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As a branch of machine learning, multiple instance learning (MIL) learns from a col-

lection of labeled bags, each containing a set of instances. Each instance is described by

a feature vector. The learning process is weakly supervised due to ambiguous instance

labels. Since its emergence, MIL has been applied to solve various problems including

content-based image retrieval, object tracking/detection, and computer-aided diagnosis.

In biomedical research, the use of MIL has been focused on medical image analysis and

molecule activity prediction.

The first part of this dissertation focuses on a comparative study of MIL methods for

a novel biomedical application. To date, the majority of the off-the-shelf MIL methods are

developed in the computer science domain and so algorithm-driven. We review and apply

a large collection of existing methods to investigate the applicability of MIL to cancer

detection using T-cell receptor (TCR) sequences. This important application can be a

viable approach for large-scale cancer screening, as TCRs can be easily profiled from

a subject’s peripheral blood. Based on our numerical results from extensive simulation

and analysis of sequencing data from The Cancer Genome Atlas for ten types of cancer,

we make suggestions about selection of a proper method and avoidance of any method

with poor performance. We further identify a pressing need of new model-based MIL

methodologies for accurate modeling of increasingly complex structures of real world data

and more explainable outcomes.

vi



The second part of this dissertation proposes a novel Bayesian MIL method for binary

classification based on hierarchical probit regression (MICProB), which contributes a sig-

nificant portion to the suite of statistical methodologies for MIL. MICProB is composed of

two nested probit regression models, where the inner model is estimated for predicting

primary instances, which are considered as the “important” ones that determine the bag

label, and the outer model is for predicting bag labels based on the features of primary

instances estimated by the inner model. The posterior distribution of MICProB can be con-

veniently approximated using a Gibbs sampler, and the prediction for new bags can be

performed in a fully integrated Bayesian way. We evaluate the performance of MICProB

against various benchmark methods and demonstrate its competitiveness in simulation

and real data examples. In addition to its capability of identifying primary instances, as

compared to existing optimization-based approaches, MICProB also enjoys great advan-

tages in providing a transparent model structure, straightforward statistical inference of

quantities related to model parameters, and favorable interpretability of covariate effects

on the bag-level response.
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CHAPTER 1

A COMPARATIVE STUDY OF MULTIPLE INSTANCE LEARNING METHODS FOR
CANCER DETECTION USING T-CELL RECEPTOR SEQUENCES

1.1. Introduction

First introduced in Dietterich et al. [19], multiple instance learning (MIL) has been

used to tackle a wide range of problems, in which the learning task is performed on a

set of labeled “bags” , each being a collection of “instances”. Each individual instance

is described by a set of covariates (or features). Instances in one bag contribute to the

observed bag-level response (or label). Often, the instance label cannot be observed

directly, and sometimes is even not defined clearly. The main objective of MIL is to predict

bag labels based on the instance-level covariates by learning the relationship among

bags and instances. In applications such as object detection, instance labels are also of

interest.

The binary classification problem is most frequently encountered in MIL. For exam-

ple, in drug activity prediction, Dietterich et al. [19] developed an MIL algorithm to clas-

sify whether a molecule (bag) of different conformations (instances) is biologically active;

in content-based image retrieval [41], the authors employed MIL to determine whether

a given image (bag) contains a particular object in at least one of non-overlapping re-

gions of the image (instances); in document classification [4], an article (bag) is cate-

gorized based on passages contained (instances). MIL methods have also been devel-

oped for multi-label classification, with major applications in scene/image categorization
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[11, 49, 70, 76, 80]. In addition to classification, MIL is applicable for real-valued re-

sponses as well [2, 60, 67]. A recent application of multiple instance regression studied

the relationship between tumor immune response and immunogenic neoantigens using

Bayesian hierarchical models [48]. Less common than classification and regression, un-

supervised learning tasks, such as MI ranking and clustering, where no response is at-

tached to any bag, have also been investigated by researchers [8, 30, 51, 71, 73].

Over the past two decades, numerous MIL methods have been developed by re-

searchers to adapt to the diverse characteristics of multiple instance (MI) problems. Sev-

eral papers have compared or categorized existing MIL methods and applications. Foulds

and Frank [20] gave a detailed review of the standard MI assumption and alternative as-

sumptions made on the data generation process with respect to the relationship between

bags and instances; their work focused on clarification of relevant concepts involved in

MIL rather than performance evaluation of different methods. Amores [3] provided a con-

cise categorization of MIL methods for binary classification, depending on the means that

a method takes to learn bag labels from instances in the bags. However, this work only

considered two MI problem characteristics (i.e., witness rate and number of components

in the distribution for positive instances) in the simulation design. It also excluded more

recent MIL methods [5, 17]. A more recent study conducted by Carbonneau et al. [13] for-

mally identified four MI problem characteristics. Nevertheless, it lacked a clear distinction

between bag composition and label ambiguity, hence may hinder one’s understanding

of how instances contribute to bag labels in a specific MI application. Finally, previous

research has demonstrated the suitability of MIL methods in many applications from var-

ious fields such as biology and chemistry, computer vision, document classification, web

mining, and activity recognition [5, 13, 24, 61, 62]. In this paper, we focus on a novel

biomedical application, cancer detection using T-cell receptor (TCR) sequences, where

the applicability of MIL methods is yet to be examined.
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In accordance with the Resolution on Cancer Prevention and Control (WHA58.22)

at the 58th World Health Assembly, accurate and timely cancer detection, especially for

aggressive cancer types, is extremely important for patients to receive appropriate treat-

ments for best possible prognosis. Various experimental methods exist, which, however,

are less ideal for detecting certain types of cancer [12, 18, 59]. Based on previous findings

that the host immune responses to tumor cells are already activated during tumorigenesis

process [26, 47, 53], one possible and more universal approach to discern tumors from

normal tissue samples is to examine the TCR sequences, which are capable of reflecting

the state of the host T cell immunity system, and may contain critical information regarding

whether tumors have been progressing in the human body. This problem fits naturally into

the MIL framework as there are a large number of T cells with different TCRs (instances)

in each patient (bag). TCRs are proteins expressed on the surface of the T cells and used

by the latter to target and initiate the destruction of the tumor cells. Structural characteris-

tics of the TCRs, which can be obtained by well established sequencing techniques from

a patient’s blood, could be used to predict whether the patient has tumor(s) or not.

Apart from biomedical studies that only descriptively characterized TCRs in tumor and

normal tissues, such as Jin et al. [34], few researchers have sought to predict tumor or

normal status based on TCRs of T cells. Beshnova et al. [9] developed a deep learning-

based method for predicting tumor associated TCRs. While showing some promise,

this method is not an MIL approach, hence it ignores the bag-instance relationship (i.e.

patient-TCR relationship in their work) that naturally arises in the context of this applica-

tion, rendering model interpretation difficult. Ostmeyer et al. [46] developed an MIL model

for distinguishing tumor infiltrating T cells from T cells of adjacent normal tissues. How-

ever, this work suffers from small sample sizes (only 28 and 32 patients for breast cancer

and colorectal cancer, respectively). The employed MIL model has a simple design based

on the standard MIL assumption and does not utilize global bag-level information. Fur-

thermore, there was no comparison with the state-of-the-art MIL methods. Thus, whether

their conclusion is generalizable remains open.
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This study provides an up-to-date review of MIL methods that are applicable to our

application. We examine the performance of the methods in cancer detection via com-

prehensive simulation and real data examples. The remainder of this paper is organized

as follows. In Section 1.2, we describe data and problem characteristics that are relevant

to our MIL application, and identify key concepts. In Section 1.3, we describe a list of MIL

methods for our application and comment briefly on their implementation. In Section 1.4,

we carry out a simulation study comparing the performance of the selected MIL methods

on synthetic datasets, which simulate various scenarios that may occur in real data. In

Section 1.5, we conduct analysis on real datasets obtained from The Cancer Genome

Atlas (TCGA). We discuss our major findings and future work in Section 1.6.

1.2. Cancer Detection Using TCR Sequences

1.2.1. Data generation

Figure 1.1 depicts how human biospecimens are processed to generate the input data

for MIL algorithms. Tissue samples collected from patients by medical facilities are an-

alyzed using next-generation sequencing techniques and genomic data for each sample

are obtained. TCR sequences in each sample are then detected from its raw sequenc-

ing reads via TCR reconstruction software such as TRUST [38] and MiTCR [10]. Under

the MIL framework, each sample is considered as a bag consisting of TCR sequences

(instances), which are essentially text strings. We embed each TCR sequence into a nu-

meric vector using our previously published Tessa model [75], which is equipped with a

deep learning auto-encoder that converts complex information (strings of amino acids in

this case) to numeric values. In short, each amino acid of a TCR sequences is encoded

by the five Atchley factors [6] that can fully capture their physicochemical properties.

A stacked auto-encoder is then applied to the “Atchely matrices” of TCRs to represent
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the Atchley-factor-encoded TCR sequences by d-dimensional numeric vectors through a

decomposition-reconstruction process. Our previous work has systematically established

the validity of this approach [75]. By representing each TCR sequence using a numeric

vector, we make it convenient for MIL methods to utilize these features, for instance, to

calculate distances among instances and/or bags.

Figure 1.1: The pipeline of data processing in our MIL application of cancer detection
using TCR sequences. Each encoded TCR sequence is represented by a d-dimensional
numeric feature vector learned by the auto-encoder.

1.2.2. Problem characteristics and related concepts

MIL differs from standard supervised learning in that a single class label is assigned

to a bag of instances rather than every individual instance. MIL is weakly supervised as

instance-level labels may be vaguely defined and not observed, and the relationship be-

tween a bag and its instances is unclear. Consider a bag with m instances, collectively

described by a feature matrix X = {x1, . . . , xm}. Each instance j is represented by a fea-

ture vector xj in a d-dimensional feature space (i.e., xj ∈ Rd). For binary classification, as

in our cancer detection application, we may build a function F (X) ∈ [0, 1] and determine

the bag to be positive (or negative) if F (X) is above (or below) some cutoff value. The

classification function F (X) is learned from a training set with the sample size n (i.e., n
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bags), denoted by T = {(Xi, yi)
n
i=1}, where yi ∈ {0, 1} is the label of bag i (yi = 1 if the

bag is positive and yi = 0 otherwise).

Although instance labels may not be directly observable, instance classification can

be of interest in MI applications as well. For example, in image-based object detection,

one or more segments of an image correspond to a dog if a dog is in the image; in this

sense, an instance (segment) is positive if it contributes to a positive bag (i.e., an image

containing a dog). In drug activity prediction, a molecule (bag) has to have the “right”

conformation (instance) to possess the binding potency. In our application, the primary

objective is to classify bags. That is, we aim to identify whether a screening subject has

tumor or not. However, instance classification can be useful if tumor-specific TCRs can be

identified and leveraged for engineering TCR-T therapies [35]. Analogous to the bag-level

classifier F (X), we use the generic notation f(x) to denote the instance-level classifier,

which assigns a label to the instance with the feature vector x.

For our application and potentially other applications of MIL, we consider two possible

formulations (or data generation mechanisms) with respect to how the label of a bag is

determined by its instances. The first relies on instance classification and the concept of

witness rate (WR), defined as the proportion of positive instances in positive bags [13].

It is assumed that only the number or proportion of the positive instances is responsible

for labeling a bag as positive (e.g., a positive bag has at least t positive instances, or a

positive bag has at least t% of instances being positive), with more positive instances typ-

ically indicating a higher confidence of a positive bag. The standard assumption, which is

the most commonly used in the MI literature, states that a positive bag has at least one

positive instance and a negative bag only has negative instances [19]. This classical as-

sumption fits in the WR framework, in which WR equals 0 for a negative bag and ranges

from 0 (exclusively) to 1 for a positive bag. As pointed out by Carbonneau et al. [13], pos-

itive bags with low WRs may result in poor performance of many MIL methods as positive

and negative bags become similar. In general, the concept of WR applies to scenarios

6



where instance classification is meaningful. In our application of cancer detection, WR

may naturally correspond to the proportion of tumor-specific TCR clones out of all TCR

clones in a tissue sample. Tumor-specific TCRs, once present in a bag (sample), make

the bag positive (tumor sample), whereas the negative TCRs are generated from host

immune responses that are not triggered by cancer, but by other physiological processes

such as auto-immune diseases, infection, etc.

An alternative formulation is based on the concept of primary instances, first intro-

duced by Ray and Page [55]. In this vein, a bag label, whether it is positive or negative,

is determined by a (small) number of instances in this bag (called primary instances),

while all other instances are irrelevant. That is, the bag-level classification function F (X)

can be written into F (X∗), where X∗ is a subset of {x1, . . . , xm}, representing the primary

instances of the bag. Thus, the bag classification remains unchanged if non-primary

instances are removed from the bags, though one has no clue about their presence in

advance. It is important to note that whether an instance is primary or not is an indicator

rather than an instance label. Park et al. [48] further makes a simplifying assumption that

one bag has only one primary instance based on the finding that only a very small portion

of instances are responsible for bag-level responses in their application. In general situ-

ations, multiple primary instances should be allowed. Analogous to WR, the proportion

of primary instances (PPI) is defined as the number of primary instances divided by the

bag size (i.e., the number of instances in the bag), describing the proportion of “respon-

sible” instances of a bag. Another classical assumption in the MI literature, known as the

collective assumption, states that each instance contributes equally and independently

so that the label of a bag is determined by all its instances collectively [21]. Obviously,

this assumption fits in the PPI framework (with PPI = 100%) rather than the WR frame-

work. We note that the collective assumption is not suitable for our application, because

not all TCRs are equally important in the biological context. In distinguishing tumor from

normal samples, the distinction between primary and non-primary instances seems to be

reasonable: on one hand, there could be abundant T cells with irrelevant TCRs gener-
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ated by the host immune system that are by-standers naive to any antigenic events; on

the other hand, there could be “important” TCRs that serve as signatures of immune re-

sponses against tumor (positive bags), or other diseases that trigger immune responses

in non-tumourous individuals (negative bags). These TCRs are the primary instances of

the bags. Ideally, under the PPI framework, the first step of MIL is to identify the primary

instances in each bag, as these instances are the only ones that are responsible for the

bag label. However, this formulation is fairly new, and existing MIL methods for classifica-

tion do not possess the capability of formal identification of primary instances. Thus, the

performance of the methods needs to be validated for MI data generated under the PPI

framework, which, we believe, is a reasonable assumption for many applications in the

real world. This would help answer an important question whether new MIL methodolo-

gies need to be specifically developed under the PPI framework to better accommodate

such data.

