
Southern Methodist University Southern Methodist University

SMU Scholar SMU Scholar

Operations Research and Engineering
Management Theses and Dissertations

Operations Research and Engineering
Management

Fall 2022

Heuristics For Capacity Allocation And Queue Assignment In Heuristics For Capacity Allocation And Queue Assignment In

Congested Service Systems With Stochastic Customer Demand Congested Service Systems With Stochastic Customer Demand

And Immobile Servers And Immobile Servers

Adam Colley
Southern Methodist University, acolley@smu.edu

Follow this and additional works at: https://scholar.smu.edu/engineering_managment_etds

 Part of the Operational Research Commons

Recommended Citation Recommended Citation
Colley, Adam, "Heuristics For Capacity Allocation And Queue Assignment In Congested Service Systems
With Stochastic Customer Demand And Immobile Servers" (2022). Operations Research and Engineering
Management Theses and Dissertations. 21.
https://scholar.smu.edu/engineering_managment_etds/21

This Thesis is brought to you for free and open access by the Operations Research and Engineering Management
at SMU Scholar. It has been accepted for inclusion in Operations Research and Engineering Management Theses
and Dissertations by an authorized administrator of SMU Scholar. For more information, please visit
http://digitalrepository.smu.edu.

https://scholar.smu.edu/
https://scholar.smu.edu/engineering_managment_etds
https://scholar.smu.edu/engineering_managment_etds
https://scholar.smu.edu/engineering_management
https://scholar.smu.edu/engineering_management
https://scholar.smu.edu/engineering_managment_etds?utm_source=scholar.smu.edu%2Fengineering_managment_etds%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholar.smu.edu%2Fengineering_managment_etds%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/engineering_managment_etds/21?utm_source=scholar.smu.edu%2Fengineering_managment_etds%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

HEURISTICS FOR CAPACITY ALLOCATION AND QUEUE

ASSIGNMENT IN CONGESTED SERVICE SYSTEMS WITH

STOCHASTIC CUSTOMER DEMAND AND IMMOBILE SERVERS

Approved by:

Dr. Eli Olinick

Dr. Sila Cetinkaya

Dr. Richard Barr

Dr. Gheorghe Spiride

Dr. Michael Hahsler

HEURISTICS FOR CAPACITY ALLOCATION AND QUEUE

ASSIGNMENT IN CONGESTED SERVICE SYSTEMS WITH

STOCHASTIC CUSTOMER DEMAND AND IMMOBILE SERVERS

A Dissertation Presented to the Graduate Faculty of the

Lyle School of Eningeering

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Operations Research

by

Adam Q. Colley

(B.S., DeVry University, 2009)
(M.B.A., Keller Graduate School of Management, 2010)

December 17, 2022

ACKNOWLEDGMENTS

I would like to thank the Department of Engineering Management, Information,

and Systems of Southern Methodist University.

iii

Colley , Adam Q. B.S., DeVry University, 2009
M.B.A., Keller Graduate School of Management, 2010

Heuristics for Capacity Allocation and Queue

Assignment in Congested Service Systems with

Stochastic Customer Demand and Immobile Servers

Advisor: Professor Eli Olinick

Doctor of Philosophy degree conferred December 17, 2022

Dissertation completed October 31, 2022

We propose easy-to-implement heuristics for a problem referred to in the literature

as the facility location problem with immobile servers, stochastic demand, and con-

gestion, or the service system design problem. The problem is typically posed as one

of allocating capacity to a set of M/M/1 queues to which customers with stochastic

demand are assigned with the objective of minimizing a cost function composed of a

fixed capacity-acquisition cost, a variable customer-assignment cost, and an expected-

waiting-time cost. The expected-waiting-time cost results in a non-linear term in the

objective function of the standard binary programming formulation of the problem.

Thus, the solution approaches proposed in the literature are either sophisticated lin-

earization or relaxation schemes, or metaheuristics. In this study we demonstrate that

an ensemble of straight-forward, greedy heuristics can find high-quality solutions in

less than one second of CPU time. In addition to filling the gap in the literature

using the heuristic, a noniterating linear model was also developed and the existing

iterating linear model was tested using various stopping criteria while also examining

the affects of additional constraints on the problem similar to issues being discussed

in current literature. In many cases, our heuristic approach finds solutions of the

same or better quality than those found with expensive, state-of-the art mathemati-

cal programming software, in particular a commercial non-linear MIP solver given a

iv

five-minute time limit.

v

TABLE OF CONTENTS

LIST OF FIGURES . ix

LIST OF TABLES . x

CHAPTER

1. INTRODUCTION . 1

1.1. Scope . 1

1.2. Literature Review . 3

1.2.1. Exact Methods . 4

1.2.2. Metaheuristics . 5

1.2.3. Math-Programming-Based Heuristics . 9

1.2.4. Greedy Heuristics . 10

1.3. Goals . 12

1.4. Contributions . 13

2. Immobile Server Problem and its Cost Components . 14

2.1. Facility Assignment Cost . 16

2.2. Facility Capacity Cost . 17

2.3. Customer Wait-Time Cost . 17

2.4. Cost Interactions . 18

2.5. Costs in IBM Sterling B2B Integrator . 20

3. Mathematical Models . 22

3.1. Nonlinear . 22

3.2. Elhedhli Linear . 22

3.3. Colley Linear . 25

vi

3.4. Mathematical Model Size Comparison . 27

4. Heuristic . 29

4.1. Basic Structure . 30

4.2. Illustration . 36

4.2.1. Forced Minimum Capacity Illustration . 37

4.2.2. Unforced Capacity Illustration . 46

4.2.3. Forced Maximum Capacity Illustration . 54

4.3. Multiple Use Routines . 64

4.4. Phase 1 Routines . 67

4.5. Phase 2 Routines . 74

4.6. Heuristic Complexity Analysis . 80

5. Data Sets . 81

5.1. Holmberg . 81

5.2. Small, Varying Costs . 82

5.3. Various, Linear Costs. 83

5.4. Various, Nonlinear Costs . 85

5.5. Sizing . 86

5.6. Saw-Tooth . 87

5.7. Data Sets in Existing Literature . 89

6. Analysis of Results . 91

6.1. Nonlinear Model Issues . 92

6.2. Elhedhli Linear Model Issues . 92

6.3. Colley Linear Model Issues . 93

6.4. Heuristic Issues . 94

vii

6.5. Summary of Results . 95

6.5.1. Independent Analysis . 101

6.5.2. Interactive Analysis . 107

6.5.3. Complete Analysis . 110

6.6. Analysis of Variance . 114

6.7. Extended Research . 121

7. Using M/M/s Model . 122

7.1. The Current M/M/s Formulas . 122

7.2. Accuracy Differences Using M/M/1 Formula . 124

7.3. Impact on Heuristic Using M/M/s Formula . 124

7.4. Additional Cost Options Using M/M/s . 124

8. CONCLUSION. 126

8.1. Contributions . 126

8.2. Alternate Use Cases . 126

8.3. Future Research . 127

APPENDIX

A. Detailed Results . 129

B. Idle Server Calculation Proof . 131

C. Proof of M/M/1 always higher than M/M/s . 134

REFERENCES . 137

viii

LIST OF FIGURES

Figure Page

2.1 Cost Interaction . 19

3.1 Elhedhli Linear Model Example . 24

6.1 Cohorts for Base Scenario Various, Linear Group . 97

6.2 Independent Average Solution Time . 106

6.3 Interactive Average Solution Time . 109

6.4 Complete Average Solution Time . 113

6.5 ANOVA Analysis by Data Set . 115

6.6 ANOVA Analysis by Scenario and m, n, K, t . 116

6.7 ANOVA Analysis Base by Starting Point and m, n, K, t 117

6.8 ANOVA Analysis Base (None) by Model and m, n, K, t 118

6.9 ANOVA Analysis Base (None) Elhedhli Cost by Group and m, n, K, t . 119

6.10 ANOVA Analysis Sizing Group Base (None) Elhedhli Cost by m, n,
K, t . 120

ix

LIST OF TABLES

Table Page

3.1 Mathematical Model Size Comparison . 28

4.1 Customer-related Parameters . 36

4.2 Facility-related Parameters . 36

5.1 Various, Linear Cost Taguchi L9 Orthogonal Array . 84

5.2 Problem Instance Data from the ISP Literature . 90

6.1 Subsecond Performance . 95

6.2 Algorithm Abbreviations . 99

6.3 Algorithms in each Analysis Method . 100

6.4 Independent Top Performer Table . 104

6.5 Independent Top Performer for All Base Scenario Data Sets 104

6.6 Independent Top Performer for All Maximum Capacity Scenario
Data Sets . 105

6.7 Independent Top Performer for All Maximum Facility Scenario Data Sets105

6.8 Independent Top Performer for All Both Constraints Scenario Data Sets 106

6.9 Interactive Top Performer Table . 108

6.10 Complete Top Performer Table . 112

A.1 Main Detailed Results Compressed File Contents . 130

x

I dedicate this dissertation to Heather L. Colley for sticking by me during my

schooling and encouraging me throughout.

Chapter 1

INTRODUCTION

There are many circumstances in which servers must be assigned to a queue and

cannot be reassigned to a different queue without great cost (if at all). These are

called immobile servers. For the immobile server problem, the queues are called

facilities and the number of immobile servers assigned to those facilities drives the

capacity for that facility. If customers are assigned to a specific facility—and cannot

be reassigned, the problem is greatly simplified as only capacities need to determined.

However, the basic immobile server problem not only includes capacity assignment,

but also includes customer assignment to each facility.

In the literature, immobile server problem (ISP) is typically posed as allocating

capacity to a set of M/M/1 queues to which customers with stochastic demand are

assigned with the objective of minimizing a cost function composed of a fixed capacity-

acquisition cost, a variable customer-assignment cost, and an expected-waiting-time

cost. The expected-waiting-time cost results in a non-linear term in the objective

function of the standard binary programming formulation of the problem. This dis-

sertation proposes a novel linearization of the objective function and fast, easy-to-

implement heuristics.

1.1. Scope

This dissertation examines exact solution of the ISP by solving the base nonlinear

mixed-integer program (NMIP), the iterating linearized mixed-integer program (MIP)

developed by Elhedhli in 2006 [22], and a noniterating linear mixed-integer program

1

developed as part of this research. It then examines what properties of the data

set make for an easier or more difficult problem to solve using those models along

with adding additional constraints on the maximum number of open facilities and/or

the maximum system capacity. Finally, it explores a heuristic which can be used to

significantly shorten the time needed, the situations in which it would be useful, and

the setup of the data—if possible—to give it the highest chance of finding the optimal

solution.

In order to analyze the efficiency and accuracy of each model, 695 data sets were

tested. These data sets can be grouped in six major categories: Holmberg (30 data

sets pulled from Holmberg 1999 [28]), small with varying costs (36 data sets manually

designed to identify difficulty), various sizes with linear costs (54 data sets pulled

from six actual clients using a Taguchi L9 Orthogonal Array approach to the design of

experiments), various sizes with nonlinear costs (54 data sets pulled from the same six

actual clients with the costs restructured varying the customer grouping and customer

wait-time cost), sizing (512 data sets manually designed for testing increasing numbers

of customers, facilties, and capacity levels up to 10,000 customers, 100 facilities, and

20 capacity levels), and saw-tooth (nine extra small data sets manaully created for

brute-force analysis within Microsoft Excel).

The actual data from six clients were from performance tuning work manually

performed on their system. Their data was scrubbed of any identifying information

and kept for research purposes. The system used by the clients is IBM Sterling B2B

Integrator (B2Bi [1]) and allows for business processes (customers in the immobile

server problem) to be placed into priority queues (facilities in the immobile server

problem) which are assigned a specific number of threads (capacity level in the im-

mobile server problem). The six clients ranged from small to large and with varying

business process needs so that any heuristic capable of being integrated with B2Bi

2

would satisfy a wide range of client needs.

1.2. Literature Review

Motivated by B2Bi, we propose easy-to-implement heuristics for a problem re-

ferred to in the literature as the facility location problem with immobile servers,

stochastic demand, and congestion [22], or the service system design problem [7, 8, 9],

or immobile server problem (ISP). The problem is typically posed as one of allocating

capacity to a set of M/M/1 queues to which customers with stochastic demand are

assigned with the objective of minimizing a cost function composed of a fixed capacity-

acquisition cost, a variable customer-assignment cost, and an expected-waiting-time

cost. Although our study of the problem is motivated by an application in telecom-

munications, the problem may arise in other settings as well. For example, Armiri

[7] notes applications to warehouse location [10], and waste collection and disposal

(e.g., [5] and [41]). Motivated by manufacturing applications, Rajagopalan and Yu

[40] develop a similar model and apply it to a chemical testing facility; in this case,

the problem is to assign samples to machines of varying age, condition, and capability

for gas chromatography analysis.

By constraining the solution space so that customers are always assigned to the

nearest facility (i.e., in a way that minimizes the assignment cost), Wang et al. [46]

develop heuristic solution procedures that are tested on bank-location data. Li et

al. [30] apply a similar model to determine optimal placement of proxy websites.

Castillo et al. [17] list applications such as motor-vehicle-inspection stations and

walk-in health clinics as problem instances in which customers typically, but not

necessarily, choose the closest service facility by extending the standard model to

include a probability distribution for each customer’s service-facility choice. Marianov

and Serra [32] consider related coverage models in which the goal is to minimize the

3

number of service facilities such that each customer is assigned to a single facility

subject to probabilistic quality-of-service constraints (e.g., an upper bound constraint

on the probability of a customer spending more than a given amount of time waiting

in the queue). Survey papers by [13] and Boffey et al. [14] catalog numerous other

variations on the standard ISP such as models/applications with finite queues.

Since ISP is NP-hard [5, 7], heuristic solution procedures are common in the

literature. Citing the computational complexity for the standard problem, Armiri

[7] proposes two heuristics solution procedures based on Lagrangean relaxation, and

demonstrates through a computational study that they can find high-quality solutions

(less than a 1% optimality gap) within reasonable solution times for a design problem

(e.g., problem instances with 500 customers, 30 candidate service-facility locations,

and five capacity levels are solved within 90 minutes of CPU time).

For the standard ISP, Elhedhli [22] proposes a linearization of the cost function

using piecewise-linear approximations and a cutting-plane algorithm for solving the

resulting mixed integer linear program. The cutting-plane algorithm is shown to

converge in a finite number iterations and produce a solution that is optimal for

the original, non-linear problem. In an empirical demonstration, this approach finds

exact solutions to problem instances with as many as 100 customers, 20 candidate

service-facility locations, and three levels of capacity.

As far as we can tell, research on the ISP after [22] has focused on variations and

extensions of the basic model. The following is a representative survey of two streams

of this work: exact methods and metaheuristics.

1.2.1. Exact Methods

Vidyarthi and Jayaswal [45] apply a similar approach to the one in [22] to find

solutions within a given optimality tolerance to the ISP with M/G/1 queues, and

apply their methodology to problem instances with as many as 400 customers, 25

4

candidate service locations, five levels of capacity and various ranges for waiting-time

costs and ratios between the mean and standard deviation of the service time.

Elhedli et al. [23] study an extension of the ISP in which server capacity is a con-

tinuous variable and the installation cost is proportional to the square root of the ca-

pacity. They propose solution approaches based on a piecewise-linear approximation

of the non-linear terms in the objective function, and a cutting plane method based

on Lagrangian relaxation and second-order cone programming. These approaches are

demonstrated to find high quality solutions for instances with up to 25 facilities and

100 customers. Hoseinpour [29] generalizes the model in [23] to any non-decreasing

concave function. Stiermaier [42] considers a budget for the number servers assigned,

but the objective function does not have the capacity cost term.

The B2Bi use case fits the standard model in which all customers must be served.

Other authors have investigated use cases that make a trade-off between cost and

potential loss of customers who have limited patience for waiting in line. Aboolian et

al. [4] consider a profit-maximizing variation of the ISP in which customer demand

varies inversely with waiting time. In addition to the standard model with M/M/1

queues and discrete capacity levels, they also propose a model with a fixed service rate

and M/M/k queues (i.e., the number of servers at each facility is a decision variable).

Boffey et al. [15] also consider lost demand and study an M/Er/n/N model with

service-level constraints limiting the amount of lost traffic. In a related study [31],

the authors consider an M/Er/n/N model in which given service-level requirements

are enforced by constraints on server utilization.

1.2.2. Metaheuristics

Pasandideh and Chambari [36] and Chambari et al. [18] adapt standard genetic

algorithms (GAs) from the literature, non-dominated ranked genetic algorithm for

solving multi-objective optimization problems (NRGA) [6] and the fast elitist non-

5

dominated sorting genetic algorithm for multi-objective optimization (NSGA-II) [20],

to a bi-objective variation of the ISP with finite queues (M/M/1/K) and a budget

constraint on the number of service facilities used. The two objectives in the model

are to minimize the time customers spend traveling to the facilities and waiting for

service, and to minimize the servers’ idle time. To specialize the GAs for ISP, the

authors introduce a scheme for encoding an ISP solution as a vector (chromosome)

in a way that implements the combination of two parent solutions to produce an off-

spring solution (crossover) as a linear combination of the parent vectors, and a simple

mechanism for random mutation of chromosome’s for individuals in the population.

The initial population of solutions are essentially random assignments of customers

to facilities and random allocations capacity to servers. Thus, there is no guarantee

that any individual in the initial population represents a feasible solution to the ISP.

Likewise, the offspring produced by pairing two members of the population might

be infeasible even if both of its parents are feasible. Therefore, the fitness functions

in the GAs have penalty terms for infeasibility so that the natural selection process

modeled by the GA favors feasibility. The authors report results from test instances

with 6 to 22 customers and 5 to 20 potential service facilities. The GAs were im-

plemented in Matlab on a Pentium 1860 processor with one GB RAM. The reported

running times range from 223.23 to 479.49 CPU seconds with an average CPU time

of 378.94 seconds.

Pasandideh and Niaki [37] present a GA for a similar bi-objective variant of ISP

with a budget for the number of facilities selected. In this case, all servers have the

same fixed capacity; this allows the GA to encode solutions as binary matrices in

which an entry of 1 in row i and column j indicates the assignment of customer i to

facility j as well as the selection of facility j. Using binary matrices for chromosomes

also allows for a more straightforward crossover mechanism compared to the one in

6

[18, 36]. The GA uses a desirability function [21] to address the trade-off between the

two objectives and penalties for violating constraints; thus, the optimization problem

becomes an unconstrained problem with a single objective function. As in [36, 18],

an iteration count is used as the stopping criterion for the GA. The GA is evaluated

on a set of 12 problem instances in which the number of customers and potential

facilities used range from 3 to 150 and 4 to 65, respectively. The authors report

running times of less than one minute to 40 minutes of CPU time with an average

of 5.17 minutes for their GA. They also implemented a mathematical programming

formulation of the problem in LINGO. Using LINGO, the solution times ranged from

less than one minute to over eight hours of CPU time with an average of 80 minutes.

