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Real-world optimization problems are often sensitive to uncertainties caused by estima-

tion errors, forecasting inaccuracy, and imprecise information. These uncertainties bring

significant challenges for decision-making in many areas. In portfolio optimization, inaccu-

rate estimation of asset return and risk from limited historical data can cause higher risk

exposure and lower expected gains for investors. For long-term energy planning problems,

uncertainties in future demand, fuel prices, and other costs complicate capacity expansion.

Robust optimization provides techniques to address uncertainty by planning against a “rea-

sonable” worst-case situation.

This study of finance aims to propose a tractable robust optimization model for a Mean-

Variance portfolio selection problem. We consider Markowitz’s Mean-Variance Optimization

when stock returns are modeled using Sharpe’s single-index framework, but the model co-

efficients, which are denoted α and β, are not precisely known. This study assumes the

α and β coefficients estimated using least-square estimators are within a prespecified ε of

optimality and build a tractable robust optimization model to address this problem. The

approach combines both predictive analytics in the estimation of α and β and prescriptive

analytics in the optimization of the portfolio. I apply the approach to the Dow Jones and

NASDAQ100 indices and find in numerical experiments that there exists an optimal ε > 0

for which the optimal robust portfolio achieves higher expected return and lower volatility

than the benchmark portfolio obtained when ε = 0.
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The study of renewable energy focuses on using a robust optimization approach for long-

term renewable energy planning under uncertainty. The goal is to determine capacity expan-

sion for infrastructures and electricity generation to meet state-level environmental targets,

including Renewable Portfolio Standards and clean electricity requirements, over a decade-

long planning horizon. The proposed model incorporates realistic factors, including the

construction leading time and potential capacity for renewable energy based on geographic

factors. To address the parameter uncertainty in long-term planning, we develop a tractable

reformulation for the robust optimization problem. Finally, we provide numerical experi-

ments based on real California data and provide decision-makers with various strategies for

capacity investment and generation profiles.

vi



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Sharpe’s Single-Index Model without Parameter Uncertainty . . . . . . . . . . . . . . 11

2.2.1. Classical Markowitz’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2. The Single-Index Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3. Proposed Portfolio Selection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1. Portfolios Structures for Real Market Indices . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1.1. Procedures to Find Portfolios Structures . . . . . . . . . . . . . . . . . . 22

2.4.1.2. Results for Portfolios Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2. Numerical Experiments for Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2.1. Procedures for Simulation Experiments . . . . . . . . . . . . . . . . . . . 37

2.4.2.2. Results for Simulation Experiments. . . . . . . . . . . . . . . . . . . . . . . 38

2.4.2.3. Comparison with Goldfarb and Iyengar’s Model . . . . . . . . . . 45

vii



2.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Renewable Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2. Deterministic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1. Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2. Deterministic Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3. Robust Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.1. Modeling Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.2. Robust Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4. Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.1. Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.2. Results of Deterministic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.3. Parameter Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.4. Results of Robust Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

APPENDIX

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.1. Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2. Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

viii



LIST OF FIGURES

Figure Page

2.1 Scatterplot of ᾱ∗
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Chapter 1

Introduction

1.1. Background

In this dissertation, we study how using robust optimization can lead the decision-maker

to make better decisions in two application areas faced with high uncertainty. The first

application is a portfolio selection problem based on Sharpe’s single-index model. The second

application is a long-term energy planning model integrating targets for renewable energy

sources. In a real-world setting, uncertainty often brings challenges to the optimization of

these problems.

The uncertainty can be caused by estimation errors or inaccurate predictions. An op-

timization problem without uncertainty is called a deterministic problem, which can be

expressed as follows when it is linear:

min cTx (1.1)

s.t. Ax = b

x ≥ 0

where Problem 1.1 is a standard form of linear programming. Parameters c ∈ Rn×1, b ∈

Rm×1, and A ∈ Rm×n are parameters assumed known. x ∈ Rn×1 is the decision variable.

However, in practice, we do not have perfect knowledge of these parameters, especially in

fast-changing environments or for long-term planning.

1



Stochastic optimization is one method proposed to address parameter uncertainty. It

requires knowledge of the probability distributions for the uncertain parameters. See text-

book [1] for the resource. The stochastic optimization problem can be expressed as:

min Eξ∼P[c(ξ)
Tx] (1.2)

s.t. Prξ∼P[A(ξ)x = b(ξ)] ≥ 1− α

x ≥ 0

where ξ is a random vector following a probability distribution P. The objective is to

minimize the expectation of the cost. 1 − α represents a confidence level of a guaranteed

probability of the realizations of constraints. However, the probability distribution P is

difficult to describe in a real-world setting. Challenges can also arise in the evaluation of

expectation EP and probability PrP. In addition, the formulation can be intractable.

Robust optimization is another major framework to address uncertainty. We define the

uncertain parameter ξ as an element of a bounded uncertainty set U . The concept of robust

optimization is to minimize the consequences of the worst case. We refer to [2] for details.

The problem can be represented as follows:

min max
ξ∈U

c(ξ)Tx (1.3)

s.t. A(ξ)x = b(ξ)

x ≥ 0

2



Alternatively, we can reformulate the problem as the following equivalent expression:

min z (1.4)

s.t. cT (ξ)x ≤ z ∀ξ ∈ U

A(ξ)x = b(ξ) ∀ξ ∈ U

x ≥ 0

The optimal solution for robust optimization is against the worst-case value in the uncer-

tainty set. The challenges include the construction of the uncertainty set, the tractability of

reformulation, and over-conservatism.

The third framework is distributionally robust optimization. In this approach, ξ is defined

as a random vector following a probability distribution P, as in stochastic optimization.

However, the knowledge of the probability distribution can be partially known instead of

complete information. The distributionally robust optimization can be formulated as follows:

min
x

max
P∈P

Eξ∼P[c(ξ)
Tx] (1.5)

s.t. Prξ∼P[A(ξ)x = b(ξ)] ≥ 1− α

x ≥ 0

where P is an uncertainty set that contains probability distributions. The concept of the

approach is the combination of stochastic optimization and robust optimization that the

optimal solution minimizes the expected cost against the worst-case distribution with an

acceptable probability. The difficulties include the selection of the uncertainty set P and the

tractability. We refer to [3] for the review.

The modern portfolio theory pioneered by Markowitz [4] aims to minimize the portfolio

risk and ensure an acceptable level of portfolio return or maximize the return while not

3



exceeding a given level of risk. However, the inputs of classical Markowitz’s Mean-Variance

model, such as expected return and covariance matrix, must be estimated from the historical

data. Therefore, estimation errors can impact the results of the portfolio optimization.

In this study, we propose a robust optimization model using Sharpe’s single-index model,

where the model coefficients alpha and beta reflect the stock performance and sensitivity

to the market, respectively. The values of alpha and beta of a stock are estimated from

its historical data. In practice, the alpha and beta estimated by applying Ordinary Least

Squares Estimation can partially represent the characteristics of the stock in the future due

to the uncertainty. However, the actual alpha and beta driving the future random process of

the stock return is close to the estimated values. Therefore, we constructed an uncertainty

set that the estimated values of alpha and beta from historical data are within ε of the true

values. The decision-makers choose the value of ε to reflect their viewpoints towards the

magnitude of the stock can differ from the past.

Renewable energy sources have seen massive growth in recent decades. The decreasing

investment costs, environmental benefits, and government policies are driving this expan-

sion. Many states have announced their Renewable Portfolio Standards mandating minimum

percentages of electricity generated from renewable energy sources. However, effectively

planning the transition to higher renewable penetration faces multiple challenges. Renew-

able energy generation can be highly related to environmental patterns. In addition, the

construction of new renewable power infrastructures requires lead times. Capacity cannot

be instantly available due to years of planning, permitting, and construction preceding the

operation. Furthermore, there are geographic limitations on the maximum potential renew-

able capacity. The uncertainty in the projections of future electricity demand, fuel prices,

operations and maintenance costs, and electricity prices bring challenges to long-term en-

ergy planning. Therefore, this study develops a robust optimization model to determine

state-level energy planning of capacity expansion and electricity generation profiles to meet

environmental targets over multi-period horizons.
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1.2. Main Contributions

The main contributions of this dissertation are the following:

• We investigate the benefits of considering a joint predictive-prescriptive optimization

model in finance instead of separating the prediction and optimization phases. This is

the key innovation of this model.

• We investigate the benefits of using robust optimization for long-term (decade-long)

energy generation planning, which to the best of our knowledge has not been considered

before. Previous works ignored important features such as the lead time needed to build

a plant and bring it online and adopted a myopic approach.

• Further, we consider uncertainty on the resource cost, fixed operations and mainte-

nance costs, variable operations and maintenance costs, electricity price and electricity

demand in our energy planning model. Considering uncertainty on these parameters

simultaneously for a long-term planning horizon with lead times is also novel. Fi-

nally, the portfolio of technologies available involves a very wide range of options due

to numerous resource and cost classes, each representing a possible investment for the

policymaker. Considering such a large number of resource and cost classes in an energy

planning optimization problem is also novel. Hence, the model in this dissertation is

uniquely realistic, fine-grained and complex, representing an important tool for energy

policymakers.

• In each case study, we use extensive real data obtained from publicly available online

sources and provide structural insights into the optimal solution. The robust solution

shows more diversification than the deterministic one. These insights make our model

more likely to become adopted in practice than other available techniques.

1.3. Dissertation Structure
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The dissertation is organized as follows.

In Chapter 2, we propose a robust optimization approach for portfolio optimization using

Sharpe’s single-index model. In Section 2.1, we review the literature on portfolio optimiza-

tion and different approaches addressing the uncertainty in this problem. In Section 2.2.1,

we introduce the classical Markowitz’s model and show how to integrate it with Sharpe’s

single-index model. In addition, we derive the optimal value of Sharpe’s model coefficients

by applying Ordinary Least Squares Estimation. In Section 2.3, we develop a robust opti-

mization problem by considering the uncertainty in Sharpe’s model coefficients and provide

a tractable reformulation. In Section 2.4, we conduct numerical experiments and show the

advantages of our proposed approach that provides decision-makers with trade-offs between

return and risk. In Chapter 3, we develop a comprehensive long-term energy planning model

integrated with goals for U.S. states regarding renewable energy generation. We apply a ro-

bust optimization framework to this problem with uncertainty. In Section 3.2, we propose a

long-term energy planning model to determine capacity expansion and electricity generation

profiles to meet various environmental targets. In Section 3.3, we consider the robust opti-

mization framework of the problem and provide a tractable formulation. In Section 3.4, we

perform numerical experiments using California data. In Chapter 4, we provide concluding

remarks and discuss directions for future work.
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Chapter 2

Finance

2.1. Introduction

Portfolio optimization under uncertainty was first proposed by Markowitz [4]. The core

idea of Markowitz’s Mean-Variance Optimization is to achieve at least a set expected return

while minimizing the portfolio risk measured by its variance, or, to maximize the return of

investment for a given risk level. In Markowitz’s original model, the expected value and

covariance of the stock returns are assumed known. In practice, however, theses parame-

ters may be subject to significant uncertainty, which then can change the optimal portfolio

allocation considerably [5].

Based on Markowitz’s model, the Capital Asset Pricing Model (CAPM) was individually

developed and refined by Treynor [6], Sharpe [7], Lintner [8] and Mossin [9]. The CAPM

posits a relationship between the expected return of a stock and the market premium. In

this study, the proposed model is motivated by Sharpe’s single-index model where the return

of each stock depends on the fluctuations of a single market factor through a simple liner

regression. The coefficients of this linear regression are denoted α for the constant term and

β for the coefficient about the single market factor, or slope.

Sharpe’s single-index model is closely related to CAPM. The difference is that in CAPM,

a stock’s expected abnormal return (denoted α in Sharpe’s single-index model) is zero in the

long run. Black et al. [10] and Fama and MacBeth [11] provided the initial examination of

CAPM, and analyzed the case when the residual returns exhibit cross-sectional correlatoin,

which violates the assumption of ordinary least squares that was found in previous models.
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Black et al. [10] abandoned the risk-free interest rate in CAPM and proposed a two-factor

model called zero-beta CAPM. Fama and MacBeth [11] extended the CAPM into a three-

factor model and showed that the model can explain more than 90% of the portfolio’s

returns, and introduced size and book-to-market factors called SMB (small minus big) and

HML (high minus low), respectively. Subsequently, to improve the explanation of the model,

Carhart [12] proposed a four-factor model, and Fama and French [13] introduced a five-factor

model adding profitability and investment patterns.

Numerous theoretical frameworks have been studied to address uncertain fluctuations in

the parameters of the Mean-Variance Optimization problem. Research in robust optimization

(RO), pioneered by Soyster [14], and furthered in EL Ghaoui and Lebret [15], and Ben-Tal

and Nemirovski [16, 17] has been widely applied in recent decades to finance problems. In

particular, Goldfrab and Iyengar [18] applied RO to portfolio selection. They developed a

factor model for the stock returns, and constructed robust models for Mean-Variance and

Value-at-Risk problems. In addition they proved that the max-min optimization problem for

the worst case could be reformulated as a second-order cone programming problem assum-

ing that the uncertainty in the market parameters is known and bounded. Bertsimas and

Sim [19] proposed a new robust optimization framework based on polyhedral uncertainty

sets which led to probabilistic guarantees under mild assumptions. Extensions of robust

portfolio selection have included for instance derivative guarantees [20] and copulas [21].

In typical predict-then-optimize, machine learning is used to reduce prediction error,

and the prediction is used as input to the optimization problem. A Smart ”Predict, then

Optimize” (SPO) with a convex surrogate loss function (SPO+) for training prediction

models was developed to minimize the decision error (instead of the prediction error) [22].

In their numerical experiments considering classical Markowitz’s portfolio optimization with

50 synthetic assets, they compare SPO+ with Absolute Loss, Least Squares, and Random

Forests methods. SPO+ outperforms Random Forests under both linear and nonlinear
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models; however, the performance of SPO+ is very close to Absolute Loss and Least Squares

for a linear model. The goal of a smart “Predict, then Optimize” approach is to proceed in

two steps where (i) first the decision maker predicts any uncertain input parameters using a

machine learning (ML) model trained on historical data, and (ii) the manager then generates

decisions by solving the corresponding optimization problem using the predicted parameters.

The objective of this study is to achieve both steps simultaneously, taking into account

estimation errors. A key difference between the approach in [22] for portfolio optimization

and this study is that they apply the SPO+ empirical risk minimization problem to achieve

a preferred risk level, whereas my approach assumes that coefficients α and β are estimated

within a prespecified ε of optimality and chooses a minimum expected return, and provides

the decision maker with a trade-off between the expected return and the risk level.

This study assumes that the stock returns obey Sharpe’s single-index model but the co-

efficients α and β of the model are not known precisely. Instead, the parameters estimated

using ordinary least-squares are within ε of the unknown α and β deriving the stock returns

in that model, where distance is measured using the ℓ1-distance. Then, a tractable RO model

is built to find the optimal portfolio while accounting for the fact that the parameters α and

β are not known precisely. ε-optimality was previously investigated by Bertsimas et al. [23],

who proposed an ϵ-arbitrage approach for replicating derivative securities using stochastic

dynamic programming. They found a self-financing dynamic portfolio strategy that approx-

imates the payoff function of the option to within approximation error ϵ, where ϵ is the

root-mean-squared error of an optimal-replication strategy. Their numerical experiments

show that the approximation error ϵ measures market incompleteness, with ϵ equal to zero

in a complete market. Later, [24] and [25] combined ϵ-arbitrage and robust optimization to

solve the option pricing problem, where the uncertainty set is constructed by using historical

stock prices. The advantages of their method are: tractability in pricing high-dimensional

problems, and ability to model various types of options and investors’ risk appetites. Nu-
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merical experiments using empirical data show that prices obtained using their method are

close to the observed prices in the options market. [26] provide an approximate optimality

theorem and approximate duality theorems on approximate solutions (quasi ϵ-solutions) for

a robust convex programming problem under data uncertainty.

Contributions:

The goal of this study is to investigate a joint predictive-prescriptive analytics approach in

Sharpe’s single-index model, both from a standpoint of tractability of the robust reformula-

tion and performance in numerical experiments. Instead of first estimating key parameters

using ordinary least squares and then adding a robust modelization of the uncertain param-

eters centered at their estimated values to optimize the portfolio, this study investigates the

benefits of combining both steps in a single formulation. This is the key novel feature of the

work.

In Section 2.2 we present Sharpe’s single-index model without uncertainty. In Section

2.3 we introduce uncertainty on the parameters of the single-index model, where we assume

that their estimated values are within ε of the true values, which are unknown, and we

develop a tractable reformulation of this predictive-prescriptive analytics model. In Section

2.4 we present numerical results. Those experiments empirically support the existence of

good choices for ε. Further, in those experiments, our approach leads to portfolio allocations

that, for the expected return and volatility of simulated data, outperform robust portfolio

allocations from the literature [18] and thus augment the decision-maker’s menu of portfo-

lios he can choose from based on his attitudes toward risk and return. In section 2.5, we

summarize the chapter and discuss the future study.
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2.2. Sharpe’s Single-Index Model without Parameter Uncertainty

In this section, a review of classical Markowitz’s Mean-Variance Optimization is pre-

sented when stock returns follow Sharpe’s single-index model. The optimal Sharpe’s α and

β coefficients are derived by applying Ordinary Least Squares Estimation (OLS). The α

coefficient is the constant and β is the slope in the simple linear regression explaining the

stock returns as a function of the single index.

2.2.1. Classical Markowitz’s Model

The following notation is used.

N : the number of stocks in the portfolio,

µi: the average return of stock i for all i,

qij: the covariance between stock i and stock j for all i, j,

w: the minimum expected return from the portfolio,

xi: the fraction of the portfolio invested in stock i.

The traditional Markowitz model, in which the decision maker aims to minimize portfolio

variance as a measure of risk while ensuring that the expected return meets or exceeds a
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certain threshold (with no short selling allowed), is defined as follows:

min
x

N∑
i=1

N∑
j=1

qijxixj (Problem 1)

s.t.
N∑
i=1

µixi ≥ w (2.1)

N∑
i=1

xi = 1 (2.2)

xi ≥ 0 ∀ i (2.3)

In the absence of uncertainty, the expected return vector µ and covariance matrix Q are

estimated by fitting a model (such as a time series model) to historical data. However,

these estimates are subject to uncertainty due to the possibility that future stock price

behavior may not be accurately represented by past data. Before modeling this uncertainty,

we describe the Sharpe’s single-factor model below.