As discussed above, both WR and PPI formulations are feasible in our application. For

the purpose of performance evaluation of existing MIL methods, we will consider both data

generation mechanisms in our simulation and compare the results with those obtained in

real data analysis. Other factors, such as sample size, bag size, number of features, and

proportion of positive bags, can potentially affect the performance of MIL methods. We

will consider such factors collectively to guide the simulation design and the subsequent

selection of appropriate MIL methods for our new application in cancer detection.

1.3. Review of Selected MIL Methods

As we focus on binary classification in our application, we do not consider MIL meth-

ods that address multi-class classification, regression, ranking, or clustering. Eligible

MIL methods should be able to accommodate the problem characteristics and related

concepts as discussed in Section 1.2.2. According to Amores [3], MIL methods can be
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grouped into one of three categories: instance-space (IS), bag-space (BS), and embedded-

space (ES) methods. This categorization is based on how a method extracts and exploits

information from the MI data. For IS methods, the learning process occurs at the instance

level, where f(x) is trained to separate the instances in positive bags from those in nega-

tive ones; instance-level scores produced by f(x) are then combined to create a bag-level

classifier F (X) according to a reasonable MI assumption. Thus, IS methods consider the

characteristics of individual instances and ignore more global characteristics of the en-

tire bag. By contrast, both BS and ES methods treat each bag as a whole entity, and

train F (X) utilizing the global, bag-level information. Specifically, BS methods attempt to

measure the distance or similarity between each pair of bags and predict the bag labels

directly using distance- or kernel-based classifiers such as k-Nearest Neighbors (kNN)

and Support Vector Machine (SVM), while ES methods employ a mapping function to

embed multiple instances of a bag into a single “meta” instance defined on a new feature

space, and then make direct bag-level prediction using standard classifiers.

Both BS and ES methods seek to represent each bag using a single instance defined

on a new feature space. As we shall see in subsequent sections, there are various ways

to map the original feature space to a new feature space by using either a distance or

kernel function. Since IS methods are applied to MI data in its original representation,

the dimensionality is the same as the number of features. For BS and ES methods, the

dimensionality depends on the new feature space created from the original feature space.

Under the WR framework, IS methods can naturally deal with both bag and instance

classification while BS and ES methods usually do not directly classify instances. Un-

der the PPI framework, IS methods are less appropriate as the non-primary instances

introduce irrelevant information to the bag. However, the selected BS and ES methods

might still be appropriate for the task of bag classification, as the information of primary

instances of each bag could be utilized by the flexible embedding/summary behaviors of

these methods. Therefore, we anticipate that IS methods perform poorly under the PPI
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mechanism, which is later confirmed by our simulation (Figure 1.3).

Table 1.1 displays the 17 methods selected for our application, including seven IS, five

BS and five ES methods. Methods that can perform instance classification are highlighted

in italics.

MIL Methods

IS EMDD MI-SVM mi-SVM SI-SVM SI-kNN MILBoost mi-Net

BS CkNN NSK-SVM EMD-SVM miGraph MInD

ES MILES BoW CCE MI-Net ADeep

Table 1.1: The selected MIL methods for cancer detection using TCR sequences. Those
that can perform instance classification are highlighted in italics.

1.3.1. Instance-space methods

Beginning with propagating bag labels to the corresponding instances, IS methods

ignore bag structures and build classifiers at the instance level. Bag labels are then ob-

tained by aggregating instance prediction based on a suitable MI assumption, such as

the standard assumption, the collective assumption (e.g., sum or average of individual

instance predictions in a bag), and the maximum or minimum of the instance predictions.

For each of the six IS methods included, we describe how instance classification is per-

formed below.

EMDD [74]: Expectation-Maximization Diverse Density is a generalization of the Diverse

Density (DD) algorithm [41], which aims to identify a point with the maximum DD in the

feature space that is close to as many different positive bags as possible, while staying

as far from the negative bags as possible. EMDD searches for the maximum DD point via

the Expectation-Maximization (EM) algorithm and instance classification is made based

on the distance from the maximum DD point.

10



mi-SVM and MI-SVM [4]: Both methods are extended from SVM, known as a maximum-

margin classifier, to fit in the MI setting. For binary classification, SVM finds a hyperplane

that yields the largest separation (or margin) between the two classes. mi-SVM assigns

negative labels to all instances in negative bags but treats labels of instances in positive

bags as unknown. Then a soft-margin criterion, defined at the instance level, is maximized

jointly over the hyperplanes and unobserved instance labels in positive bags such that all

instances in every negative bag are located on one side of the hyperplane and at least

one instance in every positive bag is located on the other side of the hyperplane. In

each iteration, an SVM classifier is built and instance labels are re-assigned. The SVM

is then retrained to refine the decision boundary using the newly assigned labels until the

imputed labels do not change further. Instead of maximizing the instance-level margin,

MI-SVM represents each bag by one representative instance of the bag and maximizes

the bag-level margin; that is, the margin of a positive bag is defined by the margin of

the “most positive” instance, while the margin of a negative bag is defined by the “least

negative” instance. An SVM classifier is built when the representative instance remains

unchanged in each bag. The authors suggested that, if one aims to make an accurate

instance classification, mi-SVM is preferable; otherwise, MI-SVM is more appropriate.

SI-SVM [54] and SI-kNN [13]: These methods train vanilla (single-instance) supervised

classifiers on MI data by completely discarding the bag-membership information of in-

stances. In their implementation, each instance inherits the bag label and the SVM and

kNN classifiers are optimized on the reduced (single-instance) problem.

MILBoost [7]: This method classifies each instance individually by a linear combination

of decision dumps (i.e., 1-level decision trees) whose performance may only be slightly

better than random guessing. The weak classifiers are then combined to minimize the

bag-level loss function (e.g., the negative log likelihood), using gradient boosting [22].

mi-Net [66]: Named by Wang et al. [66], mi-Net represents multiple instance neural

networks (MINNs) that first predict the probability of positiveness for each instance and
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then employ an MIL pooling layer to aggregate instance-level probabilities to produce bag-

level probabilities. Suppose an MINN is composed of L layers. At the beginning, each

instance is fed into several fully-connected (FC) layers with an activation function. After

instance-level probabilities are predicted from the last FC layer (i.e., the (L− 1)th layer of

the MINN), the bag-level probability is obtained from the last layer for each bag using an

MIL pooling function (such as maximum pooling, mean pooling, and log-sum-exp pooling).

1.3.2. Bag-space methods

Unlike IS methods that ignore the bag structure during the learning process, BS meth-

ods learn the distance or similarity between each pair of bags. In short, BS methods use

a suitable distance or kernel function to embed the bags using their member instances,

and then employ a standard supervised learning method, such as kNN and SVM, to learn

the bag-to-bag relationship. The following BS methods are considered for our application.

CkNN [63]: CkNN (Citation-kNN) is a variant of SI-kNN adapted to MI data, which uses

the minimal Hausdorff distance to calculate the distance between a pair of bags so that

the resulting distance is robust to extreme instance values. The authors also introduced

so-called “reference” and “citer”, where references are the nearest neighbors of a given

bag and citers are bags that consider the given bag as their nearest neighbor. By using

references and citers collectively, a bag is labeled as positive if there are more positive

bags than negative bags among its references and citers. For example, suppose a bag

has R = R+ + R− references and C = C+ + C− citers, where the subscript indicates the

bag label. The target bag is thus identified to be positive if R+ +C+ > R−+C−. If there is

a tie, the bag is assigned to the negative class to mitigate the tendency to produce false

positives that occur more frequently than false negatives in MI applications.

NSK-SVM [23]: NSK-SVM is an extended version of kernel methods, in which a normal-

ized set kernel (NSK) is proposed for MI data. Specifically, the set kernel is defined on
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bags and derived from a chosen instance-level kernel. Matching kernel, polynomial ker-

nel, and radial basis function kernel are common choices. To reduce the effect of varying

bag sizes, normalization is critical and is achieved by averaging the pairwise distances be-

tween all instances contained in two bags. Subsequently, an SVM using the normalized

set kernel is built to predict bag labels.

EMD-SVM [72]: The proposed approach employs Earth Mover’s Distance (EMD) [56]

to measure the similarity between any two bags (say i and i′). EMD can be defined

as a weighted sum of the ground distances between all pairs of instances (j, j′), where

instance j (j′) is from bag i (i′), respectively. In Zhang et al. [72], the ground distance

measure is chosen to be the Euclidean distance and the weights are obtained by solving

a linear programming problem. For bag classification, an SVM is used after transforming

the calculated distances to a Gaussian kernel function.

miGraph [77]: Motivated by an observation made in Zhou and Xu [78] that instances are

rarely independently and identically distributed (i.i.d.) in a bag, the authors propose mi-

Graph for bag classification that can make use of the relations among instances by treat-

ing instances as inter-correlated components of the bag. The miGraph method represents

each bag by a graph, where its nodes are the instances. An edge exists between a pair

of instances if their Gaussian distance is smaller than some threshold (e.g., the average

distance in the bag). Since instances are potentially dependent, their weights contributing

to the bag classification are adjusted by cliques identified in the graph. After representing

all bags by their corresponding graphs, an SVM with a graph kernel (constructed by using

instance weights) is used to perform the classification based on between-bag similarity.

This method can also handle i.i.d. instances by using an identity edge matrix (i.e., no

edge between any two instances).

MInD [17]: Multiple Instance learning with bag Dissimilarities (MInD) uses bag dissimilar-

ities as features, obtained by representing each bag by a vector of its dissimilarities to the

other bags in the training set. An SVM is then trained for bag classification. The authors
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recommend using the meanmin function as the bag dissimilarity measure given its su-

perior performance in numerical experiments. Specifically, the dissimilarity from bag i to

bag i′ is defined as Di,i′ = 1
mi

∑
j minj′ d(xij, xi′j′), an average over the minimum squared

Euclidean distances from each instance in bag i (with mi instances in total) to instances

in bag i′. As a result, the dissimilarity matrix is asymmetric (i.e., Di,i′ 6= Di′,i), which is

more generalized compared with a symmetric representation.

1.3.3. Embedded-space methods

As in BS methods, ES methods extract information contained in MI data at the bag

level and transform an MI problem to a standard supervised learning problem by summa-

rizing a bag using a single feature vector. However, ES methods focus on instance em-

bedding. We discuss three methods, each using a different strategy to embed instances

to a new feature space.

BoW [3]: Bag-of-Words (BoW) provides a general framework to represent the bag-instance

relationship. Under MIL, the training instances are used to build a word dictionary (or vo-

cabulary). A bag can thus be represented by a histogram over the dictionary, which forms

a new feature space. An SVM is then used to make bag classification using the new

features.

CCE [79]: Constructive Clustering based Ensemble (CCE) first assigns all instances in

a training set into C clusters using the k-means clustering method, and then represents

each bag by a binary feature vector of length C: if the bag has at least one instance

belonging to cluster c, the corresponding cth feature component is 1, and 0 otherwise.

With new bag-level features created, an SVM can be built for bag classification. Since

there is no restrictions on the choice of C, it is advised to train several classifiers based

on different clustering results and combine their predictions via a majority vote. In this

sense, CCE also takes advantage of ensemble learning. When a new bag is given for
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classification, CCE re-represents it through querying the clustering results, and then feeds

the generated feature vectors to the ensemble classifier to predict the bag label. Note that

in CCE, k-means, SVM, and majority voting can be replaced by any other algorithms for

clustering, classification and ensemble, respectively.

MILES [16]: Multiple-Instance Learning via Embedded instance Selection (MILES) as-

sumes a subset of instances is responsible for bag labels. In the embedding step, each

bag is mapped into a new feature space, represented by a vector of similarity scores be-

tween the current bag and the set of instances from all the bags. The dimensionality of the

new feature space is thereby equal to the total number of instances, which can potentially

be large, resulting in high-dimensional features, including those redundant or irrelevant.

Therefore, an SVM with LASSO penalty [81] is applied to select important features as well

as construct classifiers simultaneously. In addition, MILES can also be used for instance

classification by calculating the contribution of instances to the bag classification based

on a given threshold. Unlike other MIL methods we have discussed, the design of MILES

is compatible with the PPI framework.

MI-Net [66]: Unlike mi-Net that focuses on calculating instance-level probabilities, MI-Net

is the first MINN method in the ES category, which strives to learn bag representation

from instance features and generates bag classification directly. Suppose an MINN has L

layers. In MI-Net, after several FC layers, the MIL pooling process aggregates instances in

one bag into a single feature vector as a bag representation, which occurs in the (L− 1)th

layer. The last FC layer (i.e., the Lth layer) takes the bag representation as input and

outputs bag-level probabilities with a sigmoid activation function. Besides the above basic

version, there are two variants of MI-Net proposed in Wang et al. [66], one adding deep

supervision [37] and the other considering residual connections [29], which can improve

the performance sometimes.

ADeep [32]: Besides mi-Net and MI-Net, Attention-based Deep MIL (ADeep) is an MINN

method. It modifies the ES approach to achieve better interpretability by using a novel
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MIL pooling method that relies on a special case of the attention mechanism [52], where

all instances are assumed independent. Unlike traditional pooling operators such as max

and mean that are pre-defined and non-trainable, a weighted average of instances is

proposed, where the weights are determined by a two-layer neural network and sum to

1 so that they are not affected by the size of a bag. Naturally, instances that are likely to

be positive receive higher weights in a bag, rendering more interpretable results. In this

sense, ADeep links the ES approach to the IS approach by providing instance weights as

a proxy to instance probabilities.

1.3.4. Implementation

The MATLAB “MILSurvey" toolbox is made available online by Carbonneau et al. [13].

