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Alternating recurrent events data arise commonly in health research; examples include

hospital admissions and discharges of diabetes patients; exacerbations and remissions of

chronic bronchitis; and quitting and restarting smoking. Recent work has involved formulat-

ing and estimating joint models for the recurrent event times considering non-negligible event

durations. However, prediction models for transition between recurrent events are lacking.

We consider the development and evaluation of methods for predicting future events within

these models. Specifically, we propose a tool for dynamically predicting transition between

alternating recurrent events in real time. Under a flexible joint frailty model, we derive the

predictive probability of a transition from one event type to the other within a pre-specified

time period. To circumvent numerical integration in calculating the predictive probability,

we obtain the approximate transition probability by a Taylor expansion. Simulation results

demonstrate that our tool provides better prediction performance in discrimination, as mea-

sured by the area under the ROC curve (AUC) and sensitivity, than prediction approaches

that rely on standard binary regression models. Also, simulation shows that prediction re-

sults from approximate transition probability are as close as results from the exact predictive

probability. We illustrate predictions in analyses of relapses of chronic bronchitis exacerba-

tion from a pharmaceutical trial and hospital readmissions in patients with diabetes from

Medicaid claims data.
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The final part of this dissertation (Chapter 6) compares predictive performance between

logistic regression and random forests for 30-day readmission using longitudinal claims data.

Several studies have compared these and other prediction models using longitudinal elec-

tronic health records or claims data. Because most of them applied logistic regression to

the longitudinal observations, ignoring the lack of independence within subjects, or claims

data consisting of independent observations, a correct comparison of the models under lon-

gitudinal data remains obscure. Moreover, those studies did not compare the out-of-sample

performance. We address these issues and compare the prediction performance of the models

using longitudinal claims data. We implement simulations by randomly choosing a record

from each patient’s multiple records in the training set, fitting the two models, applying the

models to the training, test, and external sets, and obtaining AUC and sensitivity for each.

We observe that although random forests generally gives better predictions on the training

set, logistic regression performs better on test and external sets. In an empirical study,

we apply the prediction methods to Medicaid claims data covering inpatient admissions of

patients with heart failure.
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CHAPTER 1

Introduction

Diabetes is a common and serious disease with a global prevalence of 9.3% [34] and a US

prevalence of 13%. Hospitalized patients with diabetes are twice as likely to be re-admitted

within 30 days of discharge compared to similar patients without diabetes [32]. Thus, these

patients are highly likely to experience recurrences of admission and discharge alternatively

and this makes it hard to maintain their daily life in a long term. If future readmission

risk can be estimated at discharge, medical providers can create treatment plans that will

forestall readmissions without compromising patient health. Also, this can improve patients

prospects of remaining healthy at home and avoid repeated lengthy recurrences. In this dis-

sertation up to Chapter 5, we construct a joint frailty model describing transition intensity

of such alternating recurrent events and based on the model, propose a dynamic prediction

tool for a future recurrence with a window of prediction.

If a patient has multiple hospitalization records, the alternating recurrent events for

admission and discharge are nested in the patient with within-patient correlation between

events. Other potential sources of correlation include medical providers, hospitals, and re-

gions. Thus, modeling the transition intensity to account for cluster effects will presumably

give rise to more accurate predictions.

Sud et al [37] found that longer hospital stays for heart failure are associated with in-

creased risk of cardiovascular and heart failure readmission. Thus, we should include previous

length of stay information in models for the readmission intensity. Naturally, constructing

transition intensity models with alternating gap time sequences over total time is desirable

[7].
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This relationship can also manifest as a negative correlation between the lengths of stay

and discharge in an alternating recurrent events model. Failure to account for this correla-

tion can lead to biased model estimation and, a fortiori, inaccurate prediction.

Various statistical methods have been developed for alternating recurrent events. Xue

and Brookmeyer [40] introduced a bivariate frailty model for the analysis of bivariate survival

data. This model accommodates clustered multivariate failure time data with two possibly

correlated frailties following a bivariate normal distribution. Instead of gap-time scale, this

model focused on calendar-time scale for failure time. Cook et al. [6] developed a model for

alternative recurrent events based on Weibull forms for the conditional transition intensities

and bivariate normal frailties to accommodate subject variability. They adopted Weibull

hazard functions for the baseline intensity to address trends of event duration in the transi-

tion intensities. Lawless et al. [18] considered the modeling and analysis of event durations,

also called sojourn times, with semi-Markov models where the durations of different sojourns

are assumed to be independent. Instead of a full parametric approach, they applied piece-

wise constant hazard functions for the baseline intensity to flexibly reflect the relationship

between event durations and transition intensity. From these studies, Cook and Lawless [7]

described a joint transition frailty model for alternating recurrent events. Their model uses

a gap-time formulation and directly accounts for non-negligible event durations in the model

via baseline intensity function. It moreover assumes a bivariate normal frailty distribution

without restriction on the sign of the correlation. Later, Mazroui et al. [25] extended this

to multivariate frailty models for two types of recurrent events with a dependent terminal

event.

Various methods exist for estimating joint frailty models. Qing [19] proposed a pseudo-

likelihood method that assumes a parametric model for the baseline intensity function. Wang

et al. [38] applied penalized partial log-likelihood to estimate the regression coefficients and

individual frailties. By avoiding the estimation of the baseline transition intensity, their

method gives fast computation times even with large samples. Liu et al. [23], Huang et

al. [14], and Rondeau et al. [31] proposed shared frailty models for recurrent events and a

2



terminal event. In order to estimate the parameters in two correlated intensity functions,

they used an EM algorithm, Laplace approximation, or semiparametric penalized likelihood

approach including cubic M-splines and a smoothing penalty for the baseline functions.

Duchateau and Janssen [9] and Wen et al. [39] proposed Bayesian estimation using Markov

chain Monte Carlo.

Although numerous models and estimation methods are now available, risk prediction

for future recurrence of alternating recurrent events is still lacking. Some studies developed

prediction tools using joint frailty models, but their interest is not a recurrent event (such

as cancer relapse) but a terminal event (such as death) [27][30][24]. Li et al. [20] studied

smoking cessation trials and proposed prediction tools for individual long-term smoking ces-

sation success based on a cure-frailty model. To our knowledge, there has been no proposed

prediction tool for alternating recurrent events under the joint frailty model.

The remainder of this dissertation is organized as follows: In Chapter 2, we define an

alternating two-state process and joint transition intensity model for alternating recurrent

events. We estimate the model parameters by adopting the penalized partial log-likelihood

approach of Wang et al. [38]. Also, we propose nonparametric estimation of the baseline

transition intensity function using the Breslow estimator and B-spline regression. Chapter

3 presents a dynamic prediction tool that considers process history. In Chapter 4, we use

simulation to compare prediction performance between our approach and other methods that

rely on standard binary regression models. In Chapter 5, we apply the proposed tool in two

real-data applications: Exacerbation and remission of chronic bronchitis, and readmission of

Medicaid patients with diabetes. Chapter 6 uses simulation and a real-data application to

compare the in-sample and out-of-sample prediction performance of logistic regression and

random forests. Chapter 7 gives some concluding remarks.

3



CHAPTER 2

Joint Survival Modeling for Alternating Recurrent Events

2.1. Alternating two-state process

An alternating two-state process is a special case of a multi-state process when there are

only 2 possible states and neither is terminal. In Figure 2.1, there are two events indexed

by 0 and 1 occurring alternatively; these are called alternating recurrent events.

Figure 2.1: Alternating two-state process

Assume that there are n independent subjects being followed up over time who undergo

alternating recurrent events. Let T ∗ijk denote the time of the kth occurrence of event type

j ∈ {0, 1} for subject i ∈ {1, . . . , n}. We assume that every subject has at least one event for

each type and the record always starts from type 0 and is censored with type 1. Consequently,

the total event times are ordered by 0 < T ∗i01 < T ∗i11 < T ∗i02 < T ∗i12 < · · ·. We define a gap time

sequence between two alternating events. Given the total event times, W ∗
i0k = T ∗i0k−T ∗i1(k−1)

is the gap time for j = 0, and W ∗
i1k = T ∗i1k − T ∗i0k is the gap time for j = 1. Note that when

k = 1, T ∗i10 is the starting point for recording, and so it is equal to 0.

4



The alternating two-state process is right-censored so that total observed event times

and censoring indicator are defined as Tijk = min(T ∗ijk, Ci) and δijk = I(T ∗ijk ≤ Ci) where

Ci is a censoring time and I(·) is a 0/1 indicator function. Let ri ≥ 0 be the number of

observed complete event pairs for subject i. Then, δijk = 1 and Tijk = T ∗ijk for k = 1, ..., ri

while δi0(ri+1) = 1 and δi1(ri+1) = 0 for k = ri + 1. Accordingly, Ti0(ri+1) = T ∗i0(ri+1) while

Ti1(ri+1) = Ci. In order to define observed gap times, first censoring Cw
ijk is defined where

Cw
i0k = Ci − Ti1(k−1) and Cw

i1k = Ci − Ti0k. Then, the observed gap times are Wijk =

min(W ∗
ijk, C

w
ijk).

Figure 2.2 illustrates the model. For instance, if alternating recurrent events are hospital

admission and discharge, Wi01 and Wi11 are the first length of stay (LoS) and length of

discharge (LoD), respectively. While the second LoS Wi02 is uncensored, the last LoD W ∗
i12

is censored, so there is only one observed complete event pair. Note that since W ∗
i12 > Cw

i12,

the observed gap time Wi12 is Cw
i12.

Figure 2.2: Alternating two-state process when ri = 1

2.2. Joint transition intensity model

For each subject, there is one or more time-dependent or time-varying covariate for each

gap time Wijk, denoted Zijk where Zi0k = Zi0(T
+
i1(k−1)), Zi1k = Zi1(T

+
i0k) and T

+
ijk represents

time immediately after Tijk. That is, covariates for each gap time contain information on the

subject promptly after the event occurring at the gap time origin. Note that the dimensions

of the covariate may differ by event type. Also, given Zijk, we assume that Ci is independent

5



of all event times.

Let Zi = {Zijk, j = 0, 1, k = 1, ..., ri + 1} be the covariate history of subject i. Given Zi,

we define the transition intensity model from j to 1− j in terms of the alternating gap time

sequence using a Cox proportional hazards model:

λijk(w|Zi) = λ0j(w) exp(βTj Zijk),

where λ0j(·) is the baseline transition intensity and βj is the vector of regression coefficients.

This model has two notable points: First, by defining the intensity model as a function of

gap time instead of total event time, it accommodates recurrent events with non-negligible

duration. Second, though the transition intensity function is defined for each occurrence,

event type, and subject to consider covariates at each gap time, the baseline transition

intensity function and regression coefficient vector are defined only for each event type.

This approach is reasonable because event duration is generated for each event type, and

covariates are usually common across subject and occurrence but vary by event type.

A potential problem with this model is that it does not permit correlation of outcomes

within subjects, potentially resulting from unmeasured confounders. To address this issue,

we adopt a model that includes individual frailty terms in the intensity linear predictor:

λijk(w|Zi,ui) = λ0j(w) exp(βTj Zijk + uij) (2.1)

Here, ui0 and ui1 are the individual transition frailties to the event type 1 and type 0, respec-

tively. We call this the joint transition intensity model (JTIM). To complete its specification,

we assume that the vector of transition frailties ui = (ui0, ui1)
T follows a bivariate normal

distribution N(02,Σ2×2) where Σ2×2 = (
σ2
0 σ01

σ10 σ2
1

) is a positive-definite variance-covariance

matrix. Note that through the covariance term in Σ, the dependency between event dura-

tions can be identified and this allows a more flexible model. Secondly, we assume that ui’s

are mutually independent and ui is independent of Zi,∀i. Lastly, for (j, k) 6= (p, q), W ∗
ijk

and W ∗
ipq are independent given {ui,Zijk,Zipq}.
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We combine the parameters in (2.1) in a vector denoted by

ξ = (λ00(·), λ01(·),βT0 ,βT1 )T . Then, for subject i, the likelihood conditional on ui and Zi is

Li(ξ|ui,Zi) =
1∏
j=0

ri+1∏
k=1

{λijk(Wijk|Zi,ui)}δijkSijk(Wijk|Zi,ui)

=
1∏
j=0

ri+1∏
k=1

{λ0j(Wijk) exp(βTj Zijk + uij)}δijk{exp(−Λ0j(Wijk) exp(βTj Zijk + uij))}

where Sijk(·|Zi,ui) is the conditional survival function which can be readily derived from

(2.1) and Λ0j(w) =
∫ w
0
λ0j(u)du is the cumulative baseline transition intensity [7]. Then, the

joint likelihood for all subjects is L =
∏n

i=1 Li(ξ|ui,Zi) and the marginal likelihood is the

expectation of L with respect to ui, which is

Lm = L(ξ|Zi)

=

∫
ui

n∏
i=1

Li(ξ|ui,Zi)g(ui|Σ)dui
(2.2)

where g(·|Σ) is the pdf of the bivariate normal distribution with mean 02 and variance Σ.