The LINGO model was unable to solve the largest problem in the data set, which

has 150 customers and 65 potential facilities of which at most 15 may be selected. As

measured by the desirability function, which ranges from zero to one, the difference

between the objective function values of the solution returned by LINGO and the

best solution found by the GA ranged from -0.0446 to 0.0002.

Rahmati et al. [39] further extend the model by including a third objective,

cost, and treating each service facility as an M/M/s queue. They propose a multi-

objective version of the harmony search metaheuristic (MOHS) framework [24] and

test it against GA’s based on NRGA and NSGA-II and on a set of 20 problem in-

stances with up to 3,500 customers, and 700 servers distributed among 1,100 potential

facility locations. Like a genetic algorithm, MOHS uses randomization to generate

a population of solutions and to combine and/or modify those solutions to generate

new members of the population, and a fitness function to guide the inclusion and

exclusion of solutions from generation of the population to the next. The algorithms

in [39] were implemented in MATLAB on a laptop with a 2GHz CPU and 8 GB of

RAM. The solution times using MOHS, NRGA, and NSGA-II ranged from 19.34 to

7

92.94 seconds of CPU time with a mean of 43.86 seconds, 37.92 to 183.93 seconds

with a mean of 87.61 seconds, 22.34 to 117.74 seconds of with a mean of 62.82 sec-

onds, respectively. The differences in solution times were found to be statistically

significant at the 95% confidence level. The MOHS algorithm also outperformed the

two genetic algorithms in measures of the quality of the Pareto frontier (e.g., diversity

and number of pareto-optimal solutions).

Hajipour et al. [27] extend the model even further by introducing an additional

budget on capacity. They compare genetic and harmony search algorithms simliar

to those proposed by Rahmati et al. [39], and a multi-objective simulated annealing

algorithm. As in [39], the algorithms in were implemented in MATLAB on a laptop

with a 2GHz CPU and 8 GB of RAM, and test on a set of 25 problem instances with

up to 5,500 customers and 1,800 facilities. The harmony search algorithm solved all

problem instances within a minute of CPU time

Akrat and Jafari [12] address a ISP variant in which the selected facilities have the

same service rate and customers are assigned to the nearest facility. The objective is

to minimize the total travel and waiting time subject to a constraint on the average

waiting time at any server. They develop an integer programming model, a simulated

annealing heuristic, and a genetic algorithm for the problem. The solution approaches

are tested on problems with 10 to 25 customers and 3 to 15 facilities.

Zamani et al. [47] consider the possibility of service interruptions (e.g., ATM

malfunctions) to the ISP. The timing and duration of service interruptions are an

additional source of uncertainty in the system. The authors propose a genetic algo-

rithm and an ant lion heuristic [33] to solve this complex variation of the fundamental

problem, as well as a non-linear mixed integer program that they attempt to solve

with Baron. In their numerical testing, the allow Baron up to three hours of CPU

time to solve a given problem instance. Testing instances with 50 to 200 customers

8

and 10 to 30 facilities, they find that Baron runs for the full three hours in most

cases (61 out of 71) without finding a provably optimal solution. The metaheuristics

require at most several minutes to solve each these problem instances and produce

solutions with comparable quality to the exact approach. Interestingly, this is one of

only two works cited herein in which the authors report attempts to validate their

proposed solution approaches with a non-linear mixed integer programming solver.

The heuristics for the ISP surveyed in this section are fundamentally different

than the one developed in this dissertation. Once the representation of the ISP

solution as a chromosome is determined, the focus in this stream of research is on

tuning the parameters of the GA or HS framework. This is an important task in

the making algorithm effective, but it doesn’t involve or exploit the structure of the

ISP. Another important difference is that most of the algorithms discussed in this

section are designed for finding pareto-optimal solutions to multi-objective variations

of the ISP. So, they propose schemes for combining the objectives (with a penalty

for infeasibility) into a single fitness or desirability measure that ranges from zero to

one. The ISP considered in this dissertation has a single cost function in which the

user-defined trade-offs between competing objectives are specified in the data.

1.2.3. Math-Programming-Based Heuristics

Some of the papers that develop exact solution procedures for the ISP also present

heuristics that are guided by the optimization process. For example, Agnihothri et

al. [5] describe a heuristic that attempts to derive a feasible solution from each

iteration of their Lagrangian relaxation procedure. In the procedure, the constraints

ensuring that every customer is assigned to exactly one facility are relaxed in the

lower-bound problem. The heuristic attempts to find a feasible solution to the ISP

from the solution to the lower-bound problem by assigning each customer that has

either not been assigned to a facility or has been assigned to multiple facilities to

9

the open facility that minimizes a particular cost function. If this yields a feasible

assignment, then the heuristic attempts to improve the solution by checking to see if

there are any customers whose assignment could be changed to another facility that

has sufficient capacity in a way that reduces the total cost. Amiri [7, 8, 9] describes

a similar heuristic for attempting to construct a primal solution at each step of a

Lagrangian relaxation procedure.

Stiermaier [42] proposes metaheuristics for a special case of the ISP proposed by

Aboolian et al. [3] in which customers are always assigned to the nearest facility. The

initial solution for each of the metaheuristics is produced by the “descent” heuristic

developed in [3]. The descent heuristics applies an algorithm that optimally assigns

customers to a given subset of facilities, S ⊂ M . The algorithm then applies local

search to a neighborhood of S defined by operations on the set (e.g., adding an element

from M \ S to S).

1.2.4. Greedy Heuristics

Some of the math-programming-based heuristics use greedy constructive proce-

dures within a more complex algorithm (e.g., Amiri [7, 8, 9]), but we found only two

examples of stand-alone greedy heuristics for ISP in the literature. Wang et al. [46]

propose a greedy dropping-heuristic (GD) that starts with all service facilities open

and sequentially closes a given number of facilities. The GD heuristic starts will all

facilities open and assigns each customer to its preferred (facility); the data are such

that this solution is always feasible. Next, the GD heuristic closes one facility at

a time, reassigns the affected customers, and computes the solution cost (∞ if the

solution is not feasible). Whichever of the new set of feasible solutions is feasible be-

comes the incumbent and the process continues until a local minimum is found. The

authors note that the GD heuristic is adapted from an algorithm typically used in

for the uncapacitated facility location (UFL) problem. To improve solution quality,

10

the GD heuristic is embedded in a Tabu Search [25] (TS) framework. Both heuristics

are compared to a Lagrangian relaxation scheme, which is shown to converge to solu-

tions with a given optimality tolerance, in a computation study on problem instances

with up to 459 costumers, 84 candidate service-facility locations, and three capacity

levels. The GD takes fractions of a second to run, but does not always find feasible

solutions, whereas the TS finds solutions in all cases in an average of 2.3 seconds.

The Lagrangian approach also finds solutions solutions in all cases and is particularly

efficient when the server utilization rate is relatively low; however, its running time

increases with the given optimality tolerance and can be relatively long (16 to 40

minutes) in some cases.

In [5] the authors also describe a heuristic that can be applied independently from

the Lagrangian relaxation procedure. This heuristic starts with all facilities open

and assigns customers to facilities one at a time in a greedy fashion whereby the

current customer is assigned to the facility that minimizes the resulting change in

the cost function. As with the first heuristic, a post-processing/improvement check

is applied if the greedy assignment produces a feasible solution. This is similar to the

UFL-based heuristic proposed by Wang et al. [46]. This type of heuristic is the most

similar we have found in the literature to the heuristic developed in this dissertation.

One important distinction is that unlike the problem studied in this dissertation, the

ISPs considered by [5] and [46] do not involve deciding how much capacity to allocate

to the servers. The heuristic developed in this dissertation is novel in that it employs

multiple capacity allocation mechanisms and multiple greedy customer-assignment

strategies.

11

1.3. Goals

The primary goal is to find a heuristic which works quickly enough for real-time

calculations (not slower than one solution per second) that can be written into a Java-

based application (although the language is not important) and finds an acceptably

good solution within the time constraints. This would allow for the heuristic to be

coded into the B2Bi application and deployed to client sites so that performance

tuning is done real-time. The end goal is to provide an adaptive solution to meet

customer needs as they change over time and be able to dynamically and quickly

update tuning in response to a sudden spike in traffic.

The secondary goal is to determine if the difficulty of finding a solution can be

determined. Identifying what factors are responsible for the problem’s difficulty is

part of this goal. Understanding how the problem data could be adjusted to reduce

difficulty is the ultimate end goal.

The final goal is to determine what effect additional constraints have on the effi-

ciency of the models and heuristic. The additional constraints tested are a constraint

on the maximum number of open facilities in the solution and a constraint on the

maximum capacity of the overall system. This provides four scenarios consisting

of the base model with neither additional constraint, only the additional constraint

for the maximum system capacity, only the additional constraint for the maximum

number of open facilities, and both additional constraints.

Each model was tested with each data set, with and without each of the two

additional constraints, with and without giving the models a starting point, and a

five-minute maximum run time. The heuristic was tested with each data set, with

and without each of the two additional constraints, and a five-minute maximum run

time (the results were used as the starting point for the similarly constructed model

when testing the models with a starting point). The heuristic also stored results for

12

stopping after the initial greedy algorithm so the results could be compared with the

longer-running version of the heuristic which included customer reassignment tests.

1.4. Contributions

This dissertation develops a fast, effective heuristic for the immobile server prob-

lem that is easy to implement. This fills a gap between computationally intensive

solution approaches in the literature: exact methods, that require specialized op-

timization software to implement, and meta-heuristics. The exact methods in the

literature involve iteratively solving sequences of mixed integer programs. Another

contribution of this dissertation is a stand-alone mathematical programming model

that can be solved with a single, straightforward application of a commercial solver.

A relatively large testbed of new problem instances, many of which are orders of

magnitude larger than those in the literature, was generated to evaluate the new

solution approaches. These data sets have been made available to share with other

researchers on the SMU Scholar website. In the computational study with the testbed

data and data from the literature, the heuristic was shown to be very effective for

time-limited use cases such as reconfiguring resources for B2Bi clients and content

delivery networks. The heuristic was also shown to improve the performance of the

exact methods by quickly finding high-quality incumbent solutions. Through statis-

tical and sensitivity analysis, the dissertation also provides a better understanding of

the effect of customer waiting time cost and capacity budgets on solution with exact

methods.

13

Chapter 2

Immobile Server Problem and its Cost Components

The input for the problem consists of a set of traffic streams (customers) denoted

by i ∈ {1, 2, ...,m}, single-server queues denoted by j ∈ {1, 2, ..., n}, and server-

capacity levels denoted by k ∈ {1, 2, ..., K}, which are described using the following

parameters: λi is the average rate that customer i sends jobs to the queuing system,

µjk is the average service rate for queue j if its server is allocated capacity level k, cij

is the cost of assigning the traffic for customer i to queue j, t is the waiting cost per

job per time unit, and fjk is the cost of allocating capacity level k to queue j. With

those inputs—which are used by all mathematical models and the heuristic—along

with the solution given by the two binary decision variables of xij to denote customer

i is assigned to queue j and yjk to denote queue j is operating at capacity level k,

the base nonlinear Immobile Server Problem is:

Minimize:

m∑
i=1

n∑
j=1

cijλixij + t

n∑
j=1

∑m
i=1 λixij∑K

k=1 µjkyjk −
∑m

i=1 λixij
+

n∑
j=1

K∑
k=1

fjkyjk (2.1)

14

Subject To:

m∑
i=1

λixij −
K∑
k=1

µjkyjk ≤0 j ∈ {1, ..., n} (2.2)

K∑
k=1

yjk ≤1 j ∈ {1, ..., n} (2.3)

n∑
j=1

xij =1 i ∈ {1, ...,m} (2.4)

xij ∈{0, 1} i ∈ {1, ...,m}, j ∈ {1, ..., n} (2.5)

yjk ∈{0, 1} j ∈ {1, ..., n}, k ∈ {1, ..., K} (2.6)

The objective function (2.1) is to minimize the three costs described in further

detail in this chapter: the facility assignment cost, the customer wait-time cost,

and the facility capacity cost. Constraint (2.2) forces there to be sufficient capacity

assigned to the facility (µjkyjk) to meet the demand assigned to the facility (λijxij).

Constraint (2.3) specifies that a facility may only have one capacity level assigned (as

yjk is binary from constraint (2.6)), but may also have no capacity level assigned—

signifying the facility is unused. Constraint (2.4) specifies that a customer must be

assigned to one and only one facility (as xjk is binary from constraint (2.5)).

A few of the many applications this problem can solve are selecting the best phys-

ical location for new facilities, the number of devices needed—such as PBX’s—at

existing facilities, airport security to determine number of agents for each lane, Con-

tent Delivery Networks [38]—which need the capability to quickly adapt to changing

demands, and Sterling B2B Integrator (B2Bi) for application performance tuning.

However, the base model does have a few issues that might need to be addressed such

as allowing for division by zero—especially in allowing for a facility to be unused,

whether customers should be individuals or groups of individuals, and how to struc-

ture/calculate the costs—which could be highly subjective to the person making that

determination.

15

2.1. Facility Assignment Cost

The
∑m

i=1

∑n
j=1 cijλixij portion of equation (2.1) is the facility assignment cost.

It drives customer assignment to a preferred facility—provided it does not violate

feasibility. Since a customer’s facility cost (cij) can vary by facility, the facility with

the lowest cost for that customer is considered the customer’s preferred facility.

The total cost being applied is cijλi if the customer is assigned to that facility

(xij = 1). Therefore, customers with a larger λi tend to get assigned to their preferred

facilities as a smaller change in cij between facilities for those customers has a larger

change in the overall solution value.

The value for the customer’s demand (λi) does not vary by facility in this model

as the assumption is that the customer has certain requirements to be met regardless

of which facility the customer gets assigned. Depending on the type of service being

provided, this might not be accurate. For example, an elite grocery store chain

that assigns a customer to a location that requires more travel might get less overall

business from that customer as the customer might only travel to that location for

products that cannot be purchased at a competitor with a facility that is closer to

the customer.

The complexity created by the facility assignment cost is that customers could

form groups with similar costs given different facility assignments. It could be as

simple as swapping two customers between facilities, but as complex as moving every

customer to a different facility while maintaining a similar cost. This can cause a

large difference in the actual solution with a small change in the solution cost.

16

2.2. Facility Capacity Cost

The
∑n

j=1

∑K
k=1 fjkyjk portion of equation (2.1) is the facility capacity cost. It

drives capacity of the facility to be the lowest feasible value—meaning it tries to keep

customers from being assigned to the facility if that customer assignment causes the

required capacity to increase to the next higher incremental value by trying to assign

customers to the facility with the lowest fjk values. The yjk value specifies if the

facility is being operated at the specific capacity level and fjk is the total cost of

operating the facility at that capacity level.

The facility capacity cost (fjk) generally represents the cost of opening the facility—

assuming it’s a new facility—plus the cost of being able to service a specific amount of

demand—sometimes referred to as a customer access cost. Even in the models which

break apart these components, the customer access cost does not vary by customer

and facility—only by facility. In order to vary by customer assignment and capacity

level, both the customer assignment (xij) and facility capacity level (yjk) would be

needed in this cost—creating a nonlinear cost using xijyjk to denote the customer is

assigned to the facility and the facility is operating at the specific capacity level. An

additional binary decision variable (wijk) could be used so this cost could stay linear

(xij + yjk ≤ wijk + 1) at the expense of adding mnK additional constraints.

This base model does not require the increments in facility capacity cost to be

linear—or even convex. They are simply break points used to determine a specific

capacity level (µjk) and cost (fjk). One of the reasons for splitting the cost into its

components is to apply a concave cost function (to represent economies of scale) in

determining the customer access cost. However, these calculations are done prior to

the solver attempting to find the optimal solution and result in a set of µjk and fjk

values that continue to increase at each higher capacity level.

17

2.3. Customer Wait-Time Cost

The t
∑n

j=1

∑m
i=1 λixij∑K

k=1 µjkyjk−
∑m
i=1 λixij

portion of equation (2.1) is the customer wait-

time cost. It drives demand and capacity of the facility to be level across all facilities

by penalizing overloading some of the facilities to the point where the customers

assigned to the facility experience long wait times to be serviced on average. This

cost component causes the problem to be nonlinear and greatly increases the difficulty

in solving the problem. The t values in our data sets are either a given number or

calculated to be the maximum cijλi. In our testing, a β value is used to vary the

value of t to determine the effect of t on the solution or run time.

Some models have been developed to linearize this component by either iteratively

calculating a lower bound until the same solution is achieved twice, or by using addi-

tional constraints to calculate the appropriate ratio without the need to iterate. Both

provide increased speed in finding a solution compared to using a nonlinear solver—

however the solution cannot be guaranteed to be globally optimal. As discussed later,

the Elhedhli model also provides for some interesting results when given a good start-

ing point as the model is not using the actual objective value to minimize the cost,

but an approximate linearized objective value. Additionally, the Colley model can

be highly sensitive to the tolerance levels used by the MIP solver. Even linearizing

the customer wait-time cost does not affect the increase in difficulty in finding the

optimal solution.

2.4. Cost Interactions

The three cost components interact with each other to affect optimal customer

assignment and facility capacity level. The facility assignment and capacity costs are

competing objectives. The facility assignment cost is minimized when all customers

are assigned to their preferred (e.g., nearest) facility. From this perspective, a given

18

Figure 2.1. Cost Interaction

facility can be seen as attracting as much demand as possible from a particular set of

customers. At the same time, however, the facility capacity cost can be minimized for

a given facility when it is assigned as little demand as possible. The customer wait-

time cost can be seen as an incentive to assign customers evenly across all facilities.

The customer wait-time cost is required in order to keep a facility from being

overloaded if it is the preferred facility for a large portion of the customers. The t

value helps scale the customer wait-time cost so that it can compete with the facility

assignment cost. This is purpose of running the data multiple times with a different

β so that the correct scaling can be found to offset the competing costs.

The lowest possible customer wait-time cost is with each facility at maximum

capacity and the demand perfectly spread across all facilities. This is because the

ratio (λ
µ−λ) increases faster as λ increases than the corresponding decrease in another

facility. If t varied by facility, then this would not necessarily be the case. However,

19

t treats all facilities with equal importance in the base model.

2.5. Costs in IBM Sterling B2B Integrator

Since IBM Sterling B2B Integrator (B2Bi) is a software application, the costs

cannot be calculated like they would for physical facilities and customers (e.g. using

the distance between the customer and the facility to calculate a cost). Therefore,

there is a great deal of leeway in determining the three costs in B2Bi.

For example, certain types of business processes perform similar types of func-

tionality and could be grouped together. The priority queues the business processes

could be assigned to could be predetermined for specific types of functionality and

therefore business processes with that functionality would have that priority queue

as its preferred “facility” with the lowest cost. Costs could be linearly or nonlinearly

increased from there based on the desirability of that business process running in

another priority queue.

