂2
=1 ρ̂=1,2 . . . ρ̂=1,r

ρ̂=2,1 σ̂2
=2 . . . ρ̂=2,r

...
...

. . .
...

ρ̂=r,1 ρ̂=r,2 . . . σ̂2
=r


σ̂2
=l = 1

N−1
∑N

n=1

(
zn=l − µ̂=l

)2

ρ̂=l,m = 1
N−1

∑N

n=1

(
zn=l − µ̂=l

) (
zn=m − µ̂=m

)
(2.13)

Given a set ofK total genomic sequence samples (that is,K groups of genomic sequences),

there may be a desire to determine whether the variance-covariance structure of the samples

of sequences differ. Taking the Fourier transform of all sequences at a given frequency will

allow the maximum likelihood estimation of the variance covariance structure as shown in

Equations 2.12, and 2.13, for all of the data. Hence the likelihood function for an MLE over

all of the data can be expressed using Equation 2.11 as Equation 2.14.

logL
(
µµµ = 000,ΣΣΣ = Σ̂̂Σ̂Σ ; (z1z1z1, z2z2z2, . . . , zNzNzN)T

)
= `(Σ̂̂Σ̂Σ)

= N

4 · log
(
(2π)2r|Σ̂̂Σ̂Σ|

) N∑
n=1

zn<zn<zn<
zn=zn=zn=


T

Σ̂̂Σ̂Σ−1

zn<zn<zn<
zn=zn=zn=

 (2.14)

Suppose that each of the K groups of genomic signals has a sufficient number of observations

to allow for the individual estimation of parameters, and that the number of observations

in the kth group is denoted by Nk for k = 1, 2, . . . , K such that ∑K
k=1Nk = N , and letting

the observed Fourier coefficients vector for a specified element of subgroup k be specified as

znk<(k)znk<(k)znk<(k) and znk=(k)znk=(k)znk=(k) where nk references the particular element in the kth subgroup for the real

and imaginary parts of the Fourier coefficient respectively. Suppose also that the maximum

likelihood estimates of the variance-covariance matrices for each of the K subgroups of data

are estimated as Σ̂kΣ̂kΣ̂k for k ∈ {1, 2, . . . , K} with submatrices Σ̂k<Σ̂k<Σ̂k< and Σ̂k=Σ̂k=Σ̂k=. Then a second

likelihood function which considers each of the subgrouped data points separately may be
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constructed using each of the grouped data as shown in Equation 2.15.

`(Σ̂1Σ̂1Σ̂1,Σ̂2Σ̂2Σ̂2, . . . , Σ̂KΣ̂KΣ̂K) =

K∑
k=1

Nk

4 · log
(
(2π)2r|Σ̂kΣ̂kΣ̂k|

) Nk∑
nk=1


znk<(k)znk<(k)znk<(k)

znk=(k)znk=(k)znk=(k)


T

Σ̂kΣ̂kΣ̂k
−1

znk<(k)znk<(k)znk<(k)

znk=(k)znk=(k)znk=(k)



 (2.15)

Note that under the hypothesis (H0) that Σ̂1̂Σ1̂Σ1 = Σ̂2̂Σ2̂Σ2 = · · · = Σ̂K̂ΣK̂ΣK , Equation 2.15 becomes

Equation 2.14. Therefore, we may test this hypothesis with the standard Likelihood Ratio

Test (LRT) statistic given in Equation 2.16.

Λ = −2 ·
(
`(Σ̂̂Σ̂Σ)− `(Σ̂1Σ̂1Σ̂1, Σ̂2Σ̂2Σ̂2, . . . , Σ̂KΣ̂KΣ̂K)

)
=⇒ Λ ∼ χ2

K−1 (2.16)

This test statistic may then be examined to determine whether or not it falls beyond the

researcher’s selected critical point into the tail of its χ2 distribution.

2.4. Results and Analysis

The results of applying these frequency analysis techniques to the SARS-CoV-2 data set

described are displayed in this section. First the results of applying clustering procedures for

the visualization of the power spectra are provided, in particular, TSNE [Hinton and Roweis, 2002],[van der Maaten and Hinton, 2008]

and canonical variables plots are shown. The visualization procedure is followed directly by

a traditional MANOVA procedure [Stevens, 2007]. This is followed by the results of ap-

plying supervised learning procedures to both the DFT Power Spectra, as well as K-mer

frequency vectors [Wen et al., 2014]. The Correlation between pairwise distances in the

data for several classical substitution model approaches such as Jukes-Cantor and Kimura

[Kimura, 1980],[Kimura, 1981] as well as those produced with the Fourier PS are examined.

The results of filtering the PS and attempting clustering and classification are then discussed.
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2.4.1. Clustering and Visualization for SARS-CoV-2 Sequences

To examine whether the scaled spectra for the various SARS-CoV-2 genomes contain

information relevant to the differentiation of the geographic location from which they were

submitted, a TSNE plot was constructed using the power spectra (Figure 2.4). The points on

the TSNE plot are colored by geographic location according to Table 2.1. Note that location

on the TSNE plot is fairly well differentiated; however, there are some regions which do not

cluster on the scaled Fourier spectra. This might have to do with the spread of the virus to

different areas by a particular individual visiting from another geographic region from which

an original or a similar and presumably closely related viral sequence is submitted.

Figure 2.4: Complete Fourier Spectra Visualization: TSNE plot

The tight clusters of particular regional data that are separated by some distance indicate

that the actual location of submission of the particular sequence is associated with the viral

sequences’ harmonic data. A TSNE plot of the first thousand coefficients alone is shown

here as well to display that a subset of the coefficients may still be used to illuminate some

of the underlying structure of the high-dimensional data (Figure 2.5). We used TSNE plots
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to visualize K-mer frequency vectors (1364 dimensions) and Fourier power spectra (33,133

dimensions) euclidean distances in two-dimensional space. The dimension of the Fourier

Power Spectra is the same size as the number of coefficients computed and scaled for each of

the signals, while that of the K-mer frequency vector is determined by the number of K-mers

used, in this case the first 5, (ie. 41 + 42 + 43 + 44 + 45 = 4 + 16 + 64 + 256 + 1024 = 1364).

Figure 2.5 shows TSNE plots for two alignment-free (K-mer, and Power Spectra) methods

(top row). Each color in the plot represents a different geographic region, as defined in

Table 2.1. In the TSNE plot, points representing probabilities pij that sequence i would

have sequence j as its neighbor are colored by geographic location. The pij are calculated

via optimization of the Kullback-Leibler divergence between the distribution of Euclidean

distances in high-dimensional space, and then in the low-dimensional space.

TSNE plots for Jukes-Cantor [Jukes et al., 1969] and Kimura [Kimura, 1980] distances

are displayed in the bottom row. Both Jukes-Cantor and Kimura distances require multiple

sequence alignment (MSA) before distances can be computed. These more classical distances

were computed not only as comparisons for clustering and classification, but also to determine

whether the Jukes-Cantor, Kimura, K-mer, and FC distances were providing redundant

information about the relationships among the genomes.

The results of the visualizations in Figures 2.5 are encouraging, and indicate that both the

power spectra and the K-mer frequency vectors are valid numerical summaries for analysis

of the geographic origin of a particular virus sample.

The patterns in the upper left TSNE plot (K-mer distance) are indicative of redun-

dancy in the data (i. e. given five-mer frequencies, the frequencies of all lower mers can be

computed).

One can see that the colors tend to cluster together, particularly for the K-mer and FC

distances; however, there is some mixing. The plot constructed from the Fourier spectra

(top right) shows distinct clusters of sequences, particularly for West Asia (bright pink)

and Europe (olive green). In addition, these two clusters of points are separated from each

other. The cluster for West Asia is closest to the cluster for the Middle East, which makes
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Figure 2.5: TSNE plots for different distance procedures

practical sense, as individuals from these two regions would be more likely to mix due to

geographic proximity. The gold triangles representing East Asia are the most spread over the

plot, indicating that individuals from this area perhaps carried the virus to other geographic

regions.

The most prominent feature of the TSNE plots for the MSA-based methods is the large

European cluster in the center of each plot. GISAID, based in the Federal Republic of

Germany, expectedly obtained an imbalanced set of submitting regions far in favor of the

proximal European countries, which explains the large cluster in the middle of the plot.

Another perhaps initially surprising result in Figure B.6 is the clearly patterned behaviour

of the K-mer frequency vectors. This can be explained by redundancies which are present

in the data (for example, given the listing of all five-mer frequencies alone (1024) one could
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theoretically recompute that of the four-mer, three-mer, two-mer, and one-mer directly.

In total the Multiple Sequence Alignment (MSA) process using clustal-omega required

21 hours, 44 minutes, 52 seconds, which was partitioned among the three steps involved:

Ktuple-distance (50 Minutes, 32 seconds), sub-cluster distance (16 Minutes, 14 seconds),

and progressive alignment (20 hours, 38 minutes, 6 seconds). In terms of the computational

time required for application of the distance assessment methods, the Jukes-Cantor and

Kimura distance calculations are approximately 4000 times as computationally expensive

(from a real time perspective) than the DFT distance. This is because the DFT distance

does not require alignment, the Jukes-Cantor procedure uses multiple sequence alignment

prior to computation of distances.

To count the K-mers in each of the 1,397 sequences and produce appropriate K-mer

frequency vectors for comparison took 4,774 seconds. Scaling the frequency vectors vertically

(across all elements in the sample) takes 0.16 seconds, and computing Euclidean distances

takes approximately 2.15 seconds, for a total of 4,776 seconds. The power spectra calculation

in total took only 392 seconds, which was partitioned among the process as follows: 2D Voss

Encoding (19 seconds), Fourier Transform and Power Spectra Calculation (311 seconds),

even scaling of ensemble (9 seconds), scaling PS vertically (5 seconds), and computation of

Euclidean distances (49 seconds). Times for the alignment-free distance calculations were

computed using the R package associated with this chapter’s work [Thornton, 2021].

2.4.2. Multivariate Analysis of Variance

There are 30,563 Fourier coefficients for each genome. MANOVA is computed with the

first 1000 Fourier Coefficients to provide a sufficient collection of points to extract patterns

among the groups. The Fourier coefficients meet the criteria for normality, as the normality

assumption is proven to hold asymptotically for Fourier spectra [Kawata, 1966].

For the MANOVA test, the null and alternative hypothesis are:

• H0 : There is no difference in the population vector mean of the first 1,000 Fourier
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Coefficients among the eight regionally submitting locations.

• H1 : There is at least one pair of submitting locations for which the vector mean is

different.

Therefore, a large statistic, and small p-value indicates that there is evidence that at least

one pair of vector-means are different from at least one of the others. Table 2.3 shows that

the p-values for this analysis are close to 0, indicating strong evidence for differences among

the vector-means for the geographic regions. Results are shown for both K-mer counting and

Fourier coefficients. The tabulated results are from Pilai’s trace statistic for a MANOVA

hypothesis test for the differences in population vector mean coefficients across the eight

geographic regions in Table 2.1.

Table 2.3: MANOVA Results Table

Method Pilai Statistic Approximate F Numerator DF Denominator DF p-value
K-mer, k = 5 2.17 5.84 700 9072 < 2× 10−16

FC PS 6.49 5.05 7000 2772 < 2× 10−16

An auxiliary procedure associated with MANOVA (Table 2.3) is the analysis of canonical

variables. The coefficients for the canonical variables are the eigenvalues of the matrix

product of the within and between matrices computed by the MANOVA procedure. From

this perspective, the coefficients represent the linear combinations of variables which produce

the largest separation between the levels of the factor of interest in the analysis.

Figure 2.6 displays a plot of the first two canonical variables after application of MANOVA

with the power spectra from each sequence as the responses and the geographic region as the

explanatory factor. The first two canonical variables following the analysis provide a very

clear separation of the particular regions, with regions in geographic proximity consistently

grouped together.
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Figure 2.6: Fourier Coefficients Canonical Correlations Plot

2.4.3. Supervised Learning by Geographic Region

After the unsupervised approaches showed clusters of coefficients corresponding to ap-

proximately eight geographic regions, several supervised approaches were used to examine

whether the Fourier spectra could be used to successfully classify the submitting region. First

an Error-Correcting Output Codes model (ECOC) is used to train an ensemble of support

vector machines to classify the location of data submission [Cortes and Vapnik, 1995]. The

overall accuracy for this model was 71%, which was lower than any other method tested.

This insight indicates that the Fourier spectra are not well partitioned linearly; therefore,

several nonlinear models were applied to the classification. The first was random forest

[Breiman, 2001], for which multiple settings displayed highly accurate classification results.

40



The first setting utilized 50 trees, and attained an accuracy of 79%, displaying clear superior-

ity over ECOC SVM. This result corroborates that separation among the geographic regions

is best done with a nonlinear classification method. When using a random forest of 500 trees,

the accuracy increased to 80.5%. Additionally, we classified the data using neural networks

[Hopfield, 1982], regression trees [Brieman et al., 1984], k nearest neighbors (k = 10), and

naïve Bayes methods [Hastie et al., 2008]. Table 2.4 shows the full results.

Table 2.4: Various Classification methods for the Location of submission, on K-mer
frequencies and Fourier Power Spectra.

Supervised Learner K-mer Vectors (Interval) DFT Power Spectra (Interval)
Naive Bayes 0.424 (0.411, 0.438) 0.593 (0.580, 0.607)
Regression Tree 0.179 (0.169, 0.189) 0.191 (0.181, 0.202)
K-Nearest Neighbors (k = 10) 0.722 (0.710, 0.734) 0.776 (0.765, 0.787)
Random Forest (500) 0.651 (0.639, 0.664) 0.805 (0.795, 0.816)
Neural Network (1 HL - 30 N) 0.505 (0.492, 0.519) 0.580 (0.567, 0.593)
SVM 0.688 (0.676, 0.700) 0.712 (0.699, 0.724)

The supervised learning approaches were implemented and validated using five fold cross

validation to ensure that there was a representative proportion of each of the regions available

in each of the training sets. The overall cross-validation accuracies for the K-mer frequency

vectors and the Fourier Power Spectra as well as their 95% Binomial confidence intervals are

displayed in Table 2.4. Table 2.4 contains a comparison of the use of the first-five K-mer

frequency vector and the Fourier power spectra for the supervised learning and prediction

of geographic location of origin for SARS-CoV-2 genomes. The key finding is that the

Fourier power spectra outperforms K-mer frequencies in terms of classification for each of

the learners trained. This is an encouraging result as it was faster to compute the DFT

power spectra for the sequences than to count K-mers in a sequence.

The purpose of Table 2.4 is to show that the Fourier Power Spectra for these sequences

can be used as valuable numerical summaries on which to train classification procedures

that will subsequently predict the location of submission/origin for unknown samples that

are submitted. As is evidenced by the bolded values in Table 2.4, the power spectra produced

41



more accurate results than did theK-mer vectors in nearly 70% of the cases. This key finding,

while indicating a preference for the use of the power spectra for classification, should be

taken with the understanding that the K-mer frequency vectors are actually much smaller,

and hence contain far less information about the original sequence than do the Power Spectra.