2.3. Types of time-dependent covariate

Time-dependent covariates are classified into two broad classes [16]: External and inter-

nal. An external covariate is one whose values are determined independently of an event

process, e.g. air pollution levels or age. Its future path is not affected by the occurrence

of events although it can influence the rate of events over time. An internal covariate is

one whose path is affected by survival status; in many cases, it requires the survival of the

individual for its existence. Examples of internal covariates include biomarkers and other

patient parameters that one can measure only if an individual is alive.

A Cox model can include both types of covariates. The distinction comes into play when

constructing survival distributions. For example, if we have an internal covariate history
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ZH(t) = {Z(u), 0 ≤ u ≤ t}, the conditional survival distribution

S(t|ZH(t)) = Pr(T ≥ t|ZH(t))

may not make sense because ZH(t) was measured when an individual was alive at time t. For

this reason, predicting survival with internal covariates is not straightforward though some

internal covariates may explain survival well. One approach to accommodating internal

covariates is to adopt a point process formulation and simulate simultaneously N(t), the

number of events until t, and Z(t) ahead in time until N(t) = 1 [16].

In recurrent event modeling, the distinction is irrelevant because neither event is terminal.

Therefore at a designated future time, regardless of whether an event occurs, a subject is

still alive so that one can measure the covariates. Thus, Zi can include both internal and

external covariates. However, because alternating events create a history of past events,

some internal covariates may be functions of the past event process itself. Examples of such

internal covariates in recurrent event modeling include the cumulative number of type j

events, the most recent gap time for type j events, or the number of type j events in the

past (e.g. the number of 1-year previous admissions) [7]. Even if there are some missing

values in covariates, the first example can be collected or generated if a subject merely knows

how many events he has experienced. This example is the most common internal covariate

used in recurrent event modeling. For readmission of patients with diabetes, for example,

several studies describe a positive association between increasing length of a recent hospital

stay and readmission risk [5][33][36].

2.4. Parameter estimation

We estimate the parameter of the JTIM in two stages: First, we adopt iterative esti-

mating methods from Wang et al. [38] for the regression parameters βj, frailties ui, and

variance-covariance matrix Σ. Second, we estimate the baseline transition intensity λ0j(·)
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nonparametrically via the Breslow estimator and B-spline regression.

Under the general JTIM (2.1), there is no closed form for the marginal likelihood (2.2).

To overcome this, Wang et al. derived an approximate marginal likelihood. Let u =

(uT1 ,u
T
2 , ...,u

T
n )T be a vector stacking frailties of all subjects, which then follows a mean-zero

multivariate normal distribution MVN(02n,D2n×2n). HereD = Σ⊗In×n is a block-diagonal

matrix, where ⊗ is a Kronecker product and In×n is a n by n identity matrix. Also, let

Rij = (0(1), ..., 1(2i−1+j), ..., 0(2n)) be frailty design vectors to indicate presence of uij in the

(2i− 1 + j)th entry of u. Then, (2.1) becomes

λijk(w|Zi,Rij,ui) = λ0j(w) exp(βTj Zijk + uTRij),

and the joint likelihood function from the n subjects and their frailties is

L(ξ,u) = |D|−1/2exp(−K(u)), (2.3)

where

K(u) =
1

2
uTD−1u+

n∑
i=1

1∑
j=0

ri+1∑
k=1

Λ0j(Wijk) exp(βTj Zijk + uTRij)

− δijk{βTj Zijk + uTRij + log(λ0j(Wijk))}.

The authors approximatedK(u) through a second-order Taylor expansion denoted by K̂(u),

plugged it into (2.3), and integrated it to obtain an approximate marginal log-likelihood:

lm = log(Lm) ≈ −1

2
log|D|−K(ũ)− 1

2
log|K2(ũ)|

where ũ is the solution of ∂K(u)
∂u

= 0 and K2(u) is second derivative of K(u).

Another challenge is simultaneous estimation of the baseline transition intensity func-

tion. Wang et al. found that considering the likelihood including baseline intensity function

critically slows down the computations, and direct replacement of Λ0j(·) with its correspond-
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ing Breslow estimator overestimates the diagonal entries in Σ. To avoid this problem, they

utilized the penalized partial log-likelihood. Note that the function K(u) is the negative

penalized joint log-likelihood, which can be factored as

K(u) = −PPLL− h (λ00(·), λ01(·),β0,β1,u) ,

where PPLL indicates the penalized partial log-likelihood and h(·) contains all other terms

accompanying λ0j(·). Ripatti and Palmgren [29] demonstrated that the information loss from

ignoring h(·) is negligible, so that one can estimate β0,β1 and u solely based on the PPLL

terms. They also presented that neglecting h(·) and estimation of the baseline transition

intensity functions substantially accelerates the computation.

We estimate the regression coefficients and variance components by iterating two steps,

an inner loop and an outer loop. First, set initial values for βj,u,Σ. In the inner loop,

βj and u are estimated through the PPLL using a Newton-Raphson algorithm with initial

values. Note that Σ is considered as a known parameter which is an initial value in the

beginning and later, an estimate derived from the previous outer loop. Using a recursive

estimating method, Σ is estimated in the outer loop through an approximate marginal profile

log-likelihood given the estimates of βj and u from the previous inner loop.

Before we examine the estimation of baseline transition intensity functions λ0j(·), we

emphasize that our interest is in the length of the unknown gap time of the last event,

which depends on survivor functions derived from (2.1). Thus it is enough to estimate the

cumulative baseline transition intensity Λ0j(·) rather than λ0j(·).

We apply the Breslow estimator [4][21] for Λ0j(·) as follows:

ΛB
0j(w) =

n∑
i=1

ri+1∑
k=1

I(Wijk ≤ w)δijk∑n
p=1

∑rp+1
q=1 I(Wpjq ≥ Wijk) exp(β̂Tj Zpjq + ûpj)

,

which indicates that in terms of a gap time w, the cumulative baseline transition intensity is

estimated conditional on β̂j and û, which are in turn estimated in the previous estimation

part. Once we obtain Λ̂B
0j(w) values corresponding to the observed Wijk values, B-spline
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regression [13] is implemented to estimate the function Λ0j(·). We use a linear spline to

maintain the non-decreasing property of Λ0j(·). In the left boundary interval, nevertheless,

the linear fitting sometimes produces improper estimates, as Figure 2.3 demonstrates. On

the left plot, the linear spline causes negative estimates for observations close to 0 while the

linear spline on the right plot over-estimates the observations close to 0. To prevent this, a

cubic or higher order spline is applied in the left boundary interval, resolving the issue in

both plots.

Figure 2.3: Spline examples in left boundary interval. The solid and dashed line shows cubic
and linear spline, respectively.

In order to select proper knots, moreover, we use the A-splines (adaptive splines) approach

including automatic knot selection by Goepp et al. [11]. The approach sets a large number

of initial knots and fits B-spline regression with an iterative penalized likelihood called the

adaptive ridge to sequentially remove the unnecessary knots. We select the model achieving

the best bias-variance tradeoff by the Bayesian information criterion.
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CHAPTER 3

Dynamic Prediction of Transition Risk

3.1. Predictive transition probability considering process history

Assume that we have estimated a JTIM with existing subjects, and a new subject i

has arrived. We have information about his covariate history and recurrent events up to a

censoring time. We seek to use this information to estimate the probability of transitioning

to event type 0 within τ after censoring time Ci. That is, we estimate the probability

that unobserved true gap time W ∗
i1(ri+1) is less than or equal to observed censored gap time

Cw
i1(ri+1) + τ where τ is the window of prediction. We express the transition probability as

Pr(W ∗
i1(ri+1) ≤ Cw

i1(ri+1) + τ |W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi,Zi, ξ,Σ, ui1), (3.1)

where Hi = {Wi11,Wi12, ...,Wi1ri} is the subject’s gap-time history of event type 1. Note

that because the last gap time is always censored, Wi1(ri+1) = Cw
i1(ri+1). To obtain (3.1), we

fix estimates of ξ,Σ from the fitted model, but the subject-level transition frailty ui1 is un-

known for this new subject. To address this, we propose estimating the marginal probability

of (3.1), which we obtain by integrating out the frailty term

Pr(W ∗
i1(ri+1) ≤ Cw

i1(ri+1) + τ |W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi,Zi, ξ,Σ)

=

∫
ui1

Pr(W ∗
i1(ri+1) ≤ Cw

i1(ri+1) + τ |W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi,Zi, ξ,Σ, ui1)

×fui1(ui1|W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi,Zi, ξ,Σ)dui1,

(3.2)
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where the second integrand is the posterior density of ui1.

The first integrand is derived as follows;

Pr(W ∗
i1(ri+1) ≤ Cw

i1(ri+1) + τ |W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi,Zi, ξ,Σ, ui1)

=
Pr(Cw

i1(ri+1) ≤ W ∗
i1(ri+1) ≤ Cw

i1(ri+1) + τ,Hi,Zi, ξ,Σ, ui1)

Pr(W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi,Zi, ξ,Σ, ui1)

=
Pr(Cw

i1(ri+1) ≤ W ∗
i1(ri+1) ≤ Cw

i1(ri+1) + τ,Hi|Zi, ξ,Σ, ui1)

Pr(W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi|Zi, ξ,Σ, ui1)
.

Recall that gap times are assumed to be mutually independent given ui1,Zi. Then,

Pr(Cw
i1(ri+1) ≤ W ∗

i1(ri+1) ≤ Cw
i1(ri+1) + τ,Hi|Zi, ξ,Σ, ui1)

Pr(W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi|Zi, ξ,Σ, ui1)

=
Pr(Cw

i1(ri+1) ≤ W ∗
i1(ri+1) ≤ Cw

i1(ri+1) + τ |Zi, ξ,Σ, ui1) Pr(Hi|Zi, ξ,Σ, ui1)

Pr(W ∗
i1(ri+1) ≥ Cw

i1(ri+1)|Zi, ξ,Σ, ui1) Pr(Hi|Zi, ξ,Σ, ui1)

=
Pr(Cw

i1(ri+1) ≤ W ∗
i1(ri+1) ≤ Cw

i1(ri+1) + τ |Zi, ξ,Σ, ui1)

Pr(W ∗
i1(ri+1) ≥ Cw

i1(ri+1)|Zi, ξ,Σ, ui1)

=
Si1(ri+1)(C

w
i1(ri+1)|Zi, ξ,Σ, ui1)− Si1(ri+1)(C

w
i1(ri+1) + τ |Zi, ξ,Σ, ui1)

Si1(ri+1)(C
w
i1(ri+1)|Zi, ξ,Σ, ui1)

,

(3.3)

where Si1(ri+1)(·) is the survivor function for occurrence (ri + 1) of type 1 for subject i.