Additionally, certain priority queues might need more idle threads available in

case new busines processes are executed. These priority queues could be given lower

facilitiy capacity costs to help drive additional threads to that priority queue.

Customer wait-time cost would need to be set to appropriately balance out the

other costs so that any single priority queue is not overloaded with assigned business

processes.

Capacity and arrival rates would also be calculated based on the amount of work

being performed during a specific time period. The capacity would be the time

period multiplied by the number of threads at that capacity level (e.g. 3,600, 7,200,

and 10,800 could be three capacity levels for 1, 2, or 3 threads being available over a

one hour time period using seconds as the unit of measure). The arrival rate would

be the average number of seconds a business process was executing in any given hour.

20

Because business processes can have multiple instances executing at the same time

in B2Bi, the arrival rate could be higher than the number of seconds in an hour.

21

Chapter 3

Mathematical Models

Three different mathematical approaches were compared: the nonlinear base

model which is assumed to be the most accurate provided it completes within the

allowed time—but also the most difficult to solve, the approach developed by Elhedhli

in 2006 [22] which trades accuracy for speed, and the Colley linear model developed

in this dissertation.

3.1. Nonlinear

The nonlinear model was solved using Baron (19.12.7 [44]). It was given a maxi-

mum run time of five minutes. When giving a starting point, the xij and yjk decision

variables are preset to the values calculated by the heuristic presented in Chapter 4

of this dissertation before the model is solved.

3.2. Elhedhli Linear

The Elhedhli linear model was solved using Gurobi (9.1.2 [26]). The model lin-

earizes customer wait-time cost using a new rjh parameter where h is the iteration

and H represents the number of iterations. The rjh value is calculated at the end of

each iteration for the next iteration to use.

New Rj and zjk decision variables are then used to linearize the objective function.

The value for zjk is the ratio of the demand to the capacity for the facility. The value

for Rj is the lower bound of the ratios calculated from the current zjk and the ratios

(rjh) from previous iterations. The new objective function component for customer

22

wait-time cost is t
∑n

j=1Rj.

The Elhedhli linear formulation from his paper in 2006 [22] is therefore:

Minimize:

m∑
i=1

n∑
j=1

cijλixij + t

n∑
j=1

Rj +
n∑
j=1

K∑
k=1

fjkyjk (3.1)

Subject To:

m∑
i=1

λixij −
K∑
k=1

µjkzjk =0 j ∈ {1, ..., n} (3.2)

K∑
k=1

yjk ≤1 j ∈ {1, ..., n} (3.3)

n∑
j=1

xij =1 i ∈ {1, ...,m} (3.4)

zjk − yjk ≤0 j ∈ {1, ..., n}, k ∈ {1, ..., K} (3.5)

zjk −
Rj

(1 + rjh)2
≤

r2
jh

(1 + rjh)2
j ∈ {1, ..., n}, k ∈ {1, ..., K}, h ∈ {1, ..., H} (3.6)

xij ∈{0, 1} i ∈ {1, ...,m}, j ∈ {1, ..., n} (3.7)

yjk ∈{0, 1} j ∈ {1, ..., n}, k ∈ {1, ..., K} (3.8)

0 ≤ zjk ≤ 1 j ∈ {1, ..., n}, k ∈ {1, ..., K} (3.9)

0 ≤Rj j ∈ {1, ..., n} (3.10)

The formula in the constraint to limit Rj implies that the exact value for Rj

matches the true ratio; however, since it is an inequality in the constraint, the value

for Rj could be lower than the true value of the ratio, thus making the solution cost

the model returns to be lower than the actual solution cost. The model is solved

iteratively with H increasing at each iteration until the same solution is found twice

in a row.

23

Figure 3.1. Elhedhli Linear Model Example

When giving a starting point, the xij and yjk decision variables are preset to the

values calculated by the heuristic. The rjh values are calculated as if the model itself

was executed with one iteration already. Then the model begins its normal iteration.

Figure 3.1 is an example of the zjk and Rj values calculated for each iteration with

the new rjh value calculated based on the incumbent solution. The solution cost can

be seen to increase as Rj and rjh converge. The zjk value shown is the percentage of

demand versus the selected capacity level for that facility during that iteration—as

the capacity level can change from one iteration to another.

This also demonstrates that stopping based on the same solution twice in a row,

stopping based on the solution cost converging, and stopping based on Rj converging

to rjH are three possible stopping conditions for this mathematical model. While

stopping based on the same solution would be an exact match, stopping based on

converging values would be tested against some tolerance. In order to determine which

stopping point is best, all three stopping conditions were tested for each scenario,

starting point, and data set. Stopping based on solution cost checked for the absolute

difference in solution cost to be within 1e-08 while stopping based on Rj convering

to rjH checked for a tolerence of 1e-03 for the percentage difference of each facility.

24

3.3. Colley Linear

The Colley linear model was solved using Gurobi (9.1.2). In order to linearize

the objective function (2.1), a new continuous decision variable qjk will represent the

(average) waiting time at facility j if facility j is assigned capacity level k, and zero

otherwise. Using this notation, the waiting time at facility j is
∑K

k=1 qjk, and the

waiting time term in the objective function can be replaced with the linear term

t
∑n

j=1

∑K
k=1 qjk.

Let continuous decision variable vij = 1 +
∑K

k=1 qjk if customer i is assigned to

facility j (i.e. if xij = 1), and zero otherwise. Additionally, a continuous parameter

M is introduced which must be a least one plus the largest possible average wait time.

This can be found by using another mathematical model or estimated by taking the

largest µjk value if all parameters are integers. Care should be taken to not have the

value be too low as it could over constrain the problem and/or cause the problem to

become infeasible. This produces the following mixed-integer linear program:

Minimize:

m∑
i=1

n∑
j=1

cijλixij + t
n∑
j=1

K∑
k=1

qjk +
n∑
j=1

K∑
k=1

fjkyjk (3.11)

Subject To:

m∑
i=1

λivij −
K∑
k=1

µjkqjk =0 j ∈ {1, ..., n} (3.12)

K∑
k=1

yjk ≤1 j ∈ {1, ..., n} (3.13)

n∑
j=1

xij =1 i ∈ {1, ...,m} (3.14)

qjk ≤Myjk j ∈ {1, ..., n}, k ∈ {1, ..., K} (3.15)

vij ≥

(
1 +

K∑
k=1

qjk

)
−M (1− xij) i ∈ {1, ...,m}, j ∈ {1, ..., n} (3.16)

25

xij ∈{0, 1} i ∈ {1, ...,m}, j ∈ {1, ..., n} (3.17)

yjk ∈{0, 1} j ∈ {1, ..., n}, k ∈ {1, ..., K} (3.18)

0 ≤qjk j ∈ {1, ..., n}, k ∈ {1, ..., K} (3.19)

0 ≤vij i ∈ {1, ...,m}, j ∈ {1, ..., n} (3.20)

In order to justify the use of qjk and vij, let the following variables represent

specific summations and sets:

1. Let Ij ⊆ {1, 2, ...,m} denote the customers assigned to facility j: Ij ⊆ {i ∈

1, ...,m : xij = 1}

2. Let λ̂j be the arrival rate at facility j: λ̂j =
∑m

i=1 λixij =
∑

i∈Ij λi.

3. Let µ̂j be the capacity at facility j: µ̂j =
∑K

k=1 µjkyjk (from (3.13) and (3.18)

no more than one yjk may have a value of one).

4. Let q̂j be the average waiting time at facility j: q̂j =
∑K

k=1 qjkyjk (from (3.13)

and (3.18) no more than one yjk may have a value of one).

Lemma 3.1 Since both µ̂j and q̂j are based on yjk and from (3.13) and (3.18), no

more than one yjk may have a value of one, then
∑K

k=1 µjkqjk in (3.12) equals µ̂j q̂j.

From (3.16) vij must be no smaller than one plus q̂j if xij is equal to one, otherwise

vij may be any positive value. Because the objective function wants to minimize qjk,

it will attempt to set those values to zero. However, if a customer is assigned to

facility j, then vij must be at least one and from (3.12) qjk must be greater than zero.

Therefore, vij must also increase, causing qjk to continue to increase until (3.12) and

(3.16) are both satified, which would be when vij is exactly equal to one plus q̂j as

any value over that would cause q̂j to be larger than it needs to be.

26

Therefore, in an optimal solution, q̂j is equal to the average waiting time at facility

j as shown below:

Case 1: Facility j is used (i.e.,
∑m

i=1 xij ≥ 1):

m∑
i=1

λivij =
K∑
k=1

µjkqjk ⇒ (3.21)

∑
i∈Ij

λivij =
K∑
k=1

µjkqjk ⇒ (3.22)

∑
i∈Ij

λivij = µ̂j q̂j ⇒ (3.23)

∑
i∈Ij

λi(1 + q̂j) = µ̂j q̂j ⇒ (3.24)

∑
i∈Ij

λi +
∑
i∈Ij

λiq̂j = µ̂j q̂j ⇒ (3.25)

∑
i∈Ij

λi = µ̂j q̂j −
∑
i∈Ij

λiq̂j ⇒ (3.26)

λ̂j = µ̂j q̂j − λ̂j q̂j ⇒ (3.27)

λ̂j = q̂j(µ̂j − λ̂j) ⇒ (3.28)

q̂j =
λ̂j

µ̂j − λ̂j
(3.29)

Equation (3.23) follows from (3.22) by Lemma 3.1. Equation (3.24) follows from

(3.23) by definition of q̂, and (3.27) follows from (3.26) by definition of λ̂.

Case 2: Facility is not used (i.e.,
∑m

i=1 xij = 0): From (3.16), all vij for facility j

can be equal to zero, allowing q̂j to also equal 0 from (3.12).

3.4. Mathematical Model Size Comparison

Using m for the number of customers, n for the number of facilities, K for the

capacity levels, and H for the number of prior iterations when solving the Elhedhli

model, the size of each model is given in Table 3.1:

27

Table 3.1. Mathematical Model Size Comparison

Model Constraints Decision Variables

Nonlinear 2n+m+mn+ nK mn+ nK

Elhedhli Linear 2n+m+mn+ 2nK + nKH mn+ 2nK + n

Colley Linear 2n+m+ 2mn+ 2nK 2mn+ 2nK

While the Elhedhli linear model above grows with each iteration, the formula listed

would be applicable to the final iteration as it is the largest number of constraints.

The size of the model depends on the data set, if a starting point was given, and the

number of iterations required. The more iterations required, the larger the model

becomes and the more time required for solving each additional iteration. Even with

this, the Elhedhli linear model usually performs in the least amount of elapsed time

compared to the other mathematical models.

28

Chapter 4

Heuristic

The heuristic developed in this dissertation for handling even more stringent time

constraints in exchange for accuracy was written in Java. However, any programming

language could be used. Java was chosen as one of the potential uses is with IBM

Sterling B2B Integrator (B2Bi), which is Java-based. The heuristic’s base greedy

algorithm is a Constructive Heuristic [16] designed for maximum speed so that a

solution can be found in no longer than one second. Additional customer reassignment

alogrithms using repetitive and distinct Hill Climbing [16] local search heuristics can

also be applied by the heuristic to potentially get a better result while incurring some

additional elapsed time.

The elapsed time is important for B2Bi as unexpected or abnormally large spikes

in traffic can occur. For example, many retail companies experience abnormally large

spikes in traffic on Black Friday and the following month. Also, the marketing depart-

ment could potentially create an unexpected increase in traffic with a vastly successful

promotion. Both cases currently require the information technology department to

adjust tuning prior to the spike—provided the spike is expected—and to be adjusted

back to normal parameters after the spike in traffic. A missed change in the tuning

could bottleneck the system, potentially causing a loss of revenue. Integrating this

heuristic into B2Bi for automatically tuning the system could potentially save the

company from experiencing lost sales due to a spike in traffic. Therefore, finding a

method of constructing the data set and costs that minimizes the solution error using

just the heuristic’s greedy alrogithm would be a best case scenario.

29

The rest of this chapter is structured as follows: Section 4.1 gives an abstract

description of the heuristic and pseudocode for its main routine. Section 4.2 illustrates

the heuristic with a small problem instance (data set ST1b). Pseudocode for the

subroutines of the heuristic are given in sections 4.3, 4.4, and 4.5, and a worst-case

complexity analysis is presented in section 4.6.

4.1. Basic Structure

Variables which represent an indexed set of values—such as λi respresenting the

demand for customer i—use subscripts for the single value being accessed or use a

bar (λ̄) when refering to the set as a whole. This nomenclature is used throughout

the pseudocode in this dissertation. As mentioned in the introduction for Chapter

2, all pseudocode has access to the input data (m, n, K, t, λ̄, c̄, µ̄, and f̄). Which

are therefore not listed as inputs to the pseudocode routines. Comments are also

included in the pseudocode using /* ... */ notation.

In terms of the heuristic, the greedy constructive algorithm initially assigning

customers to facilities is called “Phase 1” and the customer reassignment logic is

called “Phase 2” so that the results of running only the greedy constructive algorithm

can be compared with the complete heuristic. All Phase 1 routines require a sorted

list of customers (L̄) and output a solution of x̄ and ȳ. All Phase 2 routines take the

solution of x̄ and ȳ as both the input and the output.

For this dissertation, seven customer lists were calculated from the data set to

provide a Deterministic Search [16]. The seven customer lists derived from the data

set are sorted using λi, cmin, cavg, cmax, λicmin, λicavg, and λicmax—where cmin is

the minimum c for the customer, cavg is the average c for the customer, and cmax

is the maximum c for the customer. Additionally, three randomly sorted customer

lists were included; this allows for a potentially better solution to be found, but

30

potentially results in different solutions across multiple runs of the heuristic against

the same input.

Phase 1 has three possible capacity level options that can be utilitized: forcing

a minimum capacity (4.4), unforced capacity (4.5), and forcing a maximum capacity

(4.6). These are represented below with three different sets of pseudocode. Each of the

ten lists were sorted both ascending (represented with4) and descending (represented

with 5) when calling the three capacity level options, creating sixty executions for

Phase 1 within this heuristic. All sixty instances were executed simultaneously in

separate threads to minimize the elapsed time.

All sixty variants of the greedy constructive algorithm of Phase 1 must complete

before any iterations of Phase 2 are executed in the heuristic for this dissertation. An

additional time contraint of five minutes was also applied to be consistent with the

time limit applied to the mathematical models.

In this heuristic, Phase 2 continues to loop until the solution no longer changes.

Within this outer loop, three subroutines are executed in the sequence of One Cus-

tomer Move (4.7), Two Customer Move (4.8), and Swap Customers (4.9).

31

The main heuristic process for this dissertation can be represented as:

Algorithm 4.1 Main

1: xij ← 0 ∀ i ∈ {1..m}, j ∈ {1..n}

2: yjk ← 0 ∀ j ∈ {1..n}, k ∈ {1..K}

3: z ←∞

/* Initialize and populate a set of 10 customer lists */

4: M̄ ← {1..10}

5: M1 ← ∀ i ∈ {1..m} 4 λi

6: M2 ← ∀ i ∈ {1..m} 4min(cij∀j ∈ {1..n})

7: M3 ← ∀ i ∈ {1..m} 4 avg(cij∀j ∈ {1..n})

8: M4 ← ∀ i ∈ {1..m} 4max(cij∀j ∈ {1..n})

9: M5 ← ∀ i ∈ {1..m} 4 λimin(cij∀j ∈ {1..n})

10: M6 ← ∀ i ∈ {1..m} 4 λiavg(cij∀j ∈ {1..n})

11: M7 ← ∀ i ∈ {1..m} 4 λimax(cij∀j ∈ {1..n})

12: M8 ← ∀ i ∈ {1..m} 4 random()

13: M9 ← ∀ i ∈ {1..m} 4 random()

14: M10 ← ∀ i ∈ {1..m} 4 random()

/* Execute Phase 1 with customer lists sorted ascending and then descending */

15: for s = 1 to 2 do

16: for a = 1 to 10 do

17: (χ̄, γ̄)← ForcedMinimumCapacity 4.4 (Ma)

18: Z ← CalculateCost 4.2 (χ̄, γ̄)

/* Best Phase 1 Solution? */

19: if Z < z then

20: z ← Z

21: x̄← χ̄

22: ȳ ← γ̄

23: end if

32

24: (χ̄, γ̄)← UnforcedCapacity 4.5 (Ma)

25: Z ← CalculateCost 4.2 (χ̄, γ̄)

/* Best Phase 1 Solution? */

26: if Z < z then

27: z ← Z

28: x̄← χ̄

29: ȳ ← γ̄

30: end if

31: (χ̄, γ̄)← ForcedMaximumCapacity 4.6 (Ma)

32: Z ← CalculateCost 4.2 (χ̄, γ̄)

/* Best Phase 1 Solution? */

33: if Z < z then

34: z ← Z

35: x̄← χ̄

36: ȳ ← γ̄

37: end if

38: Ma ← ∀ i ∈ {1..m} 5Ma /* Sort Ma descending for the next round */

39: end for

40: end for

/* At least one feasible solution? */

41: if z 6=∞ then

42: Save x̄ and ȳ as the best Phase 1 Solution

/* Reinitialize “best” solution to find best Phase 2 solution */

43: xij ← 0 ∀ i ∈ {1..m}, j ∈ {1..n}

44: yjk ← 0 ∀ j ∈ {1..n}, k ∈ {1..K}

45: z ←∞

/* Execute Phase 2 */

46: for all (X̄, Ȳ) ∈ feasible and unique Phase 1 solutions do

33

47: Z ← CalculateCost 4.2 (X̄, Ȳ)

48: l← 1

49: while l = 1 do

50: l← 0

51: (χ̄, γ̄)← One Customer Move 4.7 (X̄, Ȳ)

52: ∆← CalculateCost 4.2 (χ̄, γ̄)

/* Best Solution? */

53: if ∆ < Z then

54: Z ← ∆

55: X̄ ← χ̄

56: Ȳ ← γ̄

57: l← 1

58: end if

59: (χ̄, γ̄)← Two Customer Move 4.8 (X̄, Ȳ)

60: ∆← CalculateCost 4.2 (χ̄, γ̄)

/* Best Solution? */

61: if ∆ < Z then

62: Z ← ∆

63: X̄ ← χ̄

64: Ȳ ← γ̄

65: l← 1

66: end if

67: (χ̄, γ̄)← Swap Customers 4.9 (X̄, Ȳ)

68: ∆← CalculateCost 4.2 (χ̄, γ̄)

/* Best Solution? */

69: if ∆ < Z then

70: Z ← ∆

71: X̄ ← χ̄

34

72: Ȳ ← γ̄

73: l← 1

74: end if

75: end while

/* Best Phase 2 Solution? */

76: if Z < z then

77: z ← Z

78: x̄← χ̄

79: ȳ ← γ̄

80: end if

81: end for

82: Save x̄ and ȳ as the best Phase 2 Solution

83: end if

35

4.2. Illustration

Using a data set with five customers (m = 5), three facilities (n = 3), and three

capacity levels (K = 3), the heuristic can be illustrated graphically in a step-by-step

fashion. The data set has t = 1000 and the following indexed values:

Table 4.1. Customer-related Parameters

Assignment Cost (cij)

Customer (i) Demand (λi) 1 2 3 max(λicij)

1 15 20 10 15 300

2 25 30 10 20 750

3 15 45 30 15 675

4 10 25 75 50 750

5 20 40 20 60 1200

Table 4.2. Facility-related Parameters

Capacity (µjk) Capacity Cost (fjk)

Facility (j) 1 2 3 1 2 3

1 30 60 90 90 180 270

2 30 60 90 90 180 270

3 30 60 90 90 180 270

Given a sort order of the maximum facility assignment cost times demand (max(λicij))

descending, the customers will be evaluated by Phase 1 in the ordered set {5, 2, 4, 3, 1}.