2.4.4. Correlation between Distance Methods

The correlation between the Jukes-Cantor, Fourier PS distances, and several other post-

MSA methods using Pearson’s correlation is investigated to determine whether the Fourier

power spectra distances contain ancillary or isomorphic information to the other distances.

The results are in Figure 2.7. The matrix displays Pearson’s correlation as computed among

the distances that are produced via first five-kmer distances (fivemers), the Fourier Power

Spectra distances (DFTPS), and the post-MSA methods that are provided by the ape pack-

age in R [Paradis and Schliep, 2019]. For a complete listing of the post-MSA methods, see

the ape package documentation for the dist.dna function.

Figure 2.7: Correlation Matrix for Distance Methods
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A strong correlation between any pair of the distances indicates that the respective dis-

tance calculation methods summarize similar information. As is clear from the matrix in Fig-

ure 2.7, there is not much correlation between the distances calculated from the Jukes-Cantor

procedure and the Fourier PS distance procedure for the full length genomes of SARS-CoV-2.

This indicates that the two distance metrics isolate different kinds of information from the

sequences. Intuitively, this is expected as the Jukes-Cantor results are determined using an

edit-distance like procedure, whereas the Fourier PS distances are computed using Euclidean

distance among the Fourier power spectra.

The Jukes-Cantor method aligns all supplied sequences, and then determines the num-

ber of mutations among all sequences to calculate pairwise distances [Jukes et al., 1969].

The mild correlation found between the DFTPS distance metric and the indel/indelblock

[Paradis and Schliep, 2019] methods indicates that these methods are retrieving at least

somewhat isomorphic distance information. Both the indel/indelblock methods take a con-

siderable amount of time to compute considering that they are post-MSA methods, but the

DFTPS method is fast. In future work we will assess the ability of the DFTPS method to

predict the distances that are computed by the indel/indelblock methods. The combination

of information from these different distances for a total distance calculation will also be

investigated. The procedures in Figure 2.7 are largely variations on the traditional substi-

tution approach to sequence distance calculations [Strimmer et al., 2009]. A listing of the

procedures compared in the correlation matrix is provided in Table A.1.

2.4.5. PS Filtering Results

In this section, the three filtering methods: MVF, AFL, and MVPCF are applied to a

sample of viral genomes of the SARS-CoV-2 virus captured from the collection curated

by the GISAID Initiative [Elbe and Buckland-Merrett, 2017]. The filters are first discussed

individually and results are displayed regarding the unique nature of the approaches. This

is followed by a comparison of the filter designs by two criteria.
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First, the correlation of distances produced by the filter power spectra to the distances

computed by the full power spectra is displayed as the filtered data size increases to the

power spectra size. Second, the accuracy of the 500 tree random forest for computing the

geographic location of origin for the data was assessed, and tabulated for display.

Figure 2.8: Variance Diagnostics for Power Spectra

First, MVF is applied to the set of PS for the virus genomes. Figure 2.8 shows several views

of the PS component variances for the data to assist with visualization of the filter. Figure

2.8 is intended to depict a few of the graphical displays of PS data that one may consider

when designing a MVF and selecting the η∗ value.

Figure 2.8 (a) is a scatter plot of the sample (N = 1, 397) variances PS Coefficient, η∗ may

be graphically visualized as a horizontal line, below which PS coefficients are discarded. A

histogram of PS coefficient variances in Figure 2.8 (b), allows graphical visualization of η∗ as

a vertical line, left of which the area highlighted provides the number of coefficients filtered.

Figure 2.8 (c) is a survival curve of coefficients by their variance, that is, the percentage of

coefficients with variance greater than or equal to the ordinate is displayed as the abscissa.

Figure 2.8 (d) displays the correlation of distances produced by the filtered and unfiltered
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PS for a range of coefficients filtered, symbolically q.

Figure 2.9: Some representative filters produced by the AFL method

A CNN for classifying the GISAID August SARS-CoV-2 PS by submission region for

eight general regions extracted from the headers is implemented and trained using the keras

package [Allaire and Chollet, 2021].

The network used 128 filters spanning the full PS on all 1,397 sequences. It was trained

for 20 epochs, using a batch size of 100. A graphical display of the learned filters is provided

in Figure 2.9. For the comparison section, the CNN trains different numbers of filters to

provide a valid filtered PS set for comparison to the other two methods.

In MVPCF there is an inherent restriction on the maximum size to which the sequence may

be reduced. Due to the nature of PCA, the number of components that can be produced

from a set of sequences is limited by the number of sequences N . This N is the maximum

number of PS coefficients that may be considered when producing the filter, so in the case

of these 1,397 viral genomes, we are limited to considerations of the PCA of the maximum

variance 1,397 PS coefficients. As stated before, when N is of greater length than m this is

not of concern; however, in this case N is 1,397, and m is much larger (m = 30, 563). Of
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course, once the PCA of the 1,397 maximal variance coefficients is performed, selection of

the first k components allows for an even greater reduction.

Figure 2.10: Scree Plot and Bi-Plot

Figure 2.10 provides visualization of the resulting PCA for the maximal variance 1,397

elements of the PS. The screeplot in Figure 2.10 (a) shows that the vast majority of the

variance of the set of maximal variance PS coefficients is contained in the first component.

Distances calculated from this single value are correlated with distances calculated from

the entire PS with ρ ≈ 0.88. The biplot in Figure 2.10 (b) shows that even the first two

coefficients provide a large separation of the data, notably three pronounced clusters appear.

MVPCF produces Euclidean distances which are most linearly related to the Euclidean

distances computed from the full PS for the same number of coefficients in the other two

methods, as per Figure 2.11. That said, recall that MVPCF has the ability to consider

a maximum of only N elements from the unfiltered PS (1,397 in this case). Therefore,

there must be some N∗ > N such that the MVF procedure will outperform the MVPCF’s

best possible correlation, which occurs at N . Perhaps one of the more surprising aspects

of Figure 2.11 is the low correlation from the CNN trained filters. These filters extract

information more relevant to differentiating the region of submission than correlating to the

full PS distances. Hence AFL is not the best choice of the three methods for correlating to

distances from the full PS. When it is desired that general information only is considered
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Figure 2.11: Filtering Methods Comparisons, by Correlation to Full PS Distances

in differentiating the sequences, the AFL procedure should use labels which indicate general

distance classes.

Table 2.5: Random Forest of 500 trees CV Accuracies for Region Classification from
Filtered PS (%)

Filtered PS Size MVF AFL MVPCF
50 24.833 45.239 21.759
100 24.917 47.740 38.874
250 31.003 45.528 48.245
500 28.706 48.244 48.532
1000 45.451 44.516 48.532

To compare filter efficiency at capturing specific important information from the PS,

five fold cross validation accuracy (in percent) of regional classification for the SARS-CoV-2

data with a random forest classifier (500 trees). Specifically, Africa has 35 sequences, East

Asia has 257, Europe has 678, Middle East has 153, North America has 42, Oceania has 38,

South America has 89, and West Asia has 105. are displayed in table 2.5. As we can see,

the AFL method extracts the best information for discerning the region of submission lower

sized filtered PS. This was expected because these labels were used in training the filters.

However, for larger filter sizes, the MVPCF method actually produces a higher accuracy.
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2.5. Conclusions

The results of this experiment show that there is some merit in using the sequence

summaries provided by the Fourier coefficients to determine a rough estimate of the region

of submission, and by extension, to other classes. The distance information captured by the

Fourier coefficients appears to be uncorrelated with the distance information captured by

the Jukes-Cantor procedure, and the K-mer frequency distances, indicating that the three

extract different (but valid) information from the sequences.

The Walsh coefficient simulation experiment also indicated that distances from Walsh to

Fourier coefficients for the genomic signals decrease to zero as the signal length increases.

Although genomes are not technically smoothly varying functions, it is still valid to model

them as such for the purpose of information extraction (at least in terms of the region

of submission). A statistical hypothesis test for determining whether the data come from

one group or multiple groups based on the Fourier coefficients is derived and discussed.

Relatively small subsets of the initial power spectra may be used to capture approximately

80% of the same orderings of the pair-wise sequence distances from the full power spectra.

Three filtering methods for determining the optimal coefficients were discussed. AFL can

learn which information is most important in the full PS for classifying a specific label, and

produce filters which generate values based on linear combinations of those elements.

This work is valuable as it displays the ability of the Fourier coefficients for summarizing

certain vital aspects of the information that is contained in the more lengthy sequence.

Further, a smaller subset of the Fourier coefficients that are produced by a single sequence

might be used to uniquely identify that sequence, and give accurate information about

the true distances between sequences. The classification analysis indicates that the Fourier

coefficients may be used to determine the general submitting region for a particular sequence

with reasonable accuracy, indicating the potential use for these techniques in determining

particular locations on potentially smaller scales than are undertaken in this work. The study

using the SCV2 genomes shows that the techniques here are applicable to viral genomes as
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well as those in animals and bacteria, and may be used to estimate the region specific genetic

drift of viruses especially during outbreak events like the SCV2 Pandemic of 2020.

There are a few motivating directions in this study, however one of the first avenues to be

addressed is the implementation and evaluation of the statistical hypothesis test derived in

this chapter. Due to the nature of the test, it may be used for any comparison of ensembles of

Fourier coefficients, not just genomic Fourier coefficients. As such, the test is general, and it

should be assessed by application on various different kinds of harmonic datasets. An overall

analysis of the robustness of the procedure to violations of the second-order stationarity

assumption could also shed some light on its utility for comparing genomic sequences.

In this work, primarily the power spectra of the Fourier series is examined; however, a

substantive amount of organizational material is contained also within the phase spectra.

As such, a comparison of the classification capabilities of the two components, and their

combined capabilities should be investigated. The result of a study of this kind might

indicate the preferential use of one part over another or mixed portions of the two under

special circumstances.

The adaptation of the approach for examining protein sequences may also be of interest,

as well as the ability of the approach to be used on other kinds of biological signals such as

methylation proportions, protein concentration levels, or other methods for the differentation

of organisms.
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Chapter 3

Analysis of Compositional Data in Antibody Glycosylation

Tuberculosis is a deadly infectious disease that is caused by the bacillus Mycobacterium

tuberculosis. Tuberculosis, as recently as 2020, is the leading cause of death due to an

infectious agent [Global Tuberculosis Report 2020, 2020]. The disease usually occurs in one

of two cases, active and latent. Latent tuberculosis patients do not actively spread the

infection to others, while active cases spread the bacillus via respiratory processes. The

antibodies produced in response to foreign pathogens play a role in the body’s defense against

disease. The creation and release of specific kinds of antibodies is a key component of the

human immune response to infectious diseases like tuberculosis [Seeling et al., 2017]

[Gudelj et al., 2018] [Gunn and Alter, 2016] [Lux and Nimmerjahn, 2011].

A major part of the vertebrate immune response is the usage of antibodies for the de-

tection and neutralization of infectious agents. Due to the enormous number of potential

pathogens, the form of the antibodies must be highly variable and allow for frequent mod-

ifications. Sometimes the antibodies are modified after being translated directly from the

genetic sequences. These kinds of mutations, known as somatic mutations [Tonegawa, 1983],

are a part of the adaptive immune response which allows for the wide variety of antibod-

ies in response to various kinds of pathogenic agents [Braden and Poljak, 1995]. Another

such modification is the attachment of small multi-sugar chains, called glycans, to different

positions on the antibody. Glycans are considered to come in different species depending

on the type of sugars that make up the chains [Alberts et al., 2002]. In addition to the

somatic mutations which contribute to the wide variety of potential antibodies, mechanisms

for post-translational modification are also present.

One specific class of antibody known as Immunoglobulin G (IgG), which is the most

common kind of antibody, is particularly amenable to study. the IgG antibody molecules
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Figure 3.1: Structure of IgG for reference

produced will target bacteria like Mycobaterium tuberculosis, which is the cause of tubercu-

losis. It is further known that the addition of oligosaccharides, known as glycans, in specific

locations along the IgG molecules influence the ability and affinity of the IgG molecule

to bind to the pathogen as well as the immune response cells necessary for detection and

elimination of the pathogen [Alberts et al., 2002].

The IgG molecule itself is composed of two light peptide chains and two heavy peptide

chains that are bonded together via disuflite bonding. This is typically depicted in a cartoon

form as a "Y"-shaped molecule, where the two light chains are attached along the split portion

of the "Y", and the heavy chains run the length of the entire body of the "Y", as depicted in

Figure 3.1. The antigen binding sites are at the ends of the two arms of the "Y" are generally

identical. The arms of the "Y" are labeled the Fab portion of the IgG molecule, and the tail

is known as the Fc region. The Fab domain of the IgG molecule binds to antigens, and the Fc

domain binds to the Fc receptors of human immune cells which allow for the proper handling

of detected antigens [Alberts et al., 2002]. IgG is characterized by the relative percentages of
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glycan species that are present on the Fab and Fc subdomains of the molecule. The different

glycosylation patterns of the antibodies provide information about the immune response of

the patient from which they were sampled [Alberts et al., 2002].

Scientists are able to quantify the relative proportions of glycan species in samples by

applying an experimental procedure known as capillary electrophoresis. In this approach,

the weight and electrical charge of the different glycan species causes them to propagate at

different rates through a capillary with an induced electrical field. By examining the relative

intensity of observations at the end of the capillary over time, a measure of the proportions of

each glycan in the sample is achieved [Alberts et al., 2002]. A quantification of the glycans

present in each of the subdomains of the IgG molecule may be made by inspecting a curve

of detections over unit time, and extracting the area under the intensity curve surrounding

known reported times [Mittermayr et al., 2013].

Linkages between post-translational modification and the outcome of disease types are

usually of interest to researchers. Specifically, the relative abundances of glycan species has

been shown to be useful in classifying tuberculous patients as either being “Latent”, “Active”,

or “Negative” [Lu et al., 2020]. A presence of diabetes melletus, a known comorbidity often

associated with the outcomes of tuberculosis, is also known for the subset of patients. A

partial least squares discriminant analysis (PLS-DA) model was used to demonstrate that

the relative proportions of these glycans can be used to differentiate the disease subtype of

tuberculosis patients [Lu et al., 2020].

In addition to glycan concentrations, other variables of interest are quantified using vari-

ous laboratory procedures that determine protein concentrations from peripheral blood sam-

ples. These are referred to as functional assays. The approaches discussed in this chapter

involve combining information from the relative glycan abundances with the additional pro-

tein information to provide accurate predictions of the disease type. Specifically, we seek

to predict the tuberculosis and diabetes status by investigating the glycan profiles and the

protein information. This chapter is organized as follows: first, a description of the Partial

Least Squares Regression and Discriminant Analysis approach (PLS-DA/R) is provided as
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a gold standard against which to compare the new classification model prediction accuracy.