For the posterior density of ui1, because ui1 and Zi are assumed to be independent, and

ξ and Σ are fixed,

fui1(ui1|W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi,Zi, ξ,Σ)

=
fui1Cw

i1(ri+1)
Hi

(ui1,W
∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi,Zi, ξ,Σ)

fCw
i1(ri+1)

Hi
(W ∗

i1(ri+1) ≥ Cw
i1(ri+1), Hi,Zi, ξ,Σ)

=
fCw

i1(ri+1)
Hi

(W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi|ui1,Zi, ξ,Σ)fui1(ui1|Zi, ξ,Σ)∫
ui1

fCw
i1(ri+1)

Hi
(W ∗

i1(ri+1) ≥ Cw
i1(ri+1), Hi|ui1,Zi, ξ,Σ)fui1(ui1|Zi, ξ,Σ)dui1

.
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Here, fui1(·|σ1) is the normal density with mean 0 and standard deviation σ1. Next we derive

fCw
i1(ri+1)

Hi
(W ∗

i1(ri+1) ≥ Cw
i1(ri+1), Hi|ui1,Zi, ξ,Σ)fui1(ui1|Zi, ξ,Σ)∫

ui1

fCw
i1(ri+1)

Hi
(W ∗

i1(ri+1) ≥ Cw
i1(ri+1), Hi|ui1,Zi, ξ,Σ)fui1(ui1|Zi, ξ,Σ)dui1

=
fCw

i1(ri+1)
(W ∗

i1(ri+1) ≥ Cw
i1(ri+1)|ui1,Zi, ξ,Σ)fHi

(Hi|ui1,Zi, ξ,Σ)fui1(ui1|σ1)∫
ui1

fCw
i1(ri+1)

(W ∗
i1(ri+1) ≥ Cw

i1(ri+1)|ui1,Zi, ξ,Σ)fHi
(Hi|ui1,Zi, ξ,Σ)fui1(ui1|σ1)dui1

=

ri+1∏
k=1

(
− ∂Si1k(w)

∂w

∣∣∣∣
w=Wi1k

)δi1k(
Si1k(Wi1k)

)1−δi1k
fui1(ui1|σ1)∫

ui1

ri+1∏
k=1

(
− ∂Si1k(w)

∂w

∣∣∣∣
w=Wi1k

)δi1k(
Si1k(Wi1k)

)1−δi1k
fui1(ui1|σ1)dui1

=

ri+1∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k(
Si1k(Wi1k)

)1−δi1k
fui1(ui1|σ1)∫

ui1

ri+1∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k(
Si1k(Wi1k)

)1−δi1k
fui1(ui1|σ1)dui1

,

(3.4)

where
∂Si1k(w)

∂w

∣∣∣∣
w=Wi1k

= S
′

i1k(Wi1k) for simplicity. Combining (3.3) and (3.4) gives

Pr(W ∗
i1(ri+1) ≤ Cw

i1(ri+1) + τ |W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi,Zi, ξ,Σ, ui1)

=

∫
ui1

Si1(ri+1)(C
w
i1(ri+1))− Si1(ri+1)(C

w
i1(ri+1) + τ)

Si1(ri+1)(C
w
i1(ri+1))

ri+1∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k(
Si1k(Wi1k)

)1−δi1k
fui1(ui1|σ1)∫

ui1

ri+1∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k(
Si1k(Wi1k)

)1−δi1k
fui1(ui1|σ1)dui1

dui1.

When k = ri + 1, the observation of event type 1 is censored, i.e. δi1(ri+1) = 0,
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so
(
Si1k(Wi1k)

)1−δi1k
= Si1(ri+1)

(
Cw
i1(ri+1)

)
, giving

∫
ui1

Si1(ri+1)(C
w
i1(ri+1))− Si1(ri+1)(C

w
i1(ri+1) + τ)

Si1(ri+1)(C
w
i1(ri+1))

ri+1∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k(
Si1k(Wi1k)

)1−δi1k
fui1(ui1|σ1)∫

ui1

ri+1∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k(
Si1k(Wi1k)

)1−δi1k
fui1(ui1|σ1)dui1

dui1

=
∫
ui1

Si1(ri+1)(C
w
i1(ri+1))− Si1(ri+1)(C

w
i1(ri+1) + τ)

Si1(ri+1)(C
w
i1(ri+1))

Si1(ri+1)(C
w
i1(ri+1))

ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)∫

ui1

Si1(ri+1)(C
w
i1(ri+1))

ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)dui1

dui1

=

∫
ui1

[
Si1(ri+1)(C

w
i1(ri+1))− Si1(ri+1)(C

w
i1(ri+1) + τ)

] ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)dui1∫

ui1

Si1(ri+1)(C
w
i1(ri+1))

ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)dui1

.

(3.5)

Here,

Si1k(Wi1k) = exp (− Λi1k(Wi1k))

= exp (− Λ01(Wi1k) exp(βT1 Zi1k + ui1))

and

−S ′

i1k(Wi1k) = λi1k(Wi1k)Si1k(Wi1k)

= λ01(Wi1k) exp(βT1 Zi1k + ui1) exp (− Λ01(Wi1k) exp(βT1 Zi1k + ui1)).

We can interpret (3.5) as the ratio of marginal likelihoods; the denominator shows the

marginal likelihood of the gap time history, and the numerator represents the marginal likeli-

hood of gap time history including the next event occurring between Cw
i1(ri+1) and C

w
i1(ri+1)+τ .

If follow-up is censored immediately after the gap time origin ofW ∗
i1(ri+1), then C

w
i1(ri+1) would

be the smallest time unit bigger than 0.
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Note that our predictive transition probability directly accommodates the cumulative

number of past type 1 events as an internal time-varying covariate. Expanding the posterior

distribution (3.4),

ri+1∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k(
Si1k(Wi1k)

)1−δi1k
fui1(ui1|σ1)∫

ui1

ri+1∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k(
Si1k(Wi1k)

)1−δi1k
fui1(ui1|σ1)dui1

=

ri+1∏
k=1

[
(λ01(Wi1k) exp(βT1 Zi1k + ui1))

δi1k exp (− Λ01(Wi1k) exp(βT1 Zi1k + ui1))
]
fui1(ui1|σ1)∫

ui1

ri+1∏
k=1

[
(λ01(Wi1k) exp(βT1 Zi1k + ui1))

δi1k exp (− Λ01(Wi1k) exp(βT1 Zi1k + ui1))
]
fui1(ui1|σ1)dui1

=

ri+1∏
k=1

[
eui1δi1k exp (− Λ01(Wi1k) exp(βT1 Zi1k + ui1))

]
fui1(ui1|σ1)∫

ui1

ri+1∏
k=1

[
eui1δi1k exp (− Λ01(Wi1k) exp(βT1 Zi1k + ui1))

]
fui1(ui1|σ1)dui1

=

exp

( ri+1∑
k=1

ui1δi1k − Λ01(Wi1k) exp(βT1 Zi1k + ui1)

)
fui1(ui1|σ1)∫

ui1

exp

( ri+1∑
k=1

ui1δi1k − Λ01(Wi1k) exp(βT1 Zi1k + ui1)

)
fui1(ui1|σ1)dui1

=

exp

(
riui1 −

ri+1∑
k=1

Λ01(Wi1k) exp(βT1 Zi1k + ui1)

)
fui1(ui1|σ1)∫

ui1

exp

(
riui1 −

ri+1∑
k=1

Λ01(Wi1k) exp(βT1 Zi1k + ui1)

)
fui1(ui1|σ1)dui1

.

We can notice that through riui1 term, the individual frailty transiting to event type 0 is

considered in proportion to the number of past events.

3.2. Approximate transition probability

A drawback of (3.5) is that it has no closed form, so that numerical integrations are

required for both the numerator and denominator. To avoid numerical integration and
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simplify computing, we propose an approximation of the marginal transition probability by

Taylor expansion. The brief procedure is as follows (for details, see Appendix A.1):

By Taylor expansion, eui1 = 1 + ui1 +
u2i1
2!

+ o(u2i1) as ui1 → 0. Letting η(Wijk) =

Λ01(Wijk) exp(βT1 Zi1k), then

Si1(ri+1)(C
w
i1(ri+1)) = exp

(
− Λ01(C

w
i1(ri+1)) exp(βT1 Zi1k + ui1)

)
= exp

(
− η(Cw

i1(ri+1))e
ui1
)

≈ exp
(
− η(Cw

i1(ri+1))(1 + ui1 + u2i1/2)
)

and

ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
=

ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k + ui1) exp
(
− Λ01(Wi1k) exp(βT1 Zi1k + ui1)

)

=

ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k)e
ui1 exp

(
− η(Wi1k)e

ui1
)

= exp
(
riui1 − eui1

ri∑
k=1

η(Wi1k)
) ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k)

≈ exp
(
riui1 − (1 + ui1 + u2i1/2)

∑ri
k=1 η(Wi1k)

) ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k).
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We plug these into (3.5) and obtain closed forms for the numerator and denominator. The

numerator is

∫
ui1

[
Si1(ri+1)(C

w
i1(ri+1))− Si1(ri+1)(C

w
i1(ri+1) + τ)

] ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)dui1

=

∫
ui1

Si1(ri+1)(C
w
i1(ri+1))

ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)dui1

−
∫
ui1

Si1(ri+1)(C
w
i1(ri+1) + τ)

ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)dui1

≈ exp

(
σ2
1

(
ri −

∑ri
k=1 η(Wi1k)− η(Cw

i1(ri+1))
)2

2
(

1 + σ2
1

∑ri
k=1 η(Wi1k) + σ2

1η(Cw
i1(ri+1))

) − ri∑
k=1

η(Wi1k)− η(Cw
i1(ri+1))

)

×
(

1 + σ2
1

∑ri
k=1 η(Wi1k) + σ2

1η(Cw
i1(ri+1))

)− 1
2

ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k)

− exp

(
σ2
1

(
ri −

∑ri
k=1 η(Wi1k)− η(Cw

i1(ri+1) + τ)
)2

2
(

1 + σ2
1

∑ri
k=1 η(Wi1k) + σ2

1η(Cw
i1(ri+1) + τ)

) − ri∑
k=1

η(Wi1k)− η(Cw
i1(ri+1) + τ)

)

×
(

1 + σ2
1

∑ri
k=1 η(Wi1k) + σ2

1η(Cw
i1(ri+1) + τ)

)− 1
2

ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k),

and the denominator is

∫
ui1

Si1(ri+1)(C
w
i1(ri+1))

ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)dui1

≈ exp

(
σ2
1

(
ri −

∑ri
k=1 η(Wi1k)− η(Cw

i1(ri+1))
)2

2
(

1 + σ2
1

∑ri
k=1 η(Wi1k) + σ2

1η(Cw
i1(ri+1))

) − ri∑
k=1

η(Wi1k)− η(Cw
i1(ri+1))

)

×
(

1 + σ2
1

∑ri
k=1 η(Wi1k) + σ2

1η(Cw
i1(ri+1))

)− 1
2

ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k).
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CHAPTER 4

Simulation Studies

4.1. Simulated data and models compared

We generated N = 500 sets of patient admission and discharge records during 3 years

where the time unit is day. We set every patient to be censored 3 years after entering the

first admission; thus either the last admission or discharge gap time can be censored.

We include two external covariates, gender and age. Patients were randomly assigned to

male or female, with age between 1 and 65 at entry. Regression coefficients for the covariates

are β0 = (−0.05,−0.01)T for admission and β1 = (−0.5, 0.001)T for discharge event. Taking

male as the reference category, females are less likely to be discharged earlier and readmitted.

Also, older patients are less likely to be discharged early and more likely to be readmitted

than younger patients.

Transition frailties to be discharged and readmitted follow a normal distribution with

mean 0 and variances σ2
0, σ2

1, respectively. We assume that the frailties are negatively cor-

related with ρ = −0.5, implying that LoS is inversely associated with LoD. Lastly, we take

both baseline transition intensities to be constant.