All three Phase 1 capacity options will be illustrated. Each solution will then be eval-

uated by Phase 2 as part of the illustration for that Phase 1 capacity option.

36

4.2.1. Forced Minimum Capacity Illustration

Forced Minimum Capacity starts with no capacity assigned to any facility. The

solution cost starts at $0.00.

37

Customer 5 is assigned to Faciltity 2. Because Faciltity 2 had no capacity and

Customer 5 has 20 units of demand, Faciltity 2’s capacity increases to 30 units as

that is the smallest feasible capacity level after assigning Customer 5 to Faciltity 2.

The solution cost is now $2,490.00.

38

Customer 2 is assigned to Faciltity 2. Because Faciltity 2 had an available capacity

of 10 units and Customer 2 has 25 units of demand, Faciltity 2’s capacity increases

to 60 units as that is the smallest feasible capacity level after assigning Customer 2

to Faciltity 2. The solution cost is now $3,830.00.

39

Customer 4 is assigned to Faciltity 1. Because Faciltity 1 had no capacity and

Customer 4 has 10 units of demand, Faciltity 1’s capacity increases to 30 units as

that is the smallest feasible capacity level after assigning Customer 4 to Faciltity 1.

The solution cost is now $4,670.00.

40

Customer 3 is assigned to Faciltity 2. Because Faciltity 2 had an available capacity

of 15 units and Customer 3 has 15 units of demand, Faciltity 2’s capacity increases

to 90 units as that is the smallest feasible capacity level after assigning Customer 3

to Faciltity 2. The solution cost is now $4,2100.00.

41

Customer 1 is assigned to Faciltity 3. Because Faciltity 3 had no capacity and

Customer 1 has 15 units of demand, Faciltity 3’s capacity increases to 30 units as

that is the smallest feasible capacity level after assigning Customer 1 to Faciltity 3.

The solution cost is now $5,525.00.

42

Because the Phase 1 capacity option is to force a minimum capacity level, Phase

1 evaluates each facility to determine if increasing the capacity level at the facility

will reduce the solution cost. In this illustration, Facility 1 is increased to 60 units of

capacity and Facility 3 is increased to 90 units of capacity. The solution cost is now

$4,695.00 and Phase 1 has completed.

43

Phase 2 begins by checking if moving any single customer from one facility to

another will improve the solution cost. This step found that moving Customer 3

from Faciltity 2 to Faciltity 3 and maintaining the same capacity levels was the best

improvement in the solution cost. The solution cost is now $3,770.00. Phase 2 will

check for additional one-customer moves and will not find any. It will then check

for a two-customer move and not find any improvement. It then checks to see if

44

swapping two customers will improve the solution cost and again does not find any

improvement.

Because Phase 2 improved the solution cost in the previous round of checks, it

starts checking again. Phase 2 will not find any one-customer moves. It will then

check for a two-customer move and not find any improvement. It then checks to see

if swapping two customers will improve the solution cost and again does not find any

improvement.

Because Phase 2 did not find any improvements to the solution cost in the previous

round of checks, it exits the heuristic with a solution cost of $3,770.00.

45

4.2.2. Unforced Capacity Illustration

Unforced Capacity starts with no capacity assigned to any facility. The solution

cost starts at $0.00.

46

Customer 5 is assigned to Faciltity 2. With the addition of 20 units of demand,

Faciltity 2’s capacity increases to 90 units as that is the smallest increase in the

solution cost. The solution cost is now $955.71.

47

Customer 2 is assigned to Faciltity 2. Faciltity 2’s capacity is already at the

maximum available capacity, so it does not change. The solution cost is now $1,920.00.

48

Customer 4 is assigned to Faciltity 1. With the addition of 10 units of demand,

Faciltity 1’s capacity increases to 60 units as that is the smallest increase in the

solution cost. The solution cost is now $2,550.00.

49

Customer 3 is assigned to Faciltity 3. With the addition of 15 units of demand,

Faciltity 3’s capacity increases to 90 units as that is the smallest increase in the

solution cost. The solution cost is now $3,245.00.

50

Customer 1 is assigned to Faciltity 3. Faciltity 3’s capacity is already at the

maximum available capacity, so it does not change. The solution cost is now $3,770.00.

51

Because the Phase 1 capacity option is to update the capacity level based on

the best cost at the time the customer is assigned, Phase 1 does not evaluate the

solution for any capacity changes. The solution cost remains $3,770.00 and Phase 1

has completed.

Phase 2 will not find any one-customer moves. It will then check for a two-

customer move and not find any improvement. It then checks to see if swapping two

52

customers will improve the solution cost and again does not find any improvement.

Because Phase 2 did not find any improvements to the solution cost in the previous

round of checks, it exits the heuristic with a solution cost of $3,770.00.

53

4.2.3. Forced Maximum Capacity Illustration

Forced Maximum Capacity starts with maximum capacity assigned to all facilities.

The solution cost starts at $810.00.

54

Customer 5 is assigned to Faciltity 2. The solution cost is now $1,495.71.

55

Customer 2 is assigned to Faciltity 3. The solution cost is now $2,380.33.

56

Customer 4 is assigned to Faciltity 1. The solution cost is now $2,755.33.

57

Customer 3 is assigned to Faciltity 3. The solution cost is now $3,395.71.

58

Customer 1 is assigned to Faciltity 2. The solution cost is now $3,896.36.

59

Because the Phase 1 capacity option is to force a maximum capacity level, Phase

1 evaluates each facility to determine if decreasing the capacity level at the facility

will reduce the solution cost. In this illustration, Facility 1 is decreased to 60 units

of capacity. The solution cost is now $3,881.36 and Phase 1 has completed.

60

Phase 2 begins by checking if moving any single customer from one facility to

another will improve the solution cost. This step found that moving Customer 1 to

Facility 1 was the lowest cost move, but was still higher than current solution cost

and thus did not update the solution. It will then check for a two-customer move and

based on Customer 1 moving to Facility 1 being the lowest increase in cost, found

that also moving Customer 2 to Facility 2 would produce a net reduction in the

61

solution cost. The solution cost is now $3,819.62. It then checks to see if swapping

two customers will improve the solution cost and does not find any improvement.

Because Phase 2 improved the solution cost in the previous round of checks, it

starts checking again. Phase 2’s one-customer move step finds that moving Customer

1 from Faciltity 1 to Faciltity 3 and maintaining the same capacity levels was the

best improvement in the solution cost. The solution cost is now $3,770.00. Phase

62

2 will check for additional one-customer moves and will not find any. It will then

check for a two-customer move and not find any improvement. It then checks to see

if swapping two customers will improve the solution cost and again does not find any

improvement.

Because Phase 2 improved the solution cost in the previous round of checks, it

starts checking again. Phase 2 will not find any one-customer moves. It will then

check for a two-customer move and not find any improvement. It then checks to see

if swapping two customers will improve the solution cost and again does not find any

improvement.

Because Phase 2 did not find any improvements to the solution cost in the previous

round of checks, it exits the heuristic with a solution cost of $3,770.00.

63

4.3. Multiple Use Routines

For the heuristic, calculating the cost is an important routine used throughout.

The cost calculation (4.2) verifies the input solution of x̄ and ȳ represents a feasible

solution (internally with v being set to 1 if feasible). Lines 5 through 20 check

feasibility and the value of z is calculated if the solution is feasible, otherwise z is set

to ∞.

Algorithm 4.2 Calculate Cost

Input: x̄, ȳ

Output: z

1: z ←∞

2: v ← 1

3: Uj ←
∑K

k=1 µjkyjk ∀ j ∈ {1..n} /* Calculate capacity by facility */

4: Λj ←
∑m

i=1 λixij ∀ j ∈ {1..n} /* Calculate demand by facility */

/* Check Feasibility */

5: for j = 1 to n do

6: if Λj > 0 and Λj ≥ Uj then

7: v ← 0

8: j ← n+ 1

9: end if

10: if
∑K

k=1 yjk > 1 then

11: v ← 0

12: j ← n+ 1

13: end if

14: end for

15: for i = 1 to m do

16: if
∑n

j=1 xij 6= 1 then

17: v ← 0

64

18: i← m+ 1

19: end if

20: end for

/* If feasible, calculate cost for all facilities having demand */

21: if v = 1 then

22: z ← 0

23: for j = 1 to n do

24: if Λj > 0 then

25: z ← z + (
∑m

i=1 λicijxij) +
(
t

Λj
Uj−Λj

)
+
(∑K

k=1 fjkyjk

)
26: end if

27: end for

28: end if

For Phase 2, the need to calculate the lowest cost movement of a customer from one

facility to another is needed in multiple places. In this routine (4.3), the input includes

the current solution (x̄ and ȳ) along with a targeted customer (i) and the output

includes the best solution (x̄ and ȳ) with its cost (δ) when the targeted customer is

assigned to a different facility. On line 10, the capacity for the new facility can only

stay the same or increase as the demand at the new facility is increasing. Likewise

on line 11, the capacity at the old facility can only stay the same or decrease as the

demand at the old facility is decreasing. The capacity at the old facility is allowed to

decrease to 0 to indicate the facility is no longer utilized.

Algorithm 4.3 Calculate Move

Input: x̄, ȳ, i

Output: x̄, ȳ, δ

1: δ ←∞

2: J ←
∑n

j=1 jxij /* Current facility for target customer */

3: V ←
∑K

k=1 kyJk /* Current capacity index of current facility */

65

4: for j = 1 to n do

5: if j 6= J then

6: ν ←
∑K

k=1 kyjk /* Current capacity index of new facility */

/* Update to new capacity level 1 if first use of new facility */

7: if ν = 0 then

8: ν ← 1

9: end if

10: for k = ν to K do

11: for κ = V to 0 do

12: χ̄← x̄

13: γ̄ ← ȳ

14: χiJ ← 0

15: χij ← 1

16: γJV ← 0

17: if κ 6= 0 then

18: γJκ ← 1 /* Old facility still has capacity */

19: end if

20: γjν ← 0

21: γjk ← 1

22: ∆← CalculateCost 4.2 (χ̄, γ̄)

/* Update solution if new cost is lower */

23: if ∆ 6=∞ then

24: if δ > ∆ then

25: x̄← χ̄

26: ȳ ← γ̄

27: δ ← ∆

28: end if

29: end if

66

30: end for

31: end for

32: end if

33: end for

4.4. Phase 1 Routines

For the Forced Minimum Capacity routine (4.4), lines 6 through 46 assign the

customer to a facility, only increaing the capacity at the facility if required to stay

feasible. Lines 47 through 62 increase the capacity at the facility after all customers

have been assigned if increasing the capacity will reduce the solution cost.

Algorithm 4.4 Forced Minimum Capacity

Input: L̄

Output: x̄, ȳ

1: xij ← 0 ∀ i ∈ {1..m}, j ∈ {1..n}

2: yjk ← 0 ∀ j ∈ {1..n}, k ∈ {1..K}

3: Λj ← 0 ∀ j ∈ {1..n}

4: Uj ← 0 ∀ j ∈ {1..n}

5: Fj ← 0 ∀ j ∈ {1..n}

/* Process each customer from sorted L̄ list */

6: for all I ∈ L̄ do

7: J ← 0

8: V ← 0

9: z ←∞

10: for j = 1 to n do

11: l← Λj + λI /* New demand at facility */

12: γ ← 0

13: Ω← Uj /* Current capacity of facility */

67

14: ν ←
∑K

k=1 kyjk /* Current capacity index of facility */

/* Update new capacity variables if new demand is infeasible */

15: if l ≥ Ω then

16: for k = ν + 1 to K do

17: if l < µjk then

18: ν ← k

19: γ ← fjk − Fj /* Change in fixed cost */

20: Ω← µjk

21: k = K + 1

22: end if

23: end for

/* If feasible, calculate increase in solution cost */

24: if l < Ω then

25: ∆←
(
t l

Ω−l

)
/* New wait time cost */

26: if Λj > 0 then

27: ∆← ∆−
(
t

Λj
Uj−Λj

)
/* Old wait time cost */

28: end if

29: δ ← λIcIj + ∆ + γ

/* Update planned facility assignment if incrmental cost is lower */

30: if z > δ then

31: J ← j

32: V ← ν

33: z ← δ

34: end if

35: end if

36: end if

37: end for

/* If feasible assignment found, update solution and facility-level variables */

68

38: if J > 0 then

39: xIJ ← 1

40: yJk ← 0 ∀ k ∈ {1..K}

41: yJV ← 1

42: ΛJ ← ΛJ + λI

43: UJ ← µJV

44: FJ ← fJV

45: end if

46: end for

47: z ← CalculateCost 4.2 (x̄, ȳ)

/* If feasible, update any facility capacity level to reduce cost */

48: if z 6=∞ then

49: for j = 1 to n do

50: ν ←
∑K

k=1 kyjk /* Current capacity index of facility */

51: Ȳ ← ȳ

52: for k = ν + 1 to K do

53: YjV ← 0 ∀ V ∈ {1..K}

54: Yjk ← 1

55: δ ← CalculateCost 4.2 (x̄, Ȳ)

/* If solution cost decreased, update solution */

56: if z > δ then

57: ȳ ← Ȳ

58: z ← δ

59: end if

60: end for

61: end for

62: end if

For the Unforced Capacity routine (4.5), lines 6 through 40 assign the customer

69

to a facility and increase the capacity at the facility if needed to minimize the new

solution cost.

Algorithm 4.5 Unforced Capacity

Input: L̄

Output: x̄, ȳ

1: xij ← 0 ∀ i ∈ {1..m}, j ∈ {1..n}

2: yjk ← 0 ∀ j ∈ {1..n}, k ∈ {1..K}

3: Λj ← 0 ∀ j ∈ {1..n}

4: Uj ← 0 ∀ j ∈ {1..n}

5: Fj ← 0 ∀ j ∈ {1..n}

/* Process each customer from sorted L̄ list */

6: for all I ∈ L̄ do

7: J ← 0

8: V ← 0

9: z ←∞

10: for j = 1 to n do

11: l← Λj + λI /* New demand at facility */

12: ν ←
∑K

k=1 kyjk /* Current capacity index of facility */

/* Update to capacity level 1 if first use of facility */

13: if ν = 0 then

14: ν ← 1

15: end if

16: for k = ν to K do

17: γ ← fjk − Fj /* Change in fixed cost */

/* If feasible, calculate increase in solution cost */

18: if l < µjk then

19: ∆←
(
t l
µjk−l

)
/* New wait time cost */

20: if Λj > 0 then

70

21: ∆← ∆−
(
t

Λj
Uj−Λj

)
/* Old wait time cost */

22: end if

23: δ ← λIcIj + ∆ + γ

/* Update planned facility assignment if incrmental cost is lower */

24: if z > δ then

25: J ← j

26: V ← k

27: z ← δ

28: end if

29: end if

30: end for

31: end for

/* If feasible assignment found, update solution and facility-level variables */

32: if J > 0 then

33: xIJ ← 1

34: yJk ← 0 ∀ k ∈ {1..K}

35: yJV ← 1

36: ΛJ ← ΛJ + λI

37: UJ ← µJV

38: FJ ← fJV

39: end if

40: end for

For the Forced Maximum Capacity routine (4.6), lines 5 through 26 assign the

customer to a facility where the facilities are already assigned their maximum capaci-

ties. Lines 27 through 45 decrease the capacity at the facility after all customers have

been assigned if decreasing the capacity will reduce the solution cost.

71

Algorithm 4.6 Forced Maximum Capacity

Input: L̄

Output: x̄, ȳ

1: xij ← 0 ∀ i ∈ {1..m}, j ∈ {1..n}

2: yjk ← 0 ∀ j ∈ {1..n}, k ∈ {1..K − 1}

3: yjK ← 1 ∀ j ∈ {1..n} /* Set all facilities to maximum capacity */

4: Λj ← 0 ∀ j ∈ {1..n}

/* Process each customer from sorted L̄ list */

5: for all I ∈ L̄ do

6: J ← 0

7: z ←∞

8: for j = 1 to n do

9: l← Λj + λI /* New demand at facility */

/* If feasible, calculate increase in solution cost */

10: if l < µjK then

11: ∆←
(
t l
µjK−l

)
/* New wait time cost */

12: if Λj > 0 then

13: ∆← ∆−
(
t

Λj
µjK−Λj

)
/* Old wait time cost */

14: end if

15: δ ← λIcIj + ∆

/* Update planned facility assignment if incrmental cost is lower */

16: if z > δ then

17: J ← j

18: z ← δ

19: end if

20: end if

21: end for

/* If feasible assignment found, update solution and facility-level variables */

72

22: if J > 0 then

23: xIJ ← 1

24: ΛJ ← ΛJ + λI

25: end if

26: end for

27: z ← CalculateCost 4.2 (x̄, ȳ)

/* If feasible, update any facility capacity level to reduce cost */

28: if z 6=∞ then

29: for j = 1 to n do

30: if Λj = 0 then

31: yjK ← 0 /* Remove capacity from facility if facility has no demand */

32: else

33: Ȳ ← ȳ

34: for k = K − 1 to 1 do

35: YjV ← 0 ∀ V ∈ {1..K}

36: Yjk ← 1

37: δ ← CalculateCost 4.2 (x̄, Ȳ)

/* If solution cost decreased, update solution */

38: if z > δ then

39: ȳ ← Ȳ

40: z ← δ

41: end if

42: end for

43: end if

44: end for

45: end if

73

4.5. Phase 2 Routines

The One Customer Move routine (4.7) takes an initial list of all customers (L̄)

and analyzes the list for the best customer to reassign to a new facility. The best

customer for that iteration is removed from the list until the list is empty or no feasible

reassignment can be made. If the best customer move increases the solution cost, all

customers with the same demand, facility, and cost are removed from the list (lines

26 to 32) and the internal working soltuon of X̄ and Ȳ are updated but the output

solution is not updated unless future iterations drop the new solution cost below the

current best solution cost.