This is immediately followed by the results of applying the PLS-DA procedure to a new set

of glycan data gathered on tuberculous patients. Two new models, a semi-parametric model

and a rank probability model, are used to differentiate disease subtypes are described. The

semi-parametric model is introduced and defined for general compositional data, followed by

application to the tuberculosis data. Next, the glycan rank probability model is introduced

and the results for the tuberculous data are shown. These two models can be thought of as

following the supervised learning model, where a training phase is followed by a classification

phase. It may be more accurate to consider these two phases the a model-building and a

prediction phase. Specifically, the relative IgG glycosylation proportions are investigated in

their ability to separate tuberculosis patients into active and latent sub-classifications. The

chapter closes with a few concluding remarks and future directions of this study.

3.1. Glycosylation on Antibodies in Disease Response

When electrophoresis is applied to the glycans attached to the antibody immunoglobulin

G (IgG), it might be applied across the entire IgG molecule (whole), or within one of the sub-

domains (Fab or Fc). In the case of the data discussed here, the whole samples are distinct

from the Fab and Fc ones. In other words, The Fc and Fab glycosylation values refer to

different sets of compositional data. Compositional data cannot be considered as independent

observations because the measurements are taken relative to one another. Proportions or

percentages that sum to a constant are one example of such data [Filzmoser et al., 2018a].

Occasionally, some of these compositional groups are missing or irretrievable for patients,

leading to a need for multiple imputation. The KNN Impute procedure was previously

used to impute missing compositions [Hron et al., 2010][Lu et al., 2020]. The KNN Impute

procedure selects the group of k neighbors nearest to that missing, based on a Euclidean

distance computed between all variables not missing, then imputes the median as the missing

value.
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Figure 3.2: Example Data-Collection Multiple-Composition Creation

3.2. Data Description

Figure 3.2 is a simplified pictoral display of the breakdown of the sampled materials prior

to electrophoresis and quantification. The high variability of the IgG molecules allows them

to detect many different kinds of antigens. One factor that contributes to the variability of

the IgG molecules is the wide variety of combinations of glycan species. For reference, a table

of the different glycan species that are detected in the capillary electrohoresis experiment is

given in Figure 3.3.

Unfortunately, certain species of glycans are indiscernible. In Figure 3.3, the species

which are labeled with two alphanumeric strings separated by an underscore are species

that cannot be resolved as a specific glycan, but are non-distinct. Specifically, "G1F_G1FB"

refers to a peak where G1F and G1FB glycans cannot be differentiated, "G1FB_G2" refers to

one where G1FB and G2 cannot be differentiated, "G1_G0FB", G1 and G0FB, and "G1_2"

G1 and G2. These are reported as is in the tuberculosis data.
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Figure 3.3: Types of Glycan Structures

This complication provides a very interesting question for future analysis. In compo-

sitional data, when there are vague class calls, what sorts of effects does this have on the

actual estimates? This concept is further expounded upon in the future directions section

of this chapter. In the present work, however, these categories were simply treated as their

own distinct category, as if they were their own unique glycan species.

In addition to the glycan composition data, several other functional assays were per-

formed, and the data provided for the Tuberculosis patients B.1. The non-glycan data listed

in provides valuable information for the differentiation of Tuberculosis cases. Demographic

information for the patients was also recorded, and is displayed in Table B.2. Due to the var-

ied nature of the data, one potential modeling approach is to use an empirically determined

distribution function to provide likelihood information for classification. Using a previously

discussed methodology for collection [Lu et al., 2016], and the Applied Biosystems Hitachi
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3500 xL Genetic analyzer for capillary electrophoresis [Berosik et al., 2010], the 2021 tuber-

culosis dataset [Lu et al., 2021] was captured for analysis.

3.3. Modeling Approaches

The remainder of this chapter deals with the modeling of the relative concentrations of

glycans and other proteins. First, a classical approach for the modeling of related matrices

of data, known as Partial Least Squares Discriminant Analysis (PLSDA), is provided, as

was done with similar data [Lu et al., 2020]. Results of applying this procedure to the new

antibody glycosylation data set are described.

Following this, a description of a semi-parametric likelihood model which treats glycan

information in terms of it’s compositional nature is described. The semi-parametric model

forms log- likelihood products from multinomial distributions for the compositional por-

tion of the dataset. The modeling capabilities are augmented with the observed empirical

distributions of the demographic and functional variables. The model is first introduced

theoretically, and then the results of an application of the model to prediction of disease

subtype are presented and described.

Lastly, an approach to modeling the transitional nature between glycans is presented

in the context of a Markov type model. This approach, named the glycan rank probability

classification model, is again developed and results of application to the present dataset using

only the glycan data. Some final considerations regarding a few other kinds of modeling

techniques are discussed, and the efficiency of each of the models suggested with regards to

the modeling of the IgG glycosylation dataset are offered in conclusion of this chapter. A

few directions of investigation are provided as future works. The appendix associated with

this chapter (Appendix B) contains a table of the noncompositional variables available in

Table B.1, displays their empirical distributions functions within each tuberculosis/diabetes

group in Figure B.1, and provides a table of the relevant demographic data from the set in

Table B.2.
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3.4. Partial Least Squares Modeling

As a reference point for comparison with the newly introduced models in this chapter, the

PLS-DA procedure is described. This is one of the primary procedures that was used to link

the glycan proportions with outcomes of interest [Lu et al., 2020] PLS-DA may be thought

of as Principal Components Analysis (PCA) in two data-blocks followed by regression of one

block of scores on another. As such, and particularly as noted in [Brereton and Lloyd, 2014],

PLS-DA is useful as a descriptive model for determining which factors are the most explana-

tory of the separation between the classes.

The partial least squares technique can be used to predict numerical outcome variables.

An extension of the regression procedure allows it to be used for the prediction of categorical

outcomes. Outcome categories are encoded as a series of variables which take on two values

then the partial least squares regression model is fit, then used to produce scores for each

possible category for any new data, the class is selected by discriminating on the scores

produced for each possible category [Geladi, 1988].

The method has been used extensively in the food sciences and other chemometric analy-

sis experiments. One instance of PLS-DA use in industry from the food sciences concerns the

review of sensory variables for food items. These variables often require the contracting of

judges, or other measurement techniques which are relatively more costly than measurement

of a few less expensive alternative proxy measures. Direct measures are quite expensive,

yet the resulting data is quite valuable in terms of product quality assessments. Instead

of paying to have these more expensive variables assessed directly, the estimation of these

variables from sets of variables that are cheaper to collect and more readily available is one

potential product of the PLS-DA model. This is also why a significant amount of the PLS-

DA regression and discriminant analysis occur in experiments where a subset of the variables

to be predicted are costly to determine. PLS-DA has also been recently shown to be useful

in particular genetic experiments as well [Strimmer et al., 2007]. This potential application

of the PLS-DA model presents another interesting usage question: can the PLS-DA model
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be implemented in such a way as to impute missing observations? In other words, building

the model with complete cases, and predicting the incomplete cases.

For more historical notes on the PLS-DA method, see the summary provided by Paul

Geldi [Geladi, 1988]. In this work, Partial least squares analysis is applied to the 2021

tuberculosis data set, with a specific emphasis on the discriminatory ability of the proce-

dure to determine the disease outcome categories. The approach of using the partial-least

squares methodology for modeling these kinds of tuberculosis datasets is inspired by a sim-

ilar tuberculosis dataset [Lu et al., 2020]. The previous work described the application of

PLS-DA on a subset of the glycosylation values which were first selected using the Least

Absolute Shrinkage and Selection Operator (LASSO) technique of Hastie and Tibshirani

[Tibshirani, 1996, Tibshirani, 1997]. The glycosylation values were then subjected to the

partial least squares regression technique primarily for visualization of the latent variables

(LVs) that were produced.

In PLS-DA, latent variables are similar to principal components [Hotelling, 1933] with

one extension; while simultaneously maximizing the the variance within the independent

variables selected, the LVs are selected such that they have the highest correlation with

a corresponding set of scores for the dependent variables. The PLS-DA procedure itself

has been widely applied to many different experimental settings since it was introduced by

Herman Wold in 1966 [Wold, 1966]. In the initial paper, PLS-DA was used as a post-hoc

procedure, where the variables included in the model were those which were first selected

using the LASSO approach. A later algorithm, implemented in MatLab, was a constituent

part of a chemometric analysis tool suite called Chemoface [Nunes et al., 2012]. As a part

of the reapplication of PLS-DA to a new tuberculosis dataset, the Matlab procedure was

updated, and implemented in an R package named PLSDANunes.

From a broad perspective, PLS-DA and PCA are very similar in that they use measured

variables to attempt to determine deeper trends that can be described by unmeasured vari-

ables. In a typical PCA, the principal components of the data are determined and displayed

as a series of loadings which may be thought of as the relative importance of each of the vari-
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ables in describing the underlying variables. After these loadings are determined through

the analysis, the typical process is to attempt to use some expert or domain knowledge

in conjunction with human interpretation to determine a meaningful underlying variable

constituted by each observed component. In the case of PCA the underlying variables are

mathematically orthogonal to one another; furthermore, they are ordered in terms of the

variable combinations that explain the most variability in the response. The key difference

when considering PLS-DA is that the variables, while still maximizing the variance, are also

chosen to produce the largest correlation with the response variables.

A few notes about PLS-DA overall, and about it’s particular application in this case that

should be made:

1. PLS-DA, like PCA, is most powerful when the underlying interdependent relationships

among the independent and dependent variables are linear. In other words, when the

relationship between the independent underlying variables and the dependent under-

lying variables is linear. This is made clear by the fact that the procedure overall

attempts to maximize linear measures of correlation between the two.

2. PLS-DA has had significant confounding associated with its usage in the past; to

the point that the original acronym has been widely accepted as having a dualistic

interpretation. That is, PLS itself can be interpreted as either Partial Least Squares

(which was the initial intention of Herman Wold - the inventor) and Projection to

Latent Space/structures, the arguably more descriptive of the two names. This is

unfortunate, while both meanings hold some value in the overall interpretation of the

technique, it complicates a complete understanding of the method to have two different

names floating around for the same procedure.

3. PLS-DA often produces latent variables which are not as powerful as principal compo-

nents determined from the same data[Ruiz-Perez et al., 2020].

4. PLS-DA is often applied as a simple supervised learning technique without great consid-

eration as to the modeling assumptions that are implied by its usage. These neglected
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assumptions sometimes create an interpretive black hole where the effects have little

or no practical meaning.

5. Using PLS-DA as a method for selection of variables in subsequent linear modeling

approaches suffers from the curse of multiple hypothesis testing, and this is rarely

corrected.

In regards to the initial tuberculosis dataset modeled using PLS-DA [Lu et al., 2020],

the glycans exhibit a compositional relationship, especially in that they have already been

normalized prior to modeling. There have been a few suggestions for manipulating compo-

sitional data into a form for which it is more appropriate for use with the PLS framework

[Wang et al., 2010]. These usually involve some transformation of the data such as the cen-

tered log-ratio transform [Aitchison, 1982].

Recall that PCA a multivariate procedure that can be applied to observations of mul-

tivariate data XXX. In this case XXX represents a matrix of n observations (rows) of p distinct

variables (columns). Let xij refer to the ith observation of the jth variable. Furthermore let

the row vector xi·xi·xi· refer to the ith row of the data matrix XXX and x·jx·jx·j refer to the jth column

of the data matrix XXX.

The decomposition of the data matrixXXX into its principal components can be expressed as

the problem of determining the singular value decomposition of the variance-covariance ma-

trix ofXXX. Assume that the data matrixXXX has already been normalized and scaled, such that∑n

i=1 xij
n

= µj = 0 and that
∑n

i=1(xij−µj)2

n−1 = σ2
j = 1. Note that the variance of the jth column of

the data matrix may be written simply as σ2
j =

∑n

i=1(xij−0)2

n−1 =
∑n

i=1 x
2
ij

n−1 . Furthermore, the co-

variance of the jth and kth variable can be expressed as σjk =
∑n

i=1(xij−0)(xik−0)
n

=
∑n

i=1 xijxik
n

.

This means that the variance-covariance matrix for the full data matrix XXX may be written

in matrix form as n−1XXXXXXT .

A complete formal derivation of PCA is provided by Anderson [?]. A derivation of PCA

is provided in this context as a key progenitor of the PLS procedure. The derivation amounts

to the enumeration of a few key realizations:

• For p-vector random variable XXX, assume E(XXX) = µXµXµX = 000, or transform it such that
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this is the case.

• An arbitrary linear combination of the random variables in XXX in terms of scalars

β1, β2, . . . , βp; that is, (β1X1 + β2X2 + · · · + βpXp), can be written for non-random

variable p-vector (column vector) βββ as βββTXXX.

• The expected value of the linear combination is E(βββTXXX) = βββTE(XXX) = 0.

• The square of the expected value of the linear combination βTXβTXβTX, E(βTXβTXβTX)2 is 0.

• The expected value of the square of the linear combination, E
(
(βTXβTXβTX)(βTXβTXβTX)T

)
, can

be written as E
(
βTXXTββTXXTββTXXTβ

)
.

• The variance of the linear combination, Var(βTX) is E
(
(βTXXTββTXXTββTXXTβ)

)
.

• Since µXµXµX = 000, let ΣΣΣ = E(XXT ) represent the variance-covariance matrix of the p-

random variables X1, X2, . . . , Xp.

• To ensure that the vector βββ is normalized constrain βββ such that βTββTββTβ = 1.

• performing constrained optimization in the usual way with a Lagrange multiplier λ,

while enforcing the above constraint, (βTββTββTβ = 1 ⇐⇒ βTββTββTβ−1 = 0), the maximizing βββ of

the variance under this constraint is the value of βββ, β̂ββ, such that φ = E
(
(βTXXTββTXXTββTXXTβ)

)
−

λ(βTββTββTβ − 1) is maximized.

• The vector of partial derivatives of the above expression for each βi are given by
∂φ
∂βi

∂φ
∂βi

∂φ
∂βi

= 2ΣΣΣβββ − 2λβββ.

• Setting each of the partial derivatives equal to zero produces the equations (ΣΣΣ−λIII)βββ =

000.

• From which it may be noted that to enforce βββTβββ = 1, the familiar characteristic

equation for the eigenvalues and eigenvectors of ΣΣΣ must hold, |ΣΣΣ− λIII| = 0.

• Therefore, it is the case that determining the eigenvectors of the variance covariance

matrix will provide the estimates of β with the maximum variance, and constrained

such that the inner product is one.
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In PLS, two data matrices, the independent/dependent, explanatory/response, or fac-

tor/class, denoted XXX of size n× k, and YYY of size n×m are related. PLS seeks to maximize

the variance of the components in both XXX andYYY . A third criteria is sought in PLS which is

conceptually not present in PCA, but is in Principal components regression. That is, a de-

termination of the linear relationship between the latent variables from the dependent data,

and the latent variables from the independent data [Wold, 1966]. In theory this amounts to

a determination of the principal components of the XXX and the YYY data, and linking the two

determined latent structures together in an ordinary least squares sense.

