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Meta-analysis is a statistical approach that integrates data from multiple studies. By

aggregating information, it enhances the power to detect the effects of interest and provides

an estimate of the effect size with both accuracy and precision. Both fixed-effect and random-

effect models are developed and widely used in biomedical research including clinical trials

and genomic studies. In the case of rare events data, conventional meta-analysis methods

that rely on large sample approximation may not be able to make reliable inferences. There

have been various approaches proposed to deal with this situation, in particular, rare binary

adverse events in clinical studies.

Genome-wide association studies (GWAS) is the most popular study design of human

genetic mapping. Large consortia are organized to increase the power of association detec-

tion, and therefore meta-analysis becomes a necessity in GWAS. Advances in sequencing

technology enable a complete survey of both common and rare variants. Although numerous

statistical methods to analyze rare variants are developed for a single study, there is no

meta-analysis approach developed to specifically deal with rare variants. In this dissertation

we aim to develop methods to make exact inferences in meta-analysis of rare variants asso-

ciation. The exact methods are based on exact distribution not approximate distribution so

it is derived from all known parameters.

We first adapt and implement a fixed-effect exact meta-analysis approach that is based

on the concept of p-value function with the specific aim of performing rare variants genetic

v



association studies. It can conduct robust inference on risk difference (RD) and construct a

reliable confidence interval (CI) without ignoring studies with zero event, adding arbitrary

continuity corrections, or using large sample approximation. We compare the exact method

with the commonly used Mantel-Haenszel method in terms of CI coverage probability, CI

length, type I error rate, statistical power, and absolute bias in various scenarios of balanced

and unbalanced study sample sizes. Simulation results show that the exact methods are more

stable when the event rates are extremely rare and sample sizes are unbalanced between case

and control groups.

We then extend the exact meta-analysis approach to a random-effect model, which, com-

pared with the fixed-effect model, can handle between-study variances. The proposed method

enables an unbiased estimate of odds ratio (OR) and makes exact inferences of CI. We pro-

pose a method to shrink the parameter search region, which can substantially reduce the

computational cost. Simulation studies are conducted to investigate the performance of the

proposed method in terms of CI coverage probability and CI length. The proposed method

maintains stable coverage probabilities under various settings of heterogeneity, number of

studies, and magnitude of ORs.

We further consider a special study design that there are multiple case groups but there

is only one common control group. This may happen when researchers only recruit patients

but not controls, and use some large survey database from the general population as the

common control group. We propose an exact method to construct CI for the event rate

in the case groups and then make inferences on the pooled effect size measures, e.g. RD

and OR, compared with the common controls. The proposed exact method shows stable

performance regardless of the parameter settings. We particularly recommend applying it

when the number of studies is small and the event rate is rare.
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CHAPTER 1

INTRODUCTION

1.1. Background

Meta-analysis synthesizes information from multiple independent yet “similar” studies

to make inferences on a common parameter of interest. By aggregating information from

multiple studies meta-analysis can lead to higher statistical power and more accurate point

estimates. Meta-analysis is a popular statistical approach to make reliable inferences in many

disciplines, especially in public health and medical research where the effect size measures

for binary outcomes, e.g., risk difference (RD), odds ratio (OR), and relative risk (RR), are

of interest.

Depending on the assumptions, there are two major types of modeling in meta-analysis

approaches: the fixed-effect model and the random-effect model. The fixed-effect model

assumes that effect sizes are fixed across studies. This assumption is strict and often un-

realistic as it requires the individual studies to share the same sources of variability, e.g.,

measurements definition and patient demographics. The random-effect model is more flex-

ible that it can accommodate variability from different sources. The random-effect model

assumes that measures of effect size across studies can be different but follow an underlying

distribution instead of being a fixed value. The underlying distribution thereby accounts for

between-study variance, which is also known as heterogeneity.

1



A major goal of meta-analysis is to estimate the pooled effect size measure. A commonly

used estimate for effect size is a weighted estimate, where the weights are inverse of variance

of each estimate, so this weighted estimate is known as the inverse-variance (INV) estimate.

Denote by θ the true effect size. Suppose there are K studies, and we observe the effect size

measure θ̂k in the kth study, where k = 1, . . . , K. The INV estimate of the pooled effect size

θ̂ is computed as

θ̂w =
∑K
k=1 wkθ̂k∑K
k=1 wk

, (1.1)

wk = [Var(θ̂k)]−1.

The INV estimate tends to assign more weights to studies with larger sample size as they

have smaller variance. Under the fixed-effect model where the variability only comes from

sampling errors, the INV weight only contains within-study variance, denoted by s2
k, thus

wk = [s2
k]−1. Under the random-effect model where the between-study variance, denoted as

τ 2, is taken into account, the weight becomes wk = [s2
k + τ 2]−1.

For binary data, when the event rate is rare or the sample size is small, the variance

estimate used in the INV method can be problematic [18]. An alternative method to estimate

the overall effect size is the Mantel-Haenszel (MH) method [30]. The data can be summarized

into multiple 2 × 2 tables with each table representing data from the kth study as in table

1.1.

kth study Case Control
Exposed ak bk

Unexposed ck dk

Table 1.1: An example of a 2× 2 table for the kth study.
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Assume the sample size for the kth study is nk. The MH type estimates [15, 30, 38] are

RD: θ̂MH =
∑K
k=1 ak( ck+dk

nk
)− ck(ak+bk

nk
)∑K

k=1
(ak+bk)(ck+dk)

nk

,

OR: θ̂MH =
∑K
k=1

akdk
nk∑K

k=1
bkck
nk

,

RR: θ̂MH =
∑K
k=1 ak( ck+dk

nk
)∑K

k=1 ck(ak+bk
nk

)
.

The MH method and the INV method can both be applied to estimate RD, OR and RR.

However, many studies [4, 18, 39] point out that the INV method are not appropriate when

the event rate is rare. The INV method works best when limited studies are collected but

each has a large sample size; in contrast the MH method is preferable when we observe large

number of studies and each study has a small sample size [44].

The Peto method [55] is another way to estimate OR under the assumption of a fixed-

effect model. It pools OR by the observed and expected counts in 2× 2 tables.

OR: θ̂Peto = exp
∑K
k=1(Ok − Ek)∑K

k=1 Vk

where



Ok = ak

Ek = (ak+bk)(ak+ck)
nk

Vk = (ak+bk)(bk+dk)(ak+ck)(ck+dk)
n2
k

(nk−1)

The Peto OR estimate does not require continuity correction when we observe zero event in a

study. It works well when ORs are around 1, event rates are rare (less than 1%), and sample

sizes in case and control groups are balanced [4, 18]. Otherwise the Peto estimate can be

severely biased. For example, it underestimates OR for large risk ratios and it overestimates

OR when the risk ratio is below 1 [4, 44].
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In meta-analysis, besides estimating effect size measures, estimating heterogeneity is

another study aim if a random-effect model is assumed. Cochran’s Q statistic is used to

measure whether heterogeneity exists or not [11, 12]. It is defined as

Q =
K∑
k=1

wk(θ̂k − θ̂w)2,

where θ̂w is the INV estimate defined in equation (1.1). Derived from the Q statistic, the I2

statistic [19] is designed to measure the percentage of variation caused by the between-study

variance,

I2 =
[Q− (K − 1)

Q

]
× 100%. (1.2)

The I2 statistic can be used to describe the extent of heterogeneity compared with sam-

pling errors. An I2 statistic of 0% means all variability comes from sampling errors, 25%,

50%, 75% suggest mild, moderate, high heterogeneity, respectively, and 100% means all

variance is due to heterogeneity. When few studies are involved in a meta-analysis, the Q

statistic and the I2 statistic may have poor statistical power to detect the true between-study

variance [21].

A widely used method to estimate the between-study variance (τ 2) is the DerSimmonian

and Laird (DL) method [13]. It utilizes the Q statistic to estimate heterogeneity,

τ̂ 2
DL = max

{
0, Q− (K − 1)∑

wk −
∑

w2
k∑

wk

}
,

where wk = [s2
k]−1 is the inversed sampling errors as in the fixed-effect model. The pooled

effect size estimate of the DL method is simply an INV estimate with weight w′k = [s2
k +

τ̂ 2
DL]−1. The DL method tends to underestimate heterogeneity when the true between-study

variance is large [33, 51].
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There are many alternative methods that outperform the DL method in some scenarios.

For instance, the Paule and Mandel (PM) method [34] uses an iterative way to estimate τ 2.

The PM method is more robust than the DL method when the underlying assumptions are

not met [37], and the PM estimate is less biased compared with that of other methods [33].

We will discuss in more details the PM method and its improved version (IPM) in chapter

3. The Sidik and Jonkman (SJ) method uses an non-iterative way to estimate τ 2 and its

estimate is less biased than the DL estimate when the number of studies or heterogeneity

is large [41, 42]. We apply it for comparison purpose in chapter 4. Besides, there are

other methods like maximum likelihood method [17, 48, 52], restricted maximum likelihood

method [35, 52], and bayesian methods [9, 10, 32] proposed to estimate heterogeneity.

Besides the commonly used fixed-effect and random-effect models, nowadays many novel

techniques have been developed in meta-analysis and can be applied to broad scenarios

[45]. For example, network meta-analysis is a technique used for simultaneously assessing

multiple treatments [8, 36, 50]; meta-regression utilizes regression ideas to synthesize study

information that incorporates both fixed-effect and mixed-effect [20, 43, 47].

1.2. Meta-Analysis Methods for Rare Events Data

In the case of rare events, a single study is inadequate to draw a reliable statistical con-

clusion. Therefore, meta-analysis is desired to provide strengthened inferences with greater

statistical power. When the confidence interval (CI) for the pooled effect size measure is of

interest, most existing methods rely on large-sample approximations to estimate CIs. Such

approximations may be inaccurate and can lead to invalid conclusions when the study sample

sizes are small, the number of studies is limited, or data are sparse [5, 28, 49].

In addition, conventional approaches apply continuity correction when there is no event

observed in either case or control group, and some methods may even ignore those studies

containing zero event in both groups. It will lead to biased estimates, especially when the
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events are extremely rare [4, 24]. For example, if any individual study contains zeros in both

case and control groups, the conventional MH method either excludes this study or adds

0.5 continuity correction to all cells in this study. Although both strategies enable the MH

method with OR to tolerate zero event, the MH method becomes less robust when event

rates are extremely rare [24].