Algorithm 4.7 One Customer Move

Input: x̄, ȳ

Output: x̄, ȳ

/* X̄ and Ȳ represent working solution, not output solution */

1: X̄ ← x̄

2: Ȳ ← ȳ

3: L̄← {1..m} /* Initialize list L̄ to all customers */

4: while L̄ 6= ∅ do

5: I ← 0

6: Z ← CalculateCost 4.2 (x̄, ȳ)

7: z ←∞

8: χ̄← X̄

9: γ̄ ← Ȳ

/* L̄ shrinks as customers with best solution are removed from list */

10: for all i ∈ L̄ do

11: (ρ̄, σ̄, δ)← CalculateMove 4.3 (X̄, Ȳ , i)

/* Store best customer and solution across all customers still in L̄ */

12: if δ 6=∞ then

74

13: if z > δ then

14: I ← i

15: z ← δ

16: χ̄← ρ̄

17: γ̄ ← σ̄

18: end if

19: end if

20: end for

/* If feasible solution found, store as new working solution */

21: if z 6=∞ then

22: L̄← L̄ \ {I}

23: X̄ ← χ̄

24: Ȳ ← γ̄

/* If working solution is higher, just remove similar customers from L̄ */

25: if z ≥ Z then

26: J ←
∑n

p=1 pXIp /* Current facility for best customer */

/* Check all customers */

27: for o = 1 to m do

28: j ←
∑n

p=1 pXop /* Current facility for checked customer */

/* Remove checked customer if same demand, facility, and cost */

29: if λo = λI and j = J and coj = cIJ then

30: L̄← L̄ \ {o}

31: end if

32: end for

33: else

34: x̄← X̄ /* Save working solution as output solution if cost decreased */

35: ȳ ← Ȳ

36: end if

75

37: else

38: L̄← ∅

39: end if

40: end while

The Two Customer Move routine (4.8) finds the best customer to be reassigned

to a new facility (lines 8 to 18) and the uses that solution to find the best customer

to reassign to a new facility—that is not the same customer (lines 25 to 34)—to see

if the new overall solution cost is less than the current solution cost in an attempt to

get out of a potentially local optimum [16]. If a better solution is found, the routine

terminates. Otherwise, the previously best customer from the first loop is removed

from the customer list and the routine tries again.

Algorithm 4.8 Two Customer Move

Input: x̄, ȳ

Output: x̄, ȳ

1: Z ← CalculateCost 4.2 (x̄, ȳ)

2: L̄← {1..m} /* Initialize list L̄ to all customers */

3: while L̄ 6= ∅ do

4: I ← 0

5: z ←∞

6: χ̄← x̄

7: γ̄ ← ȳ

/* L̄ shrinks as customers with best solution are removed from list */

8: for all i ∈ L̄ do

9: (ρ̄, σ̄, δ)← CalculateMove 4.3 (x̄, ȳ, i)

/* Store best customer and solution across all customers still in L̄ */

10: if δ 6=∞ then

11: if z > δ then

76

12: I ← i

13: z ← δ

14: χ̄← ρ̄

15: γ̄ ← σ̄

16: end if

17: end if

18: end for

/* If feasible, do same steps on all other customers */

19: if z 6=∞ then

20: L̄← L̄ \ {I}

21: z ←∞

22: X̄ ← χ̄

23: Ȳ ← γ̄

24: for i = 1 to m do

25: if I 6= i then

26: (ρ̄, σ̄, δ)← CalculateMove 4.3 (χ̄, γ̄, i)

27: if δ 6=∞ then

28: if z > δ then

29: z ← δ

30: X̄ ← ρ̄

31: Ȳ ← σ̄

32: end if

33: end if

34: end if

35: end for

/* If feasible and has a lower cost, store solution and stop */

36: if z 6=∞ then

37: if z < Z then

77

38: x̄← X̄

39: ȳ ← Ȳ

40: L̄← ∅

41: end if

42: end if

43: else

44: L̄← ∅

45: end if

46: end while

The Swap Customers routine (4.9) loops through all customer combinations (lines

7 and 9) where the customers are in different facilities (line 11) to determine if swap-

ping those customers would decrease the cost. The overall routine continues to loop

as long as the solution cost is decreasing and a feasible swap is found.

Algorithm 4.9 Swap Customers

Input: x̄, ȳ

Output: x̄, ȳ

1: Z ← CalculateCost 4.2 (x̄, ȳ)

2: z ← 0

/* Loop while improving solution */

3: while z < Z do

4: z ←∞

5: χ̄← x̄

6: γ̄ ← ȳ

/* Every customer combination, I > i */

7: for i = 1 to m do

8: j ←
∑n

p=1 pxip /* Current facility for customer i */

9: for I = i+ 1 to m do

78

10: J ←
∑n

p=1 pxIp /* Current facility for customer I */

/* Only check if customers are assigned to different facilities */

11: if j 6= J then

12: for k = 1 to K do

13: for ν = 1 to K do

14: X̄ ← x̄

15: Ȳ ← ȳ

/* Swap customers and set capacity levels being tested */

16: Xij ← 0

17: XiJ ← 1

18: XIJ ← 0

19: XIj ← 1

20: Yjq ← 0 ∀ q ∈ {1..K}

21: Yjk ← 1

22: YJq ← 0 ∀ q ∈ {1..K}

23: YJν ← 1

24: δ ← CalculateCost 4.2 (X̄, Ȳ)

/* Store best solution across all customer combinations */

25: if δ 6=∞ then

26: if δ < z then

27: z ← δ

28: χ̄← X̄

29: γ̄ ← Ȳ

30: end if

31: end if

32: end for

33: end for

34: end if

79

35: end for

36: end for

/* If feasible and has a lower cost, store solution and try again */

37: if z 6=∞ then

38: if z < Z then

39: x̄← χ̄

40: ȳ ← γ̄

41: Z ← z

42: z ← 0

43: end if

44: else

45: z ← Z

46: end if

47: end while

4.6. Heuristic Complexity Analysis

For the complexity analysis, the number of customers is assumed to be larger

than the number of facilities—which is assumed to be larger than the number of

capacity levels. While this is not true for every data set, it is the most common

scenario. Given this assumption, the complexity for Phase 1 of the heuristic was

calculated as O (mn2K) and the complexity for Phase 2 of the heuristic was calculated

as O (m3n2K2).

80

Chapter 5

Data Sets

For comparison purposes, the 695 data sets being tested were broken into 6 logical

groupings. The groupings either pull from the same data source, or differ based on

how the costs were structured. This assists with determining if certain types of data

sets increase or decrease the difficulty of finding a globally optimal solution with the

solution approaches described in Chapters 3 and 4. We also consider the number of

solutions that would need to be evaluated to find an optimal solution for a given data

set using an enumeration or brute-force approach.

The calculation for the brute-force solution size is based on multiplying the total

possible facility assignment solutions (nm) and the total possible facility capacity

settings ((K + 1)n—from 0 to K as a facility could be unused) to get nm (K + 1)n.

Given the size of some brute-force solution spaces, the detailed data shows the value

as a power of 10—as some of the values were too large for Excel to calculate.

5.1. Holmberg

The Holmberg data sets come from Holmberg et al. in 1999 [28] and were pro-

vided for research here as a set of data that has been analyzed using various other

methodologies previously. It consists of thirty distinct data points of four subsets of

data. Each data set within the subsets varies t using β ∈ {0.1, 1.0, 10.0}, where t is

calculated as the maximum cijλi value.

The first subset of data contains 4 data sets of 50 customers, 10 facilities, and

3 capacity levels that are varied by µjk between the 4 data sets. They represent a

81

data set that could have 1050 possible facility assignments. Since only µjk varies, the

t value would be consistent across all four data sets—and then modified by β. This

block of twelve data sets represents medium sized set of customers and how t and µjk

affect difficulty.

The second subset of data contains 1 data set of 50 customers, 20 facilities, and 3

capacity levels. It represent a data set that could have 2050 possible facility assign-

ments. The t value is modified by β. This block of three data sets represents medium

sized set of customers with a large number of facilities and how t affects difficulty.

The third subset of data contains 3 data sets of 90 customers, 10 facilities, and 3

capacity levels that are varied by λi between the 3 data sets. They represent a data

set that could have 1090 possible facility assignments. Since only λi varies, the t value

would also vary across all three data sets—and then modified by β. This block of nine

data sets represents large sized set of customers and how t and λi affect difficulty.

The fourth subset of data contains 2 data sets of 100 customers, 10 facilities, and

3 capacity levels that are varied by λi between the 2 data sets. They represent a

data set that could have 10100 possible facility assignments. Since only λi varies, the t

value would also vary across all three data sets—and then modified by β. This block

of six data sets represents extra-large sized set of customers and how t and λi affect

difficulty.

The brute-force solution space size for the Holmberg group ranges from 1056.02 to

10106.02. The Phase 1 Complexity (mn2K) ranges from 15, 000 to 60, 000. The Phase

2 Complexity (m3n2K2) ranges from 112, 500, 000 to 900, 000, 000.

5.2. Small, Varying Costs

The Small, Varying Costs data sets were a single data set of 25 customers, 5

facilities, and 3 capacity levels that are varied in 3 subsets to get 36 data points. It

82

represents a data set that could have 525 possible facility assignments. The value for

t is fixed to 600 and varied by β ∈ {0.1, 1.0, 10.0, 100.0}. The λi and cij values were

specifically chosen to provide multiple groupings of customers with similar facility

assignment costs.

The first subset of data contains 3 data sets that are varied by µjk. This block

of twelve data sets shows a small sized set of customers and how t and µjk affect

difficulty.

The second subset of data contains 3 data sets that are varied by fjk. This block

of twelve data sets shows a small sized set of customers and how t and fjk affect

difficulty.

The third subset of data contains 3 data sets that are varied by cij. This block

of twelve data sets shows a small sized set of customers and how t and cij affect

difficulty.

The brute-force solution space size for the Small, Varying Costs group is 1020.48.

The Phase 1 Complexity is 1, 875. The Phase 2 Complexity is 3, 515, 625.

5.3. Various, Linear Costs

The Various, Linear Costs data sets represent actual client data from six compa-

nies of various sizes. The identifying information was scrubbed from the data and

they were labeled A through F based on size from smallest to largest in terms of

application usage (
∑
λi).

Given that the number of “customers” (e.g. business processes) could vary, and

wanting a consistent way to build each data set, the business processes were grouped

into 18, 36, or 72 “customers” based on similarities. B2Bi can have up to nine priority

queues used by the business processes, so the “facilities” were set to either three, six,

or nine. The capacity levels are five, seven, and nine—which represent the number

83

of threads to assign to the priority queue times a multiplier for the client. The value

for t was arbitrarily set to 600 and varied by β ∈ {0.1, 1.0, 10.0}.

Since that would give 81 possible combinations of settings per client, a Taguchi L9

Orthogonal Array ([43]) was used to get to a set of 9 combinations per client—giving

a total of 54 data points in this group. For each client, the L9 array is:

Table 5.1. Various, Linear Cost Taguchi L9 Orthogonal Array

L Customers Facilities Capacities β

1 72 9 5 0.1

2 72 6 7 1.0

3 72 3 9 10.0

4 36 9 7 10.0

5 36 6 9 0.1

6 36 3 5 1.0

7 18 9 9 1.0

8 18 6 5 10.0

9 18 3 7 0.1

The cij values were calculated as 0 at the preferred facility and then an additional

25 as the customer moves further away from the preferred facility. This was to keep

the cost linear while trying to keep the customer close to its preferred facility. The

µjk values were based on 1500 times the multiplier for the client and then linearly

incremented for each capacity level.

The fjk values started with 0 at the first capacity level and then incremented

linearly based on a value for that facility. The base value for each facility favored

“higher” facilities with lower fjk values, making it easier to add capacity to those

facilities. A Fibonacci Sequence ([34]) was used to calculate these values so that the

84

three, six, or nine facilities used for the data point scaled appropriately. The fjk

values were not varied by client as more critical business processes had a “higher”

preferred facility.

The brute-force solution space size for the Various, Linear Costs group ranges

from 1011.30 to 1075.71. The Phase 1 Complexity ranges from 1, 134 to 29, 160. The

Phase 2 Complexity ranges from 2, 571, 912 to 755, 827, 200.

5.4. Various, Nonlinear Costs

The same set of client data from Various, Linear Costs was used to get an ad-

ditional set of 54 data points using nonlinear costs. Customers were still grouped

into 18, 36, or 72 and t still varied using the same β values. However, the number of

facilities was set to 9 and the number of capacity levels was set to 5. This provides an

explicit nine data points per client. The goal was to determine how nonlinear costs

effected the solution times.

The cij values were calculated as 25 at the preferred facility and then doubled

moving away to a “lower” facility and tripled moving away to a “higher” facility—

making the model prefer to send a customer to a “lower” facility over a “higher”

facility, which had been equally likely in the linear costs.

The µjk values began with the same capacity as before, but doubled at each step

instead of increasing linearly. This matches the default standard of assigning powers

of 2 as the number of threads to the priority queues in B2Bi. Likewise, the fjk values

were similarly scaled for consistency.

The brute-force solution space size for the Various, Nonlinear Costs group ranges

from 1024.18 to 1075.71. The Phase 1 Complexity ranges from 7, 290 to 29, 160. The

Phase 2 Complexity ranges from 11, 809, 800 to 755, 827, 200.

85

5.5. Sizing

The Sizing data sets were generated to determine how well the heuristic and

mathematical models could handle larger data sets. The number of customers was in

the set {250, 500, 750, 1000, 2500, 5000, 7500, 10000}. The number of facilities was in

the set {25, 50, 75, 100}. The number of capacity levels was in the set {5, 10, 15, 20}.

The value for t was arbitrarily set to 600 and varied by β ∈ {0.1, 1.0, 10.0, 100.0}.

This generated 512 data sets.

For each customer size, facility size, and capacity level size, the λi for each cus-

tomer was calculated as a random value from 5 to 50. The sum of the demand was

used to calculate an average needed capacity per facility (µ̄ =
∑m
i=1 λi
n

). For each facil-

ity, the actual maximum capacity was calculated as the average needed capacity times

a random value (r̂) between 1.5 and 2.0 (µjK = µ̄r̂) and rounded up to the nearest

multiple of 60 so it would be evenly divisible by the number of capacity levels. The

capacity levels were then linearly distributed. This calculation ensured the existence

of a feasible solution.

The facility assignment cost was calculated by randomly distributing all facilities

and customers on a 1000x1000 grid and calculating the next highest integer of the

distance between the customers and facilities plus 1 (to ensure no zero costs). The

faciltity capacity cost was calculated with a base facility opening cost of a random

value (r̄) between 200 and 400 plus a concave cost function of the capacity (r̄+5
√
µjk).

The brute-force solution space size for the Sizing group ranges from 10368.94 to

1020,132.22. The Phase 1 Complexity ranges from 781, 250 to 2, 000, 000, 000. The

Phase 2 Complexity ranges from 244, 140, 625, 000 to 4, 000, 000, 000, 000, 000, 000.

86

5.6. Saw-Tooth

The Saw-Tooth data sets were derived from a single problem instance with 5 cus-

tomers, 3 facilities, and 3 capacity levels that are varied to get 9 data sets. This ultra-

small data set was created for the sole purpose of demonstrating how the customer

wait-time cost affects the difficulty of solving even a small problem. A brute-force

analysis was done in Excel. The term “Saw-Tooth” derives from the visualization of

the solution space with the solutions initially sorted based on the facility assignment

cost.

A problem instance in this data set that could have 243 possible facility assign-

ments and 64 facility capacities for a total of 15, 552 total solutions—including in-

feasible solutions. The Phase 1 Complexity is 135 and the Phase 2 Complexity is

10, 125. The value for t is fixed to 1000 and varied by β ∈ {0.1, 1.0, 10.0}. The capac-

ity distributions were varied using the set {{30, 60, 90}, {40, 80, 120}, {30, 60, 120}}

to try and determine if linear versus nonlinear capacity levels will make a difference

in the practical (as opposed to theoretical) difficulty of the problem. In the example

solution times below, the Colley Model was used for timing to avoid the potential

issue of variability of the number of iterations in the Elhedhli Models.

The Linear-90 capacity distribution has capacity levels of 30, 60, and 90 for each

faciltity. This represents a more constrained data set as there are more infeasible

points in the solution space. When the adjusted value for the customer wait-time

cost is lowest (i.e β = 0.1 ⇒ t = 100), the average solution time is 0.057 seconds.

As the value for t increases by a factor of 10, the average solution time increases to

0.083 seconds and then 0.117 seconds. While all of these times are subsecond, that is

due mainly to the ultra-small nature of the data. The increases in solution time as a

factor of the initial solution time are relatively large: 1.44 and 2.04.

87

The Linear-120 capacity distribution has capacity levels of 40, 80, and 120 for

each faciltity. This represents a less constrained data set as there are fewer infeasible

points in the solution space. When the adjusted value for the customer wait-time

cost is lowest (i.e β = 0.1 ⇒ t = 100), the average solution time is 0.060 seconds.

As the value for t increases by a factor of 10, the average solution time increases to

0.074 seconds and then 0.105 seconds. While all of these times are subsecond, that is

due mainly to the ultra-small nature of the data. The increases in solution time as a

factor of the initial solution time are again relatively large: 1.22 and 1.75.

The Nonlinear-120 capacity distribution has capacity levels of 30, 60, and 120

for each faciltity. This demonstrates a doubling of the capacity level which adds

some infeasible points back to the solution space. When the adjusted value for the

customer wait-time cost is lowest (i.e β = 0.1 ⇒ t = 100), the average solution time

is 0.061 seconds. As the value for t increases by a factor of 10, the average solution

time increases to 0.067 seconds and then 0.123 seconds. While all of these times are

subsecond, that is due mainly to the ultra-small nature of the data. The increases in

solution time as a factor of the initial solution time are again relatively large: 1.11

and 2.02.

From observation of the solutions times versus the capacity distribution and t

values, a t value 10 times larger has more impact on the solution time for a more

contrainsted capacity distribution while a t value 100 times larger has a noticeable

impact on solution time for all capacity distributions.

88

5.7. Data Sets in Existing Literature

The solution techniques described in Chapters 3 and 4 were tested on 695 data

sets with up to 10,000 customers, 100 facilities, and 20 capacity levels. To put this

in context, Table 5.2 summarizes the scale of other computational experiments in the

ISP literature. For each work cited, the table lists the number of problem instances

solved and the maximum values for the number of facilities, customer locations, and

capacity levels in the data. Note that “N/A” in the capacity-level column indicates a

case in which capacity level is not a decision variable in the ISP variant being studied.

For example, the facilities in [39] are M/M/s queues and the decision is to decide

how many identical servers to assign to each facility.