The discriminant analysis portion of PLS refers mostly to encoding a class membership

indicator matrix from the classification and using this as the dependent block of variables in

the analysis. The estimated latent variables can then be used to determine the associated

class membership for new data, or for the data used to train the model. The PLS method

cannot achieve perfect prediction in the set of data used to train it if fewer coefficients are

examined than data points A < n. A PLS and PCA type study of the tuberculosis data set

shows that this modeling procedure allows for some of the case differentiation of interest.

3.4.1. Data Study: 2021 Tuberculosis Data - PLSDA

The PLS procedure was applied to each of the different glycan composition sets for the

2021 tuberculosis dataset separately. It was also applied to the functional assay data, as

described in Table B.1, as well as the combination of the three glycan compositions and the

functional assay data.

The first outcome was a class membership matrix, which had five categories. The cate-

gories are active tuberculosis with and without diabetes, latent tuberculosis with and without

diabetes, and negative for tuberculosis and diabetes. The resulting data visualization from

this section is included in Appendix B.

Plots of the first two components of the model for a few different YYY class membership

blocks are shown. The first response classification considered was the patient’s combined
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tuberculosis and diabetes status, which had five groups as described above. The YYY matrix

contained five columns in this case. The resulting plots of the scores of the first and second

latent variables (LV) are shown in Figure B.2.

Recall that the LVs computed in an analysis with the PLS procedure depend on the class

data. This means that the LV plots shown for the five different groupings of variables in

Figure B.2 are different from the LV plots shown for only three groupings, such as tuberculosis

status alone which is shown in Figure B.3.

The figures in B.4 show how the data scores align on the first two LVs for the diabetes

classification data. These differences highlight why partial least squares might sometimes be

considered a supervised PCA, where the user supplies the labels of the data in addition to

the input during the training phase, and also selects the number of LVs to produce.

Principal components plots for the same data for the first two principal components

were also produced and colored according to the five group separation which is shown in

Figure B.5. The principal components do not depend on the classification data, and are

the same no matter which method is chosen; therefore, the legend for the plot contains

Tuberculosis/Diabetes class labels.

It is sometimes also helpful to examine a TSNE plot (see 2.3), which allows for display of

high dimensional data using two or three axes. Figure B.6 shows TSNE plots created using

different variable subsets, the plot shows a minimal degree of separation of the clusters in

this case.

PLS-DA can produce a model based on a user-defined latent space dimension. In prac-

tice this is accomplished by calculating only the first A coefficients as requested by the user.

This is possible as long as the residual matrix remains computationally distinguishable from

zero. Figure B.7 shows the accuracy in PLS-DA for differentiating the proper joint tuber-

culosis/diabetes when trained using different subsets of the variables. The accuracy within

each class varies depending on the number of latent variables used in the analysis, but in

every case the more components used the higher the accuracy.

In summary, the PLS-DA method can be used for multiclassification problems and help
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to determine linear combinations of variables that may best relate a set of observations to

their corresponding classes. It also allows for some degree of variable selection. In a similar

way to principal components analysis, a key part of the procedure remains in finding a way

to interpret the loadings produced by the model.

3.5. Semi-Parametric Modeling

From a natural point of view, the ratios of kinds of glycans in a sample at a given point

in time may be thought of as a set of samples taken from a fixed total n where each sample

fits into a single category.

Prior to the observation of all of the glycans in the sample we know that there is a fixed

number total n present in the sample, but until we observe the sample we do not know the

precise number. Likewise, the ratios of each species of glycan are unknown in the initial

sample until measured. One way to quantify the nature of this uncertainty is through the

use of the multinomial distribution.

Modeling the data using the multinomial distribution allows for computation of the like-

lihood of making specific observations under a specific allocation of the parameters. This

likelihood determines the probabilities of making observations of a specific species of gly-

can. There has been a significant history of analytical manipulations of the multinomial

distribution that allow for the application of the model to answer different questions. One

such useful application of the model is the development of large sample confidence inter-

vals [Quesenberry and Hurst, 1964][Goodman, 1965]. The confidence intervals themselves

are derived as the solutions to the following equation:

(p̂i − πi)2 = A · πi(1− πi)
N

The resultant form of the confidence intervals can be determined by applying Equation

3.1 to the data for the desired proportion interval. A 1− α large sample confidence interval
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for the proportions of a multinomial distribution is given by

(
χ2 + 2ni −

√
χ2(χ2 + 4ni(N − ni)/N)
2(N + χ2) ,

χ2 + 2ni +
√
χ2(χ2 + 4ni(N − ni)/N)
2(N + χ2)

)
(3.1)

Where i goes from 1 to k with k as the number of categories, ni is the number of observations

of the ith kind, N is the sum total of the ni values, and χ2 represents the 1−α
2 quantile of

the χ2 distribution with degrees of freedom k − 1. The modeling approach that is used

to describe the glycan experiments uses a multinomial likelihood based approach similar to

this method. The glycosylation data is captured by inspecting the areas under peaks on the

capillary electrophoresis curves that are associated with three different kinds of IgG samples:

1. Fab - The Fab sub-domain of the IgG molecule, this is the portion of the antibody

that binds to pathogenic invaders such as the bacillus Mycobacteria tuberculosis.

2. Fc - The Fc sub-domain of the IgG molecule which is separated from the Fab sub-

domain in this sample. The Fc subdomain is the portion of the IgG molecule which

binds to the lymphocytes.

3. whole - The entire IgG molecule is inspected in this sample, although the sample

from which these IgG are isolated is distinct from the samples where the Fc and Fab

sub-domains are isolated.

The quantification procedure for the glycan species attached to IgG molecules in terms

of the separation of the initial samples as displayed in Figure 3.2, illustrates that the whole

glycan species quantification occurs in a different subsample than the Fc and Fab quantifica-

tion. The different glycans quantified in each subdomain and across the entire IgG molecule

in subsamples from the tuberculosis patients are shown in Figure 3.3. The glycans listed

in Figure 3.3 contain 18 identifiable categories of glycans, three of which are not uniquely

identifiable. In future work, an assessment of the properties of datasets of this type, and

potential separation techniques for these categories will be explored, but in this work, these

indistinct categories are treated as separate entities from the glycan combinations that they

represent.
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Initially the dataset reported only the relative concentrations of the glycan data. That is,

they contained the respective area under a given peak in the CE curve scaled by the total of

all the peaks. The data in this form was not amenable to analysis using a parametric model

such as the multinomial, which is a key part of the semi-parametric modeling and prediction

framework which we suggest for data of this kind. As such the raw data was requested and

provided. The raw data included the actual tallied intensities of each of the peaks on the

CE curve.

With the raw data in hand, the ability to produce a parametric likelihood model with

this portion of the data became possible. The technique and approach described here in the

modeling of this dataset is general and can be applied in the case of any data consisting of

relative abundances, modeled as multinomial, and other numerical variables without known

distributions. These nonparametric data are most appropriately considered in terms of

estimators of their non-parametric densities, such as kernel density estimators which are

used in this case.

In the case of the 2021 tuberculosis dataset there were a total of three separate com-

positions, but there need not be a fixed number of compositions to apply the techniques

discussed here. In fact, a previous tuberculosis dataset looked not only at the composition

of glycans on IgG molecules in general, as well as their sub-domains, but also on two other

specific kinds of IgG which had been isolated, and formed a fourth and fifth composition in

the data [Lu et al., 2020].

3.5.1. Model Specification

In this section the theory and specification of the semi-parametric class-likelihood pre-

diction modeling procedure is discussed. First the parametric portion of the model, which

treats compositions among the dataset as observations from multinomial distributions, is

described. The log-likelihood equations for the model are derived and presented. Following

this the modeling procedure for the remainder of the variables (the non-parametric) part of
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the likelihood is introduced. The combination of the two parts (the parametric and non-

parametric) is discussed, and a general algorithm for training and prediction is provided.

Finally the results of applying the semi-parametric modeling procedure to the 2021 tuber-

culosis dataset are shown, and the confusion matrix of the model for predicting classes of

tuberculosis patients is discussed.

Suppose there are a total of K compositions of interest, the term ‘composition’, here,

refers to a collection of variables (n1, n2, . . . , nJ) such that the sum-total of the variables

yields a value representative of the magnitude of all observations [Filzmoser et al., 2018a].

For simplicity of argument, consider a bag of multi-colored marbles [Walley, 1996]. The

total number of marbles is N . Suppose further that there are J unique colors represented

among those contained in the bag, and that for j ∈ {1, 2, . . . , J}, the value nj represents

the number of marbles in the bag of that specific color, such that N = ∑J
j=1 nj. In the

same way, the different subdomains considered (Fc, Fab) and the full molecule IgG may be

considered as different types of bags, each of which contain the same kinds of glycans but in

different expected ratios. In the case of the 2021 tuberculosis dataset, K = 3, and the total

number of different glycans within each of the compositions, J1 = J2 = J3 = 21. Suppose

that there are a total of p distinct classes into which data may be placed. For example,

there are three different designations of tuberculosis status: active, latent, and negative, and

there are two designations of diabetes status: diabetic and non-diabetic. All of the negative

tuberculosis patients were non-diabetic, which makes for five distinctions when considering

the combination of the comorbidities. In general we can denote the total p classes using the

variable designations c1, c2, . . . cp, and the random variable C for representing the unknown

class of a sample.

The multinomial distribution function has a vector parameter that indicates the expected

proportion of each kind of outcome of size Jk. The number of possible outcomes for com-

position k are expressed as Jk. In the case of the IgG glycan compositions, there are 21

distinct peaks that are examined. Each of these may be thought of as a distinct outcome. If

of all the glycans in a particular composition, one is chosen at random, the probability it is
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of a certain species for all of the species possible is the Jk-vector parameter of the associated

composition’s multinomial distribution.

For each of the Jk different possible outcomes, let the associated proportion parameters for

a particular class j within the kth composition be denoted by πj(k)(C). That is, for outcome j

of composition k for class C. The complete vector of all parameters for the multinomial dis-

tribution can then be represented as the vector π(k)(C)π(k)(C)π(k)(C) = [π1(k)(C), π2(k)(C), . . . , πJk(k)(C)]T .

The multinomial distribution is based on observations of count data distributed into

the Jk categories. The vector random variable sequence XiXiXi represents a random sample of

observations of the composition. For a single observation, XXX, the multivariate probability

mass function for a specific outcome class C might be expressed as in Equation 3.2.

P (XXX = xxx;π(k)(C)π(k)(C)π(k)(C)) =
∑Jk
j=1 xj∏Jk
j=1 xj!

Jk∏
j=1

πj(k)(C)xj (3.2)

Clearly the only part of Equation 3.2 that depends on the class is the vector parameter

π(k)(C)π(k)(C)π(k)(C). The likelihood of the multinomial distribution can be considered as a function of

the vector parameter, where the data are fixed values. By considering Equation 3.2 the

likelihood function of a series of N observations asXiXiXi can be represented as in Equation 3.3.

L(π(k)(C)π(k)(C)π(k)(C))|X1X1X1,X2X2X2, . . . ,XNXNXN) =
N∏
i=1

P (XiXiXi = xixixi;π(k)(C)π(k)(C)π(k)(C)) =

N∏
i=1

∑Jk
j=1 xij∏Jk
j=1 xij!

Jk∏
j=1

πj(k)(C)xij


(3.3)

To determine the maximum likelihood estimators of the parameters within each class, the

log of Equation 3.3 is easier to work with as it allows for smaller values in the resultant

calculations. The log is also a monotonic transform, meaning that the ordering is preserved,

and hence optimizing the log of a function results in the optimizing the function as well.

The maximum likelihood estimators of the proportion parameters within class C when given

a set of samples from a composition’s multinomial distribution can be derived from the
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log-likelihood function which is given in Equation 3.4.

`(π(k)(C)π(k)(C)π(k)(C)|X1X1X1,X2X2X2, . . . ,XNXNXN) =
N∑
i=1

log
 Jk∑
j=1

xij

− Jk∑
j=1

log (xij!) +
Jk∑
j=1

xij log
(
πj(k)(C)

) (3.4)

Determining the optimal parameter from the log-likelihood in Equation 3.4, by taking

the derivative and solving for the root, while simultaneously imposing the linear constraint

that ∑Jk
j=1 πj(k)(C) = 1 indicates that maximum likelihood estimators (MLEs) within a given

class C may be represented as in Equation 3.5.

̂πj(k)(C) =
∑N
i=1 xij∑N

i=1
∑Jk
l=1 xil

(3.5)

The MLEs within each of the p total classes are determined from Equation 3.5 applied within

each class as

π̂(k)(c1)π(k)(c1)π(k)(c1), π̂(k)(c2)π(k)(c2)π(k)(c2), . . . , π̂(k)(cp)π(k)(cp)π(k)(cp). The determination of these parameter vectors, one for each of

the p classes, constitutes the ‘learning’ or model estimation portion of the prediction method

for the parametric part of the compositions.

The prediction consists of computing the log likelihood in Equation 3.4 for each of the

estimated MLEs, and determining the highest value. That is for new compositional data

x̃̃x̃x, compute P (c̃ = c1) = P (XXX = x̃̃x̃x;π(k)(c1)π(k)(c1)π(k)(c1)), P (c̃ = c2) = P (XXX = x̃̃x̃x;π(k)(c2)π(k)(c2)π(k)(c2)), . . . , P (c̃ =

cp) = P (XXX = x̃̃x̃x;π(k)(cp)π(k)(cp)π(k)(cp)), and determine the predicted class c̃ as c such that P (c̃ = c) =

max (P (c̃ = ct) ∀ t ∈ 1, 2, . . . , p).

When there are multiple compositions in the data, as is the case with the 2021 tuberculosis

dataset, (recall K = 3 in this case, Fab, Fc, and whole), the logs of these probabilities are

computed for each composition separately, and added together prior to prediction. That is,

for new multi-compositional data x̃̃x̃x = [x̃(1)̃x(1)̃x(1), x̃(2)̃x(2)̃x(2), . . . , x̃(K )̃x(K )̃x(K)] the class log-probabilities for each

of the p classes are computed as in Equation 3.6.
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log(Ppara(c̃ = ct)) ∝ log(P (X = x̃(1)̃x(1)̃x(1);π(1)(ct)π(1)(ct)π(1)(ct)))+

log(P (X = x̃(2)̃x(2)̃x(2);π(2)(ct)π(2)(ct)π(2)(ct))) + · · ·+

log(P (X = x̃(K )̃x(K )̃x(K);π(K)(ct)π(K)(ct)π(K)(ct)))

(3.6)

The most likely class is then determined by selecting the class associated with the maxi-

mum across all t, that is ∀t ∈ {1, 2, . . . , p}.