2.2.2. The Single-Index Model

This section investigates Markowitz’s problem under the assumption that stock returns

follow Sharpe’s single-index model. According to this model, the return of stock i in time

period t is modeled as:

rit = αi + βirmt + eit (2.4)
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The following notation is used:

rit : return of stock i in time period t,

rmt : return of market index in time period t,

αi : expected return of stock i, which is independent of market performance,

βi : Sharpe’s beta, which measures how sensitive a stock is to market moves,

eit : the residual return of rit, which is assumed to be i.i.d. with mean zero,

σ2
ei : variance of the residual return eit for stock i,

σ2
m : variance of market index.

The average return of stock i from time period 1 to T can be written as:

µ̂i =
1

T

T∑
t=1

rit. (2.5)

The average return on the market index from time period 1 to T can be written as:

µ̂m =
1

T

T∑
t=1

rmt. (2.6)

Therefore, Eq. (2.4) can be reformulated as:

µ̂i = αi + βiµ̂m. (2.7)

The variance of stock i is given by:

σ2
i = β2

i σ
2
m + σ2

ei. (2.8)
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Then, the covariance between stock i and stock j in timer period it is:

Cov(rit, rjt) = E[(rit − µ̂i)(rjt − µ̂j)]

= E[(βi(rmt − µ̂m) + eit)(βj(rmt − µ̂m) + ejt)]

= βiβjE[(rmt − µ̂m)
2]

= βiβjσ
2
m (2.9)

Parameters αi and βi for all i in the simple linear regression can be computed by using

Ordinary Least Squares Estimation (OLS). In OLS, the decision-maker seeks to find the

optimal values of αi and βi that minimize the residual sum of squares

S(αi, βi) =
1

T

T∑
t=1

(αi + βirmt − rit)
2. (2.10)

Lemma 2.1 Given the parameters T, µ̂m, µ̂i, rmt, and rit, the optimal α∗
i and β

∗
i minimizing

the residual sum of squares satisfy the following:

ᾱ∗
i =

µ̂i(
∑T

t=1 r
2
mt)− µ̂m(

∑T
t=1 rmtrit)

(
∑T

t=1 r
2
mt)− T µ̂2

m

, (2.11)

β̄∗
i =

(
∑T

t=1 rmtrit)− T µ̂2
i

(
∑T

t=1 r
2
mt)− T µ̂2

m

. (2.12)

Proof: This follows from setting the gradient of this quadratic, convex function to zero.
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We solve for all i:

∂S

∂αi
= 0 ⇒ 2

T

T∑
t=1

(αi + βirmt − rit) = 0

∂S

∂βi
= 0 ⇒ 2

T

T∑
t=1

rmt(αi + βirmt − rit) = 0

This can be rewritten as, for all i:


αi + βiµ̂m − µ̂i = 0

αiµ̂m + βi
1

T

T∑
t=1

r2mt −
1

T

T∑
t=1

rmtrit = 0

Solving this system of equations yields the model without uncertainty for all i, resulting

ᾱ∗
i and β̄

∗
i .

□

2.3. Proposed Portfolio Selection Model

In practice, there is uncertainty on the model parameters, and we are interested in un-

derstanding how the optimal portfolio allocation will be impacted if the estimated values of

α and β using historical data are not the true values but are within ε of the true values, as

measured by the ℓ1-Norm. This model combines both predictive and prescriptive analytics

by jointly estimating key model parameters and optimizing the portfolio. The uncertainty

set is motivated by the idea that the actual α and β driving the future random process of

stock returns are likely to be close (but not equal) to the estimated values calculated using

historical data, potentially due to unmodeled factors. No assumption is made on the distri-

bution of the error in the model, and ε is a hyperparameter selected by the decision-maker
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to capture their opinion of how much the future random process may differ from the past.

The concept of ε-optimality is formalized in Definition 2.1 below.

Definition 2.1 ε − optimality. We say that a solution is within ε of optimality if the ℓ1-

Norm of the gradient of the objective in the ordinary least squares problem is at most ε.

□

Definition 2.1 implies that α and β satisfy, at ε of optimality:

N∑
i=1

[| 1
T

T∑
t=1

(αi + βirmt − rit)|+| 1
T

T∑
t=1

rmt(αi + βirmt − rit)|] ≤ ε. (2.13)

To linearize Eq. (2.13), let yi = | 1
T

∑T
t=1(αi+ βirmt− rit)| and zi = | 1

T

∑T
t=1 rmt(αi+ βirmt−

rit)|, and then can be reformulated as:

−yi ≤
1

T

T∑
t=1

(αi + βirmt − rit) ≤ yi, ∀i (2.14)

−zi ≤
1

T

T∑
t=1

rmt(αi + βirmt − rit) ≤ zi ∀i (2.15)

Let Sε =

{
(α, β)

∣∣∣∣∣∃ y, z ≥ 0,
N∑
i=1

(yi + zi) ≤ ε, − yi ≤
1

T

T∑
t=1

(αi + βirmt − rit) ≤ yi,

−zi ≤ 1
T

T∑
t=1

[rmt(αi + βirmt − rit)] ≤ zi ∀i

}
.
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Then, Problem 1 with parameter uncertainty can be reformulated as:

min
x

max
α,β∈Sε

σ2
m(

N∑
i=1

xiβi)
2 (Problem 2)

s.t. min
α̃,β̃∈Sε

N∑
i=1

(α̃i + β̃iµ̂m)xi ≥ w (2.16)

N∑
i=1

xi = 1 (2.17)

xi ≥ 0 ∀i (2.18)

The inner problem of maximizing a convex function in the objective of Problem 2 can be

rewritten as two tractable sub-problems. Introduce a new variable v = |
∑

i xiβi|, so that the

objective function can be formulated as:

min
x

max
α,β∈Sε

σ2
mv

2

Theorem 2.2 Sharpe’s single-index model with parameter uncertainty Problem 2 can be

reformulated as the following tractable Robust Problem (RP):

min σ2
mv

2 (RP)

s.t. εp1 +
∑
i

µ̂i(p2i − p3i) +
1

T

∑
i

∑
t

rmtrit(p4i − p5i) ≤ v

p2i − p3i + µ̂m(p4i − p5i) = 0 ∀i

µ̂m(p2i − p3i) +
1

T

∑
t

r2mt(p4i − p5i) = xi ∀i

p1 − p2i − p3i ≥ 0 ∀i

p1 − p4i − p5i ≥ 0 ∀i

p1, p2i, p3i, p4i, p5i ≥ 0 ∀i
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εk1 +
∑
i

µ̂i(k2i − k3i) +
1

T

∑
i

∑
t

rmtrit(k4i − k5i) ≤ v

k2i − k3i + µ̂m(k4i − k5i) = 0 ∀i

µ̂m(k2i − k3i) +
1

T

∑
t

r2mt(k4i − k5i) = −xi ∀i

k1 − k2i − k3i ≥ 0 ∀i

k1 − k4i − k5i ≥ 0 ∀i

k1, k2i, k3i, k4i, k5i ≥ 0 ∀i

εq1 +
∑
i

µ̂i(q2i − q3i) +
1

T

∑
i

∑
t

rmtrit(q4i − q5i) ≥ w

q2i − q3i + µ̂m(q4i − q5i) = xi ∀i

µ̂m(q2i − q3i) +
1

T

∑
t

r2mt(q4i − q5i) = µ̂mxi ∀i

q1 − q2i − q3i ≤ 0 ∀i

q1 − q4i − q5i ≤ 0 ∀i

q1, q2i, q3i, q4i, q5i ≤ 0 ∀i∑
i

xi = 1

xi ≥ 0 ∀i

Note that σ2
m in the objective function can be omitted. Then the objective is equivalent to

min v2.

Proof: This is a direct application of strong duality in linear programming. Problem 2

can be rewritten as:

min
x,v

σ2
mv

2 (Problem 3)

s.t. v ≥ max
α,β∈Sε

N∑
i=1

xiβi
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v ≥ max
α,β∈Sε

−
N∑
i=1

xiβi

min
α̃,β̃∈Sε

N∑
i=1

(α̃i + β̃iµ̂m)xi ≥ w

N∑
i=1

xi = 1

xi ≥ 0 ∀i.

The three inner problems

max
α,β∈Sε

N∑
i=1

xiβi (P1)

max
α,β∈Sε

−
N∑
i=1

xiβi (P2)

min
α̃,β̃∈Sε

N∑
i=1

(α̃i + β̃iµ̂m)xi (P3)

are linear problems over non-empty, bounded feasible sets; thus, Problem 3 can be refor-

mulated in a tractable manner using strong duality in linear programming, as in [19]. To

formulate the dual problem, rewrite Sε as:

∑
i

(yi + zi) ≤ ε

αi + µ̂mβi − yi ≤ µ̂i ∀i

− αi − µ̂mβi − yi ≤ −µ̂i ∀i

µ̂mαi + (
1

T

∑
t

r2mt)βi − zi ≤
1

T

∑
t

rmtrit ∀i

− µ̂mαi − (
1

T

∑
t

r2mt)βi − zi ≤ − 1

T

∑
t

rmtrit ∀i

yi ≥ 0, zi ≥ 0 ∀i.
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The dual problem of the linear problem (P1), (P1), and (P3) are, respectively:

min
p

εp1 +
∑
i

µ̂i(p2i − p3i) +
1

T

∑
i

∑
t

rmtrit(p4i − p5i) (Dual 1)

s.t. p2i − p3i + µ̂m(p4i − p5i) = 0 ∀i

µ̂m(p2i − p3i) +
1

T

∑
t

r2mt(p4i − p5i) = xi ∀i

p1 − p2i − p3i ≥ 0 ∀i

p1 − p4i − p5i ≥ 0 ∀i

p1, p2i, p3i, p4i, p5i ≥ 0 ∀i.

min
k

εk1 +
∑
i

µ̂i(k2i − k3i) +
1

T

∑
i

∑
t

rmtrit(k4i − k5i) (Dual 2)

s.t. k2i − k3i + µ̂m(k4i − k5i) = 0 ∀i

µ̂m(k2i − k3i) +
1

T

∑
t

r2mt(k4i − k5i) = −xi ∀i

k1 − k2i − k3i ≥ 0 ∀i

k1 − k4i − k5i ≥ 0 ∀i

k1, k2i, k3i, k4i, k5i ≥ 0 ∀i

max
q

εq1 +
∑
i

µ̂i(q2i − q3i) +
1

T

∑
i

∑
t

rmtrit(q4i − q5i) (Dual 3)

s.t. q2i − q3i + µ̂m(q4i − q5i) = xi ∀i

µ̂m(q2i − q3i) +
1

T

∑
t

r2mt(q4i − q5i) = µ̂mxi ∀i

q1 − q2i − q3i ≤ 0 ∀i

q1 − q4i − q5i ≤ 0 ∀i

q1, q2i, q3i, q4i, q5i ≤ 0 ∀i
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The dual problems are derived by reinjecting the dual formulations into Problem 3 and

using, as in [19], the fact that only need to find feasible dual variables for the constraints to

be satisfied (the minimizations in Dual 1 and Dual 2 and the maximization in Dual 3 can

be dropped), resulting in the tractable reformulation presented in Theorem 2.2. □

2.4. Numerical Experiments

In this section, the results of numerical experiments after solving the proposed RP are

analyzed. The purpose of these experiments is to examine the potential benefits of address-

ing the Sharpe’s single-index model under parameter uncertainty using a joint predictive-

prescriptive analytics approach. These benefits may include reduced portfolio risk, increased

portfolio return, and greater insights into portfolio allocation. Specifically, the risk and re-

turn profile of the robust optimal allocation is compared to the benchmark (ε = 0). Two

types of numerical experiments are conducted.

The first experiment compares the structure of portfolios generated by solving the RP

using real-world market indices for different values of w and ε, with w and ε varied to

see how the portfolio structure changes. The second numerical experiment investigates the

performance of optimal robust portfolio on simulated data when the true α and β are random

and computed by adding a random term to the values estimated using real-world market

indices. The portfolio return, calculated as
∑N

i=1 rixi, and the volatility of simulated data

under different values of ε are compared to the benchmark (ε = 0) for given levels of w. All

the numerical experiments are conducted using the NEOS Server for CPLEX/AMPL and R

version 4.0.1 on the platform:

Model Apple Macbook Pro 2018

Processor Intel 6-core CPU 2.2 GHz

RAM 32 GB
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2.4.1. Portfolios Structures for Real Market Indices

This section compares the portfolios structures of our model given different scenarios

of w and ε to the benchmark (ε = 0) using real market indices, namely the Dow Jones

Industrial Average (DJIA) and NASDAQ 100 Index (NDX). Dow Jones quantifies the stock

performance of thirty large representative companies in the United States, and NASDAQ

100 consists of one hundred of the largest non-financial companies.

The ten-year monthly DJIA and NDX data from March 1, 2009 to February 1, 2019

is considered. To maintain the continuity of the price-weighted DJIA, an index divisor is

applied whenever the composition of the index changes. During this period, several compa-

nies were added, replaced, spun off, or merged into the DJIA and NDX. The latest updated

thirty components of the DJIA as of April 2020 were selected for the data set, but the Dow

Chemical Company (DOW Inc.) was excluded because it was not included in the index

between 2009 and 2019. As a result, the data set using the DJIA includes 29 stocks and 119

time periods. The same procedure was used to select stocks from the NDX from March 1,

2009 to February 1, 2019, resulting in a data set with 86 components (n = 86) available for

the NDX in this time period (see Table 2.1).

A fixed Dow divisor was used on February 1, 2019 to compute the modified DJIA cor-

responding to the twenty-nine components by dividing the DJIA adjusted closing price by

the summation of the twenty-nine components’ adjusted closing prices. The original NAS-

DAQ 100 is a capitalization-weighted index, and the same method was used to calculate a

price-weighted index corresponding to the selected 86 components from the NASDAQ 100.

2.4.1.1. Procedures to Find Portfolios Structures

To solve the robust model RP given different values of w and ε, the following steps are

applied:
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i. Compute the returns on stocks rit, returns on the market index rmt, and variance of

the market index σ2.

ii. Using Eqs. (2.5) and (2.6) to calculate the average return on stock µ̂i and the average

return on the market index µ̂m, respectively.

iii. Choose values of the expected return w from the portfolio, and values of ε:

a. Consider scenarios of w = 0, w = 0.01, w = 0.015 and w = 0.02.

b. Under each scenario of w, vary ε from 0 to 0.1 with stepsize 0.0001.

iv. Solve the robust model RP for the combinations of w and ε.

2.4.1.2. Results for Portfolios Structures

Tables 2.2 and 2.4 document the portfolios structures (i.e., the xi values for all i) for DJI

29, given w = 0 and w = 0.01, and w = 0.02, respectively. Since RP generates the exact

same portfolio structure for w = 0 and w = 0.01, those outputs are summarized in Table

2.2. Because of page length limitations, not all ε are included, and results are presented

where the number of stocks invested in changes. For instance, for DJI 29 (w = 0 and 0.01),

varying ε from 0.0001 to 0.0003 (respectively, from 0.0004 to 0.0008) leads to the same

portfolio allocation consisting of four (respectively, five) stocks, so the results for ε = 0.001

and 0.0008 in Table 2.2 are shown. This is why the values of ε shown change for DJI 29 and

NDX 86.

Table 2.5: Portfolios Allocations for NDX 86 (w = 0)

i

ε
0 (Benchmark) 0.0001 0.0006 0.002 0.005 0.01 0.013 0.03 0.05 0.06 0.1

AAPL 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

ADBE 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

ADI 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128
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Continued from previous page

i

ε
0 (Benchmark) 0.0001 0.0006 0.002 0.005 0.01 0.013 0.03 0.05 0.06 0.1

ADP 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

ALXN 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

AMAT 0 0 0 0 0 0 0 0 0 0 0.0128

AMGN 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

AMZN 0 0 0 0 0 0 0 0 0 0.0149 0.0128

ANSS 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

ASML 0 0 0 0 0 0 0 0 0 0.0149 0.0128

ATVI 0 0 0 0 0 0 0.0345 0.0185 0.0161 0.0149 0.0128

BIIB 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

BMRN 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

CDNS 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

CERN 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

CHKP 0 0 0 0 0 0 0.0345 0.0185 0.0161 0.0149 0.0128

CMCSA 0 0 0 0 0 0 0.0345 0.0185 0.0161 0.0149 0.0128

COST 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

CPRT 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

CSCO 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

CSGP 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

CSX 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

CTAS 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

CTSH 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

CTXS 0 0 0 0 0 0 0 0 0 0 0.0128

DLTR 0 0 0 0.2500 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

DXCM 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

EA 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

EBAY 0 0 0 0 0 0 0 0 0 0.0149 0.0128

EXC 1 0.5 0.3333 0.2500 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

EXPE 0 0 0 0 0 0 0 0 0 0 0.0128

FAST 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

FISV 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

GILD 0 0 0 0 0 0 0.0345 0.0185 0.0161 0.0149 0.0128

GOOGL 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

IDXX 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

ILMN 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

INTC 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

INTU 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

ISRG 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

KLAC 0 0 0 0 0 0 0 0 0 0 0.0128

LBTYA 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

LBTYK 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128
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i

ε
0 (Benchmark) 0.0001 0.0006 0.002 0.005 0.01 0.013 0.03 0.05 0.06 0.1

LRCX 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

LULU 0 0 0 0 0 0 0 0 0 0.0149 0.0128

MAR 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

MCHP 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

MDLZ 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

MNST 0 0 0 0 0 0 0.0345 0.0185 0.0161 0.0149 0.0128

MSFT 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

MU 0 0 0 0 0 0 0 0 0 0 0.0128

MXIM 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

NFLX 0 0 0 0 0 0 0 0 0 0 0.0128

NTAP 0 0 0 0 0 0 0 0 0 0 0.0128

NTES 0 0 0 0 0 0 0.0345 0.0185 0.0161 0.0149 0.0128

NVDA 0 0 0 0 0 0 0 0 0 0 0.0128

ORLY 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

PAYX 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

PCAR 0 0 0 0 0 0 0 0 0 0.0149 0.0128

PEP 0 0 0.3333 0.2500 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

QCOM 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

REGN 0 0 0 0 0 0 0 0 0 0 0.0128

ROST 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

SBUX 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

SIRI 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

SNPS 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

SWKS 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

TCOM 0 0 0 0 0 0 0 0 0 0 0.0128

TMUS 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

TTWO 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

TXN 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

ULTA 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

VRSN 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

VRTX 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

WBA 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

WDC 0 0 0 0 0 0 0 0 0 0 0.0128

XEL 0 0.5 0.3333 0.2500 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

XLNX 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128
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Table 2.2: Portfolios Allocations for DJI 29 (w = 0 and w = 0.01)

i

ε
0 (Benchmark) 0.0001 0.0008 0.0009 0.002 0.007 0.011 0.023 0.029 ... 0.1

AAPL 0 0 0 0 0 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

AXP 0 0 0 0 0 0 0 0 0.0345 0.0345 0.0345

BA 0 0 0 0 0 0 0 0.0385 0.0345 0.0345 0.0345

CAT 0 0 0 0 0 0 0 0 0.0345 0.0345 0.0345

CSCO 0 0 0 0 0 0 0 0.0385 0.0345 0.0345 0.0345

CVX 0 0 0 0 0 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

DIS 0 0 0 0 0 0 0.0455 0.0385 0.0345 0.0345 0.0345

GS 0 0 0 0 0 0 0 0 0.0345 0.0345 0.0345

HD 0 0 0 0 0 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

IBM 0 0 0 0 0 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

INTC 0 0 0 0 0 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

JNJ 0 0 0 0 0.125 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

JPM 0 0 0 0 0 0 0 0.0385 0.0345 0.0345 0.0345

KO 0 0 0 0.1667 0.125 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

MCD 1 0.25 0.2 0.1667 0.125 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