Table 4.1 presents some example data. There are records of two patients, with the

first one a young male who has 3 past admission and discharge records with the last LoD

censored. The second patient is a middle-aged female who has no admission records after

discharge from her first admission.
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ID LoS LoD Gender Age Censoring

1 2 254 M 28 N

1 2 684 M 28 N

1 19 134 M 30 Y

2 5 1090 F 52 Y

Table 4.1: Simulated data example

We compared the prediction performance of 4 different models were adapted: JTIM; a

logistic mixed model (LMM); generalized estimating equations (GEE); and logistic regres-

sion (LR). To create predictions on future patients in LMM, model parameters are readily

estimated, but still we need to estimate patient-specific random effects. We propose deriving

the posterior density of the random effects using all available past records to date and es-

timating the posterior mean. Specifically, given the unnormalized patient-specific posterior

density, we estimate the posterior mean of the random effect, and create a predicted value

using the estimated LMM parameters and the posterior mean. Details are as follows:

For hospitalization k of patient i, let yik be the value of a binary target variable indicating

whether a readmission occurs within τ days. Then, the distribution of yik is

Yik ∼ Bin(1, πik),

where πik = Pr(Yik = 1) is the probability that a readmission occurs within τ days after

hospitalization k. Also, Zik denotes a predictor vector including gender and age. For subject

i, let ui be a normally distributed patient-specific random effect with zero mean and constant

variance σ2. We assume that the following logistic mixed model:

E(Yik|β,Zik, ui) =
exp(βTZik + ui)

1 + exp(βTZik + ui)
, i = 1, ..., N, k = 1, ..., ri + 1,

where β is a coefficient vector for gender and age. Here, we assume that random effects

are independent between patients. One can readily obtain the maximum likelihood estimate
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(MLE) of ξ = {β, σ2} by applying optimization techniques to a marginal likelihood calcu-

lated by Gaussian quadrature. Once we have ξ̂, the posterior distribution of ui at the k-th

hospitalization is

fui(ui|y
(−k)
i , ξ) =

Pr(y
(−k)
i |ui, ξ)fui(ui|ξ)∫

ui

Pr(y
(−k)
i |ui, ξ)fui(ui|ξ)dui

(4.1)

where y(−k)
i ={yi1, ..., yi,k−1}, Pr(y

(−k)
i |ui, ξ) =

∏k−1
l=1 Pr(yil|ui, ξ), and f(ui|ξ) is the normal

pdf with mean 0 and standard deviation σ. Note that k = 1 implies that there is no history,

so (4.1) is equal to the prior distribution fui(ui|ξ). The posterior mean is

E(ui|y(−k)
i , ξ) = uik =

∫ ∞
−∞

uifui(ui|y
(−k)
i , ξ)dui.

We obtain the posterior mean by numerical integration. With ξ̂ and ûik, the estimated

predictive probability that a readmission occurs within τ days after the k-th hospitalization

of patient i is

P̂r(Yik = 1|β̂,Zik, ûik) =
exp(β̂TZik + ûik)

1 + exp(β̂TZik + ûik)
.

As mentioned, JTIM automatically captures the cumulative number of past admissions.

In contrast, GEE and LM use information from the latest admission and discharge only.

Even in LMM, though the patient random effect is obtained by using posterior distribution,

LMM does not use the number of past admissions directly when predicting the transition

probability. To compare all models as fairly as possible, we add

average annual # of past admissions =
cumulative # of past admissions

follow-up period (year)

as an ad hoc covariate for models other than JTIM. With 3 covariates including gender, age,

and the average annual number of past admissions, we used GEE with the AR(1) correlation

structure. Also, because LR does not account for the correlation between records within a

patient, we randomly select one record from each patient’s hospitalizations to fit the model.

Lastly, patients in simulated data are always randomly divided into an 80% training set and
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20% test set.

4.2. Prediction performance under different numbers of past records

Recall that ri denotes the number of complete event pairs of patient i. Intuitively, the

more past records a patient has, the better will JTIM predict compared to other methods,

because the predictive probability will reflect an increasingly concentrated frailty distribu-

tion. Thus, we can expect that relative prediction performance will depend on the number

of past records.

In this section, we have implemented simulations under different values of median ri

(med(ri)). Using the simulated data above, first we set med(ri) equal to 0, 2, 4. For in-

stance, if med(ri) = 0, half or more of the patients have no complete admission/discharge

pairs.

For each setting, we ran M = 1, 000 Monte-Carlo simulations. We fitted the models with

the training set and validated the prediction performance with the test set. We set variances

of the frailties to be σ2
0 = σ2

1 = 0.5. The window of prediction τ was fixed at 30 days, which

gives readmission rates from 18%−25% across med(ri). When predicted, we assumed that

each patient is censored immediately after entering discharge status, i.e. the last censored

gap time Cw
i1ri+1 is the smallest time unit, one day.

Prediction performance was evaluated by three measures: Area under the receiver oper-

ating characteristic (ROC) curve (AUC); sensitivity — the probability that admissions with

a subsequent 30-day readmission are correctly identified; and win rate — the fraction of

1,000 Monte-Carlo simulations where JTIM has higher performance than a comparator. We

calculated the win rate separately for AUC and sensitivity.

We prefer to present sensitivity for the following reason: Imagine there are currently two

patients hospitalized with diabetes. We know that one will be readmitted within 30 days

after discharge and the other will not. If a prediction model predicted incorrectly for both

patients, the one who will be readmitted would be affected badly because he would have
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foregone any chance to avoid readmission. By contrast, the incorrect prediction would not

cause significant damage to a subject who is not readmitted. Thus, we believe that high

sensitivity in this context is generally more important than high specificity.

There are sensitivities as many as there are potential prediction thresholds. To select a

reasonable threshold and calculate a sensitivity as a measure, we suggest following steps:

1. From the data generated in each simulation, obtain the observed 30-day readmission

rate α ∈ [0, 1].

2. Between predictive transition probabilities for 30-day readmission for every discharge

events, choose the 100(1 − α)th quantile as the threshold. For example, if the ob-

served readmission rate is 0.1, then use the 90th centile between predictive transition

probabilities as the prediction threshold.

If all admissions with a subsequent 30-day readmission have predictive probabilities higher

than the threshold, the sensitivity is 1. However, it would be less than 1 if any of them has

a predictive probability below the threshold.

Table 4.2 shows the AUC and sensitivity under varying med(ri). Overall, the JTIM shows

better prediction performance than the other models in terms of both AUC and sensitivity.

Furthermore, we can find some trends through the results. When med(ri) = 0, JTIM and the

other models perform similarly. However, greater med(ri) produces greater mean differences

and win rates favoring JTIM.

When comparing the results of the other 3 models, LMM and GEE show similar results

in AUC, but LMM produces better sensitivity when med(ri) increases. Though both models

accommodate within-patient correlation, the results proves that considering information of

past records through the posterior distribution contributes to higher sensitivity of LMM. LR,

which ignores all but a single admission/discharge pair, performs less well than the other

methods.
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ri = 0 ri = 2 ri = 4

Mean (se) Win rate Mean (se) Win rate Mean (se) Win rate

JTIM
AUC .655 (.061) · .670 (.044) · .680 (.035) ·
Sens. .323 (.082) · .402 (.060) · .488 (.055) ·

LMM
AUC .635 (.061) .67 .644 (.044) .86 .645 (.040) .94
Sens. .306 (.081) .74 .378 (.062) .80 .460 (.053) .83

GEE
AUC .633 (.063) .69 .640 (.046) .88 .640 (.039) .95
Sens. .299 (.082) .75 .363 (.059) .86 .445 (.051) .91

LR
AUC .627 (.062) .70 .634 (.047) .90 .630 (.041) .98
Sens. .293 (.081) .77 .357 (.060) .90 .440 (.050) .95

Table 4.2: AUC and sensitivity of JTIM and other models when median of ri, the number
of observed complete admission and discharge pairs, is varying.

4.3. Prediction performance under different variances of transition frailty to

be readmitted

σ2
1 is the variance of the frailty for transition to the admission state. As it increases, there

will be more heterogeneity between patients, leading to increased variance of LoD. Hence,

we can anticipate that models addressing the heterogeneity between patients can capture the

difference in readmission intensity between patients and make more accurate predictions. In

this section, we implemented simulations under different values of σ2
1. Using the simulated

data above, we varied σ2
1 = 0.25, 0.5, 0.75 to see the effect of frailty variance on prediction

performance.

For each setting, we ran M = 1, 000 simulations. We fitted the models with the training

set and validated prediction performance with the test set. The window of prediction τ

was fixed at 30 days, leading to readmission rates from 18%−23%. For these parameters,

med(ri) is always around 2. When predicted, again we assumed that each patient is censored

immediately after entering discharge status.
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Table 4.3 shows AUC and sensitivity for varying σ2
1. Patterns are similar to those in

Table 4.2. First, JTIM always produces better performance than the other models in terms

of both AUC and sensitivity. Also, as σ2
1 increases, the mean advantage of JTIM over the

other models generally increases.

The results suggest that our approach works better for higher heterogeneity between pa-

tients. Indeed, during simulations, the (10, 25, 50, 75, 90) centiles of ri with σ2
1 = 0.25

are (0,1,2,4,5) on average; with σ2
1 = 0.75 it is (0,1,2,5,7). This is because with fixed

med(ri) = 2, some patients have more complete event pairs. In other words, increasing

σ2
1 produces higher transition frailties to admission, and patients with those higher transi-

tion frailties have shorter LoD and therefore more pairs. These patients with more records

contribute to better performance of JTIM.

When comparing the results of the other 3 models, again LMM and GEE shows similar

results in AUC, but LMM produces better sensitivity for increasing σ2
1. LR produces similar

or worse results across the board.

σ2
1 = 0.25 σ2

1 = 0.5 σ2
1 = 0.75

Mean (se) Win rate Mean (se) Win rate Mean (se) Win rate

JTIM
AUC .624 (.045) · .670 (.044) · .691 (.035) ·
Sens. .294 (.059) · .401 (.060) · .480 (.055) ·

LMM
AUC .612 (.047) .73 .644 (.044) .86 .660 (.040) .93
Sens. .274 (.060) .74 .373 (.062) .80 .450 (.053) .84

GEE
AUC .612 (.045) .78 .640 (.046) .88 .650 (.039) .96
Sens. .270 (.059) .75 .359 (.061) .86 .431 (.051) .91

LR
AUC .598 (.043) .80 .635 (.047) .90 .645 (.041) .96
Sens. .263 (.058) .80 .353 (.060) .90 .427 (.050) .92

Table 4.3: AUC and sensitivity of JTIM and other models when σ2
1 is varying.
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4.4. Prediction performance under different readmission rates

This section examines how different readmission rates affect the prediction performance

of JTIM compared to the other models. We set readmission rates at 10%, 30%, and 50%,

corresponding to windows of prediction around 30, 90, and 180 days. Here, med(ri) and σ2
1

are fixed at 2 and 0.5, respectively. As in the previous section, we ran M = 1, 000 Monte-

Carlo simulations for each setting.

Table 4.4 illustrates the results. Similar to Table 4.2, JTIM produces superior perfor-

mance across all settings. Following JTIM, LMM shows better performance than GEE and

LR. With a few exceptions, as the readmission rate increases, the win rate also increases in

both AUC and sensitivity. LR improves substantially as the readmission rate increases.

Readmission rate = 10% Readmission rate = 30% Readmission rate = 50%
Mean (se) Win rate Mean (se) Win rate Mean (se) Win rate

JTIM
AUC .660 (.050) · .680 (.042) · .691 (.038) ·
Sens. .253 (.061) · .501 (.053) · .650 (.032) ·

LMM
AUC .633 (.047) .80 .653 (.043) .83 .663 (.040) .90
Sens. .228 (.060) .77 .460 (.052) .74 .632 (.033) .71

GEE
AUC .631 (.047) .82 .648 (.041) .85 .656 (.040) .91
Sens. .221 (.059) .79 .445 (.051) .90 .610 (.031) .95

LR
AUC .616 (.043) .84 .642 (.043) .87 .671 (.041) .74
Sens. .210 (.058) .80 .441 (.050) 92 .610 (.030) .96

Table 4.4: AUC and sensitivity of JTIM and other models when readmission rates are
varying.

4.5. Accuracy of the approximate transition probability

In 3.2, we derived an approximate formula that allows us to avoid numerical integration in

calculating prediction probabilities. In this section we present a simulation study to examine
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how well the approximation works in the computation of AUC and Brier scores.

Figure 4.1: The solid line shows eui1 and the dotted line shows eui1 ≈ 1 + ui1 + u2i1/2

Figure 4.1 shows graphs of eui1 and its Taylor expansion up to second order. We can

see that the approximation works well when ui1 is between around -1.5 and 1.5. Because

ui1 ∼ N(0, σ2
1), we can anticipate that the approximation would work well if σ01 is small

enough to generate a large majority of deviates in this range.