89

Table 5.2. Problem Instance Data from the ISP Literature

Maximum Number of

Reference Data Sets (Problem Instances) Customers Facilities Capacity Levels

[3] 40 800 200 1

[4] 40 100 100 3

[5] 270 20 300 1

[7] 150 500 40 5

[8] 90 300 20 5

[9] 150 200 30 5

[12] 10 15 25 1

[18] [36] 15 20 22 1

[22] 55 100 20 3

[23] 55 150 30 N/A

[27] 25 5,500 1,800 N/A

[29] 27 150 30 N/A

[37] 12 65 150 1

[39] 20 3,500 700 N/A

[40] 10 30 15 N/A

[45] 216 400 25 5

[46] 90 459 84 3

[47] 71 200 30 1

90

Chapter 6

Analysis of Results

All models were tested on the same server (an HP Server model DL380 with Dual

14 Core Intel Xeon@2.6Ghz and 380GB of RAM). A pause of one second between

each AMPL (version 20200810 [11]) or Java (1.6.0 [2]) call was performed to allow for

the system to return to an idle state.

Each of the 695 data sets were first processed by the heuristic using Java for

comparison and possibly for use as the starting solution for the other models. The

Elhedhli linear model with a version for each stopping condition, Colley linear model,

and nonlinear model were executed for each data set within a given set of run param-

eters. Metrics and results were gathered during each execution.

Three runs were performed for each data set and model using the following run

parameters: whether to use the heuristic solution as the starting point (no starting

point, best Phase 1 solution as a starting point, or best Phase 2 solution as a starting

point), whether to limit the overall system capacity, and whether to limit the number

of facilities. This provided a set of twelve run parameters with three runs each so that

solution time could be averaged for each data set, model, and run parameters. All

models and the heuristic were given a five minute time limit. Runs that terminated

due to reaching the limit are said to have timed out.

There are four ISPs associated with any given data set: (1) the base case described

in Chapter 2, (2) the base case with a constraint limiting the total number of facilities

opened, (3) the base case with a constraint limiting the total capacity allocated

across all facilities, and (4) the base case with constraints limiting both the total

91

capacity allocated and then number of facilities opened. For any particular ISP, we

use the terms best solution and “optimal” solution to refer to a solution that has

the minimum cost among all a feasible solutions found for that instance. In some

cases, the “optimal” solution is actually a provably optimal solution found by Baron

or Gurobi; in other cases none of the exact methods terminated with an optimality

gap of 0% and so the “optimal” solution is really just the best solution we were able

to find. Note that in many cases multiple solution approaches found the “optimal”

solution for a given ISP instance.

6.1. Nonlinear Model Issues

The Nonlinear Model was solved with Baron and timed out on 98.41% of the data

set and run parameter scenarios. There were instances where the Nonlinear Model

did not find a feasible solution within the time limit. This increased dramatically as

the size of the data set increased.

The vast number of timeouts resulted in the Nonlinear Model finding the best

solution for the data set and run parameters only 13.69% of the time compared to

44.83% of the time for the Colley Linear Model and 45.68% of the time for the Elhedhli

Linear Model using the solution cost as the stopping criteria.

Overall, the results indicate solving the non-linear model directly is not practi-

cal. The heuristic and the exact approaches based on linearized models performed

significantly better than Baron in the experiments for this dissertation.

6.2. Elhedhli Linear Model Issues

The Elhedhli Linear Model was solved with Gurobi 9.1.2 ([26]) and was tested with

three different stopping criteria: solution, cost, and coverging of the lower bound of

the ratio. Using a stopping condition of the solution and cost had similar—but not

92

identical—results. Using a stopping condition of the coverging of the lower bound of

the ratio timed out significantly more often (84.17% of the time versus about 67.00%

of the time with the other stopping conditions). The first two stopping criteria found

a solution in subsecond time just under 22.00% of the time compared to the Colley

Linear Model of 19.69% of the time (see Table 6.1).

The Elhedhli Linear Model also had issues of moving away from a good starting

point (using the heuristic solution) to a worse solution just over 38.00% of the time.

This again is due to the use of the lower bound used to linearize the objective function.

The heuristic starting point provides a starting lower bound which influences the

Elhedhli Linear Model to find what it perceives to be a lower cost solution because

of how the lower bound is calculated, but is really moving towards a higher cost

solution when that solution is plugged into the nonlinear objective function. For

example, when the model was applied to Data Set E6 in the Base Scenario with a

given a starting solution with a cost of 664,267.62 it moved to a solution with a cost

of 664,292.74.

6.3. Colley Linear Model Issues

The Colley Linear Model was solved with Gurobi 9.1.2 ([26]) and timed out 75.69%

of the time but also completed in one second or less 19.69% of the time (see Table

6.1). This shows that the solution time is highly dependent on the data set and run

parameters as it is the mathematical model with the greatest number of constraints

between the three models analyzed.

The primary issue with the Colley Linear Model is the need to set the integer

feasible tolerance and mixed-integer solution tolerance as small as possible. the de-

fault settings for Gurobi is an integer feasible tolerance of 1e-05 and a mixed-integer

solution tolerance of 1e-04. By adjusting these tolerances down, the chance that the

93

solver stops before reaching the true optimal solution increases. The size of the data

set greatly impacts the effectiveness of the model as it timed out on most data sets

with 1,000 or more customers.

6.4. Heuristic Issues

The Heuristic Model generally performed Phase 1 in under one quater of a second

until the number of customers in the data set reached 250 and then grew gradu-

ally from 3 seconds to 8 seconds based on the number of customers. There was no

improvement in Phase 2 56.80% of the time (65.04% of the time for just the base

constraints). Of the instances where Phase 2 did improve the solution quality, the

largest improvement was 45.53% (11.61% for just the base constraints). However,

utilizing Phase 2 dramatically increased the solution time depending on the number

of customers in the data set with the longest solution time being over the time limit.

By including Phase 2, the likelihood of the heuristic finding the same best solu-

tion (or better) compared to the mathematical models went from 18.49% to 23.24%

(25.47% to 29.93% for just the base constraints) with the additional 512 sizing data

sets. Without the additional 512 sizing data sets, the Phase 1 solution to Phase 2

solution quality changed from 63.39% to 80.46% (84.70% to 98.36% for just the base

constraints). This shows that the addition of the overall system capacity and maxi-

mum facilities constraints along with the additional 512 data sets with customer sizes

ranging from 250 to 10,000 significantly impacted the performance of the heuristic.

On the Various, Nonlinear Costs data set group for the base constraints, the

heuristic solution matched the best solution from the mathematical models 100.00%

of the time using only the Phase 1 solution for all 54 data sets within the group. For

this data set group, the Phase 1 solution time averaged 0.186 seconds while the Colley

Linear Model averaged 0.480 seconds, the Elhedhli Linear Model averaged under one

94

quarter of a second, and the Nonlinear Model timed out 100.00% of the time.

Table 6.1. Subsecond Performance

Algorithm Base Scenario Overall

Phase 1 188 (27.05%) 749 (26.94%)

Phase 1 + Phase 2 79 (11.37%) 313 (11.26%)

Colley 153 (22.01%) 511 (18.38%)

Colley w/Phase 1 incumbent 154 (22.16%) 545 (19.60%)

Colley w/Phase 2 incumbent 57 (8.20%) 204 (7.34%)

Baron 0 (0.00%) 0 (0.00%)

Baron w/Phase 1 incumbent 2 (0.29%) 8 (0.29%)

Baron w/Phase 2 incumbent 0 (0.00%) 0 (0.00%)

Elhedhli Solution 159 (22.88%) 600 (21.58%)

Elhedhli Solution w/Phase 1 incumbent 159 (22.88%) 593 (21.33%)

Elhedhli Solution w/Phase 2 incumbent 59 (8.49%) 227 (8.17%)

Elhedhli Cost 157 (22.59%) 588 (21.15%)

Elhedhli Cost w/Phase 1 incumbent 159 (22.88%) 589 (21.19%)

Elhedhli Cost w/Phase 2 incumbent 60 (8.63%) 222 (7.99%)

Elhedhli Rr 147 (21.15%) 294 (10.58%)

Elhedhli Rr w/Phase 1 incumbent 150 (21.58%) 297 (10.68%)

Elhedhli Rr w/Phase 2 incumbent 56 (8.06%) 115 (4.14%)

6.5. Summary of Results

The results were analyzed three different ways 1: Independent (with no interac-

tion between the mathematical models (i.e. the exact methods) and the heuristic),

1Detailed results are available on SMU Scholar ([19]).

95

Interactive (with only Phase 1 of the heuristic as a starting point for the mathe-

matical models), and Complete (with both Phase 1 and Phase 2 as a starting point

for the mathematical models). With each analysis method, the overall best solution

was found for each data set across three runs of the mathematical models and the

heuristic. To be considered the top performer for the data set, the algorithm had to

have the best solution cost with the shortest time.

Because there were three runs for each data set and run parameters, the time was

analyzed running concurrently (maximum time of the three runs) and sequentially

(total time for the three runs). The time was also adjusted appropriately for using the

heuristic starting point. For example, the Colley linear model applied to the E6 data

set starting with the Phase 1 heuristic solution and with no additional constraints

had a maximum solution time of 0.138 seconds and the Phase 1 heuristic took 0.121

seconds giving an adjusted time of 0.259 seconds. Without being given a starting

point it had a maximum solution time of 0.434 seconds and would not have solved

the problem as quickly as it did without the time needed for the heuristic to solve

Phase 1.

Given that the solution time was measured in milliseconds, a unqiue top performer

was found for each data set, run parameter combination, and analysis method. While

solution time is important in this dissertation, analysis was performed to find “co-

horts” of the top performer. For this dissertation, a cohort was defined as another

algorithm within the same analysis method with the same solution cost but within

a margin of 1 second per run. For concurrent analysis it’s within 1 second of the

maximum solution time of the top performer and for sequential analysis it’s within

3 seconds of the total time of the top performer. As the cohort analysis cannot be

reasonably grouped, cohort tables have been included in this summary for only the

Various, Linear group (example shown in Figure 6.1) and the Holmberg group (only

96

Figure 6.1. Cohorts for Base Scenario Various, Linear Group

available in the detailed results) for the base scenario in each analysis method with

a solid circle for the top performer and an open circle for a cohort. The exhaustive

cohort analysis is available in the detailed results.

For example, in Figure 6.1, Data Set F9’s top performer was the Heuristic Phase

1 solution with cohorts in every other solver except for Baron while Data Set F2’s

top performer was the Colley Linear Model given the Heuristic Phase 1 solution as

the incumbent solution and there were no cohorts.

For analyzing the top performers, tables are provided in the detailed results for

each analysis method that include the overall group of 2,780 instances (695 data sets

97

for all 4 run parameters), a table for each of 695 data sets for each run parameter

(base constraints, maximum facility constraint, maximum capacity constraint, and

both the maximum facility and maximum capacity constraints), and tables for each

data set group within each run parameter. The tables have several sections: counts for

instances that did not time out, counts for instances that did time out, the number

and percentage of instances that found a solution, the number and percentage of

instances that found the best solution, the number and percentage of top performers

based on concurrent runs, and the number and percentage of top performers based

on sequential runs. The counts in the finished within the time limit section and the

timed out section are broken into counts for having the best solution, not having the

best solution, and not having a solution at all. A subset of the top performer tables

with selected columns are included in this dissertation.

The “Phase 1” and “Phase 1 + Phase 2” algorithms are the solutions from just

the heuristic. “Phase 1 + Phase 2” was not included in the Independent and Inter-

active analysis methods as they are focusing on solution quality and speed while the

Complete analysis method is focusing more on solution quality.

The “Colley” set of algorithms are for the Colley Linear Model. The “Baron” set

of algorithms are for the Nonlinear Model. The “Elhedhli Solution” set of algorithms

are for the Elhedhli Linear Model using the same solution twice in a row as the

stopping criteria. The “Elhedhli Cost” set of algorithms are for the Elhedhli Linear

Model using the converging of the solution cost as the stopping criteria. The “Elhedhli

Rr” set of algorithms are for the Elhedhli Linear Model using the converging of the

lower bound of the ratios as the stopping criteria.

See Table 6.2 for abbreviations of the full, descriptive names of the 17 algorithms

which are used in other tables and figures. Only some of them are included in the

Independent and Interactive analysis methods as seen in Table 6.3.

98

Table 6.2. Algorithm Abbreviations

Algorithm Abbreviation

Phase 1 P1

Phase 1 + Phase 2 P2

Colley Colley - None

Colley w/Phase 1 incumbent Colley - P1

Colley w/Phase 2 incumbent Colley - P2

Baron Nonlinear - None

Baron w/Phase 1 incumbent Nonlinear - P1

Baron w/Phase 2 incumbent Nonlinear - P2

Elhedhli Solution Linear Sol - None

Elhedhli Solution w/Phase 1 incumbent Linear Sol - P1

Elhedhli Solution w/Phase 2 incumbent Linear Sol - P2

Elhedhli Cost Linear Cost - None

Elhedhli Cost w/Phase 1 incumbent Linear Cost - P1

Elhedhli Cost w/Phase 2 incumbent Linear Cost - P2

Elhedhli Rr Linear Rr - None

Elhedhli Rr w/Phase 1 incumbent Linear Rr - P1

Elhedhli Rr w/Phase 2 incumbent Linear Rr - P2

99

Table 6.3. Algorithms in each Analysis Method

Analysis Method

Algorithm Independent Interactive Complete

P1
√ √ √

P2
√

Colley - None
√ √ √

Colley - P1
√ √

Colley - P2
√

Nonlinear - None
√ √ √

Nonlinear - P1
√ √

Nonlinear - P2
√

Linear Sol - None
√ √ √

Linear Sol - P1
√ √

Linear Sol - P2
√

Linear Cost - None
√ √ √

Linear Cost - P1
√ √

Linear Cost - P2
√

Linear Rr - None
√ √ √

Linear Rr - P1
√ √

Linear Rr - P2
√

100

Recall that “optimal” solution really means the “best” solution found for each

data set and run parameter combination. This could change between analysis meth-

ods. However, all groups except for the Sizing group had a maximum decrease in

solution cost between analysis methods of less than 1e-06. When changing from the

Independent analysis method to the Interactive analysis method, the sizing group had

an average decrease in solution cost of 2.47% and a maximum descrease of 37.30%

overall and an average decrease in solution cost of 0.96% and a maximum descrease

of 6.47% for just the base scenario. When changing from the Interactive analysis

method to the Complete analysis method, the sizing group had an average decrease

in solution cost of 1.25% and a maximum descrease of 40.03% overall and an average

decrease in solution cost of 0.09% and a maximum descrease of 2.45% for just the

base scenario.

For example, in Table 6.4, the models were analyzed as if they had been executed

independently. When analyzed this way, the Heuristic Phase 1 solution was the top

performer over 60% of the instances with the Elhedhli Linear Model utilizing the same

solution twice in a row as the stopping criteria had the next highest percentage of

top performers of over 15%. However, Table 6.9 shows that by interacting the solvers

together and providing each mathematical model with the Heuristic P1 solution as

an incumbent solution, the Colley Linear Model using the Heuristic Phase 1 solution

as the incumbent solution is now the top performer over 37% of the instances and the

Heuristic Phase 1 solver by itself drops to being the top performer just under 12% of

the instances.

6.5.1. Independent Analysis

The independent analysis method summarized in Table 6.4 makes a very strong

case for using Phase 1 of the heuristic over the five exact methods. As indicated by

the “Found” column in the table, Phase 1 of the heuristic found feasible solutions to

101

all 2,780 problem instances. The Colley and non-linear models found feasible solu-

tions to 1,085 (39.03%) and 451 (16.22%) problem instances, respectively. The best

performing variants of the Elhedhli model, which were proposed in this dissertation,

each found feasible solutions to 2,520 (90.65%) of the problem instances. Only 28.67%

of the problems were solved using the Rr stopping criterion. As indicated in the “Op-

timal” column of the table, Phase 1 was also the leader in terms of solution quality;

it found “optimal” solutions to 1,872 (67.34%) of the problem instances as opposed

to the next best performer, Elhedhli with the cost-based stopping criterion, which

found “optimal” solutions to 1,237 (44.5%) of the problem instances. The Colley and

non-linear models found “optimal” solutions to 795 (28.60%) and 135 (4.86%) of the

problem instances, respectively. As indicated in the “Top Performer” columns, Phase

1 was the top performer on 1,689 (60.76%) of the problem instances when the three

runs were made concurrently, and on 1,680 (60.43%) of the problem instances when

the runs were made sequentially. The next best performer was the Elhedhli model

with the solution-based stopping criterion, which was a top performer on 452 (16.26%)

and 441 (15.86%) of the problem instances when the runs were made concurrently

and sequentially, respectively.

Focusing on just the base scenario (see Table 6.5), there is more “diversity”

amoung the top performers. As shown in Table 6.5, the Colley model was a top

performer 12.37% time when the runs were concurrent and 12.23% of the time when

they were sequential; the Elhedhli model with the solution-based stopping criterion

was a top performer 17.12% time when the runs were concurrent and 15.68% of the

time when they were sequential. However, Phase 1 was a top performer 50.07% and

49.93% of the time when the runs were made concurrently and sequentially, respec-

tively. Considering only the maximum-capacity scenarios (see Table 6.6) also shows

a diversity of top performers, but again Phase 1 dominates; it was a top performer

102

52.66% and 51.94% of the time compared to the second-best performer, the Elhedhli

model with the solution-based stopping criterion, which was a top performer 16.40%

of the time and 15.97% of the time. Focusing on just the maximum-number-of-

facilities scenario (see Table 6.7), the independent method of analysis shows a similar

trend to the overall trend shown in Table 6.4: Phase 1 was a top performer 70.50%

and 70.07% of the time, and the Elhedhli model with the solution-based stopping

criterion was a top performer 15.68% and 15.25%, depending on how the runs were

made. Finally, independent analysis of the scenario with limits on both system ca-

pacity and the number of facilities (see Table 6.8) shows that Phase 1 was the top

performer 69.78% of time with both concurrent and sequential runs while the next-

best performer, the Elhedhli model with the solution-based stopping criterion was a

top performer 15.83% time when the runs were concurrent and 16.55% of the time

when they were sequential.

Figure 6.2 shows the average solution time for the algorithms included in this

analysis method. The Nonlinear model solved using Baron almost immediately hits

the 300 second time-limit. All of the other algorithms hit the time limit once the

number of customers surpasses 100 except for the Phase 1 heuristic—which never

exceeds 8 seconds. Because the Elhedhli models are iterating, they can exceed the

300 second time-limit which was imposed on each iteration of the Gurobi solver and

also checked cumulatively between iterations. For example, a problem instance might

have accumulated 100 seconds of solve time before Gurobi began solving the next

iteration. Because Gurobi had a 300 second time-limit, it ran for 300 seconds before

stopping. Thus, the total solve time was 400 seconds and the model stopped before

starting the next iteration.