Recently many novel meta-analysis approaches have been developed for the rare events

situations, in particular, rare binary adverse events in clinical studies [45]. An exact meta-

analysis method [49] was proposed to construct CIs for the common parameter of interest

with the advantage of avoiding continuity correction and including available information from

all studies. The term ‘exact’ refers to using probability distributions that do not depend

on unknown parameters [1]. Liu et al. [28] further proposed a generalized version of the

exact method by means of pooling individual p-value functions [14, 54]. Since then, more

exact random procedures have been proposed [16, 29, 31, 53]. These exact methods are

more reliable when the event rates are rare and thus are preferred over the conventional

approximation methods.

Besides the exact methods, there are other methods developed for rare events data. Under

a binomial-normal (BN) assumption, Bhaumik et al. [3] improved the estimate of between-

study variance from the PM method [34] by borrowing information from all studies. The

improved method, abbreviated as IPM, is proved to be capable of reducing bias for estimating

log OR when the event rates are rare. Zhang et al. [57] reviewed several commonly used

estimates of heterogeneity and concluded that the IPM estimate is less biased compared

with others. Li and Wang [27] proposed a generalized random-effect model based on that

in Bhaumik et al.. In addition, novel Bayesian methods designed for rare events are also

developed. Cai et al. [6] proposed a Bayesian approach based on a Poisson model for RR.

Bai et al. [2] developed a Bayesian estimator based on the model in Bhaumik et al..
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1.3. Application of Exact Meta-Analysis Methods in Human Genetics

In genome-wide association studies (GWAS), meta-analysis is widely performed to detect

association between traits and genetic variants. However, rare events data, i.e., rare genetic

variants, are handled by the conventional methods relying on large sample approximation,

which can yield invalid inferences.

In this dissertation, we specifically aim to develop and apply the exact meta-analysis

methods in case-control human genetic association studies. We first adapt and implement a

fixed-effect exact meta-analysis approach that is based on the concept of p-value function.

Then we extend the exact meta-analysis approach to a random-effect model, which, compared

with the fixed-effect model, can handle the between-study variances. Further, we consider

a special study design that there are multiple case groups but there is only one common

control group, which is the norm in human genetic studies.
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CHAPTER 2

EXACT INFERENCE FOR META-ANALYSIS OF RARE EVENTS BASED ON THE
FIXED-EFFECT MODEL

In this chapter, we adapt an exact meta-analysis method based on the fixed-effect model

with algorithm speed-up for case-control genetic association studies of rare variants. This

chapter is structured as follows. In section 2.1, we introduce the method. Section 2.2

describes the algorithm improvements. In section 2.3, we conduct simulation studies to

compare the exact method with the MH method in different scenarios. In section 2.4, we

apply the exact method to two real datasets and convert the estimated RD to an OR. Section

2.5 summarizes the findings and directs the research topic to the random-effect model detailed

in the next chapter.

2.1. Methods

2.1.1. Overview

Consider a meta-analysis of K independent case-control genetic association studies of the

same trait with overlapping genetic variants. Hereinafter, assume we focus on one specific

variant. Consider one particular study k, k = 1, . . . , K. Denote by nk1 and nk0 the sample

size of case and control groups, respectively, and denote byXk1 andXk0 the random variables

of the number of individuals carrying the variants in case and control groups, respectively.

Xk1 and Xk0 are assumed to follow binomial distributions, Xk1 ∼ Bin(nk1, p1), and Xk0 ∼

Bin(nk0, p0), where p1 and p0 are the true event rates in case and control groups, respectively.
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Here event is defined as carrying the variant of interest.

Carrier Non-Carrier Total
Case xk1 nk1 − xk1 nk1

Control xk0 nk0 − xk0 nk0

Table 2.1: Notation of the observed counts in the kth study by a 2× 2 table.

As shown in table 2.1, xk1 and xk0 are the observed number of carriers of the genetic

variant in the kth study. The estimated event rates are p̂k1 = xk1/nk1 and p̂k0 = xk0/nk0,

with properties of expectation E(p̂ki) = pi and variance Var(p̂ki) = pi(1 − pi)/nki, i = 0, 1.

Under the assumption of a fixed-effect model, the common RD θ between the event rates

of case and control groups across studies is fixed and defined as θ = p1 − p0, for any k,

k = 1, . . . , K. The joint probability of observing xk1 and xk0 is

Pr(Xk1 = xk1,Xk0 = xk0|θ, p1, p0)

= Pr(Xk1 = xk1|θ, p1)× Pr(Xk0 = xk0|θ, p0)

=
(
nk1

xk1

)(
nk0

xk0

)
pxk1

1 pxk0
0 (1− p1)nk1−xk1(1− p0)nk0−xk0 .

(2.1)

2.1.2. Analysis of a Single Study

To make inferences on the RD θ in its parameter space Θ for a single study k, we can

start from conducting a right-tailed test, H(k)
0 : θ = θ′ v.s. H(k)

1 : θ > θ′, where θ′ can be any

fixed value in Θ, to assess if θ′ is the true value of θ. At the significant level α, given the

observed data from study k, we are able to obtain the right-tailed p-value at θ′, denoted as

p(k)(θ′), and then reject the null hypothesis if p(k)(θ′) < α or fail to reject the null hypothesis

if p(k)(θ′) ≥ α. As a result, each possible θ′ leads to a corresponding right-tailed p-value

p(k)(θ′) that can be collected into a p-value function p(k)(θ) as θ shifts in its parameter space

Θ. Thus, given the observed data of study k, the 100(1 − α/2)% one-sided CI for θ is
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(θ(k)
L ,∞), where the lower bound θ

(k)
L = inf

θ
{θ : p(k)

L (θ) > α/2}. Note that the right-tailed

p-value function p(k)
L (θ) is the p-value function from aforementioned right-tailed test and the

subscript “L” refers to the lower bound. If θ′ falls outside the 100(1− α/2)% CI, we reject

the null hypothesis.

Next, we conduct a similar procedure of a left-tailed test, H(k)
0 : θ = θ′ v.s. H(k)

1 : θ < θ′,

to obtain the left-tailed p-value. The 100(1−α/2)% one-sided CI for θ becomes (−∞, θ(k)
U ),

where the upper bound θ
(k)
U = sup

θ
{θ : p(k)

U (θ) > α/2}, and the left-tailed p-value function

p
(k)
U (θ) is obtained from the left-tailed test with “U” referring to the upper bound. The

right-tailed p-value function p(k)
L (θ) is a non-decreasing function of θ, and the left-tailed p-

value function p
(k)
U (θ) is non-increasing. Combining the lower and upper bounds from the

two 100(1 − α/2)% one-sided CIs, the 100(1 − α)% two-sided CI for individual study k is

(θ(k)
L , θ

(k)
U ).

In practice, we use a grid of parameter space Θ, denoted as Θ∗, to approximate the

continuous parameter space, which consists of I grid values including the essential element

0. In the exact test, values of the p-value functions are collected by performing the right-

tailed and left-tailed tests over all grid values of Θ∗. Given each pair of θ and p0, we are

able to derive p1 as θ + p0. The search range of p0 can be based on its Wald-type CI with

a predefined high coverage, say 99%. Denote by J the number of grids for p0. Therefore,

to generate the two p-value functions for each study, the p-values at each specific θ are

computed through I grids of θ and J grids of p0. Given θ and p0, the aforementioned joint

probability (equation 2.1) can be rewritten as

Pr(Xk1 = xk1, Xk0 = xk0|θ, p0)

=
(
nk1

xk1

)(
nk0

xk0

)
(θ + p0)xk1pxk0

0 (1− θ − p0)nk1−xk1(1− p0)nk0−xk0 .
(2.2)
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The test statistic T used in the right-tailed and the left-tailed tests is defined as

T = p̂k1 − p̂k0 − θ′√
p̂′
k1(1−p̂′

k1)
nk1

+ p̂′
k0(1−p̂′

k0)
nk0

,

where we perform correction in denominator for all studies no matter whether there is zero

event or not,

p̂′ki = xki + 0.5
nki + 1 , i = 0, 1.

This statistic T is calculated over all pairs of (Xk1, Xk0) where 0 ≤ Xk1 ≤ nk1, 0 ≤ Xk0 ≤ nk0.

Let Tobs = T (xk1, xk0) denote the observed test statistic.

Given θ and p0, the right-tailed p-value p(k)
L (θ, p0) and the left-tailed p-value p(k)

U (θ, p0)

can be computed by the mid p-value method [7, 22, 26], where

p
(k)
L (θ, p0) = Pr(T > Tobs|θ, p0) + 1

2 Pr(T = Tobs|θ, p0),

p
(k)
U (θ, p0) = Pr(T < Tobs|θ, p0) + 1

2 Pr(T = Tobs|θ, p0).
(2.3)

Note that for a given θ, there are J right-tailed and J left-tailed p-values since we have J grid

values of p0. The ultimate right and left tailed p-values at θ are determined by the “best”

p0 candidate that provides the largest p-value. Consequently, for study k, the right-tailed

p-value function p(k)
L (θ) and the left-tailed p-value function p(k)

U (θ) are

p
(k)
L (θ) = max

p0
{p(k)

L (θ, p0)},

p
(k)
U (θ) = max

p0
{p(k)

U (θ, p0)}.
(2.4)

2.1.3. Meta-Analysis

Once the right-tailed and left-tailed p-value functions are computed for all K studies, we

are able to synthesize these individual p-value functions to estimate the true common event
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rate θ. It is accomplished by constructing two new test statistics, t(c)L (θ) for the right-tailed

test and t(c)U (θ) for the left-tailed test,

t
(c)
L (θ) =

K∑
k=1

wkh[p(k)
L (θ)],

t
(c)
U (θ) =

K∑
k=1

wkh[p(k)
U (θ)],

(2.5)

where wk’s are study-specific positive weights subject to ∑K
k=1 wk = 1, and h[·] is a non-

decreasing transformation function. Accordingly, the combined p-value functions are

p
(c)
L (θ) = Pr

(
t
(c)
L (θ) ≥

K∑
k=1

wkh[Uk]
)
,

p
(c)
U (θ) = Pr

(
t
(c)
U (θ) ≥

K∑
k=1

wkh[Uk]
)
,

(2.6)

where Uk is independent uniformly distributed random variable from U(0, 1).