To examine this, we implemented a simulation with σ2
1 ∈ {0.5, 1, 2}, where the normal

distribution covers 99.75% of observations within [−1.5, 1.5], [−3, 3], and [−4.2, 4.2], respec-

tively. According to Figure 4.1, we can expect the approximation to work properly with

the first variance, but not with the others. The simulation is the same as the one described

in Chapter 4.1, with 80% of the data used to fit the JTIM. Details of the simulation set-

ting are as follows: N = 500, with prediction windows corresponding to readmission rate

10%, 30%, 50%. We ran M = 1, 000 Monte-Carlo simulation for each setting.

To evaluate both discrimination and calibration of prediction, we used AUC and the

Brier score which is the mean squared deviation between the predictive probability and the
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true binary observation in S replications:

BS =
1

S

S∑
s=1

(ps − os)2.

We present 1−BS so that a higher score means better prediction accuracy.

Table 4.5 describes the simulation results. As expected, there is no difference between

the exact and approximate approach when σ2
1 = 0.5. Interestingly, when σ2

1 = 1, although it

includes some area where the Taylor expansion deviates from σ2
1, the mean difference of AUC

is at most 0.002 and of 1-BS at most 0.005. The case of σ2
1 = 2 produces some noticeable

differences in 1-BS, implying that the approximation is starting to deteriorate at this level.

Nevertheless, the differences are limited to 0.012 on the AUC scale and 0.019 on the 1-BS

scale. On the whole, the approximation seems to be suitable for practical use, provided one

gives due attention to the estimated value of the frailty variance.

Readmission rate 10% 30% 50%
Mean (se) Mean (se) Mean (se)

σ2
1 = 0.5

Training set
AUC .001 (.002) 0.0 (.002) 0.0 (.001)
1-BS .001 (.002) .001 (.002) .001 (.002)

Test set
AUC 0.0 (.004) 0.0 (.003) 0.0 (.002)
1-BS .001 (.002) .001 (.002) .001 (.002)

σ2
1 = 1

Training set
AUC .002 (.003) .002 (.002) .001 (.002)
1-BS .003 (.003) .005 (.003) .003 (.002)

Test set
AUC .002 (.005) .001 (.004) .001 (.003)
1-BS .004 (.004) .005 (.004) .003 (.003)

σ2
1 = 2

Training set
AUC .009 (.008) .011 (.011) .012 (.013)
1-BS .018 (.016) .019 (.014) .016 (.010)

Test set
AUC .008 (.006) .008 (.009) .009 (.013)
1-BS .017 (.018) .018 (.015) .015 (.012)

Table 4.5: Difference between exact AUC (1-BS) and approximate AUC (1-BS)
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CHAPTER 5

Applications

5.1. Exacerbation in patients with chronic bronchitis

We applied our models to analyze the data from a multicenter randomized trial involving

patients with chronic bronchitis where the disease process is marked by the development

and resolution of acute exacerbations of chronic bronchitis (AECB). The data is provided

by Bayer Canada, Inc. During the study, each patient experienced alternating AECB and

AECB-free periods. Our goal is to predict the probability of relapse of AECB within 2, 3,

or 4 weeks after resolution of the previous episode.

To be eligible for the study, patients had to be 18 years or older, diagnosed with chronic

bronchitis, able to maintain a daily diary, able to understand and complete detailed health

status questionnaires, and currently experiencing an AECB. Patients who entered the study

were randomized to receive either ciprofloxacin or standard care for a period of one year.

They were required to visit the participating clinic when they perceived that a new exac-

erbation was beginning or an exacerbation was resolved. Patients were to be followed for

365 days, but early termination would occur if the subject either i) refused to complete

the symptom diary, or ii) declined to return for further follow-up visits, or iii) died. There

were 115 eligible patients randomized to take ciprofloxacin and 107 randomized to standard

care. Patients were recruited from November 1993 to June 1994, with an average duration

of follow-up of 357 days on ciprofloxacin and 350 days on standard care. The time scale is

days. The average length of AECB was 15 days and AECB-free was 114 days.
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In the simulation studies, we saw that med(ri) is an important determinant of prediction

performance. Because the (10, 25, 50, 75, 90) centiles of ri in the AECB study are (0,0,2,3,4),

we can expect the JTIM to perform well.

Predictor Description Type Baseline level

Gender Male and female Nominal Male

Length of AECB Duration of previous AECB Discrete -

Symptoms
Preceding days of AECB symptom
when a patient entered the study

Discrete -

Severity Severe chronic bronchitis or not Nominal Not severe

History Years since diagnosis of chronic bronchitis Discrete -

Treatment Ciprofloxacin or standard care Nominal Standard care

Season
Season when a patient entered AECB state

Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec
Nominal Oct-Dec

Table 5.1: Description of predictors for AECB data

Table 5.1 lists potential predictors in the AECB data. Some are common to both AECB

and AECB-free events: Gender, severity, history, treatment, and season. To examine the

possible effect of the time since diagnosis with chronic bronchitis, the history predictor in-

dicates which of the following five-year intervals the patient history falls into: 0–5, 5–10,

10–15, 15–20, 20–25, 25–30, 30–35, 35–40, 40–45 years duration. We change this to an ordi-

nal variable by choosing the center of the interval: 2.5, 7.5,...,42.5 years. Besides those, we

included a symptoms predictor for the AECB state. For the AECB-free state, we included

length of AECB.

For every AECB-free event, we predicted whether a relapse of AECB occurred within 2,

3, and 4 weeks after resolution of the previous episode. These windows correspond to relapse

rates of roughly 10%, 15%, and 20%. We assume that each patient is censored instantly

after entering an AECB-free event, so the last censored gap time is 1 day. We applied the

four models from the simulation study with five-fold cross-validation to prevent overfitting

bias. Again, we included the average annual number of past exacerbations as a predictor in
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the models except JTIM.
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Figure 5.1: The estimated cumulative baseline transition intensity for time to AECB-free
and to AECB.

Figure 5.1 shows the estimated B-spline cumulative baseline transition intensities for

time to AECB-free and time to AECB. The solid line is an estimated B-spline regression

and the dotted lines indicate knots. The intensity for time to AECB-free is far higher than

for time to AECB, representing much longer time patients spent in the AECB-free state.

The sparsity between points in the left plot indicates that there are few unique LoS values,

whereas there are numerous LoD values in the right panel. For time to discharge, we can see

a slight curve indicating that the baseline transition intensity varies across gap times. The

estimated curve for time to AECB is more nearly linear, implying that the baseline intensity

is roughly constant across gap time.
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AECB AECB-free
Estimate SE Estimate SE

Gender 0.162 0.121 -0.243 0.138
Length of AECB — — -0.018 0.006
Symptoms -0.018 0.009 — —
Severity -0.305 0.173 0.587 0.191
History -0.014 0.006 0.020 0.007
Treatment 0.217 0.120 -0.078 0.136
Season(ref: Oct-Dec)
Jan-Mar -0.093 0.121 -0.236 0.155
Apr-Jun 0.140 0.135 -0.340 0.158
Jul-Sep -0.362 0.151 0.001 0.182

SD of frailty 0.557 0.591
Correlation -0.56

Table 5.2: Application to AECB data: estimated regression parameters (bolded when P <
0.05)

Table 5.2 shows the JTIM estimation results. Patients with longer preceding symptoms

or longer bronchitis history are less likely to move to the AECB-free state. Also, patients

with severe chronic bronchitis or longer history have a higher chance to relapse. Length of

AECB has a statistically significant effect on reducing the chance of relapse. Compared to

AECB occurring between October and December, onset of AECB between April and June

reduces the chance of relapse, and onset between July and September decreases the chance

of resolution.

The standard deviation of the frailty for time to AECB-free is 0.557, so the corresponding

variance estimate is about 0.31, slightly smaller than 0.35, the variance estimate for time

to AECB. The estimated correlation is −0.56; thus, a higher frailty of relapse is associated

with a lower frailty for recovery.
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Relapse window 2-week 3-week 4-week

Models JTIM LMM GEE LR JTIM LMM GEE LR JTIM LMM GEE LR

Training set
AUC .63 (.62) .72 .68 .51 .66 (.66) .70 .66 .53 .64 (.64) .67 .61 .51
Sens. .11 .23 .08 .08 .19 .23 .09 .09 .25 .26 .11 .14

Test set
AUC .64 (.64) .54 .54 .58 .66 (.65) .59 .58 .58 .64 (.64) .59 .59 .54
Sens. .15 .11 .11 .03 .18 .18 .14 .13 .21 .23 .20 .15

(·): a result based on approximate transition probability

Table 5.3: Prediction results for AECB data. Each number is the average of a five-fold cross
validation.

Prediction results appear in Table 5.3. LR is worst in both AUC and sensitivity. Com-

pared to LMM and GEE, JTIM is lower by 9% on AUC for the training set, but it is 5–10%

higher on the test set. JTIM shows nearly equal AUCs between training and test sets, sug-

gesting it is less prone to overfitting than the other methods. When the relapse rate is low,

JTIM outperforms LMM on sensitivity, but results flip when the relapse rate is high.

AUCs based on the approximate transition probability are close to the exact AUCs, re-

flecting the modest variance of the frailty of transition to the AECB-free state.
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Figure 5.2: Smoothed histograms of predictive transition probabilities for the test set when
the window of prediction is 3 weeks.

Figure 5.2 presents smoothed histograms of predictive transition probabilities for the test

set when the window of prediction is three weeks. It is apparent that JTIM gives the most

separation between the smoothed lines, reflecting its higher predictive power.

5.2. Readmission in patients with diabetes in Medicaid

Medicaid is a US federal and state program providing medical insurance for people with

low incomes. The federal and state governments jointly fund it, with eligibility and coverage

varying across states. It is the single largest source of health insurance in the US, covering

nearly 76 million Americans under age 65 including children, pregnant women, low-income

adults, and individuals with disabilities. Medicaid claims data comprise baseline informa-

tion, institutional, medical, and pharmaceutical data for each patient encounter.
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We sought to use Medicaid data to predict risk of 30-, 90-, and 180-day readmission of

patients with diabetes hospitalized for any cause. We considered claims for patients with

diabetes from plans in Georgia dated from January 1, 2016 to August 1, 2019. We identi-

fied diabetes patients from three sources: Admission ICD-10 codes in hospitalization claims;

clinical diagnosis ICD-10 codes in physician and hospitalization claims; and prescriptions

for diabetes drugs in pharmacy claims. We included in our cohort any patient who had at

least one claim indicating diagnosis or treatment of non-gestational diabetes in any of those

sources.

We collected all admission records from our cohort, defining an admission as any claim

that was institutional, inpatient, and had a clear admission and discharge date. We limited

these claims to begin from January 1, 2017, giving us at least one year of prior data for every

admission record. Once we collected the records, we obtained the length of discharge (LoD)

which is the difference between a subsequent admission date and a preceding discharge date.

In this way we identified a cohort of 1,474 patients with diabetes. The time scale is days.

The average length of stay (LoS) between patients was 6 days, and the average LoD was 243

days.

The (10, 25, 50, 75, 90) centiles of ri are (0,0,0,1,2), implying that more than 50% of

patients do not have a complete event pair. In fact, 60% have a pair of one uncensored ad-

mission claim and one censored discharge record. Because Table 4.2 in the simulation study

shows that JTIM performs slightly better than the other models under these circumstances,

we do not expect JTIM to dominate unless the variance of the frailty transiting to admission

is high.
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Covariate Description Type Baseline level

Gender Male and female Nominal Female

Age Age of a patient Discrete -

Length of stay(LoS) Duration of previous admission Discrete -

Diabetes type Type I, II, other type Nominal Other type

Admission type Emergency, urgent, elective, trauma, etc. Nominal Elective

Discharge type Discharge home or an institution Nominal Home

Comorbidity 14 comorbidities: diagnosed or not Nominal Not diagnosed

Table 5.4: Covariates for the diabetes claims data

Table 5.4 lists the potential covariates for the diabetes claims data. As common covari-

ates for both admission and discharge states, we used the following: Gender, age, diabetes

type, admission type, and 14 comorbidities. We also included discharge type and LoS to

predict readmission.