One of the key assumptions of the modeling approach is that the compositions are ac-

tually independent from one another; hence, the probabilities might be directly multiplied

without considering the joint distribution. In future work, more consideration of the ef-

fect of dependence among the compositions will be investigated. For the tuberculosis data,

the independent composition assumption for this model is likely a good assumption, as the

samples from which the compositions are computed are actually unique subsamples.

The 2021 tuberculosis dataset contains an additional 19 variables, listed in Table B.1.

The probability distributions behind these variables are unlikely to be a standard parametric

form, such as a Normal distribution. In lieu of imposing an underlying parametric distribu-

tion on the population from which the data are drawn, a nonparametric method of estimating

the densities for the remaining variables may be used to determine the most likely class of

the data.

The density for the non-compositional part of the data can be determined in a variety

of ways. One such way is to smooth the histogram with a particular kernel. This approach

is known as kernel density estimation, and the resulting smooth function is called a kernel

density estimate (KDE) of the distribution for a particular variable [Wasserman, 2006]. The

general form of the kernel density estimator is given in Equation 3.7.

f̂n(z) = 1
q

q∑
i=1

1
h
R
(
z − zi
h

)
(3.7)

Observed outcomes are denoted zi, and the total number of distinct outcomes is given

by q. The kernel at location zi is given by R(·), and the bandwidth, which determines the
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interval length along the domain of possible outcomes to consider is h. Several different KDEs

(one for each of the p total classes) must be constructed for each variable. Determinations

of the class-likelihoods for each new observation z∗ can be determined by choosing the value

along the x-axis at which the density estimate is maximized.

The density estimate is determined for all variables in each class separately. This model

does not consider the non-parametric joint distributions of the data within each class when

making classifications. It is left to future work to perform estimation of the joint distributions

of the non-parametric data in the model.

Let f̂nl(c)(z) indicate the KDE of the lth non-parametric variable within class c. The

‘training’ or model-building phase of the non-parametric portion consists of determining the

KDE f̂nl(c)(z) within each of the separate p classes, for each of the l ∈ {1, 2, . . . , L} total

variables.

Once these kernel density estimators have been determined, and new data

x̃̃x̃x = [x̃1.x̃2, . . . , x̃L]T is available, the class may be predicted by viewing the non-parametric

densities within each class as likelihoods. This prediction is independent from that which

uses the compositional data, by considering class log-likelihoods as described in Equation

3.8.

log (Pnonpara(c̃ = c)) ∝
L∑
l=1

log
(
f̂nl(c)(x̃l)

)
(3.8)

The predicted class for the data can then be found by determining the ct for t ∈ {1, 2, . . . , p}

such that log(Pnonpara(c̃ = c)) is at its maximum.

The parametric and nonparametric prediction can be combined into a unified semipara-

metric class prediction. However, the magnitudes of the parametric and the non-parametric

log-likelihoods may be very different depending on the nature of the data. As such, it be-

comes necessary to combine the data in a specific way so that one part of the model does

not overshadow the other. One way to combine the information from the parametric and

non-parametric procedures is to reweight the log-likelihoods such that the contribution to

the overall prediction is approximately equal from both portions.
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The class log-likelihoods are scaled by the sum of class log-likelihoods in the parametric

and non-parametric data separately. Due to the fact that these are always negative, when

scaled by their total the maximum becomes the minimum. Therefore, when taking the

scaled log-likelihoods from the parametric and the non-parametric portions and adding them

together, the classification is made by finding the class which minimizes the sum of the two

scaled log-likelihoods. The scores for class c from the parametric and nonparametric parts

are represented as S∗para(c) and S∗nonpara(c), and the combined score K∗(c), the predicted class

c is represented by ĉ. The scaling, combination, and prediction procedure is described in

Equation 3.9

S∗para(c) = log(Ppara(c̃ = c))∑p
t=1 log(Ppara(c̃ = ct))

K∗nonpara(c) = log(Pnonpara(c̃ = c))∑p
t=1 log(Pnonpara(c̃ = ct))

S∗(c) = S∗para(c) + S∗nonpara(c)

ĉ = {c|S∗(c) = min (S∗(ct) ∀ t ∈ {1, 2, . . . , p}})

(3.9)

The complete semi-parametric prediction procedure consists of getting the scores for each

of the classes in the parametric and non-parametric models, scaling within each, combining

the scores, and determining the minimum across all the classes for the prediction. The

training procedures consists of obtaining a MLE for the vector-proportion parameters for

each class separately for each of the composition variables and KDE of the nonparametric

densities of each class separately. These two components together form a scoring function

for each class. The class which produces the minimum score is the most likely class, and

serves as the prediction of the semi-parametric model.

The kernel used in KDE of the nonparametric distributions is the Gaussian distribution,

but any sufficiently smooth kernel would serve.

3.5.2. Data Study: 2021 Tuberculosis Data - Semiparametric
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In the tuberculosis dataset, there are three compositions. Each involves the same 21

glycan species shown in Figure 3.3. In addition to these 63 (21 × 3), there are 19 numerical

variables associated with each patient (described in Table B.1). The three compositions are

modeled using the parametric approach. The multinomial likelihood is used to determine

the most likely class. The 19 additional variables are modeled using the non-parametric

approach, KDEs are computed for each within each class. In this dataset, there are five

outcome classes:

1. Active tuberculosis with diabetes (18 patients),

2. Active tuberculosis without diabetes (25),

3. latent tubereculosis with diabetes (7),

4. latent tuberculosis without diabetes (18), and

5. negative for tuberculosis and diabetes (15).

For analyzing the 2021 dataset in addition to other datasets of a similar nature, a general

code-base was developed in R that consists of utility functions for the training and prediction

procedures of the semi-parametric approach.

For the 83 patients in the full 2021 tuberculosis dataset, the multinomial likelihood

functions were trained. The computation took place locally on an x64 architecture Intel Core

i7-8550U CPU (1.8 GHz) with 16 GB of RAM, running a 64-bit operating system (Microsoft

Windows 10 Enterprise), and took approximately 101 ms. The kernel density estimation of

the nonparametric densities for the 19 variables within each of the five classes took around

29 ms with the same system. Unless otherwise indicated, all computations were programmed

and evaluated using the R programming language, version 4.1.0. [R Core Team, 2021]

Prediction takes longer than training for this model, as the score functions provided in

the training procedures can be computationally expensive. Data repackaging for prediction

is also necessary, and accounted for in the prediction times reported here. For the entire

dataset, the non-parametric prediction routine takes 53.372 seconds to compute scores for
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each of the classes for 83 patients, while the parametric prediction routine takes only 28.29

seconds.

In a first pass approach, the entire dataset is used to train the model, and the model

is then assessed on the entire dataset to determine a base-line effectiveness of the model at

utilizing information from the data.

Table 3.1: Confusion Matrix for Semi-Parametric Model (All Data)

True Class Predicted Class

Nonparametric Score Only

ATB/DM ATB/ND LTB/DM LTB/ND Neg/ND
ATB/DM 15 1 0 2 0
ATB/ND 2 17 2 3 1
LTB/DM 0 0 6 0 1
LTB/ND 1 0 1 13 3
Neg/ND 0 0 0 1 14

Parametric (Multinomial) Score Only

ATB/DM 16 1 1 0 0
ATB/ND 10 7 1 5 2
LTB/DM 3 0 1 3 0
LTB/ND 0 5 1 11 1
Neg/ND 1 2 2 2 8

Combined Semiparametric Score

ATB/DM 16 1 0 0 1
ATB/ND 8 12 1 3 0
LTB/DM 0 0 4 3 0
LTB/ND 0 0 1 14 2
Neg/ND 0 1 0 1 12

Table 3.1 displays the confusion matrix when the semi-parametric model is trained using

all of the data, and then used to predict the class of each of the observations. Note that

when there is data missing, there is no contribution to the score for the respective model.

The 83 patients in the 2021 tuberculosis dataset have both their tuberculosis and diabetes

disease classes determined in the first prediction model. Due to the fact that there are five

possible classifications, if the class were assigned by random guessing, then the expected

accuracy would be around one fifth or 20% if the set were balanced. The accuracy of the

semi-parametric combination, parametric, and non-parametric models are 72.5 %, 51.2 %,

and 78.3 % respectively.

This analysis is trained using the initial classifications of the data. If this information

was stored in the model directly during the training the classification rate would be 100 %.

The semi-parametric model seeks to build a model which includes the maximum amount
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Table 3.2: Confusion Matrix for Semi-Parametric Model (Leave One Out CV)

True Class Predicted Class

Nonparametric Score Only

ATB/DM ATB/ND LTB/DM LTB/ND Neg/ND
ATB/DM 7 9 0 2 0
ATB/ND 7 12 2 3 1
LTB/DM 0 3 0 2 2
LTB/ND 1 4 1 9 3
Neg/ND 1 0 3 5 6

Parametric (Multinomial) Score Only

ATB/DM 15 2 1 0 0
ATB/ND 10 4 1 5 5
LTB/DM 3 0 0 3 1
LTB/ND 0 5 2 10 1
Neg/ND 1 5 2 2 5

Combined Semiparametric Score

ATB/DM 14 3 0 0 1
ATB/ND 11 8 1 3 1
LTB/DM 2 2 0 3 2
LTB/ND 0 3 3 9 2
Neg/ND 1 2 2 4 5

of information without over-constraining the model. To assess the ability of the model to

predict the disease class, an additional validation procedure is applied. Leave-one-out cross

validation, a jack-knife approach where statistics are computed from the entire dataset with

the exception of a single hold out, is applied to the dataset in the same manner, and the

results are displayed in Table 3.2. The accuracy using the leave-one-out cross validation

approach is 41%, for parametric and nonparametric scores and 43% for the combined score.

This indicates a potential gain in predictive capability when the scores are combined.

In addition to predictions that are made on the five class split of the dataset, predictions

of only the tuberculosis class, and only the diabetes class were also made using the same

procedure. The results of these classifications using the entire dataset are given in Tables

B.3 and B.5.

The accuracy when considering only the tuberculosis status in training and in prediction

for the parametric, nonparametric, and combined semi-parametric scores using the entire

dataset for the training were 65%, 80%, and 84% respectively. In this case, random guessing

for the prediction of the tuberculosis status would result in an expected accuracy of 33%,

indicating that a considerable amount of valuable information can be learned and utilized

by the semi-parametric modeling and scoring approach for prediction. When the semi-

parametric approach is validated using a leave-one-out approach the resulting confusion
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matrix is as in Table B.4.

The accuracy computed from the leave-one-out cross validation of the semi-parametric

model for classification of the tuberculosis status only were 57% (parametric), 58% (non-

parametric), and 65% (combined). In this case, there were three cases where the prediction

scores were equivalent, and these are removed from the confusion matrix, hence there are

only 80 cases for analysis in the bottom portion of Table B.4.

In addition to classification of the tuberculosis group status, the diabetes status of the

patients (either diabetes present or not) is also classified using the semi-parametric modeling

approach, when the model is trained using all of the data, the results are as given in Table B.5.

The accuracy of the parametric, nonparametric, and semi-parametric models in classifying

diabetes status when trained using the entire dataset were 72%, 84%, and 79% respectively.

The results of the leave-one-out cross validation of the model for diabetes status are in Table

B.6.

The accuracy for the nonparametric, parametric, and semi-parametric models for predic-

tion of diabetes status among the leave-one-out cross validation were 62%, 67%, and 68%

respectively. For a visual representation of the differences among the five-classes in the non-

parametric data, the kernel density estimators for each of the 19 variables are displayed in

Figure B.1.

From the prediction results, the effectiveness of the pieces of the semiparametric model in

the 2021 tuberculosis dataset at determining the disease class for tuberculosis and diabetes

can be seen. The nonparametric approach tended to provide better information about the

disease outcome classes, which indicates that the nonparametrically modeled variables in this

case provided a stronger partitioning of the data into these groups than the parametrically

modeled ones did. This is likely not to be a generally true statement for all such data

sets. It is also clear that in several cases the combination of the class-likelihoods from the

parametric and the nonparametric models tends to increase the overall accuracy of the model

in prediction, indicating utility in combining the two scores for prediction.
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3.6. Glycan rank probability method

Another nonparametric model is suggested here for investigating the composition data.

This model is based on the probabilities that the relative abundances of glycans will have a

specific ordering (for all pairs) within a given class. In the "bag of marbles" scenario, suppose

that two individuals (A and B) have multiple bags of marbles. Given a randomly selected

bag of marbles, the colors of each marble are quantified and compared to show there are

more reds (nr) than greens (ng), and more greens than blues (nb) in the bag. Now suppose

A and B both provide three bags of marbles, and during the quantification process of each of

these, it is found that the proportions from the unknown bag (nr > ng & ng > nb) are much

more consistent with the patterns exhibited by marble-bags belonging to B. A determination

therefore is made to designate the predicted owner of the unknown bag as B.

In the 2021 tuberculosis dataset [Lu et al., 2021], the glycan species pair ranks can be

modeled as belonging to a particular disease outcome class. This approach is introduced to

attempt to make use of information that might be able to serve as a proxy for the genetic

differences of the patients related to glycan species converting enzymes. Biologically, the

presence or absence of enzymes that convert one glycan species into another one could

account for the variation in the relative rankings of pairs of species. These differences may

also account for the variations in the disease responses. If so, probability models based on

the glycan ranks within each class may allow for the early differentiation of disease type

outcomes.

3.6.1. Link of glycan rank probability to enzyme concentration

The chemical model discussed briefly in this section describes a potential biologically driven

model based on the efficiency to create specific enzymes. The Michaelis Menten equations

[Michaelis and Menten, 1913, Johnson and Goody, 2011] are a set of differential equations

used in biochemistry that relate the concentrations of products and the reactants in enzy-
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matic relations. One manner of making determinations on disease subtypes from relative

abundances of glycans involves the estimation of enzyme concentrations via observed sub-

strate and resultant compound concentrations. In an enzymatic chemical reaction such as

those applied in the conversion of one species of glycan to another, an enzyme reacts with

a substrate to form an intermediary enzyme-substrate complex. This creates the product,

and regenerates the initial enzyme, which is not consumed during the reaction. Symbolically

this kind of chemical reaction may be displayed as shown in Equation 3.10.

E + S 
 ES → E + P (3.10)

In the Michaelis Menten equations, the concentrations of the various chemical components

are denoted using square brackets, for instance, [x] is the concentration of x in a solution.

Furthermore the rate of transition from a solution containing the separate enzyme E and

substrate S into a solution containing only the enzyme substrate complex ES is denoted

as kf and the rate of transition back is kr (f for forward, and r for reverse). The rate of

transition from the enzyme substrate complex into the enzyme and the product P is known

as the catalytic rate and is denoted by kcat.

The rates involved in Formula 3.10 can be described via a set of related rates equations.

These are derived from Cato Guldberg and Peter Waage’s law of mass action which was

initially conceived of and proposed in the 1860’s [Waage and Guldberg, 1864]. In essence,

the law of mass action refers to the kinetic action of nearby masses, and specifically refers

to the rate of reactions of molecules in a chemical reaction. By maintaining the ratio of

the product to the reactant molecules as constant, the rate of reaction can be shown to be

directly proportional to the product of the concentrations of the reactants.