103

Table 6.4. Independent Top Performer Table

Top Performer

Algorithm Found “Optimal” Concurrent Sequential

P1 100.00% 67.34% 60.76% 60.43%

Colley - None 39.03% 28.60% 8.13% 8.31%

Nonlinear - None 16.22% 4.86% 0.07% 0.07%

Linear Sol - None 90.65% 43.99% 16.26% 15.86%

Linear Cost - None 90.65% 44.50% 9.57% 9.06%

Linear Rr - None 28.67% 16.65% 5.22% 6.26%

Table 6.5. Independent Top Performer for All Base Scenario Data Sets

Top Performer

Algorithm Found “Optimal” Concurrent Sequential

P1 100.00% 63.45% 50.07% 49.93%

Colley - None 52.23% 31.94% 12.37% 12.23%

Nonlinear - None 26.19% 9.06% 0.00% 0.00%

Linear Sol - None 100.00% 51.08% 17.12% 15.86%

Linear Cost - None 100.00% 51.37% 9.21% 8.63%

Linear Rr - None 61.29% 34.24% 11.22% 13.53%

104

Table 6.6. Independent Top Performer for All Maximum Capacity Scenario Data

Sets

Top Performer

Algorithm Found “Optimal” Concurrent Sequential

P1 100.00% 61.87% 52.66% 51.94%

Colley - None 45.04% 30.79% 10.07% 10.22%

Nonlinear - None 24.60% 7.05% 0.14% 0.14%

Linear Sol - None 100.00% 48.78% 16.40% 15.97%

Linear Cost - None 100.00% 49.78% 12.09% 11.37%

Linear Rr - None 48.20% 28.06% 8.63% 10.36%

Table 6.7. Independent Top Performer for All Maximum Facility Scenario Data Sets

Top Performer

Algorithm Found “Optimal” Concurrent Sequential

P1 100.00% 72.37% 70.50% 70.07%

Colley - None 29.50% 25.90% 4.75% 5.18%

Nonlinear - None 6.76% 1.73% 0.14% 0.14%

Linear Sol - None 81.58% 37.55% 15.68% 15.25%

Linear Cost - None 81.58% 38.13% 8.35% 8.78%

Linear Rr - None 2.59% 2.16% 0.58% 0.58%

105

Table 6.8. Independent Top Performer for All Both Constraints Scenario Data Sets

Top Performer

Algorithm Found “Optimal” Concurrent Sequential

P1 100.00% 71.65% 69.78% 69.78%

Colley - None 29.35% 25.76% 5.32% 5.61%

Nonlinear - None 7.34% 1.58% 0.00% 0.00%

Linear Sol - None 81.01% 38.56% 15.83% 16.55%

Linear Cost - None 81.01% 38.71% 8.63% 7.48%

Linear Rr - None 2.59% 2.16% 0.43% 0.58%

Figure 6.2. Independent Average Solution Time

106

6.5.2. Interactive Analysis

Table 6.9 summarizes the results using the Phase 1 solution as an initial incumbent

solution when solving the ISP with one of the exact methods. The results show

that the exact methods benefit significantly from starting with a good incumbent

solution. For example, the Colley model found “optimal” solutions to 1,781 (64.06%)

instances when given the Phase 1 incumbent as opposed to only 721 (25.94%) of

instances when solved without an incumbent. As noted earlier, the Elhedhli model

tended to move away from the incumbent solution. Nevertheless, the Elhedhli model

with the solution-based and cost-based stopping criteria found “optimal” solutions to

1,535 (55.22%) and 1,555 (55.94%) of the problem instances when given the Phase

1 incumbent as opposed to 890 (32.01%) and 903 (32.48%) of instances without

the incumbent. The incumbent solution was the least helpful when used with the

nonlinear model. Without the incumbent, Baron found “optimal” solutions to 135

(4.86%) of the problem instances; with the incumbent, that number increased to

454 (16.33%). As expected, the exact methods were more likely than the heuristic

to be top performers in this experiment. It is interesting to note that among the

exact methods, the Colley model dominated in terms of being a top performer. In

this experiment the Colley model was the top performer approximately 37% of the

time; the next-best performer, the Elhedhli model with the solution-based stopping

criterion, was the top performer approximately 15% of the time. Overall, these results

show that if one is going to solve the ISP with an exact method then it is worth the

additional time to first find an incumbent solution with Phase 1 of the heuristic.

Figure 6.3 shows the average solution time for the algorithms included in this

analysis method. Given the speed of the Phase 1 heuristic, the exact methods starting

with the incumbent solution did not incur a significant increase in solution time and

tended to trend similarly to the Independent Analysis Method.

107

Table 6.9. Interactive Top Performer Table

Top Performer

Algorithm Found “Optimal” Concurrent Sequential

P1 100.00% 18.49% 11.91% 11.58%

Colley - None 39.03% 25.94% 4.78% 4.96%

Colley - P1 100.00% 64.06% 37.19% 37.30%

Nonlinear - None 16.22% 4.86% 0.04% 0.04%

Nonlinear - P1 64.06% 16.33% 0.04% 0.04%

Linear Sol - None 90.65% 32.01% 7.52% 6.98%

Linear Sol - P1 100.00% 55.22% 15.47% 15.25%

Linear Cost - None 90.65% 32.48% 2.45% 2.19%

Linear Cost - P1 100.00% 55.94% 12.45% 12.70%

Linear Rr - None 28.67% 12.99% 2.30% 2.91%

Linear Rr - P1 32.73% 22.81% 5.86% 6.04%

108

Figure 6.3. Interactive Average Solution Time

109

6.5.3. Complete Analysis

Table 6.10 summarizes the complete analysis. Continuing the heuristic to Phase

2 improved the quality of the solutions; it found “optimal” solutions to 514 (18.49%)

instances using only Phase 1 and 646 (23.44%) using Phase 2. As noted earlier, Phase

2 significantly increased the running time of the heuristic. Comparing the first two

rows of the table we see that continuing to Phase 2 caused the heuristic to time out

on 2,040 of the 2,780 problem instances. When stopping after Phase 1, the heuristic

only timed out once.

Using the Phase 2 solution as an incumbent also improved the quality of the so-

lutions found by the exact methods. For example, the Colley model found “optimal”

solutions to 1329 (47.81%) problem instances in this experiment when it was given

the Phase 1 incumbent; that increased to 1698 (61.08%) with the Phase 2 incumbent.

The improvements for the other exact methods were more modest. For example, the

Elhedhli model with the cost-based stopping criterion found “optimal” solutions to

1437 (51.69%) problem instances in this experiment when it was given the Phase 1

incumbent; that increased to 1499 (53.92%) with the Phase 2 incumbent. Taking so-

lution time into account, the results show that in most cases any given exact method

was a top performer more often when starting with the Phase 1 incumbent than with

the Phase 2 incumbent. For example, the Colley model with the Phase 1 incum-

bent was a top performer 20.86% of the time and a top performer with the Phase

2 incumbent 16.08% of the time. Overall, these results suggest that the potential

improvement in solution quality gained by starting with the Phase 2 incumbent is

not worth the additional time requirement.

Figure 6.4 shows the average solution time for the algorithms included in this

analysis method. When starting with the Phase 2 heuristic solution, a noticeable

increase in solution time is realized as the 300 second time-limit for the heuristic and

110

the 300 second time-limit for the exact methods were additive to get a total time-limit

of 600 seconds.

111

Table 6.10. Complete Top Performer Table

Top Performer

Algorithm Found “Optimal” Concurrent Sequential

P1 100.00% 18.49% 11.91% 11.58%

P2 100.00% 23.24% 0.83% 0.94%

Colley - None 39.03% 25.61% 4.39% 4.57%

Colley - P1 100.00% 47.81% 20.86% 20.97%

Colley - P2 100.00% 61.08% 16.08% 16.08%

Nonlinear - None 16.22% 4.86% 0.00% 0.00%

Nonlinear - P1 64.06% 16.33% 0.00% 0.00%

Nonlinear - P2 64.06% 19.89% 0.00% 0.00%

Linear Sol - None 90.65% 31.12% 7.05% 6.40%

Linear Sol - P1 100.00% 50.97% 13.88% 13.56%

Linear Sol - P2 100.00% 53.06% 2.52% 2.30%

Linear Cost - None 90.65% 31.44% 1.62% 1.37%

Linear Cost - P1 100.00% 51.69% 9.96% 10.36%

Linear Cost - P2 100.00% 53.92% 2.88% 3.02%

Linear Rr - None 28.67% 12.91% 2.23% 2.88%

Linear Rr - P1 32.73% 21.94% 5.25% 5.36%

Linear Rr - P2 32.63% 22.66% 0.54% 0.61%

112

Figure 6.4. Complete Average Solution Time

113

6.6. Analysis of Variance

An analysis of variance (ANOVA) was also performed on the data to attempt to

find an equation for predicting the length of time it will take to solve the problem.

Initially, all individual runs that did not time out were analyzed (as the instances

over the time limit could skew the equation). A total of 28 ANOVA tests were done

with varying factors and covariate combinations. The best R2 value of 77.02% for

the derived equation was using the data set (Figure 6.5) as the factor indicating

that data sets in their entirety must be used. The next best result was an R2 value

of 73.07% with the scenario as the factor and the number of customers, number of

facilities, number of capacity levels, and the value of t as covariates (Figure 6.6). The

ANOVA returned a regression equation for each scenario. For example, the regression

equation for the Base Scenario was 2.305−0.00847m−0.2420n−1.662K−0.002939t+

0.000784mn+ 0.002787mK + 0.000073mt+ 0.22334nK− 0.000159nt+ 0.000973Kt−

0.000105mnK − 0.000003mnt− 0.000025mKt+ 0.000052nKt+ 0.000001mnKt.

With the scenario being an important factor, the data was filtered to only the base

scenario to do further ANOVA tests. Changing the factor to starting point (and using

the same covariates), the R2 was 84.05% (Figure 6.7). The data was then filtered to

just instances with no starting point. The ANOVA test was updated to use model as

the factor resulting in an R2 value of 86.78% (Figure 6.8). The data was then filtered

to just instances with the Elhedhli Linear Model using Solution Cost as the stopping

point. The ANOVA test was updated to use group as the factor resulting in an R2

value of 90.08% (Figure 6.9). Finally, the data was filtered one last time to only the

Sizing group and an ANOVA test with no factor resulted in an R2 value of 88.46%

(Figure 6.10).

Additional ANOVA tests were performed on the final set of filtered data to deter-

mine if the number of customers, number of facilities, number of capacity levels, and

114

Figure 6.5. ANOVA Analysis by Data Set

the value of t were still the best covariates. All other covariate tests only resulted

in an R2 value under 20.00%. All of the ANOVA test results can be found in the

detailed results.

On the figures referenced above, the Versus Fits chart shows the residuals on

the y-axis and the fitted values on the x-axis and the Versus Order chart shows the

residuals in the order that the data were collected.

115

Figure 6.6. ANOVA Analysis by Scenario and m, n, K, t

116

Figure 6.7. ANOVA Analysis Base by Starting Point and m, n, K, t

117

Figure 6.8. ANOVA Analysis Base (None) by Model and m, n, K, t

118

Figure 6.9. ANOVA Analysis Base (None) Elhedhli Cost by Group and m, n, K, t

119

Figure 6.10. ANOVA Analysis Sizing Group Base (None) Elhedhli Cost by m, n, K,

t

120

6.7. Extended Research

In addition to the exhaustive amount of data provided in this dissertation and

the detail results, additional tests were being performed that did not complete. In

those tests, the Heuristic was executed with only Phase 1 and with ten randomly

sorted customer lists (no deterministically sorted customer lists) and the Elhedhli

Model was executed without a time limit using the solution cost stopping criteria

and no incumbent solution. Both algorithms were being executed with only the base

constraints. Based on the solution times, only 78 of the 695 data sets could be

executed within the available time—even with them executing on 8 servers.

Of the 78 instances of the Heuristic, the Phase 1 solution improved nine times

(11.54%) and found a better solution than the current Complete Analysis Top Per-

former twice (2.56%)—with the remaining 67 (85.90%) instances finding a worse solu-

tion. The longest running Elhedhli instance took over 48 days. The Gurobi processes

were unable to find a solution (insufficient system resources to continue processing)

for 32 (41.03%) of the instances.

Of the remaining 46 Elhedhli instances, 29 (63.04%) instances found a better

solution than the current Complete Analysis Top Performer. The largest improvement

was 4.29% and took 3 days to execute. The remaining improvements were all under

1% with 4 (8.70%) finding a worse solution.

121

Chapter 7

Using M/M/s Model

Given that the capacity levels are not continuous variables but rather discrete

break points, the capacity could be the result of adding more servers to a facility.

Therefore, the current models—which are using the M/M/1 formula for the customer

wait-time cost—are assuming one queue per server at the facility, where a customer

picks a queue upon arrival and does not change to a different queue. Essentially, this

formulates to s distinct M/M/1 queues.

Assuming a single queue, instead of one queue per server, the M/M/s formulas

would give a more accurate value for the customer wait-time cost—thus more accu-

rately model assigning threads in B2Bi. However, the need to use factorials prevents

this formula from being used in a mathematical programming model. Therefore, the

use of the M/M/s formulas would be restricted solely to heuristic algorithms.

7.1. The Current M/M/s Formulas

Given λ represents the average demand for the queue, µ represents the average

capacity per server, and s represents the number of servers in the queue, the following

M/M/s formulas can be obtained ([35]):

Average work being performed by the system:

α =
λ

µ
(7.1)

122

Average work being performed by a single server:

ρ =
α

s
0 < ρ < 1 (7.2)

Probability the system is empty:

P0 =

[(
s−1∑
k=0

αk

k!

)
+

(
αs

s!
· 1

1− α
s

)]−1

(7.3)

Probability the system has k customers:

Pk =

P0

αk

k!
;

P0
αk

sk−ss!
;

0 ≤ k ≤ s

k > s
(7.4)

Average length of the queue (i.e. average number of waiting customers):

Lq =P0
ρ (sρ)s

(1− ρ)2 s!
(7.5)

Average wait time in the queue for a single customer:

Wq =
Lq
λ

(7.6)

Average length of the system (i.e. average number of customers waiting and being

served):

Ls =Lq + α (7.7)

Average time in the system for a single customer:

Ws =
Ls
λ

(7.8)

Average number of idle servers:

si =
s−1∑
k=0

(s− k)Pk (7.9)

123

7.2. Accuracy Differences Using M/M/1 Formula

If each break point in the capacity level is due to adding a new server, the M/M/1

formula for the customer wait-time cost can be updated to use the number of servers

at each capacity level. A new sjk parameter value could be used to represent the

number of servers for the facility at the capacity level and µ could be the average

capacity per server. Thus, the customer wait-time cost could be rewritten as:

t
n∑
j=1

∑m
i=1 λijxij∑K

k=1 sjkµyjk −
∑m

i=1 λijxij
(7.10)

If the M/M/1 result is then compared to the M/M/s result for Lq, it can be proved

that the M/M/1 formula 7.10 always returns a higher value than the M/M/s formula

(see Appendix C). This means the base formula 7.10 is overweighting the customer

wait-time cost if the capacity break points are due to the addition of more servers

in the same queue for customers to arrive—which is definitely the case for the B2Bi

application as each facility represents a single priority queue.

7.3. Impact on Heuristic Using M/M/s Formula

The impact of using the M/M/s formula 7.5 on the heuristic would not necessarily

be in complexity as the Lq value can be found in polynomial time (O(s)). It can also

be performed as a subroutine to mitigate any redundant code. However, more research

is needed to determine what the impact is on the solve time. The primary goal of the

heuristic is to have a result in no longer than one second of elapsed time.

7.4. Additional Cost Options Using M/M/s

By changing the base model to work in terms of number of servers instead of

strictly capacity, other costs from the M/M/s formulas could also be used. The more

124

complex formulas could not be utilized in a mathematical programming software due

to the need to perform factorial calculations, but could be used in the heuristic.

Another cost that appears complex at first is the average number of idle servers.

This formula can be simplified into si = s − α (see Appendix B). Currently, the

data sets derived from the client data is using the fixed cost (fjk) to help drive more

capacity to “higher” facilities. The idle server cost could be used instead. The goal of

this cost would be to increase capacity at facilities where the availability of a server

when a customer arrives is greater compared to other facilities.

Using the heuristic could also open up more complex cost calculations, such as

targeting the probability that there are sufficient servers to handle new customers

arriving a certain percentage of the time (
∑s

k=0 Pk). Depending on the need, this

could be more reliable than the average number of idle servers. It could also be

converted into a constraint instead of a cost depending on the need. However, this

could potentially lead to an infeasible problem if the target was too stringent.

125

Chapter 8

CONCLUSION

8.1. Contributions

This dissertation develops a fast, effective heuristic for the immobile server prob-

lem that is easy to implement. This fills a gap between computationally intensive

solution approaches in the literature: exact methods, that require specialized op-

timization software to implement, and meta-heuristics. The exact methods in the

literature involve iteratively solving sequences of mixed integer programs. Another

contribution of this dissertation is a stand-alone mathematical programming model

that can be solved with a single, straightforward application of a commercial solver.

A relatively large testbed of new problem instances, many of which are orders of

magnitude larger than those in the literature, was generated to evaluate the new

solution approaches. These data sets have been made available to share with other

researchers on the SMU Scholar website. In the computational study with the testbed

data and data from the literature, the heuristic was shown to be very effective for

time-limited use cases such as reconfiguring resources for B2Bi clients and content

delivery networks. The heuristic was also shown to improve the performance of the

exact methods by quickly finding high-quality incumbent solutions. Through statis-

tical and sensitivity analysis, the dissertation also provides a better understanding of

the effect of customer waiting time cost and capacity budgets on solution with exact

methods.

126

8.2. Alternate Use Cases

Given the opportunity (such as with the B2Bi use case), using nonlinear costs with

just the base model appears to work best with the heuristic using only Phase 1 as

the results are consistent with the mathematical models but are obtained significantly

faster and without the need to purchase optimization software. Even with using linear

costs (which is most use cases where costs are provided), the heuristic performed well

under most circumstances in terms of the error in relation to the mathematical models

by including Phase 2 at the cost of increased solution time and not meeting the goal

of finding at least one solution per second.

For any of the models, keeping the average value for the customer wait-time cost

(t λ̂

µ̂−λ̂ where λ̂ is the total system demand and µ̂ is the total system capacity) at or

below the average cost for the facility assigment cost (
∑m
i=1 ĉiλi
m

where ĉi is the average

facility assign cost for customer i) appears to correlate to an easier problem for the

models to solve. Using nonlinear costs appears to significantly help with reducing the

size of the problem—as fewer capacity levels might be required.