As in the AECB application, we applied the four models used in the simulation study

with five-fold cross-validation. LMM, GEE, and LR used the average annual number of past

admissions as a covariate. We predicted the probability of 30-, 90-, and 180-day readmission,

corresponding to 16%, 33%, and 50% readmission rates, respectively. When predicted, we

assume that each patient is censored immediately after entering discharge state, so the last

censored gap time is one day.
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Figure 5.3: The estimated cumulative baseline transition intensity for time to discharge and
admission.

Figure 5.3 presents estimated cumulative baseline transition intensities for time to dis-

charge and admission. The intensity for time to discharge is far larger than for time to

admission because hospitalizations are fairly short and sojourns outside of the hospital is

long. Compared to LoD, LoS has smaller number of unique values; thus, the points in the

left plot are sparse. The estimated cumulative intensity curves suggest that the baseline

transition intensities are not constant for both.
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Admission to discharge Discharge to admission
Estimate SE Estimate SE

Gender -0.034 0.088 -0.328 0.116
Age -0.016 0.003 0.003 0.004
Length of stay - - -0.004 0.007
Diabetes type (ref: other type)
Type I 0.061 0.079 0.669 0.106
Type II 0.144 0.063 0.216 0.100
Admission type (ref: elective)
Emergency -0.027 0.072 0.503 0.113
Etc. -0.593 0.294 0.878 0.381
Trauma -1.341 0.406 1.171 0.578
Urgent -0.506 0.085 0.244 0.134
Discharge type (ref: home)
Institution - - 0.616 0.243
Comorbidity
Renal failure -0.293 0.079 0.144 0.097
Obesity 0.119 0.053 -0.268 0.088
Malignant neoplasms 0.044 0.166 0.246 0.204
Cerebrovascular -0.027 0.117 0.060 0.146
Heart failure -0.102 0.099 0.224 0.105
Cardiac arrhythmia 0.062 0.101 0.023 0.125
Hypertensive diseases -0.122 0.070 0.039 0.096
Hemolytic anemia -0.110 0.070 0.004 0.092
Cognitive function symptoms -0.228 0.066 -0.122 0.088
Long term drug therapy 0.084 0.061 0.044 0.083
Need devices -0.027 0.165 0.108 0.201
Nutritional metabolic disease -0.061 0.077 -0.068 0.100

Personal history of several risk factors 0.166 0.066 0.052 0.086
Digestive -0.006 0.061 0.197 0.082

SE of frailty 0.748 0.671
Correlation -0.43

Table 5.5: Application to patients with diabetes admission data: estimated regression pa-
rameters (bolded when P < 0.05)
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Table 5.5 shows estimates of the JTIM parameters. Among the baseline covariates, males

are less likely to be readmitted than females, and older patients are less likely to be discharged

than younger patients. LoS is not statistically significant for predicting readmission hazard.

Both diabetes type and admission type show statistically significant effects on both tran-

sitions. Type I and II diabetes increase the chance to be discharged and re-hospitalized

compared to other types of diabetes, implying that patients with type I and II diabetes

experience hospitalization more frequently. Moreover, compared to elective admissions, the

other types of admission decrease the possibility of discharge but increase the readmission

hazard. Patients who are discharged to a skilled nursing facility or long-term care hospital

have a higher risk of readmission than patients discharged home. Each past comorbidity

contributes differently to possibility of discharge and readmission hazard. Interestingly, obe-

sity is associated with an increased chance of discharge and a reduced chance of readmission.

The estimated variance of the frailty transiting to discharge is 0.56, and the variance of

the frailty transiting to admission is 0.45. Referring to the simulation results in Table 4.3,

we expect the JTIM to give modestly better AUC and sensitivity. The estimated correlation

of -0.43 implies that a patient with a higher readmission frailty will have a reduced chance

of early discharge.

Readmission window 30-day 90-day 180-day

Models JTIM LMM GEE LR JTIM LMM GEE LR JTIM LMM GEE LR

Training set
AUC .72 (.72) .74 .73 .71 .75 (.75) .76 .75 .74 .75 (.75) .75 .75 .74
Sens. .40 .42 .40 .38 .55 .56 .55 .53 .64 .64 .64 .63

Test set
AUC .70 (.69) .68 .67 .67 .73 (.73) .72 .70 .70 .73 (.73) .73 .72 .72
Sens. .39 .35 .34 .34 .53 .52 .51 .48 .63 .61 .62 .59

(·): based on the approximate transition probability

Table 5.6: Prediction results for the Medicaid diabetes readmission data — averages of
five-fold cross validation.

Table 5.6 presents AUC and sensitivity values for the diabetes data. On the whole, JTIM

produces better or equal AUC and sensitivity compared to the other models, particularly
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in the test set. To judge from the results in Table 4.2, the similar performance between

models in 90-day and 180-day cases is caused by the absence of a history of admission in

most patients (med(ri) = 0). With the modest frailty variance of 0.45 for discharge state,

AUCs based on the approximate transition probability differ by no more than 1% from exact

values.
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Figure 5.4: Smoothed histograms of predictive transition probabilities for the test set when
the window of prediction is 30 days.

Figure 5.4 presents smoothed histograms of predictive transition probabilities for test set

when the window of prediction is 30 days. Differences between the groups are modest in all

models, reflecting their similar, relatively poor predictive power.
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CHAPTER 6

Comparison Between Logistic Regression and Random forests
for Longitudinal Claims Data with Binary Outcome

6.1. Motivation

Several studies have used electronic health record (EHR) or insurance claims data to

predict 30-day readmission for patients with chronic diseases such as diabetes, heart fail-

ure (HF), and chronic obstructive pulmonary disease (COPD). Generally, this type of data

has a longitudinal structure in that each patient has potentially a series of hospitalizations

and readmissions during the window of follow-up. Yet few studies have sought to accom-

modate within-subject or other forms of clustering. For example, for data with patients

having multiple hospitalization records, some studies use the first, last, or a randomly se-

lected hospitalization record per patient to build a logistic regression (LR). Then, the model

is applied to all observations for prediction. Recently, some authors have applied machine

learning algorithms such as random forests (RF) or support vector machines (SVM) to pre-

dict readmission,[1] [10] [12] but these studies also have avoided the complexity of modeling

clustering.

Various studies have compared machine learning algorithms with LR for predicting read-

mission. Reddy et al.[28] compared recurrent neural networks with long short-term memory

(RNN-LSTM) with penalized LR for readmission of patients diagnosed with lupus. Lin et

al.[22] addressed unplanned intensive care unit readmission prediction with RNN-LSTM,

RF, SVM, and penalized LR. For HF readmission, Frizzell et al.[10] compared the predic-

tion performance between a tree-augmented naive Bayesian network, RF, gradient-boosted,
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and LR using the Get With the Guidelines Heart Failure (GWTG-HF) registry linked with

Medicare inpatient data. Huang et al.[15] and Shin et al.[35] systematically reviewed the

literature comparing machine learning algorithms including RF, neural networks, and SVM

to conventional statistical models such as LR and Cox regression. Min et al.[26] compared

the performance of different machine learning models for predicting the hospital readmission

risk of COPD patients.

Most of these articles do not address the performance of methods applied to longitudinal

observations. When they fitted LR, some treated all the repeated measurments as indepen-

dent, ignoring the correlation within subjects and other clusters. Some comparisons used a

single index admission per patient, making comparisons under longitudinal EHR or claims

data still unclear. Frizzell et al.[10] was the only study to at least make the comparison valid,

by choosing the first hospitalization within each patient and using it as an index admission

to build models.

Finally, studies comparing out-of-sample prediction performance are lacking. A model

derived from Texas EHR data, for example, likely predicts well for Texas but not quite as

well for other states, although still well enough to be practically useful. We conjecture that

LR models capture the broad dependence of binary outcomes on predictors in a way that

transcends differences between data collection units such as states, whereas machine learning

techniques such as RF give predictions that are exquisitely tuned to one state but perhaps

less useful for others. This question, which we have not seen discussed in the literature, is

amenable to empirical investigation in our Medicaid data, which includes claims from four

US states.

In this chapter, we compare the prediction performance of LR and RF for 30-day read-

mission with longitudinal claims data. We define RF as Leo Breiman’s original version of

random forests [3]. Using simulated longitudinal claims data, first we randomly choose a

record from each patient in the training set and fit the two models, applying them to the

training, test, and external sets to compute AUC and sensitivity. We validate this compari-

son through an empirical study using Medicaid claims data, comparing in- and out-of-sample
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prediction for data from four states.

6.2. Brief Overview

For observation i, let yi be the outcome and Xi denote a covariate vector. Then, the

distribution of yi given Xi follows the binomial distribution

Yi ∼ Bin(1, πi),

where πi = Pr(Yi = 1). The logistic model is defined as

πi =
exp(βTXi)

1 + exp(βTXi)
, i = 1, ..., n

where β is a vector of coefficients. Alternatively, one can write

logit(πi) = log

(
πi

1− πi

)
= βTXi.

Because LR lies within the class of generalized linear models, it is straightforward to

estimate and validate. The fact that LR coefficients represent odds ratios renders its results

readily interpretable in any context, especially compared to ensemble-based learning algo-

rithms that combine various predictions in a complex way. LR can fail, however, if the logit

success probability depends on predictors in a nonlinear way or with multiple interactions.

RF relies on its predecessor method classification and regression trees (CART), a super-

vised machine learning algorithm that describes the conditional distribution of response Y

given X. Note that since our interest is classification of binary outcome (30-day readmis-

sion) rather than regression for continuous variable, we are focusing on the classification tree

here. CART uses a greedy recursive binary splitting algorithm to partition the feature space

into rectangles (regions), defining an estimated class for each one. It starts from the root

node and divides the input space into two branches at each decision node, repeating this
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process until all branches reach terminal nodes. Figure 6.1 illustrates a classification tree

No

No

Age

LoS

NoYes

Gender

>= 20 < 20

M F

<= 4 > 4

Figure 6.1: Example of classification tree for binary outcome

for a binary outcome. The root node is age, and decision nodes are gender and length of

stay. Each feature is partitioned once; at the end there are four terminal nodes.

To identify the splitting variable and level, it is typical to optimize the Gini index or

cross-entropy, which measure homogeneity of the classified sample. For two classes, those

measures equal 0 when the classes are perfectly homogeneous, or 1 when class labels are

equally divided.

If the size of the tree is too large, then the model might overfit the data; whereas if the

size is too small, the model can miss important structure. To determine the optimal size

of a tree, a general strategy is cost-complexity pruning. For example, if the cost of adding

another variable to the tree from the current node exceeds the value of the complexity pa-

rameter of the current tree, then tree-building ends.

Suppose that there are N subjects, regions in the model are already known, and they

are indexed by d. Then, the problem is to estimate a class for each node. In a node d repre-

senting region Rd with nd observations, we denote the proportion of class k observations in

node d as

p̂dk =
1

nd

∑
Xi∈Rd

I(yi = k), i = 1, ..., N
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Then we classify the observations in node d to class

k(d) = argmax
k

p̂dk

which is the majority class in node d. For the binary problem, k has two classes.

CART is a flexible method that easily handles nonlinear and non-smooth relationships.

Moreover, the tree plots (see Figure 6.1) provide an intuitive interpretation for its binary

structure. A significant drawback of CART is overfitting, which results in high model vari-

ance, or tree instability. Because the method is hierarchical, a small change in the data can

substantially alter the structure of the resulting tree. A change in a feature in a root node

may result in a tree with completely different decision and terminal nodes.

The random forest (RF) addresses these concerns to some extent by the use of bagging,

also called bootstrap aggregating [2]. This involves generating B bootstrap samples, fitting

a tree to each, and averaging the B tree predictors for responses or calculating the majority

vote of the predictors for classification. Because bagging uses bootstrap samples from the

same original data, bagging trees are positively correlated, which increases model variance.

RF corrects this problem by constructing de-correlated bagging trees. Growing an RF tree

involves repeating the following steps:

1. Instead of using all p variables in the bootstrapped data, select m � p variables at

random.

2. Pick the best variable and its split-point among the m.

3. Split the node into two following nodes.

Other than that, the rest of the process is the same as bagging.