The main takeaway from this discussion is that the concentrations of substrate and

product (S and P) can be related to the concentration of a catalyzing enzyme. Therefore,

one relevant set of observations that may be useful in discriminating between classes that are

suspected of having different levels of enzymes available is the observation of the direction

of an imbalance in each reasonably related pairing of the glycan species.
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3.6.2. Model Specification

In a similar manner to the maximum likelihood classification method discussed in the

previous section, the rank probability method also predicts the most likely class. This time,

instead of using parametric likelihoods over all of the composition variables simultaneously,

this approach places a Bernoulli distribution on each possible pair of transitioning elements

that can transition into each other by a single addition or removal of a single simple sugar.

In this model, three internal relationship graphs are built during training and used for

prediction/classification. Since there were three compositions where these relative concen-

trations are reported, three 21 × 21 element matrices (441-elements, only 116 of which made

biological sense) are estimated within each class. These provided point estimates of the prob-

ability that one glycan would occur in greater concentration to another within each of the

possible outcome categories. In this analysis only the five category (tuberculosis/diabetes)

classification was examined. To compute the glycan rank probabilities within each class a

simple algorithm was applied.

1. Training Phase: n observations and associated class labels are provided.

(a) For each of the classes,

i. For each composition,

A. For each composition element, compute and save the vector of indicators

indicating whether this composition element is more abundant than each

of the others.

ii. Compute the average in each class-composition matrix (to compute and store

the proportion estimate per class).

(b) Return set of rank ordering probability estimates for each class and composition.

2. Prediction Phase:

(a) For each of the classes,

i. For each composition,
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A. Determine the product of the probability estimates from each class for

the observed glycan concentration level (where each of the possible com-

binations contributes either the rank probability [if A is greater than B]

or one minus the rank probability [if B is greater than or equal to A]).

B. Predict most likely class, record this, and return it along with the prob-

ability (for combination with other composition variables).

ii. Compute the most likely class after multiplying all within class composition

probabilities together.

iii. Return probabilities and predictions.

3.6.3. Model Application Results

The results of applying this algorithm to the IgG glycan data from the 2021 tuberculosis

dataset, training with all of the data, and validating on the same data, provides a baseline

accuracy for the model. The results of five category classification are in Table 3.3. Using

only the whole, Fab, and Fc glycans gave average accuracy of 57.3, 58.2, and 58.6, and the

combined accuracy was 65.3%.

Classification when using only the five most variable composition rank orderings in terms

of the probabilities within each class is also performed. the results of this five category

classification after training with the full dataset are given in Table 3.4.

The accuracy for each of the four different models built on the various components when

using only the most highly varying five transitions across the five possible classes were whole

- 50%, Fab - 43%, Fc - 48%, and combined 55%.

The results of applying the glycan rank probability model is buffeted by missing data

for some glycan species. The model is further plagued by left censoring (where detection

intensities fall below the limit of resolution of the machine). In spite of these pitfalls, the

glycan rank probability model performed a decent classification into the five groups when

data was available. The results of these classifications were comparable to the results of the
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Table 3.3: Confusion Matrix for Glycan-Rank probabilities (full data)

True Class Predicted Class

whole Glycan Only

ATB/DM ATB/ND LTB/DM LTB/ND Neg/ND
ATB/DM 14 1 0 0 3
ATB/ND 4 5 1 3 6
LTB/DM 1 0 4 0 2
LTB/ND 0 3 3 8 3
Neg/ND 1 0 0 0 12

Fab Glycan Only

ATB/DM 12 3 0 0 1
ATB/ND 8 7 0 3 6
LTB/DM 0 0 5 0 2
LTB/ND 1 0 4 7 4
Neg/ND 2 1 1 2 8

Fc Glycan Only

ATB/DM 12 1 1 0 2
ATB/ND 6 6 2 5 4
LTB/DM 0 0 4 1 1
LTB/ND 0 0 5 11 1
Neg/ND 2 1 0 2 1

All Glycan compositions

ATB/DM 14 1 0 0 1
ATB/ND 6 10 0 4 3
LTB/DM 0 0 5 1 1
LTB/ND 1 0 1 12 2
Neg/ND 2 0 1 2 8

semi-parametric model, which indicated that the information carried in the glycan propor-

tions is usable for classification, although the results of application of the glycan probability

model were validated using the same data that the proportions were captured from, while

the semi-parametric model was validated using leave-one out cross validation.
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Table 3.4: Confusion Matrix for Glycan-Rank probabilities (high variance five only)

True Class Predicted Class

whole Glycan Only

ATB/ND ATB/DM LTB/ND LTB/DM Neg/ND
ATB/ND 1 7 9 1 1
ATB/DM 0 14 1 1 2
LTB/ND 0 2 10 2 3
LTB/DM 0 4 1 1 1
Neg/ND 0 0 1 1 11

Fab Glycan Only

ATB/ND 1 11 8 4 0
ATB/DM 0 11 0 5 0
LTB/ND 1 1 12 2 0
LTB/DM 0 0 2 5 0
Neg/ND 1 2 8 3 0

Fc Glycan Only

ATB/ND 9 6 6 1 1
ATB/DM 3 12 1 1 0
LTB/ND 4 0 12 1 0
LTB/DM 2 1 3 1 0
Neg/ND 3 5 2 0 3

All Glycan compositions

ATB/ND 2 6 6 1 3
ATB/DM 1 12 0 2 1
LTB/ND 2 0 12 2 0
LTB/DM 0 1 2 4 0
Neg/ND 0 1 2 1 8

3.7. Conclusions

In this chapter, several approaches for differentiating disease outcome classes for combined

compositional and non-compositional data are suggested. The discussed statistical likelihood

procedures are applied to a 2021 tuberculosis dataset [Lu et al., 2021]. The set contained the

quantification from CE of glycan species on IgG molecules across three specific subdomain

samples for tuberculosis patients. The tuberculosis patients in the dataset were divided

into active, latent, and negative tuberculosis subtypes, and their diabetes statuses were also

reported. In this dataset, all 15 patients who were negative for tuberculosis were also negative

for diabetes; therefore, there were a total of five disease categories for the classification

procedures.

First the results of applying a classical method known as PLS-DA to the problem are

supplied in the form of visualization and the overall model accuracy when applied with

varying numbers of latent variables. The procedure itself performs the classification decently,

and appears to show separation in the clustering of the data in visualization. Of the three
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methods presented, this approach offers the key ability to visualize the data by reducing the

dimension. This procedure also is an approach which has seen varied and widespread usage

in a variety of applications.

Secondly a semi-parametric model using the multinomial distribution to describe the

glycan species abundance within a sample, and kernel density estimators for the remaining

variables was introduced. This approach combines two powerful techniques for estimating

the likelihood of a particular observation given a known class outcome for disease. On

application of this technique within the tuberculosis dataset it was found that the parametric

and nonparametric portions of the data tended to produce different classifications when

regarded on their own, which separately were less accurate than when combined. In this

work the combination of the parametric and the nonparametric scores is undertaken in a

manner which assigns equal weight to the information provided by either portion of the

data. It is likely the case that weighting should be applied in a nonbalanced way. As

a future direction of study, the application of weights to the scores which will allow for

different importance being placed on the parametric and the nonparametric portions will be

investigated.

Finally a model that attempts to use the glycan species concentration pair rankings in

the dataset as a proxy to the concentrations of special enzymes which may be closely related

to the disease process is discussed. The upside to this approach is that it is tied to biological

reasoning for differential disease process outcomes. A large downside to the approach is

that the 19 non-compositional variables in the dataset are not utilized in the predictive

procedure. Indeed, a manner in which to include these observations in the modeling and

prediction routines is left to future work in this project.

Overall, the approaches discussed here are useful statistical techniques for differentiating

tuberculosis and diabetes subtypes in diseases. The approaches are also more general than

the application which is provided here. In some cases it is possible that these approaches

might be more powerful during prediction. Another slight limitation of the studies in this

section is the data-set size for the 2021 tuberculosis data. Although there are 83 patients
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available in the dataset, there are a total of 82 numerical variables of interest, and those are

just the ones mentioned here. This very wide dataset inherently has some restrictions in its

use; however, it is a great example of a medical dataset such that might be available to a

doctor when making a decision on the treatment regimen of a tuberculosis patient.

3.7.1. Future Directions

There have been several future directions mentioned in the body of this chapter. For

the PLS-DA procedure several simulation studies can be performed to determine attributes

of the approach, as well as its robustness to violations of underlying assumptions of linear

relationships. Another direction that is suggested in this work is the application of the PLS

approach to impute missing values in the dataset. For example, if the XXX variable block was

considered to be all of the observations for which there is complete data, and the YYY block

to be the block with some missing observations, then the model can be trained using the

observations where all XXX, and YYY variables are available, and the missing values of YYY may be

imputed by their predicted values from the PLS modeling equations.

In the second part of this chapter the semi-parametric model is introduced and discussed.

In extending this model, a thorough analysis of the combination of scores from the two por-

tions should be investigated. In other words, simulation studies investigating different meth-

ods for combining the information from the two portions in a composition/non-composition

dataset will be explored.

Lastly, an approach for utilizing the composition rank probabilities to find the most likely

class is presented, for this approach a critical limitation was the inability to directly model

the non-compositional variables in a way that corresponds to the compositional approach. As

an alternative to the rank probability calculations described, the non-parametric estimation

of the density of all pairwise ratios of glycans in the dataset will also be explored in future

work. The ability to differentiate patient classes will be compared to the binary probability

estimation procedure described in this work.
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Chapter 4

Analysis of Epigenetic Signals of Genomic Sequences

This chapter describes a third kind of modern biological data that an investigator may

collect: epigenetic signals. Epigenetic cues along genetic sequences contain information that

is “on top of” that contained within the genomic sequence itself. Modeling the epigenetic

information can be very important in differentiating genetic sequences which are otherwise

indistinguishable. There are several kinds of chemical signals which may be present in

the genome that indicate that certain actions need to be taken or not taken at a given loca-

tion. Kinds of epigenetic modifications on the genome include DNA methylation [Bird, 2002]

[Jones and Liang, 2009], histone modification [Karlić et al., 2010]

[Henikoff and Shilatifard, 2011], regulatory feedback [Tomikawa et al., 2012]

[Yao et al., 2019], and more [Alberts et al., 2002].

DNA methylation conveys information in the methylation status of particular locations

along a genomic sequence. Methylation refers to the chemical addition of a methyl group (R-

CH3), and from a functional perspective indicates the repression of a particular region of a

genetic sequence. One recent study has shown that differentially methylated regions (DMRs)

can be used to determine information about the age of certain sequences [Bell et al., 2012].

Another study indicated that methylation patterns show pronounced changes in smokers de-

pending on the dose and duration of smoking [McCartney et al., 2018]. Other studies have

characterized phenotypic trait differences due to epigenetic modification through methy-

lation rather than transcription and translation [Leenen et al., 2016] [Toyota et al., 1999]

[Marsit et al., 2006] [O’Brien et al., 2006] .
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4.1. DNA Methylation

The Central Dogma of Molecular Biology states that genes are transcribed into RNA

which is translated into protein, and that proteins are responsible for doing the cellular

work that creates phenotypes [Alberts et al., 2002] [Hansen et al., 2012]. It has since been

proven that additional information about the manner in which the genetic code should be

read and manipulated by the organism to best increase their chances of survival and genetic

propagation is contained in secondary cues differentiating one form of a base nucleotide from

another [Alberts et al., 2002]. For instance the base nucleotide cytosine may occur in a form

which is methylated. The methylated version of cytosine indicates to the cell important

attributes of the particular region of the genome on which they are found.

These secondary cues are also known as epigenetic factors [Medvedeva et al., 2015], as

they are factors important for the encoding and survival of life. However, these cues are

not a part of the primary genetic code given in the sequential variation of nucleotides along

the DNA. Rather, the epigenetic factor serves as what could be considered a footnote in the

overall organization of the genetic code for the organism [Alberts et al., 2002]. The footnote

indicates important information about each of the locations which they mark. They may

also be seen as landmark flags along the genome that colorfully display the positions of

important locations, such as the location of genes that should not be presently translated

into RNA for further transcription into protein.

For positions marked with the epigenetic cue of methylation, this is precisely the case.

These regions indicate genes that should be silenced in the overall maintenance of the cell.

In other words, regions of methylation among the same organism or different organisms

along the same or similar regions of their genomes indicate that these genomic regions are

handled differently by the translation and transcription apparatus available to the cell, due

to the differential methylation patterns on the two unique genomes [Alberts et al., 2002].

Metaphorically, as the series of base nucleotides represent the sentences in a story, read in

a specific order to give meaning, these secondary cues may be considered as the punctua-
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tion and accents which indicate the relative importance of the sentences. More specifically,

base nucleotides or histones nearby might be acetylated (indicating higher import placed

on expression of the gene)[Liu et al., 1999], phosphorylated (indicating positions of rele-

vance during replication via mitosis or meiosis) [Blom et al., 1999], methylated (indicating

high import on the repression of the gene) [Bird, 2002], or contain various combinations of

the different cues in a patterned way indicating other reading-actions [Alberts et al., 2002].

Treating a genomic sample harvested for sequencing with a chemical agent causes changes

in the structure of the sample which may be exploited by computational algorithms that

allow the investigator to gain a broader general view of the elements that uniquely encode

the organism under study.

4.2. Some Previous Statistical Approaches to Methylation

Methylation along a reference provides an indispensable picture of the structure of the

genetic material being investiagated. In one sense, methylation profiles display regions where

genes are repressed. The utility of the methylation profile (regions along the reference se-

quence which are found to be methylated with specific proportions of the sample reads) is

enhanced by the fact that many of the parts of the genome which are methylated in the

parents of the organism under study are propogated to the offspring. These regions may

tend to be diverse in a population, specifically in humans due to the genetic cross over of the

two progeniters during the procreation of offspring. In this regard, the methylation profile

of an organism may be generally used to refine the selective group of potential donors of the

material under study. Bisulfite is a chemical agent which may be applied to genetic material

prior to analysis which will modify the methylation patterns of the genetic material such that

Cytosine which is methylated will remain unchanged, and those which are not methylated

will undergo a change such that they are determined to be Thymine by sequencing technolo-

gies. Alignment of these reads to a reference sequence and subsequent differential analysis

of Cytosine/Thymine mapping allows the user to determine the relative proportion of the

unmethylated cytosines to those methylated at a specific CpG or other Cytosine location of
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interest in the reference.