Denote the combined 100(1− α)% two-sided CI for θ as (θ(c)
L , θ

(c)
U ). Its lower and upper

bounds are derived in terms of the combined p-value functions,

θ
(c)
L = inf

θ

{
θ : p(c)

L (θ) ≥ α

2
}
,

θ
(c)
U = sup

θ

{
θ : p(c)

U (θ) ≥ α

2
}
.

The empirical point estimate is then θ̂ = inf
θ
{θ : |t(c)L (θ) − t

(c)
U (θ)|}. A weak support

two-sided p-value for the exact test H(c)
0 : θ = θ′ v.s. H(c)

1 : θ 6= θ′ is defined as p(c)(θ′) =

2 min{p(c)
L (θ′), p(c)

U (θ′)} and should be restricted in the range of [0, 1].

Furthermore, one can estimate the corresponding common odds ratio λ̂ in terms of θ̂ as

λ̂ =
∑K
k=1 {(1− p̂k0)(θ̂ + p̂k0) nk0nk1

nk0+nk1
}∑K

k=1 {(p̂k0)(1− θ̂ − p̂k0) nk0nk1
nk0+nk1

}
, (2.7)
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which is derived from the MH method of estimating the common odds ratio for a 2× 2×K

table. This allows us to transfer the estimated RD to OR if the point estimate of OR is

desired.

2.2. Algorithm Improvement

The exact algorithm starts from evaluating all grid values of the two p-value functions

for each pair of θ and p0, and then “smoothes” them to be monotonic functions. One main

drawback of the exact method is that it is computationally intensive because it needs to

calculate the joint probability for all the entries in the (nk0 + 1)× (nk1 + 1) matrix (equation

2.2), denoted as P, and repeats calculating such large matrices for I×J possible combinations

of θ and p0. The intuitive way to carry out the calculation of each P is

1. Generate a probability vector Pr(Xk1 = xk1|θ, p0) as xk1 varies from 0 to nk1;

2. Generate a probability vector Pr(Xk0 = xk0|θ, p0) as xk0 varies from 0 to nk0;

3. Generate the outer product of the two probability vectors to have the joint probability

matrix P.

Since P is the outer product of the 1× (nk1 + 1) probability vector of Pr(Xk1 = xk1|θ, p0)

and the 1 × (nk0 + 1) probability vector of Pr(Xk0 = xk0|θ, p0). The algorithm can be

improved by screening out smallest probabilities that have a cumulative sum less than a

cutpoint (e.g., 10−6) in each of the two probability vectors before performing outer product.

We term this algorithm the naive algorithm. It splits step 3 into two sub-steps:

3.1. Screen out smallest values of the two probability vectors;

3.2. Generate the outer product of the two trimmed probability vectors to have the critical

part of matrix P.
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Note that the binomial probability density functionfor has only one mode, and it is

extremely right-skewed in case of rare event rates with large nk0 and nk1. Its right tail has

many small values that are surly to be excluded in step 3.1 above. We accordingly propose

an algorithm improvement to avoid generating these infinitesimals in probability vectors.

Figure 2.1 is an example of how we accelerate generating vectors of right-skewed binomial

distribution.

Figure 2.1: Example of accelerating procedure of generating probability vectors Pr(Xki =
xki|θ, p0), i = 0, 1.

First, we find the quantile value that has a density probability equals to a pre-defined

cutpoint value (e.g. 10−15), as the dashed red line shown in figure 2.1. Second, we compute all

probabilities until we reach the quantile value. To be more specific, all probabilities located

in the blue area, region (A), in figure 2.1 will be calculated. Last, set zeros to those elements

to be omitted. That is, all x’s located in the orange area, region (B), are automatically set

to be zeros.

14



The whole procedure is summarized as follows:

1. Generate the essential part of the probability vector Pr(Xk1 = xk1|θ, p0):

1.1. Find the quantile value with the density probability equals to a cutpoint;

1.2. Compute probabilities as xk1 varies from 0 to the quantile value;

1.3. Set zeros to those right tail elements.

2. Repeat step 1 for Pr(Xk0 = xk0|θ, p0);

3. Generate the outer product of the two trimmed probability vectors to have the critical

part of matrix P.

We term this algorithm the accelerated algorithm. This algorithm speeds up via assigning

zeros to small probabilities instead of generating their precise values that will be excluded

later. We choose 10−15 as the probability cutpoint because this number is small enough that

it will need 107 such elements to reach the cumulative sum 10−6 previously mentioned. Note

that in the case of rare events, a majority of probabilities in the vectors are smaller than

this cutpoint. Therefore, the accelerated algorithm is much faster comparing to the naive

algorithm, especially when sample sizes are large.

Figure 2.2 compares the average running time (in seconds per study) for 20 replicates

of the setting {θ = 0, K = 5, p0 ∼ U(0, 0.01), nk1 ∼ U(100, nmax), nk0 ∼ U(100, nmax),

nmax = {500, 1000, . . . , 9500, 10000}} using (1) the naive algorithm, and (2) the accelerated

algorithm. Comparing to the naive algorithm, the accelerated algorithm becomes more and

more efficient with the increase of sample sizes.
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Figure 2.2: Comparison of time consumption between the naive algorithm (dashed line) and
the accelerated algorithm (solid line).

2.3. Simulation

2.3.1. Settings

In this section, we conduct simulation studies to compare performance of the exact

method and the MH method in both balanced and unbalanced study design scenarios with

various parameter settings. For the MH method, we consider both without continuity cor-

rection (MH) and with 0.5 continuity correction (MH-cc).

We generate K, K = {5, 10, 20}, case-control genetic assocation studies for one genetic

variant. The sample size of the case group nk1 is generated from U(100, 1000) and the

corresponding control group size is generated as a multiplication of the case group nk0 =

r×nk1, where ratio r = {1, 10}. Data structure is balanced if the sample size ratio r = 1, and
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is unbalanced if the sample size ratio r = 10. Set RD to θ = {0, 0.01%, 0.05%, 0.1%, 0.5%}

and randomly generate the event rate in the control group p0 from a uniform distribution with

the lower bound min = 0 and the upper bound max = {0.01%, 0.1%, 1%}. Denoted by pu0 the

upper bound. Then we generate the number of observed events xk0 and xk1 from the binomial

distribution Bin(nk0, p0) and Bin(nk1, p0 + θ). The number of grid values of θ is set to be

I = 1000 and the number of grid values of p0 is J = 20. We also generate B = 1, 000, 000

independent random variables Uk ∼ U(0, 1). The weight in equation (2.5) is set to be

wk = ( nk0nk1
nk0+nk1

)/(∑K
k=1

nk0nk1
nk0+nk1

). We consider three non-decreasing transformation functions

h[·]: identity, inverse normal cumulative distribution function (IN-CDF), and arcsin of square

root (Asin_sqrt). The second one is used in [28]. Hence we compare the performance of five

models: three of the exact method and two of the MH method.

For each simulation setting 1000 replicates are generated. Each run generates a corre-

sponding CI for each model. Four measurements are used to assess CIs’ performance: (1)

empirical coverage probability, (2) average length (AL) of CI, (3) probability of rejecting

null hypothesis H0 : θ = 0, and (4) average absolute bias (AAB) where AAB = |θ̂− θ|. Cov-

erage probability is calculated as the probability of covering the underlying θ. Probability

of rejecting null hypothesis H0 : θ = 0 can be divided into two parts, type I error rate if the

true RD θ = 0, and power otherwise.

2.3.2. Simulation Results

2.3.2.1. CI Coverage and Length

The 95% CI of an appropriate method is expected to have a 95% coverage probability

of containing the true RD. Figure 2.3 presents coverage probabilities (left) and AL ×1000

(right) for the upper bound pu0 = 0.01% when sample sizes are balanced, and figure 2.4

shows the performance in the unbalanced study design. More figures with regard to pu0 =
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{0.1%, 1%} are listed in appendix where figures A.1 and A.3 are for the balanced scenarios

and figures A.2 and A.4 are for the unbalanced scenarios. The three exact models are

overall conservative that they constantly have coverage probabilities greater than the nominal

coverage probability 95%. The two MH models closely reach the nominal level of 95% when

pu0 is 0.1% and 1% in both balanced and unbalanced sample sizes. However, when pu0 decreases

to 0.01%, MH loses its power of holding coverage probabilities over the nominal level in the

balanced scenario, and the coverage probabilities of both MH and MH-cc drop dramatically

in the unbalanced scenarios.

It is notable that, in the case of unbalanced design and rare event rate, MH-cc has a severe

problem of low coverage and is highly anticonservative, especially when pu0 = 0.01% and K

is large. MH-cc hence is not a stable model to be used in unbalanced studies. Overall, the

simulation results suggest that, although the exact models are conservative, their coverage

are close to 0.95 with relatively larger upper bound pu0 and RD θ. Both MH methods has

stable coverage only when pu0 increases to 1%.
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Coverage AL × 1000

Figure 2.3: Coverage and average length when sample sizes in control and case groups are
balanced and pu0 = 0.01%.
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Coverage AL × 1000

Figure 2.4: Coverage and average length when sample sizes in control and case groups are
unbalanced and pu0 = 0.01%.
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2.3.2.2. Type I Error Rate and Power

The left panels of figure 2.5 and figure 2.6 show probability of rejecting null hypothesis

H0 : θ = 0 among 1000 runs when sample sizes are balanced and unbalanced, respectively,

with pu0 = 0.01%. More results of pu0 = {0.1%, 1%} are shown in figures A.5-A.8. Each

plot is split into two parts by a grey dashed line. When RD equals to 0, rejecting the null

hypothesis H0 : θ = 0 is equivalent to type I error rate. Otherwise, the rejecting probability

can be viewed as statistical power.