We use this software package to implement the MIL methods covered in Sections 1.3.1–

1.3.3 except for the three MINN methods (mi-Net, MI-Net, and ADeep) on simulated MI

data generated under either WR or PPI framework. We use Python code available from

Wang et al. [66] to implement mi-Net and MI-Net (the basic version). Due to lack of

instructions on the code usage and data input format, we were not able to implement

ADeep. For each of the methods implemented, the default setting is used in our eval-

uation. For example, for SVM-based methods, we use the default kernel function. In

cross validation, default ranges of values for tuning parameters are used. For MINNs, de-

fault choices of activation function, number of layers, number of neurons, and MIL pooling

method are implemented. Each selected IS method predicts bag labels from the predicted

instance labels based on the standard MI assumption mentioned in Section 1.2.2. We also

refer readers to the GitHub link https://github.com/danyixiong/MIL_Comparative_Study for

more detail on implementation.
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1.4. Simulation

We evaluate the performance of 16 MIL methods under various simulated scenarios,

which attempt to mimic realistic situations in our cancer screening application using TCR

sequences by varying key factors that can potentially affect the performance. Consisting

of amino acid sequences, TCRs are essentially text strings that need to be converted to

numeric values before applying MIL methods. In the analysis of TCGA data (Section 1.5),

TCRs are converted into numeric vectors by the Briseis encoder [75]. In our simulation,

rather than generating TCR sequences, we directly generate numeric values for instances

to simplify the process. We adopt two data generation models based on different assump-

tions about the instance-to-bag relationship. Model I adopts the standard assumption un-

der the WR framework; that is, a positive bag has at least one positive instance and a

negative bag only has negative instances. Model II adopts the PPI mechanism, assuming

that only the primary instances are responsible for the bag labels. Thus, WR/PPI plays

a key role in bag composition under model I/II. In addition, for both models, we examine

the impact of sample size n, bag size m, number of features d, and proportion of positive

bags p+ on the performance of the methods. For simplicity, we assume different bags in

one dataset have a constant number of instances and constant WR/PPI.

We randomly generate 100 replication datasets under each scenario. For each repli-

cate, we train the methods on the training set (70%) and evaluate their performance on

the test set (30%). We evaluate the performance using the area under the Receiver Op-

erating Characteristic curve (AUROC). Since the IS method MILBoost performs poorly

under both models, we exclude it when displaying results for better visibility.

1.4.1. Simulation under model I

Based on model I, each instance has a label. We separately generate positive and

negative instances from two different Gaussian mixture distributions. In our real data ap-
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plication, non-cancer-specific TCRs (negative instances) are usually more diverse than

cancer-specific TCRs (positive instances) due to the existence of diverse antigens from

bacteria, virus, and antigens caused by auto-immune diseases, infections, etc. [45, 57].

Therefore, compared to positive instances, negative instances are simulated from a dis-

tribution with a wider dynamic range. Besides the factors n, m, d, p+ and WR mentioned

above, we consider varying the number of components in the positive instance distribution

(N+) as well.

For each positive bag, we generate dm×WRe positive instances from a Gaussian

mixture with N+ components and m − dm×WRe negative instances from a Gaussian

mixture with 30 components. For each negative bag, all m instances are negative and

hence generated from the same Gaussian mixture with 30 components. The feature di-

mensionality is d and the mixing probability is uniform for each component in either Gaus-

sian mixture. We then simulate mean vectors and covariance matrices for the mixture

distributions. For each component of the Gaussian mixture for positive instances, a d-

dimensional mean vector is randomly generated from a uniform distribution U [−5, 5]. For

each component of the Gaussian mixture for negative instances, a d-dimensional mean

vector is randomly generated from a uniform distribution U [−10, 10]. The covariance ma-

trices of each component for positive and negative instances are identity matrices with

the scale parameter being 2.5 and 5, respectively. Thus, the features are independently

generated. We vary n = 50, 100, 200, 400, 600; m = 5, 10, 20, 40, 60; d = 2, 15, 30, 45, 60;

p+ = 0.1, 0.2, 0.3, 0.4, 0.5; N+ = 1, 8, 15, 22, 30; and WR = 0.05, 0.25, 0.5, 0.75, 1 and assess

their influence on performing multiple instance classification. To reduce the workload of

simulation, not all combinations of the 6 parameters are evaluated. Instead, we vary one

of them at a time while fixing all others at the basic setting, where n = 200, m = 20, d = 30,

p+ = 0.3, N+ = 15, and WR = 0.5.

Figure 1.2 shows bag classification performance of different MIL methods in terms of

mean AUROC under various simulation scenarios. Overall, all BS methods except for

18



CkNN perform fairly well in most scenarios, (closely) followed by the three ES methods.

Among all IS methods, mi-Net and three SVM-based methods (MI-SVM, mi-SVM, and SI-

SVM) outperform the others. Their green lines are virtually invisible because they overlap

with those of the top performing methods and so are covered by the blue or magenta

lines. We note that IS methods appear to be more sensitive to the change of the factors

under the WR framework, as opposed to BS and ES methods.
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Figure 1.2: Mean AUROC (%) of bag classification using different MIL methods, evaluated
on simulation scenarios each with 100 replicates generated under model I. IS/BS/ES
methods are distinguished by green, blue, and magenta lines.

Next, we discuss how each factor affects the performance of MIL methods excluding

MILBoost. First, the performance tends to improve with an increased sample size (n),

especially for EMDD and SI-kNN. Meanwhile, mi-Net and three SVM-based IS methods

and all BS and ES methods perform adequately well even when n is as small as 50, and
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so as n increases, their improvement is not as obvious. Secondly, as the bag size (m)

increases, BoW (an ES method) has improved performance, while EMDD has decreased

performance. The performance of the other methods is not much affected by increased

m. Thirdly, as the proportion of positive bags p+ increases towards 50%, the performance

of EMDD and SI-kNN substantially improves and the performance of mi-Net and MI-Net

shows non-monotonic patterns. As the number of components in the positive instance

distribution N+ increases, the performance of EMDD worsens. Other methods, especially

the BS methods, perform adequately well across these scenarios. We now discuss the

influence of WR on the performance of the methods, where WR = 0.05 represents the

scenario with only one positive instance in a positive bag. As the WR increases, these

methods perform better until AUROC gets close to 100% and there is not much room left

for further improvement. When WR = 0.05, mi-Net has 100% AUROC and the BS method

MInD has nearly 90% AUROC. The BS methods except MInD exhibit the most dramatic

improvement when the WR is changed from 0.05 to 0.25. The two IS methods, EMDD

and SI-kNN, increases at a slower pace than the other methods. Lastly, we find that the

number of features d is another factor which can substantially affect the performance of

many MIL methods, including the six IS methods, MI-Net and CkNN. The most dramatic

improvement for these methods except EMDD occurs when d increases from 2 to 15,

and with 30 features or more, their AUROC values are close to 100%. Meanwhile, all BS

and ES methods except CkNN and MI-Net have good performance (AUROC above 90%)

even when d is 2.

Focusing our evaluation of the MIL methods on their prediction capability for the mi-

nority class (the positive bags in this case), we observe that their performance evaluated

by AUPRC (area under the precision-recall curve) maintains virtually the same ranking as

evaluated by using AUROC. An MIL method with higher AUROC has higher AUPRC in

general, as showed in Figure A.1.
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As discussed in Section 1.3, MILES (an ES method) and all IS methods can be used

to classify instances. Figure A.3 shows instance classification performance of six meth-

ods in terms of mean AUROC under various simulation scenarios. Besides MILBoost, we

exclude results from mi-Net, whose code for performing instance classification is not avail-

able. We find that IS methods show better performance in instance classification than in

bag classification. Furthermore, though MILES can also perform instance classification,

its performance is worse than these IS methods except when the number of features d is

2. As an ES method, MILES performs better in bag classification. Overall, for instance

classification, regardless of the number of features, SI-kNN performs the best.

1.4.2. Simulation under model II

In addition to the factors shared with model I (n, m, d, p+), we consider varying PPI

(i.e., mean proportion of primary instances) for model II. For instance j in bag i, let xijk

denote its kth covariate and δij ∈ {0, 1} be a binary variable with δij = 1 indicating this

instance is primary and 0 otherwise. Each xijk is independently generated from a uniform

distribution U [l, u] with l < u. We simulate δij from a Bernoulli distribution Ber(pij), with

pij ≡ Pr(ffiij = 1) = Φ
(
b0 +

∑d
r=1 xijrbr

)
, where Φ(·) is the standard normal cumulative

distribution function (CDF), and b0 and br for r = 1, ..., d are regression coefficients in

the probit regression model for pij. Further, we simulate the bag label Yi from Ber(πi),

with πi ≡ Pr(Yi = 1) = Φ
(
β0 +

∑m
j=1 δij

∑d
r=1 xijrβr

)
, where β0 and βr for r = 1, ..., d are

regression coefficients associated with the probit model for πi. In case where δij = 0 for

all j = 1, ...,m, we simply generate Yi from Ber(Φ(β0)). We adjust the intercepts b0 and

β0 to vary values of PPI and proportion of positive bags p+, respectively. We set l = −10,

u = 10, bj = 2, βj = −1 ∀j, PPI = 0.05, 0.25, 0.5, 0.75, 1 and use the same settings as in

model I for n, m, d, and p+. Again, we employ the vary-one-at-a-time strategy to reduce

the work load in this simulation, where the basic setting has n = 200, m = 20, d = 30,

p+ = 0.3, and PPI = 0.5.
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The performance of the methods under various simulation scenarios is shown in Fig-

ure 1.3. First, the relative performance of the methods is quite consistent across different

scenarios. NSK-SVM and EMD-SVM are the top two performers and NSK-SVM outper-

forms the latter in nearly all the scenarios. MInD wins the third place, followed by MILES

and then miGraph. Among the remaining nine methods, the IS methods and CkNN have

poor performance in all the scenarios, with AUROC close to 0.5, which is only slightly

better than random guessing; BoW and CCE also perform poorly except for the scenario

with d = 2. Second, the performance varies with a wider range among BS and ES meth-

ods, as opposed to IS methods. Overall, the performance of all methods under model II is

(much) worse than that under model I, which is as expected, since existing methods are

not equipped with the capacity to handle data generated under the PPI framework.

Excluding all the IS methods and CkNN, which have steadily poor performance, we

discuss the impact of each factor on the performance of the remaining MIL methods. First,

increasing sample size n tends to improve the performance. Secondly, as the bag size m

increases, the performance of EMD-SVM, MInD, MI-Net, and MILES decreases, while the

other methods are not sensitive to the change. In particular, NSK-SVM maintains good

performance with AUROC above 80% regardless of the bag size. Thirdly, the proportion

of positive bags p+ appears not to have much impact on the performance. Further, when

PPI increases, most methods show higher AUROC by capturing the increased amount

of useful information. Greater improvement is observed when PPI changes from 0.05

to 0.25. Lastly, all the methods have worse performance as the number of features d

increases. Steeper drops in AUROC occur when d increases from 2 to 15. Recall that

under model I, the performance of the methods shows an increasing pattern overall. As

d goes up, the signal in the simulated data becomes stronger in general, no matter which

model is used for data generation. As the PPI framework is relatively new, none of the

methods were specifically designed for it; instead, many were designed under the WR

framework. Thus, these methods are able to capture the stronger signal under the WR
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Figure 1.3: Mean AUROC (%) of bag classification using different MIL methods, evaluated
on simulation scenarios each with 100 replicates generated under model II. IS/BS/ES
methods are distinguished by green, blue, and magenta lines.

framework as d goes up but not under the PPI framework.

In terms of AUPRC, as showed in Figure A.2, observations about the relative perfor-

mance of the MIL methods and the impact of each factor on the performance are similar to

those from AUROC with one exception: the performance on correct prediction for positive

bags has improved as the proportion of positive bags increases.
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1.4.3. Computation time

We provide the runtime information of each method under the basic setting of each

model in Table 1.2. Fourteen methods are run on MATLAB 2019b GUI from a computing

cluster while MI-Net and mi-Net are run in a Python environment. The average compu-

tation time and its standard error are provided based on 20 datasets simulated under

the basic setting of each model. Overall, applying MIL methods to data generated under

model I (the WR framework) takes longer time than to data generated under model II

(the PPI framework). Furthermore, NSK-SVM, miGraph, BoW, and MILES are more time

consuming than the other methods, regardless of the model used for data generation.

IS methods MILBoost SI-kNN SI-SVM EMDD mi-SVM MI-SVM mi-Net

Model I (WR) 9 (0.05) 13 (0.06) 17 (0.05) 24 (0.22) 22 (1.14) 33 (2.75) 13 (0.07)

Model II (PPI) 10 (0.12) 9 (0.03) 18 (4.21) 18 (1.00) 14 (0.24) 13 (0.27) 13 (0.09)

BS methods MInD CkNN EMD-SVM miGraph NSK-SVM

Model I (WR) 9 (0.03) 21 (0.05) 3 (0.50) 77 (0.38) 80 (0.08)

Model II (PPI) 13 (0.17) 9 (0.04) 3 (0.61) 20 (0.31) 21 (0.20)

ES methods BoW CCE MILES MI-Net

Model I (WR) 60 (21.84) 14 (0.36) 42 (0.21) 14 (0.07)

Model II (PPI) 20 (3.78) 14 (0.14) 20 (0.22) 13 (0.04)

Table 1.2: Average computation time (with standard error) in seconds for each MIL method
based on 20 datasets under the basic setting of each model. Clock time is counted from
loading data to producing classification results.
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1.5. Real Data Examples

1.5.1. TCGA data

As a landmark cancer genomics program, TCGA characterized over 20,000 primary

and metastatic cancer samples on over thirty cancer types with matched adjacent normal

tissues. Figure A.4 shows the number of tumor versus normal tissue samples for each

of the cancer types. In the TCGA data, the number of positive bags (tumor samples) is

much greater than that of negative bags (normal tissue samples). This is because TCGA

is mainly focused on studying cancer patients. We analyze the RNA sequences of sam-

ples from ten cancer types in the TCGA database, including skin cutaneous melanoma

(SKCM), kidney renal clear cell carcinoma (KIRC), lung adenocarcinoma (LUAD), lung

squamous cell carcinoma (LUSC), lymphoid neoplasm diffuse large B-cell lymphoma

(DLBC), breast invasive carcinoma (BRCA), stomach adenocarcinoma (STAD), ovarian

serous cystadenocarcinoma (OV), thymoma (THYM), and esophageal carcinoma (ESCA)

[36, 39, 43]. These cancer types are selected as they have reasonably large sample sizes

(i.e., the number of normal + tumor tissue samples) and bag sizes (i.e., the number of

TCRs in one sample).