MMM 0 0 0 0 0 0 0.0455 0.0385 0.0345 0.0345 0.0345

MRK 0 0 0.2 0.1667 0.125 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

MSFT 0 0 0 0 0 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

NKE 0 0 0 0 0 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

PFE 0 0 0 0 0.125 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

PG 0 0.25 0.2 0.1667 0.125 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

RTX 0 0 0 0 0 0 0.0455 0.0385 0.0345 0.0345 0.0345

TRV 0 0 0 0 0 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

UNH 0 0 0 0 0 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

V 0 0 0 0 0 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

VZ 0 0.25 0.2 0.1667 0.125 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

WBA 0 0 0 0 0 0 0 0.0385 0.0345 0.0345 0.0345

WMT 0 0.25 0.2 0.1667 0.125 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345

XOM 0 0 0 0 0 0.0526 0.0455 0.0385 0.0345 0.0345 0.0345
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Table 2.3: Portfolios Allocations for DJI 29 (w = 0.015)

i

ε
0 (Benchmark) 0.0001 0.0005 0.0006 0.0008 0.001 0.005 0.014 0.03 0.07 0.08 (infeasible)

AAPL 0 0 0 0 0 0 0.0678 0.0422 0.0379 0.0655 0.0834

AXP 0 0 0 0 0 0 0 0.0422 0.0379 0.0655 0.0829

BA 0 0 0 0 0 0 0 0.0422 0.0379 0.0655 0.0845

CAT 0 0 0 0 0 0 0 0 0.0379 0.0655 0.0846

CSCO 0 0 0 0 0 0 0 0 0.0379 0.0174 0.0047

CVX 0 0 0 0 0 0 0 0.0422 0.0379 0 0.0006

DIS 0 0 0 0 0 0 0 0.0422 0.0379 0.0655 0.0805

GS 0 0 0 0 0 0 0 0 0 0 0.0006

HD 0 0 0 0 0 0 0.0678 0.0422 0.0379 0.0655 0.0833

IBM 0 0 0 0 0 0 0 0.0299 0.0137 0 0.0005

INTC 0 0 0 0 0 0 0.0678 0.0422 0.0379 0.0655 0.0572

JNJ 0 0 0 0 0 0 0.0678 0.0422 0.0379 0 0.0014

JPM 0 0 0 0 0 0 0 0 0.0379 0.0655 0.0794

KO 0 0 0 0 0 0 0.0678 0.0422 0.0379 0 0.0010

MCD 0.8568 0.3813 0.2320 0.1833 0.1496 0.1368 0.0678 0.0422 0.0379 0 0.0032

MMM 0 0 0 0 0 0 0 0.0422 0.0379 0.0655 0.0797

MRK 0 0 0.2320 0.1833 0.1496 0.1368 0.0678 0.0422 0.0379 0.0655 0.0040

MSFT 0 0 0 0 0 0 0 0.0422 0.0379 0.0655 0.0848

NKE 0 0 0 0 0 0.0424 0.0678 0.0422 0.0379 0.0655 0.0830

PFE 0 0 0 0 0 0 0.0678 0.0422 0.0379 0.0655 0.0043

PG 0 0 0.0720 0.1833 0.1496 0.1368 0.0678 0.0422 0.0379 0 0.0007

RTX 0 0 0 0 0 0 0 0.0422 0.0379 0 0.0020

TRV 0 0 0 0 0 0 0 0.0422 0.0379 0 0.0029

UNH 0.1432 0.2373 0.2320 0.1833 0.1496 0.1368 0.0678 0.0422 0.0379 0.0655 0.0829

V 0 0 0 0.0833 0.1496 0.1368 0.0678 0.0422 0.0379 0.0655 0.0829

VZ 0 0.3813 0.2320 0.1833 0.1496 0.1368 0.0678 0.0422 0.0379 0 0.0014

WBA 0 0 0 0 0 0 0 0 0.0379 0 0.0025

WMT 0 0 0 0 0.1027 0.1368 0.0678 0.0422 0.0379 0 0.0005

XOM 0 0 0 0 0 0 0.0508 0.0422 0 0 0.0009
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Table 2.4: Portfolios Allocations for DJI 29 (w = 0.02)

i

ε
0 (Benchmark) 0.0001 0.0004 0.0005 0.0009 0.001 0.008 0.014 0.02 0.023 0.024 (infeasible)

AAPL 0 0 0 0 0.1678 0.1682 0.0905 0.0907 0.0988 0.1235 0.2009

AXP 0 0 0 0 0 0 0.0905 0.0907 0.0988 0.1235 0.1874

BA 0 0 0 0 0 0 0.0905 0.0907 0.0988 0.1235 0.2088

CAT 0 0 0 0 0 0 0 0.0907 0.0988 0.1235 0.1076

CSCO 0 0 0 0 0 0 0 0 0 0 0.0042

CVX 0 0 0 0 0 0 0 0 0 0 0.0098

DIS 0 0 0 0 0 0 0.0905 0.0907 0.0988 0 0.0053

GS 0 0 0 0 0 0 0 0 0 0 0.0099

HD 0 0 0 0 0 0 0.0905 0.0907 0.0988 0.1235 0.1591

IBM 0 0 0 0 0 0 0 0 0 0 0.0012

INTC 0 0 0 0 0 0 0 0 0.0120 0 0.0282

JNJ 0 0 0 0 0 0 0 0 0 0 0.0115

JPM 0 0 0 0 0 0 0 0 0 0 0.0003

KO 0 0 0 0 0 0 0 0 0 0 0.0117

MCD 0.3489 0.3422 0.3276 0.2329 0.1678 0.1682 0.0905 0.0907 0 0 0.0045

MMM 0 0 0 0 0 0 0 0 0 0 0.0276

MRK 0 0 0 0.0682 0.1611 0.1588 0.0905 0.0026 0 0 0.0038

MSFT 0 0 0 0 0 0 0.0905 0.0907 0.0988 0.0121 0.0801

NKE 0 0 0.0173 0.2329 0.1678 0.1682 0.0905 0.0907 0.0988 0.1235 0.1746

PFE 0 0 0 0 0 0 0.0044 0 0 0 0.0039

PG 0 0 0 0 0 0 0 0 0 0 0.0105

RTX 0 0 0 0 0 0 0 0 0 0 0.0088

TRV 0 0 0 0 0 0 0 0 0 0 0.0053

UNH 0.6511 0.6578 0.3276 0.2329 0.1678 0.1682 0.0905 0.0907 0.0988 0.1235 0.1924

V 0 0 0.3276 0.2329 0.1678 0.1682 0.0905 0.0907 0.0988 0.1235 0.1908

VZ 0 0 0 0 0 0 0 0 0 0 0.0116

WBA 0 0 0 0 0 0 0 0 0 0 0.0063

WMT 0 0 0 0 0 0 0 0 0 0 0.0065

XOM 0 0 0 0 0 0 0 0 0 0 0.0084
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Table 2.6: Portfolios Allocations for NDX 86 (w = 0.02)

i

ε
0 (Benchmark) 0.0003 0.0007 0.001 0.004 0.01 0.018 0.03 0.05 0.1

AAPL 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128

ADBE 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

ADI 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

ADP 0 0 0 0 0 0.0392 0.0256 0.0183 0.0154 0.0128

ALXN 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

AMAT 0 0 0 0 0 0 0 0 0 0.0128

AMGN 0 0 0 0 0 0.0392 0.0256 0.0183 0.0154 0.0128

AMZN 0 0 0 0 0 0 0 0 0.0154 0.0128

ANSS 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128

ASML 0 0 0 0 0 0 0 0 0 0.0128

ATVI 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128

BIIB 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

BMRN 0 0 0 0 0 0 0 0 0.0154 0.0128

CDNS 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

CERN 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128

CHKP 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128

CMCSA 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128

COST 0 0 0 0 0.0891 0.0392 0.0256 0.0183 0.0154 0.0128

CPRT 0 0 0 0 0.0891 0.0392 0.0256 0.0183 0.0154 0.0128

CSCO 0 0 0 0 0 0 0 0 0.0154 0.0128

CSGP 0 0 0 0 0 0 0 0 0.0154 0.0128

CSX 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

CTAS 0 0 0 0 0 0.0392 0.0256 0.0183 0.0154 0.0128

CTSH 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

CTXS 0 0 0 0 0 0 0 0 0 0.0128

DLTR 0 0.4000 0.2787 0.1702 0.0891 0.0392 0.0256 0.0183 0.0154 0.0128

DXCM 0.2709 0.2001 0.2787 0.1702 0.0891 0.0392 0.0256 0.0183 0.0154 0.0128

EA 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

EBAY 0 0 0 0 0 0 0 0 0 0.0128

EXC 0 0 0.1639 0.1492 0.0891 0.0392 0.0256 0.0183 0.0154 0.0128

EXPE 0 0 0 0 0 0 0 0 0 0.0128

FAST 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128

FISV 0 0 0 0 0 0.0392 0.0256 0.0183 0.0154 0.0128

GILD 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128

GOOGL 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

IDXX 0 0 0 0 0 0.0392 0.0256 0.0183 0.0154 0.0128

ILMN 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128

INCY 0 0 0 0 0 0 0 0 0 0.0037

INTC 0 0 0 0 0 0.0392 0.0256 0.0183 0.0154 0.0128
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Continued from previous page

i

ε
0 (Benchmark) 0.0003 0.0007 0.001 0.004 0.01 0.018 0.03 0.05 0.1

INTU 0 0 0 0 0.0891 0.0392 0.0256 0.0183 0.0154 0.0128

ISRG 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128

KLAC 0 0 0 0 0 0 0 0 0 0.0128

LBTYA 0 0 0 0 0 0 0 0 0.0154 0.0128

LBTYK 0 0 0 0 0 0 0 0 0.0154 0.0128

LRCX 0 0 0 0 0 0 0 0 0.0154 0.0128

LULU 0 0 0 0 0 0 0 0 0.0154 0.0128

MAR 0 0 0 0 0 0 0 0 0.0154 0.0128

MCHP 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

MDLZ 0 0 0 0 0 0.0392 0.0256 0.0183 0.0154 0.0128

MNST 0 0 0 0 0.0891 0.0392 0.0256 0.0183 0.0154 0.0128

MSFT 0 0 0 0 0 0.0392 0.0256 0.0183 0.0154 0.0128

MU 0 0 0 0 0 0 0 0 0 0.0128

MXIM 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

NFLX 0 0 0 0 0 0.0209 0.0021 0.0183 0.0122 0.0128

NTAP 0 0 0 0 0 0 0 0 0 0.0128

NTES 0 0 0 0 0 0.0392 0.0256 0.0183 0.0154 0.0128

NVDA 0 0 0 0 0 0 0 0 0 0.0128

ORLY 0 0 0 0.1701 0.0891 0.0392 0.0256 0.0183 0.0154 0.0128

PAYX 0 0 0 0 0 0.0392 0.0256 0.0183 0.0154 0.0128

PCAR 0 0 0 0 0 0 0 0 0 0.0128

PEP 0 0 0 0 0.0891 0.0392 0.0256 0.0183 0.0154 0.0128

QCOM 0 0 0 0 0 0 0 0.0144 0.0154 0.0128

REGN 0 0 0 0 0 0 0 0 0 0.0128

ROST 0 0 0 0.1702 0.0891 0.0392 0.0256 0.0183 0.0154 0.0128

SBUX 0 0 0 0 0 0.0392 0.0256 0.0183 0.0154 0.0128

SIRI 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128

SNPS 0 0 0 0 0 0.0392 0.0256 0.0183 0.0154 0.0128

SWKS 0 0 0 0 0 0 0 0 0.0154 0.0128

TCOM 0 0 0 0 0 0 0 0 0 0.0128

TMUS 0 0 0 0 0 0.0392 0.0256 0.0183 0.0154 0.0128

TTWO 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128

TXN 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

ULTA 0 0 0 0 0.0203 0.0392 0.0256 0.0183 0.0154 0.0128

VRSN 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128

VRTX 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

WBA 0 0 0 0 0 0 0 0.0183 0.0154 0.0128

WDC 0 0 0 0 0 0 0 0 0 0.0128

XEL 0.7291 0.4000 0.2787 0.1702 0.0891 0.0392 0.0256 0.0183 0.0154 0.0128

XLNX 0 0 0 0 0 0 0.0256 0.0183 0.0154 0.0128
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Observations:

i. For the benchmarks (ε = 0) and w = 0 for DJI 29 and NDX 86 respectively, all shares

are allocated to the one single stock that has the lowest β̄∗. Figure 2.1 and 2.2 provides

the scatterplot of ᾱ∗
i and β̄

∗
i for DJI 29 and NDX 86, respectivley. Note that ᾱ∗

i and β̄
∗
i

are computed by using Eqs. (2.11) and (2.12), which are derived from Ordinary Least

Squares estimation.

When compare the allocations the scatterplot in Figure 2.1 and 2.2, note that the

order in which the computer selects stocks when it increases diversification is similar

to a waterfilling procedure where we start with the stock with the lowest β̄∗ and then

select stocks with the next lowest β̄∗ up until either full diversification is achieved or

we reach a critical value of β̄∗, before the number of stocks we invest in decreases.

ii. For a given value of w, when ε gradually increases, the diversification of the optimal

allocation increases for DJI 29 and NDX 86.

a. w = 0 :

The portfolio allocation is equally split into the stocks the manager invests in

(those stocks i where xi > 0 at optimality). In DJI 29 (see Table 2), when ε = 0,

the entire portfolio is put into MCD, which has the lowest β̄∗. MCD is shown

in the red box in Figure 2.1. When ε increases, the allocation is equally split

among stocks with small β̄∗. The number of stocks invested in increases as ε

increases. The same observation holds for the NDX 86 data set. (When ε = 0, all

the allocation is put into EXC, which has the lowest β̄∗. EXC is shown in Figure

2.2.)

b. w > 0 :

For problems that have a nonempty feasible set for the selected w, there are values
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Figure 2.1: Scatterplot of ᾱ∗
i and β̄

∗
i for DJI 29

of w for which shares of allocated stocks are not all evenly divided; however, when

it happens, all stocks invested in except one receive the same allocation (as fraction

of the overall portfolio) and the last stock invested in receives a smaller allocation.

c. ε vs number of allocated stocks:

Figures 2.3 and 2.4 show the scatterplots of ε vs number of allocated stocks for

DJI 29 and NDX 86 respectivley, where the dot is the number of allocated stocks

for a given ε. Except for DJI 29 at w = 0.015 and DJI 29 at w = 0.02, the number

of stocks invested in increases when ε increases.

The graphs for DJI 29 at w = 0.015 and DJI 29 at w = 0.02 are similar to those

obtained in the classical Bertsimas-Sim [19] robust optimization frameworks where

the number of stocks invested in increases as the budget of uncertainty increases

until a breakpoint value for the budget of uncertainty is reached, and then de-

creases as the budget of uncertainty increases past the breakpoint. This happens
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Figure 2.2: Scatterplots of ᾱ∗
i and β̄

∗
i for NDX 86

when an increasingly pessimistic outlook from the manager leads to invest in the

“safer” stocks instead of diversifying. Note that the robust problems correspond-

ing to DJI 29 for w = 0.015 and DJI 29 for w = 0.02 are infeasible when ε > 0.07

and ε > 0.023, respectively.

2.4.2. Numerical Experiments for Simulation

This section tests the performance of portfolio in a real-life environment where simulating

rmt, and rit for all i and t by introducing randomness on the actual ᾱ∗
i , β̄

∗
i and the residual

returns eit with T = 10, 000 scenarios for both DJI 29 and NDX 86. Consider simulation

experiments for w = 0, w = 0.01, w = 0.015 and w = 0.02 varying values of ε, and only

ε′s that substantially change the portfolios structures x′is are recorded. The expected return∑N
i ritxi ∀ t = 1 . . . T and volatility between the benchmark (ε = 0) and the portfolios
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Figure 2.3: ε vs. Numbers of Allocated Stocks for DJI 29
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Figure 2.4: ε vs. Numbers of Allocated Stocks for NDX 86
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obtained for different ε are compared, for a given level of w. The robust solutions x′is for

each w are computed by solving the proposed model RP.

2.4.2.1. Procedures for Simulation Experiments

The following steps are followed to perform the DJI 29 and NDX 86 simulation experi-

ments:

Step 1. Simulating the return on the market index r̃mt: We compute the average return on

the market index µ̂m and standard deviation σm from the historical monthly data sets

(March 1st, 2009 - February 1st, 2019). We generate T = 10, 000 data points from

a Normal distribution with mean µ̂m and standard deviation σm to obtain simulated

return on the index denoted by r̃mt.

Step 2. Simulating the return on stock r̃it: In Sharpe’s single-index model, the return of stock

i in time period t is modeled as rit = αi + βirmt + eit (2). We simulate α̃i, β̃i and

residual returns ẽit.

i. Simulate α̃i and β̃i:

We add a random term drawn from a standard normal distribution with mean 0

and standard deviation 1 scaled by±20% of the estimated ᾱi and β̄i to the nominal

parameters in order to simulate the actual, unknown α̃i and β̃i, respectively.

ii. Simulate residual returns ẽit:

We simulate 10, 000 residual returns denoted by ẽit that are Normally distributed

with mean µ̂ei =
1
T

∑T
t=1 eit, and standard deviation σei ∀i ∈ N .

iii. Generate simulated returns r̃it:

r̃it = α̃i + β̃ir̃mt + ẽit ∀i ∈ N, ∀t ∈ T .
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Step 3. Compute
∑N

i r̃itxi ∀ t = 1 . . . T , and draw density plots and boxplots for each com-

bination of w and ε to compare the performance of our robust solutions with the

performance of benchmarks.