8.3. Future Research

Using the M/M/s formulas with the heuristic is planned for future research. This

could create an additional benefit to the solution by having a more accurate cost

calculation or addition of constraints that cannot be described accurately using the

M/M/1 formulas. This could give the heuristic an advantage over the other models

for specific needs.

The heuristic can also be studied further with additional options for Phase 1—such

as sorting by the standard deviation or providing Phase 2 with an optional starting

point that does not include the customer wait-time cost. Additional subroutines

for Phase 2 could also be developed. By incorporating three randomized lists, the

127

importance of finding additional sorting options was showcased in that 38.06% of the

instances the Heuristic Phase 1 found a better solution because of the randomized

lists than it would have found without it. Additionally, Phase 2 had a better solution

54.35% of the instances because of Phase 1 providing additional starting points. The

best case scenario would be to use the best solution for each instance, work backwards,

and find an algorithm to sort the customers so that Phase 1 will return the best

solution every time.

128

Appendix A

Detailed Results

Detailed results will be reviewed outside of this document for the dissertation. A

zip file containing all inputs and outputs can be found on SMU Scholar ([19]). There

are two compressed files on the site. The main file (Colley Dissertation Analysis.zip)

and the supplemental file (UNIX AMPL and Script Output Files.zip) are both avail-

able on the SMU Scholar site. The supplemental file is approximately 10.5 GB in

size and includes all AMPL and Script output files from running each of the 141,780

results. The files are stored in folders based on the type of output (AMPL or Script),

incumbent solution used, scenario, and data-set group. The main file contents are

outlined in Table A.1.

129

Table A.1. Main Detailed Results Compressed File Contents

File / File Type Desription

AMPL Files Directory containing files used by AMPL.

Data Sets Directories containing 695 data sets by

data-set group.

Analysis.mpx MiniTab Project File used for ANOVA testing.

Analysis.xlsx Excel Spreadsheet used to analyze the data.

Cohort Tables.pdf PDF of selected Cohort Tables.

Minitab Results.docx Word Document containing results of ANOVA

testing.

Overall Results.xlsx Excel Spreadsheet containing Top Performer

Tables.

preResults.csv CSV File containing heuristic results.

readme.txt Read Me file explaining the contents of the

compressed file.

Result.csv CSV File containing AMPL results.

SawTooth.xlsx Excel Spreadsheet containing the results of the

brute-force analysis.

130

Appendix B

Idle Server Calculation Proof

Proposition:

si =s− α (B.1)

Given:

P0 =

[(
s−1∑
k=0

αk

k!

)
+

(
αs

s!
· 1

1− α
s

)]−1

(B.2)

Pk =

P0

αk

k!
;

P0
αk

sk−ss!
;

0 ≤ k ≤ s

k > s
(B.3)

si =
s−1∑
k=0

(s− k)Pk (B.4)

Proof

Start with the equality:

αs

(s− 1)!
=

αs

(s− 1)!
(B.5)

Add and subtract a summation that can incorporate one side of the equality:

αs

(s− 1)!
+

s−2∑
k=0

αk+1

k!
−

s−2∑
k=0

αk+1

k!
=

αs

(s− 1)!
(B.6)

s−1∑
k=0

αk+1

k!
−

s−2∑
k=0

αk+1

k!
=

αs

(s− 1)!
(B.7)

−
s−2∑
k=0

αk+1

k!
=−

s−1∑
k=0

αk+1

k!
+

αs

(s− 1)!
(B.8)

131

Add a new summation to each side:

s−1∑
k=0

sαk

k!
−

s−2∑
k=0

αk+1

k!
=

s−1∑
k=0

sαk

k!
−

s−1∑
k=0

αk+1

k!
+

αs

(s− 1)!
(B.9)

Normalize all summation ranges to start with k = 0 and end with s− 1:

s−1∑
k=0

sαk

k!
−

s−1∑
k=1

αk

(k − 1)!
=

s−1∑
k=0

sαk

k!
−

s−1∑
k=0

αk+1

k!
+

αs

(s− 1)!
(B.10)

s−1∑
k=0

sαk

k!
−

s−1∑
k=1

kαk

k!
=

s−1∑
k=0

sαk

k!
−

s−1∑
k=0

αk+1

k!
+

αs

(s− 1)!
(B.11)

s−1∑
k=0

sαk

k!
−

s−1∑
k=0

kαk

k!
=

s−1∑
k=0

sαk

k!
−

s−1∑
k=0

αk+1

k!
+

αs

(s− 1)!
(B.12)

Combine summations:

s−1∑
k=0

sαk − kαk

k!
=

s−1∑
k=0

sαk − αk+1

k!
+

αs

(s− 1)!
(B.13)

s−1∑
k=0

(s− k)αk

k!
=

s−1∑
k=0

(s− α)αk

k!
+

αs

(s− 1)!
(B.14)

Separate out s− α from one side and simplify:

s−1∑
k=0

(s− k)
αk

k!
= (s− α)

[
s−1∑
k=0

αk

k!
+

αs

(s− 1)! (s− α)

]
(B.15)

s−1∑
k=0

(s− k)
αk

k!
= (s− α)

[
s−1∑
k=0

αk

k!
+

sαs

s! (s− α)

]
(B.16)

s−1∑
k=0

(s− k)
αk

k!
= (s− α)

[
s−1∑
k=0

αk

k!
+

αs

s! s−α
s

]
(B.17)

s−1∑
k=0

(s− k)
αk

k!
= (s− α)

[
s−1∑
k=0

αk

k!
+

αs

s!
(
1− α

s

)] (B.18)

s−1∑
k=0

(s− k)
αk

k!
=

(s− α)[(∑s−1
k=0

αk

k!

)
+
(
αs

s!
· 1

1−α
s

)]−1 (B.19)

132

Substitute known formulas:

s−1∑
k=0

(s− k)
αk

k!
=

(s− α)

P0

(B.20)

P0

s−1∑
k=0

(s− k)
αk

k!
=s− α (B.21)

s−1∑
k=0

(s− k)P0
αk

k!
=s− α (B.22)

s−1∑
k=0

(s− k)Pk =s− α (B.23)

si =s− α (B.24)

g

133

Appendix C

Proof of M/M/1 always higher than M/M/s

Proposition:

LM/M/s
q <LM/M/1

q (C.1)

Given:

α =
λ

µ
(C.2)

ρ =
α

s
0 < ρ < 1 (C.3)

µM/M/1 =sµ (C.4)

P0 =

[(
s−1∑
k=0

αk

k!

)
+

(
αs

s!
· 1

1− α
s

)]−1

(C.5)

LM/M/1
q =

λ

µM/M/1 − λ
(C.6)

LM/M/s
q =P0

ρ (sρ)s

(1− ρ)2 s!
(C.7)

134

Proof

Start with the assumption and simplify into terms of s and α:

LM/M/s
q <LM/M/1

q (C.8)

P0
ρ (sρ)s

(1− ρ)2 s!
<

λ

µM/M/1 − λ
(C.9)

P0

α
s

(α)s(
1− α

s

)2
s!
<

λ

sµ− λ
(C.10)

P0
αs+1

s
(
s−α
s

)2
s!
<

λ

sµ− αµ
(C.11)

P0
αs+1

(s−α)2

s
s!
<

λ

µ (s− α)
(C.12)

P0
αs+1

(s− α)2 (s− 1)!
<

α

s− α
(C.13)

Cancel terms and explode P0, then simplify:

αs

(s− 1)!
<
s− α
P0

(C.14)

αs

(s− 1)!
< (s− α)

((
s−1∑
k=0

αk

k!

)
+

(
αs

s!
· 1

1− α
s

))
(C.15)

αs

(s− 1)!
< (s− α)

((
s−1∑
k=0

αk

k!

)
+

(
αs

s!
(
s−α
s

))) (C.16)

αs

(s− 1)!
< (s− α)

((
s−1∑
k=0

αk

k!

)
+

(
αs

(s− 1)! (s− α)

))
(C.17)

αs

(s− 1)!
< (s− α)

(
s−1∑
k=0

αk

k!

)
+

αs

(s− 1)!
(C.18)

0 < (s− α)

(
s−1∑
k=0

αk

k!

)
(C.19)

Because s > α > 0, the following are always true:

s− α >0 (C.20)

s−1∑
k=0

αk

k!
>0 (C.21)

135

Therefore, the assumption is confirmed that the value for the average length of the

queue using the M/M/1 formula is always greater than the value for the average

length of the queue using the M/M/s formula.

g

136

REFERENCES

[1] IBM Sterling B2B Integrator. https://bridgesgi.com/wp-
content/uploads/2014/10/Bridge-Solutions-B2B-Integrator.pdf.

[2] Java 1.6. https://www.oracle.com/java/technologies/javase/webnotes.html.

[3] Aboolian, R., Berman, O., and Drezner, Z. Location and allocation of
service units on a congested network. IIE Transactions 40 (2008), 422–433.

[4] Aboolian, R., Berman, O., and Krass, D. Profit maximizing distributed
service system design with congestion and elastic demand. Transportation Sci-
ence 46 (2012), 153–295.

[5] Agnihothri, S., Narasimhan, S., and Pirkul, H. An assignment problem
with queueing time cost. Naval Research Logistics - NAV RES LOG 37 (1990),
231–244.

[6] Al Jadaan, O., Rajamani, L., and Rao, C. R. Non-dominated ranked ge-
netic algorithm for solving multi-objective optimization problems: NRGA. Jour-
nal of Theoretical and Applied Information Technology 2 (2008), 60–67.

[7] Amiri, A. Solution procedures for the service system design problem. Computers
& Operations Research 24, 1 (1997), 49–60.

[8] Amiri, A. The design of service systems with queueing time cost, workload
capacities and backup service. European Journal of Operational Research 104, 1
(1998), 201–217.

[9] Amiri, A. The multi-hour service system design problem. European Journal of
Operational Research 128, 3 (2001), 625–638.

[10] Amiri, A., and Pirkul, H. New formulation and relaxation to solve a concave-
cost network flow problem. Journal of the Operational Research Society 48
(1997), 278287.

[11] AMPL. AMPL Version 10.6.16. AMPL Optimization LLC, 2009.

[12] Arkat, J., and Jafari. Network location problem with stochastic and uni-
formly distributed demands. International Journal of Engineering 29, 5 (2016),
654–662.

137

[13] Berman, O., and Krass, D. Stochastic location models with congestion.
In Location Science, G. Laporte, S. Nickel, and F. S. da Gama, Eds. Springer,
Berlin, 2015, pp. 443–486.

[14] Boffey, B., Galvao, R., and Espejo, L. A review of congestion models in
the location of facilities with immobile servers. European Journal of Operational
Research 178 (2007), 643–662.

[15] Boffey, B., Galvão, R. D., and Marianov, V. Location of single-server
immobile facilities subject to a loss constraint. Journal of the Operational Re-
search Society 61, 6 (2010), 987–999.

[16] Burke, E. K. and Kendall G. Search Methodologies. Springer, New York,
NY, 2014. https://doi.org/10.1007/978-1-4614-6940-7.

[17] Castillo, I., Ingolfsson, A., and Sim, T. Socially Optimal Location of
Facilities with Fixed Servers, Stochastic Demand and Congestion. http://www.
optimization-online.org/DB_HTML/2002/12/578.html, 07 2002. [Online;
accessed 7-April-2021].

[18] Chambari, A., Rahmaty, S. H., Hajipour, V., and Karimi, A. A
bi-objective model for location-allocation problem within queuing framework.
World Academy of Science. Engineering and Technology 78 (2011), 138–145.

[19] Colley, A. Q. Customer and Capacity Assignment for a Set of Im-
mobile Servers using Heuristics. https://scholar.smu.edu/engineering_
management_research/3/, 2021. [Online;].

[20] Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii.
In Parallel Problem Solving from Nature PPSN VI (Berlin, Heidelberg, 2000),
M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P.
Schwefel, Eds., Springer Berlin Heidelberg, pp. 849–858.

[21] Derringer, G., and Suich, R. Simultaneous optimization of several response
variables. Journal of quality technology 12, 4 (1980), 214–219.

[22] Elhedhli, S. Service system design with immobile servers, stochastic demand,
and congestion. Manufacturing & Service Operations Management 8, 1 (2006),
92–97. http://dx.doi.org/10.1287/msom.1050.0094.

[23] Elhedhli, S., Wang, Y., and Saif, A. Service system design with immobile
servers, stochastic demand and concave-cost capacity selection. Computers &
Operations Research 94 (2018), 65–75.

138

http://www.optimization-online.org/DB_HTML/2002/12/578.html
http://www.optimization-online.org/DB_HTML/2002/12/578.html
https://scholar.smu.edu/engineering_management_research/3/
https://scholar.smu.edu/engineering_management_research/3/

[24] Geem, Z. W., Kim, J. H., and Loganathan, G. V. A new heuristic
optimization algorithm: harmony search. simulation 76, 2 (2001), 60–68.

[25] Glover, F. and Laguna M. Tabu Search. Springer, New York, NY, 1997.
https://doi.org/10.1007/978-1-4615-6089-0.

[26] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021.

[27] Hajipour, V., Rahmati, S. H. A., Pasandideh, S. H. R., and Niaki,
S. T. A. A multi-objective harmony search algorithm to optimize multi-server
location–allocation problem in congested systems. Computers & Industrial En-
gineering 72 (2014), 187–197.

[28] Holmberg, K., Ronnqvist, M., and Yuan, D. An exact algorithm for the
capacitated facility location problems with single sourcing. European Journal of
Operational Research 113, 3 (1999), 544–559.

[29] Hoseinpour, P. An economies-of-scale service system design problem. https:
//arxiv.org/abs/2006.07851, 2020. [Online; accessed 7-April-2021].

[30] Li, B., Golin, M. J., Italiano, G. F., Deng, X., and Sohraby, K.
On the optimal placement of web proxies in the internet. In IEEE INFOCOM
’99. Conference on Computer Communications. Proceedings. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies. The
Future is Now (Cat. No.99CH36320) (1999), vol. 3, pp. 1282–1290 vol.3.

[31] Marianov, V., Boffey, T. B., and Galvão, R. D. Optimal location of
multi-server congestible facilities operating as m/e r/m/n queues. Journal of the
Operational Research Society 60, 5 (2009), 674–684.

[32] Marianov, V., and Serra, D. Locationallocation of multiple-server service
centers with constrained queues or waiting times. Annals of Operations Research
111, 1 (2002), 35–50.

[33] Mirjalili, S. The ant lion optimizer. Advances in Engineering Software 83
(2015), 80–98.

[34] P. Chandra, E. W. W. Fibonacci number. MathWorld–A Wolfram Web
Resource. https://mathworld.wolfram.com/FibonacciNumber.html.

[35] P. Harrison, N. M. P. Performance Modelling of Communication Networks
and Computer Architectures. AddisonWesley, 1992.

[36] Pasandideh, S. H. R., and Chambari, A. A new model for location-
allocation problem within queuing framework. Journal of Optimization in In-
dustrial Engineering, 6 (2010), 53–61.

139

https://arxiv.org/abs/2006.07851
https://arxiv.org/abs/2006.07851

[37] Pasandideh, S. H. R., and Niaki, S. Genetic application in a facility location
problem with random demand within queuing framework. Journal of Intelligent
Manufacturing 23 (2012), 651–659.

[38] Peng, Y. Resource allocation and task scheduling optimization in cloud-based
content delivery networks with edge computing. https://scholar.smu.edu/
engineering_managment_etds/6, 2019. [Online;].

[39] Rahmati, S. H. A., Hajipour, V., and Niaki, S. T. A. A soft-computing
pareto-based meta-heuristic algorithm for a multi-objective multi-server facility
location problem. Applied soft computing 13, 4 (2013), 1728–1740.

[40] Rajagopalan, S., and Yu, H.-L. Capacity planning with congestion effects.
European Journal of Operational Research 134, 2 (2001), 365–377. Financial
Modelling.

[41] Riccio, L. J. Management science in New York’s department of sanitation.
INFORMS Journal on Applied Analytics 14, 2 (1984), 1–13.

[42] Stiermaier, S. Facility location and allocation problems with stochastic cus-
tomer demand and immobile servers. PhD thesis, 2010.

[43] Taguchi, G. Orthogonal arrays and linear graphs. American Supplier Institute,
Inc (1986).

[44] The Optimization Firm. BARON. https://minlp.com/baron, 2021. [On-
line; accessed 10-April-2021].

[45] Vidyarthi, N., and Jayaswal, S. Efficient solution of a class of locational-
location problems with stochastic demand and congestion. Computers & Oper-
ations Research 48 (2014), 20–30.

[46] Wang, Q., Batta, R., and Rump, C. M. Algorithms for a facility loca-
tion problem with stochastic customer demand and immobile servers. Annals of
Operations Research 111 (2002), 1734.

[47] Zamani, S., Arkat, J., Niaki, S. T. A., and Ahmadizar, F. Locations of
congested facilities with interruptible immobile servers. Computers & Industrial
Engineering 156 (2021), 107220.

140

https://scholar.smu.edu/engineering_managment_etds/6
https://scholar.smu.edu/engineering_managment_etds/6
https://minlp.com/baron

	Heuristics For Capacity Allocation And Queue Assignment In Congested Service Systems With Stochastic Customer Demand And Immobile Servers
	Recommended Citation

	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	Scope
	Literature Review
	Exact Methods
	Metaheuristics
	Math-Programming-Based Heuristics
	Greedy Heuristics

	Goals
	Contributions

	Immobile Server Problem and its Cost Components
	Facility Assignment Cost
	Facility Capacity Cost
	Customer Wait-Time Cost
	Cost Interactions
	Costs in IBM Sterling B2B Integrator

	Mathematical Models
	Nonlinear
	Elhedhli Linear
	Colley Linear
	Mathematical Model Size Comparison

	Heuristic
	Basic Structure
	Illustration
	Forced Minimum Capacity Illustration
	Unforced Capacity Illustration
	Forced Maximum Capacity Illustration

	Multiple Use Routines
	Phase 1 Routines
	Phase 2 Routines
	Heuristic Complexity Analysis

	Data Sets
	Holmberg
	Small, Varying Costs
	Various, Linear Costs
	Various, Nonlinear Costs
	Sizing
	Saw-Tooth
	Data Sets in Existing Literature

	Analysis of Results
	Nonlinear Model Issues
	Elhedhli Linear Model Issues
	Colley Linear Model Issues
	Heuristic Issues
	Summary of Results
	Independent Analysis
	Interactive Analysis
	Complete Analysis

	Analysis of Variance
	Extended Research

	Using M/M/s Model
	The Current M/M/s Formulas
	Accuracy Differences Using M/M/1 Formula
	Impact on Heuristic Using M/M/s Formula
	Additional Cost Options Using M/M/s

	CONCLUSION
	Contributions
	Alternate Use Cases
	Future Research

	Detailed Results
	Idle Server Calculation Proof
	Proof of M/M/1 always higher than M/M/s
	REFERENCES