4.2.1. CpG point estimates of methylation

A reference sequence generated from the assembly of untreated genetic material harvested

allows for a full four-base representation of a genomic sequence of interest, which serves as

a background against which to compare genetic reads that have been treated in order to

determine the secondary cue structure of the material.[Zheng-Bradley et al., 2017] In the

case of Bisulfite sequencing, bisulfite treated reads are aligned to a reference sequence by

one of several different techniques which allow for mismatches at expected locations (that

is allowing certain Cytosines in the reads to be matched with Thymine in the reference

and vice-versa) [Wu et al., 2015]. Next the aligned reads are compared to the original four

base reference which allows for the determination of methylation status at particular regions

along the reference. Specifically, where there are mismatches in the bisulfite treated read

indicating a Thymine where there is a Cytosine in the reference methylation is assumed to

not have occurred, whereas when there is a perfect matching of the cytosines in the bisulfite

treated reads to the reference, methylation is assumed to have occurred. This allows for

an estimation of the proportion of donor genetic material which is methylated at specific

locations along the reference. [Genereux et al., 2005]

Symbolically, for a reference containing n total CpG or CpH sites (cytosines followed by

guanines, or arbitrary bases) indexed by i, let the coverage of the ith CpG/CpH be Bi, a

value indicating the number of times that the ith CpG/CpH is ‘hit’ by reads. For each of the

n total locations, of each of the Bi reads that cover that location some subset will indicate

a methylated base at that location and others will indicate unmethylated bases. Let Ui be

the number of reads that indicate the base is unmethylated, and Mi be the number of reads

covering CpG/CpH i that indicate that the base is methylated such that Bi = Ui + Mi.

Assume that there is a true population proportion of methylation for each CpG/CpH along

the reference, such that if a read is selected uniformly from all those possible in the population
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of interest that the true probability that the read will indicate methylation at CpG/CpH i

is given by πi. Then for any given sample of reads, the maximum likelihood estimate of the

true probability of methylation πi may be computed as π̂i = Mi/Bi. These estimates π̂i are

called the point-estimates.

Note that n must be an non-negative integer value, as must all of the n total Bi, and the

constituent Mi and Ui. Furthermore, it is obvious that each of these represent count values,

in the case of n this value is fixed prior to sample analysis, hence it is a standard variable,

whereas Bi,Mi and Ui are random variables which are unknowable until they are counted.

That said, these random variables do depend on the total number of reads that are available

in a sample which may be seen as another fixed value, say nr. The total number of reads that

are analyzed in a particular experiment can be controlled, but in practice it is quite difficult to

attain uniformly exact coverage at a fixed level across the entire reference. The read length (in

terms of bases per read) can also often be controlled, however the control of these two values

alone does not guarantee that a specific coverage level will be attained exactly, and hence it is

often convenient to represent the coverage using a random variable as we do in this treatment.

The coverage is however capped by the number of reads, and this can be expressed in the

distribution. Furthermore, the number of reads that express methylation at a particular base

and likewise those expressing unmethylated bases at the same loci have induced upper bounds

that are interdependent. Specifically, if there are a total of nr reads, and the desired coverage

of a specific sample is set at a proportion c ∈ [0, 1] then the natural probability distribution

of each of the Bi depends on the distribution of the reads across the reference. Let the

length of reads in a particular sample be held constant at nk, and the length of the reference

from which the reads are taken be represented by r then each of the reads in the sample (nr

total) begins at location Rj for j = 1 . . . nr. The distribution of the Rj is another discrete

probability distribution which is related to the distribution of coverage for each location. Rj,

as the starting position for each read that is contained within a given sample have probability

distributions on one to the total length of the reference less nk. More explicitly, if the length

of the reference is L then there is some probability associated with each of the integer values
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between one and L − nk. Mathematically the distribution may be described in terms of

a probability mass function pR such that pR : {x ∈ Z|1 ≤ x ≤ L − nk} 7→ [0, 1], where∑L−nk
i=1 pR(Rj = i) = 1 ∀j = 1, 2, . . . nr.

Usually this distribution cannot be precisely controlled by the technology used to capture

the reads from a particular sample. Generally, it is assumed that this distribution will neatly

be concordant with a discrete uniform distribution, however, due to many simultaneously

unmeasured effects of the configuration of the genetic material, the sampling technology used,

as well as relative qualities and filters it is unlikely that the distribution of reads will exactly

follow the uniform distribution in practice. In other words, the discrete uniform distribution

is a convenient model for the distribution pR however, in practice it is not exactly correct

rather, minor perturbations here and there in terms of the probabilities that a read will start

at a specific location are potentially more correct yet more difficult to model and require

more computational space requirements.

Of course, the distribution of sampled reads in practice will never exactly meet the

coverage that is desired for a specific experiment, if the desired coverage is say 100 times,

then there will be some portions of the reference which are covered slightly fewer, and others

which are covered slightly more.

The BSmooth software by Kasper Hansen, Ben Langmead et al [Hansen et al., 2012]

performs a local likelihood smoothing [Loader, 1999] of the point estimates of methylation for

a given bisulfite sequencing experiment [Frommer et al., 1992]. Conceptually the smoothing

procedure follows a traditional local-likelihood procedure.

The code itself is contained in the Bioconductor [Morgan, 2021] software suite for R

[R Core Team, 2021]. There was a study in 2015 which sought to compare the BSmooth

procedure to far simpler techniques when it comes to estimating the average methylation

rate over a given area. It was effectively shown in that work that the BSmooth procedure

did not really provide a vast improvement over the far more simplistic procedures of moving

averages in the case of estimating the average methylation along a genome. [Wu et al., 2015]

Another software provides a self-contained analysis suite for the methylation profile of ge-
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nomic signals. DMAP (the software - Differential methylation Pattern Analysis)

[Stockwell et al., 2014] is marketed as especially useful in the analysis of Reduced Repre-

sentation Bisulfite Sequences (RRBS) and Whole Genome Bisulfite Sequencing (WGBS)

experiments.

4.3. Potential Methylation Locations along A Reference (GRCh 38)

Figure 4.1: KDE of CpG Island Distribution on Human Chromosome 22 (GRCh38)

The human reference genome is a representative structure arrived at by consensus of

a large sample of humans, in this study the GRCh38 version is used. First a map of all

locations where a CpG island exists is constructed. A simple algorithm which checks all

subsequent pairs of locations as "c" and "g" respectively determines the locations, and the

CpG density of Chromosome 22 may be inspected. The techniques investigated here will

primarily have to do with the techniques of smoothing; therefore, a kernel density estimator

with a Gaussian kernel using a bandwidth of 728,762 locations is displayed along with a

histogram of the number of CpGs along the reference genome of Chromosome 22 in Figure
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4.1. It is apparent that the relative abundance of CpG islands, and therefore potentially

methylated regions, varies over chromosome 22. There is a tapering off in abundance at

both ends of the sequence, as well as a small lull in density near the center. Examining

these CpG density patterns prior to sequencing may allow for slightly more targeted studies

which seek to investigate differentially methylated regions only along the most densely CpG

dominant regions.

Figure 4.2: Number of reads covering CpGs in human Chromosome 22

Following the determination of the CpG locations along Chromosome 22, a random sam-

pling procedure is applied with read lengths of varying sizes (100,250,500,1000,5000, and

10000 bases) In order to determine the relative coverage of 100,000 reads over Chromosome

22. The Chromosome itself consists of long tails of non-identifiable bases represented by ’N’

in the FASTA format, which is not unlike other chromosome structures. For each of the read

lengths and for all simulated reads (100,000) the number of times a CpG was ’hit’ by a read

are captured. For human chromosome 22, there are a total of 634,646 CpG locations. The

total number of identifiable bases in chromosome 22 is 40,298,466, indicating that roughly
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1.5% of chromosome 22 may exhibit differential patterns of methylation. As the read size

increases, if the reads are sampled uniformly at random from the chromosome, the total

number of hits as well as the proportion of reads hit more than once increases as displayed

in Figure 4.2.

Figure 4.2 shows that as the length of the reads increases the number of CpGs covered by

a larger a number of reads increases. While this seems somewhat obvious, it is illustrative

of an interesting side-effect of smoothing out the methylation profile. However, perhaps

more illustrative of one of the problems investigated here is displayed in Figure 4.3, which

shows the trend of variance in the number of hits per CpG. Moving forward, it should be

straightforward to produce a purely analytical proof of the relationship between CpG Hit

variance and read length for this uniform sampling paradigm.

It makes significantly more sense to look at a smaller region of the genome that will

be targeted for sequencing rather than the entire chromosome in a smaller scale simulation

study of this kind. However, proper consideration should be given to the particular region

of interest for a specific experiment, in the case of this simulation study regions containing

around 5-10 genes will be specifically targeted. In addition to being more accurate in terms

of a real-life experiment, partitioning at this level will allow for finer granularity in the

resultant.

The simulation suggests, per every single base extension in read length, that on average

the variance in the number of hits on each of the 634,646 CpGs increases by 0.002502

(SE 7.869 ×10−6). The implication of the linear trend here is that as the length of reads

(or effectively the number of reads) is increased the greater the chance for more dramatic

changes in the coverage over the length of the chromosome. The simulation next generates a

synthetic ground truth point methylation profile for chromosome 22 by randomly sampling a

uniform distribution from zero to one 634,646 times. Next, for each of the CpGs, depending

on the number of reads that hit them, and the synthetic ground truth methylation point

proportion for that particular CpG, a simulated count of reads indicating methylation at that

position are generated, and point estimates of the methylation proportion at each position
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Figure 4.3: Variance in number of CpG "Hits" per Read Length

are computed. The average error of these estimates for a single run of the simulation is

displayed for varying read sizes in Figure 4.4. Moving forward, a method of speeding up the

simulation will allow multiple simulations and a display of the simulated distribution of this

total error.

Following the simulation and estimation of methylation point proportions for the chro-

mosome based on the number of hits and a synthetic ground truth of methylation, the

methylation point estimates are smoothed using a constant window size. This is a key dif-

ference from the BSmooth procedure which uses an adaptive window size. The average error

is computed for each smoothing based on the ground truth, for the simulated 10,000 base

length read data. The results are displayed in Figure 4.5.

When applying the constant window size smoothing approach, we appear to be incurring

a bias in the methylation point estimates while decreasing the variance of the estimates

over time. This is manifest in the increased error as the window size increases. In the

current simulation script the methylation proportions in the ground truth synthetic data are
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Figure 4.4: Average Error in Methylation Point Estimates over Varying Read Lengths from
simulated ground truth

independent and uniformly generated from 0 to 1. In reality there are likely correlations

between these proportions, which will be more thoroughly investigated by placing patterned

correlations in the synthetic ground truth point methylation estimates in the simulation.

4.4. Reduction of Multi-Mapped Reads

In the analysis of sequencing data, when a file of reads are to be mapped to a reference, it

is possible that a read will align to a single position. Frequently, the read will align to a few

positions, especially if the reference and read are repetitive. An application of smoothing

procedures is the ability to differentiate each position’s estimate. This is helpful in assigning

different scores to the positions later, when attempting to determine the most likely position

from among a set of possible positions later.
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Figure 4.5: Average Error for windowed average smoothing approach on Simulated reads
with synthetic ground methylation data

If only the point estimate were used in this case, it is likely that when the coverage is

relatively uniform across the genetic sequence there would be many proportions that were

identical. The possible locations within the set for a multimapped read might indicate the

same probability that the read came from this location.
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Figure 4.6: Illustration of the Multi-Mapped Read location isolation procedure
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4.5. Simulation of Methylation Profile Errors

In genetic methylation experiments, ground truth information about the true methylation

proportion at each location is never available. This means that a smoothed estimate of

observed data at each position may or may not actually be closer to the actually true

proportion. To assess the way in which smoothing point estimates of methylation effects the

overall estimates, and specifically in the presence of highly variable coverage across positions,

a simulation study was undertaken.

The simulation procedure, implemented in C [Kernighan and Ritchie, 2006], includes a

binomial random number generation procedure via the inverse probability transform, as well

as a uniform generator for doubles between 0 and 1 with resolution determined by the inbuilt

max_rand. The approach allows for user specification of a few settings.

• Reference Length (N) - The size of the reference along which the methylation patterns

are observed.

• Number of Locations (nl) - The number of locations along the reference where methy-

lation could occur.

• Coverage Mean (µc) - The average coverage on (number of reads mapped over) each

of the methylation locations along the reference.

• Coverage Variance (σ2
c )- The variance of the coverage across all potential methylation

locations.
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The simulation procedure is as follows:

1. Sample without replacement nl values from 1 to N , these are the methylation locations,

li for i ∈ {1, . . . , nl}.

2. Generate vector of hits associated with each location

hi ∼ Bin(n = µc · 1
1−σ

2
c
µc

, p = 1− σ2
c

µc
).

3. Generate a true methylation probability

ti ∼ U(0, 1).

4. For the ith position (i ∈ {1, 2, . . . , nl}):

(a) Generate the number of hits that indicate methylation

mi ∼ Bin(n = hi, p = ti).

(b) Compute the point estimate of methylation at each location

t̂i = mi
hi
.

5. For each lj for j ∈ {1, 2, . . . , nl} compute smoothed estimate of methylation

tj(r) =
∑nl
i=1 t̂i · 1(|li − lj| ≤ r)∑nl
i=1 1(|li − lj| ≤ r) , r ∈ {200, 1000}

6. Across the full reference determine the error from the point estimate, and both smoothed

estimates for each position:

(a) Determine the squared error at each location for each method

• εpi = (t̂i − ti)2 for the point estimates,

• εs1i = (ti(200)− ti)2 for the local average with bandwidth 200, and

• εs2i = (ti(1000)− ti)2 for the local average with bandwidth 1000.

The results of the simulation are included in Table 4.1. In this simulation, the number of hits

on the methylation locations are generated by the binomial distribution. Table 4.1 shows

that the average error of the point estimates is generally lower than the smoothed estimates.
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This highlights one of the limitations of this initial simulation study. That is, the methy-

lation proportions which are nearby one another are assumed to be unrelated in the study.

There is no inherent or induced correlation structure on these methylation proportions and

therefore it is possible that two very unlike proportions are found next to one another.

The primary takeaway of the simulation is then that the point estimates of methylation

tend to be more accurate in this case, while also maintaining a lower error variance. When

the estimates are smoothed with the 200 and 1000 nucleotide sized windows the resulting

estimates typically result in errors that are eight to ten times that of the point estimates.

Table 4.1: Simulation results for smooth point estimates of methylation

µc σ2
c εpi SE(εpi) εs1i SE(εs1i) εs2i SE(εs2i)

15 10 0.0114 0.000336 0.0799 0.00592 0.0827 0.00561
15 30 0.0129 0.000623 0.0806 0.00588 0.0834 0.00561
15 60 0.0161 0.00155 0.0794 0.00596 0.0821 0.00568
30 10 0.00552 0.000136 0.0794 0.00576 0.0825 0.00556
30 30 0.00574 9.2e-05 0.079 0.00579 0.0819 0.00557
30 60 0.00586 9.5e-05 0.079 0.00581 0.0818 0.00556
45 10 0.00382 0.000124 0.0795 0.00581 0.0825 0.00562
45 30 0.00379 0.00013 0.0794 0.00579 0.0824 0.00559
45 60 0.00386 3.8e-05 0.0783 0.00562 0.0814 0.00548
60 10 0.00282 2.8e-05 0.0791 0.00582 0.0823 0.00564
60 30 0.00279 2e-05 0.0788 0.00561 0.0824 0.00553
60 60 0.00302 0.000159 0.0798 0.00587 0.0827 0.00562

4.6. Conclusions

This chapter contains information on some statistical approaches to modeling methylation

data, and to differentiating particular regions depending on those models. First the CpG

density across human chromosome 22 is analyzed, and techniques for using this density as

the kernel of a smoother for methylation proportions are discussed.