In the case of a balanced design (figures 2.5, A.5, A.7), all models have similar type I error

rates. MH without continuity correction have larger power than others when pu0 is small. In

the case of an unbalanced design (figures 2.6, A.6, A.8), MH models are unstable. MH-cc has

higher type I error rate and power than others when pu0 is small and K is large, particularly,

when pu0 = 0.01% and K = 20. MH-cc constantly yields 100% rejecting probability as RD

ranges from 0 to 0.5%. MH without continuity correction also has greater power than the

exact models.

In general, the exact models have lower power due to their conservative nature. Power

increases as the number of studies K and the underlying RD θ increase. Among the three

exact models, the IN-CDF transformation provides lower power than the other two trans-

formations. Furthermore, the fact that MH-cc model yields both high power and high type

I error rate indicates that it tends to overestimate RD and generate false positive results.
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Type I Error & Power AAB × 10000

Figure 2.5: Power and AAB when sample sizes in control and case groups are balanced and
pu0 = 0.01%.
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Type I Error & Power AAB × 10000

Figure 2.6: Power and AAB when sample sizes in control and case groups are unbalanced
and pu0 = 0.01%.
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2.3.2.3. Bias

The right panels of figure 2.5 and figure 2.6 are the estimate bias measured by AAB

when pu0 = 0.01%. Figures A.5-A.8 contain results of pu0 = {0.1%, 1%}. Note that these

figures present AAB in the unit of AAB×10000. When the sample sizes are balanced, MH

and MH-cc have similar sizes of AAB. The exact methods yield slightly less biased estimates

most of times, especially when RD is small. For unbalanced sample sizes, MH-cc generally

produces larger bias when pu0 is small. Especially when pu0 = 0.01% the bias becomes much

higher than other models. In contrast, MH without continuity correction gives the least bias

when pu0 is as rare as 0.01%. The three exact models have similar AAB, though the identity

transformation produces higher bias than other two models when the true RD is small.

2.4. Real Data Analysis

2.4.1. Association between Gene APOC3 and CHD

High plasma triglyceride levels are associated with the risk of having coronary heart

disease (CHD). Variants in gene apolipoprotein C3 (APOC3) was discovered to be strongly

associated with plasma triglyceride levels. A meta-analysis [46] was conducted to examine

the association of rare variants in APOC3 with CHD. There were a total of 18 studies (K=18),

containing 110,970 individuals (34,002 CHD patients and 76,968 controls) from European,

African American, and Hispanic ancestries. Details of the APOC3 data structure are listed

in appendix table A.2. In their conclusion, carriers of APOC3 rare mutations had lower risk

of CHD (OR=0.6; 95% CI=(0.47, 0.75); p-value=4× 10−6).

In the original meta-analysis [46], inference on OR was derived by the MH method.

There were 4 studies containing zero carriers in the case group and there was no study

observing zero events in the control group. Besides, 12 studies had unbalanced sample sizes
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ratio (control/case > 2), among which two have extremely unbalanced ratios greater than

15 (8.0 and 27.6). We apply the exact methods and calculate RDs. Figure 2.7 shows the

corresponding CIs, point estimates, and p-values of testing if there is difference between the

two groups, H(c)
0 : θ = 0 v.s. H(c)

1 : θ 6= 0.

Figure 2.7: Plot of 95% CIs, point estimates, and p-values for the APOC3-CHD data. CIs
and point estimates are on the scale of 10−3 and p-values are on the original scale.

Identity Asin_sqrt IN-CDF MH MH-cc

Estimated RD -0.002239 -0.002099 -0.002005 -0.002184 -0.002133
Estimated OR 0.612 0.632 0.646 0.620 0.627

Table 2.2: Summary of the estimated OR transferred from the estimated RD for the
APOC3-CHD data

All the methods come to a conclusion consistent with the original paper that the rate of

APOC3 variants carriers in CHD group is significantly lower than in the control group. This

implies that the risk of having CHD is reduced if one carries an APOC3 mutation. Based

on equation 2.7, we are able to convert the estimated RD to OR as shown in table 2.2. All

the estimated ORs are close to the reported OR of 0.6 in the original paper.
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2.4.2. Association between SCARB1 P376L Variant and CHD

The gene scavenger receptor class B member 1 (SCARB1) encodes scavenger receptor

BI (SR-BI), which is the major receptor for high-density lipoprotein cholesterol (HDL-C).

High levels of HDL-C are associated with a lower risk of CHD. In a meta-analysis [56] of 16

studies, it was found that the loss-of-function variant P376L is associated with lower levels

of plasma HDL-C, and P376L carriers have an increased risk of developing CHD (OR=1.79;

p-value=0.018) by the MH method.

Among the 16 studies, 6 have unbalanced ratio (control/case > 2) with the largest ratio

equal to 5.2. There are 8 studies with zero carrier in either case or control group, and 2

studies with zero carrier in both case and control group. We suspect that ignoring these two

studies may bias the results.

Figure 2.8: Plot of 95% CI, point estimates, and p-values for SCARB1 P376L data. CIs
and point estimates are based on the scale of 10−4 and p-values are on the original scale.

We perform meta-analysis using RD to investigate the association between SCARB1

P376L and CHD. Figure 2.8 summaries 95% CIs, point estimates and p-values from the

three exact models and the two MH models. The estimated OR from the estimated RD is
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presented in table 2.3. Note that for this dataset, the exact models conclude differently from

the MH models. The exact models fail to reject the null hypothesis with the inference of

95% CI spanning zero and p-values greater than the nominal level α = 0.05, whereas the

MH models reject the null hypothesis with p-values less than 0.05.

Identity Asin_sqrt IN-CDF MH MH-cc

Estimated RD 0.000296 0.000277 0.000239 0.000321 0.000328
Estimated OR 1.727 1.680 1.586 1.787 1.805

Table 2.3: Summary of estimated OR transferred from estimated RD for the
SCARB1-CHD data

2.5. Summary and Discussion

For rare events data, conventional OR methods manage zero events by either ignoring

them or making continuity correction by adding 0.5, which leads to the risk of biased esti-

mates. Such concern motivates us to use RD instead. It is known the balance of sample sizes

in case and control groups plays an important role in the performance of statistical methods

[4]. Therefore we conduct simulations of both balanced (1:1) and unbalanced (1:10) sample

sizes to compare the exact methods based on Tian et al. [49] with identity, arcsin of square

root, and IN-CDF (proposed by Liu et al. [28]) transformation functions to the MH meth-

ods in terms of CI coverage probability, CI length, probability of rejecting null hypothesis

H0 : θ = 0, and AAB of estimates.

The results show that the exact methods have stable but conservative CI coverage. They

are in general less biased. Relative bias decreases as the number of studies increases and

the control group event rate decreases. Power increases as the number of studies and RD

increase. When the sample sizes between groups are balanced, MH without 0.5 continuity

correction has comparable bias to the exact methods, and its coverage probability tends to
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be lower than the nominal 95% coverage for large number of studies K, big RD θ, and small

control group event rates pu0 . When sample sizes are unbalanced, we do not recommend

using MH with 0.5 continuity correction due to its poor performance of unstable coverage

and large bias.

The exact method discussed in this chapter is based on the fixed-effect model, which is

often an impractical assumption. Further extension to the random-effect model is desired,

which allows more variety in the model and is expected to fit real data better.
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CHAPTER 3

EXACT INFERENCE FOR META-ANALYSIS OF RARE EVENTS BASED ON THE
RANDOM-EFFECT MODEL

In this chapter, we propose an exact meta-analysis method based on the random-effect

model. This chapter is organized as follows. In section 3.1 we first develop the exact method

and propose an algorithm to construct the CI. In section 3.2 we examine the performance of

the proposed method compared with other methods by simulation. In section 3.3 we apply

the proposed exact method in real data analysis. Section 3.4 concludes the findings.

3.1. Methods

3.1.1. Estimating Log OR and its Variance

Suppose we have a collection of K independent studies and are interested in inferring a

common measure of interest, e.g., OR. The observed data of each study can be summarized

as a 2 × 2 table. Similar to the notations in Chapter 2, for the kth study, k = 1, . . . , K,

we define Xk1 and Xk0 as the number of observed events in case and control groups with

sample sizes nk1 and nk0, respectively. Assume random variablesXk1 andXk0 follow binomial

distributions,

Xk1 ∼ Bin(nk1, pk1), Xk0 ∼ Bin(nk0, pk0),

where pk1 and pk0 are the underlying event rates. Given the observed number of events equal

to xk1 and xk0 in case and control groups, respectively, we define log OR θk in the kth study
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as

θk = logit(pk1)− logit(pk0) (3.1)

= ln
(

xk1

nk1 − xk1

)
− ln

(
xk0

nk0 − xk0

)
. (3.2)

Denote by µk the logit of event rate in the control group. Assume µk’s are a constant

across all control groups, that is, µk = µ. If θk is known, pk1 can be written as as a function

of µ and θk, 
logit(pk0) = µ,

logit(pk1) = µ+ θk.

In the context of a random-effect model, we use a binomial-normal (BN) hierarchical

model to make inferences on the common log OR θ. The BN model assumes the log ORs of

individual studies θk’s are normally distributed

θk ∼ N(θ, τ 2),

where θ is the underlying common log OR and τ 2 is between-study variance. The binomial

fixed-effect model described in chapter 2 can be regarded as a special case of this random

BN model when τ 2 = 0.

Bhaumik et al. [3] introduced an estimate of individual log OR θk by adding a constant

a to all cells of a 2× 2 table in equation 3.2,

θ̂ka = ln
(

xk1 + a

nk1 − xk1 + a

)
− ln

(
xk0 + a

nk0 − xk0 + a

)
.

They further proposed a simple average estimate of the common log OR θ that borrows

information from all studies as

θ̂sa =
K∑
k=1

θ̂ka
K
,
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It is proved that this estimate is approximately unbiased when a = 1/2. Variance of θ̂ka is the

sum of within-study variance σ2
k and between-study variance τ 2, that is, Var(θ̂ka) = σ2

k + τ 2.