2.4.2.2. Results for Simulation Experiments

In Figures 2.5 and 2.7 (DJI 29), density plots and boxplots are included to compare the

performance of the robust model to that of the benchmark in 10,000 simulated instances.

For both simulated DJI 29 and NDX 86, the red curves in density plots and boxplots in

the first columns represent the benchmarks. In addition, the solid dots inside the boxplots

represent the mean returns of portfolios 1
T

∑T
t

∑N
i r̃itxi ∀w, ε. The tables after the figures

show the mean, median and standard deviation of the portfolio returns
∑N

i r̃itxi for t =

1 . . . T . To make the data in the tables easier to read, lower and higher values are highlighted

in gradient lighter and darker green, respectively.

In the simulated DJI 29, for each value of w, the mean returns and the medians (black

solid lines in boxplots) with ε > 0 are slightly higher than the benchmark (ε = 0), or

very close to the benchmark. Furthermore, there is an optimal ε > 0 that achieves a lower

volatility. For w = 0 and w = 0.01 (see Figure 2.5), when ε is between 0.0001 and 0.002, the

interquartile ranges (IQR) of the boxplots are much narrower. The same observation holds

for w = 0.015 (see appendix) and w = 0.02 (see Figure 2.7) when ε is between 0.0005 and

0.001; however, when ε is out of this range, the advantage provided by the lower volatility

of our robust solutions over the benchmark shrinks.

Decision makers prefer ε that lead to portfolios with higher mean and median, and a

lower standard deviation. There may exist multiple such ε. First, find candidate ε’s that

outperform the benchmark in terms of both higher mean and median, and lower standard

deviation, and then remove from the candidate set values of ε that are dominated by other
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candidate values of ε (i.e., they lead to portfolio returns that have lower mean and median,

and higher standard deviation.) Decision makers can then choose an ε from the remaining

candidates based on their risk preferences.

For DJI 29 (w = 0 and 0.01) in Table 2.7, all ε > 0 outperform the benchmark; however,

the portfolio for ε = 0.0001 has lower mean and median, and a higher standard deviation

compared to ε = 0.0008, 0.009 and 0.002. Thus, ε = 0.0001 is removed from the candidate

set. Similarly, ε = 0.0008 and 0.0009 are outperformed by ε = 0.002. Moreover, ε = 0.002 is

not dominated by the remaining ε since it has lower standard deviation. Therefore, ε = 0.002,

0.007, 0.011, 0.023 and 0.029 are in the candidate set for DJI 29 (w = 0 and 0.01). For DJI

29 (w = 0.02) in Table 2.9, ε = 0.0005, 0.0009, 0.001, 0.014 and 0.02 are in the candidate

set.

Table 2.7: Simulated DJI 29 (w = 0 and 0.01)

ε 0 0.0001 0.0008 0.0009 0.002 0.007 0.011 0.023 0.029

Mean 0.011 0.011 0.012 0.012 0.013 0.015 0.014 0.015 0.015

Median 0.011 0.011 0.012 0.012 0.013 0.015 0.015 0.015 0.016

S.D. 0.039 0.027 0.026 0.025 0.025 0.029 0.030 0.032 0.036

Table 2.8: Simulated DJI 29 (w = 0.015)

ε 0 0.0001 0.0005 0.0006 0.0008 0.001 0.005 0.014 0.03 0.07

Mean 0.013 0.015 0.015 0.016 0.016 0.016 0.015 0.015 0.016 0.020

Median 0.013 0.015 0.015 0.016 0.016 0.016 0.015 0.016 0.016 0.020

S.D 0.037 0.033 0.030 0.028 0.028 0.027 0.027 0.032 0.036 0.041

Table 2.9: Simulated DJI 29 (w = 0.02)

ε 0 0.0001 0.0004 0.0005 0.0009 0.001 0.008 0.014 0.02 0.023

Mean 0.020 0.020 0.020 0.020 0.019 0.019 0.020 0.021 0.022 0.022

Median 0.019 0.019 0.020 0.020 0.019 0.019 0.020 0.021 0.022 0.022

S.D 0.044 0.044 0.037 0.034 0.033 0.033 0.038 0.042 0.044 0.045

In simulated NDX 86, the advantage of robust solutions over the benchmark is magnified.
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Figure 2.5: Performance on Simulated DJI 29 (w = 0 and 0.01)

Table 2.10: Simulated NDX 86 (w = 0)

ε 0 0.0001 0.0006 0.002 0.005 0.01 0.013 0.03 0.05 0.06 0.1

Mean 0.007 0.009 0.010 0.012 0.016 0.018 0.019 0.019 0.020 0.020 0.021

Median 0.007 0.009 0.010 0.012 0.016 0.018 0.019 0.020 0.020 0.020 0.021

S.D 0.053 0.035 0.027 0.026 0.025 0.028 0.032 0.034 0.036 0.037 0.041
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Figure 2.6: Performance on Simulated DJI 29 (w = 0.015)

Table 2.11: Simulated NDX 86 (w = 0.02)

ε 0 0.0003 0.0007 0.001 0.004 0.01 0.018 0.03 0.05 0.1

Mean 0.020 0.021 0.022 0.021 0.021 0.021 0.020 0.020 0.020 0.021

Median 0.020 0.021 0.022 0.021 0.021 0.021 0.020 0.020 0.020 0.021

S.D 0.048 0.042 0.044 0.034 0.032 0.031 0.033 0.035 0.037 0.041
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Figure 2.7: Performance on Simulated DJI 29 (w = 0.02)
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Figure 2.8: Performance on Simulated NDX 86 (w = 0)
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Figure 2.9: Performance on Simulated NDX 86 (w = 0.02)

44



2.4.2.3. Comparison with Goldfarb and Iyengar’s Model

In this section we compare the performance of our robust portfolio with the robust

minimum variance problem in [18]. Their model includes a prespecified confidence threshold

ω. In their words, “If ω is chosen very high, the uncertainty sets will be very large. On the

other hand, if ω is chosen too low, the portfolio choice will not be robust enough. The typical

choices of ω lie in the range 0.95− 0.99.” ( [18] p. 18). ω = 0.95 is set in this comparison.

In Goldfarb and Iyengar’s model, the problem is infeasible when w = 0.015 and w = 0.02.

Therefore, the numerical study below focuses on w = 0 and w = 0.01.

For DJI 29, the allocations for w = 0 and w = 0.01 lead to the same boxplots, shown

in Figure 2.10. We observe that our portfolios offer lower volatility except for ε = 0 and

ε = 0.029, and the portfolios for ε = 0 and ε = 0.029 exhibit higher upside risk. For

ε = 0.007, 0.011 and 0.023, the proposed RP outperforms Goldfarb and Iyengar’s model

(w = 0 and 0.01) with respect to the mean, median and standard deviation of the portfolio

return.

Table 2.12: Comparison with Goldfarb and Iyengar’s model for DJI 29 (w = 0 and 0.01)

ε 0 0.0001 0.0008 0.0009 0.002 0.007 0.011 0.023 0.029 Goldfarb(w = 0) Goldfarb (w = 0.01)

Mean 0.011 0.011 0.012 0.012 0.012 0.014 0.014 0.015 0.015 0.010 0.014

Median 0.011 0.011 0.012 0.012 0.013 0.015 0.015 0.015 0.016 0.010 0.015

S.D 0.039 0.027 0.026 0.025 0.025 0.028 0.030 0.032 0.036 0.033 0.034

Table 2.13: Comparison with Goldfarb and Iyengar’s model for NDX 86 (w = 0)

ε 0 0.0001 0.0006 0.002 0.005 0.01 0.013 0.03 0.05 0.06 0.1 Goldfarb(w = 0)

Mean 0.007 0.009 0.010 0.012 0.016 0.018 0.019 0.019 0.020 0.020 0.021 0.024

Median 0.007 0.009 0.010 0.012 0.016 0.018 0.019 0.020 0.020 0.020 0.021 0.024

S.D 0.053 0.035 0.027 0.026 0.025 0.028 0.032 0.034 0.036 0.037 0.041 0.039
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Figure 2.10: Comparison with Goldfarb and Iyengar’s model (w = 0 and w = 0.01 for DJI 29)

Table 2.14: Comparison with Goldfarb and Iyengar’s model for NDX 86 (w = 0.01)

ε 0 0.0005 0.002 0.005 0.011 0.017 0.02 0.04 0.06 0.1 Goldfarb(w = 0.01)

Mean 0.010 0.010 0.012 0.016 0.018 0.019 0.019 0.019 0.020 0.021 0.024

Median 0.009 0.010 0.012 0.016 0.018 0.019 0.019 0.020 0.020 0.021 0.024

S.D 0.034 0.032 0.026 0.025 0.028 0.032 0.032 0.034 0.037 0.041 0.042
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Figure 2.11: Comparison with Goldfarb and Iyengar’s model (w = 0 for NDX 86)
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Figure 2.12: Comparison with Goldfarb and Iyengar’s model (w = 0.01 for NDX 86)
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The key advantage of the proposed approach is that it can generate portfolios with lower

volatility regarding standard deviation. For NDX 86 with w = 0 and w = 0.01, allocation of

Goldfarb and Iyengar’s model provides both higher means, medians, and standard deviations.

However, their approach does not provide the decision-makers with an option to decrease

the risk based on their risk preference. Hence, the advantage of the proposed approach is to

provide the decision maker with a menu of portfolio allocations from which he can choose to

better match his risk appetite.

2.5. Summary

In this study, a robust optimization model for Mean-Variance portfolio selection has

been proposed. The model considers Markowitz’s Mean-Variance Optimization when stock

returns follow Sharpe’s single-index model. However, in real-world settings, the Sharpe

model coefficients are not always precisely known. Therefore, a tractable robust optimization

model has been developed, assuming that coefficients α and β, estimated using least-square

estimators, are within a prespecified distance of optimality.

Numerical experiments were conducted, in which the minimum required expected return

from the portfolio was varied and the performance of the model was analyzed when the

allocation structure changed significantly. In practical applications, it would be useful to

consider a wider range of values for w and ε with smaller step sizes. The decision maker

can choose epsilon based on their preference for the trade-off between expected return and

volatility.

We have conducted numerical experiments on both Dow Jones and NASDAQ 100 indices.

The results indicate the existence of an optimal ε > 0, where the portfolio realizes a slightly

higher return with lower volatility in terms of mean and standard deviations, respectively.

Furthermore, when the value of ε increases, an increasing number of stocks will be allocated
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evenly in most cases. In future research, we intend to extend our robust model to a standard

multiple-index portfolio selection problems (e.g., the Fama-French Model).
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Chapter 3

Renewable Energy

3.1. Introduction

In recent decades, the development and implementation of renewable energy have gained

increasing attention. The utilization of renewable energy has become more prominent due to

its numerous positive impacts on the climate and public health [27,28]. Several studies have

evaluated the future potential and utilization of renewable resources. Ellabban et al. [29]

assessed the availability and potential of renewable energy sources globally and ample po-

tential for solar, wind, geothermal, and biomass energy. Lior [30] analyzed projections for

energy demand that could be met by renewable sources and studied potential benefits and

limitations of the environment and economy. Hadjerioua et al. [31] conducted a compre-

hensive assessment of hydroelectric potentials in the United States. Their study quantifies

the potential capacity for non-powered dams and highlighted areas with significant unex-

ploited resources. Brooks [32] provided comprehensive evaluations of renewable potential

resources and current installations in the United States. Lopez et al. [33] provided both na-

tional and state-level estimation of technical potential capacity and geographical limitation

for renewable energy.

To promote the use of renewable technologies and reduce dependence on fossil energy

by requiring a certain percentage of the electricity generated from renewable sources, a

non-mandatory Renewable Portfolio Standards (RPS) policy was implemented in 30 states

and Washington, D.C. in the United States as of 2021 [34]. Nogee et al. [35] reviewed an

analysis of the history and projected impacts of national RPS proposals. Wiser et al. [36]

outlined a roadmap and summarized the cost and benefit of state-level RPS. Regression
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analysis is commonly applied in the literature to evaluate the non-projected effectiveness of

RPS [37–40]. Huang et al. [37]. studied factors such as education level and political party

affect the adoption of RPS by states. Yin and Powers [38] applied regression analysis to study

the increase in renewable generation resulting from state RPS. Fischlein and Smith [39] also

used regression analysis on the outcome and assessment of state-by-state RPS policy design.

Recently, Joshi [40] studied the expansion of the implementation of RPS across states. The

literature that utilizes regression analysis is more oriented toward the retrospective evaluation

of RPS. Mai et al. [41–43] provided a relatively comprehensive study on the future influences

of state-level RPS by adopting a deterministic linear program while converting pollutant

emissions, public health, and economic growth into monetary values.

For the optimization modeling, Ding and Somani [44] propose a deterministic linear pro-

gramming model for a single-period wind power investment planning that meets the RPS

target for the Midwest Independent System Operator. Lara et al. [45] develop a determin-

istic Mixed Integer Linear Programming (MILP) model for power planning and apply it to

the Electric Reliability Council of Texas (ERCOT). They propose their own decomposition

algorithm to solve this intractable problem. Building on Lara et al.’s model, Li et al. [46]

introduce simplifications to the original problem and a tailored Benders decomposition al-

gorithm.

In real-world energy systems, energy planning integrated with renewable energy faces

uncertainty. These uncertainties include variations in electricity demand driven by changes in

population and economic activities. Additionally, fluctuations in energy prices and operation

and maintenance costs further complicate energy planning. To address the challenge, it is

critical to capture the uncertainty in an energy planning model. Robust optimization (RO)

is a method for addressing uncertainties in energy planning with renewable sources [47–49].

Mulvey et al. [47] examine the advantage of robust optimization in a large-scale system. They

apply the robust optimization technique to a simple single-period plant capacity expansion
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problem, where the goal is to minimize the capacity expansion cost while satisfying the

demand in a single period. Koo et al. [48] incorporate carbon dioxide requirement and

emissions trading in their formulation. Akbari et al. [49] apply robust optimization to the

investment in a distributed energy system serving a small geographic area. Rezvan et al. [50]

proposed a RO approach to finding the optimal capacity of generation systems to optimize

multiple objectives under the uncertainty in energy demand. Parisio et al. [51] analyzed a

robust operation scheduling problem for multi-generation systems, in the face of uncertain

energy costs and demands. Lorca and Sun [52], and Zugno and Conejo [53] used RO apporach

to minimize the system costs in terms of day-ahead energy dispatch. Xiong and Singh [54]

applied two-stage distributionally RO for the energy and reserve under uncertain RE power.

Yu et al. [55] used RO technique to determine the operation of the large electricity consumers

problem that considered RE sources under the uncertain market price. RO approach is

also commonly applied in the field of renewable distributed generation, which involves the

implementation of small-scale RE production systems [49,56–58]. Moret et al. [59] extended a

RO framework for a single-period energy planning that accounted for multiplied uncertainties

in the objective.

While there has been a growing trend in recent years, the implementation of RO approach

in long-term renewable energy planning is still limited. To the best of my knowledge, the

existing literature does not consider the optimization of long-term renewable energy planning

state-level RPS targets with uncertainties.

Contributions:

In this study, we propose a comprehensive long-term energy planning model that integrates

renewable technologies to achieve environmental targets. Unlike typical single-period plan-

ning models in the literature that assume capacity expansion is immediately available at

any time, our proposed model incorporates construction lead times required before new in-

frastructure is operational. We derive a closed-form expression for installed capacity over
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the planning horizon that captures the construction’s lead times. In addition, our model

considers the limited resources for capacity expansion in the market that imposes additional

costs on the competition. In other works in the literature, the cost is the same for any

capacity expansion. Furthermore, we develop a robust optimization model for uncertain

resource cost rates, variable and fixed operation and maintenance cost rates, electricity pur-

chase prices, and electricity demand. Robust optimization is well-suited for this purpose

due to the imprecise information available on rates, prices and demands for future years.

For the demand, we provide decision-makers with options to control the uncertainty in each

time period. We provide a tractable robust formulation that can be solved by a commer-

cial off-the-shelf solver. In the numerical experiments, we apply our approach to California

and provide decision-makers with various strategies for capacity expansion and electricity

generation profiles. To the best of our knowledge, ours is the first work in energy planning

that considers a decades-long planning horizon, construction lead times needed to make new

energy infrastructure operational, different costs for different expansions, and implement

robust optimization; we also provide a comprehensive approach to estimate the parameters

needed to implement the model using real data.

The rest of the chapter is structured as follows. In Section 3.2, we propose a deterministic

formulation for the energy planning model. In Section 3.3, we construct uncertainty sets,

develop a robust approach, and provide a tractable formulation. We conduct numerical

experiments in Section 3.4.
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3.2. Deterministic Model

In this section, we introduce a deterministic long-term energy planning model integrated

with renewable energy. The problem can be formulated as the decision makers aim to plan

to invest in energy infrastructure and design electricity generation profiles to meet future

demands and achieve planned environmental goals while minimizing the total costs over

decades. The problem can be briefly formulated as follows, and the full mathematical model

is introduced in section 3.2.2:

• Objective: Minimize the total costs incurred in all time periods.

The total costs include:

1. Infrastructure investment costs.

2. Recourse or fuel costs for electricity generation.

3. Variable operation and maintenance (O&M) costs.

4. Fixed O&M costs.

5. Electricity purchase costs

• Subject to installed capacity representation:

The installed capacity at a time period t is decided by the capacity in the time period

t−1, capacity expansion, planned capacity addition, planned capacity retirement, and

unplanned retirement

• Electricity generation constraint:

The generation is restricted by several factors, including the capacity factor of gener-

ating technologies, the installed capacity, and transmission loss.

• Electric reliability constraint:

To ensure electrical reliability and avoid extreme situations, additional capacity is

required. In our problem, these reserve margin is covered by conventional technologies.
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• Potential capacity constraint:

Due to the geographical attributes, the installed capacity for renewable technologies is

limited by potential capacity

• Demand constraint:

The demand is satisfied by electricity generation and purchase.

• Environmental targets constraints:

1. Renewable Portfolio Standards (RPS) require a certain percentage of electricity

to be generated from renewable technologies.

2. Clean Electricity requires a certain percentage of electricity to be generated from

technologies with zero emissions.

3. A certain percentage of electricity is required to be generated from a specific

renewable technology.

4. A required amount of electricity is generated by renewable technologies.

• Purchase constraint:

Electricity purchase is limited by an upper bound. In addition, the purchase growth

rate is also restricted.

• Capacity expansion constraint:

The capacity expansion by technology is restricted by an upper limit. Surpassing a

particular threshold in capacity expansion will lead to a surge in costs due to resource

competition in the market.
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3.2.1. Nomenclature

We use the following notations throughout this chapter:

Sets

T : the set of time periods of energy planning,

I: the set of electricity generating sub-technologies,

K: the set of electricity generating master technologies.