As well as reducing the model variance and preventing overfitting, the RF can use the out-

of-bag samples left over from the bootstrap to measure the importance of each variable. Even

so, a main weakness of RF is its lack of reproducibility, as trees in the forests are randomly

built. And like other ensemble learning methods, the model has no obvious interpretation.
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6.3. Simulations

To compare LR and RF for predicting 30-day readmission, we created simulated claims

data following the description in 4.1. N = 1000 patients experienced recurrent admission

and discharge events over a span of 3 years. We set discharge/readmission frailties to follow

a bivariate normal distribution with both means 0 and both variances 0.5, and with correla-

tion ρ = −0.5. The resulting simulated data has 10 days and 205 days as the average of LoS

and LoD, respectively, and the (10, 25, 50, 75, 90) centiles of ri over patients are (0, 1, 3, 4, 6);

the readmission rate is around 22%. As before, we used 80% of the data as a training set,

with the rest reserved as a test set.

We used both relevant and noise covariates, reflecting the situation in practice where

an analyst may unwittingly include in a prediction model one or more irrelevant vari-

ables. Relevant variables included gender and age with true coefficients the same as in

4.1: β0 = (−0.05,−0.01)T for admission and β1 = (−0.5, 0.001)T for discharge. We also

included length of stay of the previous admission and annual number of past admissions

as relevant covariates. We included 5 pure noise variables generated independently from

N(0, 1). In summary, there are 4 relevant variables — gender, age, length of stay, and the

annual number of past admissions — and 5 continuous noise variables.

In addition to the test set, we applied prediction models to external data which has sim-

ilar properties with the data but is independently generated with different coefficients for

gender and age: β0 = (−0.02,−0.005)T for admission and β1 = (−0.2, 0.01)T for discharge.

Also, the mean of frailties is still 0 and variances are negatively correlated ρ = −0.5 while we

changed σ2
0 and σ2

1 to 0.25. This out-of-sample data has 6 days and 240 days as the average of

LoS and LoD, respectively, and the (10, 25, 50, 75, 90) centiles of ri are (0, 1, 2, 3, 4), implying

fewer past records per patient. The readmission rate is round 13%.
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The simulation proceeds as follows:

1. Generate the data and split it into training and test sets.

2. Generate the external data.

3. Using the training set, randomly choose one index admission per patient.

3-1. Fit the LR.

3-2. With the fitted model, obtain predictive transition probabilities for 30-day

readmission for the training set, test set, and external data.

3-3. With the predictive transition probabilities, calculate AUC and sensitivity (as

in 4.2) for the training set, test set, and external data.

3-4. Repeat 3-1 through 3-3 with RF. Here, predictive probabilities are estimated

by the fraction of times a target index admission is classified into the 30-day readmission

class between trees in forests.

4. Repeat steps 1–3 10,000 times and average the prediction measures across replications.

Before fitting RF in step 3-1, we first tuned hyperparameters in RF to prevent overfitting.

There are three hyperparameters: The number of features randomly sampled as candidates

at each split, the number of trees to grow, and the maximum number of terminal nodes

that trees in the forest can have. We considered 2–6 out of nine features for the first one;

50, 100, 500, 1000 trees for the second one; and 5–15 terminal nodes for the third one. We

identified the optimal combination by a grid search. For each combination, we applied 5-fold

cross-validation and measured the fraction of correct classifications, denoted the accuracy.

Choosing the combination with the highest accuracy, we applied these parameters when

fitting the RF in step 3-1.
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Model LR RF

Mean (se) Mean (se) Win rate

Training set
AUC .60 (.018) .59 (.012) .68
Sens. .33 (.006) .28 (.007) .80

Test set
AUC .60 (.021) .56 (.020) .93
Sens. .32 (.014) .24 (.013) .95

External data
AUC .58 (.018) .55 (.012) .90
Sens. .20 (.004) .14 (.005) .95

Table 6.1: Prediction performance comparison between logistic regression and random forests
for longitudinal claims data

Table 6.1 presents the simulation results. Here the win rate which is the fraction of 10,000

Monte-Carlo simulations in which LR has superior performance to RF, calculated separately

for AUC and sensitivity. Compared to RF, LR shows higher prediction performance for both

AUC and sensitivity with the training, test, and external sets. Although the performance

gap between LR and RF with the training set is modest, it increases to 0.04 with the test

and external sets. The win rate shows a similar trend. If we compare the performance by

each set, there is no evidence of overfitting in either model, but LR predicts better for the

test set and is more robust with external data.

6.4. Empirical study: Readmission in Medicaid patients with heart failure

We conducted an empirical study in Medicaid patients admitted for heart failure (HF).

Considering their HF admission records as index admissions, our goal was to predict all-cause

30-day readmissions.

We first considered Medicaid claims for patients with HF in 4 states — Colorado, Ken-

tucky, Nevada, and Ohio — dated from January 1, 2016 to August 1, 2019. We identified

HF patients from admission ICD-10 codes in hospitalization claims and clinical diagnosis

ICD-10 codes in physician and hospitalization claims. Next, we collected their HF index

48



admissions and all subsequent admissions. We limited the records to include those dated

January 1, 2017 or later, giving us one year of prior data for every index admission. Both

index admissions and subsequent admissions were required to be i) institutional claims and

ii) inpatient hospital claims, and iii) have clear admission and discharge dates. To be an

HF index admissions, an admission record must include HF record(s) in either admission

diagnosis or clinical diagnosis. Subsequent admission claims — i.e., potential readmissions

— did not require an HF diagnosis. For each HF index admission record, we checked whether

30-day readmission occurred by calculating LoD, which is the difference in days between the

admission date of the subsequent admission and the discharge date of the index admission.

State CO KY NV OH

Patients 1921 788 1925 1467
Age quantiles (25-50-75th) 47-56-62 49-57-63 47-55-60 49-56-61

% of female 41.6 53.3 38.8 54.1
Avg. LoS (days) 6.3 6.5 6.5 7.6
Avg. LoD (days) 216 192 179 245

Readmission rate (%) 32.4 27.2 33.7 21.6
med(ri) 0 0 0 0

Table 6.2: Descriptive statistics by state (CO = Colorado, KY = Kentucky, NV = Nevada,
OH = Ohio)

Table 6.2 presents descriptive statistics on index admissions by state. There is substantial

heterogeneity across states in the number of patients, percentage female, average LoD, and

readmission rates. All states show zero in the median number of past admissions, implying

that 50% of patients or more have no past admission record. In fact, in any state, about

70% of patients have only one uncensored admission claim with a censored discharge record.
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Variable Description

Age Discrete, 0-65
Gender Male and Female

Discharge status To home or an institution
Acuity Emergent admission or not

Length of stay Discrete, ≥ 1 day
Avg. annual # of past admissions Continuous, ≥ 0

Avg. annual # of past ER visits Continuous, ≥ 0

9 comorbidities (binary)

Renal failure
Obesity
Sepsis

Respiratory failure
Influenza pneumonia
Hemolytic anemia

Abnormal findings on blood
Chest & throat & upper abdomen

Personal history of several risk factors

Table 6.3: List of covariates. (ER: emergency room)

Table 6.3 lists the variables used in the predictive modeling. Most are equivalent to those

in 5.2. Instead of using admission type with five levels, we re-grouped into two levels —

emergency or not; we henceforth call this variable acuity. We moreover added the average

annual number of past emergency room (ER) visits, which is likely to be related to frequent

readmissions.

Analysis steps for the empirical study are as follows:

1. Choose one state and perform a 5-fold cross validation:

1-1. Choose one of the five fractions as the test set and designate the rest as the

training set.

1-2. In the training set, choose the first index admission per patient.

1-3. Fit the LR with the data from step 1-2.
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1-4. Using the fitted model, obtain predictive transition probabilities for 30-day

readmission for the training set, test set, and external sets (the data from the other

three states).

1-5. With the predictive transition probabilities, calculate AUC and sensitivity for

the prediction sets.

1-6. Repeat 1-3 to 1-5 with RF. Here, predictive probabilities are the fraction of

times a target index admission is classified as a 30-day readmission class between trees

in forests.

1-7. Repeat 1-1 to 1-6 for the other 4 test sets and average each measure for each

training set, test set, and the three external sets by cross-validation.

2. Repeat step 1 for the other three states.

State CO KY NV OH

Models LR RF LR RF LR RF LR RF

Training set
AUC .84 .82 .75 .77 .73 .74 .66 .67
Sens. .65 .62 .51 .56 .54 .57 .38 .42

Test set
AUC .75 .74 .75 .73 .75 .73 .64 .63
Sens. .58 .58 .53 .50 .60 .60 .36 .36

Table 6.4: Prediction results for training and test sets by state.

Results appear in Table 6.4. Overall, RF shows better performance with training set while

LR predicts better with test set. However, in terms of AUC and sensitivity of test set, there

are no significant performance gaps for both AUC and sensitivity between LR and RF ex-

cept Kentucky. Hence, we can conclude that both models work analogously in most of states.
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Model under
CO KY NV OH

External
data from

LR RF LR RF LR RF LR RF

CO
AUC .80 .78 .80 .80 .79 .76
Sens. .59 .57 .65 .64 .53 .54

KY
AUC .71 .69 .72 .72 .71 .62
Sens. .54 .51 .57 .54 .41 .34

NV
AUC .71 .68 .71 .69 .70 .65
Sens. .53 .50 .45 .45 .39 .36

OH
AUC .64 .62 .64 .61 .64 .64
Sens. .48 .45 .41 .39 .48 .48

Table 6.5: Prediction results for external data by state.

Table 6.5 presents prediction results for the external (out-of-sample) data, with the col-

umn indicating the state used to construct the model and the row indicating the state in

which the prediction model was assessed. Notably, in almost every combination, LR gives

AUC and sensitivity at least as good as RF, and often much better.

Despite the lack of reproducibility and interpretability, a recent trend in the literature

has been applying RF with the expectation of higher prediction performance of ensemble-

based algorithm. Nonetheless, our simulations and empirical study suggest that it is hard to

say that RF predicts better than LR for 30-day readmission with longitudinal claims data.

Rather, our results recommend LR showing higher robustness against test and external sets.
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CHAPTER 7

Discussion

In Chapters 1–5, we proposed dynamic prediction for alternating recurrent events under

the joint transition intensity model (JTIM). This model flexibly accommodates covariates,

random effects, and within-subject correlation of repeated events. The method of Wang

et al. provides fast simultaneous estimation of model parameters via the penalized partial

likelihood. Because their approach sacrifices estimation of the baseline transition intensity

function, we apply the Breslow estimator with B-spline regression. This allows us to account

for potential nonlinear or nonsmooth effects of event duration on the baseline intensity func-

tion.

We propose a method to compute the predictive transition probability from one event to

the other by integrating out the unknown transition frailty of new subject with respect to its

current posterior distribution. Our approach uses all available information in the likelihood.

We avoid numerical integration through application of a Taylor expansion.

Simulation studies show that our approach generally outperforms other methods that are

based on logistic regression and its extensions to correlated data. Further, we have verified

that the transition probability approximation is accurate even with large frailty variance.

Two applications of our method to real data demonstrate its practicality in clinical predic-

tion contexts.