In real applications of cancer screening, there are supposed to be many more samples

without cancer than those with cancer. To adjust for oversampling (more positive bags

than negative bags) in TCGA data, we randomly sample positive bags so that the resulting

dataset only includes a subset of positive bags for each cancer type. Furthermore, we

combine all normal tissue samples available from the 30+ cancer types in the TCGA data

to increase the number of negative bags to 405. Mixing negative bags across datasets for

different cancer types is reasonable because the characteristics of normal tissue samples

should be similar across patients.
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TCR sequences were reconstructed by MiTCR from the TCGA RNA-sequencing data.

MiTCR is a commonly used software for reconstructingTCR sequences from next gener-

ation sequencing data [10]. MiTCR also records the number (abundance) of each unique

TCR in each sample (bag). We exclude TCRs whose abundance is 1, because they are

most likely the ones that have not been exposed to any antigens. We randomly sample

50% of the 405 negative bags (i.e., 202 normal tissues samples) to reduce the compu-

tation time and for each of the selected cancer types, we further downsample positive

bags so that the corresponding data contain ∼10% positive bags. As a result, we have

an equal number of positive bags (23) and the total sample size is the same (225) for

all selected cancer types. As pointed by one reviewer, in the literature it is often pre-

ferred to apply MIL methods to balanced data. Thus, we also include analysis on sam-

pled TCGA datasets with 50% positive and 50% negative bags: for DLBC, THYM, and

ESCA, due to a small number of positives (Figure A.4), the sample sizes are 90, 216,

and 332, respectively; for each of the remaining cancers, the total sample size is 404. Ta-

ble 1.3 shows descriptive statistics including the sample size and the number of instances

for selected cancer types after data pre-processing. We further embed each TCR se-

quence into a 30-dimensional numeric vector using the Briseis encoder, as mentioned

in Section [subsec:TCR-sequencing-data]. In addition, we include log-abundance as an

additional feature for each TCR sequence.
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Sample size Bag size

Cancer type Total Mean (SD) Total Mean (SD) Total

Proportion of positive bags 10% 50% 10% 50%

DLBC 225 90 6.4 (13.8) 1446 11.8 (21.8) 1063

THYM 225 216 6.3 (14.2) 1421 15.2 (24.5) 3277

ESCA 225 332 8.8 (24.5) 1979 10.2 (20.6) 3380

BRCA 225 404 5.3 (12.9) 1200 5.6 (12.6) 2255

KIRC 225 404 6.0 (17.0) 1347 6.2 (10.3) 2518

LUAD 225 404 4.5 (14.5) 1018 4.9 (12.9) 1974

LUSC 225 404 4.9 (10.7) 1093 4.0 (6.3) 1622

OV 225 404 5.6 (11.1) 1263 9.1 (17.3) 3670

SKCM 225 404 5.8 (12.0) 1306 6.2 (13.2) 2515

STAD 225 404 9.9 (23.9) 2221 18.3 (31.9) 7401

Table 1.3: TCGA data: descriptive statistics including the sample size and bag size (i.e.,
the number of instances per bag) for selected cancer types.

1.5.2. Analysis results

We apply the 16 MIL methods to classify tumor and normal tissue samples for the

ten cancer types from TCGA. For model training and validation, a nested cross-validation

(CV) procedure [13, 14] is deployed, in which the model is tuned (if the hyperparameters

are optimized over a range of values) in the inner layer CV and the performance of fitted

model is evaluated in the outer layer CV. In implementation, both inner and outer layers

have ten folds. The average performance in terms of AUROC of each method is calculated

from nested cross-validation.
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Figure 1.4: TCGA data: panels (a) and (b) show boxplots of mean AUROC (%) by cancer
type for different MIL methods using data with 10% and 50% positive bags, respectively;
panels (c) and (d) show boxplots of mean AUROC (%) by MIL method for different cancer
types using data with 10% and 50% positive bags, respectively. Categorization of MIL
methods are distinguished by color (green: IS methods; blue: BS methods; magenta: ES
methods).

Figure 1.4(a) shows boxplots of mean AUROC by cancer type for different methods

using the imbalanced TCGA data, arranged in an increasing order of the median AUROC

of each boxplot. Evidently, the performance of the methods depends on cancer type. For

example, all methods perform poorly for BRCA, KIRC, LUAD and LUSC, all with the 75th

percentile of mean AUROC below 60% and the maximum below 70%. On the other hand,

for STAD, most MIL methods perform well and achieve AUROC at least 80%, with the

median around 85%. The median is about 80% for THYM, and around 70% for OV, ESCA,

and DLBC; for these four cancers, the best method can achieve AUROC at least 80%,

indicating adequate performance given an appropriate MIL method is selected. Figure
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1.4(c) shows boxplots of mean AUROC for different cancer types by method, arranged

in an increasing order of the median of each boxplot. Overall, the three BS methods,

EMD-SVM, MInD, and NSK-SVM, are top performers, followed by the ES method MILES.

It is interesting to observe that these four methods also form the top tier in our simulation

under model II. By contrast, the other two BS methods CkNN and miGraph do not perform

well and fall into the bottom group along with the ES method MI-Net that performs much

worse than the others. Here, the poor performance of MI-Net is perhaps due to the fact

that it is based on deep learning, which typically requires balanced data with a very large

sample size to perform well.

We further plot how individual methods perform by cancer type for imbalanced TCGA

data in Figure A.5, where we only include the five cancers with the maximum AUROC

greater than 75% and exclude the other five for which none of the methods works ad-

equately. EMD-SVM works very well and achieves the best or close to the best perfor-

mance for all the five cancers. MInD and NSK-SVM both achieve the best or close to

the best performance in three out of the five cancers and their performance is always

above average. MI-Net performs the worst for all the five cancers and CkNN is often the

second worst while miGraph is above average for three cancers but is dragged down by

poor performance in the other two cancers. The IS and ES methods (except for MI-Net)

somewhat stand in the middle between the two groups of BS methods, with MILES having

better performance than the other mediocre methods.

For balanced TCGA data, Figure 1.4(b) shows that again, the methods perform better

on some cancer types than the others, and their median AUROC values for the top five

follow the same order STAD>THYM>OV>ESCA>DLBC as in the imbalanced case. Fig-

ure 1.4(d) shows that the AUROC varies in a narrower range, indicating the differences

between the methods become less when compared to the imbalanced case. Also, some

MIL methods are more sensitive to the balancing of classes. When p+ increases from

10% to 50%, MILBoost and EMDD move down to the bottom group from the middle and
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MInD moves down to the middle from the top. On the other hand, the performance of

MI-Net is improved as the sample size becomes larger (due to more positives) and the

data becomes balanced. Nevertheless, EMD-SVM, NSK-SVM and MILES are still top

performers. We further plot how individual methods perform by cancer type for the bal-

anced case in Figure A.6, where we only include the top five cancers with the maximum

AUROC greater than 75%. In all the five cancers, EMD-SVM has the best performance,

often followed by NSK-SVM and then MILES, while MILBoost has the worst performance.

We also find that MInD works quite well in these cancer types, hence the its decreased

performance as shown in Figure 1.4(d) is due to its poor performance on the other five

cancers.

Interestingly, we observe that the MIL methods seem to perform worse on cancer

types regarded as immunogenic [64], namely the ones that have high levels of T cell

infiltration. These include KIRC, LUSC, LUAD and SKCM. The biological mechanism of

this observation is worth further experimental studies. But one possible explanation for

this phenomenon is that the presence of tumors in patients of such cancer types have

generated a much stronger overall activation of all T cells in the body, compared with non-

immunogenic cancer types. This may have caused infiltration of both abundant tumor-

specific and non-specific T cells in the tumor, which creates additional difficulty for MIL

to distinguish tumor versus normal samples. Indeed, such bystander effects have been

described before [33, 68].

Among the five cancer types with relatively good performance given appropriate MIL

methods are chosen, ESCA, OV, and STAD are among the ones with the lowest five-year

survival rates; DLBC and THYM are among the most aggressive cancer types and lack

physical symptoms [27, 65]. Effective detection methods for asymptomatic cancer screen-

ing contribute substantially to reduce the mortality of such types of cancers. Screening

using TCR sequences can be easily conducted under MIL. Such a procedure may also

shed lights on more targeted experimental cancer screening methods for aggressive can-
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cer types including but not limiting to the ones mentioned above.

1.6. Discussion

We explore a novel and important biomedical application of MIL and discuss its unique

problem characteristics. In particular, we include a thorough discussion about two data-

generation mechanisms, WR and PPI, the latter of which has not been investigated in

the literature of MI classification. In our application of cancer screening using TCRs, both

WR and PPI model frameworks are biologically plausible. We then provide a systematic

review of 16 MIL methods that are applicable and can be readily implemented in our

application. We conduct extensive simulation under the two frameworks, to benchmark

these methods and to examine impacts of various key factors on their performance. We

further apply the methods to TCGA sequencing data of ten cancer types.

Based on our simulation, we find that under either framework, for most MIL meth-

ods, the two most influential factors are the number of features and WR/PPI. Also, the

methods appear to work better under the WR framework. This is not surprising – as men-

tioned before, the PPI framework is relatively new and none of the methods was originally

designed for such MI data. In particular, the IS methods work poorly under the PPI frame-

work because their bag-level predictions often rely on the standard MI assumption, which

is incompatible with the PPI framework.

As for the relative performance of the different methods evaluated for bag classifica-

tion, we summarize our numerical results from simulation and data examples in Table 1.4,

to provide general guidelines in our application for the selection of an appropriate method.

No matter whether data are synthesized or real, the top performers are mainly from the

BS category: EMD-SVM, MInD, and NSK-SVM are the best three for our real data analy-

sis, and they are also in the top tier under both WR and PPI simulation models; miGraph

does well under the WR model; however, it falls in the bottom group for real data and
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usually does not perform well for simulated data from the PPI model. On the other hand,

CkNN, as a BS method, is the worst for real data and in the bottom group under the PPI

model, meanwhile it does not rank in the top group under the WR model. The two IS

methods, MILBoost and SI-kNN, work poorly for all data; further, all the six IS methods

are non-competitive as they are never in the top groups, regardless of the data or model

types. Yet another interesting observation is that MILES works reasonably well under the

PPI model but does not make it to the top under the WR model. This agrees with the fact

that among all, MILES is more compatible with the PPI mechanism. Note that MILES also

works quite well for real data. Collectively, our findings suggest that results from real data

in this new application conforms more smoothly to results from the PPI framework. Over-

all, for bag classification in our application, we recommend EMD-SVM and NSK-SVM.

Note that, in terms of computation time, EMD-SVM is much faster than NSK-SVM. We

suggest to avoid MI-Net, CkNN, miGraph, CCE and perhaps all the IS methods as well.

Evaluation Best Worst

Simulation
Model I (WR) NSK-SVM, miGraph, EMD-SVM, MInD MILBoost, EMDD, SI-kNN

Model II (PPI) NSK-SVM, EMD-SVM, MInD, MILES
MILBoost, EMDD, SI-kNN, MI-SVM,

mi-SVM, SI-SVM, CkNN, BoW, CCE

TCGA
Imbalanced case EMD-SVM, MInD, NSK-SVM, MILES MI-Net, CkNN, miGraph, CCE

Balanced case EMD-SVM, NSK-SVM, MILES MILBoost, CkNN, EMDD, MI-Net

Table 1.4: The best and worst MIL methods for bag classification based on our numeri-
cal evaluation using simulation and real data examples. Categorization of MIL methods
are distinguished by color (green and italic: IS methods; blue and bold: BS methods;
magenta: ES methods).

For instance classification (if relevant), based on simulation using the WR model, we

suggest to use SI-kNN (an IS method). In real data analysis, it is extremely difficult

to obtain gold-standard knowledge regarding whether a TCR is tumor-specific or not.

Such knowledge is not available in our study, hence the performance of the methods for

instance classification cannot be evaluated using real data.
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In this study, we use tumor resections and adjacent normal tissues to serve as a proof

of concept for distinguishing cancer patients from healthy individuals via TCR sequencing

of blood samples. Admittedly, TCRs of tumor resections are not exactly the same as

TCRs from peripheral blood, which is one caveat of the current study. However, we are

not aware of any existing peripheral blood TCR-sequencing datasets with an adequately

large number of patients comparable to TCGA, which is needed for proper training and

testing of the MIL methods.

Feature selection is not considered in this study for two reasons. First, most MIL

methods do not have built-in feature selection capacity. Second, for BS and ES methods,

a new feature space is created from the original training instances, and the procedure for

creating the new space can be rather diverse. It is thereby difficult to conduct head-to-

head comparison of MIL methods with different feature embedding strategies. However,

when developing new MIL methods, feature selection is definitely an important issue to

consider.

With the flux of high-volume and high-dimensional data in the information era, we

envision an increasing need for the development of MIL methods on burgeoning applica-

tions, especially when the PPI model is a fit and existing methods are not yet sufficient,

as demonstrated in our application. One important direction is to develop model-based

methods, dedicated to addressing MI problems where primary instances are required to

be identified. One can extend the Bayesian hierarchical model of dichotomous response

[1] to the MI setting, as a hierarchical Bayesian approach is well suited for modeling

complicated data structures. Additionally, unlike most optimization-based methods, the

Bayesian approach enjoys great advantage in providing statistical inference and inter-

pretability.

Finally, we recognize the need to develop user-friendly and portable R and/or Python

packages to implement existing MIL methods so that researchers in the statistical, biosta-

tistical and bioinformatical fields can deploy the open-source software locally to explore
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their own datasets in other applications.
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CHAPTER 2

BAYESIAN MULTIPLE INSTANCE CLASSIFICATION BASED ON HIERARCHICAL
PROBIT REGRESSION

2.1. Introduction

In contrast to conventional machine learning where the observed response is associ-

ated with only one feature (or covariate) vector, multiple instance learning (MIL) assumes

that input data are organized as a collection of bags, each containing one or more in-

stances and each instance described by a set of features [19]. In supervised problems

including multiple instance classification (MIC) and multiple instance regression (MIR), a

response variable, or often referred to as a label in literature, is observed at the bag level,

but not individually at the instance level. The primary objective of MIL is to predict the bag

label based on all its instances by learning the underlying relationship between bags and

instances. Besides the voluminous data introduced by multiple instances per bag, the

instance labels are not observed directly or even not clearly defined, bringing additional

challenge to the learning process. Nevertheless, MIL gains great popularity as it pro-

vides an approach to solve many real-life tasks that naturally consist of multiple instance

(MI) data. For example, in drug activity prediction, a molecule of different conformations

(instances) is treated as a bag [19]. In weakly supervised object detection, an image is

viewed as a bag with multiple non-overlapping regions (instances) [13].