We associate each sub-technology in I with its respective master technology

in K using a mapping function: f : I → K, s.t.

f(Nuclear-light water reactor) = Nuclear,

f(Nuclear-small modular reactor) = Nuclear,

etc.

t: the current time period, t ∈ T ,

i: the electricity generating sub-technology, i ∈ I,

k: the electricity generating master technology, k ∈ K.

Decision Variables

Nit: the number of electric infrastructure units of technology i that starts to expand

in time period t,

CEit: the capacity of generation of technology i that starts to expand in time period

t [MW],

CAPit: the installed capacity for electricity generation of technology i in time period

t [MW],
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EGit: the electricity generation of technology i in time period t [MWh],

EGBuy
t : the electricity purchased to meet demand in time period t [MWh],

CRit: the capacity retirement of technology i in time period t [MW],

W S1
it : binary variable. Equals 1 if capacity expansion of technology i in time period

t does not exceed the Step 1 upper bound,

W S2
it : binary variable. Equals 1 if capacity expansion of technology i in time period

t does not exceed the Step 2 upper bound.

Parameters

CAPi0: the installed capacity for electricity generation of technology i in the beginning

time period [MW],

EDt: the electricity demand in time period t [MWh],

ICit: the overnight capital cost of technology i in time period t [2022$/MW],

RCit: the resource cost for electricity generation of technology i in time period t

[2022$/Btu],

MVCit: the variable O&M cost of technology i in time period t [2022$MWh],

MFCit: the fixed O&M cost of technology i in time period t [2022$/MW-yr],

BCt: the electricity price in time period t [2022$/MWh] ,

BCBuy,UB
t : the percentage of electricity purchase upper bound in time period t,

BCBuy,Rate
t : the electricity purchase growth rate limit in time period t,

η: the inter-regional transmission loss,
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GCi: the total potential capacity of technology i [MW],

UCit: the cumulative planned capacity retirement of technology i in time period t

[MW],

ACit: the cumulative planned capacity addition of technology i in time period t

[MW],

RTi: the usage lifetime of technology i,

LTi: the construction lead time of technology i,

CFi: the capacity factor of technology i,

HRi: the heat rate of technology i [Btu/MWh],

OHi: the annual operating hours of technology i,

RM : the capacity reserve margin required to maintain the electric reliability,

SZi: the size of one unit capacity expansion of technology i [MW],

RPSt: the planned RPS percentage in time period t,

RPSRatet : the limit of RPS growth rate in time period t,

rpskt: the planned percentage of electricity generation of master technology k in time

period t,

rgskt: the planned electricity generation of master technology k in time period t

[MWh],

CLt: the planned percentage of clean electricity generation in time period t,

bREi : binary parameter. Equals 1 if technology i is a renewable energy, and 0 oth-

erwise,

bCLi : binary parameter. Equals 1 if technology i is clean energy, and 0 otherwise,
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bOLDi : binary parameter. Equals 1 if technology i was installed in the beginning of

the time periods,

DR: the real discount rate,

UBS1
kt : the upper bound of capacity expansion Step 1 of master technology k in time

period t [MW],

UBS2
kt : the upper bound of capacity expansion Step 2 of master technology k in time

period t [MW],

RatioS2it : the ratio of the cost adder of capacity expansion Step 2 of technology i in time

period t compared to the cost adder of Step 1,

M : a large positive constant.

3.2.2. Deterministic Formulation

A deterministic Mixed Integer Programming (MIP) for the long-term energy planning

model is formulated in this subsection. The objective (3.1) minimizes the total cost, including

infrastructure cost (CINV ), fixed O&M cost (CFOM), variable O&M cost (CV OM), resource

cost for electricity generation (CRES), and electricity purchase cost (CBUY ).

min CTotal = CINV + CFOM + CV OM + CRES + CBUY (3.1)

The infrastructure investment costs (3.2) represents the total annualized overnight capital

cost for all technology i and time period t.

CINV =
∑
i∈I

∑
t∈T

ICit(W
S1
it +RatioS2it W

S2
it )CEit[

DR(1 +DR)RTi

(1 +DR)RTi − 1
] (3.2)

60



The last term of Eqn (3.2) [DR(1 +DR)RTi/(1 +DR)RTi − 1] represents the annualized fac-

tor that takes the usage lifetime of technologies into account. The term (W S1
it +RatioS2it W

S2
it )

indicates whether a cost adder will be imposed due to the scarcity of labor and resources in

a competitive market.

The resource costs associated with fuel-fired power plants, for instance, the cost of uti-

lizing natural gas to operate combustion turbine generators, can be formulated as:

CRES =
∑
i∈I

∑
t∈T

HRiRCitEGit (3.3)

The variable O&M costs (3.4) depends on the amount of electricity generation. The costs

include water consumption and waste treatment.

CV OM =
∑
i∈I

∑
t∈T

MVCitEGit (3.4)

However, the fixed O&M costs (3.5) depend on the size of the installed capacity of

technology and do not change with the electricity generation. The cost includes labor,

materials, and administration.

CFOM =
∑
i∈I

∑
t∈T

MFCitCAPit (3.5)

The costs of electricity purchase to meet the demand can be represented as:

CBUY =
∑
t∈T

BCtEG
Buy
t (3.6)

The installed capacity for electricity generation of technology i in time period t depends

on its installed capacity in time period t− 1, the capacity expansion in time period t−LTi,
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the cumulative planned capacity retirement, the capacity retirement due to reaching the

usage lifetime, and the unplanned capacity retirement. Hence, the installed capacity for

∀t ∈ T can be formulated as:

CAPit = CAPi,t−1 + CEi,t−LTi + ACit − UCit − CEi,t−RTi−LTi − CRit (3.7)

CAPi,t−1 = CAPi,t−2 + CEi,t−1−LTi + ACi,t−1 − UCi,t−1 − CEi,t−1−RTi−LTi − CRi,t−1

. . .

CAPi1 = CAPi0 + CEi,1−LTi + ACi1 − UCi1 − CEi,1−RTi−LTi − CRi1

CEi,t−LTi represents the capacity expansion decision made in time period t − LTi, and the

amount of the capacity is not available until time period t, where LTi is the lead (con-

struction) time of technology i. Similarly, CEi,t−RTi−LTi represents the retired capacity of

technology i in time period t due to reaching the lifetime RTi. The equation can be rewritten

as a closed-form formulation:

CAPit = CAPi0 +

t−LTi∑
m=1

CEim + ACit − UCit −
t−RTi−LTi∑

m=1

CEim − CRit ∀i ∈ I, t ∈ T (3.8)

The constraint (3.9) forces the unplanned capacity retirement to only incur in the capacity

already installed at the beginning of the time period. In other words, we avoid retiring the

capacity expansion until they reach the usage lifetime.

∑
t∈T

CRit ≤ CAPi0 ∀i ∈ I, t ∈ T (3.9)

The Eq. (3.10) ensures that the capacity expansion is the integer multiple of one unit of

installation size.

CEit = NitSZit ∀i ∈ I, t ∈ T (3.10)
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The generation constraint (3.11) represents that the electricity generation of technol-

ogy i in time period t is limited by the multiplication of operating hours, capacity factor,

transmission efficiency (1− η), and installed capacity.

EGit ≤ CFiOHi(1− η)CAPit ∀i ∈ I, t ∈ T (3.11)

The reserve margin constraint ensures that the available generating capacity can meet the

demand for additional electricity generation, thereby ensuring the reliability of the electricity

supply.

(1 +RM)
∑
i∈I

EGit ≤
∑
i∈I

CFiOHi(1− η)CAPit ∀t ∈ T (3.12)

The constraint (3.13) requires that conventional technologies provide the reserve margin of

the capacity, as conventional technologies can generate electricity more consistently than

renewable technologies.

∑
i∈I

(1− bREi )CAPit ≥ RM
∑
i∈I

CAPit ∀t ∈ T (3.13)

The potential capacity constraint (3.14) limits renewable technologies’ maximum per-

missible installed capacity. This limitation emerges because the renewable energy potential

capacity is intricately linked to the geographical attributes of the location, including factors

such as sunlight duration, wind velocities, river patterns, the presence of a coastline, and so

on. Therefore, renewable energy exhibits a natural ceiling on its installed capacity, unlike

conventional technologies, due to these geographical attributes.

bREi CAPit ≤ GCit ∀i ∈ I, t ∈ T (3.14)
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The constraint (3.15) ensures that the combined electricity generation and purchase guar-

antee the demand fulfillment in each time period.

∑
i∈I

EGit + EGBuy
t ≥ EDt ∀t ∈ T (3.15)

The RPS constraint (3.16) guarantees that renewable technologies produce the planned

percentage of electricity generation. The constraint (3.17) imposes the RPS growth rate

limitation. ∑
i∈I

bREi EGit ≥ RPSt
∑
i∈I

EGit ∀t ∈ T (3.16)

∑
i∈I

bREi EGit ≤ (1 +RPSRatet )
∑
i∈I

bREi EGi,t−1 ∀t ∈ T : t > 1 (3.17)

The constraint (3.18) ensures that a specific renewable master technology produces elec-

tricity to achieve the targeted electricity generation percentage.

∑
i∈I:f(i)=k

bREi EGit ≥ rpskt
∑
i∈I

EGit ∀k ∈ K, t ∈ T (3.18)

The constraint (3.19) represents that a targeted amount of electricity generation is pro-

duced by a specific renewable master technology.

∑
i∈I:f(i)=k

bREi EGit ≥ rgskt ∀k ∈ K, t ∈ T (3.19)

The constraint (3.20) describes that a planned percentage of electricity generation is

produced by clean energy. The definition of clean energy can differ among states. Typically,
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clean energy is defined as technologies that have zero emissions.

∑
i∈I

bCLi EGit ≥ CLt
∑
i∈I

EGit ∀t ∈ T (3.20)

The constraint (3.21) restricts the capacity expansion to technologies that were installed

before the time periods commenced. This is attributed to the lack of detailed data on

installed technologies. For instance, Annual Energy Outlook 2023 [60] only offers an overview

of the installed capacity for the combined cycle without providing a detailed technology

classification. A combined cycle can be segmented into categories like single-shaft, multi-

shaft, 90% carbon capture and sequestration (CCS), etc. These variations have different

impacts on their associated costs, and using average values as replacements is not suitable.

Therefore, we limit the capacity expansion to the installed technologies.

bOLDi CEit = 0 ∀i ∈ I, t ∈ T (3.21)

The constraint (3.22) imposes a maximum percentage for the electricity purchase. Mean-

while, The constraints (3.23) and (3.24) limit the growth rate of the electricity purchase to

prevent abrupt declines or surges.

EGBuy
t ≤ EGBuy,UB

t (
∑
i∈I

EGit + EGBuy
t ) ∀t ∈ T (3.22)

EGBuy
t ≤ (1 + EGBuy,Rate

t )EGBuy
t−1 ∀t ∈ T : t > 1 (3.23)

EGBuy
t ≥ (1− EGBuy,Rate

t )EGBuy
t−1 ∀t ∈ T : t > 1 (3.24)

The constraints (3.25) - (3.29) are designed to determine which cost adder will be ap-

plied to the capacity expansion for the master technologies. The cost adder represents the

additional cost resulting from the competition for labor and resources. Specifically, these
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constraints enforce the binary variablesW S1
it = 1 andW S2

it = 0 if the capacity remains within

the threshold of Step 1. Conversely, if the capacity expansion surpasses the threshold of Step

1, these constraints ensure that the binary variables are set to W S1
it = 0 and W S2

it = 1.

∑
i∈I:f(i)=k

CEit ≤ UBS1
kt +M(1−W S1

it ) ∀i ∈ I : f(i) = k, k ∈ K, t ∈ T (3.25)

∑
i∈I:f(i)=k

CEit ≥ UBS1
kt −M(1−W S2

it ) ∀i ∈ I : f(i) = k, k ∈ K, t ∈ T (3.26)

∑
i∈I:f(i)=k

CEit ≤ UBS2
kt ∀k ∈ K, t ∈ T (3.27)

W S1
it +W S2

it = 1 ∀i ∈ I, t ∈ T (3.28)

W S1
it ,W

S2
it ∈ {0, 1} ∀i ∈ I, t ∈ T (3.29)

Therefore, the full expression of the deterministic long-term energy planning model RE

is formulated as follows:

min CINV + CRES + CV OM + CFOM + CBUY (RE)

s.t. CINV =
∑
i∈I

∑
t∈T

ICit(W
S1
it +RatioS2it W

S2
it )CEit[

DR(1 +DR)RTi

(1 +DR)RTi − 1
]

CRES =
∑
i∈I

∑
t∈T

HRiRCitEGit

CV OM =
∑
i∈I

∑
t∈T

MVCitEGit

CFOM =
∑
i∈I

∑
t∈T

MFCitCAPit

CBUY =
∑
t∈T

BCtEG
Buy
t

CAPit = [CAPi0 +

t−LTi∑
m=1

CEim + ACit
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− UCit −
t−RTi−LTi∑

m=1

CEim − CRit] ∀i ∈ I, t ∈ T

∑
t∈T

CRit ≤ CAPi0 ∀i ∈ I, t ∈ T

CEit = NitSZit ∀i ∈ I, t ∈ T

EGit ≤ CFiOHi(1− η)CAPit ∀i ∈ I, t ∈ T

(1 +RM)
∑
i∈I

EGit ≤
∑
i∈I

CFiOHi(1− η)CAPit ∀t ∈ T

∑
i∈I

(1− bREi )CAPit ≥ RM
∑
i∈I

CAPit ∀t ∈ T

bREi CAPit ≤ GCit ∀i ∈ I, t ∈ T∑
i∈I

EGit + EGBuy
t ≥ EDt ∀t ∈ T

∑
i∈I

bREi EGit ≥ RPSt
∑
i∈I

EGit ∀t ∈ T

∑
i∈I

bREi EGit ≤ (1 +RPSRatet )
∑
i∈I

bREi EGi,t−1 ∀t ∈ T : t > 1

∑
i∈I:f(i)=k

bREi EGit ≥ rpskt
∑
i∈I

EGit ∀k ∈ K, t ∈ T

∑
i∈I:f(i)=k

bREi EGit ≥ rgskt ∀k ∈ K, t ∈ T

∑
i∈I

bCLi EGit ≥ CLt
∑
i∈I

EGit ∀t ∈ T

bOLDi CEit = 0 ∀i ∈ I, t ∈ T

EGBuy
t ≤ EGBuy,UB

t (
∑
i∈I

EGit + EGBuy
t ) ∀t ∈ T

EGBuy
t ≤ (1 + EGBuy,Rate

t )EGBuy
t−1 ∀t ∈ T : t > 1

EGBuy
t ≥ (1− EGBuy,Rate

t )EGBuy
t−1 ∀t ∈ T : t > 1∑

i∈I:f(i)=k

CEit ≤ UBS1
kt +M(1−W S1

it ) ∀i ∈ I : f(i) = k, k ∈ K, t ∈ T

∑
i∈I:f(i)=k

CEit ≥ UBS1
kt −M(1−W S2

it ) ∀i ∈ I : f(i) = k, k ∈ K, t ∈ T
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∑
i∈I:f(i)=k

CEit ≤ UBS2
kt ∀k ∈ K, t ∈ T

W S1
it +W S2

it = 1 ∀i ∈ I, t ∈ T

W S1
it ,W

S2
it ∈ {0, 1} ∀i ∈ I, t ∈ T

EGBuy
t ≥ 0 ∀t ∈ T

Nit, CEit, CAPit, EGit, CRit ≥ 0 ∀i ∈ I, t ∈ T

3.3. Robust Approach

3.3.1. Modeling Uncertainty

In our long-term energy planning model, we consider the modeling of uncertainty that

is motivated by [19]. We consider uncertain parameters in the objective function, including

the resource cost (RCit), the variable O&M cost (MVCit), the fixed O&M cost (MFCit),

and the electricity purchase cost (BCit). The uncertain parameter in the constraint is the

electricity demand (EDt).

Let denote the set containing all uncertain parameters in the objective function as:

Ψ = {RCit,MV Cit,MFCit, BCt} ∀i ∈ I, t ∈ T

We model ψit ∈ Ψ ∀i ∈ I, t ∈ T takes value in [ψ̄it− ψ̂it, ψ̄it+ ψ̂it] where ψ̄it is denoted as the

nominal value of the parameter, and ψ̂it is denoted as the deviation of the nominal value.

We define zψit as the scaled deviation of ψ from its nominal value ψ̄it, so that

zψit = (ψit − ψ̄it)/ψ̂it ∈ [−1, 1] ∀i ∈ I, t ∈ T

.
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The parameter Γψ is introduced as a measure for the budget of uncertainty, aiming to

control the degree of conservatism. The decision maker chooses a value for Γψ to represent

the acceptable level of the worst-case scenario. This is represented as:

∑
i∈I

∑
t∈T

|zψit|≤ Γψ

We denote Uψ the uncertainty set for the uncertain parameters in the objective function,

which can be defined as:

Uψ =
{
ψ
∣∣∣∃zψ, ψit = ψ̄it+z

ψ
itψ̂it ∀i ∈ I t ∈ T, |zψit|≤ 1 ∀i ∈ I t ∈ T,

∑
i∈I

∑
t∈T

|zψit|≤ Γψ ∀
}
∀ψ ∈ Ψ

(3.30)

To address uncertainty in electricity demand, our model provides decision-makers the

flexibility to control the demand uncertainty in each time period. The underlying rationale

is that major planned events often drive demand uncertainty in the upcoming years. For ex-

ample, constructing infrastructure and accommodating tourists for events like the Olympics

or World Cups brings variability in electricity demand in the preparatory period. However,

demand uncertainty can be reduced after the events end and return the normal activities.

Our model allows the decision-makers to toggle demand uncertainty on or off in each time

period. The planner can activate the demand uncertainty in the duration of the events.

In other periods with stable demand, uncertainty can be deactivated for a more nominal

forecast.