Accordingly variance of the simple average estimate θ̂sa is Var(θ̂sa) = ∑K
k=1 Var(θ̂ka)/K2. An

estimate of Var(θ̂ka) is

V̂ar(θ̂ka) = 1
nk1p̂k1(1− p̂k1) + 1

nk0p̂k0(1− p̂k0) + τ̂ 2
IPM ,

where p̂ki = xki+1/2
nki+1 , i = 0, 1, and τ̂ 2

IPM is the IPM estimate of τ 2. Thus one can derive

µ̂ = logit(p̂k0) and θ̂ = logit(p̂k1)− logit(p̂k0).

The IPM estimate of between-study variance τ̂ 2
IPM is an improved version of the one

proposed by Paule and Mandel [34] and is the solution to

F (τ 2) =
K∑
k=1

wk[θ̂ka − θ̂wa]2 − (K − 1) = 0, (3.3)

where the weighted average estimate θ̂wa =
∑K

k=1 wk θ̂ka∑K

k=1 wk
, and the inverse variance weights

wk = (τ 2 + σ̂2
k)−1. The estimated within-study variance σ̂2

k is

σ̂2
k = 1

nk1 + 1
[

exp(−µ̂− θ̂sa + τ 2

2 ) + 2 + exp(µ̂+ θ̂sa + τ 2

2 )
]

+ 1
nk0 + 1

[
exp(−µ̂) + 2 + exp(µ̂)

]
,

(3.4)

and µ̂ is a simple average estimate of µ from the control groups. Equation (3.3) can be

iteratively solved with a starting point τ 2
(0) = 0 and an updating increment d, where d is

obtained by the first order Tylor approximation

F (τ 2
(i+1)) ≈ F (τ 2

(i)) + F ′(τ 2
(i))× d = 0, i = 0, 1, 2, . . .
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such that

d = −
F (τ 2

(i))
F ′(τ 2

(i))

=
F (τ 2

(i))∑K
k=1 w

2
k[θ̂ka − θ̂wa]

2
[
1 + exp(−µ̂−θ̂sa+ τ2

2 )+exp(µ̂+θ̂sa+ τ2
2 )

2nkt+2

] .

Then we update τ 2
(i+1) = τ 2

(i) + d until d < 10−6.

3.1.2. Exact CI for Log OR

The procedure of computing the exact 100(1 − α)% CI for log OR θ can be split into

three major steps:

1. Define parameter search region [θSL, θSU ]× [τ 2
SL, τ

2
SU ], where subscript “SL” stands for

the search lower bound and subscript “SU” stands for the search upper bound;

2. For I × J grid in the search region, calculate the exact p-values p(θi, τ 2
j ) at all grid

points (θi, τ 2
j ), where i = 1, 2, . . . , I and j = 1, 2, . . . , J ;

3. Project p(θi, τ 2
j ) in the search region onto θ axis to obtain one-dimensional p-values

p(θi), and then construct the CI for θ.

In the second step, we define the exact p-value of an observed dataset at θ as the prob-

ability of observing the null test statistic T (b) greater than or equal to the observed test

statistic T obs,

p(θi, τ 2
j |(xk1, xk0)obs) = Pr

{
T (b) ≥ T obs

}
= Pr

{
T [(xk1, xk0)(b)] ≥ T [(xk1, xk0)obs]

}
, (3.5)

where (xk1, xk0)obs is the observed dataset, and (xk1, xk0)(b), b = 1, 2, . . . , B, are random
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datasets generated from BN models as


x

(b)
k0 ∼ Bin(nk0, pk0),

x
(b)
k1 ∼ Bin(nk1, p

(b)
k1 ).

Note that (pk0, nk0, nk1) are from the observed studies, and p(b)
k1 is generated based on grid

point (θi, τ 2
j ), in particualr,


θ

(b)
k ∼ N(θi, τ 2

j ),

logit(p(b)
k1 ) = logit(pk0) + θ

(b)
k .

Size of B can be a trade-off between estimation precision and computation expense. A

larger size of B leads to a more precise estimate of p(θi, τ 2
j ), though it requires more time to

generate null datasets.

In summary, to calculate p-value at each grid point (θi, τ 2
j ) in the search region, the

second step can be expanded as the following steps:

2.1 Generate θ(b)
k from N(θi, τ 2

j ), k = 1, . . . , K;

2.2 Calculate p(b)
k1 based on θ(b)

k and pk0;

2.3 Generate x(b)
k1 and x(b)

k0 from Bin(nk1, p
(b)
k1 ) and Bin(nk0, pk0);

2.4 Given the generated data, esitmate θ̂(b)
s and V̂ar(θ̂(b)

s );

2.5 Compute test statistic T (b);

2.6 Repeat the above steps for B times to obtain a null distribution of test statistic T ,

b = 1, . . . , B;

2.7 Compute p-value as Pr(T (b) ≥ T obs).
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We use the simple average estimate θ̂s1/2 and its estimated variance V̂ar(θ̂s1/2) to construct

the test statistic T and build the exact CI for log OR θ. For a two-sided test H0 : θ = θ′ v.s.

H1 : θ 6= θ′, a general choice of test statistic T is a Wald-type test statistic

T = (θ̂s1/2 − θ′)2

V̂ar(θ̂s1/2)
.

Based on T , one can compute the exact p-values p(θi, τ 2
j ) at all I×J grid points. Since our

goal is to construct CI for θ, we need to transfer the two-dimensional exact p-values p(θi, τ 2
j )

to one-dimensional exact p-values p(θi) by projecting onto θ axis. It can be accomplished by

maximizing over all possible τ 2
j ’s at each θi as

p(θi) = max
τ2
j

{p(θi, τ 2
j )}.

The lower bound (θL) and the upper bound (θU) of the exact 100(1−α)% CI for log OR

θ are defined as

θL = inf
θ

{
θ : p(θi) ≥ α

}
,

θU = sup
θ

{
θ : p(θi) ≥ α

}
.

The corresponding exact 100(1− α)% CI for OR is thus (exp(θL), exp(θU)).

3.1.3. Efficient Parameter Search Region

To find the initial parameter search region [θSL, θSU ] × [τ 2
SL, τ

2
SU ], we can start with a

wide initial range. The initial search bounds for θ and τ 2 can be determined from the

99.9% CI based on the normal approximation. In addition, as τ 2 is non-negative, the search

lower bound τ 2
SL is automatically set to be 0. The initial parameter search region therefore

becomes [θSL, θSU ] × [0, τ 2
SU ]. Note that in the initial parameter search region, θ and τ 2
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are independent, which results in a rectangle-shaped search region. For example, as shown

in figure 3.1, the initial search region is a rectangle at this stage, and grey points are grid

points located in this search region. This parameter search region is too large that it takes a

long time to compute the exact p-values at all grid points (e.g., 16 grid points in figure 3.1)

located in such large search region. The computation cost issue can be resolved by cutting

down the parameter search region.

Initial Search Region

𝜏2

𝜃

Figure 3.1: Example of initial parameter search region. It is rectangle-shaped due to inde-
pendence between θ and τ 2, and it has 16 grid points.

A test statistic Tτ2 [3] for testing heterogeneity H0 : τ 2 = 0 designed for rare events is

Tτ2 =
∑K
k=1(yk − Ak)√∑K

k=1 2Ak
,
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where

yk = (θ̂k1/2 − θ̂s1/2)2,

Ak = K − 2
K

Var(θ̂k1/2) +
∑K
k=1 Var(θ̂k1/2)

K2 ,

mean of yk is Ak and variance of yk is 2Ak. To find relationship between θ and τ 2, we can

view Var(θ̂k1/2) as a function of θ and τ 2, denoted as vk(θ, τ 2):

vk(θ, τ 2) = 1
nk1

[
exp(−µ̂− θ + τ 2

2 ) + 2 + exp(µ̂+ θ + τ 2

2 )
]

+ 1
nk0

[
exp(−µ̂) + 2 + exp(µ̂)

]
+ τ 2.

Note that, the part of with-in study variance in vk(θ, τ 2) is the expectation of 1
nk1pk1(1−pk1)+

1
nk0pk0(1−pk0) under the BN model assumption. Now Ak can be written as

Ak = K − 2
K

vk(θ, τ 2) +
∑K
k=1 vk(θ, τ 2)

K2 ,

and

K∑
k=1

Ak = K − 2
K

K∑
k=1

vk(θ, τ 2) +
K∑
k=1

∑K
k=1 vk(θ, τ 2)

K2

= K − 1
K

K∑
k=1

vk(θ, τ 2).

As test statistic Tτ2 is normally distributed, we can find CI bounds of τ 2 by equating test

statistic Tτ2 to its quantile value Zα(τ2),

Tτ2 = Zα(τ2). (3.6)
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The relationship between θ and τ 2 can be identified by solving equation (3.6) as below:

∑K
k=1(yk − Ak)√∑K

k=1 2Ak
= Zα(τ2)

⇒
K∑
k=1

yk −
K∑
k=1

Ak = Zα(τ2)

√√√√2
K∑
k=1

Ak

⇒
K∑
k=1

Ak =
(√√√√ K∑

k=1
yk + 1

2Z
2
α(τ2) −

√
1
2Z

2
α(τ2)

)2

⇒
K∑
k=1

vk(θ, τ 2) = K

K − 1

(√√√√ K∑
k=1

yk + 1
2Z

2
α(τ2) −

√
1
2Z

2
α(τ2)

)2

. (3.7)

The right side of equation (3.7) is a constant part, denoted as C1. The left side of equation

(3.7) can be expanded as

K∑
k=1

vk(θ, τ 2) =
[

exp(−µ̂− θ + τ 2

2 ) + exp(µ̂+ θ + τ 2

2 )
]( K∑

k=1
n−1
k1

)
+Kτ 2

+ 2
K∑
k=1

n−1
k1 +

[
exp(−µ̂) + exp(µ̂) + 2

]( K∑
k=1

n−1
k0

)
. (3.8)

Note the second line of equation (3.8) is unrelated to θ or τ 2, and thus can also be viewed

as a constant part, denoted as C2. Therefore we have two constant parts defined as

C1 = K

K − 1

(√√√√ K∑
k=1

yk + 1
2Z

2
α(τ2) −

√
1
2Z

2
α(τ2)

)2

,

C2 = 2
K∑
k=1

n−1
k1 +

[
exp(−µ̂) + exp(µ̂) + 2

]( K∑
k=1

n−1
k0

)
.