In the past decades, development of MIL methods for a variety of MI problems has

been quite active, especially in the field of computer vision. Several works have re-
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viewed and/or compared existing MIL methods and applications [3, 13, 20]. In Amores

[3], MIL methods for binary classification are categorized into three different paradigms,

namely, instance-space (IS), bag-space (BS), and embedded-space (ES), depending on

the means that a method takes to learn bag labels from instances in the bags. For IS

methods, the learning process occurs at the instance level, where an instance-level classi-

fier is trained to predict scores for instances. Bag labels are then obtained by aggregating

instance prediction based on a suitable MI assumption. In this sense, IS methods focus on

the characteristics of individual instances and overlook global characteristics of the entire

bag. By contrast, both BS and ES methods treat each bag as a whole entity, and train a

bag-level classifier utilizing the global, bag-level information. Specifically, BS methods at-

tempt to measure the distance or similarity between each pair of bags and predict the bag

labels directly using distance- or kernel-based classifiers such as k-Nearest Neighbors

(kNN) and Support Vector Machine (SVM), while ES methods employ a mapping function

to embed multiple instances of a bag into a single “meta” instance defined in a new fea-

ture space, and then make direct bag-level prediction using standard classifiers. In the

first application of MIL, Dietterich et al. [19] proposed an IS method named Axis-parallel

Rectangles to predict drug activity. Later, more IS methods are developed based on the

standard MI assumption that a positive bag has at least one positive instance and a neg-

ative bag only has negative instances [41, 74]. To solve applications in computer vision

and text categorization which have more complex data structures, BS and ES methods

are developed subsequently and become quite popular [4, 16, 17, 32, 66, 72]. While MIC

problems receive a lot of attention from computer scientists, statisticians are less aware

of this type of problems and statistical methodologies in this field are under-developed,

except for Chen et al. [15] that proposed a MI logistic regression model (MILR) with an

optional Lasso penalty term and developed an R package. Since MILR associates the

bag probability to the predicted instance probabilities of being positive via the standard MI

assumption, it belongs to the IS category.
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In Chapter 1 a recent MIL application on cancer detection using T-cell receptor (TCR)

sequences, Xiong et al. [69] formally discussed two types of data generation mechanisms

and evaluated the performance of 16 existing MIC methods under each mechanism. The

first relies on witness rate (WR), defined as the proportion of positive instances in positive

bags [13]. Under this so-called WR framework, only the number or proportion of the

positive instances is responsible for labeling a bag as positive, which implies that more

positive instances typically indicating a higher confidence of a positive bag. The second

formulation is based on primary instances, a concept first introduced by Ray and Page [55]

in MIR, yet rarely mentioned in the MIC literature. It is assumed that a bag label, whether

it is positive or negative, is determined by a (small) number of instances in this bag (called

primary instances), while all other instances are irrelevant. Analogous to WR, Xiong et al.

[69] defined the proportion of primary instances (PPI) as the number of primary instances

divided by the total number of instances in a bag, and referred to this formulation as the

PPI framework. Until this work, the PPI framework has not been investigated in the MIC

literature. Based on numerical results from both simulation and analyses of sequencing

data for multiple cancer types, the authors recommended EMD-SVM [72] and NSK-SVM

[23] for their overall better performance over other compared methods. Possibly due to the

presence of abundant by-standing TCRs (corresponding to non-primary instances) naive

to any antigenic process, the authors also pointed out that results from real data were

much more consistent with those from simulated data under the PPI framework, hence

calling for new MIC methodology to be developed based on the PPI framework.

In fact, other applications can also be formulated under the PPI framework. For exam-

ple, Wang et al. [67] predicted aerosol optical depth from satellite measurements where

they treated instances as noisy versions of the primary instance. Recently, Park et al.

[48] developed a Bayesian multiple instance regression model (BMIR) to study the rela-

tionship between tumor immune response and immunogenic neoantigens, assuming that

each bag contains a single primary instance. Although BMIR enables interpretability of

covariate effects due to its regression formulation, the assumption of a single primary
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instance per bag is rather restrictive. Furthermore, after fitting the model with training

data, BMIR requires an auxiliary random forest model to identify the primary instances,

rendering the prediction for new bags less straightforward.

Motivated by Xiong et al. [69], we develop a Bayesian MIC method based on a two-tier

probit regression model (MICProB) under the PPI framework. This novel method does

not belong to any of the three paradigms (IS, BS, and ES) defined in Amores [3], and

adds to the suite of methodologies to address MIC problems where primary instances

need to be identified. MICProB provides a fully integrated Bayesian solution that not only

performs training and prediction simultaneously, but also allows for statistical inference

and offers great explainability. By contrast, most existing MIC methods are algorithm-

driven based on the WR framework, and so cannot offer insights about the mechanism

behind data. The two statistical methods, MILR and BMIR, are both model-based, and so

are similar to MICProB in terms of explainability; however, MILR is based on the standard

MI assumption under the WR framework. While BMIR is based on the PPI framework,

it requires continuous outcomes and predicts the labels for new bags after the training

process is done. Such a sequential approach ignores estimation uncertainty from the

training step.

The remainder of this paper is organized as follows. In Section 2.2, we describe the

proposed Bayesian model, computation, inference, and posterior-based prediction. In

Section 2.3, we conduct simulation studies to assess the performance of our method and

compare it with 15 benchmark methods, under various design configurations. In Sec-

tion 2.4, we illustrate the usage of proposed method with a real application of cancer

detection using TCR sequences and also demonstrate its high explainability in the appli-

cation of modeling immunogenic neoantigens. We summarize our findings and discuss

potential extensions of our method in Section 2.5.
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2.2. Methods

Let Bi denote bag i containing mi instances, and yi denote the observed binary bag

label (or outcome) for i = 1, ..., n, where n is the total number of observed bags (or sample

size). Suppose there are d features (or covariates) that characterize each instance j. We

use Xi = (xij)
mi
j=1 to denote the mi×(d+1) feature matrix of Bi by stacking xij ’s row-wisely,

where xij = (1, xij1, ..., xijd) is a row vector of length d+1. In many practical situations, not

all the instances are necessarily relevant, and there might be instances inside one bag

that do not convey any information about its label. Furthermore, its own feature vector xij

may help predict whether an instance is relevant or not. For each bag i, we refer to those

relevant instances as its primary instances, collectively denoted by B̃i. Let δij be a latent

indicator variable, with δij = 1 indicating that instance j is a primary instance of Bi and 0

otherwise.

2.2.1. Model and prior specification

By assuming primary instances of all bags are known, we first consider a probit re-

gression setup to model the relationship between the feature vectors xij ’s of Bi and the

outcome yi. Namely,

yi =sign(Zi),

Zi =

mi∑
j=1

δijxijβ/Ci + εi,

where εi
ind∼ N(0, 1) for i = 1, ..., n, and β = (βr)

d
r=0 is a column vector of intercept and

regression coefficients describing the covariate effects on the observed outcome variable.

Further, Ci is a normalizing factor that may account for the different number of primary

instances in different bags. For example, Ci = 1 corresponds to the sum contribution,

while Ci = |B̃i| corresponds to the average contribution of B̃i. In case where B̃i = ∅, we
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let Zi = β0 + εi. Without loss of generality, we focus on the sum contribution model. Thus,

Pr(yi = 1|Xi, β, δi1, ..., δimi
) = Φ

(∑mi

j=1 δijxijβ
)

for Ci = 1, where Φ(·) is the cumulative

distribution function of the standard normal distribution.

Next, we model the latent primary indicator of instance j in bag i (i.e., δij) through

another probit regression model:

δij =sign(Uij),

Uij =xijb+ eij,

where eij
ind∼ N(0, 1) for j = 1, ...,mi and i = 1, ..., n. Here, b = (br)

d
r=0 is the column

vector of intercept and coefficients describing the covariate effects on the instance status

(primary vs. non-primary). Similarly, we have Pr(δij = 1|xij, b) = Φ (xijb). In each pro-

bit model, Zi’s or Uij ’s are latent variables which are introduced to make the subsequent

Markov Chain Monte Carlo (MCMC) algorithm for posterior sampling become more con-

venient, due to the data augmentation technique proposed for binary response data in

Albert and Chib [1]. The variances of εi and eij are both fixed at 1 for model identifiability.

For the above two-tier probit regression model, we employ (conditional) conjugate

priors, which are commonly used in the Bayesian regression literature to achieve con-

venient posterior sampling. The prior for the regression coefficients β is specified as

β|µβ,Σβ ∼ MVN(µβ,Σβ). It is routine to set µβ = (0, 0, ..., 0). Similarly, we assign

b|µb,Σb ∼ MVN(µb,Σb) and set µb = (0, 0, ..., 0). For Σβ and Σb, we adopt the hyper-

parameter values suggested by Polson et al. [50] and employ a diagonal matrix with

(16, 4, ..., 4) on the diagonal entries. Figure 2.1(a) describes the Bayesian hierarchical

model structure.
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(a) (b)

Figure 2.1: (a) Bayesian hierarchical model structure of MICProB. Observed data, includ-
ing instances xij ’s and bag labels yi’s, are showed in square boxes. Latent variables,
including Zi’s for response variables and Uij ’s for indicators of primary instances, are
showed in dashed circles. Hyper-parameters include µβ, Σβ, µb, and Σb. (b) Workflow of
MICProB. Left panels explain the model fitting process on training bags and right panels
describe prediction steps for a new bag.

2.2.2. Posterior computation

Let y = (yi)
n
i=1 be a column vector of length n and X = (Xi)

n
i=1 be the collection of

covariate matrices from all bags used for model fitting (i.e., the training cohort). Let ∆

and U be a (
∑n

i=1mi)× 1 column vector of binary indicators δij ’s and their corresponding

latent variables Uij ’s, for i = 1, ..., n and j = 1, ...,mi, respectively. Similarly, let Z = (Zi)
n
i=1

denote a n×1 column vector of latent variables Zi’s associated with the bag labels yi’s, for

i = 1, ..., n. Let Θ = (β, b,∆, Z, U) denote the collection of all model parameters and latent

variables involved. With hyper-parameters µβ, Σβ, µb and Σb specified, the full probability
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model is given by

p(y,Θ|X) = p(y|Z)× p(Z|X,∆, β)× p(∆|U)× p(U |X, b)

× p(β|µβ,Σβ)× p(b|µb,Σb)

=
n∏
i=1

{
p(yi|Zi) · p(Zi|xδi , β) ·

[
mi∏
j=1

p(δij|Uij) · p(Uij|xij, b)

]}

× p(β|µβ,Σβ)× p(b|µb,Σb).

We use MCMC to draw random samples from the joint posterior distribution p(Θ|X, y) ∝

p(y,Θ|X). One advantage of the proposed modeling is that the conditional posterior dis-

tribution of each parameter (or latent variable) given all others, becomes tractable as a

known family of distributions, as detailed below.

• β|· · · ∼ MVN(mβ, Vβ), where

mβ = (Σ−1
β +XT

δ Xδ)
−1(Σ−1

β µβ +XT
δ Z),

Vβ = (Σ−1
β +XT

δ Xδ)
−1.

Here,

Xδ =



xδ1

xδ2

...

xδn


=



1
∑m1

j=1 δ1jx1j1 · · ·
∑m1

j=1 δ1jx1jd

1
∑m2

j=1 δ2jx2j1 · · ·
∑m2

j=1 δ2jx2jd

...
... . . . ...

1
∑mn

j=1 δnjxnj1 · · ·
∑mn

j=1 δnjxnjd


is a n×(d+1) covariate matrix, where the i-th row is formed by the primary instances

of bag i, for i = 1, ..., n.
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• b|· · · ∼ MVN(mb, Vb), where

mb = (Σ−1
b +XTX)−1(Σ−1

b µb +XTU),

Vb = (Σ−1
b +XTX)−1.

Let I(·) be an indicator function that equals 1 if the condition inside the parentheses

is satisfied (0 otherwise). Latent variables Zi’s and Uij ’s can be sampled from truncated

normal distributions, respectively:

• Zi|· · · ∼


N(g(xδi , β), 1) · I(Zi > 0) if yi = 1

N(g(xδi , β), 1) · I(Zi ≤ 0) if yi = 0

, where xδi corresponds to the i-th row

of Xδ and g(xδi , β) = β0 +
∑mi

j=1 δij
∑d

r=1 xijrβr, for i = 1, ..., n.

• Uij|· · · ∼


N(h(xij, b), 1) · I(Uij > 0) if δij = 1

N(h(xij, b), 1) · I(Uij ≤ 0) if δij = 0

, where h(xij, b) = b0 +
∑d

r=1 xijrbr,

for i = 1, ..., n and j = 1, ...,mi.

Lastly, the binary indicator for primary instance follows a Bernoulli distribution condi-

tioning on other parameters:

• δij|· · · ∼ Ber
(

AΦ(h(xij ,b))

AΦ(h(xij ,b))+B[1−Φ(h(xij ,b))]

)
, where

A = exp

−1

2

(
Zi − β0 −

mi∑
j′ 6=j

δij′
d∑
r=1

xij′rβr −
d∑
r=1

xijrβr

)2
 ,

B = exp

−1

2

(
Zi − β0 −

mi∑
j′ 6=j

δij′
d∑
r=1

xijr′βr

)2
 ,

and h(xij, b) = b0 +
∑d

r=1 xijrbr, for i = 1, ..., n and j = 1, ...,mi.
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The above analytical forms allow us to utilize a Gibbs sampler to easily draw samples

from p(Θ|X, y) after proper convergence of the MCMC algorithm.

2.2.3. Posterior inference

Suppose we run the Gibbs sampler for T iterations after the burn-in period. Point esti-

mates of quantities of interest are made based on posterior means (or medians/modes).

For example, the covariate effects on the response variable are estimated by β̂ = 1
T

∑T
t=1 β

(t),

where β(t) is the draw of β at iteration t. Estimation of uncertainty is quantified using

Bayesian credible intervals (highest posterior density intervals or equal-tailed intervals).