Let ĒDt denote the nominal demand for all t ∈ T , and denote ÊDt the deviation from

its nominal value for all t ∈ T . We define the scaled deviation zEDt = (EDt − ĒDt)/ÊDit ∈

[−1, 1] ∀i ∈ I, t ∈ T . We introduce the parameter ΓEDt as the measure for the budget of

uncertainty. We define the uncertainty set of the uncertainty in electricity demand as:

UED =
{
ED

∣∣∣∃zED, EDt = ĒDt + zEDt ÊDt ∀t ∈ T, |zEDt |≤ 1 ∀t ∈ T, (3.31)
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|zEDt |≤ ΓEDt ∀t ∈ T
}

3.3.2. Robust Formulation

Then, with the constructed uncertainty sets Uψ and UED, we formulate the robust opti-

mization problem as:

min max
{ψ∈Uψ ,ED∈UED}

CINV + C̃RES + C̃V OM + C̃FOM + C̃BUY (3.32)

s.t. CINV =
∑
i∈I

∑
t∈T

ICit(W
S1
it +RatioS2it W

S2
it )CEit[

DR(1 +DR)RTi

(1 +DR)RTi − 1
]

C̃RES =
∑
i∈I

∑
t∈T

HRiR̃CitEGit

C̃V OM =
∑
i∈I

∑
t∈T

˜MVCitEGit

C̃FOM =
∑
i∈I

∑
t∈T

˜MFCitCAPit

C̃BUY =
∑
t∈T

B̃CtEG
Buy
t

CAPit = [CAPi0 +

t−LTi∑
m=1

CEim + ACit

− UCit −
t−RTi−LTi∑

m=1

CEim − CRit] ∀i ∈ I, t ∈ T

∑
t∈T

CRit ≤ CAPi0 ∀i ∈ I, t ∈ T

CEit = NitSZit ∀i ∈ I, t ∈ T

EGit ≤ CFiOHi(1− η)CAPit ∀i ∈ I, t ∈ T

(1 +RM)
∑
i∈I

EGit ≤
∑
i∈I

CFiOHi(1− η)CAPit ∀t ∈ T

∑
i∈I

(1− bREi )CAPit ≥ RM
∑
i∈I

CAPit ∀t ∈ T
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bREi CAPit ≤ GCit ∀i ∈ I, t ∈ T∑
i∈I

EGit + EGBuy
t ≥ ẼDt ∀t ∈ T

∑
i∈I

bREi EGit ≥ RPSt
∑
i∈I

EGit ∀t ∈ T

∑
i∈I

bREi EGit ≤ (1 +RPSRatet )
∑
i∈I

bREi EGi,t−1 ∀t ∈ T : t > 1

∑
i∈I:f(i)=k

bREi EGit ≥ rpskt
∑
i∈I

EGit ∀k ∈ K, t ∈ T

∑
i∈I:f(i)=k

bREi EGit ≥ rgskt ∀k ∈ K, t ∈ T

∑
i∈I

bCLi EGit ≥ CLt
∑
i∈I

EGit ∀t ∈ T

bOLDi CEit = 0 ∀i ∈ I, t ∈ T

EGBuy
t ≤ EGBuy,UB

t (
∑
i∈I

EGit + EGBuy
t ) ∀t ∈ T

EGBuy
t ≤ (1 + EGBuy,Rate

t )EGBuy
t−1 ∀t ∈ T : t > 1

EGBuy
t ≥ (1− EGBuy,Rate

t )EGBuy
t−1 ∀t ∈ T : t > 1∑

i∈I:f(i)=k

CEit ≤ UBS1
kt +M(1−W S1

it ) ∀i ∈ I : f(i) = k, k ∈ K, t ∈ T

∑
i∈I:f(i)=k

CEit ≥ UBS1
kt −M(1−W S2

it ) ∀i ∈ I : f(i) = k, k ∈ K, t ∈ T

∑
i∈I:f(i)=k

CEit ≤ UBS2
kt ∀k ∈ K, t ∈ T

W S1
it +W S2

it = 1 ∀i ∈ I, t ∈ T

W S1
it ,W

S2
it ∈ {0, 1} ∀i ∈ I, t ∈ T

EGBuy
t ≥ 0 ∀t ∈ T

Nit, CEit, CAPit, EGit, CRit ≥ 0 ∀i ∈ I, t ∈ T
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However, Problem (3.32) is not directly solvable due to the bi-level min max structure.

Theorem 3.1 provides steps for achieving a tractable reformulation.

Theorem 3.1 The deterministic long-term energy planning model with uncertain parame-

ters Problem (3.32) can be reformulated as the following tractable Robust Problem (RE RP).

min

{∑
i∈I

∑
t∈T

ICit(W
S1
it +RatioS2it W

S2
it )CEit[

DR(1 +DR)RTi

(1 +DR)RTi − 1
] (RE RP)

+
∑
i∈I

∑
t∈T

HRiR̄CitEGit

+
∑
i∈I

∑
t∈T

¯MVCitEGit

+
∑
i∈I

∑
t∈T

¯MFCitCAPit

+
∑
t∈T

B̄CtEG
Buy
t

+ ΓRCλRC +
∑
i∈I

∑
t∈T

V RC
it

+ ΓMVCλMVC +
∑
i∈I

∑
t∈T

V MVC
it

+ ΓMFCλMFC +
∑
i∈I

∑
t∈T

V MFC
it

+ ΓBCλBC +
∑
t∈T

V BC
t

}

s.t. CAPit = [CAPi0 +

t−LTi∑
m=1

CEim + ACit

− UCit −
t−RTi−LTi∑

m=1

CEim − CRit] ∀i ∈ I, t ∈ T

∑
t∈T

CAPit ≤ CAPi0 ∀t ∈ T

CEit = NitSZit ∀i ∈ I, t ∈ T

EGit ≤ CFiOHi(1− η)CAPit ∀i ∈ I, t ∈ T
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(1 +RM)
∑
i∈I

EGit ≤
∑
i∈I

CFiOHi(1− η)CAPit ∀t ∈ T

∑
i∈I

(1− bREi )CAPit ≥ RM
∑
i∈I

CAPit ∀t ∈ T

bREi CAPit ≤ GCit ∀i ∈ I, t ∈ T∑
i∈I

EGit + EGBuy
t ≥ ĒDt + ΓEDt λEDt +

∑
t∈T

vEDt ∀t ∈ T

∑
i∈I

bREi EGit ≥ RPSt
∑
i∈I

EGit ∀t ∈ T

∑
i∈I

bCLi EGit ≥ CLt
∑
i∈I

EGit ∀t ∈ T

∑
i∈I:f(i)=k

bREi EGit ≥ rpskt
∑
i∈I

EGit ∀k ∈ K, t ∈ T

∑
i∈I:f(i)=k

bREi EGit ≥ rgskt ∀k ∈ K, t ∈ T

∑
i∈I

bREi EGit ≤ (1 +RPSRatet )
∑
i∈I

bREi EGi,t−1 ∀t ∈ T : t > 1

bOLDi CEit = 0 ∀i ∈ I, t ∈ T

EGBuy
t ≤ EGBuy,UB

t (
∑
i∈I

EGit + EGBuy
t ) ∀t ∈ T

EGBuy
t ≤ (1 + EGBuy,Rate

t )EGBuy
t−1 ∀t ∈ T : t > 1

EGBuy
t ≥ (1− EGBuy,Rate

t )EGBuy
t−1 ∀t ∈ T : t > 1∑

i∈I:f(i)=k

CEit ≤ UBS1
kt +M(1−W S1

it ) ∀i ∈ I : f(i) = k, k ∈ K, t ∈ T

∑
i∈I:f(i)=k

CEit ≥ UBS1
kt −M(1−W S2

it ) ∀i ∈ I : f(i) = k, k ∈ K, t ∈ T

∑
i∈I:f(i)=k

CEit ≤ UBS2
kt ∀k ∈ K, t ∈ T

W S1
it +W S2

it = 1 ∀i ∈ I, t ∈ T

λRC + vRCit ≥ HRiR̂CitEGit ∀i ∈ I, t ∈ T

λMVC + vMVC
it ≥ ˆMVCitEGit ∀i ∈ I, t ∈ T
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λMFC + vMFC
it ≥ ˆMFCitCAPit ∀i ∈ I, t ∈ T

λBC + vBCt ≥ B̂CtEG
Buy
t ∀t ∈ T

λEDt + vEDt ≥ ÊDt ∀t ∈ T

W S1
it ,W

S2
it ∈ {0, 1}∀i ∈ I, t ∈ T

Proof: To linearize the terms |z|≤ Γ within the uncertainty sets, introduce

z+ =max(0, z) ∈ [0, 1]

z− =max(−z, 0) ∈ [0, 1]

and it is obvious that

z =z+ − z−

|z|=z+ + z−

Then, the inner-level problem with R̂Cit in Problem (3.32) is equivalent to:

max
zRC+,zRC−

∑
i∈I

∑
t∈T

(zRC+
it − zRC−

it )R̂CitHRiEGit (3.33)

s.t.
∑
i∈I

∑
t∈T

(zRC+
it + zRC−

it ) ≤ ΓRC

zRC+
it , zRC−

it ≤ 1 ∀i ∈ I, t ∈ T

zRC+
it , zRC−

it ≥ 0 ∀i ∈ I, t ∈ T

By applying the method in [19], we obtain the dual formulation of Problem (3.33):

min
λRC ,vRC

ΓRCλRC +
∑
i∈I

∑
t∈T

vICit (3.34)
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s.t. λRC + vRCit ≥ R̂CitHRiEGit ∀i ∈ I, t ∈ T

λRC , vRCit ≥ 0 ∀i ∈ I, t ∈ T

By utilizing the strong duality in [19], the dual problem (3.34) is feasible and bounded since

Problem (3.33) is feasible and bounded. By applying a similar technique, we can derive the

dual formulations of other inner-level problems, and substitute the formulations to Problem

(3.32). Therefore, we achieve the resulting reformulation provided in Theorem 3.1. □

3.4. Numerical Experiments

In this section, we analyze the results of numerical experiments by using the proposed

formulation RE RP. We consider California, consisting of the Western Electricity Coordi-

nating Council - Northern California (CANO) and Western Electricity Coordinating Council

- Southern California (CASO). Figure 3.1. shows the components of the electricity market

managed by American Electric Reliability Corporation (NERC) or Independent System Op-

erator (ISO) [61]. These regions generally do not align with state boundaries, which compli-

cates the data gathering process since a singular comprehensive data source for the model

does not exist. Various resources categorize the data according to different criteria [60,62–64].
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Figure 3.1: U.S. Electricity Market Module Regions
Source: U.S. Energy Information Administration - Electrcity Market Module Regions
https://www.eia.gov/outlooks/aeo/pdf/nerc map.pdf

Table 3.4: California Environmental Goals

Year RPS Clean Electricity

2024 44% -

2027 52% -

2030 60% 90%

2040 - 95%

2045 - 100%

California is chosen as the focus of our numerical experiments for several reasons. The

electricity market module regions of CANO and CASO cover a relatively broad geographic
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territory within California compared to other states. This extensive coverage ensures that our

findings are reflective of a significant portion of the state’s infrastructure. In addition, regions

of CANO and CASO cover 97.91% operable and standby installed capacity for electricity

generation across the entire state. California is one of the states with long-term detailed

environmental goals (see Table. 3.4.), and it is consistently updating the public about its

progress toward achieving these goals. [65–68].

3.4.1. Setting

We study 141 sub-technologies that can be categorized into 14 master technologies (see

Table 3.5). See the detailed technical description of each technology in [69]. Of these,

16 sub-technologies are labeled as ’Old’, indicating that their capacity was installed before

our study’s time periods. The division arises due to the lack of detailed data about the

technologies. While EIA 860 [64] provides more segmented information about generators,

it often lacks detailed categorization. Since EIA 860 relies on survey-based data collection,

many utilities and entities either omit or do not respond comprehensively to several questions.

To better understand the impacts of various technologies in long-term energy planning, we

categorize them into classes ’Old’ and ’New’.

Table 3.5: Overview of Technologies in California

Sub-Technology Master Technology (counts) bREi bCLi bOLDi

Old Coal Coal (1) 0 0 1

Old NaturalGas Steam Natural Gas Steam Turbine (1) 0 0 1

Old NaturalGas CombinedCycle Natural Gas Combined Cycle (1) 0 0 1

Old NaturalGas InternalCombustionEngine
Natural Gas Combustion (2)

0 0 1

Old NaturalGas CombustionTurbine 0 0 1

Old Petroleum InternalCombustionEngine
Petroleum Combustion (2)

0 0 1

Old Petroleum CombustionTurbine 0 0 1
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Old Nuclear Nuclear (1) 0 1 1

Old FuelCells Fuel Cell (1) 0 1 1

Old Hydroelectric Hydroelectric (1) 1 1 1

Old Geothermal Geothermal (1) 1 1 1

Old WoodWasteBiomass Biomass (1) 1 1 1

Old SolarThermal Solar Thermal (1) 1 1 1

Old SolarPV Solar PV (1) 1 1 1

Old OnshoreWind Onshore Wind (1) 1 1 1

Old OffshoreWind Offshore Wind (1) 1 1 1

New CominbedCycle SingleShaft

Natural Gas Combined Cycle (3)

0 0 0

New CombinedCycle MultiShaft 0 0 0

New CombinedCycle 90CCS 1 0 0 0

New InternalCombustionEngine

Natural Gas Combustion (3)

0 0 0

New CombustionTurbine Aeroderivative 0 0 0

New CombustionTurbine IndustrialFrame 0 0 0

New FuelCells Fuel Cell (1) 0 1 0

New Nuclear LightWaterReactor
Nuclear (2)

0 1 0

New Nuclear SmallModularReactor 0 1 0

New WoodWasteBiomass Biomass (1) 1 1 0

New Geothermal Geothermal (1) 1 1 0

New Hydroelectric NPD Hydroelectric (1) 1 1 0

New SolarThermal R1C1 2

Solar Thermal (24)

1 1 0

New SolarThermal R1C2 1 1 0

New SolarThermal R1C3 1 1 0

Continued. . . 1 1 0

New SolarPV R2C1

Solar PV (35)

1 1 0

New SolarPV R2C2 1 1 0

New SolarPV R2C3 1 1 0

190CCS: 90% carbon capture and sequestration
2The suffixes ’R’ and ’C’ denote resource and cost classifications, respectively
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New SolarPV R2C4 1 1 0

New SolarPV R2C5 1 1 0

New SolarPV R2C6 1 1 0

New SolarPV R2C7 1 1 0

Continued. . . 1 1 0

New OnshoreWind R4C1

Onshore Wind (30)

1 1 0

New OnshoreWind R4C2 1 1 0

New OnshoreWind R4C3 1 1 0

New OnshoreWind R4C4 1 1 0

New OnshoreWind R4C5 1 1 0

New OnshoreWind R4C6 1 1 0

Continued. . . 1 1 0

New OffshoreWind R5C1

Offshore Wind (24)

1 1 0

New OffshoreWind R5C2 1 1 0

New OffshoreWind R5C3 1 1 0

New OffshoreWind R5C4 1 1 0

New OffshoreWind R5C5 1 1 0

New OffshoreWind R5C6 1 1 0

Continued. . . 1 1 0

The suffixes ’R’ and ’C’ in the sub-technologies New Solar Thermal, New Solar PV, New

Onshore Wind, and New Offshore Wind represent resource and cost classifications, respec-

tively. For expansive state-level energy planning, applying identical parameters for all solar

and wind technologies is not suitable. This is because electricity production from these

technologies is significantly influenced by various geographic factors [70–74]. Hence, both

solar wind technologies can be classified into different resource categories based on distinct

regional attributes, such as solar radiation levels, daylight duration, humidity, and wind

velocity. Meanwhile, cost classifications characterize construction complexities arising from
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factors of transportation logistics, road conditions, and proximity to the nearest electrical

grid [63].

The pre-installed capacity (CAPi0) for technologies is obtained from AEO 2023 [60] and

EIA 860 [64,75]. AEO consolidates all combustion technologies, irrespective of their natural

gas and petroleum sources, into a single category, which makes the other parameters of

combustion technology less accurate. Therefore, we complement this with data from the

’Generator’ table of EIA 860, which provides detailed generator-level survey data. Filters

are applied to include utility IDs related to the electricity market module regions, generators’

status of operation and standby/backup, and all operating years. Subsequently, the prime

mover code is filtered to specify the technology type and energy source code to identify

natural gas and petroleum.

The capacity factor (CFi) is estimated by the data provided by various sources [60,63,76].

We assume that capacity factors of generators that primarily use fossil fuels and uranium

adhere to the national average [76] since the generation from these generators is not influenced

by geographical factors. In contrast, for renewable technologies, we apply Eq (3.35) to

calculate the baseline capacity factor in 2022 [60], which specifies the electricity market

module regions instead of using a national mean value.

CFBase
i =

EGit

OHiCAPit
for t = 2022 (3.35)

where OH i = 365 days/year× 24 hours/day = 8760 hours/year. The computed CFBase
i ap-

pears to be lower than the theoretical capacity factor provided by other sources. This differ-

ence arises because of our CFBase
i represents the end-use electricity, which takes transmission

loss into account. Therefore, we use CFBase
i as the baseline to estimate the capacity factor of

sub-technologies characterized by resource and cost classes sourced from EPA’s Power Sector

Modeling [63]. We compute the average value across all sub-technologies within each master
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technology. Subsequently, we determine the ratio between the master technology’s capacity

factor and CFBase
i , using it to derive the capacity factor for each individual sub-technology.

For the variable and fixed O&M cost rate (MVCit,MFCit), heating rate (HRit), size

(SZi), and construction time (LTi), we assume they follow the national average value [77].

Nonetheless, the overnight capacity cost rate (ICit) can vary among different electricity

market module regions. Given the available data detailing the variation in cost rates across

all regions [77], combined with projections of the national average [60], we can deduce the

cost rate for CANO&CASO by applying the relevant ratios. A similar approach is applied to

technologies with different resources and cost classes. It is worth emphasizing the difference

between the nameplate and the real-world installation sizes for solar PV, onshore wind, and

offshore wind. To obtain more accurate data, we use the recent 10-year data from 2013

to 2022 to estimate a more realistic average installation size. By summing the cumulative

capacity constructed over these ten years and dividing by the total number of respective

plants [64], we can estimate the average installation sizes for these technologies.

The projection of electricity demand (EDt) is given for each electricity market module

region [60]. However, the projection of resource cost rate (RCit) is only available for broader

census bureau regions, as outlined under ’Energy Prices by Sector and Source’ in AEO 2023.

Therefore, we use data from the Pacific region, to which California belongs, to represent the

resource cost rate in CANO&CASO. The usage lifetime (RTi) for various technologies are

from multiple sources. Specifically, the lifetime for fossil-fueled technologies and biomass

is sourced from [63]. The lifetime data for fuel cells is from [78]. The lifetime of nuclear

and geothermal technologies is sourced from [60]. Hydroelectricity, solar thermal, solar PV,

onshore wind, and offshore wind lifetime are based on information from [79].

We note that the planned capacity retirement (UCit) for technologies such as solar ther-

mal, solar PV, onshore wind, and offshore wind [60], do not reflect the actual expected

retirement since their usage lifetime has not been taken into account. To provide a more
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accurate representation, we have adjusted these data by adding the respective lifetime to the

year of operation.

