Charophytes of Pleistocene Age From Delta and Denton Counties, Texas

HAROLD E. SCHLICHTING, JR.*

Collections of Chara oogonia from late Pleistocene alluvium beneath the floodplain of the North Fork of the Sulphur River near Ben Franklin (Delta County), and from the second terrace above Clear Creek (Denton County) were studied. The radiocarbon dates of the Sulphur River deposits are 10,000-11,000 B.P., while those of the Clear Creek deposits are about 28,000 B.P.

A general paleoecological picture of the aquatic environment in which these Pleistocene Chara grew can be drawn from the biological investigations of Kiener (1944), Wood (1950, 1952) and Anderson and Lommasson (1958), and from the geological studies of Weissenborn and Stenzel (1948) and Deevey (1949). The streams or pools where the Chara grew would probably have had slow-moving water with a sand or gravel substratum and a temperature ranging between 20° and 30° C. They would probably have had a methyl orange alkalinity of 21-51, a pH of 7-9 and a salinity of 0-3. The water or substratum would also have contained rather large amounts of silica, calcium carbonate, and aluminum and magnesium salts (Welch, 1935).

The fossil oogonia from Clear Creek are similar to C. baueri Braun, being 633 to 664µ long and having 8 to 9 convolutions with the corona worn away. A second type found in this deposit was 700 to 820µ long and had 11 to 12 convolutions without the corona. It was similar to C. vulgaris f. Kieneri.

The Sulphur River oogonia range in length from 759 to 1076µ, without the corona. There are 11 to 13 convolutions, usually 12. They are similar to C. zeylanica Willd and C. vulgaris f. Kieneri, both extant species described by Wood (1959, 1962).

Thus the two sites differed in their Chara populations, but it would be necessary to obtain larger samples to determine the significance of these differences.

Identification of Chara species solely on the basis of the oogonia

* Dept. of Biology, North Texas State University. The aid given by the following persons is gratefully acknowledged: Mr. Bob Slaughter, Museum of Paleontology, and Dr. Lloyd Shinners, Director, Herbarium, Southern Methodist University; Dr. A. W. Roach and Mr. W. M. Warner, Department of Biology and the Faculty Research Council, North Texas State University.
is necessarily tentative. The structure of the oogonia varies not only within a given species and also on a single plant at different stages of growth. In the absence of the corona and all vegetative parts, specific identifications are usually not possible. Only one of the 60 Pleistocene oogonia retained a portion of the corona.

REFERENCES CITED