This enables us to readily conduct statistical inference about such quantities or their func-

tions and interpret relevant results.

To identify primary instances of a bag in the training cohort, we calculate the posterior

inclusion probability:

π̂ij =
1

T

T∑
t=1

δ
(t)
ij , j = 1, ...,mi,

where δ(t)
ij is defined similarly as β(t). The instance j in bag i is primary if π̂ij > θ, where

θ is a cutoff determined by controlling the Bayesian false discovery rate (FDR) [44] on all

instances from the entire dataset. For a given θ, the estimated FDR is

F̂DR(θ) =

∑n
i=1

∑mi

j=1(1− π̂ij) · I(π̂ij > θ)∑n
i=1

∑mi

j=1 I(π̂ij > θ)
.

In case when the denominator is zero, we define the FDR by 0. We choose the value of θ

so that F̂DR(θ) ≤ κ, where κ ∈ (0, 1) is a pre-specified FDR we aim to control.

The above FDR control method can be used to identify positive bags in the training

cohort as well, where the probability that bag i is positive, πi ≡ Pr (yi = 1 | Xi), can be
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estimated by

π̂i =
1

T

T∑
t=1

Φ

(
mi∑
j=1

δ
(t)
ij xijβ

(t)

)
.

2.2.4. Prediction for new bags

We evaluate the performance of the proposed MICProB on the test bags using posterior-

based prediction. Given a new bag B∗ with a collection of m∗ instances described by

the feature matrix X∗ = (x∗j)
m∗
j=1 with x∗j ≡ (1, x∗j1, ..., x

∗
jd), we predict the label of B∗

(i.e., y∗) based on the probability π∗ ≡ Pr (y∗ = 1 | X∗, β,∆∗) = Φ
(∑m∗

j=1 δ
∗
jx
∗
jβ
)

, where

∆∗ = (δ∗j )
m∗
j=1. This can be computed from the joint distribution of (∆∗,Θ) given observed

data: p(∆∗,Θ|X∗, X, y) = p(∆∗|Θ, X∗)p(Θ|X, y). To sample from p(∆∗,Θ|X∗, X, y), we

sequentially draw (i) Θ from the joint posterior distribution p(Θ|X, y) and (ii) ∆∗ from

p(∆∗|Θ, X∗), that is δ∗j ∼ Ber
(
Φ
(
x∗jb
))

for j = 1, . . . ,m∗, where b is obtained in step

(i).

Thus, our model takes an integrated approach to produce posterior samples and pre-

dict the labels for new bags within the same Gibbs sampling iteration, as described in

Figure 2.1(b). Recall that BMIR [48], the only Bayesian method based on the primary

instances, has to rely on an auxiliary frequentist model to make prediction for new bags.

To reduce the uncertainty in prediction, we sample R replicates of δ∗ based on β(t) and

b(t) within iteration t. In this illustration, R = 50. For each replicate δ∗(r,t), we calculate the

probability of being positive for each test bag. An averaged probability for a new bag is

then computed across all replicates and iterations as

π̂∗ =
1

TR

T∑
t=1

R∑
r=1

Φ

 mi∑
j=1

δ
∗(r,t)
j x∗jβ

(t)

 .

Similarly, we can compute π̂∗j = 1
TR

∑T
t=1

∑R
r=1 δ

∗(r,t)
j to estimate the probability that in-

stance j in B∗ is a primary instance. The FDR control method can be used to identify both
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primary instances and positive bags as in Section 2.2.3.

2.3. Simulation

We conduct simulation to illustrate the performance of the proposed MICProB and

compare it with 15 existing MIC methods. We consider various simulated scenarios un-

der the PPI framework by varying key factors that may affect the performance, including

sample size n, bag size m (i.e., the number of instances in a bag), number of features

d, and mean proportion of primary instances denoted as PPI (i.e., the total number of

primary instances divided by the total number of instances across all bags). We also

conduct sensitivity analysis using data generated from the WR framework. For simplicity,

we assume different bags in one dataset have a constant number of instances. For each

generated dataset, we initialize the parameters of MICProB with random values and run

100,000 iterations of the Gibbs sampler and discard the first half as burn-ins. Standard

diagnostic techniques [25] are used to detect the convergence of our MCMC algorithm.

2.3.1. Benchmark methods

Prior to MICProB, many algorithm-based solutions to MIC have been proposed, which,

as mentioned in the introduction, can be categorized as instance-space (IS), bag-space

(BS), or embedded-space (ES) methods [3], based on how they extract and exploit infor-

mation from the MI data. For the purpose of performance evaluation in various simulated

settings, we compare MICProB against 15 benchmark methods, including seven IS meth-

ods: EMDD, MI-SVM, mi-SVM, MILR, SI-SVM, SI-kNN, MILBoost [4, 7, 13, 15, 54, 74];

five BS methods: CkNN, NSK-SVM, EMD-SVM, miGraph, MInD [17, 23, 63, 72, 77]; and

three ES methods: MILES, BoW, CCE [3, 16, 79]. We also refer readers to Xiong et al.

[69] for more detail on each selected benchmark method.
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We use the MATLAB “MILSurvey” toolbox, made available by Carbonneau et al. [13],

to implement all benchmark methods except for MILR which is implemented via the R

package milr [15]. For each of the methods implemented, the default setting is used in

our evaluation. For example, for SVM-based methods, we use the default kernel function.

For model tuning, default ranges of values for hyper-parameters are used. Each selected

IS method predicts bag labels from the predicted instance labels based on the standard

MI assumption [19]. For MILR, it iterates 500 steps for the EM algorithm. Since feature

selection is beyond the scope of this paper, we do not impose the LASSO penalty term,

which is specified by default in MILR.

2.3.2. Settings

Our proposed MICProB is the only method developed based on the PPI framework

while all the benchmark methods considered are designed under the WR framework.

As pointed out by Xiong et al. [69], under the PPI framework, IS methods are less

proper as the non-primary instances introduce irrelevant information to the bag; BS and

ES methods may still be suitable for bag classification, as the information of primary in-

stances of each bag could be utilized by the flexible embedding/summary behaviors of

these methods. Thus, it would be interesting to compare their performance with that

of MICProB using data generated from the PPI framework. For instance j in bag i,

each covariate xijr is independently generated from a standard normal distribution, and

the primary status indicator δij is generated from a Bernoulli distribution Ber(pij), with

pij = Φ
(
b0 +

∑d
r=1 xijrbr

)
, where b0 and br for r = 1, ..., d are regression coefficients in

the probit regression model for δij. Next, we simulate the bag label yi from Ber(πi), with

πi = Φ
(
β0 +

∑m
j=1 δij

∑d
r=1 xijrβr

)
, where β0 and βr for r = 1, ..., d are regression coef-

ficients associated with the probit model for πi. We adjust the intercepts b0 to vary PPI.

We set bj = 1 for j = 1, ..., d, β0 = 0.5, βj = 1 for j = 1, ..., dd/2e and βj = −0.5 for

j = dd/2e+ 1, ..., d. We vary n ∈ {150, 300, 450, 600}; m ∈ {5, 10, 20, 40}; d ∈ {2, 15, 30, 45};
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and PPI ∈ {0.1, 0.4, 0.6, 0.9} and assess their influence on performing multiple instance

classification. We employ the vary-one-at-a-time strategy to reduce the work load in this

simulation; that is, we vary one and only one factor each time while fixing the others at the

basic setting in which n = 300, m = 10, d = 30, and PPI = 0.4. We independently gener-

ate 50 replication datasets under each of the settings. The performance is measured by

evaluating the area under the Receiver Operating Characteristic curve (AUROC) on 300

test bags in each replicate.

To further examine the robustness of MICProB, we generate data from the WR frame-

work as well. Following Xiong et al. [69], we generate MI datasets by varying WR

∈ {0.05, 0.25, 0.5, 0.75, 1}, where WR = 0.05 represents the scenario where there is only

one positive instance in each bag. For more details, we refer readers to Section 4.1 of

Xiong et al. [69].

2.3.3. Results

Figure 2.2 compares the performance of MICProB with 15 benchmark methods for bag

classification in various simulated scenarios under the PPI framework. Each line is the av-

erage AUROC (%) calculated from 50 replications. Across all scenarios, MICProB works

best, followed by NSK-SVM, EMD-SVM, and MInD, all from the BS category. MILES

from the ES category and MILR from the IS category are middle performers. All the re-

maining IS methods, miGraph and CkNN from the BS category, do not yield satisfactory

performance in most scenarios, with AUROC below 70%, which is slightly better than

random guessing. Notably, MILR is the best performing IS method among the selected

ones, which shows some promise for statistical model-based approaches in tackling MI

problems.

Next, we discuss the impact of each factor on the performance of MICProB and bench-

mark methods, excluding the bottom performers, which steadily have poor performance.
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Firstly, increasing the sample size n tends to improve the performance. Secondly, as the

bag size m increases, while the performance of MICProB shows a non-monotone pattern,

the other methods are not sensitive to the change. In particular, the average AUROC of

MICProB is the highest (above 80%) regardless of the bag size. Thirdly, as the number

of features d increases, MICProB has improved performance, while all the benchmark

methods show an opposite pattern. We note that the signal in data generated from the

PPI framework becomes stronger in general as d goes up. Among all, only MICProB can

capture the stronger signal because it is the only method designed for the PPI frame-

work. Lastly, when PPI increases, most methods show higher AUROC by capturing the

increased amount of useful information. Individual performance of each method evalu-

ated on 50 replicates at different values of PPI is shown using box plots in Figure 2.3.

We observe that MICProB performs significantly better, with median AUROC greater than

80%, than all the benchmark methods, when there are only 10% primary instances on

average in each bag. As PPI increases, the performance of MICProB steadily improves

and the spread (i.e., the width of the box) becomes narrower, while the performance for

many other methods is more variable across different replications. More detail on individ-

ual performance of each method on 50 replicates by varying the sample size, bag size,

and the number of features, are shown using box plots in Figures B.1-B.3. In general,

MICProB produces consistently better performance with narrow spread.
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Figure 2.2: Simulation evaluation under the PPI framework: average AUROC (%) for bag
classification using different MIL methods, evaluated on simulation scenarios each with
50 replicates. We vary the sample size, bag size, number of features, and mean PPI, and
report the results in the four panels, respectively. Benchmark methods are distinguished
by color (green: IS methods; purple: BS methods; magenta: ES methods).
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Figure 2.3: Simulation evaluation under the PPI framework: AUROC (%) for bag predic-
tion using different MIL methods. We vary the mean PPI and report results for each of
the methods in each setting using a box plot (based on 50 replicates). Benchmark meth-
ods are distinguished by color (green: IS methods; purple: BS methods; magenta: ES
methods).

Figure 2.4 shows the performance of MICProB for identifying primary instances. Each

boxplot is generated by AUROC values calculated from 50 replicates. In many scenarios,

the proposed method works quite well, with AUROC greater than 95%. It only dips below

90% in only a few settings. Next, we discuss how each factor affects the performance
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of MICProB. As in our observations made for bag classification, the performance for in-

stance classification tends to improve with an increased sample size (n) or feature size

(d) or mean proportion of primary instances (PPI). Among these three factors, it seems

that d has a larger impact than n or PPI. Secondly, the performance decreases with an

increased bag size (m), which could be due to noisy signal induced by more non-primary

instances in larger bags.
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Figure 2.4: Simulation evaluation under the PPI framework: AUROC (%) for identifying
primary instances using MICProB. We vary the sample size, bag size, number of features,
and mean PPI, and report results for each of the methods in each setting using a box plot
(based on 50 replicates) in the four panels, respectively. Note that all benchmark methods
do not offer the functionality of identifying primary instances.

For robustness checking, Figure 2.5 compares the performance of MICProB with the

15 benchmark methods for bag classification using data generated from the WR frame-

work. As we expect, MICProB is no longer the best method when WR ≤ 0.25, especially

when WR = 0.05, where in each bag there is only one positive instance. This is because

the presence of a large number of negative instances makes it difficult for MICProB to
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identify any primary instances assumed under the PPI framework. Still, when WR = 0.25,

it is much better than a few methods that are specially designed under the WR framework

including MILBoost, EMDD, SI-kNN, CCE, and BoW. As WR further increases, MICProB

has as good performance as other benchmark methods, with AUROC very close to 1. In-

dividual performance of each method on 50 replicates at different values of WR is shown

using box plots in Figure B.4, which clearly shows that as WR increases, the perfor-

mance of MICProB steadily improves and the spread becomes narrower, demonstrating

an amazingly high degree of robustness.
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Figure 2.5: Simulation evaluation under the WR framework for robustness checking: av-
erage AUROC (%) for bag classification using different MIL methods, evaluated on simu-
lation scenarios each with 50 replicates by varying WR. Benchmark methods are distin-
guished by color (green: IS methods; purple: BS methods; magenta: ES methods).

We provide the runtime information for MICProB and the 15 benchmark methods in

Figure B.5. Due to sequential updates of the MCMC algorithm that cannot be easily

parallelized, MICProB is not as computationally efficient as most competing methods.

Nevertheless, for data generated from the PPI framework, MICProB outperforms all the

benchmark methods including MILR, the only other regression-based approach, and en-

ables statistical inference that optimization-based methods do not provide. For data from
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the WR framework, it appears that MICProB is not overly sensitive and still has strong

performance as long as WR is not too low, compared to the top performers.

2.4. Real Data Examples

We present two data examples: the first is on cancer detection using sequencing data

from The Cancer Genome Atlas (TCGA), to evaluate the performance of our proposed

MICProB against benchmark methods on detecting various types of cancer; the second

is on modeling immunogenic neoantigens, to illustrate the explainability of MICProB.

2.4.1. Cancer detection using T-cell receptor sequences

Early diagnosis, especially for aggressive cancer types, is crucial for patients to receive

appropriate treatments for best possible prognosis. Various tools have been developed

to facilitate cancer screening, which, however, are less ideal for detecting certain types of

cancer [12, 18, 59]. One possible new approach for cancer detection is to examine the

TCR sequences in peripheral blood of patients, as TCRs are used by the T cells to target

and initiate the destruction of tumor cells, and may contain critical information regarding

tumor progression in the human body. This approach also has the advantage of being

non-invasive as it requires blood samples. The problem can be formulated into the MIL

framework by treating each patient as a bag with voluminous TCR data (instances).