The upper bound of capacity expansion Step 1 and Step 2 (UBS1
kt , UB

S2
kt ), the ratio of cost

adder (RatioS2it ), and potential capacity for renewable technologies are provided in [63]. We

make the following assumptions based on various sources: The upper bound for electricity

purchase and its growth rate limit are based on the peak value in California’s historical data

from 2009 to 2021 [80]. The inter-regional transmission loss within CANO&CASO is set as

4.5% [81]. We assume the capacity reserve margin of 13.9% [63]. The real discount rate is

set 3.76% [63]. We assume the RPS growth rate of 15%.

All experiments are implemented using IBM ILOG CPLEX Optimization Studio 22.1.1.0

on the platform:

Model Apple Macbook Pro 2021

Processor M1 Max 10-core CPU 3.2 GHz

RAM 64 GB

3.4.2. Results of Deterministic Problem

We first solve the deterministic problem by setting the uncertainty budget of uncer-

tainties, denoted as Γ′s to zero in Problem RE RP, which is equivalent to solving Prob-

lem RE. We analyze the trajectory of energy planning over the span from 2023 to 2050 in

CANO&CASO. We particularly focus on several critical results: Capacity Expansion (CEit),

Electricity Generation (EGit), Installed Capacity (CAPit), and RPS and Clean Electricity

Progress.

The evaluation of capacity expansion segmented by different technologies is illustrated in

Figure 3.2. In order to prevent being overly congested in the visualization, we consolidated

all sub-technologies under New SolarPV into a single category labeled New SolarPV Total.
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Similarly, we also merge all sub-technologies under New OnshoreWind. It reveals that so-

lar PV is a leading energy source for capacity expansion among all renewable technologies,

reaching 68.24% of total capacity (see Table 3.6). This observation is intuitive that Califor-

nia has the dominant advantage in solar PV compared to other renewable technologies in

terms of a vast solar potential capacity, combined with shorter construction duration and

cost efficiency. On the other hand, the non-renewable energy contributors, particularly com-

bustion turbines and combined cycles, contribute 19.86% of total capacity expansion. This

observation underlines the role of natural gas as an important energy source in California’s

long-term energy planning.

Furthermore, the result reveals a significant uptick in capacity expansion during the pe-

riod from 2043 to 2046. The increase is mainly driven by solar PV, combustion turbines,

and nuclear small modular reactors. The observed trend can be attributed to the aging

infrastructure that the installations from the earlier periods of the studied time frame ap-

proach the end of their technical lifetime and are scheduled for retirement. This mandated

retirement leads to an increase in capacity expansion to offset the resulting loss in capacity.

Table 3.6: Total Capacity Expansion (MW) by Tech in CANO&CASO (Deterministic)

Technology Total %

New SolarPV Total 72176 68.24%

New CombustionTurbine IndustrialFrame 18651 17.63%

New CombinedCycle MultiShaft 5527 5.23%

New Nuclear SmallModularReactor 4488 4.24%

New FuelCells 2422 2.29%

New OnshoreWind Total 2224 2.10%

New Hydroelectric NPD 172 0.16%

New Geothermal 105 0.10%

The percentage of electricity generation by technologies over the planning horizon is

shown in Figure 3.3. Notably, solar PV is a dominant energy contributor to electricity gen-

eration. Specifically, 15.63% of the total generation is from solar PV installed prior to the
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Figure 3.2: Capacity Expansion (MW) by Tech in CANO&CASO (Deterministic)
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studied time frame, while 66.21% is from the new solar PV installations. Starting in 2025,

we observe a surge in electricity generation from solar PV whose installations were initiated

in 2023, factoring in their 2-year construction lead time. As the end of the time frame ap-

proaches, there is a decline in generation by solar PV as the early installations reach the

end of their usage lifetime. For the pre-installed solar PV, their contribution is relatively

consistent. The decline observed in 2050 is also due to reaching the usage lifetime. With

the phase-out of new solar PV installations, generation from ’Other Conventional’ sources

increases to compensate, including ’Old Coal’, ’Old Nuclear’, and ’New Nuclear Small Mod-

ular Reactor’. Since ’Old’ coal-fired and nuclear technologies are forced to retire by 2024

and 2025, respectively, all generation from ’Other Conventional’ since 2026 is contributed

by ’New Nuclear Small Modular Reactor’. However, if we extend the studied time frame,

we will not see a sudden drop in solar PV generation in 2050. If the study time frame is

extended further, the abrupt drop in solar PV in 2050 would not occur. Instead, we would

expect a smoother transition as the new solar PV capacity replaces the retired capacity.

Figure 3.4 shows the installed capacity trajectory of by technology, which aligns a similar

trend as electricity generation profiles in Figure 3.3. Natural gas generators are consoli-

dated under the ’NaturalGas’ label, with a similar aggregation for other energy sources. The

’Old NaturalGas’ capacity exhibits a downward trend over time. This decline can be at-

tributed to the higher operational costs and planned retirement. In addition, environmental

targets further accelerate the phase-out, including 60% RPS and 90% clean electricity goals

for 2030. With rising targets for environmental targets after 2030, continued operation of

pre-installed fossil fuel plants becomes less economical. The solution retires these facilities

over time and expands renewable capacity like solar PV, wind, and nuclear technologies.
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Figure 3.3: Electricity Generation% by Tech in CANO&CASO (Deterministic)

Table 3.7: Total Electricity Generation (MWh) by Tech in CANO&CASO (Deterministic)

Technology Total %

New SolarPV Total 5313430477 66.21%

Old SolarPV 1254439095 15.63%

Old NaturalGas 465311099 5.80%

Old OnshoreWind 207421636 2.58%

Old Hydroelectric 182608051 2.28%

New NaturalGas 168538075 2.10%

New FuelCells 152013766 1.89%

New OnshoreWind Total 96984413 1.21%

Other Conventional 98801977 1.23%

Other Renewable 85055933 1.06%
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Figure 3.4: Installed Capacity (MW) by Tech in CANO&CASO (Deterministic)

Table 3.8: RPS and Clean Electricity Progress of CANO&CASO (Deterministic)

2023 2024 2025 2026 2027 2028 2029 2030

RPS% 47.38% 50.32% 52.67% 55.48% 60.00% 66.62% 74.22% 83.24%

Clean Electricity% 55.97% 58.79% 56.86% 57.06% 62.78% 70.68% 79.60% 90.00%

2031 2032 2033 2034 2035 2036 2037 2038

RPS% 87.78% 91.50% 94.26% 93.15% 93.60% 92.62% 92.90% 100.00%

Clean Electricity% 93.95% 97.34% 99.92% 98.58% 98.90% 97.76% 97.94% 100.00%

2039 2040 2041 2042 2043 2044 2045 2046

RPS% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Clean Electricity% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

2047 2048 2049 2050

RPS% 100.00% 98.75% 97.49% 91.08%

Clean Electricity% 100.00% 100.00% 100.00% 100.00%
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The progress of RPS and clean electricity percentage is shown in Table 3.8. In the initial

phase from 2023 to 2030, the RPS percentage steadily increases, starting from 47.38% and

surpassing the 60% target to reach above 80% by 2030. The clean electricity percentage

achieves the target goal of 90% in 2030 and remains 100% since 2038. The clean electricity

percentage achieves the 90% goal by 2030 and maintains 100% from 2038 to 2050.

However, in the later years we notice a decline in the RPS percentage due to the decreased

capacity and generation from solar PV. This drop occurs as solar PV, start reaching the end

of their usable lifetimes and are retired. Without sufficient replacement by new renewable

capacity additions, the RPS percentage decreases as new nuclear technology operates to

meet demand while satisfying the clean electricity target. This highlights the importance

of continued renewable capacity investment and construction even after short-term RPS

milestones are met. Retirements must be anticipated and replaced to maintain the targeted

RPS over the long-term planning horizon.

3.4.3. Parameter Uncertainty

In the analysis of the robust optimization problem, we vary values of the budget of the

constraint Γ′s and solved in ProblemRE RP, and compare the results from the deterministic

problem where Γ′s are set to zero. The uncertain parameters considered are resource cost

rate (RCit), variable O&M cost rate (MVCit), fixed O&M cost rate (MFCit), electricity

purchase price (BCt), and electricity demand (EDt). These uncertainties are controlled by

five Γ′s, respectively:

• ΓRC ∈ [0, |T |×
∑

i∈I b
RC
i ]

• ΓMVC ∈ [0, |T |×
∑

i∈I b
V C
i ]

• ΓMFC ∈ [0, |T |×|I|]
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• ΓBC ∈ [0, |T |]

• ΓEDt ∈ {0, 1} ∀t ∈ T

where bRCi and bV Ci are additional binary parameters. Set bRCi to one if the resource cost

rate is nonzero and set to zero otherwise. Similarly, set bV Ci to one if the variable O&M cost

is nonzero and set to zero otherwise.

Let denote Γp%, the percentage of the highest possible values for the budgets of con-

straints, and all Γp%’s are rounded to the nearest integers. Additionally, for ΓEDt , values of

one are sequentially assigned in a reverse order. The intuition is that years distant from the

current period possess a higher degree of uncertainty than the more recent years. For the

scenario Γ0%, the problem is equivalent to the deterministic model. For the scenario Γ100%,

the solution obtained is the most conservative, consistent with Soyster’s approach.

In determining the uncertainty parameters, we derive the deviation for the resource cost

rate (RCit), electricity purchase price (BCt), and electricity demand (EDt) from Annual

Energy Outlook 2023 (AEO 2023) [60]. This document provides the reference case for the

nominal values, and side cases including ’low economic growth’, ’high economic growth’,

’low oil price’, ’high oil price’, ’low oil and gas supply’, ’high oil and gas supply’, ’low zero-

carbon technology cost’, ’high zero-carbon technology cost’, ’low economic growth and low

zero-carbon technology cost’, ’high economic growth and low zero-carbon technology cost’,

’low economic growth and high zero-carbon technology cost’, and ’high economic growth and

high zero-carbon technology cost’. See side case descriptions in [82]. On the other hand,

for the deviation of variable O&M cost rate (MVCit), and fixed O&M cost rate (MFCit),

which are not available in AEO 2023, we determine them from Annual Technology Baseline

(ATB2023) [78]. This resource provides three scenarios, namely ’moderate’, ’advanced’, and

’conservative’.

We first derive the ratio of uncertainty parameters to the nominal values by computing
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ψ̃Ratio =
|(ψMax − ψ̄)/ψ̄ − (ψMin − ψ̄)/ψ̄|

2
(3.36)

where ψ̄ represents the nominal value in AEO 2023 and ATB 2023, termed as reference case

or moderate scenario within their data set, respectively. ψMin and ψMax represent the lowest

and highest values, respectively. Therefore, we estimate uncertain parameters in the model

by computing

ψ̃ = ψ̃Ratioψ̄ (3.37)

3.4.4. Results of Robust Optimization Problem

In this subsection, we explore how variations in the uncertainty parameter values affect in-

frastructure investment and energy planning decisions. Figure 3.5 displays the results solved

by varying values of Γ’s, and their ratio compared to the deterministic scenario (Γ = 0). A

key finding is that the total costs increase gradually from Γ0% to Γ70%. However, beyond this

threshold, there is a significant spike in costs. This trend is linked to increased uncertainty

in the future electricity demand, particularly in more recent years as Γp%’s increase. Con-

sequently, to meet this relatively immediate demand, more infrastructure investments are

made, leading to an increase in the O&M costs for these new infrastructures in subsequent

years.

Interestingly, the increase in total costs does not correspond to a similar trend in the total

capacity expansion as shown in Figure 3.5. This indicates that while total costs increase

significantly, the total capacity expansion remains relatively stable. The capacity expansion

that occurred earlier in the studied time frame incurs higher fixed O&M costs over time.

In addition, as the Γp% value increases, excessively expanding capacity is not encouraged to
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meet the demand due to its associated rising costs. Therefore, the strategy leans towards

increasing the utilization of the existing capacity rather than expanding more capacity.

In comparison to the deterministic scenario, the generation from renewable sources gradu-

ally increases as p% surpasses 8%. This trend indicates that when uncertainty in parameters

is increased, generation from renewable sources is favored. On the other hand, generation

from conventional sources experiences significant fluctuations, reaching its lowest point when

p% is between 30% and 40%, and conventional generation increases again when p% is beyond

this range. This suggests that when uncertainty increases, the utilization of conventional

technologies helps to guarantee a reliable energy supply.

Figure 3.5: Cost, Capacity Expansion, and Generation vs. Deterministic in CANO&CASO

In the study of the total capacity expansion by technology (see Figure 3.6), 33 technologies

are consolidated into 10 groups for ease of interpretation. Among these, technologies like

the combustion turbine industrial frame and the combined cycle multi-shaft, both affiliated
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with natural gas-fueled generators, are labeled as ’New NaturalGas’. Similarly, all solar PV

sub-technologies are categorized into their respective resource class: 3, 4, 5, and 6.

Consistent with findings from the deterministic scenario, solar PV is the leading technol-

ogy in capacity expansion across all scenarios. However, the variation in capacity allocation

among different solar PV resource classes as Γp% changes. Notably, resource class 6 remains

a steady trend across all scenarios. The attractiveness of resource class 6 is underlined by its

high capacity factor of 27.36% and relatively low investment costs. From both perspectives

of electricity generation efficiency and investment cost, the expansion in solar PV resource

class 6 is valuable for all scenarios. However, the actual capacity expansion of resource class

6 is not massive because of its potential capacity, accounting for only 0.84% of the total.

Fuel cells and hydroelectric technologies also exhibit a stable trend, with their capacity ex-

pansion remaining constant across different scenarios. This consistency indicates their role

in the energy mix of meeting clean electricity targets. Interestingly, solar PV resource classes

5 and 6 complement each other, with closely matched capacity factor and potential capacity.

The combined capacity expansion of ’New NaturalGas’ from both combustion turbines

and combined cycle technologies shows relatively stable. This stability is crucial in the

context of maintaining a capacity reserve margin, which ensures a certain level of installed

capacity from conventional technologies for electrical reliability. Additionally, other than

renewable technologies, there is an expansion in capacity from fuel cells and nuclear sources.

This expansion is part of the strategy to meet the clean electricity target.

The analysis of total electricity generation by technology, as presented in Figure 3.7,

shows a similar trend observed in capacity expansion. The leading source of electricity gen-

eration across all scenarios is solar PV. In addition, the trend indicates that generation from

pre-installed technologies like ’Old SolarPV’, ’Old OnshoreWind’, and ’Old OtherConventional’

remains constant regardless of the scenario. This consistency suggests that pre-installed solar
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Figure 3.6: Total Capacity Expansion (MW) vs. Deterministic by Tech/Source in
CANO&CASO

PV and onshore wind facilities are fully utilized for generation until they reach the technical

lifetime.

However, the reason for the stable output from pre-installed conventional technologies

is different. Specifically, California’s energy policy includes plans to retire all pre-installed

coal-powered generators by 2025, nearly 85% of pre-installed steam turbines by 2025, and

all pre-installed nuclear capacity by 2026. Additionally, the ambitious goals of RPS and

the clean electricity target further reduce the generation from conventional technologies.

As a result, there is a noticeable increase in generation from other pre-installed renewable

sources as uncertainty increases. This rise is mainly driven by the enhanced utilization of

hydroelectric technology.

Figure 3.8 focuses on the percentage of electricity generation by technology. Solar PV

consistently emerges as the primary source across all scenarios. The generation from pre-

installed solar PV and onshore wind remains constant indicating the full utilization until
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their retirement. For the pre-installed conventional plants, similarly observed in Figure 3.7,

the low and consistent generation aligns with California’s energy policy to retire pre-installed

coal-fired and nuclear plants, alongside its planned strict environmental targets.

Figure 3.7: Total Electricity Generation (MWh) vs. Deterministic by Tech/Source in
CANO&CASO

When analyzing the ratio of generation compared to the deterministic scenario, differ-

ent technologies show distinct patterns. As Γp% increases, ’New Other Renewable’ category

combined with ’New Geothermal’ and ’New Hydroelectric’ has a notable rise in generation.

A similar trend is observed for ’New OnshoreWind’. Conversely, conventional energy sources

like ’New NatrualGas’ exhibit slight fluctuations but generally maintain value close to the

deterministic scenario. The ’Old Other Renewable’ category, dominated by pre-installed hy-

droelectric technology, also shows significant increases in generation with higher Γp% values,

which is consistent as observed in Figure 3.7.
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Figure 3.8: Ratio of Total Electricity Generation (MWh) vs. Deterministic by Tech/Source
in CANO&CASO

In summary, experiments show that total costs gradually increase from Γ0% to Γ70% fol-

lowed by a sudden surge due to the growing demand uncertainty. The highest cost is 126%

of the deterministic problem at Γ100%. The capacity expansion remains stable under higher

uncertainty, discouraging capacity expansion at the early phase of the time frame to pre-

vent high operational expenses. Instead, the utilization of pre-installed capacity increases

to meet demand. Compared to the deterministic problem, total renewable generation rises

as uncertainty increases. Across all scenarios, solar PV is the dominant technology for both

capacity expansion and electricity generation. However, the allocation among different solar

PV resource classes varies with the values of uncertainty. This variation in allocation reflects

the balance of factors such as cost efficiency, capacity factor, and potential capacity.
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3.5. Summary

In this chapter, we introduced a long-term energy planning model that integrates renew-

able energy. The model aims to minimize the total costs incurred over the upcoming decades.

These costs include infrastructure investments, the resource cost for electricity generation,

the variable and fixed operation and maintenance (O&M) expenses, and electricity purchase

while ensuring electrical reliability, complying with potential capacity limitations for various

energy sources, meeting electricity demand, and ensuring the planned goals of Renewable

Portfolio Standards (RPS) and clean electricity.

We considered the real-world situation in which uncertainty appears in various parame-

ters. Therefore, we incorporated the uncertainty in our model parameters, including resource

cost rate, variable and fixed O&M cost rate, electricity price, and demand in the future. We

proposed a robust optimization problem and provided a tractable formulation.

We performed numerical experiments on California. Our study spans from 2023 to 2050,

a critical period for California to achieve its ambitious goals: 60% RPS by 2030 and 100%

RPS by 2045. We vary values of the budget of constraint Γ’s to reflect the decision-maker’s

perspective and provide them with diverse strategies for capacity expansion investment and

electricity generation portfolios in the long run.

In the future, we aim to integrate Renewable Energy Certificates (RECs) into our model.