A short explanation of the ability of the methylation proportions to assist in the dedupli-

cation of multimapped reads into their most likely positions is then discussed. This approach

is useful and can potentially allow researchers to refine their prior sequence alignment results.

Lastly, a simulation study of smoothed estimates of methylation with moving averages of dif-

ferent lengths is provided. The results indicate that when there is no correlation among true
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methylation proportions across a reference, the smoothed point estimates typically produce

larger errors on average. However, the variance of the errors for these smoothed estimates

are also robust to changes in the variance of the coverage across the reference.

Several key directions are highlighted in this chapter. An analysis of a real dataset,

and the production of a computer code for implementation of the multi-mapped reduction

algorithm will be undertaken. The resulting code will be provided to researchers who would

like to refine their bisulfite sequencing experiments. A more robust simulation which allows

for the programmatic toggling of correlation structure on the true methylation patterns of

the reference will also be performed. This will allow for the determination of the effect of

certain correlation structures on smoothed estimate errors.

Additionally, the use of differential methylation patterns on alleles may be of assistance

in diploid assembly and alignment, as opposed to haploid, which is the current state of

the art. Another avenue for investigation is the ability of breakpoints in the methylation

pattern, or sudden changes in the correlation structure of the methylation, to demarcate gene

boundaries on a contiguous segment. This may greatly assist in the analysis and annotation

of newly discovered sequences. The correlation structure of methylation for individuals may

yield important insights into the ability of these breakpoints to determine significant gene

boundaries.
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Chapter 5

Conclusion & Future Directions

This dissertation describes a group of statistical methodologies for comparing some mod-

ern kinds of biological data. It is split into three chapters, each describing a different type of

biological data, and introducing statistical analysis approaches for inspecting them in case

studies. In Chapter 2, genetic sequences containing ordered sets of the base nucleotides are

inspected by their Fourier series. An R-package for this type of analysis is constructed,

and applied to a set of SARS-CoV-2 virus genomes. The results are compared with more

traditional phylogeny building techniques, and an extension for statistical hypothesis testing

is developed and discussed. A few extensions were also offered. One is the development

of a statistical test for comparing the variance-covariance matrix of series data for specific

application on ensembles of sequences. In addition, the post application of filters to screen

for the most important portions of the power spectra on which to classify sequences was

examined. The chapter concluded with a thorough analysis of the comparison of sequence

distance methods through a current and relevant study of viral genomes.

In Chapter 3 a semi-parametric model and a non-parametric glycan rank proportion

model are introduced and applied to the classification of active vs. latent tuberculosis cases.

The results included a comparison to a previously utilized method known as PLS-DA, which

was also implemented in an R-Package for analysis. The data in this chapter were collected

by the Lu lab at UT Southwestern, and the modeling results on using these data for all models

were displayed. It was shown that the semi-parametric model and the rank proportion model

both improved classification accuracy over the original PLS-DA model.

In Chapter 4, the methylation of DNA is considered, and some previous software describ-

ing the analysis of these methylation patterns is discussed. The modeling assumptions for

the methylation profile on a haploid reference are presented, and a simulation study showing

102



the sensitivity of moving averages to variance in coverage shows that the approach is affected

by regional variations in coverage.

The procedures outlined here are unique to this work, and their implementations derived

in this dissertation. The analysis and evaluation of these methods with biological data

indicates that they may be useful in classification models under certain contexts.

5.1. Future Directions

The usage of a multiple-valued transform may allow for more accurate characterization

of the periodic trends exhibited by discretely indexed genomic signals (DNA/RNA). Specif-

ically, it may be possible to apply some variant of the Walsh-Fourier transform which allows

for variable length sequences, that is not constrained to signals of lengths which are powers

of two. Careful statistical consideration should be applied when determining which pro-

cedure is the most valid, but the Levy-Chrestenson transform may be a viable candidate

[Lévy, 1943, Chrestenson et al., 1955]. In the analysis of the genomic Fourier coefficients,

another pressing direction is the application of the statistical hypothesis test discussed in

Chapter 2 to the genomic Fourier coefficients. This analysis will include a discussion of the

robustness of the statistical hypothesis test to violations of the assumption of second-order

stationarity. An important next step is the merging of the Fourier Analysis techniques dis-

cussed in the first section with the methylation profiles discussed in the second session with

regards to smoothing procedures. Another direction for analysis is a study of the sensitivity

of the coefficients to non-identifiable locations, and other forms of missing data. A thorough

investigation of different scaling procedures for scaling the Fourier Coefficients out to be

equal length for all signals would also be a valuable pursuit in the future.

Secondly, In terms of the antibody glycosylation cellular protein study described in sec-

tion three, extensions to the glycan rank probability model for using the empirical distribu-

tions of the actual ratios of proportions in the data will be investigated. This in addition to

further modeling and the investigation of applications of these models to different kinds of
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protein datasets will be undertaken.

Lastly, methylation smoothing as described in this dissertation is still being analyzed,

and there are plans for including a more thorough analysis of BSmooth in addition to other

smoothing techniques for estimating methylation profiles. It was previously shown that the

local likelihood approach to smoothing the methylation profile might be only marginally

better than a simple windowed average approach 4 [Wu et al., 2015]. The susceptibility of

smoothing methods to large changes in sample size for proportion estimates across the length

of the genome was also investigated. In the future, this will be assessed in relation to different

types of bisulfite sequencing experiments. Further analysis will involve the derivation of an

algorithm for effectively taking advantage of the methylation proportion data to isolate the

proper locations of multi-mapped reads in software that aligns reads, using subsets of the tra-

ditional four nucleotides. Finally, some consideration to the estimation of dual methylation

proportions in regards to the diploid nature of the human genome will be considered.
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Appendix A

Genomic Fourier Coefficients: Tables & Figures

Table A.1: Kinds of post-MSA Phylogenetic Comparisons

Method Name Abbr. Authors Description

Transversions

Count

TV - A count of the number of transver-

sions, that is A or G to C or T

mismatches in aligned sequences

Galatier-Gouy GG96 Nicolas Galtier

Manolo Gouy

A substitution model based ap-

proach which allows a time-varying

coefficient for specific nucleotides.

[Galtier and Gouy, 1995]

Transitions Count TS - A count of the number of transi-

tions counted, that is A to G or

C to T mismatches in aligned se-

quences

Barry-Hartigan BH87 Daniel Barry

John A Hartigan

A distance that is asymetric,

and treats each possible tran-

sition/transversion differently

[Barry and Hartigan, 1987]

Paralinear

distance

paralin James A. Lake Uses an assymetric substitution

model such as that used in the

BH87 distance. [Lake, 1994]
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MEGA TN93 Koichiro Tamura

and Masatoshi Nei

Specific kinds of transi-

tions and transversions are

weighted differently in this

approach [Kumar et al., 1994]

[Tamura and Nei, 1993]

Jukes-Cantor JC69 Thomas C. Jukes

Charles R. Cantor

An early technique which uses the

mutations to determine the dis-

tance by a substitution model, this

is a function of the P-distance

(raw/N) [Jukes et al., 1969]

Generalized

Jukes-Cantor

F81 Joseph Felsenstein A theoretical technique that is the

generalization of the Jukes-Cantor

procedure in that it allows for dif-

ferent rates for each possible mis-

match. [Felsenstein, 1981]

P-distance raw - Proportion of sites that differ (sum

of transversions and transitions)

same as N.

P-distance N - Proportion of sites that differ (sum

of transversions and transitions)

same as raw.

Kimura 3 parame-

teri distance

K81 Motoo Kimura Jukes Cantor distance updated

to allow different rates of 2

kinds transversions and transi-

tions. [Kimura, 1981]

Kimura 2 parame-

ter distance

K80 Motoo Kimura Jukes Cantor distance up-

dated to allow different rates

of transversions and transitions.

[Kimura, 1980]
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Phylip F84 Joseph Felsen-

stein and Gary A

Churchill

A Markov-model based ap-

proach to phylogenetic dis-

tance calculations based on

likely substitution states.

[Felsenstein and Churchill, 1996]

Tamura (1992) T92 Koichiro Tamura assumes bases occur with un-

equal proportions, and allows vari-

able rates in modeling procedure

[Tamura, 1992].

K-mer distance fivermers Multiple Euclidean distance computed be-

tween frequency vectors for the k-

mers where k ∈ {1, 2, 3, 4, 5}.

Log Determinant logdet Peter J Lockhart

and Michael A

Steel

Another generalization of the BH

procedure. [Lockhart et al., 1994]

DFT Power Spec-

tral Distances

DFTPS Changchuan Yin

& Stephen S-T.

Yau

Fourier transforms taken in the

described manner produce power

spectra which are scaled prior to

the computation of Euclidean dis-

tances [Yin, 2020].

Insertion Deletion

Count

indel - Counts mismatches among aligned

sequences where one has a gap

character (-).

Chained Insertion

Deletion Count

indelblock - Counts mismatches among aligned

sequences where one has one or

more gap character(s) (*-*).

Note, most of the data in Table A.1 comes from the thorough documentation of the ape

package in R [Paradis and Schliep, 2019] [R Core Team, 2021].
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Appendix B

Modeling Compositional Data: Tables & Figures

Table B.1: Non-Compositional Data (Non-Glycan Data)

Variable Name Description

PPD_ADCP Mycobacterium tuberculosis purified protein

derivative (PPD) specific antibody depen-

dent cellular phagocytosis (ADCP) - Percent

bead-positive frequency (MFI/10).

Flu_ADCP Influenza Hemaglutinnin (HA)-specific

ADCP.

PPD_ADCC PPD-specific antibody dependent cellular cy-

totoxicity (percentage dead target cells per

total target cells, pulsed less unpulsed cells).

IgG ELISA An Enzyme-Linked Immunosorbent Assay

(ELISA) for detecting and quantifying the

amount of Immunoglobulin G in a tubercu-

losis patients peripheral blood sample.
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PPD Luminex AUC A Luminex assay is another kind of proce-

dure that can allow for the quantification of

a particular protein, these particular mea-

surements are made at three different con-

centrations of the IgG protein (0.1, 0.01, and

0.001 miligrams per mililiter) and reported as

the total area under the curve (AUC) for the

three (the sum of the three measurements).

Flu Luminex AUC A Luminex Assay for Influenze Hemaglutin-

nin (HA) reported in the same style as the

other Luminex AUCs.

RSV Luminex AUC A Luminex assay for respiratory syncytial

virus protein G, and F specific IgG titers

reported in the same style as the other Lu-

minex AUCs.

ESAT6 Luminex AUC Mycobacterium tuberculosis ESAT-6 specific

IgG titers reported in the same style as the

other Luminex AUCs.

CFP10 Luminex AUC Mycobacterium tuberculosis CFP10 specific

IgG titers reported in the same style as the

other Luminex AUCs.

Ag85AB Luminex AUC Mycobacterium tuberculosis AG85AB spe-

cific IgG titers reported in the same style as

the other Luminex AUCs.

GroES Luminex AUC Mycobacterium tuberculosis Gro-ES specific

IgG titers reported in the same style as the

other Luminex AUCs.
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HspX Luminex AUC Mycobacterium tuberculosis HspX specific

IgG titers reported in the same style as the

other Luminex AUCs.

Cell wall Luminex AUC Mycobacterium tuberculosis Cell wall pro-

tein mixture specific IgG titers reported in

the same style as the other Luminex AUCs.

PstS1 Luminex AUC Mycobacterium tuberculosis PstS1-specific

IgG titers reported in the same style as the

other Luminex AUCs.

Cell Wall Lipids Luminex AUC Mycobacterium tuberculosis cell wall lipid-

specific IgG titers reported in the same style

as the other Luminex AUCs.

Total Lipids Luminex AUC Mycobacterium tuberculosis lipid-specific

IgG titers reported in the same style as the

other Luminex AUCs.

Lipomannan Luminex AUC Mycobacterium tuberculosis lipomannan-

specific IgG titers reported in the same style

as the other Luminex AUCs.

ManLAM Luminex AUC Mycobacterium tuberculosis mannose-

capped lipomannan specific IgG titers

reported in the same style as the other

Luminex AUCs.

UT12 AUC Mycobacterium tuberculosis growth of donor

12 macrophages over the course of 5 days.
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Figure B.1: Plots of non-parametric variables within five classes
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Figure B.2: Partial Least Squares Tuberculosis/Diabetes Classification LV plot
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Figure B.3: Partial Least Squares Tuberculosis Classification LV plot
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Figure B.4: Partial Least Squares Diabetes Classification LV plot
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Figure B.5: Principal Components Plots Tuberculosis/Diabetes Biplot
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Figure B.6: TSNE Plots for Tuberculosis/Diabetes classification)
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Figure B.7: Class Accuracy for PLS-DA classifier model
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Table B.3: Semi-Parametric Confusion Matrix Tuberculosis Status (Full Data)

True Class Predicted Class
ATB LTB Neg

Nonparametric Score Only
ATB 33 9 1
LTB 1 20 4
Neg 0 1 14

Parametric (Multinomial) Score Only
ATB 31 7 5
LTB 7 16 2
Neg 4 4 7

Combined Semiparametric Score
ATB 35 2 1
LTB 7 20 1
Neg 0 2 12
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Table B.4: Semi-Parametric Confusion Matrix Tuberculosis Status (Leave-one-out CV)

True Class Predicted Class
ATB LTB Neg

Nonparametric Score Only
ATB 32 10 1
LTB 8 11 6
Neg 0 10 5

Parametric (Multinomial) Score Only
ATB 31 7 5
LTB 10 10 5
Neg 5 4 6

Combined Semiparametric Score
ATB 34 8 0
LTB 5 16 3
Neg 3 9 2
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Table B.5: Semi-Parametric Confusion Matrix Diabetes Status (full data)

True Class Predicted Class
DM ND

Nonparametric Score Only DM 15 10
ND 3 55

Parametric (Multinomial) Score Only DM 23 2
ND 21 37

Combined Semiparametric Score DM 21 13
ND 4 42
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Table B.6: Semi-Parametric Confusion Matrix Diabetes Status (Leave-One-Out CV)

True Class Predicted Class
DM ND

Nonparametric Score Only DM 8 17
ND 15 43

Parametric (Multinomial) Score Only DM 22 3
ND 24 34

Combined Semiparametric Score DM 20 5
ND 21 34
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