The value of our work is in the modeling and prediction of alternating recurrent events,

which occur in a broad range of applications in biomedicine, engineering, and finance. In the

context of hospital readmission, our work can serve as a foundation for pre-/post-discharge

management tools aimed at preventing avoidable readmissions.
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We have formulated the model as a sequence of alternating events nested within a sub-

ject. In readmission, exacerbation of chronic disease, and other medical applications, there

may also be correlation at the level of the provider, hospital, or other units. One can address

this in statistical models by including additional frailty terms, for example at the hospi-

tal level. Let the vector of hospital transition frailties vl = (vl0, vl1)
T follow a bivariate

normal distribution. Also, presume that it is independent of patient transition frailties i.e.

ui ⊥⊥ vl,∀(i, l). The maximum value of the hospital index l should be less than or equal to

the number of patients n, as presumably some patients use the same hospital. One can then

express the marginal transition probability as

Pr(W ∗
i1(ri+1) ≤ Cw

i1(ri+1) + τ |W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi,Zi, ξ,Σui
,Σvl

)

=

∫
vl1

∫
ui1

Pr(W ∗
i1(ri+1) ≤ Cw

i1(ri+1) + τ |W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi,Zi, ξ,Σui
,Σvl

, ui1, vl1)

×fui1vl1(ui1, vl1|W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi,Zi, ξ,Σui
,Σvl

)dui1dvl1,

where Σui
and Σvl

are the variance-covariance matrix of the patient and hospital frailties,

respectively. The joint posterior density of ui1 and vl1, the second integrand, is

fui1vl1(ui1, vl1|W ∗
i1(ri+1) ≥ Cw

i1(ri+1), Hi,Zi, ξ,Σui
,Σvl

)

=
fCw

i1(ri+1)
(W ∗

i1(ri+1) ≥ Cw
i1(ri+1)|ui1, vl1,Zi, ξ)fHi

(Hi|ui1, vl1,Zi, ξ)fui1(ui1|Σui
)fvl1(vl1|Σvl

)∫
vl1

∫
ui1

fCw
i1(ri+1)

(W ∗
i1(ri+1) ≥ Cw

i1(ri+1)|ui1, vl1,Zi, ξ)fHi
(Hi|ui1, vl1,Zi, ξ)fui1(ui1|Σui

)fvl1(vl1|Σvl
)dui1dvl1

.

We can derive the rest in the same way, as in 3.1.

These formulas apply when each patient uses only one hospital, which is not necessarily

the case as patients may not always be admitted to the same hospital when ill. Such arbitrary

crossing of patients with hospitals renders the problem more difficult computationally.

In Chapter 6, we examined the prediction performance of LR and RF for longitudinal

claims data. By selecting the first observation or randomly choosing one observation per

patient, we built prediction models that are valid although possibly inefficient. Including
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training and test sets, we predicted external data as well to examine flexibility and robustness.

Through simulations and empirical study, we verified that the LR model generally performs

as well as or better than RF for the test set and is more robust in out-of-sample predictions.

Ensemble learning consists of two steps: Constructing a set of models from different

training sets, and then combining predictors from them to produce one output per response.

Ensemble learning can reduce risk compared to a model chosen and built by one-time data-

splitting like cross-validation [8]. When a feature space is too large for training set, prediction

accuracy from such a randomly chosen model would be doubtful. From a statistical point

of view, this is a way to decrease model variance. Such models may be difficult to interpret,

however. Our examination suggests that there is no reason to prefer RF over LR to predict

30-day readmission for longitudinal claims data.

Kirasich et al. [17] developed an analytical tool to compare LR and RF with simulated

data. The data generated is not longitudinal but encompasses several options: The number

of observations; the number of relevant and noise variables; the presence of continuous and

categorical variables; the regression coefficients; and the variability of errors. We can refer

to this tool to do further comparisons of prediction models. For instance, RF can handle

large numbers of variables, so simulations in the large p setting may be useful. Further,

simulations of longitudinal claims data with different properties such as divergent med(ri)

or readmission rate will be interesting. For example, applying simulated data with a greater

med(ri) can demonstrate performance in this setting. Also, with a higher readmission rate,

we can see how well a trained model captures the information of readmission. Finally, we

recommend more studies with various forms of heterogeneity in the external set.
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APPENDIX A

A.1. Approximation

Recall that by Taylor expansion, eui1 = 1 + ui1 +
u2i1
2!

+ o(u2i1) as ui1 → 0. Letting

η(Wijk) = Λ01(Wijk) exp(βT1 Zi1k), then

Si1(ri+1)(C
w
i1(ri+1)) = exp

(
− Λ01(C

w
i1(ri+1)) exp(βT1 Zi1k + ui1)

)
= exp

(
− η(Cw

i1(ri+1))e
ui1
)

≈ exp
(
− η(Cw

i1(ri+1))(1 + ui1 + u2i1/2)
)

and

ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
=

ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k + ui1) exp
(
− Λ01(Wi1k) exp(βT1 Zi1k + ui1)

)

=

ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k)e
ui1 exp

(
− η(Wi1k)e

ui1
)

= exp
(
riui1 − eui1

ri∑
k=1

η(Wi1k)
) ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k)

≈ exp
(
riui1 − (1 + ui1 + u2i1/2)

∑ri
k=1 η(Wi1k)

) ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k).
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First, we approximate the denominator in 3.5 as follows:

∫
ui1

Si1(ri+1)(C
w
i1(ri+1))

ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)dui1

≈
∫
ui1

exp
(
− η(Cw

i1(ri+1))(1 + ui1 + u2i1/2)
)

exp
(
riui1 − (1 + ui1 + u2i1/2)

ri∑
k=1

η(Wi1k)
)

×
ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k)fui1(ui1|σ1)dui1.

In 2.1, we define the observed gap time Wijk = min(W ∗
ijk, C

w
ijk). Since the last gap time of

type 1 event is censored, Wi1(ri+1) = Cw
i1(ri+1) and this leads to∑ri

k=1 η(Wi1k) + η(Cw
i1(ri+1)) =

∑ri+1
k=1 η(Wi1k). Therefore,

∫
ui1

exp
(
− η(Cw

i1(ri+1))(1 + ui1 + u2i1/2)
)

exp
(
riui1 − (1 + ui1 + u2i1/2)

ri∑
k=1

η(Wi1k)
)

×
ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k)fui1(ui1|σ1)dui1

=

ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k)

∫
ui1

exp
(
riui1 − (1 + ui1 + u2i1/2)

ri+1∑
k=1

η(Wi1k)
)
fui1(ui1|σ1)dui1

= exp
(
−

ri+1∑
k=1

η(Wi1k)
) ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k)

×
∫
ui1

exp
(
riui1 − (ui1 + u2i1/2)

ri+1∑
k=1

η(Wi1k)
)
fui1(ui1|σ1)dui1.
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For simplicity, let c0 =

ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k) and c1 =
∑ri+1

k=1 η(Wi1k) where both are

not the function of ui1. Then,

exp
(
−

ri+1∑
k=1

η(Wi1k)
) ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k)

×
∫
ui1

exp
(
riui1 − (ui1 + u2i1/2)

ri+1∑
k=1

η(Wi1k)
)
fui1(ui1|σ1)dui1

= e−c1c0

∫
ui1

exp
(
riui1 − c1(ui1 + u2i1/2)

)
fui1(ui1|σ1)dui1

= e−c1c0

∫
ui1

exp
(
riui1 − c1(ui1 + u2i1/2)

) 1√
2πσ1

exp

(
− u2i1

2σ2
1

)
dui1

=
e−c1c0√

2πσ1

∫
ui1

exp

(
riui1 − c1(ui1 + u2i1/2)− u2i1

2σ2
1

)
dui1

=
e−c1c0√

2πσ1

∫
ui1

exp

(
− u2i1(1 + c1σ

2
1)− 2ui1(riσ

2
1 − c1σ2

1)

2σ2
1

)
dui1

=
e−c1c0√

2πσ1

∫
ui1

exp

(
−
u2i1 − 2ui1

riσ
2
1 − c1σ2

1

1 + c1σ
2
1

+

(
riσ

2
1 − c1σ2

1

1 + c1σ
2
1

)2

−

(
riσ

2
1 − c1σ2

1

1 + c1σ
2
1

)2

2σ2
1/(1 + c1σ

2
1)

)
dui1

=
e−c1c0√

2πσ1

∫
ui1

exp

(
−

(
ui1 −

riσ
2
1 − c1σ2

1

1 + c1σ
2
1

)2
2σ2

1/(1 + c1σ
2
1)

+
(riσ

2
1 − c1σ2

1)2(1 + c1σ
2
1)

2σ2
1(1 + c1σ

2
1)2

)
dui1

= exp

(
(riσ

2
1 − c1σ2

1)2(1 + c1σ
2
1)

2σ2
1(1 + c1σ

2
1)2

)
e−c1c0√

2πσ1

∫
ui1

exp

(
−

(
ui1 −

riσ
2
1 − c1σ2

1

1 + c1σ
2
1

)2
2σ2

1/(1 + c1σ
2
1)

)
dui1.
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Since
∫
ui1

exp

(
−

(
ui1 −

riσ
2
1 − c1σ2

1

1 + c1σ
2
1

)2
2σ2

1/(1 + c1σ
2
1)

)
dui1 =

√
2πσ1√

1 + c1σ2
1

,

exp

(
(riσ

2
1 − c1σ2

1)2(1 + c1σ
2
1)

2σ2
1(1 + c1σ

2
1)2

)
e−c1c0√

2πσ1

∫
ui1

exp

(
−

(
ui1 −

riσ
2
1 − c1σ2

1

1 + c1σ
2
1

)2
2σ2

1/(1 + c1σ
2
1)

)
dui1

= exp

(
(riσ

2
1 − c1σ2

1)2(1 + c1σ
2
1)

2σ2
1(1 + c1σ

2
1)2

− c1

)
c0√
2πσ1

√
2πσ1√

1 + c1σ2
1

= exp

(
σ2
1(ri − c1)2

2(1 + c1σ
2
1)
− c1

)
c0√

1 + c1σ2
1

.

If we turn c0 and c1 back and expand
∑ri+1

k=1 η(Wi1k) to
∑ri

k=1 η(Wi1k) + η(Cw
i1(ri+1)), this is

the closed form of approximate denominator.

exp

(
σ2
1(ri − c1)2

2(1 + c1σ
2
1)
− c1

)
c0√

1 + c1σ2
1

= exp

(
σ2
1

(
ri−

∑ri+1

k=1 η(Wi1k)

)2

2

(
1+σ2

1

∑ri+1

k=1 η(Wi1k)

) −∑ri+1
k=1 η(Wi1k)

)(
1 + σ2

1

∑ri+1
k=1 η(Wi1k)

)− 1
2

ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k)

= exp

(
σ2
1

(
ri −

∑ri
k=1 η(Wi1k)− η(Cw

i1(ri+1))
)2

2
(

1 + σ2
1

∑ri
k=1 η(Wi1k) + σ2

1η(Cw
i1(ri+1))

) − ri∑
k=1

η(Wi1k)− η(Cw
i1(ri+1))

)

×
(

1 + σ2
1

∑ri
k=1 η(Wi1k) + σ2

1η(Cw
i1(ri+1))

)− 1
2

ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k).
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For numerator in 3.5, it can be expressed as follows:

∫
ui1

[
Si1(ri+1)(C

w
i1(ri+1))− Si1(ri+1)(C

w
i1(ri+1) + τ)

] ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)dui1

=

∫
ui1

Si1(ri+1)(C
w
i1(ri+1))

ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)dui1

−
∫
ui1

Si1(ri+1)(C
w
i1(ri+1) + τ)

ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)dui1.

The first integration is equal to denominator in 3.5. Also, we can easily obtain the second

one by switching Cw
i1(ri+1) with C

w
i1(ri+1) + τ from the denominator. Hence, we approximate

the numerator through the similar process above as follows:

∫
ui1

Si1(ri+1)(C
w
i1(ri+1))

ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)dui1

−
∫
ui1

Si1(ri+1)(C
w
i1(ri+1) + τ)

ri∏
k=1

(
− S ′

i1k(Wi1k)

)δi1k
fui1(ui1|σ1)dui1

≈ exp

(
σ2
1

(
ri −

∑ri
k=1 η(Wi1k)− η(Cw

i1(ri+1))
)2

2
(

1 + σ2
1

∑ri
k=1 η(Wi1k) + σ2

1η(Cw
i1(ri+1))

) − ri∑
k=1

η(Wi1k)− η(Cw
i1(ri+1))

)

×
(

1 + σ2
1

∑ri
k=1 η(Wi1k) + σ2

1η(Cw
i1(ri+1))

)− 1
2

ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k)

− exp

(
σ2
1

(
ri −

∑ri
k=1 η(Wi1k)− η(Cw

i1(ri+1) + τ)
)2

2
(

1 + σ2
1

∑ri
k=1 η(Wi1k) + σ2

1η(Cw
i1(ri+1) + τ)

) − ri∑
k=1

η(Wi1k)− η(Cw
i1(ri+1) + τ)

)

×
(

1 + σ2
1

∑ri
k=1 η(Wi1k) + σ2

1η(Cw
i1(ri+1) + τ)

)− 1
2

ri∏
k=1

λ01(Wi1k) exp(βT1 Zi1k).
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