RECs serve as exchangeable proofs, certifying the generation and contribution of renewable

energy delivered into the power grid [83,84]. Their significance in renewable energy markets

is growing, as many individuals and companies express a willingness to acquire RECs to

support renewable energy. This trend could potentially incentivize decision-makers to invest

further in renewable energy infrastructure [85]. While numerous studies have delved into the

impact of RECs on the market [86–90], there remains a limited amount of literature on the

subject. In addition to incorporating RECs, we aim to expand our model to encompass all
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states within the nation. Our objective will shift from focusing solely on decision-making for

a single state to minimizing the overall social cost for the entire country.

Additionally, we intend to examine the hidden costs associated with renewable energy,

which might appear in the coming decades. We may encounter situations where numerous

infrastructures approach the end of their usage lifetime, and the recycling of these facilities

might incur substantial expenses. Moreover, the potential adverse impacts of renewable

installations on the ecology, climate, and various species require further investigation.
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Chapter 4

Conclusion

In this dissertation, we investigated the advantages of robust optimization approaches

for addressing portfolio selection problem and long-term energy planning model integrated

with renewable energy.

In the portfolio allocation problem, we proposed a robust optimization approach for the

Mean-Variance portfolio selection problem under uncertainty. The classical Markowitz’s

Mean-Variable optimization model optimizes portfolio allocation based on expected returns

and risks. However, the expected returns are estimated from historical data and are in-

fluenced by estimation errors. In this study, we formulate a robust portfolio model using

Sharpe’s single-index model to describe the stock returns. The Sharpe’s model coefficients

α and β measure the expected return of a stock, which is independent of market perfor-

mance, and how sensitive a stock is to the market moves, respectively. We applied Ordinary

Least Squares Estimation to compute the coefficients using the historical data. However,

uncertainty exists in the coefficients in the real world.

Therefore, we developed a robust optimization model by assuming Sharpe’s α and β

estimates lie within a prespecified ε from the actual coefficients. The uncertainty set for α

and β is motivated by the idea that the actual α and β driving future stock returns to be close

to the estimated values. The inherent inaccuracy of estimates calculated from the historical

data is potentially due to unmodeled factors. The robust optimization then optimizes the

portfolio allocation to minimize the risk while ensuring the minimum expected return from

the portfolio based on decision-makers’ risk aversion levels. We then provided a tractable

reformulation to solve the problem in a commercial solver.
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We conducted numerical experiments varying the minimum required expected portfolio

return and ε, and analyzed the performance of our model compared to the benchmark. The

decision-maker selects ε to reflect his/her attitude towards risk. Experiments of Dow Jones

and NASDAQ 100 indices reveal the existence of an optimal solution of ε > 0, achieving a

higher return with a lower risk. We also compared our approach with Goldfarb and Iyengar’s

model. The numerical results indicate that our approach provides the decision-makers with

various options for portfolio allocations to match their risk preference. Future research could

extend the robust optimization to multi-factor models. Challenges include the construction

of an uncertainty set for multiple return factors and tractable reformulation of the associated

robust optimization problem.

In the study of renewable energy, we developed a comprehensive long-term energy plan-

ning model integrating renewable technologies to meet environmental targets. Unlike typical

single-period models assuming immediate capacity availability, our model incorporates re-

alistic construction lead times before new infrastructure becomes operational. We derived

installed capacity expression over the planning horizon that captured these construction

times. Our model also considered the limited resources in the real world by imposing com-

petition costs for scarce materials and labor in the market.

Furthermore, we formulated a tractable robust optimization considering uncertainty in

resource cost, operation and maintenance cost, electricity price, and demand. In addition,

the model provided flexibility to control uncertainty in each time period based on decision-

makers’ plans for future events. In the numerical experiments, we applied the approach to

California. The results demonstrated that solar photovoltaic technology is the dominant

source for achieving renewable energy goals in California across all scenarios; however, the

allocation between solar photovoltaic sub-technologies changed under different scenarios in

response to uncertainty. The model optimized solar capacity expansion and generation be-

tween its resource and cost classes under different levels of uncertainty. In addition, the study
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generated strategies for capacity expansion and electricity generation profiles in California

from 2023 to 2050 to achieve its Renewable Portfolio Standards and clean electricity targets.

Future research could incorporate renewable energy credits and incentives and expand

the model to the national level. In addition, the costs of recycling the retired renewable

infrastructure and the environmental impacts caused by equipment like solar panels are

important considerations to include in future studies.

100



Appendix A

A.1. Chapter 2

Table 1.1: Portfolios Allocation for NDX 86 (w = 0)

i

ε
0 (Benchmark) 0.0001 0.0006 0.002 0.005 0.01 0.013 0.03 0.05 0.06 0.1

AAPL 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

ADBE 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

ADI 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

ADP 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

ALXN 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

AMAT 0 0 0 0 0 0 0 0 0 0 0.0128

AMGN 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

AMZN 0 0 0 0 0 0 0 0 0 0.0149 0.0128

ANSS 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

ASML 0 0 0 0 0 0 0 0 0 0.0149 0.0128

ATVI 0 0 0 0 0 0 0.0345 0.0185 0.0161 0.0149 0.0128

BIIB 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

BMRN 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

CDNS 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

CERN 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

CHKP 0 0 0 0 0 0 0.0345 0.0185 0.0161 0.0149 0.0128

CMCSA 0 0 0 0 0 0 0.0345 0.0185 0.0161 0.0149 0.0128

COST 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

CPRT 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

CSCO 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

CSGP 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

CSX 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

CTAS 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

CTSH 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

CTXS 0 0 0 0 0 0 0 0 0 0 0.0128

DLTR 0 0 0 0.2500 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

DXCM 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

EA 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128
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Continued from previous page

i

ε
0 (Benchmark) 0.0001 0.0006 0.002 0.005 0.01 0.013 0.03 0.05 0.06 0.1

EBAY 0 0 0 0 0 0 0 0 0 0.0149 0.0128

EXC 1 0.5 0.3333 0.2500 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

EXPE 0 0 0 0 0 0 0 0 0 0 0.0128

FAST 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

FISV 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

GILD 0 0 0 0 0 0 0.0345 0.0185 0.0161 0.0149 0.0128

GOOGL 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

IDXX 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

ILMN 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

INTC 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

INTU 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

ISRG 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

KLAC 0 0 0 0 0 0 0 0 0 0 0.0128

LBTYA 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

LBTYK 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

LRCX 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

LULU 0 0 0 0 0 0 0 0 0 0.0149 0.0128

MAR 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

MCHP 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

MDLZ 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

MNST 0 0 0 0 0 0 0.0345 0.0185 0.0161 0.0149 0.0128

MSFT 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

MU 0 0 0 0 0 0 0 0 0 0 0.0128

MXIM 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

NFLX 0 0 0 0 0 0 0 0 0 0 0.0128

NTAP 0 0 0 0 0 0 0 0 0 0 0.0128

NTES 0 0 0 0 0 0 0.0345 0.0185 0.0161 0.0149 0.0128

NVDA 0 0 0 0 0 0 0 0 0 0 0.0128

ORLY 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

PAYX 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

PCAR 0 0 0 0 0 0 0 0 0 0.0149 0.0128

PEP 0 0 0.3333 0.2500 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

QCOM 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

REGN 0 0 0 0 0 0 0 0 0 0 0.0128

ROST 0 0 0 0 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

SBUX 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

SIRI 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

SNPS 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

SWKS 0 0 0 0 0 0 0 0 0.0161 0.0149 0.0128

TCOM 0 0 0 0 0 0 0 0 0 0 0.0128
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Continued from previous page

i

ε
0 (Benchmark) 0.0001 0.0006 0.002 0.005 0.01 0.013 0.03 0.05 0.06 0.1

TMUS 0 0 0 0 0 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

TTWO 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

TXN 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

ULTA 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

VRSN 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

VRTX 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

WBA 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

WDC 0 0 0 0 0 0 0 0 0 0 0.0128

XEL 0 0.5 0.3333 0.2500 0.0714 0.0435 0.0345 0.0185 0.0161 0.0149 0.0128

XLNX 0 0 0 0 0 0 0 0.0185 0.0161 0.0149 0.0128

Table 1.2: Portfolios Allocation for NDX 86 (w = 0.01)

i

ε
0 (Benchmark) 0.0005 0.002 0.005 0.011 0.017 0.02 0.04 0.06 0.1

AAPL 0 0 0 0 0 0 0.0244 0.0179 0.0149 0.0128

ADBE 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

ADI 0 0 0 0 0 0 0.0244 0.0179 0.0149 0.0128

ADP 0 0 0 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

ALXN 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

AMAT 0 0 0 0 0 0 0 0 0 0.0128

AMGN 0 0 0 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

AMZN 0 0 0 0 0 0 0 0 0.0149 0.0128

ANSS 0 0 0 0 0 0.0303 0.0244 0.0179 0.0149 0.0128

ASML 0 0 0 0 0 0 0 0 0.0149 0.0128

ATVI 0 0 0 0 0 0.0303 0.0244 0.0179 0.0149 0.0128

BIIB 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

BMRN 0 0 0 0 0 0 0 0 0.0149 0.0128

CDNS 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

CERN 0 0 0 0 0 0.0303 0.0244 0.0179 0.0149 0.0128

CHKP 0 0 0 0 0 0.0303 0.0244 0.0179 0.0149 0.0128

CMCSA 0 0 0 0 0 0.0303 0.0244 0.0179 0.0149 0.0128

COST 0 0 0 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

CPRT 0 0 0 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

CSCO 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

CSGP 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

CSX 0 0 0 0 0 0 0 0.0179 0.0149 0.0128
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Continued from previous page

i

ε
0 (Benchmark) 0.0005 0.002 0.005 0.011 0.017 0.02 0.04 0.06 0.1

CTAS 0 0 0 0 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

CTSH 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

CTXS 0 0 0 0 0 0 0 0 0 0.0128

DLTR 0 0.0853 0.2500 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

DXCM 0 0 0 0 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

EA 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

EBAY 0 0 0 0 0 0 0 0 0.0149 0.0128

EXC 0.4362 0.4573 0.2500 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

EXPE 0 0 0 0 0 0 0 0 0 0.0128

FAST 0 0 0 0 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

FISV 0 0 0 0 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

GILD 0 0 0 0 0 0.0303 0.0244 0.0179 0.0149 0.0128

GOOGL 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

IDXX 0 0 0 0 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

ILMN 0 0 0 0 0 0 0.0244 0.0179 0.0149 0.0128

INTC 0 0 0 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

INTU 0 0 0 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

ISRG 0 0 0 0 0 0 0 0 0.0149 0.0128

KLAC 0 0 0 0 0 0 0 0 0 0.0128

LBTYA 0 0 0 0 0 0 0 0 0.0149 0.0128

LBTYK 0 0 0 0 0 0 0 0 0.0149 0.0128

LRCX 0 0 0 0 0 0 0 0 0.0149 0.0128

LULU 0 0 0 0 0 0 0 0 0.0149 0.0128

MAR 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

MCHP 0 0 0 0 0 0 0.0244 0.0179 0.0149 0.0128

MDLZ 0 0 0 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

MNST 0 0 0 0 0 0.0303 0.0244 0.0179 0.0149 0.0128

MSFT 0 0 0 0 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

MU 0 0 0 0 0 0 0 0 0 0.0128

MXIM 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

NFLX 0 0 0 0 0 0 0 0 0 0.0128

NTAP 0 0 0 0 0 0 0 0 0 0.0128

NTES 0 0 0 0 0 0.0303 0.0244 0.0179 0.0149 0.0128

NVDA 0 0 0 0 0 0 0 0 0 0.0128

ORLY 0 0 0 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

PAYX 0 0 0 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

PCAR 0 0 0 0 0 0 0 0 0.0149 0.0128

PEP 0 0 0.2500 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

QCOM 0 0 0 0 0 0 0.0244 0.0179 0.0149 0.0128

REGN 0 0 0 0 0 0 0 0 0 0.0128
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Continued from previous page

i

ε
0 (Benchmark) 0.0005 0.002 0.005 0.011 0.017 0.02 0.04 0.06 0.1

ROST 0 0 0 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

SBUX 0 0 0 0 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

SIRI 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

SNPS 0 0 0 0 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

SWKS 0 0 0 0 0 0 0 0 0.0149 0.0128

TCOM 0 0 0 0 0 0 0 0 0 0.0128

TMUS 0 0 0 0 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

TTWO 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

TXN 0 0 0 0 0 0 0.0244 0.0179 0.0149 0.0128

ULTA 0 0 0 0 0 0 0.0244 0.0179 0.0149 0.0128

VRSN 0 0 0 0 0 0.0303 0.0244 0.0179 0.0149 0.0128

VRTX 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

WBA 0 0 0 0 0 0.0303 0.0244 0.0179 0.0149 0.0128

WDC 0 0 0 0 0 0 0 0 0 0.0128

XEL 0.5638 0.4573 0.2500 0.0714 0.0435 0.0303 0.0244 0.0179 0.0149 0.0128

XLNX 0 0 0 0 0 0 0.0244 0.0179 0.0149 0.0128

Table 1.3: Portfolios Allocation x′is for NDX 86 (w = 0.015)

i

ε
0 (Benchmark) 0.0003 0.0007 0.001 0.002 0.006 0.017 0.04 0.06 0.1

AAPL 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

ADBE 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

ADI 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

ADP 0 0 0 0 0 0.0588 0.0303 0.0179 0.0149 0.0128

ALXN 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

AMAT 0 0 0 0 0 0 0 0 0 0.0128

AMGN 0 0 0 0 0 0.0588 0.0303 0.0179 0.0149 0.0128

AMZN 0 0 0 0 0 0 0 0 0.0149 0.0128

ANSS 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

ASML 0 0 0 0 0 0 0 0 0.0149 0.0128

ATVI 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

BIIB 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

BMRN 0 0 0 0 0 0 0 0 0.0149 0.0128

CDNS 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

CERN 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

CHKP 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128
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i

ε
0 (Benchmark) 0.0003 0.0007 0.001 0.002 0.006 0.017 0.04 0.06 0.1

CMCSA 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

COST 0 0 0 0 0 0.0588 0.0303 0.0179 0.0149 0.0128

CPRT 0 0 0 0 0 0.0588 0.0303 0.0179 0.0149 0.0128

CSCO 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

CSGP 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

CSX 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

CTAS 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

CTSH 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

CTXS 0 0 0 0 0 0 0 0 0 0.0128

DLTR 0 0.4718 0.2957 0.2169 0.1662 0.0588 0.0303 0.0179 0.0149 0.0128

DXCM 0.0655 0 0.1128 0.1323 0.0031 0 0.0303 0.0179 0.0149 0.0128

EA 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

EBAY 0 0 0 0 0 0 0 0 0.0149 0.0128

EXC 0 0.0563 0.2957 0.2169 0.1662 0.0588 0.0303 0.0179 0.0149 0.0128

EXPE 0 0 0 0 0 0 0 0 0 0.0128

FAST 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

FISV 0 0 0 0 0 0.0588 0.0303 0.0179 0.0149 0.0128

GILD 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

GOOGL 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

IDXX 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

ILMN 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

INTC 0 0 0 0 0 0.0588 0.0303 0.0179 0.0149 0.0128

INTU 0 0 0 0 0 0.0588 0.0303 0.0179 0.0149 0.0128

ISRG 0 0 0 0 0 0 0 0 0.0149 0.0128

KLAC 0 0 0 0 0 0 0 0 0 0.0128

LBTYA 0 0 0 0 0 0 0 0 0.0149 0.0128

LBTYK 0 0 0 0 0 0 0 0 0.0149 0.0128

LRCX 0 0 0 0 0 0 0 0 0.0149 0.0128

LULU 0 0 0 0 0 0 0 0 0.0149 0.0128

MAR 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

MCHP 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

MDLZ 0 0 0 0 0 0.0588 0.0303 0.0179 0.0149 0.0128

MNST 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

MSFT 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

MU 0 0 0 0 0 0 0 0 0 0.0128

MXIM 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

NFLX 0 0 0 0 0 0 0 0 0 0.0128

NTAP 0 0 0 0 0 0 0 0 0 0.0128

NTES 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

NVDA 0 0 0 0 0 0 0 0 0 0.0128
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i

ε
0 (Benchmark) 0.0003 0.0007 0.001 0.002 0.006 0.017 0.04 0.06 0.1

ORLY 0 0 0 0 0.1662 0.0588 0.0303 0.0179 0.0149 0.0128

PAYX 0 0 0 0 0 0.0588 0.0303 0.0179 0.0149 0.0128

PCAR 0 0 0 0 0 0 0 0 0.0149 0.0128

PEP 0 0 0 0.2169 0.1662 0.0588 0.0303 0.0179 0.0149 0.0128

QCOM 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

REGN 0 0 0 0 0 0 0 0 0 0.0128

ROST 0 0 0 0 0.1662 0.0588 0.0303 0.0179 0.0149 0.0128

SBUX 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

SIRI 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

SNPS 0 0 0 0 0 0.0588 0.0303 0.0179 0.0149 0.0128

SWKS 0 0 0 0 0 0 0 0 0.0149 0.0128

TCOM 0 0 0 0 0 0 0 0 0 0.0128

TMUS 0 0 0 0 0 0.0588 0.0303 0.0179 0.0149 0.0128

TTWO 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

TXN 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

ULTA 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

VRSN 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

VRTX 0 0 0 0 0 0 0 0.0179 0.0149 0.0128

WBA 0 0 0 0 0 0 0.0303 0.0179 0.0149 0.0128

WDC 0 0 0 0 0 0 0 0 0 0.0128

XEL 0.9345 0.4718 0.2957 0.2169 0.1662 0.0588 0.0303 0.0179 0.0149 0.0128

XLNX 0 0 0 0 0 0 0 0.0179 0.0149 0.0128
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Figure 1.1: Performance on Simulated NDX 86 (w = 0.01)

Table 1.4: Simulated NDX 86 (w = 0.01)

ε 0 0.0005 0.002 0.005 0.011 0.017 0.02 0.04 0.06 0.1

Mean 0.010 0.010 0.012 0.016 0.018 0.019 0.019 0.019 0.020 0.021

Median 0.009 0.010 0.012 0.016 0.018 0.019 0.019 0.020 0.020 0.021

S.D 0.034 0.032 0.026 0.025 0.028 0.032 0.032 0.034 0.037 0.041
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Figure 1.2: Performance on Simulated NDX 86 (w = 0.015)

Table 1.5: Simulated NDX 86 (w = 0.015)

ε 0 0.0003 0.0007 0.001 0.002 0.006 0.017 0.04 0.06 0.1

Mean 0.014 0.015 0.016 0.016 0.015 0.016 0.019 0.019 0.020 0.021

Median 0.014 0.015 0.016 0.016 0.015 0.016 0.019 0.020 0.020 0.021

S.D 0.041 0.038 0.033 0.030 0.025 0.026 0.032 0.034 0.037 0.041
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A.2. Chapter 3
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