Aiming to comprehensively explore genomic changes involved in human cancer, TCGA

collected and analyzed tissue samples from patients of over thirty cancer types and ob-

tained genomic data for each sample using next-generation sequencing techniques, such

as RNA-sequencing, whole exome-sequencing, etc. We use MiTCR [10], a commonly

used TCR reconstruction software to reconstruct TCRs from the RNA-sequencing data.

MiTCR also records the number (abundance) of each unique TCR in each sample (bag).
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We exclude TCRs whose abundance is 1, because they are most likely the ones that have

not been exposed to any antigens.

Under the MIL framework, each sample is considered as a bag consisting of TCR

sequences (instances) represented by text strings of amino acids. In order to make it

convenient for MIL methods to utilize the physicochemical properties of TCRs, we embed

each TCR sequence into a d-dimensional numeric vector using a deep learning auto-

encoder, which has been systematically validated in our previous work [40, 75]. In this

study, each instance is described by 31 features. The first 30 dimensions represent the

embedded TCR and the last feature is the log-transformed abundance for each TCR

sequence appeared in each bag.

We apply MICProB to tissue samples of ten cancer types in the TCGA database, in-

cluding skin cutaneous melanoma (SKCM), kidney renal clear cell carcinoma (KIRC), lung

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), lymphoid neoplasm dif-

fuse large B-cell lymphoma (DLBC), breast invasive carcinoma (BRCA), stomach ade-

nocarcinoma (STAD), ovarian serous cystadenocarcinoma (OV), thymoma (THYM), and

esophageal carcinoma (ESCA) [36, 39, 43], to illustrate its utility on distinguishing cancer

patients from healthy individuals via TCRs. These cancer types are selected as they have

reasonably large sample sizes (i.e., the number of normal + tumor tissue samples) and

bag sizes (i.e., the number of TCRs in each sample).

In the TCGA data, the number of positive bags (tumor samples) is much greater than

that of negative bags (normal tissue samples), as TCGA is mainly focused on studying

cancer patients. To adjust for the imbalanced TCGA data (more positive bags than neg-

ative bags), we randomly sample from positive bags so that the resulting dataset only

includes a subset of positive bags for each cancer type. Furthermore, we combine all

normal tissue samples available from more than 30 cancer types in the TCGA data to

increase the number of negative bags to 405. Mixing negative bags across datasets for

different cancer types is reasonable because the characteristics of normal tissue samples
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should be similar across patients.

We randomly sample about 50% of the 405 negative bags (i.e., 202 normal tissues

samples) to reduce the computation time. For each of the selected cancer types, we

create a balanced dataset with 50% positive and 50% negative bags, as advised in He

and Garcia [28] that it is often preferred to apply machine learning methods to balanced

data. As a result, for DLBC, THYM, and ESCA, due to a small number of positive bags,

the sample sizes are 90, 216, and 332, respectively; for each of the remaining cancers, the

total sample size is 404. Figure 2.6 shows the number of instances for selected cancer

types after pre-processing, reflecting a more realistic situation in real data that the number

of instances varies across bags. We also observe for each of the ten cancer types, the

distribution of bag size is severely right-skewed, where most bags have a relatively small

number of instances but a few can have many more instances. We standardize input

variables so that they all have zero mean and unit standard deviation.
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Figure 2.6: TCGA data: the number of instances for selected cancer types. Blue dashed
line indicates sample mean.
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For MICProB model training and validation, we employ a 10-fold cross-validation (CV)

procedure. We run the derived Gibbs sampler for 100, 000 iterations and discard the first

half as burn-ins. We illustrate convergence diagnostics for MICProB using five indepen-

dent MCMC chains in Figures B.6 and B.7. Prediction for bags in the held-out fold is

performed in an integrated manner, as shown in Figure 2.1 (b). Further, in this study, we

take the average of the primary instances to measure their contribution to the bag. For

benchmark methods, a nested cross-validation (CV) procedure [13, 14] is deployed, in

which the model is tuned (i.e., the hyper-parameters are optimized over a range of val-

ues) in the inner layer CV and the performance of the fitted model is evaluated in the outer

layer CV.In our implementation, both inner and outer layers have ten folds. We calculate

the average performance from CV in terms of AUROC of each method.

Table 2.1 shows the performance of each method by cancer type. We only include

seven cancers with average AUROC across all methods greater than 60% and exclude

the other three (BRCA, LUAD, and LUSC) for which none of themethods works ade-

quately. For each cancer type, the performance of MICProB is always (much) higher than

the average. More importantly, MICProB works best in four (KIRC, SKCM, DLBC, and

THYM) out of seven cancers. Notably, KIRC and SKCM are well known immunogenic

cancer types with high levels of T-cell infiltration [64]. MICProB achieves higher perfor-

mance than the benchmark methods in the presence of bystander effects [33, 68], that is,

the strong T-cell activation in these cancers may have caused infiltration of both abundant

tumor-specific and non-specific T cells in the tumor, creating additional difficulty for MIL

to distinguish tumor versus normal samples. As a result, with average AUROC at 78.3%

across all cancers, MICProB gives the best performance compared to benchmark meth-

ods, followed by EMD-SVM, with average AUROC at 78.1%, and NSK-SVM, with average

AUROC at 76.3%. For THYM, the performance of MICProB (AUROC of (87.7 ± 2.2)%)

is significantly better than the second best method MInD (AUROC of (84.7 ± 0.6)%). For

STAD and ESCA, the performance of MICProB also stays in the upper range. Lastly, the

performance of the methods depends on cancer type. For STAD, except EMDD, MIL-
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Boost, and CkNN, all other methods can achieve AUROC at least 75%. For KIRC and

SKCM, while MICProB performs the best, the average performance across all methods is

below 70%.

KIRC SKCM DLBC ESCA OV THYM STAD

Overall 63.2 62.0 66.5 71.3 72.1 75.2 77.8

MICProB 78.3 68.1 (2.5) 69.6 (2.2) 82.2 (5.1) 78.2 (3.7) 76.7 (3.0) 87.7(2.2) 85.6 (1.5)

MILR 74.7 66.1 (4.0) 66.0 (2.1) 64.4 (7.5) 80.5 (3.5) 78.7 (1.6) 81.0 (2.4) 86.0 (2.9)

EMDD 60.1 54.4 (4.1) 50.1 (3.6) 55.3 (4.3) 67.5 (4.2) 57.8 (2.3) 65.0 (5.7) 70.3 (6.5)

MILBoost 51.3 56.5 (2.4) 48.9 (1.6) 47.0 (4.6) 49.9 (1.3) 55.1 (4.1) 49.7 (3.0) 51.9 (0.6)

MI-SVM 72.3 66.2 (1.5) 64.6 (1.4) 69.6 (3.5) 72.9 (1.3) 72.6 (1.4) 80.2 (1.3) 79.9 (1.2)

mi-SVM 71.2 66.1 (1.6) 66.5 (1.7) 66.0 (1.8) 69.4 (2.1) 73.2 (1.3) 77.0 (1.4) 80.3 (1.3)

SI-SVM 71.3 66.3 (1.0) 66.5 (1.1) 66.6 (2.3) 72.2 (2.2) 73.3 (0.8) 75.1 (2.0) 78.8 (1.5)

SI-kNN 71.0 65.1 (1.1) 65.1 (1.5) 65.0 (2.7) 72.6 (0.7) 74.7 (1.0) 74.7 (1.8) 79.5 (0.9)

CkNN 50.2 52.4 (1.0) 54.7 (2.2) 55.2 (4.2) 46.4 (1.3) 60.9 (1.3) 36.5 (1.8) 45.6 (2.0)

EMD-SVM 78.1 66.4 (1.2) 65.3 (1.5) 78.1 (2.5) 83.1 (0.5) 82.7 (0.6) 84.0 (1.0) 87.3 (0.5)

miGraph 67.8 61.6 (1.6) 60.4 (0.7) 65.9 (5.0) 60.7 (1.4) 68.7 (1.0) 78.9 (0.7) 78.7 (0.8)

NSK-SVM 76.3 67.5 (0.7) 65.4 (1.0) 68.6 (2.6) 80.8 (0.7) 81.7 (0.8) 83.8 (1.2) 86.2 (1.0)

MInD 73.2 58.3 (1.3) 58.5 (2.6) 78.1 (3.7) 76.9 (1.6) 69.5 (1.2) 84.7 (0.6) 86.4 (0.6)

MILES 75.0 68.1 (0.9) 63.7 (1.7) 67.7 (3.1) 77.8 (1.1) 79.6 (0.5) 83.1 (0.8) 84.9 (0.7)

BoW 74.0 65.2 (0.9) 64.1 (1.8) 65.4 (4.6) 78.6 (0.6) 74.7 (1.2) 84.2 (1.5) 85.9 (0.3)

CCE 75.6 65.4 (1.1) 66.1 (0.6) 66.9 (2.5) 82.0 (0.7) 79.8 (0.6) 83.2 (1.0) 85.8 (0.5)

Table 2.1: TCGA data: average AUROC (%) with standard error given in parentheses
for predicting bag labels for each method across seven cancers. The highest AUROC is
highlighted in bold. The average performance across all methods is shown below each
cancer type.

2.4.2. Modeling immunogenic neoantigens

We present another data example of modeling immunogenic neoantigens to demon-

strate the high explainability of MICProB. Neoantigens are short peptides presented by

the major histocompatibility complex (MHC) proteins on the surface of tumor cells, which

serve as recognition markers for cytotoxic T cells via T-cell receptors. As one of the most

fundamental and unsolved questions in tumor immunology, the relationship between tu-
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mor immune responses and tumor neoantigens is the key to understanding the ineffi-

ciency of immunotherapy observed in many cancer patients. However, it is often a chal-

lenging task to quantify this relationship as the the properties of neoantigens that can

elicit immune responses remain unclear. This biological problem is investigated in the

MIR context by Park et al. [48], who modeled multiple instances (neoantigens) within

each bag (patient specimen) with the continuous response (T-cell infiltration). Each in-

stance is characterized by covariates of neoantigen qualities.

We use neoantigen data from several existing studies [42, 43, 58, 64]. To apply

MICProB to the neoantigen data, we code samples with T-cell infiltration greater than or

equal to 5 as one (high-level infiltration) and smaller than 5 as zero (low-level infiltration),

resulting in 36% positive bags out of 728 bags. The distribution of numbers of neoanti-

gens (instances) from different patients (bags) is shown in Figure B.8(a), with mean being

113, median being 30, and maximum being 664. Figure B.8(b) shows the distribution for

each of the six covariates that describe neoantigens along the x-axis. These covariates

include hydrophobicity (hydro), similarity to pathogenic epitopes (blast), rank of binding

affinities to major histocompatibility complex molecules (perc_rank), an immunogenicity

score previously established for class I neoantigens only (neoantigens could bind to both

class I and class II human leukocyte antigen (HLA) molecules) (immune), transport ef-

ficiency (TAP), and the mutation type (mut_type, 1 for missense mutations, and 0 for

insertions/deletions, stoploss mutations). We standardize all continuous variables to have

a zero mean and unit standard deviation and leave the binary variable in its original scale.

We randomly split the dataset ten times and in each split, we use 75% data to train

MICProB and the remaining 25% data to evaluate the performance. We run our sampler

for 100,000 iterations and discard the first half as burn-ins. The average AUROC across

ten random splits is 99%. The posterior mean estimates for the intercept, hydro, blast,

perc_rank, immune, TAP, and mut_type are−1.162, 0.087, 0.092, 6.473,−0.129,−0.111, 0.420,

respectively. Thus, according to the signs of these estimates, higher hydrophobicity,
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higher similarity to pathogenic epitopes, and higher rank of binding affinities to major

histocompatibility complex moleculesare, and missense mutations tend to increase the

likelihood of high infiltration; meanwhile, the estimates of class I immunogenicity scores

and TAP activity, are negative, and thus tend to decrease the likelihood of high infiltration.

We also provide interval estimates of covariate effects from MICProB and estimates with

standard errors from MILR using the default setting in Table B.2. We find that the two

regression-based methods agree on the directions of effects of blast, perc_rank, TAP, and

mut_type. They also agree that the intercept and the effect of perc_rank is statistically

signifiant while the others are not. Lastly, we point out that other benchmark methods do

not offer such interpretability via regression coefficients reflecting covariate effects.

2.5. Discussion

In MIL literature, methods for classification are exclusively based on the WR frame-

work, under which the functionality of identifying primary instances is not offered. Further,

these methods are mainly optimization-based and hence suffer from poor explainability.

Under the PPI framework [69] that is much less explored in the MIC literature, we de-

velop a novel Bayesian hierarchical model, MICProB, to learn from multiple instance data

with a binary response and identify both primary instances and bag labels. Specifically,

MICProB is composed of two nested probit regression models, where the inner model

is estimated for predicting primary instances (i.e., predicting δij from xij), and the outer

model is estimated for predicting bag-level responses based on the primary instances.

Thanks to its fully Bayesian formulation, prediction for new bags can be performed in

an integrated manner via posterior predictive sampling. Furthermore, MICProB enables

convenient statistical inference for quantities related to model parameters with posterior

samples drawn. Regression coefficients that reflect covariate effects on the bag-level re-

sponse are explicitly estimated, hence offering high explainability to the model, as demon-

strated in the application to the neoantigen data.
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Due to its special design for the PPI data generation mechanism, we recognize that

MICProB does not belong to any of the existing categories of MIC methods of IS, BS,

or ES paradigm. MICProB is not an IS method as the prediction step does not occur at

the instance level (i.e., predicting whether an instance is positive or negative). Further,

MICProB is not a BS method as there is no distance computed between each pairs of

bags. Lastly, it might be tempting to view MICProB as an ES method. But as opposed

to mainstream ES methods that are vocabulary-based, which use instances from training

data to build a dictionary for feature embedding, MICProB does not have the embedding

step that maps the original feature space to a new one. Thus, the proposed method does

not fall under the ES category. Given above, MICProB provides a fresh perspective to the

development of new MIL methods that are model-based and tailored for MI data with the

concept of primary instances.

MICProB yields significantly better performance in various simulated scenarios than

the 15 benchmark methods. Based on the assumption that the bag label is determined

by primary instances in each bag, our model is capable of identifying these instances

with high accuracy, even though they are not known in advance. Given that there is no

such method that works universally well in real data application of cancer diagnosis, the

proposed method performs the best in four out of seven cancer types. Across the seven

cancer types, MICProB also has the highest performance on average, suggesting that the

PPI framework is more likely to represent the underlying data generation mechanism for

this particular application.