Now equation (3.7) becomes

[
exp(−µ̂− θ) + exp(µ̂+ θ)

]( K∑
k=1

n−1
k1

)(
exp(τ

2

2 )
)

+Kτ 2 −
(
C1− C2

)
= 0. (3.9)

Since the lower bound τ 2
SL is set to be 0, we are only interested in the upper bound

τ 2
SU . Given any θi ∈ [θSL, θSU ], i = 1, . . . , I, the upper bound τ 2

SU is the solution to equation
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(3.9). Similar to solving equation (3.3), we can solve equation (3.9) from the first order Tylor

approximation with a starting point τ 2(0) = 0. Let F (τ 2) be the left side of equation (3.9),

then the updating increment d is

d = −
F (τ 2

(i))
F ′(τ 2

(i))

= −

[
exp(−µ̂− θi) + exp(µ̂+ θi)

](∑K
k=1 n

−1
k1

)(
exp( τ

2
(i)
2 )
)

+Kτ 2
(i) −

(
C1− C2

)
1
2

[
exp(−µ̂− θi) + exp(µ̂+ θi)

](∑K
k=1 n

−1
k1

)(
exp(

τ2
(i)
2 )
)

+K
.

We update τ 2
(i+1) = τ 2

(i) + d until d < 10−6.

Final Search Region

𝜃

𝜏2

Figure 3.2: Example of the final parameter search region (blue area). The initial rectangle-
shaped search region shrinks to the blue area. Now we only need to handle 6 of the 16 grid
points.

In this way, we have solution of τ 2 to be related to grid value of θi and denoted this

solution by τ 2
SU(θi). Now the parameter search region shrinks to [θSL, θSU ]× [0, τ 2

SU(θi)]. For

example, in figure 3.2, the blue area is the final parameter search region. Now we only have

6 grid points located in the search region instead of 16 grid points in the initial search region.
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This helps speed up the algorithm.

3.2. Simulation

3.2.1. Simulation Settings

We conduct simulation studies to examine the performance of the proposed exact BN

method in terms of making inferences on CI. We consider both small and large number of

studies, where K = 5 mimics a scenario of small size meta-analysis study and K = 15

represents a scenario of large size meta-analysis study. We consider a balanced study design

with 5000 patients in both case and control groups.

Under a BN model, we generate the number of observed events from a binomial distribu-

tion with the event rate pk0 = {0.5%, 1%} in the control group. Such pk0 leads to the logit

of event rate µ = logit{pk0} = {−5.3,−4.6}, respectively. Hereinafter we denote these two

event rates as rare and low, respectively. We consider five scales of true mean of log OR,

θ = {−1,−0.5, 0, 0.5, 1}, which involves situations where the event rate in the case group is

less than, equal to, and greater than that in the control group. The underlying between-

study variance τ 2 are set according to different sizes of I2 statistics. It is generated to have

I2 approximately around 0, 25%, 50%, 75%, which represents none heterogeneity, mild het-

erogeneity, moderate heterogeneity, and high heterogeneity, respectively [19]. The specific

values of τ 2 under different I2 are listed in table 3.1.
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K µ
τ 2

I2 = 0 I2 = 25% I2 = 50% I2 = 75%

5
-5.3 0 0.04 0.3 1.2
-4.6 0 0.012 0.054 0.5

15
-5.3 0 0.04 0.15 0.6
-4.6 0 0.02 0.008 0.3

Table 3.1: Settings of the underlying τ 2 when K = {5, 15}, µ = {−5.3,−4.6} for none,
mild, moderate, and high heterogeneity.

Simulation for each underlying τ 2 listed in table 3.1 is repeated 500 times. We set the

number of grid points for θ, I, to be 1000 and the number of grid point for τ 2, J , to be 10.

The number of repeats, B, is set to be 1000. If I, J, B increase, accuracy of the resulting CI

will increase at the cost of longer computation time.

We compare the proposed method with six other methods. Among the six methods, three

are fixed-effect methods including the Peto method, the MHmethod, and the inverse variance

method (INV). The other three are random-effect methods including the DerSimonian and

Laird method (DL) [13], the Paule and Mandel method with INV estimate (INV-PM), and

the IPM method. All these six methods construct CIs relying on large sample approximation.

Note that the IPM method applies the same method as ours to make the point estimate of

θ. The difference between the IPM method and the exact method is that the IPM method

builds CI based on normal approximation. Thus we can specifically compare the performance

of large sample approximation and the exact calculation when point estimates are same.

Similar to the simulation study in chapter 2, we compare CI coverage probabilities, CI

length, and power. Different from chapter 2, estimate bias is no longer considered since it is

derived as a simple average estimate instead of being derived from the exact CI.
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3.2.2. Simulation Results

Coverage probability is calculated as the probability of covering the true log OR θ. It is

expected to be around the nominal level, e.g., 95%. If it is over the nominal level then we

consider the CI as conservative, whereas if it is below the nominal level then we regard it as

permissive. In this section, we present compare coverage probabilities of the proposed exact

method and six other methods in four scenarios:

1. Small size meta-analysis (5 studies) and low event rate in the control group, pk0 = 1%;

2. Small size meta-analysis (5 studies) and rare event rate in the control group, pk0 =

0.5%;

3. Large size meta-analysis (15 studies) and low event rate in the control group, pk0 = 1%;

4. Large size meta-analysis (15 studies) and rare event rate in the control group, pk0 =

0.5%.

Performance of the coverage probabilities and CIs length in all scenarios are presented in

figures 3.3 - 3.6. Note that µ = −4.6 is equivalent to pk0 = 1% and µ = −5.3 is equivalent

to pk0 = 0.5%. In each figure, four sub-figures are sorted from left to right presenting

results in situations of no heterogeneity, mild heterogeneity, moderate heterogeneity, and

high heterogeneity, respectively. In each sub-figure, x-axis is the true log OR ranging from

-1 to 1, and y-axis is the coverage probability ranging from 0.8 to 1. Note that in some

cases the coverage probabilities are lower than 0.8 and thus are shown as texts in the figure.

The black dashed line indicates the nominal level of CI, that is, 95%. Any point below

the dashed line means permissive coverage probability and any point above the dashed line

means conservative coverage probability. All the fixed-effect methods (Peto, MH, and INV)

are highlighted in yellow and all the random-effect methods (DL, INV-PM, and IPM) are in

green. The proposed exact method is highlighted in red.
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Coverage Probability

CI Length

Figure 3.3: Comparison of coverage probabilities and CIs length of the proposed exact
method and six other methods when K = 5 and µ = −4.6.
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Coverage Probability

CI Length

Figure 3.4: Comparison of coverage probabilities and CIs length of the proposed exact
method and six other methods when K = 5 and µ = −5.3.
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Figure 3.3 presents results when there are 5 studies and a low event rate µ = −4.6. When

there is no heterogeneity, the MH method and the INV method have the coverage probabil-

ity constantly around the nominal level. The Peto method shows poor performance when

the true log OR is large. In contrast, all random-effect methods and the exact method are

relatively conservative, especially the IPM method, which constantly has coverage probabil-

ity close to 100%. When the between-study variance increases, all methods have decreasing

coverage probabilities. Particularly, when high heterogeneity presents, all three fixed-effect

methods have coverage probabilities only around 35% for all settings of true log OR. For

random-effect methods, the DL and the INV-PM methods have better performance com-

pared to the fixed-effect methods with coverage probabilities around 90%. The IPM method

and the exact method have similar performance with the coverage probabilities around the

nominal level. Therefore, the fixed-effect methods generally have better performance when

the between-study variance is small, and the random-effect methods are better when there is

substantial heterogeneity among studies. The proposed exact method outperforms others as

it has very stable performance and always yield coverage probabilities around the nominal

level.

At the rare event rate, i.e., µ = −5.3, as shown in figure 3.4, the results are similar

to that in the case of the low event rate. However, in the presence of moderate to high

heterogeneity, all methods except the exact method and the IPM method have even lower

coverage probabilities.

As presented in figures 3.5 and 3.6, when the number of studies is large, K = 15, all

random-effect methods and the exact method yield coverage probabilities close to the nominal

level. In particular, when the between-study variance is small, their CIs are no longer

conservative. The proposed exact method overall outperforms other methods with its steady

performance and accurate coverage probability around 95%.
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Coverage Probability

CI Length

Figure 3.5: Comparison of coverage probabilities and CIs length of the proposed exact
method and six other methods when K = 15 and µ = −4.6.
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Coverage Probability

CI Length

Figure 3.6: Comparison of coverage probabilities and CIs length of proposed exact method
and six other methods when K = 15 and µ = −5.3.

46



Statistical power is defined as the probability of CI not covering 0 when the true log

OR θ 6= 0. Simulation results are shown in figure B.1 for K = 5 and in figure B.2 for

K = 15 in appendix B. When K = 15, the fixed-effect methods have higher power than the

random-effect methods; when K = 15, all methods have similar power.

3.3. Real Data Analysis

High plasma levels of low-density lipoprotein cholesterol (LDL-C) are associated with

high risk of CHD. Inhibiting the function of Niemann-Pick C1-like 1 (NPC1L1) protein can

lower LDL-C levels. However, it is unclear whether such inhibition can reduce the risk of

CHD. A meta-analysis [23] examined the association between protein-inactivating mutations

in NPC1L1 and the risk of CHD. This meta-analysis involved 29,954 patients with CHD and

83,140 healthy controls from 16 studies. Event rates in case and control groups were 0.037%

and 0.085%, respectively, and nine studies observed zero event in the case groups. Detail

of the data structure is listed in table B.2 in appendix B. In the original study, the MH

fixed-effect method without continuity correction was applied, resulting in an estimated OR

= 0.47 with the 95% CI = (0.25, 0.87) and p-value = 0.008. It was concluded that NPC1L1

mutations carriers had 53% lower risk of CHD.

We re-analyze the data with the proposed exact method and the other six methods

mentioned in the simulation study. The I2 test statistic equals 9.82%, therefore the extent

of heterogeneity is between no and mild heterogeneity. Analysis results are shown in figure

3.7. Different from the original study, we apply the 0.5 continuity correction to all compared

methods except the Peto method. Note that CIs presented in figure 3.7 are not symmetric as

we calculate CIs first based on a log scale and then convert to CIs of OR. The exact method

produces a CI=(0.184, 0.936), which is slightly wider than MH method but still reaches the

same conclusion. The point estimate OR = 0.51 with the p-value = 0.026. In contrast,

the INV-PM, DL, and INV methods have larger point estimate OR = 0.69 but insignificant
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results.