We make our code available at https://github.com/danyixiong/MICProB. A user of

MICProB has the flexibility of choosing between the “sum” or “average” contribution of

primary instances, according to the user’s perception of the underlying data generation

process or results from cross validation. MICProB can also be implemented using differ-

ent priors, to incorporate various forms of prior knowledge. For example, in the real data

application, we experiment with marginally non-informative prior distributions for covari-
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ance matrices Σβ and Σb, as suggested by Huang and Wand [31], to reflect our vague

information on the regression coefficients. The resulting MCMC algorithm can still be

conveniently implemented via Gibbs sampling with data augmentation technique (see

Section B.2.2 for technical detail). However, this prior elicitation is not preferred as its

resulting performance (Table B.1) is worse than that of simpler prior specifications for the

original MICProB. Finally, it is also possible to consider a logistic model for the binary re-

sponse variable. Under this formulation, however, the Bayesian inference would become

harder due to the analytically inconvenient form of the model’s likelihood function. A po-

tential direction would be to employ a data augmentation strategy using Pólya-Gamma

latent variables [50]. With these flexible options of design at different parts of the model,

MICProB thereby provides a generic framework for developing future model-based sta-

tistical methods that are dedicated to addressing MI problems where primary instances

need to be identified.

In the era of big data, we envision an increasing need for MIL to handle increasingly

complex structures of real-world data. Advances in the biomedical research domain, in

particular, propel the development of novel MIL techniques, especially Bayesian method-

ologies that can naturally incorporate prior beliefs into observed data, because the com-

plicated nature of biological and medical applications necessitates consideration of prior

knowledge available from domain experts or past studies, to narrow the search space of

the MIL model for the observed new data. By developing MICProB, we provide a success-

ful example of how statistical learning tackles an MIL problem, and we believe there is a

broad space for new Bayesian MIL methods with diverse capacities to emerge to capture

various characteristics of real-world data.
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APPENDIX A

APPENDIX of CHAPTER 1

This appendix provides additional results from our simulation and TCGA data analysis

mentioned in Chapter 1.

A.1. Additional simulation results for bag classification based on AUPRC

We also compare the performance of bag classification for each method in terms of

AUPRC. For model I (Figures A.1), in general, we observe that an MIL method with higher

AUROC also has higher AUPRC. For model II (Figure A.2), observations about the relative

performance of the MIL methods and the impact of each factor on the performance are

similar to those from AUROC with one exception: the performance on correct prediction

for positive bags has improved as the proportion of positive bags increases.
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Figure A.1: Mean AUPRC (%) of bag classification using different MIL methods, evaluated
on simulation scenarios each with 100 replicates generated under model I. IS/BS/ES
methods are distinguished by green, blue, and magenta lines.
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Figure A.2: Mean AUPRC (%) of bag classification using different MIL methods, evaluated
on simulation scenarios each with 100 replicates generated under model II. IS/BS/ES
methods are distinguished by green, blue, and magenta lines.

A.2. Simulation results for instance classification under model I

We show the performance of instance classification for six MIL methods, evaluated

by AUROC in Figure A.3. It is observed that IS methods are generally more capable of

classifying positive and negative instances than MILES (an ES method).
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Figure A.3: Mean AUROC (%) of instance classification using different MIL methods,
evaluated on simulation scenarios each with 100 replicates generated under model I.
IS/ES methods are distinguished by green and magenta lines.
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A.3. Additional results for TCGA data examples

Figure A.4 shows the number of tumor versus normal tissue samples for each of the

cancer types. Since TCGA focusses on studying cancer patients, the number of positive

bags (tumor samples) is much greater than that of negative bags (normal tissue samples).

We further plot the performance of individual method on five cancer types in Figures A.5

and A.6.
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Figure A.4: TCGA data: numbers of tumor samples (positive bags) and normal tissue
samples (negative bags) for over thirty cancer types.
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Figure A.5: TCGA data with 10% positive bags: mean AUROC (%) for DLBC, STAD, OV,
THYM, and ESCA. The gray dashed line corresponds to 70% AUROC. MIL methods are
distinguished by symbol shapes. Categorization of MIL methods is distinguished by color
(green: IS methods; blue: BS methods; magenta: ES methods).
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Figure A.6: TCGA data with 50% positive bags: mean AUROC (%) for DLBC, STAD, OV,
THYM, and ESCA. The gray dashed line corresponds to 70% AUROC. MIL methods are
distinguished by symbol shapes. Categorization of MIL methods is distinguished by color
(green: IS methods; blue: BS methods; magenta: ES methods).
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APPENDIX B

APPENDIX of CHAPTER 2

This appendix provides additional results for simulation and real data examples men-

tioned in Chapter 2.

B.1. Additional simulation results

B.1.1. Performance on bag classification

We show the predictive performance on bag classification of MICProB versus bench-

mark methods in Figures B.1-B.3 using data generated from the PPI framework under

various simulation settings. Each box plot is generated based on 50 replicates of test

data. Parameter settings for sample size (n), number of instances per bag (m), and num-

ber of features (d) are the same as mentioned in Section 3.1. In all the settings, MICProB

consistently outperforms the other methods.
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Figure B.1: Simulation evaluation under the PPI framework: AUROC (%) for bag predic-
tion by varying the sample size (number of bags), evaluated on 50 replicates. Benchmark
methods are distinguished by color (green: IS methods; purple: BS methods; magenta:
ES methods).
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Figure B.2: Simulation evaluation under the PPI framework: AUROC (%) for bag predic-
tion by varying the bag size (number of instances per bag), evaluated on 50 replicates.
Benchmark methods are distinguished by color (green: IS methods; purple: BS methods;
magenta: ES methods).
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Figure B.3: Simulation evaluation under the PPI framework: AUROC (%) for bag predic-
tion by varying the number of features, evaluated on 50 replicates. Benchmark methods
are distinguished by color (green: IS methods; purple: BS methods; magenta: ES meth-
ods).

Surprisingly, for MI data generated from the WR framework, the proposed MICProB

demonstrates a high degree of robustness, especially when WR ≥ 0.25, as shown in

Figure B.4.
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Figure B.4: Simulation evaluation under the WR framework: AUROC (%) for bag pre-
diction by varying WR, evaluated on 50 replicates for robustness checking. Benchmark
methods are distinguished by color (green: IS methods; purple: BS methods; magenta:
ES methods).
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B.1.2. Computational time

We compare the running time for MICProB and the 15 benchmark methods in Fig-

ure B.5 using the basic setting described in Section 3.2 of the main manuscript. Admit-

tedly, MICProB is not as computationally efficient as most competing methods due to its

sequential sampling procedure. However, regardless of the data-generating mechanism

(PPI or WR), MICProB usually performs well, as opposed to all benchmark methods in

bag classification and provides unique capacity of identifying primary instances. Further-

more, MICProB enables convenient statistical inference and transparent interpretation

that optimization-based methods cannot provide.
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Figure B.5: Simulation evaluation under the PPI framework: computational time under the
basic setting (n = 300, m = 10, d = 30, and PPI = 0.4) for MICProB and 15 benchmark
methods using boxplots (based on 10 replications). We run MICProB on a MacBook Pro
with 2.4 GHz 8-Core Intel Core i9 processor and 16GB memory. MICProB iterates 50,000
samples and the chain is thinned by every 50 iterations. For MILR, R 3.6.1 on a partition
node with 32 cores and 32GB memory of a computing cluster is used. MILR iterates 500
steps for the EM algorithm and no penalty is imposed. MATLAB 2020a on a partition
node with 32 cores and 32GB memory of a computing cluster is used for the remaining
14 methods.
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B.2. Additional results for TCGA data

B.2.1. Convergence diagnostics

We illustrate how we apply diagnostic techniques to detect the convergence of MICProB

using the THYM dataset from TCGA data example in Section 4.1 of the main manuscript.

We run five independent MCMC chains with randomly generated starting points. The

trace plots and density plots of the linear predictor xij b̂ for some randomly selected in-

stances, are shown in Figure B.6 and Figure B.7. Clearly, the chains are well-mixed.

In addition, we apply the Gelman-Rubin’s convergence diagnostics to the linear predic-

tor of these instances. The potential scale reduction factors (PSRF) are all very close

to 1 (≤ 1.01). So is the multivariate PSRF. Collectively, these results provide sufficient

evidence that the proposed model has properly converged.
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Figure B.6: TCGA data for THYM cancer: trace plots of linear predictor xij b̂ for randomly
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different colors.
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Figure B.7: TCGA data for THYM cancer: density curves of linear predictor xij b̂ for ran-
domly selected instances. Five chains with randomly generated starting points are shown
in different colors.

B.2.2. Results from using marginally half-t priors on covariance matrices

We also experiment with placing marginally half-t priors on covariance matrices Σβ

and Σb, respectively, as mentioned in Section 5 of the main manuscript. The priors for

regression coefficients β and b are specified as

• β|µβ,Σβ ∼ MVN(µβ,Σβ), Σβ|s0, ..., sd ∼ IW(ν + (d + 1) − 1, 2νdiag(1/s0, ..., 1/sd)),

sr
ind∼ IG(1/2, 1/S2

r ) for r = 0, ..., d.

• b|µb,Σb ∼ MVN(µb,Σb), Σb|q0, ..., qd ∼ IW(ν + (d+ 1)− 1, 2νdiag(1/q0, ..., 1/qd)), qr
ind∼
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IG(1/2, 1/Q2
r) for r = 0, ..., d.

Here, diag(1/s0, ..., 1/sd) and diag(1/q0, ..., 1/qd) are diagonal matrices with 1/s0, ..., 1/sd

and 1/q0, ..., 1/qd on the diagonal, respectively; ν, Sr and Qr for r = 0, ..., d are positive

scalars. The hyperparameters are µβ, µb, ν, Sr, Qr for r = 0, ..., d. We set µβ = µb =

(0, 0, ..., 0), ν = 2, and Sr = Qr = 105. Let Ω = (β, b,∆, Z, U,Σβ,Σb, {sr}dr=0, {qr}dr=0)

denote the collection of all model parameters and latent variables involved. The full prob-

ability model is given by

p(y,Ω|X) = p(y|Z)× p(Z|X,∆, β)× p(∆|U)× p(U |X, b)

× p(β|µβ,Σβ)× p(b|µb,Σb)

× p(Σβ|s0, ..., sd)× p(Σb|q0, ..., qd)

×
d∏
r=0

p(sr|Sr)×
d∏
r=0

p(qr|Qr)

.

Since each parameter/latent variable has its posterior distribution in a closed form, the

Gibbs sampler can be used to draw samples from the joint posterior distribution. We

can update β, b,∆, Z and U as described in Section 2.2 and the additional parameters as

follows:

• Σβ|· · · ∼ IW(ν + 2(d+ 1)− 1, ββT + 2νdiag(1/s0, ..., 1/sd)).

• Σb|· · · ∼ IW(ν + 2(d+ 1)− 1, bbT + 2νdiag(1/q0, ..., 1/qd)).

• sr|· · ·
ind∼ IG(v+(d+1)

2
, ν(Σ−1

β )rr + 1/S2
r ) for r = 0, ..., d, where (Σ−1

β )rr is the (r, r) entry

of Σ−1
β .

• qr|· · ·
ind∼ IG(v+(d+1)

2
, ν(Σ−1

b )rr + 1/Q2
r) for r = 0, ..., d, where (Σ−1

b )rr is the (r, r) entry

of Σ−1
b .

Table B.1 shows that MICProB with original non-hierarchical priors on Σβ and Σb results

in higher average performance across seven cancer types. As for the performance on
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individual cancers, the half-t priors only wins on OV and ESCA.

Cancer type

Average KIRC SKCM DLBC ESCA OV THYM STAD

Original 78.3 68.1 (2.5) 69.6 (2.2) 82.2 (5.1) 78.2 (3.7) 76.7 (3.0) 87.7 (2.2) 85.6 (1.5)

Half-t 71.8 59.5 (3.5) 60.1 (2.0) 69.0 (4.7) 79.3 (2.4) 81.0 (1.6) 76.6 (4.4) 77.2 (2.6)

Table B.1: TCGA data: Average AUROC (%) with standard error for predicting bag labels
for MICProB with original prior specifications and marginally half-t priors on covariance
matrices.

B.3. Additional results for neoantigen data

We describe neoantigen data used in Section 4.2 of the main manuscript using Fig-

ure B.8. Panel (a) shows the distribution of numbers of neoantigens from different pa-

tients, ranging from 1 to 664 with mean 113. Panel (b) shows distributions of the six

covariates that are used to describe neoantigens. Except for mutation type (mut_type)

which is binary, all other covariates are continuous.
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Figure B.8: Neoantigen data: (a) the distribution of numbers of instances (neoantigens)
from different bags (patients); (b) distributions of the six neoantigen covariates. Blue
dashed line indicates sample mean.

We provide posterior means and interval estimates of coefficients of neoantigen co-

variates from MICProB in Table B.2. As a statistical method, MILR also provides estimates
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for regression coefficients and their standard errors. We use the default setting in the R

package milr and show results in Table B.2 as well. First, the directions of the intercept

and effects of blast, perc_rank, TAP, and mut_type (i.e., the signs of those regression

estimates) from MICProB agree with those from MILR. Furthermore, the credible inter-

val perc_rank is positive, which is consistent to the significant estimate from MILR. So

does the intercept. For the remaining covariate effects, estimates from both methods are

insignificant statistically.

Intercept hydro blast perc_rank immune TAP mut_type

MILR
Estimate −4.571 −0.015 0.038 2.479 0.017 −0.084 0.292

SE 0.151 0.168 0.172 0.249 0.167 0.166 0.427

MICProB
Posterior Mean −1.162 0.087 0.092 6.473 −0.192 −0.111 0.420

2.5% Quantile. −2.020 −0.546 −0.499 5.582 −0.734 −0.723 −0.453

97.5% Quantile −0.433 0.726 0.737 7.483 0.436 0.435 1.305

Table B.2: Neoantigen data: the top panel reports estimates of regression coefficients
with standard errors from MILR; the bottom panel reports point and interval estimates of
the coefficients from MICProB.
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