Figure 3.7: Plot of 95% CI, point estimates, and p-values for NPC1L1 data.
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3.4. Summary and Discussion

In this chapter, we propose an exact method based on the random-effect model to build

CI for OR in the case of rare event rates. It assumes a BN random-effect model where

the true log OR in each single study comes from a normal distribution and the number of

events in the 2 × 2 table comes from binomial distributions. The exact CI is constructed

as lower bound and upper bound of log OR in the area where all p-values are greater than

0.05. We propose a speed-up algorithm to shrink the parameter search region by utilizing

the relationship between log OR and between-study variance.

The simulation study considers various scenarios including different number of studies,

various extents of heterogeneity and event rates, and different magnitude of true log ORs.

The fixed-effect methods (INV, Peto, MH) have best performance when there is no hetero-

geneity and the number of studies is large. It is reasonable as they are designed for situation of

without between-study variance and they rely on large sample approximation. The random-

effect methods (IPM, INV-PM, DL) based on large sample approximation outperform the

fixed-effect methods when there is high heterogeneity. The proposed random-effect exact

method show stable performance with the coverage probability constantly around the 95%

nominal level. Thus, in the case of rare events data, the proposed exact method is preferred

to build the CI for log OR regardless of the heterogeneity and sample sizes.
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CHAPTER 4

EXACT INFERENCE FOR META-ANALYSIS OF RARE EVENTS USING COMMON
CONTROLS

In this chapter, we consider a special study design that there are multiple case groups

but there is only one control group, which is usually a large survey database from the general

population. We propose an exact method to make inferences on the event rate and effect

size measure in the case groups. This chapter is organized as follows: in section 4.1 we

introduce the exact method including its estimates and computing algorithm, in section 4.2

we conduct simulation studies, and section 4.3 concludes the findings.

4.1. Methods

4.1.1. Assumptions and Estimates

Assume there are a series of individual studies on the same disease, and in all studies

only cases / patients are recruited. A survey dataset of the general population is used as the

common control group, e.g., the the Genome Aggregation Database [25]. Denote by K the

number of studies involved in meta-analysis except the common control group. Xk1 is the

number of events observed in the kth individual study, where k = 1, . . . , K. Denote by X0

the number of events observed in the common control group. Sample sizes in the case and

control groups are denoted as nk1 and n0, respectively. For the control group, we assume
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the number of events X0 follows a binomial distribution,

X0 ∼ Bin(n0, p0),

where p0 is the observed event rate.

To estimate the effect size measures RD and OR, we adapt an exact method to estimate

and build CI for the pooled effect size from case groups [16]. Assmue a beta-binomial (BB)

random-effect model,

Xk1 ∼ Bin(nk1, pk1), pk1 ∼ Beta(α, β), k = 1, . . . , K, (4.1)

where pk1 is the observed event rate in the kth study, and α, β > 1. In a beta distribution,

parameters α and β are set to be greater than 0. The reason we set them to be greater than

one is to ensure the unimodal shape of the distribution. More details of this choice will be

discussed later.

The between-study variation of pk1 comes from the beta distribution, so the expected

value of pk1, denoted by p1, and the between-study variance of pk1, denoted by τ 2, are

p1 = E(pk1) = α

α + β
,

τ 2 = Var(pk1) = αβ

(α + β)2(α + β + 1) .

p1 can be viewed as the true event rate in the case groups. The estimate of pk1 is p̂k1 =

xk1/nk1. If there is zero event presenting in a case group then we apply continuity correction

by p̂k1 = (xk1 + 1)/(nk1 + 2). The BB distribution in equation (4.1) is also known as
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BB(nk1, α, β), and the mean and variance of estimate p̂k1 are

E(p̂k1) = p1,

Var(p̂k1) = p1(1− p1)
nk

+ (1− 1
nk

)τ 2.

The aim is to estimate p1 and build a CI for it. We use the inverse variance estimate p̂1

to estimate the pooled event rate p1, where

p̂1 =
∑K
k=1 wkp̂k1∑K
k=1 wk

,

wk =
{

V̂ar(p̂k1)
}−1

=
{ p̂1(1− p̂1)

nk1
+ (1− 1

nk
)τ̂ 2
}−1

.

The estimated between-study variance τ̂ 2 is a DL-type estimator,

τ̂ 2 = max
{

0,
∑K
k=1 (p̂2

k1 − p̄1/nk1)∑K
k=1 (1− 1/nk1)

− p̄2
1

}
,

p̄1 =
∑K
k=1 p̂k1

K
,

where p̄1 is the average event rate estimated from all case groups. Based on these estimates,

once we collect data from all cases groups, we can estimate the event rate in the case groups

following a beta distribution with the estimated mean p̂1 and variance τ̂ 2. Therefore,

α̂ = (1− p̂1)p̂2
1

τ̂ 2 − p̂1,

β̂ = (1− p̂1)2p̂1

τ̂ 2 − (1− p̂1).

Such reparametrization allows us to update estimation of α and β based on the estimated

p̂1 and τ̂ 2.
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4.1.2. Exact Confidence Interval for p1

As in previous chapters, an exact confidence interval is built based on grid values of

parameter search region. Here parameter search region is a two dimensional space [p1L, p1U ]×

[τ 2
L, τ

2
U ], where subscript L and U refer to the lower and upper bounds in the parameter

search region. Initial guess of lower and upper bounds can be estimated based on the normal

approximated CI.

To accelerate the exact algorithm, the parameter search region can be reduced by ex-

pressing τ 2 as a function of p1. In this way, τ 2 and p1 become dependent. This can be

achieved by setting α, β > 1, which implies the following inequality

1
α + β + 1 ≤ min { α

2α + β
,

β

α + 2β },

⇒ τ 2 = p1(1− p1)
α + β + 1 ≤ p1(1− p1) min { α

2α + β
,

β

α + 2β }.

Given a specific p1, the inequality defines that the search upper bound of τ 2 is τ 2
U(p1) =

p1(1− p1) min { p1
1+p1

, 1−p1
2−p1
}.

For a two-sided test H0 : p1 = p′1 v.s. H1 : p1 6= p′1, we use a Wald-type test statistic T ,

T = (p̄1 − p′1)2∑K
k=1 V̂ar(p̂k1)

.

Let T (obs) denote the observed test statistic and T (b) the null test statistic. The null test

statistic T (b) is calculated based on generated dataset p(b)
k1 , b = 1, . . . , B from a beta distribu-

tion with mean p(i)
1 and variance τ 2(j), where p(i)

1 , i = 1, . . . , I, and τ 2(j)
, j = 1, . . . , J, are grid

values in the parameter search region. Then we can compute the exact p-value at (p(i)
1 , τ

2(j))

as p(p(i)
1 , τ

2(j)) = Pr{T (b)(p(i)
1 , τ

2(j)) ≥ T (obs)}.

To construct 95% CI for p1, the idea is to project p(p(i)
1 , τ

2(j)) onto the p1 axis to have

the final exact p-value p(p(i)
1 ), which is a p-value only regarding to the grid value of p1. Note
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that if τ 2 increases then p-value also increases [16]. This helps accelerate the algoithm that

we do not need to go through all grid values of τ 2; instead we can directly compute p-value

at the maximum value of τ 2
U(p(i)

1 ) at each p(i)
1 . The 95% CI for p1 is defined as the minimum

and maximum grid value of p(i)
1 that have p-values greater than or equal to the significant

level 0.05,

p1L = inf
p1

{
p1 : p(p1) ≥ 0.05

}
,

p1U = sup
p1

{
p1 : p(p1) ≥ 0.05

}
.

In practice, the algorithm first computes p-values for all grids and then obtains CI for

p1. The details of each step are:

1. Find an initial search region of [p1L, p1U ] and compute p-values on the bounds;

2. Calculate p-values on grids of p1 and at each p(i)
1 use maximum τ 2 value as τ 2

U(p(i)
1 ):

2.1. If p(p1L) > 0.05 then find p-values of outside grid points p(i)
1 < p1L until p-value

p(p(i)
1 ) < 0.05; otherwise, look for inside grid points p(i)

1 > p1L;

2.2. If p(p1U) > 0.05 then find p-values of outside grid points p(i)
1 > p1U until p-value

p(p(i)
1 ) < 0.05; otherwise, look for inside grid points p(i)

1 < p1U ;

3. Build 95% CI for p1 based on the exact p-values.

Once we have the 95% CI for p1, denoted as [pexact1L , pexact1U ], we are able to make inferences

on the effect size measures such as RD and OR with the event rate p0 in the common control

group. Let θ represent the effect size measure. Denote by θRD RD, and denote by θOR OR.

Since RD and OR monotonically increase as p1 increases, the 95% CI for RD and OR can
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be constructed as

RD: [pexact1L − p0, p
exact
1U − p0],

OR: [p
exact
1L (1− p0)
p0(1− pexact1L ) ,

pexact1U (1− p0)
p0(1− pexact1U ) ].

4.2. Simulation

We conduct simulation studies to mimic real data scenarios where we have multiple case

groups and one common control group. We perform simulation based on the APOC3-CHD

data [46] discussed in chapter 2. The data structure can be found in appendix A.2. We

combine the 18 control groups to serve as a large common control group. The event rate in

the control group is p0 = 0.005.

For case groups, we use the sample sizes in the APOC3-CHD data and randomly pick

up 5, 10, 15 out of 18 groups to mimic small, moderate and large size of meta-analysis.

The true event rate in the case group is set to be p1 = {0.001, 0.005, 0.01}. To consider

between-study variance, p1k in each study is generated from a beta distribution where mean

is p1 and variance is the observed variance in the APOC3-CHD data. Number of events are

then generated from a binomial distribution with the sample size nk1 and event rate pk1.

Each simulation is replicated 1,000 times.

For comparison, we also construct CI for p1 based on the DerSimonian and Laird method

(DL) [13], the Paule and Mandel method (PM) [34], the Sidik-Jonkman method (SJ) [40],

and the generalized linear mixed model with maximum likelihood estimator (GLMM) [43].

Figure 4.1 shows that exact methods are overall stable at the nominal level of 95% regardless

of different sizes of K and p1. When K is large, the exact method becomes slightly conser-
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vative and its coverage probability is over nominal level. In contrast, other methods have

lower coverage probabilities than the nominal level. Among them the SJ method has better

performance with higher coverage probability.

We compute CI for the OR of each run of simulation. The average lower and upper

bounds are shown in table 4.1. When p1 = 0.001, the exact method, SJ method and GLMM

method tend to have wider CI compared with the DL method and the PM method. When

K increases, the length of CIs decreases for all methods.

Figure 4.1: Plot of 95% CIs coverage probability for p1 when K = {5, 10, 15} and p1 =
{0.001, 0.005, 0.01}.
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K = 5 K = 10 K = 15

L U L U L U

True OR: 0.199
p1 = 0.001

Exact (0.044, 0.788) (0.033, 0.536) (0.038, 0.445)
DL (0.130, 0.644) (0.153, 0.491) (0.170, 0.439)
PM (0.131, 0.639) (0.158, 0.488) (0.178, 0.439)
SJ (0.104, 0.706) (0.126, 0.512) (0.142, 0.448)

GLMM (0.064, 0.762) (0.065, 0.376) (0.067, 0.305)

True OR: 1
p1 = 0.005

Exact (0.086, 3.380) (0.076, 2.134) (0.100, 1.853)
DL (0.455, 2.165) (0.526, 1.586) (0.566, 1.430)
PM (0.414, 2.223) (0.480, 1.607) (0.524, 1.431)
SJ (0.379, 2.306) (0.442, 1.645) (0.489, 1.451)

GLMM (0.332, 1.986) (0.345, 1.365) (0.368, 1.190)

True OR: 2.010
p1 = 0.01

Exact (0.121, 6.171) (0.105, 4.172) (0.248, 3.587)
DL (0.851, 3.715) (0.971, 2.855) (1.056, 2.590)
PM (0.711, 4.022) (0.817, 2.982) (0.910, 2.646)
SJ (0.673, 4.101) (0.782, 3.029) (0.874, 2.677)

GLMM (0.643, 3.588) (0.670, 2.616) (0.732, 2.303)

Table 4.1: Average lower (L) and upper (U) bounds of CIs for OR from 1,000 replications.

4.3. Summary and Discussion

In this chapter, we consider a special study design where researchers of each study only

recruit cases but not controls. Instead, a large survey database of the general population

is used as the common controls. We propose to first apply the exact method to construct

CI for the event rate in the case groups and then make inference on the pooled effect size

measures, e.g. RD and OR, compared to the common controls. The exact method introduces

beta-binomial distribution to build up a random-effect model where the true event rate in

each study can vary from each other but with one underlying mean, and number of observed

events are assumed to follow a binomial distribution. The exact method calculates p-values
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at all search grids of possible combinations of event rate p1 and between-study variance τ 2.

The algorithm is further accelerated exploiting the relationship between p1 and τ 2.

We perform simulations to evaluate the performance of the proposed exact method in the

case of rare event rates. The simulation settings are based on a real dataset to mimic realistic

scenarios. The simulation results suggest that the exact method shows stable performance

regardless of the parameter settings. However, it is slightly conservative, in particular,

when number of studies K becomes large. In sum, considering its computational cost, we

recommend applying it when the number of studies is small and the event rate is rare.
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APPENDIX A

APPENDIX of CHAPTER 2

A.1. Simulation Results for Upper Bounds pukg0 = {0.1%, 1%}

A.1.1. Coverage Probability and Average Length

59



Coverage AL × 1000

Figure A.1: Coverage and average length when sample sizes in control and case groups are
balanced and pukg0 = 0.1%.
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Coverage AL × 1000

Figure A.2: Coverage and average length when sample sizes in control and case groups are
unbalanced and pukg0 = 0.1%.
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Coverage AL × 1000

Figure A.3: Coverage and average length when sample sizes in control and case groups are
balanced and pukg0 = 1%.

62



Coverage AL × 1000

Figure A.4: Coverage and average length when sample sizes in control and case groups are
unbalanced and pukg0 = 1%.
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A.1.2. Power and Average Absolute Bias

Type I Error & Power AAB × 10000

Figure A.5: Power and AAB when sample sizes in control and case groups are balanced and
pukg0 = 0.1%.
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Type I Error & Power AAB × 10000

Figure A.6: Power and AAB when sample sizes in control and case groups are unbalanced
and pukg0 = 0.1%.
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Type I Error & Power AAB × 10000

Figure A.7: Power and AAB when sample sizes in control and case groups are balanced and
pukg0 = 1%.
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Type I Error & Power AAB × 10000

Figure A.8: Power and AAB when sample sizes in control and case groups are unbalanced
and pukg0 = 1%.

67



A.2. Data Structure of APOC3

APOC3 Carriers Total Frequency
Study Ancestry Case Control Case Control Case Control
Study 1 - WHI EA 6 89 2418 14098 0.0025 0.0063
Study 1 - WHI AA 0 14 126 2263 0 0.0062
Study 2 - FHS EA 0 8 126 3482 0 0.0023
Study 3 - MDC-CDA EA 2 16 341 4523 0.0059 0.0035
Study 4 - ARIC EA 2 16 1794 8539 0.0011 0.0019
Study 4 - ARIC AA 8 19 564 3148 0.0142 0.0060
Study 5 - IPM EA 10 33 703 1729 0.0142 0.0191
Study 5 - IPM HA 2 13 1055 3478 0.0019 0.0037
Study 5 - IPM AA 3 28 556 3240 0.0054 0.0086
Study 6 & 7 - ATVB + VHS EA 9 16 1604 1233 0.0056 0.0130
Study 8 - Ottawa EA 3 19 1024 2267 0.0029 0.0084
Study 9 - PROCARDIS EA 10 16 2436 2179 0.0041 0.0073
Study 10 - HUNT EA 6 7 2897 2906 0.0021 0.0024
Study 11 - GoDARTS CAD EA 0 5 1694 2874 0 0.0017
Study 12 - EPIC CAD EA 2 10 1396 7168 0.0014 0.0014
Study 13 - FIA3 EA 0 8 2657 2120 0 0.0038
Study 14 - German CAD EA 37 41 9718 5810 0.0038 0.0071
Study 15 - WTCCC EA 13 27 2893 5911 0.0045 0.0046
Total 113 385 34,002 76,968 0.00332 0.00500

Table A.2: Data Structure of APOC3 data. EA is European ancestry; AA is African Amer-
ican; HA is Hispanic ancestry. Total frequency is calculated as a simple rate of total event
over total sample size.
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A.3. Data Structure of SCARB1 P376L

P376L Carriers Total Frequency
Study or Consortium CHD Case Control CHD Case Control CHD Case Control
CARDloGRAM Exome Consortium
Study 1 - BioVu 6 10 4587 16546 0.0013 0.0006
Study 2 - BHF 1 0 2833 5912 0.0004 0
Study 3 - GoDARTS-CAD 1 0 1568 2772 0.0006 0
Study 4 - MHI 0 4 2483 8085 0 0.0005
Study 5 - North German 0 1 4464 2886 0 0.0004
Study 6 - Ottawa 0 1 1024 2267 0 0.0004
Study 7 - PAS 1 1 728 808 0.0014 0.0012
Study 8 - Penn 3 0 683 156 0.0044 0
Study 9 - South German 4 0 5255 2921 0.0008 0
Study 10 - WHI-EA 8 29 2860 14929 0.0028 0.0019
CHD Exome+ Consortium
Study 11 - CCHS 1 1 2020 6087 0.0003 0.0001
Study 12 - CIHDS/CGPS 4 3 8079 10367 0.0003 0.0001
Study 13 - EPIC-CVD 4 2 9810 10970 0.0002 0.0001
Study 14 - MORGAM 0 0 2153 2118 0 0
Study 15 - PROSPER 1 0 640 638 0.0008 0
Study 16 - WOSCOPS 0 0 659 687 0 0
Total 34 52 49,846 88,149 0.00068 0.00059

Table A.4: Data Structure of SCARB1 P376L data. Total frequency is calculated as a simple
rate of total event over total sample size.
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APPENDIX B

APPENDIX of CHAPTER 3

B.1. Statistical Power Results in Simulation
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𝜇 = −4.6

𝜇 = −5.3

Figure B.1: Comparison of statistical power from proposed exact method and other six
methods when K = 5.
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𝜇 = −4.6

𝜇 = −5.3

Figure B.2: Comparison of statistical power from proposed exact method and other six
methods when K = 15.
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B.2. Data Structure of NPC1L1

Carriers Total Frequency (%)
Cohort CHD Case Control CHD Case Control CHD Case Control
Study 1 - ARIC AA 1 7 474 2362 0.21 0.3
Study 1 - ARIC EA 3 7 2299 8656 0.13 0.08
Study 2 - ATVB 1 6 1794 1745 0.06 0.34
Study 3 - ESP EOMI 0 1 178 277 0 0.36
Study 4 - OHS 0 1 966 987 0 0.1
Study 5 - PROCARDIS 0 2 2098 2031 0 0.1
Study 6 - JHS 1 5 235 2016 0.43 0.25
Study 7 - Munich-MI 0 1 368 336 0 0.3
Study 8 - REGICOR 0 2 382 401 0 0.5
Study 9 - PROMIS 0 1 844 1107 0 0.09
Study 10 - BioVU 1 11 4587 16556 0.022 0.066
Study 11 - German North 0 1 4464 2886 0 0.03
Study 12 - German South 1 2 5255 2921 0.02 0.07
Study 13 - GoDARTS 0 4 997 2768 0 0.14
Study 14 - Mayo 0 2 1177 1492 0 0.13
Study 15 - WGHS 2 9 976 21641 0.21 0.042
Study 16 - WHI 1 9 2860 14958 0.03 0.06
Total 11 71 29,954 83,140 0.037 0.085

Table B.2: Data Structure of NPC1L1 data. Total frequency is calculated as a simple rate
of total event over total sample size.
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